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Abstract— In semiconductor manufacturing, the state of the
art for wafer quality control is based on product monitoring
and feedback control. The required metrology operations, that
usually involve scanning electron microscopes, are cost-intensive
and time-consuming. For this reason, it is not possible to mea-
sure every wafer: a small subset of a lot (one to three wafers) is
measured at the metrology station, and these measurements are
designated to represent the whole lot. Virtual Metrology (VM)
methodologies aim to obtain reliable estimates of metrology
data without actually performing measurement operations. This
goal is usually achieved by means of statistical models, linking
easily collectible process data to target measurements. In this
paper, we tackle two of the most important issues in VM:
(i) regression in high dimensional spaces with few meaningful
variables (ii) data heterogeneity caused by inhomogeneous
production and equipment logistics. We propose a hierarchical
framework based on `1-penalized machine learning techniques
and solved by means of multitask learning strategies and multi-
level statistical models. The proposed methodology is validated
on actual process and measurement data from semiconductor
manufacturers.

INTRODUCTION

In semiconductor manufacturing, metrology operations
(usually performed by means of scanning electron micro-
scopes) are so expensive and time-consuming that only a
relatively small sample of the production is actually eval-
uated. Virtual sensors that rely on process data to predict
metrology results take the name of Virtual Metrology (VM)
tools. A reliable VM tools is expected to increase the
amount and readiness of metrology data. The interaction
between metrology-related applications (such as Run-to-
Run controllers and sampling tools) and such VM tool
allows to reduce actual metrology costs while increasing
production quality [?]. In the design of a VM tool, the
main goal is to find and exploit a relationship between easily
collectible data (such as sensor readings and equipment set-
points) and metrology results. Such relationship can derive
either from physical laws or statistical inference; either
way, the core of VM is a mathematical model linking
measurements (outputs) to a set of process data (inputs).
When the model is established, it can predict metrology
results for new wafers at process time, and at no cost.

This work has been developed as a part of European project EU-
IMPROVE, dedicated at improving and researching new techniques in
quality process control in semiconductor industry. Our best thanks go to
Giuseppe Fazio, Carlo Bevilacqua, Andrea Marchelli (Micron Italy), for the
constant support and proposal of challenging problems.

Given such premises, VM tools are unsurprisingly receiving
a great deal of attention from semiconductor manufacturers;
research directions include algorithm development, inter-
action between VM and control systems and performance
assessment. Two of the most important issue in VM are
(i) regression in high dimensional spaces with very few
meaningful variables and (ii) inhomogeneous (and possibly
small) datasets due to sampling strategy and inter-chamber
variability. In a statistical framework, the high number of
sensor readings compared to the small size of metrology
datasets leads easily to ill-conditioned problems and calls
for techniques able to simultaneously handle input selection
and model estimation. Furthermore, production processes
usually involve multichamber equipments performing the
same step in parallel; in order to obtain reliable estimates, it
is necessary to explicitly handle concurrent sources. A real
example is depicted in tree form in Figure 1: a three-chamber
CVD (Chemical Vapor Deposition) equipment is mainly
involved in two production processes. Since every chamber
is split in two subchambers, twelve different logistic paths
are possible. Intuitively, ignoring the intrinsic differences
between chambers would yield suboptimal estimates, while
focusing on every different logistic path would produce
extremely small datasets.

In this paper, issue (i) is tackled by means of `1-penalized
machine learning techniques, while a novel hierarchical
framework is proposed in order to deal with issue (ii). The
paper is organized as follows:
• Section I reviews basic concepts of machine learning

with specific focus on methods able to yield sparse
solutions

• Section II defines the proposed hierarchical methodol-
ogy with reference to the VM theme

• Section III validates the proposed methodology by
means of numerical simulations and real datasets pro-
vided by semiconductor manufacturers

I. BASICS OF MACHINE LEARNING AND `1-PENALIZED
METHODS

This section provides an introduction to machine learning
techniques in reference to the VM theme. Machine learn-
ing methodologies are assume that a reliable model can
be learned from data: given a training set of n examples
{xi, yi, i = 1, . . . , n} with xi ∈ R1×p and yi ∈ R, let
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Fig. 1. Tree representation of a CVD equipment with three chambers (A,
B, C) with two subchambers each (1 and 2), involved in two processes
(Process1 and Process 2)

