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Highlights

Following are the main points of the article.

Introduction An introduction is given on the importance of the path planning

�eld in manufacturing processes with a main focus on extrusion systems.

Extrusion systems The article is focused on extrusion systems as painting,

gluing and AM FDM techniques. Typical path planning algorithm are

described outlining the importance of a uniform distribution of material

in order to obtain high quality products.

Path planning algorithm Starting from a curve parameterization desired is

described a path planning algorithm based on the use of Bézier curve by

aiming to achieve a constant velocity with a TCP, tool center point. The

algorithm is based on the use of straight and parabolic lines. A possibility

to extend the algorithm through the use of weights is described.

Actual application An actual example is made through the use of a real AM,

additive manufacturing, machine. It's shown the feasibility of the algo-

rithm with the possibility to take into account the dynamic of a speci�c

process. The same algorithm could be tailored on a di�erent machine.
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Abstract

In the operation of a broad range of industrial processes, the use of robots

whose trajectories are constrained by the velocity of the parts actuated (tools,

end e�ectors, joints and the like) more often than not play a signi�cant role.

Keeping our focus on systems for material deposition such as painting, gluing,

aerosol spraying but nowadays also additive manufacturing techniques like FDM

processes, it is noticeable that a key parameter is the control of the �ow of

material in accordance with the trajectory velocity of the parts being actuated.

According to the speci�c requirements and goals of di�erent technology, it is

possible to generate di�erent trajectories. In this paper, we propose an original

path planning algorithm based on the use of Bezier curves aimed at assuring

regulation of the velocity and a uniform distribution of the extruded material

referring to an innovative additive manufacturing technology.

In particular, the paper presents a path planning technology developed for

an application where it is necessary to maintain a constant velocity along the

length of the trajectory aimed at improving the technological processes on the

basis of an innovative additive technology.
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Urgo)
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The paper further presents a working application with a machine prototype

so as to demonstrate the viability and performance of the work under consider-

ation.

Keywords: path planning algorithm, Bézier curves, additive manufacturing,

constant feed rate, constant extrusion rate,

1. Introduction and Problem Statement

The �eld of path planning has been widely studied in robotics aimed at de�n-

ing the trajectory and the movement of the end-e�ector in a robot workspace.

The role of path planning in industrial processes has been further increased

to also take into consideration process planning i.e., how to control a process5

in terms of movement and technological parameters in order to achieve the

required result. Further developments in this �eld are also due to the robot

adoption into the additive manufacturing as the result of continuously growing

technology capable of processing new shapes and materials.

The aim of this article is to propose a path-planning algorithm to ensure an10

even material distribution in a speci�c range of industrial processes, e.g., paint-

ing, gluing, aerosol spraying and additive manufacturing processes. A speci�c

focus is given to extrusion systems where the extrusion rate cannot be ade-

quately controlled. In such cases it is necessary and in fact better to maintain

the extrusion velocity constant, as is the cases set out in this article, where, for15

the development of an innovative AM technology, the maintaining of a constant

�ow rate is required.

A path-planning algorithm is proposed using Beziér curves to guarantee a

proper regulation of the relative velocity between the end-e�ector and the part

to process. Bézier curves are exploited for the generation of an interpolation20

of the ideal trajectory based on straight and parabolic segments. Regulating

the parametric velocity along the trajectory, the original approach proposed in

this paper allows the moving of tool center point (TCP), with constant and

regulated velocity during virtually the whole of the trajectory. In fact some
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slight oscillations in the velocity are unavoidable but the proposed approach is25

aimed at keeping such �uctuations extremely low and controllable.

2. Literature Review

Among AM techniques the ones based on the extrusion of material, such as

FDM, have been the subject of many studies in particularly after the expiry of

the patent related to this technology[1] and thus making spreading the use of30

this technique within the market.

