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Abstract 

With more than half of the world population now living in cities and 1.4 billion more people 

expected to move into cities by 2030, urban areas pose significant challenges on local, regional 

and global environment. Timely and accurate information on spatial distributions and temporal 

changes of urban areas are therefore needed to support sustainable development and 

environmental change research.  The objective of this research is to evaluate spaceborne SAR 

data for improved global urban mapping using a robust processing chain, the KTH-Pavia Urban 

Extractor.  ENVISAT ASAR C-VV data at 30m resolution were selected over 10 global cities 

from six continents.  The proposed processing chain includes urban extraction based on spatial 

indices and Grey Level Co-occurrence Matrix (GLCM) textures, an existing method and several 

improvements i.e., SAR data preprocessing, enhancement, urban extraction based on spatial 

indices and GLCM textures, and post-processing.  ENVISAT Advanced Synthetic Aperture 

Radar (ASAR) C-VV data at 30m resolution were selected over 10 global cities and a rural area 

from six continents to demonstrated robustness of the improved method.  The results show that 

the KTH-Pavia Urban Extractor is effective in extracting urban areas and small towns from 

ENVISAT ASAR data and urban built-up areas can be mapped at 30m resolution with very good 

accuracy using only one or two SAR images.  These findings indicate that operational global 
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urban mapping is possible with spaceborne SAR data, especially with the launch of Sentinel-1 

that provides SAR data with global coverage, operational reliability and quick data delivery. 

 
Keywords: 

Spaceborne SAR, ENVISAT ASAR, Urban Mapping, 30m Resolution, Spatial Indices, GLCM 

Textures, Mountain Mask 

1. Introduction 

 
In 2008, the world crossed an invisible but momentous milestone - more than half of the people 

on the planet - roughly 3.2 billon human beings - lived in cities. It is estimated that the world is 

expected to add an additional 1.4 billion urban dwellers by 2030, and by 2050, approximately 

67% of the world population is expected to live in cities (UN 2011). Although only a small 

percentage of global land cover, urban areas significantly alter climate, biogeochemistry, and 

hydrology at local, regional, and global scales (Seto et al., 2011).  Cities are hot spots of 

production, consumption, and waste generation. According to the United Nations, cities are 

responsible for 75% of global energy consumption and 80% of greenhouse gas emissions (Ash et 

al., 2008).  The impact of urban areas on atmospheric chemistry and aerosols is both pronounced 

and well-documented. Urban land use influences local to regional climates through urban heat 

islands, impervious surfaces alter sensible and latent heat fluxes, and recent evidence has 

suggested that cities may also significantly affect precipitation regimes (Schneider et al., 2009).  

Therefore, timely and reliable information on the spatial distribution and the temporal changes of 

urban areas is therefore critical to a wide array of research questions related to the effect of 

humans on the local, regional and global environment (Schneider et al., 2009) as well as to 

support sustainable urban development.  
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With its synoptic view and the repeatability, satellite remote sensing has been extensively used 

for urban mapping and monitoring.  During the last two decades, eight different teams have 

developed 10 global land cover maps that offer circa-2000 portraits of urban areas (Gamba and 

Herold, 2009; Potere et al., 2009; Schneider et al., 2010).  Based on the extensive assessments 

conducted by Potere et al. (2009) and Schneider et al. (2010), the new MODIS 500 m resolution 

global urban map has the highest accuracy among all global urban maps at coarse resolution. The 

MODIS classification approach employed a one-year time series of seven land bands MODIS 

data to exploit spectral and temporal properties of land cover types and to reduce the effect of the 

missing data due to cloud cover. 

 

Previous global land cover products derived using time series optical satellite data at coarse 

spatial resolution (300m±1km), however, did not provide sufficient thematic detail or change 

information for global change studies and for resource management. High resolution (30 m) 

land cover characterization and monitoring is needed that permits detection of land change at the 

scale of most human activity and offers the increased flexibility of environmental model 

parameterization needed for global change studies. However, there are a number of challenges to 

overcome before producing such data sets including unavailability of consistent global coverage 

of satellite data, sheer volume of data, unavailability of timely and accurate training and 

validation data, difficulties in preparing image mosaics, and high performance computing 

requirements (Giri et al., 2013).  In spite of these difficulties, China recently produced a 30m 

global land cover map using Landsat data with a promising overall accuracy of 65% (Gong et al., 

2013).  For the 2010 classification, however, 74% of all Landsat data were from 2006 to 2011 

and majority of the data were from non-summer season.  Several classes including impervious 

areas were poorly classified. Some of the accuracies for impervious lands fall below 20%.with a 
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EDUHO\�������SURGXFHU¶V�DFFXUDF\�DQG�������XVHU¶V�DFFXUDF\ (Gong et al, 2013).  These results 

clearly call for further research and development to improve global urban mapping at 30m 

resolution. 

