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Model-driven Analysis of Eyeblink Classical
Conditioning Reveals the Underlying Structure
of Cerebellar Plasticity and Neuronal Activity

Alberto Antonietti, Claudia Casellato, Egidio D’Angelo, and Alessandra Pedrocchi

Abstract—The cerebellum plays a critical role in sensorimotor
control. However, how the specific circuits and plastic mecha-
nisms of the cerebellum are engaged in closed-loop processing
is still unclear. We developed an artificial sensorimotor control
system embedding a detailed spiking cerebellar microcircuit with
three bidirectional plasticity sites. This proved able to reproduce
a cerebellar-driven associative paradigm, the Eye Blink Classical
Conditioning (EBCC), in which a precise time relationship
between an unconditioned and a conditioned stimulus (US and
CS) is established. We challenged the spiking model to fit an
experimental dataset from human subjects. Two subsequent
sessions of EBCC acquisition and extinction were recorded and
Transcranial Magnetic Stimulation (TMS) was applied on the
cerebellum to alter circuit function and plasticity. Evolutionary
algorithms were used to find the near optimal model parameters
to reproduce the behaviors of subjects in the different sessions of
the protocol. The main finding is that the optimized cerebellar
model was able to learn to anticipate (predict) conditioned
responses with accurate timing and success rate, demonstrating
fast acquisition, memory stabilization, rapid extinction, and faster
re-acquisition as in EBCC in humans. The firing of Purkinje cells
(PC) and Deep Cerebellar Nuclei (DCN) changed during learning
under the control of synaptic plasticity, which evolved at different
rates, with a faster acquisition in the cerebellar cortex than in
DCN synapses. Eventually, a reduced PC activity released DCN
discharge just after the CS, precisely anticipating the US and
causing the eyeblink. Moreover, a specific alteration in cortical
plasticity explained the EBCC changes induced by cerebellar
Transcranial Magnetic Stimulation (TMS) in humans. In this
paper, for the first time, it is shown how closed-loop simulations,
using detailed cerebellar microcircuit models, can be successfully
used to fit real experimental datasets. Thus, the changes of the
model parameters in the different sessions of the protocol unveil
how implicit microcircuit mechanisms can generate normal and
altered associative behaviors.

Index Terms—Cerebellum, Distributed plasticity, Eyeblink
classical conditioning, Genetic algorithm, Long term plasticity,
Spiking network model, Transcranial magnetic stimulation.

I. INTRODUCTION

SYNAPTIC plasticity modifies neurotransmission strength
and thus the probability that signals are transmitted
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through neural circuits. In this way, synaptic plasticity reg-
ulates information processing required to drive adaptive be-
haviors. The link between long-term synaptic plasticity and
adaptive control has been suggested by a wealth of physio-
logical and pathological data and by theoretical motor control
models [1], [2]. However, how plasticity is engaged in dynamic
processing during behavior is still unclear.

The cerebellum plays a critical role in adaptive motor
control by implementing three fundamental operations: pre-
diction, timing and learning [3], [4]. These properties emerge
in associative sensorimotor paradigms, such as the Eye Blink
Classical Conditioning (EBCC). This Pavlovian associative
task is learned along with repeated presentations of paired
stimuli, a Conditioned Stimulus (CS, like a tone) followed by
an Unconditioned Stimulus (US, like an air-puff or an electri-
cal stimulation), eliciting the eye-blink reflex. The cerebellum
learns to produce a Conditioned Response (CR, an eye-blink)
precisely timed to anticipate (or ”predict”) the US onset [5]

In a recent work [6], we have collected experimental data
allowing to accurately determine the phases of EBCC in hu-
mans. Two subsequent sessions of EBCC acquisition and ex-
tinction were recorded and Transcranial Magnetic Stimulation
(TMS) was applied on the cerebellum to alter circuit function
and plasticity. These data suggest that TMS can dissociate
EBCC extinction (related to the fast learning process) from
consolidation (related to the slow learning process), probably
by acting through a selective alteration of cerebellar plastic-
ity. An extended multi-rate phenomenological model [7], [8]
supported the multi-site distribution of the learning process.
However, the question on how the specific implementation
of the cerebellar circuit was able to carry out the implicit
computations eventually leading to EBCC learning [9], [10],
[11], [12], [13] remained unresolved.

Since the formulation of the Marrs theory [10], it became
clear that a gap still exists between the computation that the
cerebellar network carries out and the implementation of the
computational circuit, which requires that accurate microcir-
cuit models are allowed to operate into the external large-
scale circuitry of the brain [14]. In the present work, we have
exploited a detailed computational model of the cerebellum
operating in a sensorimotor circuit to match and interpret the
EBCC experimental data. The model is a realistic Spiking
cerebellar Neural Network (SNN), equipped with distributed
plasticity mechanisms, which is connected to an external
circuit in order to generate the EBCC. SNN models [15], [16],
[17], [18], [19], [20], [21], [22] showed promising capabilities
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Fig. 1. Experimental and modeling approaches. Left: schematic representation of the EBCC experimental setup. The subject is stimulated with appropriate
combinations of CS (conditioned stimulus, tone) and US (unconditioned stimulus, electrical stimulation) organized in two sessions comprising an acquisition
and extinction phases; the CR (conditioned response, eye-blink) is detected by EMG on the orbicularis oculi muscle. Between the two sessions, one group
of subjects receives cTBS on the posterior lobules of the lateral cerebellum (see [6]) used for EBCC simulations. The model is endowed with three plasticity
sites (PF-PC, MF-DCN and PC-DCN), each bidirectional (LTP and LTD). Bottom: The CR values obtained from the model are compared with those obtained
from human subjects and used for optimal tuning of the model parameters through genetic algorithms. The optimal models are able to reproduce the real
EBCC behavior.

in reproducing behaviors similar to that of living brains due
to their more faithful similarity to biological neural networks
[23]. We used the Event-Driven simulator based on Look-
Up-Tables (EDLUT) [24], [25], [26], a SNN simulator which
operates by compiling the dynamic responses of pre-defined
cell models into lookup tables, thus significantly decreasing
the simulation time with respect to other simulators, which
has to solve complex systems of differential equations (e.g.
NEURON [27] or Brian [28]).

In previous works [19], [29] we have demonstrated the
learning properties and the capability of the cerebellar SNN
to reproduce a general EBCC protocol. To build up the
cerebellar model, we used SNNs instead of other modeling
techniques because this approach has proven to be very useful
for neuroscience research, since it is capable to increase
the understanding of the diverse features of the information
processing that occur in animals and human beings [30].
Our method exploited simulations of a neural architecture
of acceptable size (thousands of spiking neurons), based on
cells whose characteristics cannot be described by simple
analytical expressions. It has been proved that an artificial NN
whose circuitry is based on the synaptic organization of the
cerebellum is capable to learn temporal associations [31].

In this contribution, we aimed at studying how the general
SNN cerebellar model defined in [19] has to be modified

to adapt to real human data performing EBCC experiments
under unaltered and perturbed conditions. Specifically, we
have developed a fitting procedure based on a cerebellar
SNN endowed with multiple forms of plasticity and we have
applied it to the real EBCC data set obtained by Monaco and
colleagues [6], in which experiments were designed by the
neuroscientists to study the interaction between the cerebellar
associative learning and the TMS delivery [6].