For instance, Roberson et al. [2] show the use of an FDM technique for new

materials in the manufacture of electromechanical and electromagnetic appli-

cations, whereas Volpato et al. [3] show an innovative piston-driven extrusion

head that capable of extruding polypropylene granules into a �lament. Giberti35

et al.[4],[5], [6] show several studies on a new 3D printing solution for metal

parts based on a MIM technique.

Some of these studies focus on the optimization of the technological parame-

ters [7], or on the attempt to model particular characteristics of these processes,

[8][9]. In fact, as observed by Jiang et al.[10], It is paramount to obtain a40

uniform-distributed material thickness for the accuracy of these processes and

to characterize their behaviour.

For the reasons set out above the deposition method and the tool path

generation of the AM technique must be taken into great consideration according

to the di�erent goals to be achieved. Kulkarni et al.[11] study the importance45

of the tool path planning on the resulting sti�ness of the printed objects. Jin

et al.[12][13] propose a new path planning algorithm in order to minimize the

building time of the part at the same time maintaining a good surface accuracy.

In order to overcome deposition problems, related to a new metal based AM

technique, Mireles et al.[14] were required to modify the toolpath commands of50

a pre-existing FDM machine. Rishi [15] has shown how a di�erent feed rate can

be used to improve accuracy of the surface or the building time of the internal

parts; whereas for systems based on a constant feed rate, in order to guarantee
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a uniform material deposition, the Direction-Parallel Tool-Path (DP) technique

can be used to achieve this goal.55

Some articles are available in literature proposing DP deposition trajectories

using an approach based on lines and parabolas and moving the end-tool with

constant feed rate where possible along the trajectory. Thompson [16] shows

constant material �ow trajectories for straight lines using a constant acceleration

to link the velocity for two consecutive lines with di�erent velocities: in this way60

an absolute velocity error is introduced where the smaller the angle between the

two consecutive lines the greater the error. This requires the need to change the

material �ow during the parabolic segments.

Jin [17] suggests a straight lines and parabolas trajectory based entirely on

the curvilinear abscissa velocity control. De�ning two lines typologies (type65

I used for lines which intersect the deposition pro�le, and type II for lines

adjacent to the pro�le boundaries) a di�erent absolute velocity is imposed on

the two types: usually velocity I is double velocity II and a constant acceleration

pro�le is used to link the two lines on the curvilinear abscissa. The extruder

motion pro�le is created taking into account the velocity variations of the control70

parameters. This strategy leads to limited accelerations on active joints during

curved paths attaining a good printing velocity.

In the �eld of CNC machining the use of Bézier curves has been exploited in

order to obtain continuity on the velocity and acceleration usually not obtainable

by the G-Code based on straight lines and the use of G1 commands [18].75

Compared to the literature referred above, the approach proposed in this

paper allows the moving of tool center point (TCP), with constant and regulated

velocity during virtually the whole of the trajectory assuring the possibility to

extrude without changing the �ow rate. Because some slight oscillations in the

velocity are unavoidable, this method is aimed at keeping such �uctuations not80

only extremely low but also controllable and predetermined.
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3. Curve Parametrization

To de�ne a trajectory in a cartesian space (XY Z) is necessary to de�ne a

parametric geometrical path, as de�ned by [19]:

p = p(u), u ∈ [umin, umax] (1)

where p(u) is a continuous vectorial function(3x1) which describes the path85

inside the workspace as a function of the independent variable u. We take into

account 3 Dofs, but we can extend the de�nition of p in order to include more

Dofs.

The so de�ned vector function is controlled imposing a motion pro�le on

parameter u = u(t) which describes the tool trajectory along its path.90

in particular:

∣∣∣ ˙̃p(t)
∣∣∣ = vc = constant (2)

where p̃(t) = (p ◦ u)(t), and for velocity and acceleration we derive the last

equation.

