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The aim of this work is to investigate by means of numerical simulations the effects of
myocardial deformation due to muscle contraction on the bioelectrical activity of the car-
diac tissue. The three-dimensional electro-mechanical model considered consists of the
following four components: the quasi-static orthotropic finite elasticity equations for the
deformation of the cardiac tissue; the active tension model for the intracellular calcium
dynamics and cross-bridge binding; the orthotropic Bidomain model for the electrical
current flow through the tissue; the membrane model of the cardiac myocyte, including
stretch-activated currents (ISAC). In order to properly take into account cardiac mechan-
ical feedbacks, the electrical current flow is described in a strongly coupled framework
by the Bidomain model on the deformed tissue. We then derive a novel formulation of
the Bidomain model in the reference configuration, with complete mechanical feedbacks
affecting not only the conductivity tensors but also a convective term depending on the
velocity of the deformation. The numerical simulations are based on our finite element
parallel solver, which employs both Multilevel Additive Schwarz preconditioners for the
solution of linear systems arising from the discretization of the Bidomain equations and
Newton–Krylov-Algebraic Multigrid methods for the solution of nonlinear systems aris-

ing from the discretization of the finite elasticity equations. The results have shown
that: (i) the ISAC current prolongs action potential duration (APD) of about 10–15 ms;
(ii) the inclusion into the model of both ISAC current and the convective term reduces
the dispersion of repolarization of about 7% (from 139 to 129 ms) and increases the
dispersion of APD about three times (from 13 to 45 ms). These effects indicate that
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mechanical feedbacks might influence arrhythmogenic mechanisms when combined with
pathological substrates.

Keywords: Cardiac electro-mechanical coupling; orthotropic Bidomain model; mechani-
cal feedback; electrograms; action potential duration.

AMS Subject Classification: 65M60, 92C30, 92C50

1. Introduction

The spread of electrical impulses in the cardiac muscle and the subsequent
contraction-relaxation process are quantitatively described by the coupling of car-
diac electro-mechanical models, which consists of the following four components,
represented schematically in Fig. 1:

(1) the quasi-static finite elasticity model of the deformation of cardiac tissue,
derived from a strain energy function which characterizes the anisotropic
mechanical properties of the myocardium;

(2) the active tension model, consisting of a nonlinear ODE system, describing
the intracellular calcium dynamics and the cross bridges binding, also called
excitation–contraction coupling;

(3) the electrical current flow model of the cardiac tissue, i.e. the Bidomain model
(or its reduction called Monodomain model), which is a degenerate parabolic
system of two nonlinear partial differential equations (PDEs) of reaction–
diffusion type, describing the evolution in space and time of the intra- and
extracellular electric potentials;

(4) the membrane model of the cardiac myocyte, i.e. a stiff system of ordinary
differential equations (ODEs), describing the flow of the ionic currents through
the cellular membrane.

This complex nonlinear model poses great theoretical and numerical challenges.
At the theoretical level, the well-posedness of the cardiac electro-mechanical

coupling model is still an open problem, as well as the convergence of its finite
element approximation. The validity of the strong ellipticity condition has been

Passive mechanical model (Sec. 2.1):
nonlinear finite elasticity

PDE system
←→

Bidomain model (Sec. 2.3):
nonlinear reaction-diffusion

PDE system

 

Active tension model (Sec. 2.2):
ODE system

←→ Membrane model (Sec. 2.4):
ODE system

Fig. 1. Schematic representation of the four main components of a cardiac electro-mechanical
model.
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investigated in Ref. 26 for the passive strain energy function and in Refs. 49 and 3
for the total energy, assuming that the active tension generated in a cardiac fiber
is space independent. A partial result on the solvability of the coupled problem has
been established recently in Ref. 4 for passive linear strain energy functions and for
contraction models based on the active strain approach.

At the numerical level, the approximation and simulation of the cardiac electro-
mechanical coupling model is a very demanding and expensive task, because of the
very different space and time scales associated with the electrical and mechani-
cal models, as well as their nonlinear and multiphysics interactions. Nevertheless,
in recent years several research groups have developed electro-mechanical models
assembling the main four components with different levels of coupling and descrip-
tion details.

In the quasi-static finite elasticity model, the most used strain energy function
is the transversely isotropic exponential law by Guccione et al.20 (see Refs. 1, 12,
14, 17, 22, 29, 36, 37 and 64). A few studies have considered orthotropic laws, see
Refs. 7, 16, 18, 48 and 54, and isotropic laws, see Refs. 41 and 56.

Concerning the active tension development, phenomenological models have been
considered in Refs. 7, 16, 18, 32, 36, 41, 54 and 56, while mechanistic models with a
more detailed description of calcium dynamics and cross bridges binding have been
used in Refs. 1, 14, 17, 22, 23, 29, 37, 48 and 64.

Regarding the electrical current flow model, the Bidomain model has been con-
sidered in Refs. 14, 16, 17, 22, 29 and 64, while most studies have employed reduced
models such as the Monodomain model1,7,18,32,36,37,41,48,54,56 or eikonal models.33

Regarding the ionic membrane model, phenomenological models have been used
in Refs. 32, 36, 41, 54 and 56, while more detailed second generation membrane
models related to different species have been considered in Refs. 1, 16, 17 and 37
(human), Refs. 23 and 64 (canine), Refs. 18 and 22 (rabbit), Refs. 14, 29 and 48
(guinea pig) and Ref. 7 (rat).

The coupling of Mono/Bidomain models with a mechanical model requires the
Mono/Bidomain model to be posed on the deformed domain and this approach was
adopted starting from the early works on electro-mechanical coupling, see Refs. 1,
2, 12, 16, 17, 19, 31, 32, 41, 46, 48, 49, 54, 65 34 and 43. Indeed, following the
Lagrangian framework, in the reformulation of the Mono/Bidomain model on the
reference domain the conductivity tensors appear to depend on the deformation gra-
dient. This is traditionally called strong electro-mechanical coupling as opposed to
the weak electro-mechanical coupling in which the Mono/Bidomain model is posed
on the undeformed (or material) domain, see Refs. 34 and 43. We remark that
in most of these studies the transformed conductivity tensor was correct only for
isotropic media, while the correct form for more general anisotropic media appears
in more recent works, see e.g. Refs. 2, 12, 19, 46, 49 and 54. Weak electro-mechanical
coupling disregarding the effects of the deformation onto the electric current flow
model has been considered especially in recent studies employing realistic car-
diac geometries, for the practical reason to reduce the computational load of the
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simulations by avoiding the reassembling of the stiffness matrices associated to the
finite element approximation of the Monodomain6,7,18,33,35,37,61 or Bidomain14,22,64

model at each update of the domain deformation.
When a strong electro-mechanical coupling is adopted, i.e. the Monodomain or

Bidomain model is posed on the deformed domain, the bioelectric activity experi-
ences three main feedbacks from the mechanical deformation:

(i) conductivity feedback: the influence of the deformation gradient on the con-
ductivity coefficients of the electric current flow model;

(ii) convection feedback: the influence of deformation gradient and deformation
rate on the electric current flow model;

(iii) ionic feedback: the influence of stretch-activated membrane channels on the
ionic current.