While, on the one hand, the inclusion of realistic plasticity
equations, spiking neural dynamics, and recurrent topologies
enhanced the descriptive power of SNNs, on the other hand
this increased the number of free parameters requiring an
efficient automated parameter tuning framework [32]. We
exploited metaheuristic techniques, specifically evolutionary
algorithms, to find out the near-optimal plasticity mechanism
parameters identifying the cerebellar models that better repro-
duced the experimental results.

In summary, this approach is novel in several respects: (1)
it implements and operates a detailed cerebellar microcircuit
in closed-loop within a complete sensorimotor circuit, (2) it
incorporates spiking (rather than analog) neurons and plasticity
rules, (3) it uses plasticity at multiple sites rather than just
at the parallel fiber Purkinje cell synapses of the cerebellar
cortical layer, (4) it allows to simulate real datasets rather than
formulating pure theoretical predictions, (5) it allows to test

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TNNLS.2016.2598190

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, X 201X 3

hypothesis on circuit alterations (the TMS effect on plasticity)
through modifications of specific neural mechanisms. Eventu-
ally, by reconnecting circuit implementation and computation
to sensorimotor behavior, this approach provides a first direct
test to the foundations of Marrs motor learning theory.

II. MATERIALS AND METHODS

A. EBCC Protocol

The computational protocol used here was tailored on the
experimental protocol by Monaco and colleagues [6], which
is briefly explained for clarity. Human subjects underwent
two sessions of EBCC, with a washout period interleaved
(Fig. 1 left panel). At the end of the first session, half of
the subjects received a sham stimulation, while the other
half received an effective continuous Theta Burst Stimulation
(cTBS). Therefore, the first session (session1) included the data
recorded from both groups; the second sessions (session2 sham
and session2 tbs) included the data recorded from the sham
group and from the tbs group, respectively. Each session
included 60 trials of acquisition and 10 trials of extinction.
During the acquisition phase, the CS (a tone) was followed,
after an Inter-Stimulus Interval (ISI) of 600 ms, by the US (a
supraorbital nerve electric stimulation). During the extinction
phase the subjects were provided with the CS only. From these
data, for each subject, the percent success rate (number of CRs
occurring within a moving window of 10 trials) was computed.
The experimental data showed two main features. First, the
acquisition phase was faster in session1 than in sessions2,
revealing a consolidation process during washout. Secondly,
the extinction phases of session2 tbs was smaller and slower
compared to that of session2 sham.

The data used for the model fitting were the CR percentages
(CR%), which corresponded to the success rates in the three
different sessions (session1, session2 sham and session2 tbs).

B. Cerebellar Model and Protocol

The cerebellar model used for the computational simulations
was based on a well-established cerebellar architecture [18],
[33], which was built on physiological features of cerebellar
microcomplex. The simulations were performed on a desktop
PC (Intel Core i7-2600 CPU @3.40 GHz with 8 GB of RAM
with Windows 7 64 bit).

The SNN (Fig. 1 right panel) was composed of 100 Mossy
Fibers (MFs), 2000 Granule cells (GRs), 12 Inferior Olive
cells (IOs), 12 Purkinje Cells (PCs) and 6 Deep Cerebellar
Nuclei cells (DCNs). All the neurons were modeled as
leaky integrate-and-fire neurons because they required only a
few state variables to be implemented [34], [35], [36]. The
MFs received the CS and were randomly connected with
the granular layer; each GR received 4 random excitatory
synapses from the MFs. The GRs activity was a sparse
representation of the input signal, so each simulation time
sample corresponded to a different state of the granular
layer [37]. The IOs received the US and were connected
one by one to PCs through the Climbing Fibers (CFs). Each
PC received synapses from the 80% of the GRs, through
19164 Parallel Fibers (PFs). Each DCN received excitatory

connections from all the MFs and 2 inhibitory connections
from 2 PCs. Within our model, the DCN-IO inhibitory loop
[38] did not correspond to a physical connection, but it was
implemented as a mechanism that decreased the IOs firing
rate of the incoming US, if a CR was detected before the
US onset. This way, such DCN-IO inhibitory loop translated
the motor command into a sensory modulation, meaning that
a single cerebellar area simultaneously tackled both motor
execution and sensory prediction [39], [40]. Successful CRs
were identified when the output variable, related to the DCN
population firing rate, crossed a predefined threshold before
the US onset.

The protocol tested in computational simulations
reproduced the experimental one. Each session consisted in
60 trials of acquisition and 10 trials of extinction. During the
acquisition phase, the CS (MFs stimulation with a firing rate
of about 40 Hz lasting 700 ms) was followed, after an ISI of
600 ms, by the US (100 ms IOs stimulation with a low firing
rate around 1 Hz). During the extinction phase, the CS only
was fed to the cerebellar model.

1) Learning Rules: The SNN model was equipped with
three plasticity sites, cortical and nuclear. The synaptic connec-
tions in each site followed three different learning rules, which
strengthen or weaken these connections. Long-Term Depres-
sion (LTD) or Long-Term Potentiation (LTP) mechanisms
were modeled as modifications on the synaptic conductances
[19], [29].

The 1st learning rule (1) models the well-known LTP-LTD
mechanism at the cerebellum cortical level (PF-PC) [41].

∆WPFi→PCj (t) =

LTD1

tIOspikej∫
−∞
K1(t− x)δPFi(t− x)dx if PCj active

t = tIOspikej

LTP1 if PCj active
t 6= tIOspikej

0 otherwise

(1)

where:

δPFi(s) =

{
1 if PFi is active at time s
0 otherwise

(2)

and the Kernel function is:

K1(z) = Ae−
z−t0
τ

(
sin
(

2π
z − t0
τ

))20

(3)

where LTD1 and LTP1 are the first learning rule con-
stants; tIOspikej is the time when the corresponding CFj

emits a spike; K1(z) is the integral kernel function, which
has its peak at t0 (100 ms) before tIOspikej ; τ and A are
normalization constants. LTD1 and LTP1 values were defined
by the optimization process made by an ad-hoc Genetic
Algorithm (GA) as described in the next section. The rationale
of the kernel function is presented in detail in [26].

The 2nd learning rule (4) regards the MF-DCN nuclear
connections [13]. It was preliminary tested in computational
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simulation of EBCC protocol in order to investigate the effect
of multiple plasticity sites on cerebellar learning [19].

∆WMFi→DCNj (t) =

LTD2

−∞∫
−∞

K2(t− x)δMFi(t− x)dx if MFi active

t = tPCspikej

LTP2 if PCj active
t 6= tPCspikej

0 otherwise

(4)

where:

δMFi(s) =

{
1 if MFi is active at time s
0 otherwise

(5)

and the Kernel function is:

K2(z) = e−
|z|
τ

(
cos
( z
τ

))2

(6)

where LTD2 and LTP2 are the first learning rule con-
stants; tPCspikej is the time when the corresponding PCj

emits a spike; K2(z) is the integral kernel function and τ
is used in order to normalize the arguments in the learning
rule. LTD2 and LTP2 values were defined by the optimization
process made by the GA as described in the next section.