It's not needed to analytical obtain function u(t), its value u(tk) = uk can

be computed with a temporal discretization tk = kTs, with Ts sample time.95

We can obtain uk with k = 0, 1, 2, ..., using a Taylor series with a second or-

der approximation. Deriving respect to the time the following conditions are

obtained:

u̇(t) =
vc∣∣∣∣dpdu
∣∣∣∣ ü(t) = −v2c

dpT

du
· d

2p

du2∣∣∣∣dpdu
∣∣∣∣4

(3)

considering a second order approximation the variable value u at time (k+ 1)Ts
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can be determined as:100

uk+1 = uk +
vcTs∣∣∣∣dpdu
∣∣∣∣
uk

− (vcTs)
2

2


dpT

du
· d

2p

du2∣∣∣∣dpdu
∣∣∣∣4


uk

(4)

In order to achieve a constant velocity trajectory in the initial and �nal part

of the path there is a non-zero acceleration. Considering a trapezoidal velocity

the computing of uk+1 is modi�ed as follow:

uk+1 = uk +
vkTs∣∣∣∣dpdu
∣∣∣∣
uk

+
T 2
s

2


ak∣∣∣∣dpdu
∣∣∣∣
uk

− v2k


dpT

du
· d

2p

du2∣∣∣∣dpdu
∣∣∣∣4


uk

 (5)

where ak = a(tk) and vk = v(tk) are respectively acceleration and velocity at

instant tk = k · Ts.105

To de�ne a deposition trajectory which guarantees a constant feed rate of the

tool in necessary to implement a parametric curve de�ned in the tool workspace.

In order to achieve this goal Bézier curves, are exploited to generate a parametric

path made of straight lines and parabolas.

A Bézier curve of m degree is de�ned as:110

b(u) =
m∑
j=0

Bm
j (u)pj , 0 ≤ u ≤ 1 (6)

where coe�cients pj are control points, and functions BM
j (u) are Bernstein

polynomials de�ned as Bm
j (u) =

m
j

uj(1− u)m−j .

The Binomial coe�cient, for j = 0, 1, ...,m, de�nes the rows of the Pascal

triangle. A Bézier curve derivative respect to variable u of m degree is still a

Bézier curve of degree m− 1 de�ned as:115

db(u)

du
= m

m−1∑
i=0

Bm−1
i (u)(pi+1 − pi) (7)
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4. Path Planning usign Bézier Curves

Straight lines and parabolas interpolation is used starting from Bézier curves

of �rst and second degree. They are evaluated in the following manner:

b(u) = (1− u)pu
j−1 + upe

j line

b(u) = (1− u)2pe
j + 2u(1− u)pj + u2pu

j parabola

(8)

The entire trajectory is created merging one after one straight lines and

parabolas which are parametrized independently one from the other using a120

parameter range u ∈ [0, 1]. This method simpli�es the trajectory equation

creation even though the evaluation of the motion pro�le of parameter u is get

complicated as will be shown latter.

In �g.1 is possible to see the control points pj de�ned in the workspace.

They are used to interpolate the trajectory, linking straight lines with parabola125

trajectories in order to obtain a smooth path. The parabola trajectories are geo-

metrically constructed de�ning points pi
j and pu

j which de�ne input and output

of the trajectory. They are obtained using construction lines intersected with

circles with δ radius centred on vertices de�ned by pj . For a further general-

ization of the trajectory for the 3D space, and not only for the plane, su�ces130

intersect the previous segments with spheres of δ radius centred in the vertices

and correctly select the intersection points. To link straight lines using parabo-

las trajectories leads to �nal straight lines limited by points pu
j−1 and points pi

j

as it's easily understandable.

135

It's possible to evaluate derivatives of eq. 8 respect to variable u using

formula 7.

Computing for straight and parabola lines db/du and d2b/du2 and exploiting

equations 3, u̇(t) and ü(t) are obtained.