In Ref. 12, a strong electro-mechanical coupling was considered, i.e. the Bido-
main model was solved on the deformed domain, but only with transversely isotropic
anisotropy and a very simplified phenomenological active tension model; moreover
the ionic and convective feedbacks were not taken into account or included in our
model and simulations. Indeed, the presence of the convection feedback in the elec-
tric current flow model has never been taken into account in the literature. The
effects of stretch-activated currents have been studied in Refs. 29 and 64 by solving
the Bidomain model on the undeformed configuration, and in Refs. 1 and 32 by
using the Monodomain model on the deformed configuration.

To our knowledge, the three main mechanical feedbacks (i), (ii) and (iii) have
never been taken into account together, especially when the Bidomain model and
orthotropic anisotropy properties are included in the electro-mechanical model. The
goal of this work is to fill this gap by accurately deriving the mechanical feedbacks
and by studying their effects in a strongly coupled anisotropic cardiac electro-
mechanical model. To this end, we develop a strongly coupled electro-mechanical
model by combining the following four components (presented in more details
in Sec. 2): the orthotropic strain energy function from Ref. 18; the mechanistic
active tension model proposed in Ref. 37; the orthotropic Bidomain model11 in
the deformed cardiac tissue; the ten Tusscher et al. membrane model60 for human
ventricular cells, augmented with stretch-activated channels. By means of 3D par-
allel numerical simulations, we evaluate quantitatively the effects of all mechanical
feedbacks on the spatial distributions of activation and repolarization times, action
potential duration, as well as on the morphology of electrograms. Our results show
that mechanical feedbacks cannot be neglected, since the mechanical deformation
affects the space–time evolution of the electrical potentials, mostly during the repo-
larization phase. Therefore, the modified Bidomain model that we have proposed
and studied allows more accurate electro-mechanical simulations involving the repo-
larization phase.

The rest of the paper is organized as follows. In Sec. 2, we introduce the cardiac
electro-mechanical model with its four main components; in Sec. 3, we describe the
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numerical methods used for the solution of the electro-mechanical models; in Sec. 4,
we present the results of the numerical simulations.

2. Cardiac Electro-mechanical Models

We now describe the four main components of the electro-mechanical model intro-
duced in Fig. 1.

2.1. Mechanical model of cardiac tissue

Let us denote the material coordinates X = (X1, X2, X3)T of the undeformed
or reference cardiac domain Ω̂, the spatial coordinates x = (x1, x2, x3)T of the
deformed cardiac domain at time t Ω(t). We denote by x = Φ(X, t) = Φt(X) the
deformation map between Ω̂ and Ω(t) = Φt(Ω̂) (see Fig. 2) and by U(X, t) =
x − X = Φ(X, t) − X the displacement field.

We denote by Div and div (Grad and grad) the material and spatial divergence
(gradient) of a vector (scalar), respectively. From a mechanical point of view, the
cardiac tissue is modeled as a nonlinear elastic material. The deformation gradient
tensor F and its determinant are given by

F(X, t) = {Fij} =
{
∂xi

∂Xj
, i, j = 1, 2, 3

}
, J(X, t) = detF(X, t).

The Cauchy–Green deformation tensor C and Green–Lagrange strain tensor E are

C = FTF and E =
1
2
(C− I),

where I denotes the identity matrix.

Ω Φ−→ Ω = Φ(Ω, t) = Φt (Ω)

42

* P
1

* P
2

0

* P
3

-2-4
4

2
0

-2

1

0

-1

-2

-3

-4

-5

2

420-2-4
4

2
0

-2

-4

-3

-2

-1

0

1

2

-5

X = (X1,X2,X3)T x = (x1,x2,x3)T

Fig. 2. Reference domain bΩ with coordinates X = (X1, X2, X3)T (left) and deformed domain
Ω = Φ(bΩ, t) = Φt(bΩ) with coordinates x = (x1, x2, x3)T (right).

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
16

.2
6:

27
-5

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SU

SS
E

X
 o

n 
11

/0
4/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



October 23, 2015 15:7 WSPC/103-M3AS 1650002

32 P. Colli Franzone, L. F. Pavarino & S. Scacchi

We first assume that the time-dependent inertial term in the governing elastic
wave equation may be neglected, see e.g. Refs. 33 and 65. Thus, the steady-state
force equilibrium equation reads

Div(FS(U,X)) = 0, X ∈ Ω̂, (2.1)

where S is the second Piola–Kirchhoff stress tensor. We close the quasi-static
mechanical model (2.1) by imposing a prescribed displacement on a Dirichlet bound-
ary x(X, t) = x̂(X), X ∈ ∂Ω̂D and no traction force on a Neumann boundary
FS(U(X, t),X) N = 0, X ∈ ∂Ω̂N .

The tensor S is given by the sum of a passive elastic component Spas, a volu-
metric component Svol, and a biochemically generated active component Sact, i.e.

S = Spas + Svol + Sact,

as done in many previous studies, see e.g. Refs. 28, 33 and 63. An alternative
approach, introduced in Ref. 8, consists of a multiplicative decomposition of the
deformation gradient tensor F into a passive elastic deformation and an active
stretch component, see also Refs. 2, 46 and 55.

The passive component Spas is computed from a suitable strain energy function
W pas and the Green–Lagrange strain E as

Spas
ij =

1
2

(
∂W pas

∂Eij
+
∂W pas

∂Eji

)
, i, j = 1, 2, 3.

A wide variety of strain energy functions W pas have been proposed and adopted in
the literature, see e.g. Refs. 15, 19, 20, 26, 40, 53, 56, 58 and 62.

We recall that the cardiac tissue consists of an arrangement of fibers that rotate
counterclockwise from epi- to endocardium, and that have a laminar organization
modeled as a set of muscle sheets running radially from epi- to endocardium, e.g.
Refs. 38 and 62. In the following, we will denote by âl, ât and ân the unit vectors
of the local fiber coordinate system in the reference configuration. In particular, âl

represents the fiber direction and ât, ân the two orthogonal cross fiber directions.
In this paper, the myocardium is modeled as an orthotropic hyperelastic mate-

rial, with the exponential strain energy function

W pas =
a

2b
(eb(I1−3) − 1) +

∑
i=l,t

ai

2bi
(ebi(I4i−1)2 − 1) +

alt

2blt
(ebltI

2
8lt − 1), (2.2)

see Ref. 18. Here a, b, a(l,t,lt), b(l,t,lt) are positive material parameters,

I1 = tr(C), I4l = âT
l Câl, I4t = âT

t Cât, I8lt = âT
l Cât.