 

Current trends in global land-cover classification have shifted from a single general purpose land 

cover classification to individual class information extraction such as human settlements (e.g., 

Schneider et al., 2010; Gamba and Lisini, 2013), agricultural lands (e.g., Thenkabail  et al, 2009), 

wetlands (e.g., Giri et al, 2010) and forest cover (e.g., Townshend et al., 2012) among others 

(Gong et al., 2013).  Urban extent and land cover have been mapped using a range of datasets and 

algorithms (Gamba and Herold, 2009). Very High Resolution optical and/or SAR imagery and 

object-based approaches dominate urban remote sensing at the local level (e.g., Gong et al., 1992; 

Jacquin et al., 2003; Ban et al., 2010; Moran, 2010; Gamba et al., 2011; Niu and Ban, 2013) 

while Landsat, ENVISAT ASAR, MERIS as well as MODIS or nighttime light data and pixel-

based techniques are mostly used for regional and global analysis (e.g., Lu et al., 2008; Elvidge et 

al., 2009; Esch et al., 2010; Arino, et al., 2010; Friedl et al., 2010; Schneider et al., 2010; Wang 

et al. 2010; Zhang and Seto, 2011, Chen et al., 2012; Taubenböck et al. 2012; Wang, et al., 2012; 

Gamba and Lisini, 2013; Angiuli & Trianni, 2014).  One of the recent developments are moving 

towards global urban extraction using optical data at very high spatial resolution.  For examples, 

Pesaresi et al. (2011) developed a texture-based algorithm to extract urban extent of over 40 

cities around the globe using Ikonos and QuickBird panchromatic data resampled to a nominal 

resolution at 10 m. Kemper et al. (2013) presented a general framework for processing high and 

very high resolution data in support to a Global Human Settlement Layer (GHSL) and the 

resolution of the input images ranges from 0.5 to 10 meters, collected by a heterogeneous set of 

platforms including satellite SPOT (2 and 5), CBERS 2B, RapidEye (2 and 4), WorldView (1 and 
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2), GeoEye 1, QuickBird 2, Ikonos 2, and airborne sensors. The framework and techniques areis 

promising, but true global mapping with such data remains a challenge due to the huge amount of 

data and computations involved as well as data availability issue due to cloud cover.  Compared 

to optical data, SAR data have not been equally explored in urban applications due to the 

complexity of their interactions with diverse urban features.  With its all-weather/illumination 

capability and its unique information content, however, SAR data have been increasingly 

investigated for global urban extent extraction at various spatial resolutions with promising 

results. For examples, Gamba et al. (2011) developed a method to extract global urban area 

extent from SAR images. The proposed approach utilizes a group of VSDWLDO�LQGLFHV��L�H���0RUDQ¶V��

*HDU\¶V��DQG�*HWLV¶�together with GLCM-based textures (i.e., correlation and variance) for urban 

extent extraction. The method has been tested in different set of SAR images produced using 

different sensors (e.g., POLSAR, RADARSAT-1, TerraSAR-X, COSMO/SkyMed, etc.), with 

different spatial resolutions that cover different cities around the world with promising results.  

Esch et al. (2012 and 2013), on the other hand, developed a method to extract global urban 

settlement from TanDEM-X images at 12m spatial resolution. The method consists of three main 

steps: (1) textural information extraction that can be used to highlight built-up areas; (2) 

unsupervised classification of built-up/non built-up areas that takes into account both 

backscattered amplitude and the extracted textural information; (3) a final step that focuses on 

post-processing and mosaicking to produce a final urban map. The proposed methodology was 

evaluated using images that cover New Delhi, Munich, Buenos Aires, Nairobi, and Padang with 

an overall accuracy up to 94.8% achieved.   On-going efforts are currently undertaken to produce 

a consistent global map of human settlements at a IHZ�PHWHUV¶� VSDWLDO� UHVROXWLRQ��EXW� WKH� ILQDO�

results are yet to be achieved.  Even when these maps are released, it is still desirable to develop 

method for urban extraction using ENVISAT ASAR or ERS-1/-2 data since ENVISAT ASAR 
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and ERS-1/-2 data could provide global urban maps from earlier time when TerraSAR-X or 

TanDEM-X data were not available. 

