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a b s t r a c t

This paper considers the design of an input signal for minimizing the time and energy required to detect
and isolate faults in the outputs of a system. Faults are represented by discrete switches between affine
models with bounded disturbances and bounded measurement errors. Within this framework, previous
work has demonstrated that a minimally harmful input guaranteeing fault diagnosis can be obtained
by solving a Mixed Integer Quadratic Program (MIQP). A closed-loop approach allows to reduce the
length and/or norm of this input by solving an MIQP at each time instant with the newly available
measurements. However, solving such programs online can be computationally demanding. In this paper,
we employ multi-parametric (mp) programming to move most of the computation offline, thus allowing
the application of the closed-loop approach to fast processes. Still, the mp-MIQP complexity becomes
quickly prohibitive as the number of faulty models increases. In order to overcome this problem, we
propose a strategy based on mp-optimization and graph theory that takes into account only two models
at a time. While this approach is suboptimal compared to the case in which all the models are considered
simultaneously, simulations show that, in practice, the performance is comparable.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The increasing complexity of industrial processes has made
Fault Detection and Isolation (FDI) difficult for human operators.
For this reason, several automated procedures have been devel-
oped over the years, e.g. Chen and Patton (2012), Frank and Seliger
(2012), Patton, Frank, and Clark (2013), Russell, Chiang, and Braatz
(2012). Passive FDI schemes, for example, determine the presence
of faults by exploiting input–output data and prior knowledge
of the process. Although often effective, these schemes may be
slow in detecting anomalies since based on observations only. A
significant reduction in the time required for diagnosis may be
obtained by suitably modifying the inputs of the process. This
type of approaches, named ‘‘active FDI’’, has received increasing
attention in recent years (Ashari, Nikoukhah, & Campbell, 2012a,
2011; Cheong & Manchester, 2015; Nikoukhah, 1998; Poulsen &
Niemann, 2008; Punčochář & Šimandl, 2014; Punčochář, Širokỳ,
& Šimandl, 2015; Scott, Findeisen, Braatz, & Raimondo, 2014;
Streif, Petzke, Mesbah, Findeisen, & Braatz, 2014; Tabatabaeipour,
2015; Xu, Olaru, Puig, Ocampo-Martínez, & Niculescu, 2014; Yang,
Hamelin, & Sauter, 2014). The focus of this paper is ondeterministic
active FDI. In particular, we build on the method proposed in Scott
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et al. (2014) where faults are described by a set of affine models
(with bounded uncertainties/disturbances) and aminimally harm-
ful (in termsof length andnorm) input sequence guaranteeing fault
diagnosis is obtained by solving a set ofMIQPs. According to Ashari,
Nikoukhah, and Campbell (2012b), Raimondo, Braatz, and Scott
(2013), rather than injecting the entire sequence, better perfor-
mance can be obtained by re-solving the optimization problem at
each time step using the newly available measurements (closed-
loop approach). Still, solving such optimization at each time step
can be computationally prohibitive for many applications. In this
paper we use multi-parametric programming (Dua, Bozinis, &
Pistikopoulos, 2002) to alleviate the online complexity of closed-
loop active FDI. Mp-programming allows to express the solution of
an optimization problem as an explicit function of the parameters,
thus reducing the online computation to a simple function evalu-
ation. To the best of our knowledge, mp-programming has never
been used in the context of active FDI. However, an attempt to give
an explicit solution to the problem was made in Raimondo et al.
(2013), where the proposed method was based on the gridding
of the parameter space. Even though simulations show that mp-
optimization outperforms gridding, the offline complexity of the
mp-approach scales badly with the number of faults taken into
account. To improve scalability, we also propose an approach that
considers mp-programs involving only two models at a time. This
strategy makes use of a graph to select in which order to execute
the different programs to still provide a guaranteed FDI and max-
imize performance. Simulations show that the proposed approach
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outperforms online strategies involving only two models at a time
and provides comparable performance to the online approach that
considers all models simultaneously.

2. Problem statement

Consider a discrete-time affine system whose dynamics obeys
one of nm possible models (known and observable)

x[i]
k+1 = A[i]x[i]

k + B[i]uk + B[i]
w wk + r[i], (1)

y[i]
k = C[i]x[i]

k + D[i]
v vk + s[i] (2)

where x[i]
k ∈ Rnx , y[i]

k ∈ Rny anduk ∈ U ⊂ Rnu denote the states, the
measured outputs and the inputs respectively, with x[i]

0 ∈ X [i]
0 ⊂

Rnx the state initial condition (k ≥ 0). Vectors wk ∈ W ⊂ Rnw ,
vk ∈ V ⊂ Rnv represent the disturbance and the measurement
noise. Constant vectors r[i] and s[i] are used tomodel additive faults,
e.g. actuator offset and sensor bias and are considered to be known.
X [i]
0 ,U,W and V are zonotopes (see Section 3) known a priori. In

the following, we assume C[i] is invertible, for all i ∈ M.
The objective of active FDI is to determine which dynamics the

process obeys to. To achieve this goal, we look for the shortest
sequence (u0, . . . ,uN−1) such that any possible output at time N
is consistent with only one i ∈ M. Since multiple input sequences
ofminimal lengthN may satisfy this requirement, we select among
them the one whichminimizes a given cost. Moreover, rather than
applying the entire sequence, we do inject only the first element
and re-compute a new input sequence at the next time step,
taking advantage of the newly available information (closed-loop
approach). In the following, it is assumed that only one model is
active during [0, . . . ,N], i.e. the diagnosis is fast enough to avoid
the switching between models in this time window.

