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a b s t r a c t

This article introduces a new class of sets, called constrained zonotopes, that can be used to enclose sets
of interest for estimation and control. The numerical representation of these sets is sufficient to describe
arbitrary convex polytopes when the complexity of the representation is not limited. At the same time,
this representation permits the computation of exact projections, intersections, and Minkowski sums us-
ing very simple identities. Efficient and accurate methods for computing an enclosure of one constrained
zonotope by another of lower complexity are provided. The advantages and disadvantages of these sets
are discussed in comparison to ellipsoids, parallelotopes, zonotopes, and convex polytopes in halfspace
and vertex representations. Moreover, extensive numerical comparisons demonstrate significant advan-
tages over other classes of sets in the context of set-based state estimation and fault detection.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Many modern control algorithms make use of sets (e.g., inter-
vals, ellipsoids, zonotopes, polytopes) as basic computational ob-
jects, with the aim of characterizing some sets of interest, such as
reachable or invariant sets of dynamical systems, or sets of states or
parameters consistent with a bounded-errormodel (Althoff, Sturs-
berg, & Buss, 2010; Ingimundarson, Bravo, Puig, Alamo, & Guerra,
2009; Le, Stoica, Alamo, Camacho, &Dumur, 2013;Mayne, Rakovic,
Findeisen, & Allgower, 2006; Scott & Barton, 2013). The true set of
interest is often difficult or impossible to represent exactly with fi-
nite data, so its enclosure by an element of a class of simpler sets is
sought instead. The choice of class for a given application is based
on a tradeoff between (i) the accuracy with which amember of the
class can represent the set of interest, and (ii) the complexity of
the required computations. For linear estimation and control prob-
lems, the required computations typically involve standard set op-
erations such as Minkowski sums, linear mappings, intersections,
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and Pontryagin differences. Another important consideration in
(ii) is the convenience of the approximating set for its end use,
which may involve checking for the inclusion of given points, as
inmodel invalidation and fault diagnosis (Rosa, Silvestre, Shamma,
& Athans, 2010), checking for intersection with another set, as in
system verification and safety analysis (Althoff et al., 2010), or us-
ing the set as a constraint in an optimization problem, as in robust
optimal control and active fault diagnosis (Mayne et al., 2006; Rai-
mondo, Marseglia, Braatz, & Scott, 2013).

This article introduces a new class of sets, constrained zonotopes,
and demonstrates that this class provides a better tradeoff between
accuracy and efficiency than existing classes for some represen-
tative problems of interest. Although these new sets potentially
have broad applicability, their performance is demonstrated here
by considering the classical set-based state estimation problem
for discrete-time linear systems with bounded noise (Schweppe,
1968), and its application to set-based fault diagnosis (Scott, Find-
eisen, Braatz, & Raimondo, 2014). Some notable advantages of the
constrained zonotope representation are:
• (Accuracy) When the complexity of the representation is not

limited, it can describe arbitrary convex polytopes;
• (Efficiency) Standard set operations, including intersections, can

be computed exactly through simple identities;
• (Tunability) Effective techniques are provided to conservatively

reduce the complexity of a given set, enabling a highly tunable
tradeoff between efficiency and accuracy.
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To motivate this new class of sets, common set representations
are reviewed in Section 2 and their advantages and disadvantages
are discussed with respect to common set operations. Constrained
zonotopes are introduced in Section 3, and associated computa-
tions are described in Sections 3.1–4. Numerical results are pre-
sented in Sections 5–6, and Section 7 concludes the paper.

2. Set representations and operations

Definition 1. Let P, Z, E ⊂ Rn. P is a convex polytope if it is
bounded and (1) holds; Z is a zonotope if (2) holds, and E is an
ellipsoid if (3) holds:

∃(H, k) ∈ Rnh×n
× Rnh : P = {z ∈ Rn

: Hz ≤ k}, (1)

∃(G, c) ∈ Rn×ng × Rn
: Z = {Gξ + c : ∥ξ∥∞ ≤ 1}, (2)

∃(Q, c) ∈ Rn×n
× Rn

: E = {Qξ + c : ∥ξ∥2 ≤ 1}. (3)

Z is a parallelotope if (2) holds with ng = n and an interval if (2)
holds with G = In×n.

Eq. (1) is called the halfspace-representation (H-rep) of P . P can
also be represented as the convex hull of its vertices (V-rep).
Zonotopes are convex polytopes that are centrally symmetric; every
chord through c is bisected by c. Moreover, a convex polytope
is a zonotope if and only if every 2-face is centrally symmetric
(McMullen, 1971). This symmetry makes the representation (2)
possible. The vector c is called the center, the columns of G are
called the generators, and (2) is called the generator-representation
(G-rep). The G-rep of a zonotope is oftenmuchmore compact than
the equivalent H- or V-rep. Both zonotopes and ellipsoids are affine
images of a unit ball. However, zonotopes use the ∞-norm and
ng need not equal n. The representation (3) captures degenerate
ellipsoids when Q is singular and is equivalent to the familiar form
E = {z : (z − c)T(QQT)−1(z − c) ≤ 1} whenever Q is invertible.