The 3rd learning rule regards the PC-DCN nuclear con-
nections and it was implemented as a standard Spike-Timing
Dependent Plasticity (STDP) [19], [29]. Considering the ith

DCN (DCNi) and the two PCs connected with this DCN:
• when one of the two PCs fires and, within a LTP-time

window equal to 20 ms, also the DCNi fires, the two
inhibitory synapses from PCs to DCNi are increased.
The amount of conductance increase depends on the delay
between PC and DCN spikes, with a maximum LTP
change equal to LTP3.

• when the DCNi emits a spike and, within a LTD-time
window equal to 50 ms, also one of the two PCs fires,
the two PC-DCN connections are decreased. The amount
of conductance decrease depends on the delay between
DCN and PC spikes, with a maximum LTD change equal
to LTD3.

The two time windows were chosen from neurophysiological
ranges [42], whereas LTP3 and LTD3 values were defined
by the optimization process made by the GA as described in
the next section.

C. Genetic Algorithm

As done in previous works [32], [43], [44], [45], [46],
evolutionary algorithms were used to tune SNN parameters.
Tuning the free parameters of models has always been a
challenge, especially in computational neuroscience, where the
complexity of network models makes the hand tuning imprac-
ticable. Automated parameter search methods have become
increasingly important and various methods were used, such
as brute force search, local random search, gradient descent,
evolutionary algorithm, etc. [47]. In this work, we preferred to
use an evolutionary method for the parameter tuning because

it allowed us to tune both the synaptic weight initialization and
the learning rates of the synaptic rules, without the requirement
to specify the desired computations of the network, but rather
allowed us to specify a proper fitness function. We optimized
both initial conditions and learning rates at each plasticity
site. The GA was used for the initialization of the weights
of the model (before the beginning of session1), but not for
the training of the SNN. Indeed, the evolution of the weights
was driven by the three plasticity rules and by the interaction
of the network with the input/output signals (CS, US, CR) in a
closed-loop fashion. The final target behavior is derived from
experimental data and it has an intrinsic variability, both intra
and inter subjects. Thus, an analytic error-based approach (e.g.
gradient descend) would have failed in tracking the general
behavior. We defined a fitness function where the overall
features representing experimental data can be put together. To
optimize the parameters in order to achieve maximal fitness,
an evolutionary approach was selected to explore the whole
parameters space. Since this method is inherently parallel [48]
(i.e. a single generation is formed by multiple individuals that
can be simulated in parallel), we exploited this property to
significantly decrease the computational time required during
the optimization process (e.g. from 11 hours and 10 minutes
using a single CPU core to 3 hours and 30 minutes with a
parallelization on 4 CPU cores). We used a Genetic Algorithm
to find the values of the three pairs of LTP and LTD constants.
For session1 only, also the initialization weights (w0) for
PF-PC, MF-DCN and PC-DCN synapses were found out by
means of the GA. It was programmed in MATLAB, which
automatically triggered each simulation in C++, carrying out
a complete EBCC session driven by the model equipped with
the updated genes. Each tested generation was made up of
12 individuals. A single individual represented a simulation
performed with a parameter-set composed of its own genes.
The computational time required for each generation was
reduced by parallelizing the simulation instances on the 4
CPU cores. We built individuals as described in Table I,
with 9 genes for session1 (LTP1, LTD1, LTP2, LTD2,
LTP3, LTD3, w0PF−PC , w0MF−DCN and w0PC−DCN )
and 6 genes for session2 sham and session2 tbs (LTP1, LTD1,
LTP2, LTD2, LTP3 and LTD3). Each gene could vary
within a pre-defined range during the GA optimization. For the
LTP and LTD constants we took as reference previous works
based on similar architectures [18], [19], [25], [26], [33] and
neurophysiological constraints (e.g. LTD1 greater than LTP1

and nuclear plasticities with LTP and LTD constants lower
than the cortical ones). To establish bounds for the three initial
weights (genes 7-9) we set, for each gene, the minimum value
near zero (10-10 nS) and the maximum value in order to limit
the firing rate ranges of the different cell populations within
neurophysiological values [13].

In session1, the cerebellar model started in a neutral config-
uration where all the connections of the 3 synaptic sites were
initialized at the same values (w0PF−PC , w0MF−DCN and
w0PC−DCN ) as they were naı̈ve bundles. During the learning
process along session1, the synapses differentiated themselves.
Thus, the weights state of the median model of session1 at the
end of the simulation was saved as the initial state of the
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TABLE I
GENES FOR THE DIFFERENT SESSIONS AND THEIR MAXIMUM AND

MINIMUM VALUES

session1
session2
sham and tbs

Max Value Min Value

Gene 1 LTP1 LTP1 0.01 10-10

Gene 2 LTD1 LTD1 -10-10 -1
Gene 3 LTP2 LTP2 10-5 10-10

Gene 4 LTD2 LTD2 -10-10 -10-5

Gene 5 LTP3 LTP3 10-5 10-10

Gene 6 LTD3 LTD3 10-5 10-10

Gene 7 w0PF−PC 2 nS 10-10 nS
Gene 8 w0MF−DCN 0.1 nS 10-10 nS
Gene 9 w0PC−DCN 0.2 nS 10-10 nS

synaptic weights for both session2 sham and session2 tbs.
Since we aimed at extracting which parameter-sets gener-

ated models with a behavioral outcome (i.e. the success rate) as
much similar as possible to the experimental data, we defined
the GA fitness function as described in (7).

fitness =

((
1−

60∑
i=1

|CR%exp(i)− CR%mod(i)|

60

)
· 0.4+

+

(
1−

70∑
i=61

|CR%exp(i)− CR%mod(i)|

10

)
· 0.6

)
·

·
(

1−

70∑
i=1

OUT (i)

70

)
·
(

1−

10∑
i=1

OUT (i)

10

)

(7)

where CR%exp(i) is the CRs percentage of the median of
experimental data at the ith trial; CR%mod(i) is the CRs per-
centage of the model at the ith trial. The extinction was more
weighted (0.6) than the acquisition (0.4), since it was the most
critical phase, as emerged from the experimental data analyses
[6]. The last two factors, containing OUT (i), represent penalty
parameters which decreased the fitness values of that model
if the CR percentage was outside the allowed ranges defined
by the lower and upper quartiles of the experimental data,
in particular in the first ten trials where the inter-subject
variability was lower. OUT (i) was a Boolean variable equal to
0 if the CR%mod(i) was between the quartiles of CR%exp(i),
otherwise it was equal to 1.

The fitness function was designed in order to be equal
to 1 when the CR%mod(i) coincided with the median of
experimental data, then it decreased if the difference between
the experimental success rate and the model success rate
increased (Fig. 1).