The volumetric component Svol is given by

Svol
ij =

1
2

(
∂W vol

∂Eij
+
∂W vol

∂Eji

)
, i, j = 1, 2, 3,

where W vol is a volume change penalization term

W vol = K(J − 1)2, (2.3)
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with K a positive bulk modulus, that is added to the strain energy function in
order to model the myocardium as nearly incompressible.

The active component Sact is given by (2.5) below in terms of the active tension
developed along the myofibers.

2.2. Mechanical model of active tension

The contraction of the ventricles results from the active tension generated by the
model of myofilaments dynamics activated by calcium. We assume as in Refs. 48
and 65 that the generated active force acts only in the direction of the fiber, hence,
according to Ref. 27, Chap. 10, the active Cauchy stress is

σact(x, t) = J−1Taal(x) ⊗ al(x),

where al =
Fbal

|Fbal|
is a unit vector parallel to the local fiber direction and Ta is the

active fiber stress related to the deformed domain. In terms of the principal axes of
the reference configuration, we obtain:

al ⊗ al =
Fâl ⊗ Fâl

‖Fâl‖2
=

FâlâT
l FT

âT
l Câl

. (2.4)

Then the second Piola–Kirchhoff active stress component is given by

Sact = JF−1σactF−T = Ta
âl ⊗ âl

âT
l Câl

, (2.5)

and the stretch along the fiber direction is given by

λ =
√

âT
l Câl. (2.6)

We remark that additional active components in the directions at, an could also
be considered. The biochemically generated active tension Ta is given by the model
by Land et al.,37 where the active tension Ta = Ta(Cai, λ,

dλ
dt ) is Calcium, stretch

and stretch-rate dependent and its dynamics is described by the following system
of ODEs: 

dtr

dt
= ktr

((
Cai

Ca50(1 + β(λ− 1))

)ntr

(1 − tr) − tr
)
,

dxb

dt
= kxb

(
tr50trnxb(1 − xb) − 1

tr50trnxb
xb

)
,

dQi

dt
= Ai

dλ

dt
− αiQi, i = 1, 2,

Ta = g(Q)h(λ)xb, Q = Q1 +Q2,

(2.7)

with parameters ktr, kxb,Ca50, tr50 ∈ (0, 1), ntr, nxb, β > 1, A1< 0, A2> 0, α1, α2> 0,
and non-decreasing, bounded, Lipschitz functions h : R→R and g(Q) : R → R;
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see Ref. 37 for more details. If we introduce the vector z = {tr, xb, Q1, Q2},
then system (2.7) in compact form becomes

dz
dt

= Rz

(
z,Cai, λ,

dλ

dt

)
,

Ta = fTa(z, λ).
(2.8)

Simplified stretch and stretch-rate independent models have also been consid-
ered, see e.g. Refs. 19 and 41.

2.3. Electrical model of cardiac tissue: The Bidomain model

on a deforming domain

We recall that from a macroscopic point of view, the classical Mono/Bidomain
model on a given domain is derived by imposing current conservation laws for the
intra- and extracellular current assuming that the intra- and extracellular spaces are
superimposed, occupy the same volume, are connected by a distributed membrane
which is the active current source, and a quasi-static regime holds. This model has
also been derived by homogenization of a network of cellular models (see Refs. 30, 42
and 51). In electro-mechanical models, the presence of the mechanical component
entails that the bioelectrical component lives on the deformed cardiac domain. In
this section, we proceed to derive a macroscopic Bidomain model using the same
assumptions but considering a general moving domain.

Let U ⊂ Ω̂ be an open connected subset of the undeformed domain. We assume
that the deformation map Φt : Ω̂ → Ω(t) is sufficiently regular. We denote by ρi,e the
intra- and extracellular charge densities, by ui,e the intra- and extracellular electric
potentials, by Ji,e = −Di,e∇ui,e the intra- and extracellular current densities, i.e.
the total drift ionic current components, by im the transmembrane current per unit
volume flowing from the intra- to the extracellular media, and by n the outward
normal to Φt(U).

From the charge conservation law, we get the following master balance relation-
ship (see e.g. Ref. 39) that holds for all U ⊂ Ω̂:

d

dt

∫
Φt(U)

ρidx = −
∫

∂Φt(U)

Ji · ndσ −
∫

Φt(U)

imdx,

d

dt

∫
Φt(U)

ρedx = −
∫

∂Φt(U)

Je · ndσ +
∫

Φt(U)

imdx.

Then we define the deformation rate V = ∂Φt

∂t and by applying the Reynolds’
transport theorem (see Ref. 25) and divergence theorems we obtain

∂ρi

∂t
+ div(ρiV) = −divJi − im, ∀x ∈ Φt(Ω̂),

∂ρe

∂t
+ div(ρeV) = −divJe + im, ∀x ∈ Φt(Ω̂),

(2.9)
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or equivalently
∂ρi

∂t
+ div(ρiV) = −div Ji − im, ∀x ∈ Φt(Ω̂)

∂(ρi + ρe)
∂t

+ div((ρi + ρe)V) = −div (Ji + Je), ∀x ∈ Φt(Ω̂).
(2.10)

We observe that a system analogous to (2.10) has been derived in Ref. 13 by
mixing macroscopic mass conservation laws and formal homogenization techniques,
while our derivation is based on current conservation laws.

In system (2.10), new evolution and advection terms arise: the local rate of
charge density change ∂tρi,e which can be neglected by considering, as usual, quasi-
static regimes, (see Refs. 21 and 52) and the advection term div(ρi,eV) associ-
ated with the charge transport due to the domain motion, where V = ∂Φt

∂t is the
rate of deformation. In this derivation, it appears that the Bidomain model on
a deformed domain considered in the works cited above, can be justified if the
advection terms can be neglected. Indeed, since the charge densities are associated
to concentrations of the main three Na+, K+, Ca2+, i.e. ρi,e =

∑s=3
s=1 Fzsc

i,e
s ,

then div(ρi,eV) = ρi,e div(V) + ∇(ρi,e) · V. Since the cardiac tissue can be con-
sidered almost-incompressible, i.e. div(V) ≈ 0, then div(ρi,eV) ≈ ∇(ρi,e) · V =∑s=3

s=1 Fzs∇ci,es ·V, which in turn can be neglected since the advection terms ∇ci,es ·V
can be considered negligible in comparison with the total drift current Ji,e. Thus,
the derived Bidomain model coincides with the classical Bidomain model but posed
on a moving domain, i.e. {

div Ji + im = 0 in Ω(t),

div Je − im = 0 in Ω(t),
(2.11)

or equivalently {
div Ji + im = 0 in Ω(t),

div(Ji + Je) = 0 in Ω(t).
(2.12)

We recall that the transmembrane current is the sum of a capacitative current
and an ionic membrane current (see e.g. Ref. 11, Chap. 2):

im(x, t) = cm
∂v

∂t
(x, t) + iion(v,w, c, λ), with

• v = ui − ue is the transmembrane potential,
• w are the gating variables,
• c are the ionic concentrations,
• λ is the stretch along the fiber direction (see (2.6)),

and cm = χCm, iion = χIion, where Cm is the membrane capacitance, Iion the ionic
membrane current (both for unit area of the membrane surface) and χ is the mem-
brane surface to volume ratio. Here the gating variables w and ionic concentrations
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c satisfy the ODE systems

∂w
∂t

− Rw(v,w) = 0,
∂c
∂t

− Rc(v,w, c) = 0,

and the functions Iion(v,w, c), Rw(v,w), Rc(v,w, c) are given by the chosen mem-
brane model (defined below in Sec. 2.4). It follows that the full evolution system
on the deformed medium Ω(t) = Φt(Ω̂) is given by

cm
∂v

∂t
+ iion(v,w, c, λ) + div Ji = 0 in Ω(t),

div(Je + Ji) = 0 in Ω(t),

∂w
∂t

− Rw(v,w) = 0,
∂c
∂t

− Rc(v,w, c) = 0 in Ω(t).