X ∈ Rn×p be the matrix of p-variate inputs obtained by
vertical juxtaposition of the xi’s; furthermore, let Y ∈ Rn
be the associated real-valued output vector. In the motivating
example presented in this paper, xi would be the set of
process variables of the i-th wafer, and yi would be the
associated metrology measurement (for instance, layer thick-
ness or critical dimension). The target is then to estimate a
function f : Rp → R such that, given a new observation
{xnew, ynew}, a suitable norm of the differences between
f(xnew) and ynew will be small. The most popular choice
of f(x) is given by the linear model

f(xi) =

p∑
j=1

xi,jwj (1)

in which wj’s are unknown coefficients. Typically, the
estimation problem of w ∈ Rp is solved by the OLS -
Ordinary Least Squares method, in which the vector w
minimizing the Residual Sum of Squares (RSS):

RSS(w) :=
1

2
‖Y −Xw‖2 =

1

2

n∑
i=1

(yi − xiw)2 (2)

From a statistical point of view, this maximizes the
conditional probability p(Y |X) when assuming Y |X ∼
N(Xw, σ2I) or, equivalently, Y = Xw + ε with ε ∼
N(0, σ2I) (i.i.d. Gaussian noise). The optimal coefficient
vector wOLS is

wOLS = (X ′X)−1X ′Y (3)

and, remarkably, does not depend on σ2. This very popular
approach suffers from two main drawbacks: (i) when few
observations are available (n ' p), the estimated f(x) may

overfit or even interpolate the training examples, and (ii)
the matrix X ′X may be ill-conditioned or even singular,
leading to an unstable solution. In order to overcome these
drawbacks, regularization techniques have been developed
throughout the last century: such methodologies make addi-
tional assumptions on the a priori probability of w aiming to
reduce the variance of prediction error for new observations.
Ridge Regression is perhaps the most popular regularized
machine learning algorithm: a linear estimator is obtained
by minimizing the loss function

JRR(w) :=
1

2
||Y −Xw||2+

λ

2
w′w = RSS(w)+

λ

2
w′w (4)

where λ ∈ R+ is a regularization (hyper)parameter. Under
a Bayesian framework, JRR is a logposterior distribution,

and the term
λ

2
w′w in (4) is related to the prior distribution

of w, p(w), assuming w ∼ N(0, λ−1I). The larger λ, the
smaller the variance of the estimator, at the cost of intro-
ducing some bias; in practical applications, λ is often used
as a ”tuning knob” controlling the bias/variance tradeoff,
which is typically tuned either via crossvalidation or other
statistical criteria. The optimal coefficient vector wRR and
the estimator fRR(x) are

wRR = (X ′X + λI)−1X ′Y (5)
fRR(x) = x(X ′X + λI)−1X ′Y (6)

The numerical stability problems of equation (3) are now
avoided, because (X ′X + λI) has full rank for any λ > 0.
This approach, however, suffers from the so-called ”curse of
dimensionality”: the number of selected regressors (that is,
the variables that are included in the model) grows almost
linearly with the number of candidate regressors: when
dealing with high dimensional spaces, this easily leads to
overparametrized models. In order to overcome this issue, it
is possible to penalize w under a `1 norm. The most popular
techniques employing such a penalty is the LASSO, that is
obtained by solving the following

Problem 1: find

w = arg min RSS(w) (7)

under the constraint

p∑
j=1

|wj | ≤ λ (8)

Remark: an alternative formulation for the LASSO prob-
lem can be achieved by using Lagrange multipliers:

JLASSO :=
1

2
||Y −Xw||2 +

λ∗

2

p∑
j=1

|wj | (9)

it can be proved that there is a bijective correspondance
between the two formulations; in the following sections,



Fig. 2. 2-D graphical example of the sparsity of the LASSO

the formulation from Problem 1 will be consistently used.
A probabilistic interpretation of the LASSO is obtained
by defining a prior for w as uniform prior over (8). This
formulation allows to obtain a sparse solution for w (that
is, some entries of the selected w are 0: Figure 2): a full
proof is presented in. This extremely convenient property of
the LASSO allows for the creation of low-order models even
when the input space has high dimension. The hyperparam-
eter λ acts again as a tuning knob: by lowering λ, models
of more and more reduced order will be selected. Problem
1 has no closed-form solution: it is necessary to resort to
optimization techniques to find LASSO estimates.