 

As a comprise between the spatial details and the amount of data and computation, Gamba and 

Lisini (2013) developed an efficient method for urban areas extraction using ENVISAT ASAR 

wide swath mode at 75m resolution aiming to improve GlobCover 2009 urban mapping results.  

The method consists of three phases: (1) preprocessing, i.e., multitemporal images filtering, 

averaging, and equalization; (2) urban extraction, i.e., seed extraction and region growing; (3) 

post-processing, i.e., DEM-based correction, hole filling, and aggregation to 300m spatial 

resolution.  Test areas from around the world were used to evaluate the efficiency of the proposed 

approach and overall accuracies up to 94.8% were achieved using validation data of 1000 

randomly selected points.  The results are very encouraging, but the method requires a large 

volume of multitemporal SAR data (10-50 images) as the algorithm is based on amplitude 

values only, thus the denser the time series data, the better the accuracy.  The above literature 

analysis indicates a strong need of robust and operational methods for global urban extraction 

using a small number of SAR images at medium resolution.  Therefore, the objective of this 

research is to evaluate ENVISAT SAR data at 30m resolution for improved global urban 

mapping using a robust processing chain, the KTH-Pavia Urban Extractor, an improved method 

based on Gamba et al. (2011). 

 

2. Study Areas and Data Description 

Ten cities around the world were selected to represent developed and developing cities in various 

environmental conditions in all continents except Antarctica (Fig. 1). Coastal cities include 

Jakarta, Lagos, Mumbai, New York, Rio de Janeiro, Stockholm, and Sydney while inland cities 
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include Beijing, Berlin, and Mexico City. Several cities are mountainous or surrounded by 

mountains while the rest are in relatively flat areas.  Some of the cities are under rapid 

urbanization while others grow relatively slowly.  In addition to the ten big cities, Lombardia in 

Northern Italy was also selected to evaluate the effective of the KTH-Pavia Urban Extrator for 

extracting smaller towns.  

 
ENVISAT ASAR data were selected for all cities during the vegetation season to maximize the 

difference between urban and rural areas.  Ideally, multi-date, dual polarization data from both 

ascending and descending orbit are needed to evaluate the potential of ENVISAT ASAR data for 

improved urban extraction. For most of the cities selected, however, only a single date, single-

polarization C-VV SAR data were available.  Beijing is the only city with multitemporal SAR 

data multitemporal, in alternating polarization and dual orbits available in early vegetation 

season.  With the launch of Sentinel-1 in on April 3, 2014 and the planned RADARSAT 

constellation missions, spaceborne SAR data with global coverage, operational reliability and 

quick data delivery will becomebe routinely available.  They provide excellent opportunity for 

operational global urban mapping and monitoring.  The detailed information of the ENVISAT 

ASAR data used in this research is listed presented in Table 1. 

 

To perform rigorous assessment of the urban mapping, validation data of urban and non-urban 

areas were randomly collected and evenly distributed throughout the image based on very high 

resolution Google images.  The validation data consists of small rectangle blocks at 

approximately 50 pixels each and 10000 pixels in total for urban and non-urban areas 

respectively.   
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Figure 1.  Study Areas 

Table 1.  ENVISAT ASAR Data Characteristics 
City Acquisition Date Mode Orbit Incidence Angles 
Beijing 2009-05-17 

2009-05-27 
2009-06-08 
2009-06-11 

AP, IS2 
AP, IS2 
AP, IS4 
AP, IS6 

Ascending 
Descending 
Ascending 
Ascending 

19.2 - 26.7° 
19.2 - 26.7° 
31.0 - 36.3° 
39.1 - 42.8° 

Berlin 2010-09-25 IM, IS2 Descending 19.2 - 26.7 ° 
Jakarta 2009-09-06 IM, IS2 Ascending 19.2 - 26.7°  
Lagos 2010-08-18 IM, IS2 Descending 19.2 - 26.7° 
Lombardia 2010-07-20 