(2.13)

Assuming the tissue insulated, system (2.13) is closed by no-current and no-flux
conditions at the boundary of the deformed medium, i.e.

nTJi = 0, nTJe = 0 on ∂Ω(t) = Φt(∂Ω̂).

The initial conditions are imposed only on v = ui − ue, due to the degeneracy of
the parabolic–elliptic system, and on the gating and ionic concentration variables:

v(x, 0) = v0(x), w(x, 0) = w0(x), c(x, 0) = c0(x).

Considering an applied extracellular current per unit volume ieapp, the Bidomain sys-
tem on the deformed configuration can then be written in terms of the unknowns
v= ui−ue, ue and also using Ji,e = −Di,e∇ii,e, thus obtaining the following equiv-
alent formulation that will be considered from now on:

cm
∂v

∂t
+ iion(v,w, c, λ) − div(Di∇(v + ue)) = 0 in Ω(t),

−div(Di∇v) − div((Di +De)∇ue) = ieapp in Ω(t),

∂w
∂t

− Rw(v,w) = 0,
∂c
∂t

− Rc(v,w, c) = 0 in Ω(t),

(2.14)

or its equivalent variational formulation on the deformed domain
∫

Ω(t)

[
cm

∂v

∂t
+ iion(v,w, c, λ)

]
ψdx +

∫
Ω(t)

(∇(v + ue))TDi∇ψdx = 0,∫
Ω(t)

(∇ue)T (Di +De)∇ψdx = −
∫

Ω(t)

(∇v)TDi∇ψdx +
∫

Ω(t)

ieappψdx.
(2.15)

Modified Bidomain formulation on the reference domain. We now trans-
form the parabolic–elliptic formulation of the Bidomain model in differential and
variational form on the reference configuration, using the strong coupling frame-
work, that will be used in the rest of the paper.
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From a Lagrangian point of view, we denote by ûi,e(X, t), v̂(X, t) = ûi −
ûe, ŵ(X, t) and ĉ(X, t) the potentials, gating and ionic concentration variables on
the reference domain Ω̂.

Taking into account that

∂v̂

∂t
=
∂v

∂t
+ ∇v · ∂Φt

∂t
, ∇v(x, t) = F−T Grad v̂(X, t), and dx = JdX,

then we obtain the following differential formulation on Ω̂:

cmJ

(
∂v̂

∂t
− F−T Grad v̂ ·V

)
−Div(JF−1DiF−T Grad(v̂ + ûe)) + Jiion(v̂, ŵ, ĉ, λ) = 0,

−Div(JF−1DiF−T Grad v̂)

−Div(JF−1(Di +De)F−T Grad ûe) = Jîeapp

(2.16)

coupled with the ODE system in the variables w(x, t), c(x, t) for all x ∈ Ω(t)
given by

∂w
∂t

− Rw(v,w) = 0,
∂c
∂t

− Rc(v,w, c) = 0.

Here we have considered an applied extracellular current per unit volume îeapp and
in order to close the Bidomain system we prescribe initial conditions

v̂(X, 0) = v̂0(X) in Ω̂, w(x, 0) = w0(x), c(x, 0) = c0(x) in Ω(t),

and insulating boundary conditions on ∂Ω̂ × (0, T ) (assuming the cardiac tissue
Ωt insulated) n̂TF−1Di,eF−T Grad ûe = 0 and n̂TF−1DiF−T Grad ûi = 0 =
n̂TF−1DiF−T Grad(v̂ + ûe) (since ûi = v̂ + ûe).

Using the previous boundary conditions, we obtain the equivalent variational
formulation of the modified Bidomain system on the reference domain given by

∫
bΩ

J

[
cm

(
∂v̂

∂t
− F−T Grad v̂ ·V

)
+ iion(v̂, ŵ, ĉ, λ)

]
ψdX

+
∫

bΩ

J(Grad(v̂ + ûe))T F−1DiF−T Grad ψdX = 0,∫
bΩ

J(Grad ûe)TF−1(Di +De)F−T Grad ψdX

= −
∫

bΩ

J(Grad v̂)TF−1DiF−T Grad ψdX +
∫

bΩ

JîeappψdX,

(2.17)

again coupled with the ODE membrane system.
In summary, the influence of the cardiac tissue deformation on the Bidomain

model in the strong coupling framework is due to three different mechano-electrical
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feedbacks:

(i) the presence of the deformation gradient F in the conductivity coefficients
structure, i.e. JF−1Di,eF−T ;

(ii) the presence of the deformation gradient F and the deformation rate V in the
convective term F−T Grad v̂ ·V;

(iii) the presence of the stretch λ in the ionic membrane current iion(v̂, ŵ, ĉ, λ) due
to the stretch-activated current.

Computation of the conductivity tensors D̂i,e(X) on the reference
domain. We recall that the conductivity tensors are given on the deformed cardiac
domain Ω(t) by

Di,e(x) = σi,e
l al(x)aT

l (x) + σi,e
t at(x)aT

t (x) + σi,e
n an(x)aT

n (x). (2.18)

Here al(x), at(x), an(x), is a triplet of orthonormal principal axes with al(x)
parallel to the local fiber direction, at(x) and an(x) tangent and orthogonal to the
radial laminae, respectively, and both being transversal to the fiber axis (see e.g.
Ref. 38). Moreover, σi,e

l , σi,e
t , σi,e

n are the conductivity coefficients in the intra- and
extracellular media measured along the corresponding directions al, at, an.