3. Notation and basic definitions

Below, a tilde is used to indicate a sequence associated with
(1)–(2). When referring to ũl:k or w̃l:k, the notation stands for
σ̃ l:k = (σ l, . . . , σk−1) while, for x̃l:k, ỹl:k, ṽl:k, σ̃ l:k = (σ l, . . . , σk).
Similarly, one has σ̃k = (σ0, . . . , σk−1) or σ̃k = (σ0, . . . , σk).
The notation σ̃ l:k|l indicates that the sequence is computed at
time l. With Σ̃k we denote the kth cartesian product of a set Σ

(Σ × · · · × Σ). Given (ũk, x[i]
0 , w̃k, vk) ∈ Rnuk × Rnx × Rnwk

×

Rnv , the state and output of model i, k-steps ahead, are given by
the functionsφ[i]

(k)(ũk, x[i]
0 , w̃k) andψ

[i]
(k)(ũk, x[i]

0 , w̃k, vk) respectively,
with φ[i]

(k)(·, ·, ·) and ψ
[i]
(k)(·, ·, ·, ·) the solution maps. Zonotopes are

centrally symmetric convex polytopes (Guibas, Nguyen, & Zhang,
2003). Denoting with G = [g1 . . . gng ] ∈ Rn×ng the generator
matrix andwith c ∈ Rn the zonotope center, a set can be expressed
as Z = {Gξ + c : ∥ξ∥∞ ≤ 1}, and compactly indicated as Z =

{G, c}. The order of a zonotope is defined as ng/n. Define Ω
[i]
k|k0

=

X̄ [i]
k0

× W̃k−k0 × V with X̄ [i]
k0

= {G[i]
X̄k0

, c[i]
X̄k0

}, W̃k−k0 = {GW̃k−k0
, 0},

V = {GV , 0}. For each i ∈ M, given Ω
[i]
k|k0

and ũk0:k|k0 , the reachable
sets are defined as

X [i]
k|k0

(ũk0:k|k0 , Ω
[i]
k|k0

) (state reachable set)

= {φ
[i]
(k−k0)

(ũk0:k|k0 , x̄
[i]
k0

, w̃k0:k) : (x̄[i]
k0

, w̃k0:k, vk) ∈ Ω
[i]
k|k0

}

Y [i]
k|k0

(ũk0:k|k0 , Ω
[i]
k|k0

) (output reachable set)

= {ψ
[i]
(k−k0)

(ũk0:k|k0 , x̄
[i]
k0

, w̃k0:k, vk) : (x̄[i]
k0

, w̃k0:k, vk) ∈ Ω
[i]
k|k0

}.

The dependence of X [i]
k|k0

on vk is specified only to simplify notation.
When clear from the context, the arguments of sets and maps
will be omitted. The set X̄ [i]

k0
is the result of a set-valued observer

initialized at k0 = 0, as X̄ [i]
k0

= X [i]
0 ∩ {

(
C[i]

)−1D[i]
v GV ,

(
C[i]

)−1(yk0 −

s[i])} and, for k0 > 0, obtained recursively

X̄ [i]
k0+1 ⊇ {φ

[i]
(1)(uk0|k0 , x̄

[i]
k0

,wk0 ) : (x̄[i]
k0

,wk0 , vk0+1) ∈ Ω
[i]
k0+1|k0

}

∩ {(C[i])−1D[i]
v GV , (C[i])−1(yk0+1 − s[i])}. (3)

Since the set on the right hand side of the equation above is
difficult to compute exactly andmay not be a zonotope (zonotopes
are not closed under intersection (Scott, Raimondo, Marseglia,
& Braatz, 2016)), it is conservatively outer approximated us-
ing, e.g., zonotopes with low complexity (Combastel, 2005), par-
allelotopes (Bravo, Alamo, & Camacho, 2006), or constrained
zonotopes (Scott et al., 2016). Thanks to zonotope properties
(5)–(7) in Scott, Marseglia, Magni, Braatz, and Raimondo (2013), by
iterating (1)–(2), one obtains suitablematrices Ã[i]

k−k0
, B̃[i]

k−k0
, B̃[i]

wk−k0
,

etc. such that

X [i]
k|k0

=

{ G[i]
Xk|k0

∈R
nx×n[i]gX  [

Ã[i]
k−k0

G[i]
X̄k0

B̃[i]
wk−k0

GW̃k−k0

]
,

c[i]Xk|k0
(ũk0 :k|k0 )∈R

nx  
φ

[i]
(k−k0)

(ũk0:k|k0 , c
[i]
X̄k0

, 0)
}

Y [i]
k|k0

=

{[
C[i]G[i]

Xk|k0
D[i]

v GV

]
  

G[i]
Yk|k0

∈R
ny×n[i]gY

,ψ
[i]
(k−k0)

(ũk0:k|k0 , c
[i]
X̄k0

, 0, 0)  
c[i]Yk|k0

(ũk0 :k|k0 )∈R
ny

}
. (4)

Note that ũk0:k|k0 affects only the center of these sets. For ease
of reading, only the dependence of c[i]

Xk|k0
and c[i]

Yk|k0
on ũk0:k|k0 is

made explicit (unless differently needed). In the following, we
denote as separating input sequence of lengthN , any input sequence
ũk0:k0+N|k0 able to guarantee the separation of all the output reach-
able sets afterN steps, i.e. Y [i]

k0+N|k0

⋂
Y [j]
k0+N|k0

= ∅, ∀(i, j) ∈ M, i ̸=

j. By separating these sets, measurements will become consistent
with one model only, thus leading to a guaranteed diagnosis.