2010-08-24 
IM, IS2 
IM, IS2 

Ascending 
Descending 

19.2 - 26.7° 
19.2 - 26.7° 

Mexico City 2010-05-14 IM, IS2 Descending 19.2 - 26.7° 
Mumbai 2010-06-27 IM, IS2 Descending 19.2 - 26.7° 
New York 2010-07-26 IM, IS3 Ascending 26.0 ± 31.4° 
Rio de Janeiro 2010-01-15 IM, IS2 Ascending 19.2 - 26.7° 
Stockholm 2006-06-16 IM, IS2 Descending 19.2 - 26.7° 
Sydney 2010-09-03 IM, IS4 Descending 31.0 - 36.3° 
 

3. Methodology 

Due to speckle in SAR images, methodology for urban extraction from SAR needs to take into 

New York 

Mexico City 

Rio de Janeiro 

Stockholm 

Berlin 

Beijing 

Mumbai 

Jakarta 

Sydney 

Lagos 
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account of the spatial relationships among pixels instead of using the intensity of a single pixel.  

As a result, texture measures and spatial indices were often employed and proven effective in 

urban extraction (e.g., Gamba and Stasolla, 2008, Gamba et al., 2011; Esch et al , 2012 and 

2013),  In this research, the proposed method is based on the original approach developed by 

Gamba et al. (2011) using both spatial indices and texture measures.  The overview of the 

methodology in this research is illustrated in Figure 2 with the improvements highlighted in light 

and dark green.  The improvements mainly involve preprocessing, enhancement, post-processing 

as well as decision level fusion using multitemporal and multipolarization data.  

3.1 Preprocessing 

All SAR data were corrected for relief displacement with SRTM using the Range Doppler 

algorithm using the NEST toolbox.   

 
3.2 Contrast Enhancement 

As contract between urban and non-urban areas in an image is crucial for the methodology, all 

SAR images were enhanced using linear scaling. Since the SAR data are negatively skewed, a 

clip of 1% from the low end of the histogram and 4% from right end were performed with the 1% 

low values set to 0 and 4% high values set to 255.  In the original procedure by Gamba et al., the 

"normalization" procedure is embedded into the algorithm including the 2% clipping of the 

extremes.  This could cause certain urban areas with very high backscatter being clipped away. 
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Fig. 2.  Overview of the Methodology 

 

In the same step, the SAR data were compressed from 16 bits to 8 bits to improve performance 

and reduce computation cost based on previous research.  Clausi (2003), for example, suggests 

that there is no reason to compute GLCM on more than 8 bits in SAR images as more bits would 

include a lot of variability that is not captured by the textural measures, thus do not bring to any 

advantage on the following statistical analyses (e.g., a classification) of the GLCM features.  In 

addition, using 16 bits the computation of the textural features is more than four times slower.  

The subsequent urban extraction process will be much slower too. 
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3.3 Urban Extraction using Spatial Indices and GLCM Texture 

The method is based on ³/RFDO�,QGLFDWRUV�RI�6SDWLDO�$VVRFLDWLRQ´��/�,�6�$��, including the Moran 

index, the Geary index and the Getis-Ord index and GLCM variance and correlation textures as 

detailed in Gamba et al., 2011.  For completeness of understanding, the indices and the GLCM 

textures are briefly explained below.  

 
0RUDQ¶V� iI  index: iI  evaluates the similarity between the neighbors of a pixel by comparing its 

value with the average local value. As a result, it describes local homogeneity by means of the 

following formula (where ix  is the generic pixel value at the i -th position): 

                                           
� �

� �2
i

i ij j
ji

i

x xI w x x
x x

n

�
 �

�
¦

¦
                                              (1) 

Please note that > @1,1iI � �  and its value increases from negative to positive correlation. 

 

*HDU\¶V� ic  index: ic  identifies areas of high contrast, providing a measure of local dissimilarity, 

according to  

                                          
� �

� �2

2
1

i ij i j
ji

i

c w x x
x x

n

 �
�

¦
¦

                                           (2) 

> @1,2ic �  and the upper limit refers to strong negative spatial correlation, while the lower one 

corresponds to uncorrelated data. 