Note that intervals, parallelotopes, and ellipsoids all have
fixed complexity for fixed n. In contrast, convex polytopes
and zonotopes can be made arbitrarily complex by increasing
the number of halfspaces and generators, respectively, which
makes these sets more flexible, but also more cumbersome. The
complexity of a zonotope is described by its order, ng/n.

For the estimation and fault diagnosis problems considered in
Sections 5–6, as well as many other problems in linear control
theory, the accuracy and efficiency of the below set operations are
of primary concern:

Definition 2. Let Z,W ⊂ Rn, Y ⊂ Rk, R ∈ Rk×n, and define

RZ ≡ {Rz : z ∈ Z}, (4)
Z + W ≡ {z + w : z ∈ Z, w ∈ W }, (5)
Z ∩R Y ≡ {z ∈ Z : Rz ∈ Y }. (6)

Eq. (4) is a linearmapping of Z , (5) is theMinkowski sum, and (6) is a
generalized intersection that arises in state estimation (e.g., with Z
containing the current state and Y a bounded-error measurement;
see Section 5). Note that ∩R is the standard intersection when
k = n and R = I.

A class of sets is closed under a set operation if performing
the operation on members of the class results in another member
of the class. The convex polytopes are closed under (4)–(6) and,
using H-rep, both (4) and (6) can be computed efficiently if R
is invertible. However, the complexity of (5) is exponential in
n, as is the worst-case number of halfspaces describing Z + W
(Hagemann, 2015; Tiwary, 2008). The same is true of (4) and (6)
whenR is not invertible (e.g., polytope projection) (Jones, Kerrigan,
& Maciejowski, 2008). In V-rep, (4)–(5) are much simpler, but
(6) is NP-hard (Tiwary, 2008), and existing algorithms for inter-
conversion between H- and V-rep have worst-case exponential
run-time. Consequently, working with convex polytopes is very
costly and numerically unstable when n exceeds about 5 or the
number of halfspaces or vertices is large.

In contrast, intervals, parallelotopes, and ellipsoids all provide
low-complexity set representations and relatively low-cost set
operations. However, the intervals are not closed under (4) unless
R is diagonal, the parallelotopes and ellipsoids are not closed
under (5), and none of these classes are closed under (6) except
intervals when R is diagonal. Thus, the results of these operations
must be conservatively enclosed, which can ultimately lead to very
inaccurate enclosures of the set of interest. The optimal interval
enclosures of these operations are easily computed (Neumaier,
1990), but are often very weak enclosures of the true sets.
For ellipsoids, cheap heuristic enclosure methods are given in
Schweppe (1968). Optimal enclosures are given in Chernousko
(1980), Durieu, Walter, and Polyak (2001) and Fogel and Huang
(1982), but (6) requires the solution of a convex optimizationwhen
k > 1. Cheap heuristic enclosures for parallelotopes are given in
Chisci, Garulli, and Zappa (1996), and numerical results there show
that these are tighter than even the optimal ellipsoidal enclosures
in the context of state estimation.

Over the past decade, zonotopes have gained popularity
within the control community, particularly because (4)–(5) can be
computed exactly and efficiently in G-rep (Kuhn, 1998). Define
the shorthand Z = {G, c} ⊂ Rn for Z defined by (2). Then, with
Z = {Gz, cz} andW = {Gw, cw},

RZ = {RGz,Rcz}, (7)
Z + W = {[Gz Gw], cz + cw}. (8)

Clearly, these computations can be done efficiently and reliably,
even in high dimensions. Like general convex polytopes, these
operations are nonconservative, but lead to an increase in the
complexity of the set representation. However, in contrast to the
worst-case exponential increase in the size of the H-rep under
(4)–(5), the increase in the complexity of the G-rep is modest;
RZ has the same ng as Z , while the ng of Z + W is simply
the sum of the ng ’s of Z and W . Moreover, conservative order
reduction techniques are available that enclose a given zonotope
within a zonotope of lower order (Althoff et al., 2010; Combastel,
2003). Similar techniques have also been proposed for convex
polytopes, but the required computations are muchmore complex
(Hagemann, 2015). For zonotopes, these techniques provide a
tunable mechanism for balancing accuracy and complexity that
has proven to be effective in reachability analysis (Althoff et al.,
2010; Kuhn, 1998), identification (Bravo, Alamo, & Camacho,
2006), state estimation (Alamo, Bravo, & Camacho, 2005), and fault
detection (Ingimundarson et al., 2009; Scott et al., 2014).

However, zonotopes are not closed under intersection, and
tight enclosures are difficult to compute, which leads to serious
complications in many applications, such as state estimation and
hybrid systems verification (Althoff & Krogh, 2011; Bravo et al.,
2006). Indeed, the symmetry of zonotopes, as well as intervals,
parallelotopes, and ellipsoids, implies that they cannot accurately
represent sets that are strongly centrally asymmetric, which are
readily generated by (6). This has led some researchers to use a
combination of G- and H-rep, although the conversion from G- to
H-rep can be costly; it scales as ng

 ng
n−1


(Althoff & Krogh, 2011).