4. The multi-parametric approach

The search for the shortest separating input sequence can be
performed, for the case of zonotopic uncertain sets, as described
in Scott et al. (2014). This approach, here named open-loop ap-
proach (OL), requires the solution of a set of MIQPs (for increasing
horizon N = 1, 2, . . . , until the separating condition is satisfied
or a threshold Nmax is attained) and provides, for the shortest fea-
sible horizon, the input sequence of minimum norm. As suggested
in Raimondo et al. (2013), rather than applying the entire sequence
in open-loop, it is possible to enhance performance with a closed-
loop approach (here named closed-loop online approach, CL-O). At
each time step, the set-valued-observer in (3) is updated with the
newly available measurements and a new input sequence is com-
puted online (see Raimondo et al. (2013) for further detail). In order
to reduce the computational complexity of CL-O, in Raimondo et al.
(2013) the authors suggest away tomovemost of the computation
offline. The approach, (here named closed-loop approach based on
gridding , CL-G), requires measurements to lie in a known hyper-
rectangle Ȳ , ∀k0 ≥ 0. By defining a partition {Pσ }σ∈S of Y into
sets Pσ = ŷσ + Ygrid (with Ygrid a zero-centered hyper-rectangle
whose size impacts the grid refinement), offline, for each Pσ , one
has to solve the separation problem with X̄ [i]

k0
= X [i]

σ = {x :

ŷσ − C[i]x − s[i]
∈ D[i]

v V + Ygrid}, ∀i ∈ M. By doing so, one obtains
a solution for any y ∈ {Pσ }σ∈S . Online, at each time step, one has
just to figure out which Pσ the obtained measurement belongs to.
While CL-G reduces the online complexity to a simple function
evaluation, it has some drawbacks: (i) since based on partition-
ing the measurement space, it could result in poor performance,
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i.e. high input normand/or long input sequence (ii) the use of a very
simple observer, based onmeasurements only (noprior knowledge
of X̄ [i]

k0
is usedwhen computing X̄ [i]

k0+1), limits the benefit of a closed-
loop strategy. A method that partially overcomes these problems
is presented in the following.

4.1. Multi-parametric programming

Multi-parametric programming aims to provide the optimal
solution of an optimization problem as an explicit function of its
parameters γ ∈ Γ ⊂ Rnγ (with Γ here assumed polyhedral) (Dua
et al., 2002). The multi-parametric programs we will consider in
the remainder of the paper have the following form

min
x

1
2
xTHx + fTx (5)

subj. to Ax ≤ Sγ + b

with x ∈ Rnx the optimization variables. Matrix H ∈ Rnx×nx is
assumed to be positive semidefinite. If H = 0, (5) is a multi-
parametric LP (mp-LP), otherwise it is an mp-QP. When x =

[xTc; xTb]
T, with xc ∈ Rnc and xb ∈ {0, 1}nb , (5) becomes an mp-

MIQP. The mp-solution of these programs can be computed using,
e.g., MPT (Herceg, Kvasnica, Jones, & Morari, 2013) and evaluated
online through efficient data structures (see e.g. Fuchs, Axehill, and
Morari (2015)).

4.2. Closed-loop approach based on mp-programming

Mp-programming can be used to obtain an active FDI scheme,
here named closed-loop approach based on mp-programming
(CL-mp) able to guarantee fast online computation and better
performance compared to CL-G. Rather than partitioning the mea-
surement space, we parametrize the output reachable sets in X̄ [i]

k0
,

∀i ∈ M. By doing so, G[i]
Yk|k0

and c[i]
Yk|k0

(defined in (4)) can be
rewritten as

G[i]
Yk|k0

=

[ (x̄)G[i]
Yk|k0  

C[i]Ã[i]
k−k0

G[i]
X̄k0

(w,v)G[i]
Yk|k0  

C[i]B̃[i]
wk−k0

GW̃k−k0
D[i]

v GV

]
c[i]
Yk|k0

= ψ
[i]
(k−k0)

(0, c[i]
X̄k0

, 0, 0)  
(x̄)c[i]Yk|k0

+ψ
[i]
(k−k0)

(ũk0:k|k0 , 0, 0, 0)  
(ũ)c[i]Yk|k0

isolating the effect of the initial condition. To keep the number
of parameters small, X̄ [i]

k0
is chosen hyper-cubic, X̄ [i]

k0
= {I(1 +

σ
[i]
X̄k0

), c[i]
X̄k0

}, with c[i]
X̄k0

∈ Rnx , σ
[i]
X̄k0

∈ R, σ
[i]
X̄k0

≥ −1, the center and
the size of the parametrized set (hyper-cubic outer approximation
of the exact set can be computed using, e.g., Bravo et al. (2006)).
Note that the parametrization is more flexible, and thus less con-
servative, than a fixed grid (used in CL-G) since it allows the center
of X̄ [i]

k0
to freely move within the parameter bounds and its size to

shrink/grow to get the tightest set consistent with measurements
and prior information. In order to see if ũk0:k0+N|k0 is a separating
input sequence for the different parameters, one has to solve a set
of mp-LPs

δ̂
[i,j]
N (ũk0:k0+N|k0 , σ

[i]
X̄k0

, c[i]
X̄k0

, σ
[j]
X̄k0

, c[j]
X̄k0

) = (6)

min
ξ,χ,γ,λ,δ

δ

subj. to C[i]Ã[i]
N ξ +

(w,v)G[i]
Yk0+N|k0

χ+
(ũ)c[i]

Yk0+N|k0
+

(x̄)c[i]
Yk0+N|k0

=

C[j]Ã[j]
N γ +

(w,v)G[j]
Yk0+N|k0

λ+
(ũ)c[j]

Yk0+N|k0
+

(x̄)c[j]
Yk0+N|k0

∥ξ∥∞ ≤ δ + σ
[i]
X̄k0

∥γ∥∞ ≤ δ + σ
[j]
X̄k0

∥χ∥∞ ≤ δ

∥λ∥∞ ≤ δ

σ
[i]
X̄k0

, σ
[j]
X̄k0

∈ Σ, c[i]
X̄k0

, c[j]
X̄k0

∈ P̄

with δ̂
[i,j]
N representing a measure of distance between zonotopes

(see Scott et al. (2014)) and check for which parameter values

δ̂
[i,j]
N (ũk0:k0+N|k0 , σ

[i]
X̄k0

, c[i]
X̄k0

, σ
[j]
X̄k0

, c[j]
X̄k0

) > 1 (7)

hold for all i, j ∈ M, i ̸= j. In order the parameters to appear
linearly in (6), the initial condition has been rewritten as X̄ [i]

k0
=

{ξ+c[i]
X̄k0

: ∥ξ∥∞ ≤ 1+σ
[i]
X̄k0

} (the two formulations are equivalent).