 

Getis-Ord iG  index: iG  LV� XVHIXO� WR� LGHQWLI\� ³RXWOLHUV´�� L�H��� YDOXHV� YHU\� GLIIHUHQW� IURP� WKH�

surroundings: 
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                                                               (3) 

 

The GLCM textures were computed with a moving window with a size of 11 x 11.  Variance 

(VAR) and Correlation (COR) textures were chosen based on trials.  Instead of 2% clipping of 

both left and right histogram tails implemented by Gamba et al. (2011), the contrast enhancement 

described in section 3.2 was used.  In the approach, the COR and VAR textures are summed pixel 

by pixel into a unique image for urban extraction.   

 

Based on the above indices and GLCM texture, LISA and/or GLCM masks were created and then 

processed through density analysis and morphological filtering to extract urban areas. In 

particular, the thresholds need to be determined for each satellite sensor accordingly in order to 

optimize for the specific characteristics of every sensor in terms of its spatial resolution and 

speckle behavior. The details are described in Gamba et al. (2011). The density is determined by 

the ratio of seed pixels per blob size. If this ratio is below the given threshold, the blob is filtered 

out. In this experiment, the following threshold settings were used: Scale Lisa 0.4, Scale Texture 

0.1, Scale Urban 0.7, L.I.S.A Binarization 0.4 and Texture Binarization 0.7. 

 

3.4 Mountain Masking 

In SAR images, mountains facing the SAR have high backscatter similar to urban areas. In order 

to reduce the false positive due to mountainous areas, a simple step using a SRTM DEM is 

adopted based on Gamba and Lisini (2013).  First, the 90m resolution SRTM DEM was 

resampled to 30m SAR resolution.  Then the average slope is computed in a window around the 

pixel under test. If the slope value is too larger than 15°, an empirically determined value, then it 
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is highly likely that the high backscattering area is due to rocks and not urban. As a result, areas 

where the average slope is higher than an empirically determined value (15°) are removed from 

urban extraction. 

 

3.5 Multitemporal Multi-Polarization Fusion 

For the multitemporal alternating polarization and dual orbital data from Beijing, each SAR 

image was processed by the procedures 3.1 to 3.4 to generate individual urban mask.  Then these 

urban masks were combined using simple logical operators such as AND or OR.  In this research, 

OR operator was used as all urban extraction results showed higher omission errors and low 

commission errors. 

 

3.6 Accuracy Assessment 

To validate the urban extraction results, standard accuracy measures such as overall accuracy, 

kappa, omission error and commission error were computed for results from KTH-Pavia Urban 

Extractor, MODIS 500m and GlobCover using the validation 20 000 pixels as described earlier. 

Omission errors occur when urban structures were not detected by the Urban Extractor.  

Commission errors occur when the non-urban structures were mis-detected as urban, for 

example, mountains. 

 
4. Results and Discussion 

4.1  Comparison of KTH-Pavia Urban Extractions with MODIS 500m and GlobCover 

The urban extraction results using the KTH±Pavia approach are presented in Table 2 and Figure 3 

and in Table 2 with comparison to MODIS 500m and GlobCover.  The results show that KTH-

Pavia Urban Extractor produced more consistent results for all cities with overall accuracies 
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ranging from 78% to 92% (kappa from 0.56 to 0.83average at 0.71) while results of MODIS 

500m and GlobCover are highly inconsistent with poor urban detection for several cities such as 

Bejing, Jakarta and Lagos for MODIS 500m and Jakarta, Mexico City and Rio for GlobCover. 

The average accuracies of MODIS 500m and GlobCover are also much lower than that of KTH-

Pavia, with kappa at 0.53 and 0.47 respectively.  For majority of the cities, KTH-Pavia method 

yielded higher overall accuracies and kappa with significantly less commission errors and 

Omission errors ranging from 15% to 40%.  The best results are achieved over Jakarta with kappa 

at 0.83 (OA92%) that is significantly higher than MODIS 500m and GlobCover.  The worst 

result (Kappa 0.56, OA: 74%) is from Rio with the highest commission error (7%) and omission 

error (nearly 40%).  The omission errors are mainly caused by low-density builtup areas with 

trees that were not detected while the commission errors are caused by confusion between urban 

and other land cover classes with high backscatter in SAR images.   