The computation of the tensors

D̂i,e(X, t) = F−1(X, t)Di,e(x(X, t))F−T (X, t)

must be performed on the reference configuration Ω̂. Using orthogonality of the
principal axes the tensors can be written in the following two equivalent expressions:

Di,e = σnI + (σi,e
l − σi,e

n )al ⊗ al + (σi,e
t − σi,e

n )at ⊗ at, (2.19)

or

Di,e = σtI + (σi,e
l − σi,e

t )al ⊗ al + (σi,e
n − σi,e

t )an ⊗ an. (2.20)

Let us denote by âl(X), ât(X) the unit vectors parallel and across the local fiber
direction in the tangent plane to the lamina in the reference configuration, respec-
tively. Then, the unit vector parallel to the local fiber in the deformed configuration
is given by

al =
Fâl

‖Fâl‖ =
Fâl√
âT

l Câl

,

hence, in terms of the principal axes of the reference configuration, we have

al ⊗ al =
FâlâT

l FT

âT
l Câl

.

Considering Fât the vector lies in the tangent plane of the deformed lamina,
but it is not parallel to at, since it is not orthogonal to al. We consider the following
orthogonal decomposition

Fât = αal + st, with sT
t al = 0, and α = aT

l Fât =
âlCât√
âlCâl
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hence it follows

bt = Fb̂t, with b̂t = ât − âT
l Cât

âT
l Câl

, and at =
bt

‖bt‖ .

Setting in terms of the principal axes of the reference configuration we obtain

at ⊗ at =
Fb̂t ⊗ Fb̂t

‖Fb̂t‖2
=

Fb̂tb̂T
t FT

b̂T
t Cb̂t

.

Using the expression (2.19), the product D̂i,e = F−1Di,eF−T can be written as

D̂i,e = σi,e
n C−1 + (σi,e

l − σi,e
n )

âlâT
l

âl
TCâl

+ (σi,e
t − σi,e

n )
b̂tb̂T

t

b̂T
t Cb̂t

.

In the reference configuration, the normal unit vector to the lamina surface is
given by

ân = âl ∧ ât.

In the deformed configuration, the two vectors Fâl and Fât are both tangent to the
deformed lamina surface and the former gives the local fiber direction, but the latter
is not a transversal fiber direction. Anyway, the unit normal an to the deformed
surface lamina is given by

an =
Fâl ∧Fât

|Fâl ∧Fât| .

Since Au ∧ Av = det(A)A−T (u ∧ v), we have Fâl ∧ Fât = JF−T (âl ∧ ât) =
JF−T ân, hence

an =
F−T ân

|F−T ân| , and an ⊗ an =
F−T ân ⊗ F−T ân

âT
nC−1ân

.

Finally, using the expression (2.20), the product D̂i,e(X, t) = F−1(X, t)Di,e ×
(x(X, t))F−T (X, t) can be written as

D̂i,e(X, t) = σi,e
t C−1(X, t) + (σi,e

l − σi,e
t )

âl(X) ⊗ âl(X)
âT

l (X)C(X, t)âl(X)

+ (σi,e
n − σi,e

t )
C−1(X, t)ân(X) ⊗ C−1(X, t)ân(X)

âT
n (X)C−1(X, t)ân(X)

, (2.21)

where it is evident that the deformation time-dependent influence on the conduc-
tivity tensor D̂i,e(X, t) arises from the presence of the terms C(X, t) and C−1(X, t).

2.4. Ionic membrane model and stretch-activated channel current

The functions Iion(v,w, c, λ) (iion = χIion), Rw(v,w) and Rc(v,w, c) in the Bido-
main model (2.16) are given by the ionic membrane model by ten Tusscher et al.,60

available from the cellML depository (models.cellml.org/cellml). This model con-
sists of 17 ordinary differential equations modeling the dynamics of the main ionic
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currents (INa, Ito, IKr, IKs, IK1, ICaL) through the membrane of human ventricular
myocytes. Other biophysically detailed ionic models could be used as well, see e.g.
Ref. 11, Chap. 2.9. The ionic current is the sum Iion(v,w, c, λ) = Im

ion(v,w, c)+ISAC

of the ionic term Im
ion(v,w, c) given by the 10 Tusscher model and a stretch-activated

channel current ISAC. This last current is modeled as in Ref. 44 as the sum of non-
specific and specific currents ISAC = ISAC,n + IKo. The non-specific current is
defined by ISAC,n = ISAC,Na + ISAC,K , with

ISAC,Na = gSACγSLSAC(v − ENa)
(
−ER + 85
ER − 65

)
,

ISAC,K = gSACγSLSAC(v − EK),

where gSAC = 4.13 · 10−3, γSLSAC = 10(λ − 1), ER = −10. The specific stretch-
dependent K+ current is defined by

IKo = gKo
γSL,Ko

1 + exp(−(10 + v)/45)
(v − EK), where γSL,Ko = 3(λ− 1) + 0.7.

For related models of stretch-activated currents, we refer e.g. to Refs. 1, 29, 31
and 59.

3. Numerical Methods

The intrinsic multiscale structure of the cardiac electro-mechanical coupling allows
us to adopt different space and time discretization parameters for the electrical
and mechanical submodels. Indeed, the propagation of the electrical impulse in the
myocardium is characterized by a sharp moving layer, the activation wavefront, with
a depth of about 1mm, which requires a spatial mesh size of 0.1mm to be accurately
catched by solving the Bidomain model. Moreover, the upstroke time constant of
the transmembrane action potential is about 1.5–2ms, hence the electrical time step
size to solve the Bidomain equations should be on the order of hundredths of ms. On
the other hand, the mechanical contraction and relaxation of the cardiac muscle
do not present moving layers, therefore a larger spatial mesh size on the order
of mm can be used to solve the finite elasticity system. Furthermore, the active
tension generation does not exhibit a fast dynamics, allowing a larger mechanical
time step size on the order of tenth of ms. Thus, the use of different time step and
meshes sizes for the electric and mechanical components requires interpolation and
synchronization among different meshes.

3.1. Space discretization

We discretize the cardiac domain with an hexahedral structured grid Thm for the
mechanical model (2.1) and The for the electrical Bidomain model (2.16), where
The is a refinement of Thm , i.e. hm is an integer multiple of he. We then discretize all
scalar and vector fields of both mechanical and electrical models by isoparametric
Q1 finite elements in space.
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3.2. Time discretization

The time discretization is performed by a semi-implicit splitting method. For sim-
plicity, we describe the procedure in the case of equal mechanical and electrical
time steps, but the two time steps can be chosen independently (as we mentioned
before, the electrical time step is typically smaller). From now on, for simplicity of
notations, we will drop the ̂ notation for the functions and objects defined on the
reference configuration. At each time step:

(a) given vn, wn, cn at time tn, solve the ODE system of the membrane model
(Sec. 2.4) with a first-order implicit-explicit (IMEX) method to compute the
new wn+1, cn+1:

wn+1 = wn + ∆tnRw(vn, wn+1),

cn+1 = cn + ∆tnRc(vn, wn+1, cn);
(3.1)