By doing so, whenwriting Y [i]
k0+N|k0

, one uses of (x̄)G[i]
Yk0+N|k0

only the

columns C[i]Ã[i]
N and replaces the generators constraint, ∥ξ∥∞ ≤ 1,

with ∥ξ∥∞ ≤ 1 + σ
[i]
X̄k0

. The same applies to index j. Note that Σ

and P̄ bound the size and center of the initial conditions space.
According to Borrelli (2003), it is always possible to find a

solution of a mp-LP which can be expressed in terms of linear
constraints involving both continuous and binary variables. Using
this property, similarly to Scott et al. (2014), for a given N , it is
possible to obtain a parametrized separating input sequence of
minimum quadratic norm by solving offline a mp-MIQP. In order
to provide the shortest feasible separating sequence, a set of mp-
MIQPs is solved offline fromN = 1, . . . ,Nmax (or until separation is
guaranteed for all parameters within bounds). All the relatedmaps
get stored. Note that theminimumhorizon guaranteeing diagnosis
may be different for different parameter values.

In order to implement the CL-mp approach, online, at each k0 ≥

0, given the parameters consistent with X̄ [i]
k0

(i ∈ M), one has to
query the maps starting from horizon 1 until a feasible solution
is obtained. Then, according to the closed-loop paradigm, only the
first input element is applied and a new input sequence is obtained
at time k0 + 1. In the following, we assume X̄ [i]

k0
to lie within the

parametric bounds for all k0 ≥ 0.

Remark 4.1. For both CL-G and CL-mp approaches, the require-
ment to lie within given bounds for all k0 ≥ 0 may be relaxed to
k0 = 0 only. By doing so, if at any k0 > 0 measurements/initial
conditions get out of bounds, it is still possible to provide a guar-
anteed diagnosis by applying the last feasible input sequence in
open-loop.

Remark 4.2. The complexity of the parametrized output reachable
sets can be alleviated by computing zonotopic outer approxima-
tions with less generators, see e.g. Althoff, Stursberg, and Buss
(2010). However, in order to keep the dependence on the parame-
ters, only the columns (w,v)G[i]

Yk|k0
of G[i]

Yk|k0
can be reduced.

Even though mp-programming shifts most of the computation
offline (online one has to query a set of lookup tables only), the
complexity of computing the maps grows exponentially with the
number of binary variables of themp-MIQP. This number is propor-
tional to the number ofmp-LPs involved in the separation problem,
which is equal to

(nm
2

)
, with nm the number of models. In order

to reduce complexity, in Section 4.3, we propose a sub-optimal
approach, here named closed-loop couple-based mp-approach
(CL-CBmp), based on mp-programs involving only two models at
a time. The use of a graph allows to select in which order to
execute the different programs to still provide a guaranteed FDI
and maximize performance.
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4.3. Closed-loop couple-based mp-approach

Rather than designing an input sequence able to separate all
the reachable sets, the approach proposed in the following looks
at the separation of all the models considering, however, just a
couple of models at a time. We therefore look for an input se-
quence guaranteeing the separation of a couple (i, j). We apply the
sequence until at least one of the twomodels is discarded. Then,we
move to the separation of a new couple. This procedure continues
until only one model (the true model) remains consistent with
the measurements. By doing so, diagnosis is still attained, but at
the price of a more expensive (in length/norm) input sequence.
On the other side, the advantage is a significant complexity re-
duction. Indeed, we replace the offline computation of an mp-
MIQP involving several binary variables with the computation of(nm

2

)
mp-MIQP involving a negligible number of binaries. Still, this

approach raises some issues. Remark 4.1, for example, does not
hold for CL-CBmp. When only two models are considered at a
time, the requirement that X̄ [i]

k0
lies within bounds should at least

hold for all the time instants at which we switch to the separation
of a new couple (the previously computed sequence does not in
general guarantee the separation of the remaining models). In
order to satisfy such requirement, the parameter space has to be
chosen suitably. Since {

(
C[i]

)−1D[i]
v GV ,

(
C[i]

)−1(yk0 − s[i])} is the set
of states consistent with measurement yk0 at time k0, an upper
bound on σ

[i]
X̄k0

is given by the minimum σ u
∈ R such that {I(1 +

σ u), 0} ⊇ {
(
C[i]

)−1D[i]
v GV , 0}, for all i ∈ M. The use of a hyper-cubic

set-valued observer guarantees that the size of any new initial
conditions will never exceed σ u. On the other side, σ l

= −1
represents the tightest lower bound for σ

[i]
X̄k0

since, for that value,

X̄ [i]
k0

becomes a point. Summarizing, the initial condition size can be
bounded by Σ = [σ l, σ u

]. The bounds on the parameter space P̄
are provided in Section 4.3.2. In order to construct such a set, we
first compute, without solving any mp-program, an upper bound
N∗ on the time necessary to separate all the reachable sets i ∈ M
(see Section 4.3.1).

4.3.1. Existence of N∗

In this section we demonstrate the existence of an upper bound
N∗ on the time necessary for guaranteeing FDI with CL-CBmp. In
this sense, two preliminary theorems and two lemmas are needed.