In the next section, the properties of LASSO are extended
to a hierarchical framework, leading to the definition of the
Multilevel LASSO.

II. MULTILEVEL LASSO FOR VIRTUAL METROLOGY

In order to extend the properties of `1 penalization to a
hierarchical framework, it is necessary to introduce some
definitions: with reference to the graph of Figure 1, let a
growing cardinal number L be conventionally assigned to
the η nodes, moving from the root (node #0) to the leaves
and from the left to the right; the last node is numbered
#η−1 (Figure 3). Furthermore, let every observation {xi, yi}
follow a logistic path Pi = {L0,L1, . . . }. For instance,
if the i-th wafer undergoes ”Process 1” and is processed
by chamber ”A1”, Pi = {0, 1, 3}. This notation will be
used to incorporate logistic informations into the model. It

#0 (Equipment 1)

#1 (Process 1) #2 (Process 2)

#3 (A1) #4 (A2) #5 (B1) #6 (B2) #7 (C1) #8 (C2)

Fig. 3. Numbered representation of the tree in Figure 1

is worth nothing that, in most cases, the functions fj(x·)
will not depend on the entire vector x·, but only on a
subset of variables here named x·,j ∈ R1×pj . For example,
only process-related variables within x· will be assigned to
”Process” nodes (#1 and #2), while only equipment-related
variables will be assigned to ”Chamber” (#3 − #8) and
”Equipment” (#0) nodes.

A. Multilevel LASSO

The proposed estimator of a generic x·, f(x·,P·), follows
a generalized additive structure:

f(x·) =
∑
j∈P·

fj(x·,j) (10)

with

fj(x·,j) = x·,jwj (11)

where wj = [wj,1, wj,2, . . . , wj,pj ]
′ is the coefficient

vector associated to the j-th node. It is then necessary to
estimate η functions fj simultaneously. Before introducing
the proposed methodology, we focus briefly on tuning pa-
rameters. While a single regularization parameter, λ suffices
the needs of ”single level” LASSO, it is convenient to define
a set of regularization parameters for the multilevel case. By
defining Gk = {Lk,0,Lk,1, . . . } as a subset of the nodes of
the tree, it is possible to insert a new constraint through a
regularization parameter λk ∈ R+:

∑
j∈Gk

pj∑
z=1

|wj,z| ≤ λk (12)

that is, the sum of the absolute values of every coefficient
associated to the nodes included in Gk must be lower than
λk. For the sake of readability, we will refer to equation (12)



as Ck. Given nλ constraints, the multilevel LASSO problem
is defined as

Problem 2: find

[w1, w2, . . . , wη] = arg min

n∑
i=1

1

2

yi −∑
j∈P·

xi,jwj

2

subject to C1 ∩ C2 ∩ · · · ∩ Cnλ .

Remark: the admissible region of Problem 2 is convex
since it arises as an intersection of convex regions. Further-
more, if nλ = 1 and G1 includes Lj ∀j, the admissible
region of Problem 2 is equivalent to the admissible region
of Problem 1 with λ1 = λ. Furthermore, let

C = C1 ∩ C2 ∩ · · · ∩ Cnλ (13)

The array of regularization parameters

λ = [λ1, λ2, . . . , λnλ ] (14)

allows to introduce flexible constraints in the proposed
model: for instance, with reference to the case discussed
in the present paper, nλ could be 3 with a general λ for
all the nodes, a λpr devoted to control the variability of
the ”process” nodes (#1 and #2 in Figure 1), while a λeq
regularizes the variability of ”equipment” nodes (#4 to #9
in Figure 1). This way, the proposed parametrization allows
to include in the model prior knowledge about the underlying
process.