Set representations based on collections of sets have also
been proposed, such as unions of intervals (Neumaier, 1990) and
intersections of ellipsoids (Kurzhanski, 2011) or zonotopes (Althoff
& Krogh, 2011). These can be very accurate, but the associated
cost increases with the number of sets required, which can be
large. We restrict the scope of the comparisons herein to ‘single-
set’ representations.



128 J.K. Scott et al. / Automatica 69 (2016) 126–136
1

0

-1
-1

0

1 1
0

-1

3

2

1

0

-1

-2

-3
-5 0 5

z1

z2

ξ2 ξ1

ξ3

Fig. 1. Left: The unit hypercube B∞ restricted by 1Tξ = −1. Right: The constrained
zonotope Z = {G, c,A, b} defined in (10) (blue) overlaid on the unconstrained
zonotope Z ′

= {G, c} (gray). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

3. Constrained zonotopes

Motivated by the above discussion, we define constrained
zonotopes.

Definition 3. A set Z ⊂ Rn is a constrained zonotope if there exists
(G, c,A, b) ∈ Rn×ng × Rn

× Rnc×ng × Rnc such that

Z = {Gξ + c : ∥ξ∥∞ ≤ 1, Aξ = b}. (9)

In contrast to standard zonotopes, Definition 3 permits linear
equality constraints on ξ. Denote the unit hypercube in Rng by
B∞ and define B∞(A, b) ≡ {ξ ∈ B∞ : Aξ = b}. Thus, a set
is a constrained zonotope iff it is the image of some linearly con-
strained unit hypercube B∞(A, b)under an affinemapping.We call
(9) the constrained generator representation (CG-rep) and introduce
the shorthand Z = {G, c,A, b} ⊂ Rn.

Clearly, every zonotope is a constrained zonotope. A con-
strained zonotope that is not a zonotope is

Z =


1.5 −1.5 0.5
1 0.5 −1


,


0
0


,

1 1 1


, −1


. (10)

Fig. 1 shows that, due to the constraint 1Tξ = −1, Z is not centrally
symmetric and hence not a zonotope. Thus, constrained zonotopes
are more flexible than zonotopes. Indeed, we will shortly prove
that Z ⊂ Rn is a constrained zonotope iff it is a convex polytope
(Theorem 1). Thus, the novelty of the constrained zonotopes can
be stated in two ways:

• When ng and nc are not limited, the CG-rep provides a new
representation of convex polytopes thatwill be shown to confer
many of the computational advantages of zonotopes to this
larger class of sets;

• With ng and nc limited, the CG-rep describes a new class of sets
that significantly extends the zonotopes of order ng/n while
maintaining computational efficiency, which is possible due to
the reduction methods developed in Section 4.

3.1. Basic set operations with constrained zonotopes

This subsection shows that constrained zonotopes are closed
under (4)–(6), and that these operations can be accomplished
through simple identities that follow almost immediately from
Definition 3. Thus, the main contribution of Section 3 is not the
simple matter of formulating these identities, but rather the def-
inition of the CG-rep itself, and the observation that it is simulta-
neously flexible (Theorem 1) and easily propagated through basic
set operations.
Proposition 1. For every Z = {Gz, cz,Az, bz} ⊂ Rn, W =

{Gw, cw,Aw, bw} ⊂ Rn, Y = {Gy, cy,Ay, by} ⊂ Rk, and R ∈ Rk×n,
the three identities hold:

RZ = {RGz,Rcz,Az, bz}, (11)

Z + W =


[Gz Gw], cz + cw,


Az 0
0 Aw


,


bz
bw


, (12)

Z ∩R Y =


[Gz 0], cz,

 Az 0
0 Ay

RGz −Gy


,

 bz
by

cy − Rcz


. (13)

Proof. Let ZR be the right-hand side of (11). For any z ∈ Z , ∃ξ ∈

B∞(Az, bz) such that z = Gzξ + cz , and hence Rz = RGzξ + Rcz .
By the definition of ZR, this implies that Rz ∈ ZR, and since z is
arbitrary, RZ ⊂ ZR. Conversely, for any r ∈ ZR, ∃ξ ∈ B∞(Az, bz)
such that r = R(Gzξ + cz). It follows that ∃z ∈ Z with r = Rz.
Thus, r ∈ RZ , and since r is arbitrary, ZR ⊂ RZ . We conclude that
ZR = RZ .