Lemma 4.3. Given N > 0, a separating input sequence ũN ∈ ŨN
for models (i, j) exists if and only if L[i,j]

N ŨN ̸⊆ S[i,j]
N , where S[i,j]

N =

{[G[i]
YN

− G[j]
YN

],(x̄)c[i]
YN

−
(x̄)c[j]

YN
}, and L[i,j]

N = C[j]B̃[j]
N − C[i]B̃[i]

N .

Theorem 4.4. Given two zonotopes in Rny , A = {GA, cA}, B =

{GB, cB} (GA ∈ Rny×ngA ), GB ∈ Rny×ngB , cA, cB ∈ Rny ), if ∃cA ̸= cB
for which B ⊆ A then cA = cB → B ⊆ A.

Lemma 4.5. Given zonotopes A, B as defined in Theorem 4.4.
{GB, 0} ̸⊆ {GA, 0} → ∀cB ∈ Rn

y, {GB, cB} ̸⊆ {GA, 0}.

The proofs can be found in the Appendix.

Theorem 4.6. Assume N∗

(i,j) > 0 is the shortest horizon for which
∃ũN∗

(i,j)
∈ ŨN∗

(i,j)
(U = {GU , 0}) able to separate Y [i]

N∗
(i,j)

from Y [j]
N∗
(i,j)

when

•
(x̄)c[i]

YN∗
(i,j)

=
(x̄)c[j]

YN∗
(i,j)

• σ
[i]
X̄k0

= σ
[j]
X̄k0

= σ u .

Then N∗

(i,j) is an upper bound on the number of steps required for
separating (i, j) also when

•
(x̄)c[i]

YN∗
(i,j)

̸=
(x̄)c[j]

YN∗
(i,j)

with (x̄)c[i]
YN∗

(i,j)
,(x̄)c[j]

YN∗
(i,j)

∈ Rny

• σ
[i]
X̄k0

, σ
[j]
X̄k0

̸= σ u, with σ
[i]
X̄k0

, σ
[j]
X̄k0

∈ Σ

Proof. First of all, if the output reachable sets are separated when
the initial conditions have maximum size, i.e. σ u, then they will
be separated for any other value in Σ . Thus, we can focus on
finding the smallest k for which ∃ũk ∈ Ũk guaranteeing separation
for any (x̄)c[i]

Yk
,(x̄)c[j]

Yk
∈ Rny when σ

[i]
X̄k0

= σ
[j]
X̄k0

= σ u. Defining

L[i,j]
k = C[j]B̃[j]

k −C[i]B̃[i]
k , this is equivalent to finding the first instant

k satisfying

∃ũk ∈ Ũk : ∀(γ1, γ2) ∈ 1[−(1 − σ u), (1 + σ u)], ∀((x̄)c[i]
Yk

,(x̄)c[j]
Yk
)

[G[i]
Yk

− G[j]
Yk

][γ1 γ2]
T

+
(x̄)c[i]

Yk
−

(x̄)c[j]
Yk

̸= L[i,j]
k ũk (8)

Let S[i,j]
k = {[G[i]

Yk
−G[j]

Yk
],(x̄)c[i]

Yk
−

(x̄)c[j]
Yk

}. According to Lemma 4.3,
the condition above holds iff S[i,j]

k ̸⊇ L[i,j]
k Ũk. Finally, thanks to

Lemma 4.5, if ∃k = N∗

(i,j) such that this latter condition is verified
when (x̄)c[i]

Yk
=

(x̄)c[j]
Yk
, then it also hold when (x̄)c[i]

Yk
̸=

(x̄)c[j]
Yk
, thus

proving the theorem.

The following lemma extends the result of the previous theo-
rem to the case U = {GU , cU }, with cU ̸= 0.

Lemma 4.7. Assume the input admissible set is not zero cen-
tered, i.e. U = {GU , cU }. An upper bound on the number of
steps required to separate the couple (i, j) is given by the smallest
k for which ∃ũk able to separate the sets when (x̄)c[i]

Yk
−

(x̄)c[j]
Yk

=[
C[j]B̃[j]

k − C[i]B̃[i]
k

]
[cTU cTU ... cTU ]

T .

The lemma can be easily demonstrated replacing the value 0
with L[i,j]

k [cTU cTU ... cTU ]
T in the proof of Theorem 4.6. Theorem 4.6

and Lemma 4.7 allow to prove the following theorem.

Theorem 4.8. Consider a CL-CBmp approach. Assume that P̄ and Σ

are chosen in a way that the parameters c[i]
X̄k0

and σ
[i]
X̄k0

stay within
bounds ∀i ∈ M, at least at the time instants when the switch to
the separation of a new couple is made. Then, if N∗

(i,j) is an upper
bound on the time required to separate each couple (i, j), N∗

=∑nm−1
i

∑nm
j=i+1N

∗

(i,j) is an upper bound on the time required to separate
all models.

Proof. Consider, at a given time k, the generic couple (i, j). Since
c[i]
X̄k0

and σ
[i]
X̄k0

are assumed to be within bounds, the two output
reachable sets can be separated in at most N∗

(i,j) steps. Thus, at time
N∗

(i,j), model i and/or model jwill be discarded. Consequently, after
these steps, the set of possibly activemodels becomes {1, . . . , nm}\

{i}, {1, . . . , nm} \ {j} or {1, . . . , nm} \ {i, j}. By considering iter-
atively the separation of the remaining couples, all models will
be discarded except for one (the active model), thus providing a
diagnosis. An overestimation of the time required to separate all
models is then N∗

=
∑ncN∗

(i,j), nc =
(nm

2

)
.