(b) given the calcium concentration Can+1
i , which is included in the concentration

variables cn+1, solve the mechanical problems (2.1) and (2.8) to compute the
new deformed coordinates xn+1, providing the new deformation gradient tensor
Fn+1:

zn+1 = zn + ∆tRz

(
zn+1,Can+1

i , λn+1,
λn+1 − λn

∆tn

)
,

T n+1
a = fTa(zn+1, λn+1),

Div(Fn+1Sn+1) = 0,

(3.2)

with

Sn+1 = Spas(Cn+1) + Svol(Cn+1) + Sact(Cn+1, T
n+1
a );

(c) given wn+1, cn+1, Fn+1 and Jn+1 = det(Fn+1), D̂n+1
i,e = D̂i,e(X, tn+1) solve the

Bidomain system (2.16) with a first-order IMEX method and compute the new
electric potentials vn+1, un+1

e with the following operator splitting method:

(c1) compute un+1
e by solving the elliptic equation in (2.16):

−Div(Jn+1(D̂n+1
i + D̂n+1

e )Gradun+1
e )

= −Div(Jn+1D̂
n+1
i Grad vn) + ie,n+1

app ; (3.3)

(c2) compute vn+1 by solving the parabolic equation in (2.16):

cmJn+1
vn+1

∆t2
− Div(Jn+1D̂

n+1
i Grad(vn+1))

= cmJn+1

(
vn

∆tn
+ F−T

n+1 Grad(vn)
xn+1 − xn

∆tn

)
+ Div(Jn+1D̂

n+1
i Grad(un+1

e ))

− Jn+1iion(vn, wn+1, cn+1, λn+1). (3.4)
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We remark that the finite elasticity equation should be solved coupled with the
active tension model, in order to ensure convergence of the Newton method, as
already described in Refs. 45 and 49. Moreover, we observe that the smoother
dynamics of the myofiber active tension permits to use a mechanical time step
larger than the electrical time step. In such a case, the stiffness matrices and right-
hand sides in (3.3) and (3.4) need to be reassembled not at every electrical time
step but only when the mechanical time step is updated. Note finally that, to
approximate in the variational formulation the convective term in the right-hand
side of (3.4), an upwind computation of the nodal gradient of vn, based on the local
orthonormal coordinate system associated to the ellipsoidal coordinates, is derived,
projected onto the deformation rate xn+1−xn

∆tn
vector and then integrated against the

test function, see e.g. Ref. 47. We refer to Ref. 10 for more details, other variants
of operator splitting and a comparison between coupled and uncoupled operator
splitting techniques for the Bidomain system.

3.3. Computational kernels

Due to the employed space and time discretization strategies, at each time step,
the main computational efforts consist of

(a) solving the nonlinear system deriving from the discretization of the mechanical
problem (3.2). To this end, we use the Newton method with a GMRES iterative
solver for the linear Jacobian system at each Newton step

Kw = f, (3.5)

preconditioned by the Algebraic Multigrid preconditioner BoomerAMG,24 pro-
vided within the Hypre library;

(b) solving the two linear systems (3.3) and (3.4) associated with the elliptic and
parabolic equations deriving from the Bidomain model operator splitting pro-
cedure. For both systems, we use the Conjugate Gradient method precondi-
tioned by a Multilevel Additive Schwarz preconditioner studied in Refs. 50
and 57; inexact ILU(0) solvers are used for the local problems on the sub-
domains.

Both mechanical and Bidomain solvers, together with the ODE solvers for the ionic
and active tension models, are parallelized in space using a domain decomposition
approach based on the parallel library PETSc.5 This parallel library developed at
the Argonne National Laboratory provides a suite of data structures and functions
for building large-scale parallel scientific applications, based on the MPI commu-
nication library. The parallel strategy employed assigns each subdomain to one
processor and the information associated with the interior of the subdomain is
uniquely owned by that processor. The processor stores all subvectors and a block
of the matrices (mass, stiffness) associated to each overlapping subdomain.
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4. Simulation Results

In this section, we present the results of parallel numerical experiments performed
on the BlueGene/Q Cluster (www.cineca.it/en/content/fermi-bgq) of the Cineca
Consortium (www.cineca.it) and on the Linux cluster of the Department of Mathe-
matics of the University of Milan (cluster.mat.unimi.it/). Our FORTRAN-90 code
is based on the parallel library PETSc,5 from the Argonne National Laboratory.

Domain geometry and fiber structure. The domain Ω̂ = Ω(0) is the image of a
cartesian slab using ellipsoidal coordinates, yielding a portion of truncated ellipsoid.
The family of truncated ellipsoids is described by the parametric equations

x = a(r) cos θ cosφ, φmin ≤ φ ≤ φmax,

y = b(r) cos θ sinφ, θmin ≤ θ ≤ θmax,

z = c(r) sin θ, 0 ≤ r ≤ 1,

(4.1)

where a(r) = a1 + r(a2 − a1), b(r) = b1 + r(b2 − b1), c(r) = c1 + r(c2 − c1), and
ai, bi, ci, i = 1, 2, are given coefficients determining the main axes of the ellipsoid.
The fibers rotate intramurally linearly with the depth for a total amount of 120◦

proceeding counterclockwise from epicardium to endocardium. More precisely, in a
local ellipsoidal reference system (eφ, eθ, er), the fiber direction al(x) at a point x
is given by

al(x) = eφ cosα(r) + eθ sinα(r), with α(r) =
2
3
π(1 − r) − π

4
, 0 ≤ r ≤ 1.

Conductivity coefficients and strain energy function parameters. The val-
ues of the orthotropic conductivity coefficients (see (2.18)) used in all the numerical
tests are the following:

σi
l = 3, σi

t = 0.31525, σi
n = 0.031525,

σe
l = 2, σe

t = 1.3514, σi
n = 0.6757,

where all values are expressed in mΩ−1cm−1. This choice of parameters yields
physiological propagation velocities of the excitation wavefront along and across
fiber of about of 0.05, 0.03, 0.015 cm ms−1, see e.g. Ref. 9. In the orthotropic strain
energy function (2.2), the values of the parameters are chosen as in the original
work,18 i.e.

a = 0.333 kPa, al = 18.535 kPa, at = 2.564 kPa, alt = 0.417 kPa

b = 9.242, bl = 15.972, bt = 10.446, blt = 11.602.

The bulk modulus is K = 200 kPa.

Stimulation site, initial and boundary conditions. The depolarization process
is started by applying a cathodal extracellular stimulus of ieapp = −200 mA/cm3

lasting 1 ms on a small volume of 0.4 × 0.4 × 0.2 mm3 located in the center of the
endocardial surface. The initial conditions are at resting values for all the potentials
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and gating variables of the ten Tusscher model, while the boundary conditions are
for insulated tissue. In all the electro-mechanical simulations, the electrical mesh
size is he = 0.01 cm, while the mechanical mesh size is hm = 0.08 cm (except
otherwise stated), and the electrical time step size is ∆et = 0.05 ms, while the
mechanical times step is ∆mt = 0.25 ms.