The GA process for the definition of the 12 individuals of
the following generation consisted in three parts: selection,
crossover and mutation. The four best individuals with the
highest fitness among all the individuals of the generation
were saved without any crossover or mutation; the other eight

individuals were generated by means of the following steps.
In the selection process (roulette wheel), the 12 individuals of
the current generation were sorted in descending order of their
fitness, the probability of being selected as one of the parents
of the following generation was proportional to the fitness
[49]. At the end of the selection, 8 individuals were chosen
as parents. The probability of a crossover between ordered
couples of two parents was 80%; if the crossover happened,
four randomly selected genes were swapped between the two
parents. After the crossover process, each individual had a
probability of 90% to go through a mutation. Individuals 5-8
underwent mutation by an uniform random re-extraction from
the genes exploration space; whereas individuals 9-12 by a
Gaussian mutation starting from their current values (i.e. the
mutated gene was extracted using a Gaussian distribution with
the mean equal to the current gene value and the standard
deviation equal to the 10% of the variation range of the
gene). After these three processes, the final 12 individuals
of the following generation were defined and the new 12
EBCC simulations could start. The GA stopped when, for 100
consecutive generations, the fitness improvement between two
generations was lower than 0.1%.

D. Data Analysis

1) Experimental vs Model Outcomes: for the whole
analysis, we tested the data normality with the Anderson-
Darling test, in order to choose the proper statistical test.
For variables that were non-normally distributed we indicated
median [25th percentile 75th percentile].

We evaluated the results of the GA optimization consider-
ing, for each session, the best (i.e., with the highest fitness
values) 25% models of the total number of individuals. We
did not limit the analysis only to the single best individual
in order to guarantee the robustness of our results. Indeed,
we considered multiple good solutions that well fitted the
experimental data, so as to have a deeper insight into the
parameters exploration space. This way, we obtained for each
session a group of models. As expected by its selection criteria,
the genetic algorithm led to a monotonic increase of the maxi-
mum fitness values for each generation (Fig. 2A); the stopping
criterion was satisfied after 139 generations for session1, after
196 generations for session2 sham and after 251 generations for
session2 tbs. The total number of tested individuals was 1668
for session1, 2352 for session2 sham and 3012 for session2 tbs,
for an overall number of 7032 tested combinations of genes.
The high number of tested individuals and the stability of the
fitness function supported the hypothesis that the parameters
found by the genetic algorithm reliably correspond to those
that would generate a behavioral outcome mostly similar to the
experimental data. The computational time that was required
to simulate the overall number of individuals was 3 hours
and 30 minutes for session1, 4 hours and 25 minutes for
session2 sham and 4 hours and 15 minutes for session2 tbs.
Taking into account the best 25% individuals, we selected 417
individuals with a normalized fitness equal to 0.86 [0.82 0.91]
for session1, 588 individuals with a normalized fitness equal
to 0.77 [0.53 0.96] for session2 sham and 753 individuals with
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Fig. 2. Model fittings on experimental data. (A) Normalized fitness values
along generations of GA for session1, session2 sham and session2 tbs. The best
models (i.e. the best 25% generated by the GA) are depicted in color. (B)
CR% in session1, session2 sham and session2 tbs along the 60 acquisition and
10 extinction trials. For each panel, the median of experimental data among
subjects is reported in black (the grey area represents the quartile range). The
median of model fittings in reported in color (the surrounding colored areas
represent the quartile range). (C) CR% averaged along the acquisition and
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Both for acquisition and extinction, a Mixed-Effect ANOVA was applied, to
take into account the session factor (3 groups) and the trial sequence factor
(1st-60th or 61st- 70th, in chronological order). * indicates statistical difference
(p < 0.05).

a normalized fitness equal to 0.90 [0.88 0.96] for session2 tbs.
The mean computational time to simulate a single individual
(56 seconds of simulation time) was 48.1 ± 4.6 seconds for
session1, 43.4 ± 2.0 seconds for session2 sham and 42.9 ± 1.9
seconds for session2 tbs. Since the network size is the same
for each session, variations on the computational time for
different individuals were due to different amounts of the
spiking activity generated by the SNN.

In order to evaluate the fitting goodness, we computed
the Pearson correlation coefficient between the median of
experimental CR% and the median of model CR% along
sessions.

Then we focused separately on the acquisition and ex-

tinction phases carried out by the selected models in each
session, comparing the CR% of the three groups of models (i.e.
session1, session2 sham and session2 tbs).We exploited a linear
mixed-effect ANOVA test, where the fixed effect factor was
the group and the random effect factor was the trial number.
Post-hoc comparison used Bonferroni correction and Tukey
contrasts, in order to highlight significant pairwise differences
(p < 0.05) among the three sessions. To validate the model
taking into account another variable, different from the CR%
which was used for the optimization training, we compared the
presence/absence of CRs trial by trial of the selected models
in the three sessions and of the three median experimental
individuals. For each of the three sessions, we computed the
sensitivity (8) and the specificity (9) of the model on the
experimental behavior (e.g. model 1 of session1 vs median
of experimental subjects 1-22 of session1, model 2 of session1
vs median of experimental subjects 1-22 of session1, etc.).

sensitivity =
TP

TP + FN
· 100 (8)

where TP (true positive) is the number of trials where both
the model and the experimental data showed a CR, FN (false
negative) is the number of trials where the model predicted an
absence of CR whereas the experimental data showed a CR.

specificity =
TN

TN + FP
· 100 (9)

where TN (true negative) is the number of trials where both
the model and the experimental data showed an absence
of CR, FP (false positive) is the number of trials where
the model predicted the presence of a CR whereas the
experimental data showed an absence of CR.

Due to the high inter-subject variability of the experimental
dataset, the sensitivity and specificity values of the model
had to be compared to the sensitivity and specificity values
of each subject in the three sessions against the three median
behaviors (e.g. subject 1 of session1 vs median of subjects
1-22 of session1, subject 2 of session1 vs median of subjects
1-22 of session1, etc.).

2) Session-specific Models Parameters: we analyzed
the resulting parameters (LTP1, LTD1, LTP2, LTD2,
LTP3 and LTD3 for all the three sessions and w0PF−PC ,
w0MF−DCN , w0PC−DCN for session1 only) and their
distribution within the exploration space.

For both groups (session2 sham and session2 tbs) we
quantified the difference (∆) of each plasticity parameter
between sessions2 values and the median value of session1
(e.g. LTP1(session2 sham) - LTP1(session1) ) as median and
quartiles among the best selected models. were normalized
as percentages of the range of motion of each parameter. We
used Wilcoxon rank-sum test (MannWhitney test) to check if
there were significant differences (p < 0.05) between ∆ in
session2 sham and in session2 tbs for the three plasticity sites.
Furthermore, for each parameter we quantified the Coefficient
of Variation (CV) among models (i.e. the inter-quartile range
normalized for the parameter range). Indeed, it is relevant to
focus on the dispersion of the optimal parameters values, to
evaluate the robustness of the modifications and thus to infer
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the role of each parameter in driving the model to reproduce
the experimental behavior. For each of the three pairs of
plasticity parameters, we performed a k-mean clustering
with three clusters. In this way, we evaluated any systematic
separation related to the three sessions by computing the
number of misclassified elements and by computing the
distances between the centroid of session1-related cluster and
the centroids of session2 sham and session2 tbs clusters.