Note that Theorem 4.8 requires c[i]
X̄k0

to stay within bounds,

but a suitable dimension of P̄ has not been computed yet (see
Section 4.3.2). However, the bound N∗ does not depend on the size
of P̄ but requires only its existence.

In Corollary 4.13 we show how to compute a tighter bound on
N∗ making use of a graph. In order to do so, we first introduce the
following definitions and theorem.

Definition4.9. Wecall systemgraphG (E, V ) anon-oriented graph
that has a node vi ∈ V for each possible model that can be active
on the system and an edge ei,j ∈ E of weight s(ei,j) = N∗

(i,j) linking
each couple of nodes.
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Definition 4.10. Given a graph G (E, V ), a spanning tree is a simple
connected graph with no cycles containing every vertex of G. A
minimum spanning tree is a spanning tree of a weighted graph
having minimum weight.

Note that the minimum spanning tree of a system graph can be
computed by negating the weights of each edge and applying the
Kruskal’s algorithm (Kruskal, 1956).

Definition 4.11. Given a system graph G (E, V ), we define system
graph exploration as any of its sub-graphs G(Ẽ, V ), where Ẽ ⊆ E
is any subset of edges ei,j that, if taken iteratively into account, is
sufficient to provide a diagnosis.

Theorem4.12. Given a system graph G (E, V ), all the possible system
graph explorations G(Ẽ, V ) are acyclic not necessarily connected sub-
graphs of the system graph.

The proof can be found in the Appendix.

Corollary 4.13. Consider a system graph G(E, V ) with nodes V =

{1, . . . , nm} and edges corresponding to all the links connecting each
couple of nodes. A better estimate of N∗ is given by the sum of the
edges of the maximum spanning tree of the system graph.

Proof. Let start considering threemodels, i, j, k. The estimate ofN∗

given in Theorem 4.8 would be very conservative, being the sum of
N∗

(i,j), N
∗

(i,k), N
∗

(j,k). Indeed, as stated in the proof of Theorem 4.12, if
the couple (i, j) is considered first, either i or j would be discarded
and therefore either the couple (i, k) or (j, k) will not have to be
considered any further. A better estimate of N∗ can be obtained as
follows. Recall that, according to Theorem 4.12, system graph ex-
plorations are sufficient to provide a diagnosis. In order to estimate
N∗, we consider only connected graph explorations. In fact, the case
when a diagnosis is obtained by discarding models that were not
currently under investigation (or the case when both models of
a couple get discarded) is a fortunate case that clearly would not
provide an upper bound on the overall time required for diagnosis.
Among all possible graph explorations, we therefore consider the
one whose edges sum is the highest. Such result can be obtained
exactly by computing the maximum spanning tree of the system
graph.

Remark 4.14. Note that N∗ upper bounds the time required to
separate all models also when an online closed-loop couple-based
approach (CL-CBO) is used instead of a multi-parametric one (i.e.
CL-CBmp). In this case, one couple of models is separated at a time
by solving optimization problems online. The only requirement for
N∗ to hold is that a hyper-cubic set-valued observer is employed
and its size does not exceed σ u.

Remark 4.15. In CL-CBmp, the use of a couple of models at a
time reduces significantly the computational complexity of the
separation problem. For this reason, onemight be tempted to avoid
the parametrization and use CL-CBO instead, which requires the
solution of MIQPs online but allows the use of a more complex
observer. In Section 4.3.3, we will show that CL-CBmp can dramat-
ically benefit of information computed offline using a graph. This
allows CL-CBmp to outperform CL-CBO as shown in Section 5.

4.3.2. Bounding the parameter space p̄
The computation of N∗, described in the previous section, pro-

vides an upper bound on the number of steps required to guar-
antee diagnosis when using CL-CBmp. This upper bound allows to
estimate the output reachable sets which could be generated in N∗

steps by the different models using any of the possible inputs in
U . By choosing P̄ as the smallest sets including all these reachable
sets, we do guarantee that the center of X̄ [i]

k0
will belong to P̄ , for all

k0 > 0, and all i ∈ M.

Theorem 4.16. Assume measurements at time k = 0 lie in known
set Ȳ0 = {GȲ0 , 0}. Then, given N∗, it is possible to compute P̄ so that,
when applying CL-CBmp for k = 0, . . . ,N∗, the center of any new
initial condition never leaves such a set.

Proof. Define P̄0 = {GP , cp} as the smallest set containing(
C[i]

)−1(Ȳ0 − s[i]), ∀i ∈ M. Given the assumptions, the center of
any X̄ [i]

k0
consistent with Ȳ0 will lie in P̄0. Since σ u upper bounds the

initial condition size, the initial condition sets will for sure lie in
X̄ [i]
k0

= {GX̄k0
, cX̄k0 } = {I(1 + σ u), 0} ⊕ {GP , cp}, ∀i ∈ M, where

⊕ stands for Minkowski sum. Given X̄ [i]
k0

, U, V , W , it is possible to
compute the output reachable sets for all i ∈ M, all inputs in U

and all k = 0, . . . ,N∗ as Ȳ [i]
k =

{
GȲ [i]

k
,ψ

[i]
k (c̃Uk , c

[i]
X̄k0

, 0, 0)
}

with

GȲ [i]
k

=

[
C[i]
k

[
Ã[i]
k G[i]

X̄k0
B̃[i]
k GŨk

B̃[i]
wk

GW̃k

]
D[i]

v GV

]
. According to this,

the center of any new initial condition at k ∈ [0,N∗
], will lie in(

C[i]
)−1(Ȳ [i]

k −s[i]), i ∈ M. Now, we compute the smallest zonotope
P̄ containing all

(
C[i]

)−1(Ȳ [i]
k − s[i]), for all k ∈ [0,N∗

]. Being an over
bound of all possible initial conditions center, the parametrization
of CL-CBmp over the obtained P̄ and Σ = [−1, σ u

], allows to
positively query the maps at any k ∈ [0,N∗

], also when the
switching to the separation of a new couple occurs.