Let X denote the right-hand side of (12) and choose any z ∈ Z
and w ∈ W . Then

∃ξ ∈ B∞(Az, bz) : z = Gzξ + cz, (14)
∃δ ∈ B∞(Aw, bw) : w = Gwδ + cw. (15)

Letting γ = (ξ, δ), this implies that ∥γ∥∞ ≤ 1 and
Az 0
0 Aw


γ =


bz
bw


, (16)

z + w = [Gz Gw]γ + (cz + cw). (17)

Thus, z + w ∈ X and Z + W ⊂ X . Conversely, choose any x ∈ X .
Then ∃γ such that ∥γ∥∞ ≤ 1, (16) holds, and x = [Gz Gw]γ +

(cz + cw). Again, letting γ = (ξ, δ) shows that there exist z ∈ Z
andw ∈ W such that x = z+w. Thus, x ∈ Z +W and X ⊂ Z +W .

Let Z̃ denote the right-hand side of (13) and choose any z ∈

Z ∩R Y . Then ∃ξ ∈ B∞(Az, bz) such that z = Gzξ + cz , and
Rz = RGzξ + Rcz ∈ Y . By this last condition, ∃γ ∈ B∞(Ay, by)
such that RGzξ + Rcz = Gyγ + cy. Let δ = (ξ, γ). Then δ ∈ B∞,
z = [Gz 0]δ + cz , and Az 0

0 Ay
RGz −Gy


δ =

 bz
by

cy − Rcz


. (18)

Thus, z ∈ Z̃ and Z ∩R Y ⊂ Z̃ . Conversely, let z ∈ Z̃ . Then ∃δ ∈ B∞

such that z = [Gz 0]δ + cz and (18) holds. Partitioning δ as δ =

(ξ, γ), it follows that ξ ∈ B∞(Az, bz), γ ∈ B∞(Ay, by), z = Gzξ+cz ,
and RGzξ −Gyγ = cy −Rcz . These conditions imply that z ∈ Z and
Rz = RGzξ + Rcz ∈ Y . Thus, z ∈ Z ∩R Y and Z̃ ⊂ Z ∩R Y . �

Despite their simplicity, (11)–(13) increase the complexity of
the CG-rep. This problem is more serious than with zonotopes
because both ng and nc are increased, but considerably less
serious than the growth of the H-rep discussed in Section 2.
Nonetheless, accurate and efficient methods for conservatively
reducing the complexity of the CG-rep are essential to computing
with constrained zonotopes. These methods are developed in
Section 4, and form the second major contribution of this article.
We close this section by noting that constrained zonotopes can
be empty, and that checking this requires the solution of a linear
program (LP). Like zonotopes, checking the inclusion z ∈ Z also
requires an LP.

Proposition 2. For every Z = {G, c,A, b} ⊂ Rn,

Z ≠ ∅ ⇐⇒ min{∥ξ∥∞ : Aξ = b} ≤ 1, (19)

z ∈ Z ⇐⇒ min

∥ξ∥∞ :


G
A


ξ =


z − c
b


≤ 1. (20)
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Proof. By Definition 3, z ∈ Z iff ∃ξ such that ∥ξ∥∞ ≤ 1, Aξ = b,
and z = Gξ + c. Equivalently, z ∈ Z iff ∃ξ that is feasible in the
right-hand side of (20) and yields an objective value less than 1.
Thus, (20) holds. Similarly, ∃z ∈ Z iff ∃ξ such that ∥ξ∥∞ ≤ 1 and
Aξ = b, which implies (19). �

3.2. Relation to polytopes in halfspace representation

This section proves the equivalence of constrained zonotopes
and polytopes, elaborates on the advantages of CG-rep, and
discusses inter-conversion between CG- and H-rep.

Theorem 1. Z ⊂ Rn is a constrained zonotope iff it is a convex
polytope.

Proof. Clearly, every constrained zonotope is a convex polytope.
To prove the converse, let P = {z : Hz ≤ k} be a convex polytope.
By compactness, we may choose Z0 = {G, c} ⊂ Rn and σ ∈ Rn

such that P ⊂ Z0 and Hz ∈ [σ, k], ∀z ∈ P (our use of ⊂ includes
the possibility of equality throughout). Then P = {z ∈ Z0 : Hz ∈

[σ, k]}. But [σ, k] can bewritten in G-rep. as

diag

 k−σ
2


, k+σ

2


, so

(13) gives

P =


[G 0], c,


HG diag


σ − k

2


,
k + σ

2
− Hc


. (21)

Thus, P satisfies Definition 3. �

With the aid of slack variables, the construction (21) essentially
reproduces the halfspaces defining P in the constraints of the CG-
rep. Thus, there is cause for some healthy skepticism about the
advantages of the CG-rep. The key difference, however, is that the
constraints in (21) act on the underlying variables ξ rather than
on z, and are therefore unaffected by Minkowski sums and linear
mappings. Consider, e.g., a singular linear mapping of P , RP , which
is a worst-case exponential computation in H-rep, but is easily
computed in CG-rep via (11). The enabling feature of the CG-rep
in this context is that the mapping R in (11) does not affect the
underlying set B∞(A, b), but only changes the mapping from this
set into Rn, ξ → Gξ + c.

The proof of Theorem 1 shows that the conversion H → CG
requires only the computation of a bounding box for P , from
which Z0 and σ are easily computed and (21) can be applied. The
conversion CG → H rests on the below result.