In this way all instruments needed to evaluate temporal derivatives of Bézier

curves through the use of eq.3 are made available. Respectively for straight
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Figure 1: Control Points
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Δb
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u=0
u<1

(a) Crossing point

Crossing
point

Δb

Δb
Δb

Δr Δp

uf

ui

(b) Correction of the crossing point

Figure 2: Deposition trajectory

and parabolic lines:

˙̃
b(t) =

(
−pu

j−1 + pe
j

)
u̇

¨̃
b(t) =

(
−pu

j−1 + pe
j

)
ü (9)

˙̃
b(t) = −2 (1− u) u̇pe

j + [2u̇ (1− u)− 2uu̇]pj + 2uu̇pu
j

¨̃
b(t) =

[
u̇2 − 2(1− u)ü

]
pe
j +

[
2ü(1− u)− 2u̇2 − 2uü

]
pj +

(
2u̇2 + 2uü

)
pu
j

(10)

Now it's possible to evaluate the motion pro�le computing the u(t) values140

in every instant considering the time discretization with sample time Ts. The

goal is to generate a TVP1 for parameter u(t) in order to guarantee a constant

material �ow in all trajectory points. For part with constant acceleration eq.5

is used whereas for the central part of the path eq.4 is used. Pulling together

straight and parabolic segments a velocity variation of the parametric variable is145

1trapezoidal velocity pro�le
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generated in the �rst point of the new segment when passing from the previous to

the following. That's caused by the fact that in the crossing point the parametric

value is not u = 1 but it's lower as shown by �g.2a. Since every segment is

de�ned by a starting parametric value u = 0 a spatial distance is generated

along the path ∆s < ∆b between the last point of the straight line and the150

initial point of the parabolic line. It's necessary to attribute a suitable value of

u to the �rst point of the parabolic line in order to obtain equally spaced points

along the path, equal to ∆b. Having as reference �g.2b, and being aware that

∆b = vc · Ts and ∆r = bline(u = 1) − bline(uf ) it's necessary to evaluate the

right variable u2 to collocate the �rst point of the parabolic line to a distance155

equal to ∆b along the curve evaluated as ∆p = ∆b−∆r.

Rewriting conveniently equation 4 for the parabolic line ui is obtained as

follow:

ui =
∆p∣∣∣∣dbdu
∣∣∣∣
u=0

− ∆p2

2


dbT

du
· d

2b

du2∣∣∣∣dbdu
∣∣∣∣4


u=0

(11)

The same procedure with same rules is used for the crossing point from

a parabolic to a straight line. It's possible to evaluate ∆r = ∆b − ∆p where160

∆b = vc ·Ts whereas for the evaluation of ∆b is necessary to recall eq.4 replacing

uk+1 = 1, uk = uf and vc · Ts = ∆p.

Replacing and rewriting an equation of second degree for the variable ∆p is

obtained:

1

2


dbT

du
· d

2b

du2∣∣∣∣dbdu
∣∣∣∣4


uf

∆p2 − 1∣∣∣∣dbdu
∣∣∣∣
uf

∆p+ 1− uf = 0 (12)

Solving with respect to ∆p is computed ui on the straight line replacing it165
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(a) trajectory example (b) error δ

Figure 3: Trajectory generated with a Bézier curve algorithm

in the equation 4:

ui =
∆r∣∣∣∣dbdu
∣∣∣∣
u=0

(13)

4.1. Example

In this section we show a theoretical example of the use of Bézier curves.

The process is carried out starting from a set of N points. The parameter inputs

of this algorithm are the velocity to reach, u̇ which is kept constant along the170

central part of the trajectory, and δ, which de�nes the maximum distance of one

point from the trajectory generated, and so can be considered as the maximum

error in a production process. Starting from a �rst point with a null velocity

the algorithm takes into account three points at the time, �g.1, generating the

trajectory until the �nal point is reached with a null velocity.175

In �g.3 is shown a trajectory generated considering four points highlighted in

red. If we look closely it's possible to see how the middle points of the trajectory

are not touched by the trajectory itself but the maximum distance of any point

from the trajectory is lower than δ. In this way δ can be considered as measure

of the process accuracy.180
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(a) Deposition velocity (b) Velocity oscillation