In conclusion, assuming that measurements at time k = 0
belong to Ȳ0, CL-CBmp parametrized over P̄ and Σ guarantees
a diagnosis within N∗ steps. Finally, we show that the use of a
graph allows to select the order of execution of the couple-based
mp-programs to minimize the overall time/energy required for
diagnosis.

4.3.3. Selecting the order of execution of the mp-programs
Compared to CL-CBO, the main advantage of CL-CBmp is the

knowledge of an upper bound on the time required to separate
each couple of models. This allows CL-CBmp to select which cou-
ples to separate first as described in Alg. 1.

Algorithm 1 Graph-based strategy
1: Set k = 0.
2: For eachmodel i ∈ M, use a hyper-cubic set-valued observer to obtain

parameters c[i], σ [i] describing the new state initial condition.
3: Initialize system graph G(E, V ) with all models i ∈ M and with edges

of length N∗

(i,j), (i, j ∈ M, i ̸= j).
4: For each (i, j) ∈ M, i ̸= j, compute ũ(i,j) as the best (in terms of

length/norm) between the remaining of the sequence obtained at time
k−1 (if able to separate couple (i, j)) and the one obtained by querying
mp-map (i, j) with parameters c[i], c[j], σ [i], σ [j].

5: For each couple, compute amodified copyGm
(i,j) of systemgraphG(E, V )

where s(ei,j) is replaced by the length of ũ(i,j). For each Gm
(i,j), compute

the maximum spanning tree containing edge (i, j).
6: Choose the couple (i∗, j∗) providing the maximum spanning tree of

minimum length. Ifmore than one couple hasminimum length, choose
the onewith the best ũ(i∗,j∗). Inject the first input of ũ(i∗,j∗). Set k = k+1.

7: Discard allmodels not consistentwith themeasurement and eliminate
them from M. If only one model is left, then the procedure ends.
Otherwise, return to Step 2.

In practice, the approach allows to decide in which order to
separate couples by selecting the maximum spanning tree of min-
imum length according to edges values N∗

(i,j). Note that, N∗

(i,j) are
conservative since hold for any parameter values within bounds.
Thanks to step 5 of Alg. 1, such bounds can be replaced for each
new time instant with the length of the minimum input sequence
able to separate couple (i, j) for the parameter values of the new
initial condition. This way, a better estimate of theworst-case time
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Fig. 1. Comparison in terms of input length and norm between CL-O, CL-G and
CL-mp.

required to diagnose a fault can be obtained and a less conservative
strategy applied. Note that, the inclusion of edge (i, j) when com-
puting the maximum spanning tree can be obtained by replacing
s(ei,j) with a value bigger than the one of any other edge before
applying Kruskal’s algorithm.

The advantages of using Alg. 1 when applying CL-CBmp are
shown on numerical examples in Section 5.

5. Numerical examples

Consider four models defined by matrices

A[1,2]
=

[
0.8 0.2

−0.2 0.8

]
A[3]

=

[
0.8 0

−0.2 0.8

]
A[4]

=

[
0.8 0.2
0 0.8

]

B[1]
=

[
−0.3861 0
−0.1994 0

]
B[2]

=

[
0 0.1994
0 0.3861

]
B[3,4]

=

[
−0.3861 0.1994
−0.1994 0.3861

]

C [1,2,3,4]
=

[
1 0
0 1

]
D[1,2,3,4]

v =

[
1 0
0 1

]
B[1,2,3,4]

w =

[
0.1215 0.0598
0.0598 0.1215

]
with r [1,2,3,4]

= s[1,2,3,4] = 0. Uncertainties are bounded in
zonotopes X [i]

0 = {3I, 0} , ∀i ∈ M, W = {I, 0}, V = {0.7I, 0}. We
aim to compute for the shortest horizonN guaranteeing separation
the input sequence of minimum quadratic norm ∥ũk0+N|k0∥R with
R = I. The inputs are constrained in U = {u : ∥u∥∞ ≤ 5}. To
alleviate complexity, the zonotopes order is limited to 2 (zonotope
order reduction techniques are used to guarantee such constraint).

5.1. Example 1

In this example we assume that only models 3 and 4 can be ac-
tive. CL-mp, CL-G and CL-O are compared in Fig. 1. For CL-G, Ygrid =

{0.1I, 0}. The explicit map has been defined over Ȳ = {6I, 0} while
the one of CL-mp over P̄ = {6I, 0} and with Σ = [−1, −0.3]. The
results have been obtained performing 400 random simulations
and checking the effective time required to diagnose the fault
(half of the cases had model 3 as real dynamics, the other half

Fig. 2. Mean steps needed for separation for model 4.

Fig. 3. Mean steps needed for separation for model 4.

model 4). As expected, CL-O provides the best performance but
requires the solution at each time step of an optimization. CL-mp
provides reasonable performance and outperforms CL-G since not
based on gridding and supported by a better set-valued observer.
Fig. 2 shows the average (over 200 random simulations) evolution
over time of the guarantees (in terms of number of steps) for the
different approaches when considering model 4 active. At each
step k, the guarantees are provided by the length of the open-loop
sequence computed at that time. At the beginning, being the most
conservative, CL-G has a significant gap compared with the other
approaches. However, the conservativeness is partially beneficial
in a closed loop framework cause, being more aggressive, could
lead to an earlier termination. This is demonstrated by the reduction
of gap in the guarantees along the time. A similar result holdswhen
comparing CL-O to CL-mp.