Proposition 3. Let Z = {G, c,A, b} and consider any partition
[A b] =


A1 b1
A2 b2


. For every z ∈ Rn,

z ∈ Z ⇐⇒


z
0


∈ Z+

≡


G
A1


,


c

−b1


,A2, b2


. (22)

Proof. z ∈ Z iff ∃ξ ∈ B∞(A, b) such that z = Gξ + c, which is in
turn true iff ∃ξ ∈ B∞(A2, b2) such that


z
0


=


G
A1


ξ +


c

−b1


. �

With the trivial partition [A b] = [A1 b1], Z+ is a zono-
tope, which we refer to as the lifted zonotope for Z . This result
permits some algorithms developed for standard zonotopes to be
applied to constrained zonotopes. In particular, the H-rep of Z can
be computed by first computing the H-rep of the lifted zonotope
using, e.g., the method in Althoff et al. (2010), and observing that
[H1 H2]


z
0


≤ k ⇐⇒ H1z ≤ k. However, due to the com-

plexity of the conversion G → H (see Section 2), CG → H scales
as ng

 ng
n+nc−1


, which can become prohibitive. Thus, computing in

CG-rep is most advantageous when a result in CG-rep is accept-
able. This is often not problematic and can be beneficial. Consider,
for example, enforcing z ∈ P in an optimization problem. In H-
rep, this requires nh linear constraints, while in CG-rep it requires
ng dummy variables ξ and n + nc linear constraints. Although the
addition of variables is undesirable, the worst-case exponential in-
crease of nh under projections and Minkowski sums implies that
the CG-rep may often require far fewer constraints.

Remark 1. Polytopes can also be represented as symbolic orthog-
onal projections (SOPs) (Hagemann, 2015), which are similar to
constrained zonotopes with G always equal to the orthogonal pro-
jection onto the first n elements of ξ. The operations (4)–(6) can
be done efficiently on SOPs, but cause a linear increase in the set
complexity. At present, the lack of efficient and accurate reduc-
tion techniques limits the utility of SOPs (Hagemann, 2015). Con-
strained zonotopes differ in the use of a general G matrix and in
the canonical form of the constraints, B∞(A, b). The former yields
amore compact representation of, e.g., affinemappings,while both
play a role in enabling highly effective reduction techniques in Sec-
tion 4.

Remark 2. Constrained zonotopes are also closely related to the
zonotope bundles proposed in Althoff and Krogh (2011) and defined
as Z = ∩

nb
i=1 Zi with each Zi in G-rep. Both classes of sets

are closed under intersection. However, constrained zonotopes
are advantageous because (4)–(5) are done conservatively with
zonotope bundles, rather than exactly as in (11)–(12), and
complexity reduction has not yet been extensively developed for
zonotope bundles.

4. Complexity reduction for constrained zonotopes

For many operations on constrained zonotopes, the result
involves more generators (ng ) and/or constraints (nc) than the
arguments. Thus, the complexity of the CG-rep increases as
operations are applied. For standard zonotopes, this problem is
addressed by applying reduction techniques that overapproximate
a given zonotope by another with fewer generators. Here,
reduction techniques are developed for constrained zonotopes.
Two new complications arise: (i) reducing ng is complicated by the
presence of constraints, so zonotopic methods cannot be applied
directly; (ii) a method is required for reducing nc .

For a zonotope, the order is defined as o = ng/n, and reduction
is typically done whenever the result of some operation has o
greater than a prescribed value ô. The complexity of a constrained
zonotope is conveniently described by nc and the degrees-of-
freedom order, od = (ng − nc)/n. Note that od = o whenever
nc = 0. Given a constrained zonotope Z and target values n̂c and
ôd, reduction is performed in three steps. First, the CG-rep of Z
is rescaled as described in Section 4.1, which does not change the
set Z , but reduces the conservatism of the subsequent reductions.
Next, constraints are eliminated until nc = n̂c as described in
Section 4.2. The proposed method for this step eliminates one
generator for each eliminated constraint, so that od is unchanged.
Finally, od is reduced to ôd by eliminating generators as described
in Section 4.3. The final result is a reduced constrained zonotope
Z̃ satisfying Z ⊂ Z̃ . Our aim is to make this inclusion as tight as
possible.

4.1. Rescaling

The conservatism of constraint reduction (Section 4.2) can be
significantly reduced by first transferring some information from
the constraint data (A, b) to the generator data (G, c). To do this,
the constraints are first used to tighten the bounds ξ ∈ [−1, 1]. For
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Fig. 2. Left: B∞ restricted by the constraints in (23) (cyan) and the tightened bound
ξ1 ≤ 0 (dashed). Right: Z = {G, c,A, b} defined in (23) (blue) overlaid on the
images under ξ → Gξ + c of B∞ (gray) and B∞ ∩ {ξ : ξ1 ≤ 0} (dashed). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

example, consider the set

Z =


1 0 1
1 2 −1


,


0
0


,

−2 1 − 1


, 2


. (23)

Fig. 2 shows that the standard inequality ξ1 ≤ 1 can be tightened
to ξ1 ≤ 0 without modifying Z , and that this reduces the error
induced by dropping the constraints Aξ = b. Next, the CG-rep is
rescaled to recover the standard form ξ ∈ [−1, 1].