3) Models evolution: synaptic weights and spiking activ-
ities: we analyzed the synaptic weights modification along
trials, reporting two significant trials for each session: the
end of the acquisition phase (60th trial) and the end of the
extinction phase (70th trial). The 19164 PF-PC connections, the
600 MF-DCN connections and the 12 PC-DCN connections
were considered.

Synaptic modifications provoke changes in neural activity,
thus we computed the median firing rates of each cell pop-
ulation in order to compare them between different phases
and between different sessions and to verify that they did not
exceed the neurophysiological values [13].

We analyzed the spiking activity of the different populations
of cells, by generating the Peri-Stimulus Time Histogram
(PSTH) of the spikes gave to the SNN as input (i.e. MFs
and IOs) and generated by the SNN dynamics (i.e. GRs, PCs
and DCNs). For each model and for each cell population, we
computed the PSTH with a time-bin of 10 ms. We considered
the onset of CS as the starting point of each PSTH. Regarding
PCs and DCNs, we analyzed the end of acquisition (60th

trial) and the end of extinction (70th trial), since the strong
modulation of their activity along sessions phases.

PSTH took into account the intra-trial trends, albeit only
at two specific simulation points. Thus, we also inspected the
evolution of spiking activity of PCs and DCNs along each of
the 70 trials of each session and along the intra-trial time,
computing the number of spikes of the cell population in each
time-bin of 10 ms.

III. RESULTS

In this work, we have developed a detailed computational
model of the cerebellum operating inside a sensorimotor con-
trol system and capable of reproducing EBCC experimental
data. In order to do so, a realistic spiking cerebellar network
(SNN) endowed with distributed plasticity mechanisms [19],
[29] was connected to an external circuit accounting for the
critical neural centers involved in EBCC. Evolutionary algo-
rithms allowed to find out a family of near-optimal plasticity
parameters determining the best models able to reproduce the
experimental EBCC data (Fig. 1).

A. Model fitting to experimental results

GA simulations were run to fit the EBCC experimental
data reported on human subjects by Monaco et al. [6] (Fig.
1). The simulations achieved a good fitting in terms of CR
success rate, for all the three original EBCC sessions (session1,
session2 sham, session2 tbs), as observed in Fig. 2A. We assured
the robustness of results evaluating the best 25% models for

each session.
In session1, the median of CR percent success rate of

GA individuals (Fig. 2B) started from zero, then after 6
trials some CRs occurred and the CR percentage increased
progressively attaining a stable level around 60-70%. The CR
percentage showed a fast decrease toward zero within few
trials of extinction (starting at the 61st trial). During all the
70 trials, the CR% expressed by the model was very similar
to the experimental data. The only remarkable difference was
that, in the very first trials, the human subjects were already
able to produce a few temporal association between the SC
and US, while the simulations started to generate CRs after
about six trials (see [50] for a potential explanation and remedy
to the problem). The Pearson correlation coefficient computed
between the median of models and the median of experimental
data was 0.94, confirming the goodness of fit.

In session2 sham and session2 tbs, the median CR percentage
of individuals (Fig. 2B) started from zero, then it rapidly
increased after 3-4 trials, reaching 60-70% and remaining
stable until the beginning of the extinction phase (60th trial).
A peculiarity of session2 sham and session2 tbs was that re-
acquisition was more rapid than acquisition in session1. Then,
while extinction in session2 sham showed a fast decrease to-
ward zero, extinction in session2 tbs showed a slower decrease
reaching just 50-60% at the 70th trial. In both session2 sham and
session2 tbs the shape of the learning curves was very similar to
the experimental curves. The Pearson correlation coefficients
computed between the median of GA models and the median
of experimental data were 0.80 for session2 sham and 0.79 for
session2 tbs, confirming the goodness of fit in both cases.

In order to determine whether and where the fitting results
differed among session1, session2 sham, and session2 tbs, we
performed a mixed-effect ANOVA test and post-hoc analysis.
These showed that, concerning the acquisition phase (Fig.
2C), there were no significant differences between models
(p = 1.00). For the extinction phase (Fig. 2C), session2 tbs
was significantly different from both session1 (p = 0.035)
and session2 sham (p = 1.19 · 10−5), whereas there was no
significant difference between session1 and session2 sham (p =
0.804). These tests confirmed that the parameter modifications
of session2 tbs individuals effectively reflected the change of
experimental conditions.

The sensitivity and specificity values of models vs exper-
imental median and experimental subjects vs experimental
median are reported in Table II. It is evident that the sensitivity
and specificity values of the selected models are comparable
with the values of the experimental subjects against their
medians.

B. Session-specific model parameters
Since simulations showed a behavior comparable to that ob-

served experimentally, we analyzed model parameters (Table
III) in order to shed light on how combinations of LTP and
LTD accounted for learning in the different EBCC phases.

In the three EBCC sessions, the LTP and LTD constants
occupied a well-defined subspaces (Fig. 3A). In particular,
synaptic plasticity parameters settled on different optimal val-
ues for session2 sham and session2 tbs (Fig. 3B). The difference
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LTP3 and LTD3 of the 3rd plasticity site (PC-DCN). For each panel, the parameters of the median best model for session1 (blue dot) and of the best model
groups, for session2 sham (green) and session2 tbs (red), are reported. (B) The normalized differences (∆) of LTP and LTD values (median represented by the
bar edge and 25th-75th percentiles represented by black bars) in session2 sham (green) and session2 tbs (red), with respect to the corresponding median values in
session1 (baseline common reference). (C) The variability normalized within each range of the optimal parameters found by the GA for session2 sham (green)
and session2 tbs (red), for each of the six plasticity parameters.

TABLE II
SENSITIVITY AND SPECIFICITY TESTS

Models vs experimental median
session1 session2 sham session2 tbs

sensitivity 65% 55% 71%
specificity 71% 49% 38%

Experimental subjects vs experimental median
session1 session2 sham session2 tbs

sensitivity 63% 64% 73%
specificity 59% 54% 45%

with respect to the common baseline, represented by the
median of session1, was in the same direction for all the
parameters in both session2 sham and session2 tbs (e.g. for LTP1

both values decreased), but the amplitude variation was usually
bigger for session2 tbs than session2 sham (except for LTD2).

It should also be noted that the dispersion of these learning
optimal parameters was different for the different plasticities
(Fig. 3C). The PF-PC weight showed the lowest variability
(≤ 3%), the MF-DCN weights had moderate variability
(≤ 11%), whereas the PC-DCN weights had a high variability,
with a maximum value of 67% for LTP3 in session2 tbs.
The Wilcoxon rank-sum test for each of the three plasticity
sites unveiled that the variation of plasticity parameters was
significantly higher when the cTBS was administered, for the

connections involving PCs (∆session2 sham vs ∆session2 tbs:
PF-PC, p = 5.7039 · 10−5; MF-DCN, p = 0.2839; PC-DCN
p = 2.9454 · 10−7). But it is worth noting that the three
plasticity parameters showed different scatter. That suggests a
systematic role of cTBS in modifying the plasticity parameters
at the cortical layer (PF-PC) much more than at the other
synaptic connections.