It is useful to write Problem 2 in matrix form: let

p =

η∑
j=1

pj (15)

furthermore, let Y ∈ Rn be the observation vector, and
let X ∈ Rn×p be the extended input matrix. The i-th row of
X , xi, is

xi = [xi,1 xi,2 . . . xi,η] (16)

where

xi,j =

{
xi,j j ∈ Pi
01×pj j /∈ Pi

(17)

By defining

w = [w′1 w
′
2 . . . w′η]′ (18)

as the overall column coefficient vector, Problem 2 is then
equivalent to the following

Problem 2b: find

w = arg min
1

2
||Y −Xw||22

subject to C1 ∩ C2 ∩ · · · ∩ Cnλ .

B. Error model

In order to produce a probabilistic output for the VM
module, we introduce the following

Problem 3: find

w = arg min ||Y −Xw||2W (19)

subject to C1 ∩ C2 ∩ · · · ∩ Cnλ .

where W is a diagonal matrix with positive diagonal
entries and || · ||2W is the squared euclidean norm weighted
on W. In a probabilistic interpretation, the weighting matrix
W allows the observation to be corrupted by independent
(but not identically distributed) Gaussian noise: that is,

Y |w ∼ N(Xw,W−1) (20)

or, in punctual form,

yi|w ∼ N(xiw, εi) (21)

with εi ∼ N(0,W−1ii ) and Cov[εi, εj ] = 0 if i 6= j. To
follow the hierarchical structure of the proposed model, we
define the i-th diagonal element of W−1 as

W−1ii =
∑
j∈Pi

σ2
j (22)

where σ2
j is a variance associated to the j-th node. The

σ2
j and λ parameters can be tuned by means of Generalized

Cross Validation (GCV).

C. Model estimation

The aim of this section is to define a technique able to
estimate the optimal value of w in Problem 3 for a given
error covariance matrix W−1. We observe that the Jacobian
of (19) is

J = X ′WXw −X ′WY (23)

while the Hessian is

H = X ′WX (24)

If there were no constraints, and since H is positive
definite, the optimal (in the sense of least squares) estimate
of w might be computed by ensuring that J = 0. This is
achieved by solving the linear equation system

Hw∗ = X ′WY (25)

In order to find w∗ under the constraints C1, . . . , Cnλ ,
it is necessary to resort to an iterative approach: we pro-
pose an SMO (Sequential Minimal Optimization) approach,
summarized in the following
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Fig. 4. Borders of the admittable region for a step of Algorithm 1

Algorithm 1: solution of Problem 3
1) Initialize w∗ := 0p×1
2) For i = 1, . . . ,maxIter

a) Compute J and H accordingly to (23) and
(25), and let Z = X ′WY

b) Select S+ as the subset of the variables
that can increase their absolute value without
breaking any constraint

c) Select S− as the subset of the variables that
can decrease their absolute value

d) Select

j = arg min
S+

J ∗ sign(w)

k = arg max
S−

J ∗ sign(w)

e) Solve the linear system[
Hjj Hjk

Hkj Hkk

] [
γj
γk

]
= Z∗ =

[
Zj
Zk

]
f) If [γjγk]′ ∈ C, [

wj
wk

]
=

[
γj
γk

]
g) Otherwise, update [wjwk]′ performing an

SMO step (Algorithm 2).
h) Break if stop criterion is met

3) end for

Note: in order to implement Algorithm 1, it is necessary
to handle correctly the cases of empty S+ and S−.

In order to define the SMO step to be performed if (2f)f
does not hold, it is necessary to evaluate the score function
on the borders of the admittable region. We consider the
following

Proposition 1. Given two indexes j and k, the admittable
region of [wjwk]′ is entirely determined by a maximum of

3 conditions Cz .