5.2. Example 2

In this example, we consider all models and compare the
closed-loop performance CL-O, CL-G and CL-CBmp (this latter in
combination with Algorithm 1). The bounds on the mp-maps are
the same of Example 1 and fulfill the requirements of Sections 4.3.1
and 4.3.2. Fig. 3 summarizes the results obtained over 800 random
simulations. At time k = 0, CL-CBmp shows the most conservative
guarantees, being based on the separation of one couple at a time
only. However, thanks to Algorithm 1, the approach promptly
improves over time thus resulting in closed-loop performance
comparable to the twomethods involving all models. Finally, Fig. 4
compares the performance of CL-CBO and CL-CBmp. As expected,
the use of a graph allows to schedule the mp-programs to maxi-
mize performance and provide better results than CL-CBO.

Acknowledgments

Wewould like to thank Prof. E.W. Dolera, University of Modena
and Reggio Emilia for the fruitful discussions, and the anonymous
reviewers for the very helpful comments and suggestions.



G. Roberto Marseglia, D.M. Raimondo / Automatica 79 (2017) 223–230 229

Fig. 4. Performance of couple-based (CB) approaches.

Appendix

Proof of Lemma 4.3. L[i,j]
N ŨN ⊆ S[i,j]

N is equivalent to

∀ũN ∈ ŨN , ∃(γ1, γ2), ∥γ1∥∞ ≤ 1, ∥γ2∥∞ ≤ 1 such that

G[i]
YN
γ1 +

(x̄)c[i]
YN

+ C[i]B̃[i]ũN = G[j]
YN
γ2 +

(x̄)c[j]
YN

+ C[j]B̃[j]ũN .

This expression is actually the negation of the separation con-
dition, where this latter can be rewritten as

∃ũN ∈ ŨN : ∀(γ1, γ2), ∥γ1∥∞ ≤ 1, ∥γ2∥∞ ≤ 1

G[i]
YN
γ1 +

(x̄)c[i]
YN

+ C[i]B̃[i]ũN ̸= G[j]
YN
γ2 +

(x̄)c[j]
YN

+ C[j]B̃[j]ũN .

For this reason, the separation condition and L[i,j]
N ŨN ̸⊆ S[i,j]

N are
equivalent.

Proof of Theorem 4.4. Without loosing generality, we set the
origin of the axes at the center of set A. In this reference system
cA = 0. Suppose ∃cB ̸= cA such that B ⊆ A. Since A is symmetric
by definition and cA = 0, also B∗

= {−GB, −cB} is subset of A.
Additionally, because A is convex, all the segments connecting an
element of B to an element of B∗ are inside A. To prove the theorem
is then sufficient to demonstrate that B0

= {GB, 0} (same center as
A) is a linear combination of B and B∗. To do so, let us define X as
the zero-centered unitary hypercube in RngB (X = {I, 0}, with I the
identity matrix). Since B0, B, B∗ are zonotopes (i.e. their elements
can be written as GBx1, GBx2 +cB and−GBx3 −cB, with ∥x1∥∞ ≤ 1,
∥x2∥∞ ≤ 1, ∥x3∥∞ ≤ 1 respectively), to prove that elements of B0

can be obtained as linear combinations of elements of B and B∗, it
is enough to show that ∀x1 ∈ X, ∃(x2, x3) ∈ X × X and a k ∈ [0, 1]
such that:

GBx1 = k · GBx2 + kcB − (1 − k) · GBx3 − (1 − k)cB

holds. Let us fix k = 0.5. Then one has to show that ∀x1 ∈

X, ∃(x2, x3) ∈ X × X such that GBx1 = GB
( x2−x3

2

)
. Since

the generator matrix is the same, one has to show that ∀x1 ∈

X, ∃(x2, x3) ∈ X×X such that x1 =
1
2 (x2 − x3). Such condition can

be rewritten as Ix1 =
1
2 [I − I] [x2 x3]T with I the identity matrix

of suitable dimension. Recalling the operations on zonotopes and
the definition of Minkowski sum, let us denote U1 = {I, 0} and
U2 = {

1
2 [I − I], 0}. To prove that B0 can be obtained as linear

combination of B and B∗, one has to prove that U1 ⊆ U2. In this
case, U2 = {

1
2 · 2I, 0} = U1. Therefore the theorem is proven.

Proof of Lemma 4.5. From Theorem 4.4 we have that:
∃cB ∈ Rny , {GB, cB} ⊆ {GA, 0} → {GB, 0} ⊆ {GA, 0}. Given, thus,

that the implication is true, if the second predicate is false, then
the first has also to be false. Namely, {GB, 0} ̸⊆ {GA, 0} → ∀cB ∈

Rny , {GB, cB} ̸⊆ {GA, 0}.

Proof of Theorem 4.12. Assume by contradiction there exists a
system graph exploration containing a cycle (i, j, k) (to simplify the

proof let us consider three models only but the following applies
also to a larger number of models). The presence of the cycle
implies that all the couples (i, j), (j, k) and (i, k) have been taken
into account to provide a diagnosis. In order this to be possible, it
is necessary, when considering the first couple (e.g. (i, j)), that the
input sequence ũ is not able to discard any model. If, in fact, model
i would have been discarded, the couple (i, k) would not have
been considered. If, instead, model j would have been discarded,
the separation of couple (j, k) would not have been useful. By
definition, the input sequence ũ is able to separate the couple
(i, j) and therefore able to discard at least one of the two mod-
els. This proves that a system graph exploration cannot contain
a cycle.

Let us prove now that the system graph exploration is not
necessarily connected. This may happen since it is not necessary to
actively separate all couple ofmodels to obtain a diagnosis. Indeed,
if, while trying to separate (i, j), the measurement acquired is not
consistent with a third model k, model k gets discarded and its
node vk disconnected from all to other nodes. Similarly, if both
model i and j get discarded while trying the separation, both nodes
vi and vj get disconnected and all the edges involving i and/or j
discarded.
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