For each plasticity site, we quantified how much k means
clusters coincided with the three model groups (session1,
session2 sham and session2 tbs) generated by the GA. We found a
misclassification rate of 18.14% for PF-PC plasticity, 23.61%
for MF-DCN plasticity and 31.97% for PC-DCN plasticity.
The relatively modest misclassification implied a systematic
dependency of plasticity changes on the session.

For PF-PC plasticity, the distance between the centroids of
session1 and session2 sham clusters was 0.07, between session1
and session2 tbs was 0.11. For MF-DCN plasticity, the dis-
tance between the centroids of session1 and session2 sham
clusters was 2.31 · 10−6, between session1 and session2 tbs
was 3.20 · 10−6. For the third plasticity site (PC-DCN), the
distance between the centroids of session1 and session2 sham
clusters was 5.25 · 10−6, between session1 and session2 tbs
was 8.21 · 10−6. Thus, the distances between session1 and
session2 tbs parameters were always greater than the distances
between session1 and session2 sham, which is consistent with
a more similar outcome behaviors generated by session2 sham
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TABLE III
MEDIAN AND QUARTILE OF EACH OPTIMIZED PARAMETER IN THE THREE DIFFERENT SESSIONS

session1 session2 sham session2 tbs

PF-PC LTP1 0.0061 [ 0.0048 0.0079 ] 0.0037 [ 0.0037 0.0038 ] 0.0024 [ 0.0024 0.0024]
LTD1 -0.99 [ -0.99 -0.99 ] -0.92 [ -0.92 -0.89 ] -0.88 [ -0.88 -0.88]

MF-DCN LTP2 8.57·10-6 [ 8.57·10-6 8.78·10-6 ] 6.44·10-6 [ 6.17·10-6 6.44·10-6] 5.56·10-6 [ 5.49·10-6 6.54·10-6]
LTD2 -2.49·10-6 [ -2.59·10-6 -1.96·10-6 ] -1.91·10-6 [ -1.91·10-6 -1.91·10-6] -2.15·10-6 [ -2.15·10-6 -1.78·10-6]

PC-DCN LTP3 10-10 [ 10-10 3.81·10-6 ] 3.59·10-6 [ 3.59·10-6 4.65·10-6] 7.97·10-6 [ 1.28·10-6 7.97·10-6]
LTD3 5.18·10-8 [ 10-10 3.09·10-6 ] 8.01·10-6 [ 7.67·10-6 8.09·10-6] 8.67·10-6 [ 8.24·10-6 9.32·10-6]

w0PF−PC 1.56 [ 1.56 1.56 ]
w0MF−DCN 0.078 [ 0.078 0.078 ]
w0PC−DCN 0.12 [ 0.093 0.14 ]
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and session1 than by session2 tbs and session1. These metrics
support the higher changes induced when not only a washout
goes by, but also when a cTBS perturbation interferes.

C. Synaptic plasticity changes

Different weight changes characterized cortical plasticity
(PF-PC) with respect to the two nuclear plasticities (MF-DCN
and PC-DCN): PF-PC plasticity underwent faster changes
along session trials with respect to MF-DCN and PC-DCN
plasticities.

At the beginning of session1 all the connections were equal
to the initialization values found by the GA (genes 7-9): 1.57

nS for PF-PC, 0.078 nS for MF-DCN and 0.094 nS for PC-
DCN. At the beginning of session2 the connection weights for
sham and tbs were set to the synaptic state at the 70th trial of
session1.

By comparing session1 with session2, differences occurred
at the different synapses. At PF-PC synapses, there were lower
weights in session2 than session1, both at the end of acquisition
and extinction. At nuclear synapses, there were more dispersed
values for MF-DCN (with numerous connections that were
decreased toward zero) and PC-DCN weights in sessions2 than
session1 (Fig. 4).

Comparing the weights configuration at the end of acquisi-
tion, PF-PC synapses in session2 tbs were more depressed with
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respect to session2 sham. The synaptic weights for the nuclear
plasticities were just slightly higher, for MF-DCN, and lower,
for PC-DCN, in the tbs session than in the sham session.
Thus, DCN synapses were in a potentiated state compared
to session1, facilitating task recalling (savings).

Regarding the differences between session2 sham and
session2 tbs, there were not observable behavioral alterations
at the end of acquisition, but modifications emerged during
the rapid extinction process. Thus, PF-PC plasticity differences
were responsible for this differentiation, since the cortical plas-
ticity reacts to fast changes, as happens during the extinction,
whereas the nuclear plasticity sites affects long-term learning
processes.

TABLE IV
MEDIAN AND QUARTILE OF PCS AND DCNS FIRING RATES [HZ] IN THE

DIFFERENT SESSIONS/PHASES

session1 session2 sham session2 tbs

Acquisition PC 63 [45 88] 51 [28 77] 46 [26 71]
Acquisition DCN 5 [1 11] 16 [2 17] 16 [45 88]

Extinction PC 91 [70 114] 58 [40 81] 48 [27 74]
Extinction DCN 5 [2 7] 14 [1 17] 16 [7 17]

D. Neuronal firing rates

The spiking activity of MFs and IOs remained the same for
each trial and for each session (Fig. 5A). MFs had a random
activity with an average firing rate of 39 [range 32-44] Hz.
IOs were active only during the US (i.e. between 600 and 700
ms after the CS onset) with a frequency around 1 Hz. Finally,
the GRs had a continuous activity directly related to the MFs
input, with a firing rate of 10.20 [range 6.81-13.72] Hz. The
PC activity was modulated within trials and along-trials, with
a minimum firing rate around 50 Hz within the trials when
a CR was generated (Fig. 5B) and a maximum firing rate at
the beginning of the acquisition and back at the end of the
extinction around 100 Hz, completely inhibiting the circuit
output (Fig. 5C). Consequently, DCN activity was modulated
within-trials and along-trials, with frequency peaks just before
US onset to generate CRs. The firing rates of all these cells
(Table IV) matched the known neurophysiological ranges [13],
[51].

The PCs firing rate was higher and the DCNs firing rate
was lower in session1 with respect to sessions2, during both
acquisition and extinction phases. This effect was due to the
higher strength of PF-PC and PC-DCN connections in session1
than sessions2, yielding higher PC activity and stronger PC-
DCN inhibition.

At the beginning of acquisition, the Purkinje cells were
spontaneously active and supplied tonic inhibition to DCN
(Fig. 6). Then, along trials, PC activity decreased within a spe-
cific time-window (400-600 ms), in which DCN activity cor-
respondingly increased. Finally, during extinction, PC activity
increased again, decreasing DCN firing rate. Interestingly, the
DCN activity peak responsible for CR generation tended to
disappear. In particular, in session1 extinction, PCs recovered
towards the initial tonic activity nearly silencing DCN cells. In
session2 sham extinction, PC activity recovered more slowly but
still fast enough to cancel the DCN activity peaks anticipating
US. In session2 tbs extinction, the PC activity recovery was
negligible so that the differences between PC firing rate at
the end of acquisition and at the end of extinction was
thin. This abnormal behavior did not lead, on average, to an
immediate reduction of the DCN peaks anticipating US (CRs
were generated until the 66th trial) but made extinction slow
and incomplete, as observed in the experiments.