Figure 4: Parametric velocity u̇

u̇c[mm/s] Percentage variation

5 0.14

10 0.27

20 0.22

Three di�erent parametric velocity u̇ have been set as 5, 10 and 20[mm/s],

�g.4a. All the velocities have a trapezoidal velocity pro�le where the maximum

velocity reached is equal to the constant velocity, u̇c, that we want to maintain

along all the central part of the path. During the central part of the trajectory

the velocity can be considered constant with minor oscillations. If we look185

closely, �g.4b, it's possible to see how during the two curves of the path there is

a little variation in the parametric velocity u̇. For the three velocities tried the

percentage variation in the velocity with respect to u̇c is always smaller than

0.3%,

5. Path Planning using Rational Bézier Curves190

The path planning approach described in Section 4 can be further extended

to improve the interpolation of the ideal trajectory, at the cost of a higher com-

plexity of the calculations. This could be rather relevant in the cases where
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p0

p1

p2

w=0

w=0.5

w=1.0

w=2.0

w=3.0

Figure 5: Rational Bézier Curves with di�erent w.

a higher accuracy is required and where di�erent kinds of accuracies are re-

quired in di�erent points of the trajectory. A di�erent interpolation approach is195

adopted, using a Rational Bézier Curve, i.e., a curve in R with d = 2, 3, being

the projection of a polynomial Bézier curve in Rd+1.

Given a set of control points pj ∈ R and a set of weights wj ∈ R with wj ≥ 0,

a Rational Bézier Curves, de�ned over the interval [0, 1], can be written as:

R(u) =

∑m
j=0B

m
j (u) · wj · pj∑m

j=0B
m
j (u) · wj

(14)

If wj = 1∀j, the rational Bézier curve is equal to a polynomial Bézier curve.

Increasing the weight wj pulls the curve to the control point [p]j while decreasing

the weight w − j pushes the curve away from it (Figure 5). In the limit case,200

when wj → ∞, the interpolation curve tends to the piecewise linear sequence

of segments joining the points.

In a similar way, the results related to the di�erentiation of Rational Bézier

Curves could be exploited [20]. The derivative of a rational bézier curve in its
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general form is:205

P
′
(u) =

m−1∑
j=0

λj(u)(Pj+1 −Pi) (15)

where, for j = 0, . . . ,m− 1,

λj(u) =
1

(1− u)uw2
0,m(u)

j∑
i=0

m∑
k=j+1

(k − i)Bj,m(u)Bk,m(u)wiwk (16)

where Bi,m(u) are the Bernstein polynomials and the weights wi,k(u) are

de�ned as:
k∑

j=0

Bj,k(u)wi+j (17)

Let us consider a quadratic curve de�ned by three points:

P(u) =
(1− u)2p1 + 2wu(1− u)p2 + u2p3

(1− u)2 + 2wu(1− u) + u2
(18)

λ0(u) =
1

(1− u)uw2
0,2(u)

0∑
j=0

2∑
k=1

kBj,2(u)Bk,2(u)wjwk =

=
1

(1− u)uw2
0,2(u)

[1B0,2(u)B1,2(u)w0w1 + 2B0,2(u)B2,2(u)w0w2] =

=
1

(1− u)uw2
0,2(u)

[(1− u)22u(1− u)w0w1 + 2(1− u)2u2w0w2] (19)

λ1(u) =
1

(1− u)uw2
0,2(u)

1∑
j=0

2∑
k=2

(k − j)Bj,2(u)Bk,2(u)wjwk =

=
1

(1− u)uw2
0,2(u)

[(2− 0)B0,2(u)B2,2(u)w0w2 + (2− 1)B1,2(u)B2,2(u)w1w2] =

=
1

(1− u)uw2
0,2(u)