Computation of activation and repolarization time. For each computational
node x, the activation time (AT) is defined as the unique instant ta(x) during the
upstroke phase of the action potential when v(x, ta(x)) = −50 mV. The repolar-
ization time (RT) is defined as the unique instant tr(x) during the repolarization
phase of the action potential when v(x, tr(x)) = 0.9vr, with vr resting potential.
The action potential duration (APD) is the difference APD(x) = tr(x) − ta(x).

Cellular membrane properties. We have considered homogeneous properties
of the cellular membrane, with a constant intrinsic APD of about 260 ms. We
have considered this simple setting in order to detect the effective influence of the
mechanical feedbacks, that otherwise could be masked by transmural and apico-
basal heterogeneities of the cellular membrane.

4.1. Parallel scalability test

In order to validate the effectiveness of our electro-mechanical solver, we first con-
sider a weak scaling test on truncated ellipsoidal domains of increasing size, mod-
eling portions of the ventricular wall. The results for the mechanical solver are
reported in Table 1. The number of subdomains (and processors) is increased from
64 to 1024, with the largest domain being an half ellipsoid with parameters in (4.1)
given by a1 = b1 = 1.5, c1 = 4.4, a2 = b2 = 2.7, c2 = 5, all in cm, and φmin = −π/2,
φmax = π/2, θmin = −3π/8, θmax = π/8. The physical dimensions of the increasing
ellipsoidal domains are chosen so that the electrical mesh size h is kept fixed to
the value of about h = 0.01 cm, so as to keep the local mesh on each subdomain
fixed at 32 · 32 · 32. The mechanical mesh size is four times the electrical one, thus

Table 1. Weak scaling test, mechanical solver with AMG precon-
ditioner.

procs dof nit lit timeas timegmres timenewton

64 109 395 2 75 3.52 7.06 19.84
128 215 475 2 74 3.52 8.13 21.84
256 427 635 2 79 3.52 9.20 23.88
512 848 691 2 80 3.52 15.21 43.52

1024 1 690 803 2 79 3.52 23.79 63.44

Number of processors (procs), degrees of freedom (dof), Newton iter-
ations (nit), GMRES iteration counts (lit) per Newton iteration,
CPU time in seconds for Jacobian assembling (timeas ), for solv-
ing one Jacobian system (timegmres ), for the total Newton solve
(timenewton ).
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on each subdomain the local mechanical mesh is 8 · 8 · 8. With these choices, the
global size of the discrete Bidomain system increases from about 4 millions degrees
of freedom (dof) for the smallest domain with 64 subdomains to 68 millions dof
for the largest domain with 1024 subdomains, and the discrete nonlinear elasticity
system increases from about 100 thousands to 1.7 million dof. The simulation is run
for 10 time steps of 0.05 ms during the excitation phase and the reported quantities
are the results at the 10th time step.

The results reported in Table 1 show that both the nonlinear Newton iteration
(nit) and linear GMRES iteration (lit) are completely scalable. The scalability of
the GMRES iterations is achieved by the use of the AMG preconditioner. Never-
theless, the CPU times are not scalable, because they increase with the number of
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Fig. 3. (Color online) Mechanical deformation of the cardiac domain at selected time instants

(for the test). The colors denote the value of the transmembrane potential v at each point, ranging
from resting (blue) to excited (red) values.
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processors, due to the setup and cost of the AMG preconditioner at each Newton
iteration.

4.2. Effects of mechanical feedbacks

We have performed four simulations of a whole cardiac heart beat:

• one disregarding the mechanical feedbacks (MF) in the Bidomain model (denoted
by “without MF”);
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Fig. 4. Activation (ACTI) time distributions on the endocardial, midmyocardial and epicardial
surfaces computed without ISAC current, with ISAC current and with ISAC +CONV term. Below
each panel are reported the min, max and step in ms of the displayed map.

Table 2. Dispersion (difference between maximum and minimum value) in ms of
activation time (AT), repolarization time (RT) and action potential duration (APD)
without MF (first column) and in the three cases with MF: without ISAC (second
column), with ISAC (third column), with ISAC + CONV (fourth column).

without MF without ISAC with ISAC with ISAC + CONV

AT dispersion 141 138 138 144
RT dispersion 139 136 132 129
APD dispersion 13 14 27 45
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• one taking into account the MF in the diffusion tensors of the Bidomain model,
but disregarding the ISAC current and the convective term (denoted by “without
ISAC”);

• one taking into account the MF in the diffusion tensors and the ISAC current,
but disregarding the convective term (denoted by “with ISAC”);

Table 3. Relative discrepancies of activation time (AT, first row), repolarization time (RT,
second row) and action potential duration (APD, third row) distributions, transmembrane
potential v at 100 ms (fourth row), extracellular potential ue at selected points (fifth row)
with respect to the associated reference quantity computed without MF.

� = MF � = MF � = MF with
without ISAC with ISAC ISAC + CONV

‖AT� − ATref‖∞/‖ATref‖∞ 3e−2 3e−2 1e−1

‖RT� − RTref‖∞/‖RTref‖∞ 8e−3 4e−2 7e−2

‖APD� − APDref‖∞/‖APDref‖∞ 1e−2 6e−2 1e−1

‖v(·, 100)� − v(·, 100)ref‖1/‖v(·, 100)ref‖1 1e−2 1.3e−1 1.6e−1
1
24

P24
i=1 ‖ue(xi, ·)� − ue(xi, ·)ref‖1 3e−2 2.7e−1 3.4e−1

The symbol � denotes one of the three cases with MF: without ISAC (first column), with
ISAC (second column) and with ISAC + CONV (third column).
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Fig. 5. Repolarization (REPO) time distributions on the endocardial, midmyocardial and epi-
cardial surfaces computed without ISAC current, with ISAC current and with ISAC+CONV term.
Below each panel are reported the min, max and step in ms of the displayed map.
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• one taking into the MF the diffusion tensors, the ISAC current and the convective
term (denoted by “with ISAC + CONV”).

We report in Fig. 3 the transmembrane potential distributions on the deform-
ing epicardial surface at nine selected time instants, ranging from 45ms (at the
beginning of activation) to 350ms (at the end of repolarization).