It should be noted that the peak of DCN activity at about
650 ms from the beginning of the trial was not related to CR,
since it happened after the US onset. This peak was a sort of
unconditioned response triggered by the US itself and not by
a predictive learned stimuli association.
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IV. DISCUSSION

The main result of this work is that a 3-plasticity-site spiking
cerebellar model embedded into a control system proved able
to reproduce a biologically relevant associative task, the eye
blink classical conditioning, which is largely accepted as a
test-bench to investigate the sensorimotor learning capabilities
of the cerebellum [52]. These were reliably emulated in terms
of timing and success rate” of the CR over a set of properties
typical of human behavior: rapid acquisition, consolidation,
extinction and fast re-acquisition following extinction [53]
The relevance of this finding is that, for the first time, a
realistic modeling reconstruction of the cerebellum has been
successfully used to fit an experimental dataset, unveiling the
implicit microcircuit computations of the network operating
in closed-loop. Other computational models using large-scale
SNNs [13] were not matched against quantitative experimental
data, so that the specific roles of each plasticity site in the
multiple time-scale learning process could not be predicted.
In the present study, the parameterization of network plasticity
mechanisms was carried out by adapting the model response
to human data through a meta-heuristic process based on a
genetic algorithm. The emergence of multiple learning phases
(including acquisition, extinction and reacquisition) was gov-
erned by the multiple learning sites of the network [54] and
finally caused a change in spike firing of the different neuronal
types. The altered behavior induced in human subjects by
TMS between the first and second sessions of training was
reproduced by allowing the model to retune on the altered
dataset supporting the concept that TMS interfered especially
with plasticity in the cerebellar cortical layer [6].

A. Dynamical changes in neuronal firing and synaptic weights
during associative learning

Neuronal activity in the cerebellar network showed a typical
evolution during the learning process (session1). Soon after
a few trials, a strong inhibition of PC activity occurred
just before the US. This in turn transiently released DCN
neurons from inhibition increasing their firing and causing the
behavioral response. The DCN activity increase was precisely
timed and anticipated the US, as typically occurs in behav-
ior. During extinction, PC and DCN firing recovered toward
basal levels. Interestingly, during relearning (sessions2), firing
changes occurred much more rapidly due to the memory traces
maintained in DCN.

It should be noted that, before training, no cues were given
to the cerebellar network to evolve in the observed manner,
except that it was equipped with structure, connectivity and
plasticity rules derived from biology. The evolution in neuronal
firing was thus fully driven by long-term synaptic plasticity
depending on the dynamical evolution of the inputs and of
local neuronal firing.

The PF-PC synapse was the first to change, owing to
its fast rate constants, followed by PC-DCN and MF-DCN
synapses, which evolved at a much slower rate. This made
learning biphasic, with a first rapid phase taking place in the
cerebellar cortex and a slower phase taking place in the DCN.
These observations are consistent with the hypothesis that the

cerebellar cortex is necessary to generate an adaptive well-
timed conditioned responses, but it is insufficient to determine
the full set of learning properties by itself [51]. Indeed,
multiple processes may contribute to motor skill acquisition,
which usually proceeds through a rapid convergence toward a
stable state before being consolidated into persistent memory
[8]. As suggested by Medina and colleagues [55] through ad
hoc lesions and computational simulations, a site of plasticity
outside the cerebellar cortex (possibly in the cerebellar nuclei)
can indeed protect from permanent EBCC extinction, so that
residual plasticity can later contribute to savings seen during
relearning. The cerebellar cortex thus operated as a fast
learning module while deeper structures operated as a slow
learning module where the motor skill can be transferred and
consolidated into more persistent memory [55]. Accordingly,
the DCN activity can be modulated by PCs, and DCN spike
timing is strongly correlated with memory acquisition [56].

B. Model predictions on neuronal firing and synaptic plastic-
ity in the cerebellar network

One of the major difficulties in the experimental analysis
of neuronal firing during behaviors is that potential changes
compared to baseline activity, even if significant, cannot be
easily interpreted given to simultaneous changes in other
neurons, in the synapses in between and in the afferent fiber
activity. The model provided a series of testable predictions of
neuronal properties during EBCC that can represent a guide
to interpret experimental data.

As far as firing rates were concerned, PC and DCN cells
firing rates were in the physiological ranges [13] and then
changed in a characteristic manner along the acquisition and
extinction phases. These changes proved consistent with those
revealed in electrophysiological measures in decerebrate fer-
rets [51]. The characteristic PC and DCN firing rate changes
during different phases of learning could be used to predict
the ongoing changes in PC and DCN connections in in vivo
experiments.

Finally, the synaptic weights change correlated with dif-
ferent behavioral phases. In relationship with the different
kinetics of plasticity, the involvement of nuclear synapses was
more evident during the long acquisition processes while that
of cortical synapses during the fast extinction process [6], [7],
[8]. Not unexpectedly, alteration in cortical synapses provided
an explanation to TMS perturbations, which occur superficially
affecting the faster learning process (see below).

In sessions2 DCN synapses were potentiated compared
to session1, facilitating task recalling (savings). Since re-
acquisition was almost the same for both the sham and tbs
groups, the saving mechanisms were preserved regardless of
TMS perturbation. Therefore, savings derived from a con-
structive interaction between cortical and nuclear synapses
modulation. It was modeled as a process occurring during
the washout between sessions, when the SNN parameters
governing the plastic changes at the multiple sites underwent
a re-modulation, especially selective and controlled at level of
PF-PC.
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C. Model predictions on TMS data

It was previously shown that TMS stimulation applied
on the cerebellum influenced its learning processes, but the
underlying mechanisms were unclear. Miall and King [57],
by applying TMS to human subjects during dynamic actions,
measured an increase of the positional error, hypothesizing
that the state estimation provided by the cerebellum was
somehow compromised. However, they could not address the
localization of such effect within the multi-layer cerebellar
structure. The present model fittings to TMS data suggested
that TMS should mostly alter plasticity in the cerebellar cortex,
i.e. in most superficial layers directly affected by TMS. Also
other synapses tended to change (though non significantly),
reflecting redistribution of weights over the whole network.

Conceptually, this bears about important implications for
understanding the place and nature of changes induced by
TMS. First, fast and slow processes were updated simul-
taneously from motor learning errors, supporting a parallel
architecture of motor memory [58]. Secondly, cerebellar TMS
affected memories based on large magnitude errors, i.e. it
altered the fast process operations, in line with recent studies
showing that cerebellar degeneration impaired the ability to
learn from large-magnitude errors, but had a modest impact
on learning from small errors [59]. The model thus proved
a useful complement to TMS, which is commonly used to
reversibly disrupt normal brain functions thereby allowing to
dissociate and to study the underlying plasticity mechanisms
[60], [61], [62].