To provide direct comparisons, the KTH-Pavia urban areas are overlaid with MODIS 500m and 

GlobCover urban maps in Figures 4 and 5.  For Jakarta, KTH-Pavia method performed best in 

finding not only the city center but also many of the smaller suburbs both in the south-east and 

south-west of the city core. GlobCover is only able to detect the most central parts and misses out 

completely on more remote urban areas. MODIS 500m was able to detect some of the suburbs in 

the south-east but nothing in the south-west.  For Lagos, KTH-Pavia provided a very accurate 

view of the urban areas where it probably benefits from the higher resolution and hence can 

better deal with problems due to heavy urban sprawl in the city/rural boundary areas. MODIS 

500m showed the worst result, being only able to find the most central part of the city but missing 

detection of almost all suburbs, likely due to confusion between urban areas and bare fields. 

GlobCover underestimates the urban areas in general but also showed some difficulties resulting 
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in commission errors to the north-east of the city core.  For Beijing, KTH-Pavia approach 

produced the most accurate result, which is also reflected in the urban areas detected. It gives a 

more differentiated view of the city in terms of leaving out large parks and is able to find more of 

the smaller satellite towns around the city, even though quite some are missed out. MODIS 

produced a good result in the central part of the city but completely missed the suburbs. Probably 

due to large pixel size it is not able to deal accurately with the high frequency of change in land 

cover types on over limited space. GlobCover had similar issue as MODIS 500m.  For 

Stockholm, MODIS 500m shows some obvious errors especially in the city center probably due 

to the water bodies present where it heavily underestimates the urban area but also in the low 

density suburbs the detection rate is low.  GlobCover shows the best result especially in the low 

density builtup suburbs where KTH-Pavia sometimes underestimates the urban extent. 

 

For the extraction of smaller towns, Table 3 shows that KTH-Pavia method using a single-date 

ASAR in ascending orbit performed better than MODIS or GlobCover, but when applied the 

method to the ASAR image in descending orbit, the accuracy is worse than MODIS or 

GlobCover.  The merge of the ascending and descending results improved the urban extraction 

accuracy significantly and the accuracy (kappa: 0.83) is much higher than that of MODIS (kappa: 

0.54) or GlobCover (kappa: 0.59).  Figure 5 shows that KTH-Pavia method performed very well 

for extraction of smaller towns while MODIS or GlobCover missed some built-up areas (in 

yellow and blue) and over-estimated agricultural areas as urban areas (in green). These results 

clearly show that KTH-Pavia Urban Extractor can be successfully used to extract both big cities 

and smaller towns from 1-2 SAR images with reliable results.   
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Table 2.  Accuracy Comparisons for KTH±Pavia Urban Extraction, MODIS 500m Global Urban 
Map and GlobCover 300m Global Urban Map 

Cities Urban 
Exctraction 

Kappa Overall 
Accuracy % 

Urban 
Commission % 

Urban 
Omission % 

Beijing KTH±Pavia  0,72 86 2,34 26,36 
GlobCover 0,71 85 12,56 17,48 
MODIS 500m 0,45 73 27,62 27,02 

Berlin KTH±Pavia  0,63 82 2,60 34,98 
GlobCover 0,71 85 12,56 17,48 
MODIS 500m 0,57 79 26,25 10,84 

Jakarta KTH±Pavia  0,83 92 3,06 15,15 
GlobCover 0,17 60 19,49 79,17 
MODIS 500m 0,46 74 9,24 50,07 

Lagos KTH±Pavia  0,66 83 0,00 33,41 
GlobCover 0,38 69 23,30 44,36 
MODIS 500m 0,01 50 47,03 91,62 

Mexico 
City 

KTH±Pavia  0,58 79 20,74 17,91 
GlobCover 0,10 53 23,71 84,51 
MODIS 500m 0,60 80 11,44 28,86 

Mumbai KTH±Pavia  0,74 87 2,14 23,03 
GlobCover 0,66 83 23,78 7,51 
MODIS 500m 0,74 87 10,84 17,53 

New York 
City 

KTH±Pavia  0,77 88 4,05 17,09 
GlobCover 0,57 70 0,88 38,83 
MODIS 500m 0,59 80 15,32 21,54 

Rio de 
Janeiro 

KTH±Pavia  0,56 78 7,02 39,84 
GlobCover 0,20 60 16,47 75,34 
MODIS 500m 0,67 83 21,98 7,75 

Stockholm KTH±Pavia  0,76 88 12,79 10,92 
GlobCover 0,83 92 7,41 9,90 
MODIS 500m 0,54 77 9,48 40,22 

Sydney KTH±Pavia  0,81 91 0,00 18,84 
GlobCover 0,39 69 30,84 30,12 
MODIS 500m 0,62 81 21,12 15,77 