Effects of mechanical feedbacks on the activation time. Figure 4 reports the
activation time (AT) distributions on the endocardial, midmyocardial and epicardial
surfaces relative to the three simulations with MF: without ISAC, with ISAC and
with ISAC+CONV. The AT distributions relative to the simulation without MF are
not shown, because the visual inspection does not show any particular difference
compared to the case without ISAC. The total AT dispersions are reported in the
first line of Table 2. The AT patterns in all the four cases present the same features,
with the activation wavefront starting from the stimulus electrode applied at the
center of the endocardium, then moving with an ellipsoidal shape fast along the
fiber direction and slow across. The convective term slows down the propagation
velocity across fiber, producing an AT delay of about 4–5ms, see Table 3 for the
relative error.
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Fig. 6. Action potential duration (APD) distributions on the endocardial, midmyocardial and
epicardial surfaces computed without ISAC current, with ISAC current and with ISAC + CONV
term. Below each panels are reported the min, max and step in ms of the displayed map.
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Effects of mechanical feedbacks on the repolarization time. Figure 5 reports
the repolarization time (RT) distributions on the endocardial, midmyocardial and
epicardial surfaces relative to the three simulations with MF: without ISAC, with
ISAC and with ISAC + CONV. The total RT dispersions are reported in the second
line of Table 2. As for the AT, the RT distributions relative to the simulation
without MF are not shown, because they are almost equal to the case without
ISAC. The presence of the ISAC current produces an RT increase of about 10–15ms
and reduces the total RT dispersion of about 5ms. The effect of the convective term
on the RT is a further prolongation of 3–5ms, and a further reduction of the RT
dispersion of about 3ms.
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Fig. 7. Horizontal transmural action potential duration (APD) distributions, without ISAC cur-
rent (left), with ISAC current (center) and with ISAC +CONV term (right). Below each panel are
reported the min, max and step in ms of the displayed map.
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Effects of mechanical feedbacks on the action potential duration. Figure 6
reports the action potential duration (APD) distributions on the endocardial, mid-
myocardial and epicardial surfaces relative to the three simulations with MF: with-
out ISAC, with ISAC and with ISAC+CONV. The total APD dispersions are reported
in the third line of Table 2. The presence of the ISAC current prolongs the APD
of about 10–15ms and strongly increases the total APD dispersion with respect
to the simulation without ISAC (from 27 to 14ms). The convective term increases
further the APD dispersion to 45ms. We note that, in the case with ISAC +CONV,
the total APD dispersion of 45ms almost coincides with the endocardial dispersion,
while the epicardial dispersion is comparable with that of the case with ISAC and
without the convective term (Table 2).

Figures 7 and 8 report the APD distributions on a central horizontal and a
central vertical transmural sections of the truncated ellipsoid, respectively. The
transmural APD dispersions in the cases without ISAC and with ISAC are compara-
ble and small, in the range 10–13ms. Instead, in the simulation with ISAC +CONV,
the APD transmural dispersion increases significantly, being 37ms in the horizontal
section and 22ms in the vertical section. Thus, the convective term seems to induce
transmural and circumferential APD heterogeneities.
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Fig. 8. Vertical transmural action potential duration (APD) distributions, without ISAC current
(left), with ISAC current (center) and with ISAC + CONV term (right). Below each panel are
reported the min, max and step in ms of the displayed map.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
16

.2
6:

27
-5

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SU

SS
E

X
 o

n 
11

/0
4/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



October 23, 2015 15:7 WSPC/103-M3AS 1650002

Bioelectrical effects of mechanical feedbacks in a cardiac electro-mechanical model 51

Effects of mechanical feedbacks on epicardial and endocardial waveforms.
We report finally in Figs. 9–11 the time evolution of the transmembrane (v) and
extracellular (ue) potentials, intracellular calcium concentration ([Ca2+]i), active
tension (Ta), stretch along fiber (λl) and along fiber component of the Green –
Lagrange strain tensor (Ell) at three selected points of the ventricular block denoted
by P1, P2, P3 in Fig. 2.

The first point P1 (Fig. 9) is located at the center of the epicardial surface and
presents an electrogram ue with a positive T wave. The second point P2 (Fig. 10)
is located at the apex of the epicardial surface and presents an electrogram ue

with a biphasic T wave. The third point P3 (Fig. 11) is located at the base of the
endocardial surface and presents an electrogram ue with a negative T wave. As in
the previous figures, we have reported only the results concerning the simulations
without ISAC, with ISAC and with ISAC + CONV. The time profile of the trans-
membrane potential v (also called action potential) exhibits a fast upstroke related
to the excitation phase followed by a plateau and recovery phase, while the time
profile of the extracellular potential ue (also called electrogram) shows a first QRS
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Fig. 9. (Color online) Waveforms at the center of the epicardial surface, without ISAC current
(black, dashed-dot), with ISAC current (red, continuous) and ISAC + CONV term (blue, dashed).
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Fig. 10. (Color online) Epicardial waveforms at the apex, without ISAC current (black, dashed-
dot), with ISAC current (red, continuous) and ISAC + CONV term (blue, dashed).

complex related to the excitation phase, followed by a T wave associated to the
recovery phase.

The different types of mechanical feedbacks do not modify significantly the
main morphological features of the v and ue waveforms, but they have a visible
influence on the plateau and repolarization phases of v and on the T wave of ue.
The comparison of the epicardial waveforms in presence of ISAC and of ISAC+CONV
shows almost coincident profiles in agreement with the comparable APD dispersion
previously observed at the epicardial level. The main difference on the v waveforms
appears for the simulation without ISAC due to an early repolarization downstream
profile, i.e. a shift on the left of the profile yielding a shorter APD, while the main
difference on the ue waveform is an earlier T wave, with lower peak, always for the
simulation without ISAC. The other four mechanical waveforms at the epicardial
locations P1, P2 exhibit negligible differences, which are a bit more visible in the
waveforms associated with the endocardial base location P3, i.e. the upper portion
of the block which is one of latest activated region (Fig. 11) where a delay of the
upstroke phase is observed for simulation without ISAC.
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Fig. 11. (Color online) Endocardial waveforms at the base, without ISAC current (black, dashed-
dot), with ISAC current (red, continuous) and ISAC + CONV term (blue, dashed).

5. Conclusions

In this work, we have developed a strongly coupled electro-mechanical model, where
the Bidomain model is set on the deformed tissue configuration. When this model
is properly re-written in the reference configuration, three mechanical feedbacks
appear, and cardiac deformation affects the Bidomain model through: (i) the pres-
ence of the deformation gradient F in the conductivity coefficients, (ii) the presence
of the deformation gradient F and the deformation rate V in the convective term
F−T Grad v̂ ·V, (iii) the presence of the stretch λ in the ionic membrane current due
to the stretch-activated current. We have simulated the electro-mechanical response
of an insulated block of ventricular wall, fixed at the base and stimulated locally at
the endocardial surface. In order to avoid masking the effects of mechanical feed-
backs by the presence of heterogeneity of the cellular membranes, we have performed
all simulations in a cardiac tissue with homogeneous cell membrane properties. Our
results have shown that the mechanical feedbacks do not alter the pattern of the
activation and repolarization sequences and the morphology of the transmembrane
action potential and electrogram waveforms, while they strongly affect the action
potential duration (APD) patterns. In particular, the ISAC current prolongs the
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APD of about 10–15ms and the inclusion into the model of both ISAC current
and the convective term reduces the dispersion of repolarization of about 7% (from
139 to 129ms) and increases the dispersion of APD about three times (from 13 to
45ms). These effects indicate that mechanical feedbacks might influence arrhyth-
mogenic mechanisms when combined with pathological substrates, particularly in
presence of tissue heterogeneity, that should be investigated in future studies.
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