D. Properties and limits of the model

A major advantage of our model is that, while plasticity
at the parallel fiber Purkinje cell synapses was originally
the only one to be considered, we have embedded three
reversible plasticity forms. These plasticities, based on recent
observations at the cellular level, have different trigger signals
and time-scales, improving neurophysiological realism and
expanding the computational and learning capabilities of the
circuit. Actually, the differential engagement of these multiple
plasticity sites allowed to better emulate the complex proper-
ties of learning than with a single plasticity alone [26].

A second advantage was that, rather than using the model
to formulate a pure theoretical hypothesis, we have proved
that the model can be tuned against a real dataset. Clearly,
the effectiveness of this approach depends on the richness
of neuronal mechanisms and synaptic plasticities embedded
into the model itself. In fact, our model successfully as-
sociated neuronal-scale to behavioral-scale features and was
able to reveal potential mechanisms of alteration following
a perturbation imposed to the system, i.e. cerebellar TMS.
It could be envisaged that imposed modifications to neuronal
functioning or plasticity mechanisms in the model would allow
it to predict the consequences of cerebellar alterations in
human pathologies, a promising aspect that deserves future
investigation.

In spite of these advantages, the model has also limits. A
first limit is due to the elementary representation of neurons
and synapses. It will be interesting to see how the system

will respond with more advanced neuron and plasticity mech-
anisms, as the center surround organization of the granular
layer or coherent oscillations [63]. A second limit is in the
plasticity rules, which could be more complex then represented
here [64]. Actually, without embedding the whole model
with intrinsic temporal dynamics (oscillations and resonance)
we expect that adding further molecular complexity would
not be very useful, so that an increasing biological realism
should require to redesign the system as a whole. Finally,
we did not include cerebro-cerebellar recurrent loops in the
control system. These would be most useful in motor task
involving close-loop planning and execution, but are probably
not very important in the present context, in which only part
of the functionalities of the sensorimotor control system are
exploited.

The choice of the fitness function to be used during the
optimization process is another limitation of the GA approach.
As a matter of fact, the fitness function (7) designed for the
parameter sets search could represent solely some features
of the experimental behaviors. In a single value, it had to
summarize the similarity between the experimental CRs profile
and the models one. However, we designed an accurate fitness
function, which took into account all the important features of
the desired (optimal) behavior, to diminish the information
loss.

From a computational point of view, the proposed model
was simulated exploiting an event-based SNN simulator that
used, for now, the computational power of a single processor.
In this way, it was possible to simulate different parameter
sets in parallel on the four CPU cores, but this limited the
simulation performances. To further reduce the simulation
time, maintaining the network dimension, it could be possible
to run a single simulation in parallel on multiple CPU cores or
using a GPU-approach, which speeds up the simulation [15],
[34].

Finally, the similarity of the proposed model with the
cytological structure of the cerebellum represented a crucial
point of this work. As a side effect of the biologically
realism of the SNN, it was impossible to directly compare
the performances of the model with other classical neural
network topologies (e.g. single or multi-layers perceptrons,
fuzzy neural networks, etc.), which do not take into account
the main working principles of the biological network.

In an extensive theoretical work, Maas has demonstrated
that SNNs are powerful from a computational point of view,
even more powerful than conventional NNs, reducing the
overall need of units [65]. This consideration is based on the
intrinsic time dependent dynamics of spiking neurons, which
allow to capture and exploit more efficiently the temporal
patterns of sensory-motor events.

In our scenario, the use of SNN has been preferred to other
statistical tools for manifold reasons. First of all, SNNs are
algorithms patterned after the brain structures and contain a
series of mathematical equations that are used to simulate
biological processes. Indeed, they represent a technique that
has emerged as a potential alternative to logistic regression
analysis and other statistical methods [66]. Furthermore, SNNs
are not constrained by a predefined mathematical relationship
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between dependent and independent variables, and have the
possibility to reproduce complex nonlinear relationships. In
addition to this, while a generic NN is an implicit (black-box)
approach, the SNN exploited by us is no more a black-box. In
fact, each neuron and each synaptic connection have a precise
meaning and a biological alias that we can understand by
means of the neurophysiological knowledge. If the aim was to
merely reproduce the exact output behavior showed by human
subjects, other classical or advanced methods (e.g. logistic
regression) would have obtained higher sensibility and sensi-
tivity, possibly reaching values near 100%. However, it would
be impossible to link the high-level parameters in the models
to low-level features in the biological learning mechanisms.
On the contrary, this is possible using realistic, biologically-
inspired models like the SNN that we have exploited.

E. From microcircuit implementation and computation to
cerebellar algorithms

The Marrs theory about brain functional principles envis-
aged that a circuit algorithm could be resolved on the basis
of microcircuit computation and implementation [9], [10]. In
this work, we have implemented a detailed neuronal microcir-
cuit generating implicit spiking computations able to produce
associative sensorimotor behaviors. That is, we have reversed
the original procedure: rather than anticipating an algorithm
and looking for possible computations and implementations
capable of generating it (inverse problem), we have followed a
bottom-up approach yielding a behavioral response (an adap-
tive sensorimotor association) built on network constructive
principles and plasticity rules. We have therefore moved a
first step toward a direct demonstration of Marrs predictions on
the cerebellar operating mechanisms in a human-like behavior.
A further critical challenge will then be investigating the
responses of an advanced cerebellar circuit model engaged
into the feedback and feedforward loops representing an entire
sensorimotor system operating in closed-loop.

V. CONCLUSIONS

As a remarkable advance with respect to the state of the art,
the model approach to data interpolation can provide a new key
to understand the physiological mechanisms of associative mo-
tor learning in the cerebellar circuit and to predict the potential
changes in dysfunctional conditions. In silico manipulations
of a realistic model-based cerebellar platform can be a key
approach to understand cerebellar functioning and intervene
on cerebellar diseases. Several cerebellar impairments can
be found in literature; with an approach similar to what we
proposed in this manuscript, it would be possible to translate
these physiological damages into models modifications (e.g.
a decrease of the volume of the cerebellar cortex, due to a
cortical degeneration [67], could be translated decreasing the
number of PCs in the model).
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REPLICATION DATA

The results showed in this work can be replicated.
We have published online the instructions and the dataset
needed. The data can be retrieved at Harvard Dataverse:
doi:10.7910/DVN/XUYXKC.

TABLE V
LIST OF ABBREVIATIONS

CFs Climbing Fibers
CRs Conditioned Responses
CS Conditioned Stimulus
cTBS continuous Theta Burst Stimulation
DCNs Deep Cerebellar Nuclei cells
EBCC Eye Blinking Classical Conditioning
GA Genetic Algorithm
GRs Granular cells
IOs Inferior Olive cells
ISI Inter-Stimuli Interval
LTD Long-Term Depression
LTP Long-Term Potentiation
MFs Mossy Fibers
PCs Purkinje Cells
PFs Parallel Fibers
PSTH Peri-Stimulus Time Histogram
SNN Spiking Neural Network
US Unconditioned Stimulus
TMS Transcranial Magnetic Stimulation
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