[2(1− u)2u2w0w2 + 2u(1− u)u2w0w2] (20)

where,

w0,2(u) =
2∑

j=0

Bj,2(u)wj = B0,2(u)w0 +B1,2(u)w1, B2,2(u)w2 =

= (1− u)2w0 + 2u(1− u)w1 + u2w2 (21)
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To obtain the �rst derivative of the rational Bézier curve, the expressions of

λ0(u) and λ1(u) must be substituted in:210

P
′
(u) = λ0(u)(p1 − p0) + λ1(u)(p2 − p1) (22)

The expression of the second derivative is more complex [20]:

P
′′
(u) = m

w2,m−2(u)

w3
0,m(u)

(2mw2
0,m−1 − (m− 1)w0,m−2w0,m − 2w0,m−1w0,m)(P2,m−2(u)− P1,m−2(u))

−mw0,m−2(u)

w3
0,m(u)

(2mw2
1,m−1(u)− (m− 1)w2,m−1w0,m − 2w1,m−1w0,m)(P1,m−2(u)− P0,m−2(u))

(23)

where

Pi,k(u) =

∑k
j=0Bj,k(u)wi+jpi+j∑k

j=0Bj,k(u)wi+j

(24)

The approach described in Section 4 can be applied using these expression

for the calculation of u̇(t) and ü(t) to calculate the values of u(t) according

to the discretization adopted. The use of di�erent weights can allow di�erent215

degrees of accuracy along the trajectory.

6. Application to an additive manufacturing machine prototype

The path algorithm described has been applied in an innovative additive

manufacturing technique designed at the Politecnico di Milano[5]. This tech-

nique is based on a metal injection molding (MIM) extruder shown in Fig.6. A220

feedstock of metal powder and polymeric binder is poured in the right side of the

machine where is heated and pressed in a downstream chamber from wherein

it is extruded. The so called green body obtained is then sintered to obtain the

�nal object. This technique is candidated to be an alternative AM techniques

for metal printing, where usually laser or electron based melting techiques are225

used, whose costs is rather high. In Fig.6 it also possible to see the two electrical

14



Figure 6: Extrusion system

motors controlling the extrusion system. One motor pushes the feedstock in the

�nal chamber where the material is extruded through a piston controlled by

the other motor. Controlling the extrusion motor is the main drive to control

the process and, hence, obtain a constant extrusion rate. The extrusion sys-230

tem is mounted on a machine structure described in the following part of the

paragraph. The machine architecture is based on a linear delta robot, where a

mobile platform is moved to implement the path obtained through the described

path planning algorithm. The parametric velocity associated to the movement

of the platform is calibrated together with the extrusion rate of the devices in235

Fig.6.

Di�erently from traditional cartesian CNC machines, the G-code must be

further processed, to obtain a trajectory in terms of pj points to be processed

by the path generation algorithm. Once the path in the space is obtained, the

inverse kinematic equations associated to the machine architecture are used to240

derive the trajectories for the actuators. in the current version of the machine

prototype, these steps are operated o�-line. A motion control CPU together
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Figure 7: Path algorithm implementation

with servo systems closes the control loops for each actuator.

6.1. Machine Design

In Fig.8. the previously described machine prototype is shown, designed by245

the authors in [4]. The picture on the left shows the delta robot architecture

capable to translate the platform where the extruded material is laid down. The

picture on the right shows the control system based on PLCs and a module for

the motion control of the three motion axis and the two motors of the extruder.

The linear delta moves the platform in accordance with the extrusion rate of250

the extruder which is going to be installed on the top of the machine (Fig.9a).

The three axis managed by the motion control module correspond to the dis-

placement of three sliders along the three linear guides visible in Fig.8a. The

motion module also controls the extruder through its two motors and keep ve-

locity of the motor driving the extrusion rate constant to guarantee a constand255

material deposition in time, jointly controlling the parametric velocity of the

platform following the desired trajectory.