In the following, let Λ1 be the least λ parameter that
applies to wj but not to wk, and let Λ2 be the least λ
parameter that applies to wk but not to wj . Furthermore,
let Λ3 be the least λ parameter that applies to both the
regressors. If one of these conditions dooe not apply, let the
Λ be +∞. It is then possible to define 16 points (p1, . . . , p16)
in the space spanned by wj and wk (Table II-C and Figure
4).

wj wk wj wk

p1 0 Λ3 p9 Λ1 Λ3 − Λ1

p2 0 −Λ3 p10 −Λ1 Λ3 − Λ1

p3 Λ3 0 p11 Λ1 Λ1 − Λ3

p4 −Λ3 0 p12 −Λ1 Λ1 − Λ3

p5 Λ1 Λ2 p13 Λ3 − Λ2 Λ2

p6 −Λ1 Λ2 p14 Λ2 − Λ3 −Λ2

p7 Λ1 −Λ2 p15 Λ3 − Λ2 Λ2

p8 −Λ1 −Λ2 p16 Λ2 − Λ3 −Λ2

The set of points defining the boundaries of the admittable
region for Problem 3 are chosen as

Λ3 ≤ Λ2,Λ3 ≤ Λ1 → (p1 to p4)

Λ3 ≤ Λ2,Λ1 < Λ3 → (p1, p2, p9 to p12)

Λ3 ≤ Λ1,Λ2 < Λ3 → (p3, p4, p13 to p16)

Λ1 + Λ2 ≤ Λ3 → (p5 to p8)

Λ1 < Λ3,Λ2 < Λ3,Λ1 + Λ2 > Λ3 → (p9 to p16)

Let p∗ be the counterclockwise sorted set of selected
points; such sorting of p∗ can be obtained by means of the
two-argument arctangent function, atan2. In order to find
the minimum of the score function on the boundaries of
the admittable region, the SMO step is performed using the
following



Algorithm 2: SMO step
1) For i = 1, . . . , length(p∗) + 1

a) Find the best point on the line connecting p∗i
to p∗i+1 as[

γ
(i)
j

γ
(i)
k

]
= p∗i+1 + (p∗i − p∗i+1)ξ∗i

where

ξ∗i =
(Z∗ − p∗i+1)′H∗(p∗i − p∗i+1)

(p∗i − p∗i+1)′H∗(p∗i − p∗i+1)

with

(ξ∗i < 0) → (ξ∗i = 0)

(ξ∗i > 1) → (ξ∗i = 1)

2) end for
3) Identify the best point among the [γ

(i)
j γ

(i)
k ]′ and set[

wj
wk

]
=

[
γ
(i)
j

γ
(i)
k

]

III. RESULTS

In order to validate the proposed methodology, a dataset
from the semiconductor industry (courtesy of the Micron
Technology facility in Agrate Brianza, Italy) is employed
as benchmark. Such dataset consists of 76 wafers with ho-
mogeneous recipe coming from 3 different equipments, and
includes process data in form of time series and metrology
data. The target for prediction is the difference between post-
etch and pre-etch Critical Dimensions (∆CD). The dataset is
anonymized and randomly split between training (60 wafers)
and test (16 wafers). The hyperparameters λ of the proposed
model are tuned by means of Generalized Cross Validation
(GCV) on the training dataset, and the Root Mean Squared
Error (RMSE) of the predictions upon the test set serves as a
comparison criterion for different algorithms. The proposed
methodology was compared with two other algorithms:

• Average of the training set: this ”naive” strategy is op-
timal only if there is no exploitable connection between
process data and metrology results, and it is therefore
not expected to yield satisfying results. It is, however,
a good baseline to determine the improvement of the
proposed methodology with respect to a very simple
approach.

• Regular (”single-level”) LASSO applied equipment-
wise: this approach ignores the commonalities between
different equipments; therefore, it is expected to behave
worse than the proposed methodology.

Figure 5 shows the prediction capabilities of the proposed
methodology on the test set, while Figure 6 shows a boxplot
of the prediction error of the three concurrent approaches:
as expected, the naive strategy obtains the worst results.
Remarkably, the multilevel LASSO is able to outperform the
regular LASSO in the majority of the test dataset.
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Fig. 5. Predictions of the proposed methodology
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Fig. 6. Boxplot of the prediction error for 3 methodologies

CONCLUSIONS

In this paper, a novel approach for Virtual Metrology in
semiconductor manufacturing was proposed. The proposed
algorithm, namely Multilevel LASSO, is able to obtain
models of reduced order by means of a suitable `1 penalty
score. Furthermore, it can handle nested level of variabil-
ity, exploiting data commonalities to obtain more reliable
predictions. Finally, the proposed methodology was tested
against data from the semiconductor manufacturing, showing
promising performances.