Proposition 4. Let Z = {G, c,A, b}. If ξL, ξU ∈ Rn satisfy
B∞(A, b) ⊂ [ξL, ξU ] ⊂ [−1, 1], then an equivalent CG-rep is

Z =

Gdiag(ξr), c + Gξm,Adiag(ξr), b − Aξm


, (24)

where ξm =
1
2 (ξ

U
+ ξL) and ξr =

1
2 (ξ

U
− ξL).

Proof. Note that ξ ∈ [ξL, ξU ] iff ∃δ ∈ B∞ such that ξ = ξm +

diag(ξr)δ. Thus, the result follows from

z ∈ Z ⇐⇒ ∃ξ ∈ B∞(A, b) : z = Gξ + c,

⇐⇒ ∃ξ ∈ [ξL, ξU ] : z = Gξ + c, 0 = Aξ − b,

⇐⇒ ∃δ ∈ B∞ : z = G(ξm + diag(ξr)δ) + c,
0 = A(ξm + diag(ξr)δ) − b. �

The process of computing the interval [ξL, ξU ] and replacing
{G, c,A, b} by (24) is termed rescaling. The best possible interval
is given by solving the 2ng LPs

ξ L
j ≡ min


ξj : Aξ = b, ∥ξ∥∞ ≤ 1


, (25)

ξU
j ≡ max


ξj : Aξ = b, ∥ξ∥∞ ≤ 1


. (26)

However, this may be too expensive when rescaling is done
very often. Instead, we refine the initial bounds [−1, 1] using an
iterativemethod based on interval arithmetic with a complexity of
O(ncn2

g). See Appendix for details.

4.2. Constraint reduction

The proposed constraint reduction method requires the below
proposition, which is inspired by similar results for approximating
zonotope intersections in Alamo et al. (2005), Bravo et al.
(2006), Combastel (2003), andOcampo-Martinez, Guerra, Puig, and
Quevedo (2007).

Proposition 5. Let Z = {G, c,A, b}. The set

Z̃ ≡ {G − ΛGA, c + ΛGb,A − ΛAA, b − ΛAb} (27)

satisfies Z ⊂ Z̃ for every ΛG ∈ Rn×nc and ΛA ∈ Rnc×nc .
Proof. z ∈ Z iff ∃ξ ∈ B∞ such that

z
0


=


G
A


ξ +


c

−b


. For any

such ξ,

z
0


=


G
A


ξ +


c

−b


+


ΛG(b − Aξ)
ΛA(b − Aξ)


, so z ∈ Z̃ . �

If ΛA has the ith unit vector as its ith row, then Z̃ has the trivial
ith constraint 0Tξ = 0, which can be removed. We say that this
constraint has been dualized. With ΛA = I, all constraints are
dualized and Z̃ is a zonotope. In any case, ΛG and any unspecified
rows of ΛA can be used to modify Z̃ in order to compensate for the
eliminated constraints.

Below is a strategy for eliminating a single constraint at a time.
This does not imply that each eliminated constraint is treated as
if the others did not exist, because the remaining constraints are
modified by ΛA. After experimenting with many strategies, the
most effective was found to be a heuristic we call partial solve
dualization. The key idea is to solve one of the constraint equations,
say the first, for a single ξj:

ξj = a−1
1j bj − a−1

1j


k≠j

a1kξk. (28)

Next, (28) is used to eliminate ξj from the remaining constraints
and the equations z = Gξ + c. Finally, the first constraint is
removed. Straightforward algebra shows that this is accomplished
by choosing

ΛG ≡ GEj1a−1
1j , ΛA ≡ AEj1a−1

1j , (29)

where Ej1 ∈ Rng×nc is zero except for a one in the (j, 1) position,
and evaluating (27). This yields Z̃ = {G̃, c̃, Ã, b̃} such that G̃ and
Ã have identically zero jth columns due to the elimination of ξj,
and [Ã|b̃] has an identically zero first row, which arises from the
substitution of (28) into the constraint aT1ξ = b1 to obtain the
trivial constraint 0Tξ = 0. Removing these columns and rows, the
dualization has eliminated one constraint and one generator.

Choosing which ξj to eliminate is important, but our decision to
use the first constraint in (28) is not. In fact, using any constraint
with aij ≠ 0 gives the same result (see (A.4)) To select j, we
consider the Hausdorff error introduced by dualization, Hj ≡

maxz̃∈Z̃ minz∈Z ∥z̃−z∥2. It would be prohibitive to solve this bilevel
program for each j. Thus, a major contribution of the proposed
strategy is an effectivemethod for approximatingH1, . . . ,Hng with
a total complexity of only O((ng + nc)

3). See Appendix for details.