Average of 
10 Cities 

KTH±Pavia 0.71 85.4 5.47 23.75 
GlobCover 0.47 72.6 17.1 40.47 
MODIS 500m 0.53 76.4 20.03 31.12 

Note:  Bold represents the best accuracy for each city while italic shows the significantly worse 
accuracies. 
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Beijing  Berlin Jakarta   Lagos    Mexico City 

 
Mumbai  New York Rio   Stockholm   Sydney 
 
Figure 3.  Comparisons of Urban Extractions Results in 10  Cities, White/Grey: Urban Areas; Green: Non-urban Areas.Top Row: 
KTH-Pavia method, Middle Row: GlobCover and Bottom Row: MODIS 500m 
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Figure 4.  Overlay of KTH-Pavia Urban Extractions with MODIS 500m & GlobCover, Top: Jakarta, Center: Lagos; Bottom: Beijing,  
 

Legend 

 
Red: Urban areas detected by all three; Yellow: Urban areas 
detected by KTH-Pavia, missed by both MODIS & 
GlobCover; Blue: Detected by KTH-Pavia and one of the 
other two; Green: Urban areas detected by MODIS and/or 
GlobCover, not detected by KTH-Pavia (often caused by 
commission errors by MODIS and GlobCover, occasionally 
omission error by KTH-Pavia). 

Color KTH-Pavia MODIS 500 GlobCover
Red x x x

Yellow x o o
Blue x o x
Blue x x o

Green o x x
Green o x o
Green o o x
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Table 3:  Accuracy Comparisons for Lombardia 

Lombardia  Kappa Overall Accuracy % Urban Comission % Urban Omission % 
KTH-Pavia ASAR Asc 0,66 82.59 3,49 31,11 
KTH-Pavia ASAR Dsc 0,46 72.29 2,08 52,49 
KTH-Pavia Asc & Dsc 0,83 91.33 1,36 15,58 
MODIS 500 0,54 76.70 6,90 38,60 
GlobCover 0,59 79.50 1,80 37,90 
 

   

Figure 5.  Left: Google Image; Right: Overlay of KTH-Pavia Urban Extractions with MODIS 

500m & GlobCover in Piacenza, Northern Italy (Legend is the same as Figure 4). 

 

4.2  Effects of Contrast Enhancement 

The results show that simple contract enhancement as described in section 3.2 could improve the 

urban extraction accuracies significantly as shown in Figure 65.  It can be observed that the city 

center of Beijing including the Forbidden City and the Hutong areas with small houses (see the 

red rectangle in city center) were undetected using the original Pavia method (Fig. 65 left).  After 

contrast enhancement, urban detection was very much improved (Fig. 65 right).  Similar 

improved results were obtained for all other cities. 
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Figure 65.  Beijing Result, Left: From the original Pavia method, Right Improved urban 
extraction using the contrast enhanced SAR data. 
 

In addition, it is found that the whole image with enhancement produced significantly better 

results than a smaller subset with the original Pavia method as shown in Table 43 and Figure 76. 

Two possible reasons for this, one is that the 2% cut off at the high end of the histogram may 

have removed the very bright urban pixels in the city center while the other is that it is more 

important to have at least an area with low backscatter in the scene to improve the overall 

contrast of the scene as in the case of New York where part of the image with water was clipped 

off to save computation initially. 

Table 43.  Comparison of Urban Extraction Accuracies in New York 

  New York Urban Extraction 
  Subset Original Whole Scene Enhanced  
Kappa standard 0.13 0.77 
Overall Accuracy 53% 88% 
Urban Commission 0.00 4.05 
Urban Omission 85.28 17.09 
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Figure 76.  New York Urban Extractions, Left: From ASAR Subset using original Pavia method; 
Right: From Whole ASAR scene using KTH-Pavia Enhancement. 
 
4.3  Effects of Mountain Masks 

Using a mountain mask, mountains were effectively removed from urban extractions for Jakarta 

Mumbai, and Rio and the commission errors reduced by approximately 2%, 7 % and 12% 

respectively (Table 5 . Figure 87). 