6.2. Testing

The actual implementation of a trajectory in an industrial machine pass

through the possibility of the machine actuators to actually execute the tra-260

jectory generated. In order to demonstrate the feasibility of this approach a

practical test has been executed on the AM machine aforementioned. The

trajectory de�ned through the proposed algorithm has been �rst tested in a
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(a) Linear Delta (b) Control System

Figure 8

(a) AM machine
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(b) Dynamic Model

Figure 9
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(a) Deposition System (b) Drawing

Figure 10: Deposition application

dynamic model of the system created using the Adams R©software9b. This en-

vironment provide the capability of estimating the torques and accelerations of265

the motors, given a path to be executed. The analysis of the results clearly show

that a constant parametric velocity in the trajectory (and, hence, of the plat-

form) causes acceleration peaks of the motors. Moreover, small �uctuations of

the platform velocity cannot be avoided. Nevertheless, for this AM application,

the magnitude of these �uctuations is negligible.270

After the simulation, the proposed path algorithm has been used to derive

an exemplary path to be tested on the machine prototype.

To decouple the performance of the path planning approach from the char-

acteristics of the extruder, a red pen has been used as end e�ector to draw the

movements of the platform on a paper sheet (Fig.10a). The path obtained is275

shown in Fig.10b.

To see the feasibility of the process it is worth to compare the parametric

velocity u̇ of the platform and the accelerations obtained on the active joints

of the machine. In Fig.11b, the blue circle represents the desired path for the

platform. It has been evaluated starting from pj points obtained intersecting a280

circle with straight lines and, hence, simulating the results of a slicing procedure.
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(a) axis 3 (b) Platform trajectory

Figure 11

Hence, the interpolation has been used to evaluate the platform trajectory. The

red circle, matching almost perfectly the blue one, is the real platform trajectory,

evaluated measuring the position of the motors through their encoders and

using the direct kinematics equations. The implementation of the system on285

an industrial architecture leads to small position errors during the movements.

The parametric velocity u̇ has been set to 5[mm/s] and a �llet radius δ =

0.45[mm] has been chosen. No weight has been used in this example by not

having points more important than others along the trajectory. Looking at

Fig.11a, it is interesting to notice how, even with a constant parametric velocity,290

acceleration peaks a�ects the motors, whose entity could possibly be infeasible.

Actually, constant parametric velocity along the deposition path leads to high

accelerations in the curves. Looking the details, it can be seen how acceleration

peaks appear in correspondence with the inversion of the direction of axis 3,

which corresponds to the curves of the path reported in Fig.11b.295

The change of direction of the axis, its corresponding acceleration peak and

the trajectory curve of the platform are highlighted with red circles. The ac-

celeration peaks lead to small velocity �uctuations along the path of the linear

delta platform as expected.
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7. Conclusions300

Depending on the technology being used, there are di�erent suitable path-

planning methodologies one can use in order to achieve a speci�c goal. The

focus of this paper is to propose an original approach based on the Bezier curves,

useful in the cases where a constant velocity along the trajectory is required,

for example, to facilitate a deposition of material obtained by extrusion.305

This approach is presented, developed and tested here for an innovative ad-

ditive manufacturing process but it is suitable also for other industrial �eld such

as painting, gluing and aerosol spraying. The algorithm is capable of ensuring

a constant velocity along the path of the TCP with very slight oscillations.

In order to clarify this approach the mathematical treatment is presented310

and a test case described. In particular it has been applied to a prototype of 3d

printer based on a parallel kinematic and controlled by an industrial PLC and

a motion control unit. This test case is particularly signi�cant because due to

the kinematic architecture the control of the velocity of the working table can

generates high acceleration and high velocity on the actuators. A mechanical315

model of the system has been developed in order to analyse the torque and

acceleration required to the actuators and verify the applicability of the path-

planning approach proposed.

The results achieved are good and the method has been used to develop the

technology on the basis of a new 3D printing solution for metal parts based on320

an MIM technique.
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