4.3. Generator reduction

For a standard zonotope, generator reduction can be done
using the simple and inexpensive method in Combastel (2003),
or more accurately using the method proposed in Althoff et al.
(2010). In brief, each method selects a subset of k > n generators
that are then replaced with n generators whose Minkowski sum
overestimates that of the original k. In the first method, the new
n generators form an interval. In the second, they describe a
parallelotope.

For a constrained zonotope Z = {G, c,A, b}, the presence of the
constraints prevents either of these zonotopicmethods from being
applied directly. Instead, we propose a lift-then-reduce strategy,
shown schematically as:

Z → Z+
≡


G
A


,


c

−b


→ Z̃+

≡


G̃
Ã


,


c

−b


→ Z̃ . (30)

First, we form the lifted zonotope Z+ corresponding to Z (see
Proposition 3). Next, Z+ is reduced using a zonotopic method to
yield Z̃+, where G̃ and Ã have fewer columns than G and A. Finally,
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we set Z̃ =


G̃, c, Ã, b


. Since Z̃+

⊃ Z+, two applications of

Proposition 3 show that Z̃ ⊃ Z as desired.
Our numerical experiments showed that the overestimation of

Z+ by the zonotopic method in Combastel (2003) frequently led
to severe overestimation of Z . The method in Althoff et al. (2010)
performed much better, but scales as

n+κ

n


, where κ ≤ ng − n

is a heuristic integer. With κ = 8, this proved to be too costly
for higher dimensional experiments (e.g., n = nc = 10). Thus, a
new method was developed based on the results in Chisci et al.
(1996) for reducing a zonotope with ng = n+ 1 to a parallelotope,
which we have observed to have comparable performance to the
method in Althoff et al. (2010) in numerical experiments. However,
the complexity of reducing ng to ng − k in our newmethod is only
O(n2ng + knng). See Appendix for details.

The proposed lift-then-reduce strategy has one major limita-
tion. Because Z+

⊂ Rn+nc , it is generally not possible to reduce
Z̃+ to fewer than n + nc generators (i.e., a parallelotope in Rn+nc ).
It follows that Z̃ has at least n + nc generators, even though Z ⊂

Rn, which reflects the additional complexity imparted by the con-
straints and shows that further reductions can only be made by
eliminating constraints.

5. Application to set-based state estimation

This section considers the classical set-based state estimation
problem for discrete-time linear systems and demonstrates the
advantages of constrained zonotope computations as compared to
existing methods. Consider the system

xk = Axk−1 + Bwwk−1, yk = Cxk + Dvvk, (31)

with state xk ∈ Rnx , output yk ∈ Rny , disturbancewk−1 ∈ Rnw , and
measurement error vk ∈ Rnv . The input uk is not required and is
omitted for brevity. Assuming that x0 ∈ X0 and (wk, vk) ∈ W × V ,
∀k ∈ N, with X0, W , and V compact, the objective is to compute
an enclosure of the set X̂k of states at each k that is consistent with
(31) and a measured output sequence {yk}. Using the definitions
(4)–(6), X̂k is given exactly by the recursive formula

X̂k = (AX̂k−1 + BwW ) ∩C(yk − DvV ), (32)

with X̂0 = X0 ∩C(y0 − DvV ). In general, the set operations in (32)
cannot be computed exactly. However, enclosures Ok ⊃ X̂k can be
recursively computed using simple set representations by outer-
approximating each operation in (32):

Ok ⊃ (AOk−1 + BwW ) ∩C (yk − DvV ), (33)

with O0 ⊃ X0 ∩C (y0 − DvV ).
This problem was first solved using ellipsoidal computations in

Bertsekas and Rhodes (1971) and Schweppe (1968). Subsequently,
more accurate but less efficient algorithms were developed using
minimum-volume enclosures of the basic operations on ellipsoids
(Chernousko, 1980; Durieu et al., 2001; Fogel & Huang, 1982).
Parallelotope computations were first applied to state estimation
in Chisci et al. (1996). The resulting estimator, called the recursive
optimal bounding parallelotope (ROBP) estimator, was shown to
be superior to even the optimal ellipsoidal estimator in terms
of volume, while being significantly more efficient. Set-based
estimators based on convex polytopes have also been extensively
developed (Blanchini & Miani, 2008; Shamma & Tu, 1999; Walter
& Piet-Lahanier, 1989). However, the complexity of polytope
computations severely limits these methods as shown below.
Following the work of Kuhn (1998), zonotopic estimators have
received significant attention as an alternative means to improve
the accuracy of ROBP while maintaining efficient and scalable
computations (Alamo et al., 2005; Bravo et al., 2006; Combastel,
2003; Le et al., 2013).