 

  
Figure 87.  Commission errors removed with a mountain mask for Jakarta (Left) Mumbai, and 
Rio (Right). 
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Table 54.  Comparison of Urban Extraction Accuracies with and without Mountain Mask 

  Comparison with Mountain Mask (MM) 
  Jakarta           MM Mumbai            MM Rio                   MM 

Kappa 0,81 0,83 0,68 0,74 0,46 0,56 
Overall Accuracy 91% 92% 84% 87% 73% 78% 
Urban Commission 4,87 3,06 9,49 2,14 19,41 7,02 
Urban Omission 15,15 15,15 23,03 23,03 39,84 39,84 
Overall Accuracy Gain 

 
0,79%   3,33%   4,94% 

Commission Difference 
 

-1,82   -7,35   -12,39 
 

As rough water has higher backscatter than calm water and causes low contrast in the SAR 

images thus reduced urban detection, an attempt was also made to reduce the effects of rough 

water in Mumbai by clipping off the rough water pixels.  The results show that kappa increased 

17% while urban omission errors decreased significantly, from 45% to 23% (Table 65).  

Therefore, the development of water mask is underway using SRTM DEM where water has the 

lowest value that can be used as a mask. 

Table 65. Comparison of Urban Extraction Accuracies with and without Rough Water  

  Mumbai Results 
  Including rough water Excluding rough water 
Kappa 0,51 0,68 
Overall Accuracy 76% 84% 
Urban Commission 8,70 9,49 
Urban Omission 45,28 23,03 

 
 
4.4  Multitemporal Alternating-Polarization Dual Orbital SAR for Urban Extraction 

Table 76 presents the urban extraction results from single-date single-polarization, single-date 

dual-polarization, combination of ascending and descending orbits, and the combination of all C-

VV data.  It is observed that single-data single polarization ASAR data from May 17 and May 27 

could produce urban extraction with good accuracies.  The extraction accuracies were further 

improved when two images were combined with a 3-7% improvement in kappa for C-HH and C-
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VV combination and 11-20% improvement in kappa for the ascending and descending 

combination.  These improvements were achieved mainly by reducing omission errors with the 

OR operator.  The best results were achieved by using all four-date SAR in C-VV polarization, 

but the accuracy is only slightly higher than the ascending and descending combination.  The 

results indicate that, using KTH-Pavia Urban Extractor, operational urban extraction is possible 

with two-date single-polarization SAR data from both ascending and descending orbits. 

 

Table 7.6 Comparisons of Urban Extraction Accuracies from Multitemporal Alternating 

Polarization Dual-Orbit ASAR Data 

Beijing Kappa Overall 
Accuracy % 

Urban 
Commission % 

Urban 
Omission % 

May 17  VV IS2 Ascending (A) 0,68 84,02% 8,34% 25,07 
May 17  HH IS2 Ascending 0,72 85,90% 2,34% 26,36 
May 27 VV IS 2 Descending (D) 0,59 80,33% 7,20% 38,12 
May 17 VV A OR May 27 D VV 0,79 89,49% 7,09% 16,58 
May 17 VV OR  HH A 0,75 87,72% 7,73% 17,60 
June 8 A VV IS4 0,56 78,11% 3,94% 43,18 
June 11 A VV IS6 0,57 78,70% 6,49% 40,14 
All dates VV OR 0,79 89,63% 11,04% 11,67 

 

5.  Conclusions 

This research develops a robust and operational method, KTH-Pavia Urban Extractor for global 

urban mapping using ENVISAT ASAR Data.  ENVISAT ASAR C-VV data at 30m resolution 

were selected over 10 global cities and one rural area with smaller towns from six continents.  

The results show that the KTH-Pavia Urban Extractor is effective in extracting urban areas at 

30m resolution from a single-date single-polarization ENVISAT ASAR data with very good 

accuracies. When using two SAR images from C-HH and C-VV polarization, the extraction 

accuracy was further improved.  The best accuracy was achieved using single-date single-
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polarization SAR from both ascending and descending orbits.  The results also demonstrated that 

adding more multitemporal data only improve the urban extraction accuracy slightly.  These 

findings indicate that, with KTH-Pavia Urban Extractor, operational global urban mapping is 

possible using very few well-selected spaceborne SAR images. With the recent launch of 

Sentinel-1, C-band SAR data with global coverage became routinely available.  Together with 

historical ENVISAT ASAR and ERS-1/-2 SAR data, KTH-Pavia Urban Extractor can be used for 

global urbanization monitoring in an efficient and reliable manner at low cost. 
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