Here, we investigate the advantages of using constrained
zonotope computations in (33). For comparison, X0, W , and V are
assumed to be parallelotopes. GivenOk−1 ⊃ X̂k−1 in CG-rep at time
k, the proposed estimator computes Ok by evaluating the right-
hand side of (33) exactly using Proposition 1, and subsequently
reducing Ok to a fixed number of constraints nc and degrees-
of-freedom order od as described in Section 4. This estimator is
denoted by CZ(nc, od) and is compared to the ROBP estimator and
two zonotopic estimators that differ in their over-approximations
of the intersection in (33). The first is described in Section 3.3
of Combastel (2003), and the second in Section III.B of Bravo
et al. (2006), which improves the method in Alamo et al. (2005).
These methods are designated by ZCo(o) and ZBr(o) respectively,
where Ok is reduced to order o after each evaluation of (33).
For both methods, order reduction is performed by the method
described in Section 4.3 for consistency with CZ(nc, od). We also
compare against the H-rep polytopic estimator in Shamma and
Tu (1999) (Poly), which computes each X̂k exactly but requires
a polytope projection from 2nx + nw + ny + nv dimensions to
nx in each step. We do not compare with classical ellipsoidal
methods because comparisons in Chisci et al. (1996) demonstrate
the superior performance of ROBP. Recent ellipsoidal approaches
that use multiple ellipsoids at each time point are also omitted,
in contrast to the ‘single-set’ estimators considered here (Durieu
et al., 2001; Kurzhanski, 2011). Finally, we do not compare
against the recent extension of ZBr(o) in Le et al. (2013), which
boasts reduced complexity compared to Alamo et al. (2005) but
provides enclosures of similar or slightly larger volume. In contrast,
our concern here is the ability to compute significantly tighter
enclosures at modest additional cost.

The methods described above were implemented in MATLAB
and compared on 500 random LTI systems (31) and parallelotopes
(X0,W , V ) with dimensions d ≡ nx = ny = nw = nv = 2
and d = 10. All computations with polytopes in H-rep were
done using MPT (Kvasnica, Grieder, Baotić, & Morari, 2004). The
matrices A, Bw , and C were generated using the MATLAB routine
drss and Dv = I. To generate X0, W , and V in G-rep, a matrix
[G|c] with normally distributed elements was generated, and each
column was normalized and scaled by a random number selected
uniformly from [0, 10]. For all systems generated, V had G = I.
Accuracy was evaluated in terms of the estimator volumes and
radii, normalized to those of the exact estimator computed using
constrained zonotopes with no reduction. Due to the difficulty
of computing minimal enclosing balls for general polytopes, the
radius is defined here as half the length of the longest edge of the
interval hull, which is easily computed by solving 2n LPs. Volume
computations were done by converting to H-rep and using the
volume routine in MPT (Kvasnica et al., 2004). Volumes are not
provided for d = 10 because this computation became intractable.

Fig. 3 compares the accuracy of ROBP, ZCo(5), ZBr(5), and
CZ(0, 5). Note that the latter three methods use fifth-order
zonotopes for all computations. ROBP is the weakest by a large
margin, followed by ZCo(5). Volumes and radii for ZBr(5) and
CZ(0, 5) are comparable with a slight but consistent advantage to
CZ(0, 5). Since CZ(0, 5) is a zonotopic method, this demonstrates
that the new reduction methods of Section 4 provide a means
to compute zonotopic enclosure of intersections that can reduce
conservatism compared to the best available methods. Moreover,
Table 1 shows that CZ(0, 5) is slightly more efficient than ZBr(5)
with d = 2, and scales more favorably to higher dimensions.
Although ZCo(5) and ROBP are not competitive in terms of
accuracy, they are cheaper than CZ(0, 5) by factors of about 1/3
for d = 2 and 1/10 for d = 10.
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Fig. 3. Average estimator volumes and radii for ROBP (�), ZCo(5) (�), ZBr(5) (+),
CZ(0, 5) (×), and Poly (·) in two dimensions.

Fig. 4. Average estimator volumes and radii for CZ(0, 5) (×), CZ(1, 5) (◦),
CZ(2, 5) (+), CZ(3, 5) (�), and Poly (·) in two dimensions.

Table 1
Average time per step in ms for state estimators applied to 2000 random systems
with nx = nw = ny = nv = d.

d ROBP ZCo(5) ZBr(5) CZ(0, 5)

2 0.55 0.60 1.60 1.50
10 2.80 3.40 51.8 34.0

d CZ(1, 5) CZ(2, 5) CZ(3, 5) Poly

2 1.80 2.10 2.30 148.1
10 37.0 44.7 47.1 –

Fig. 4 investigates the advantage of using constraints in the CG-
rep by comparing CZ(0, 5), CZ(1, 5), CZ(2, 5), CZ(3, 5), and Poly. A
trend of increasing accuracywith increasing number of constraints
is clear. Moreover, the volumes and radii for CZ(3, 5) are within 5%
of the figures for the exact observer Poly. Table 1 shows that the
computational cost of CZ(3, 5) is over 60× less than Poly, and only
1.5× more than ZBr(5) and 4× more than ROBP (d = 2).

Fig. 5 shows very similar accuracy trends for d = 10. CZ(0, 5)
compares less favorably to ZBr(5) than for d = 2. But again,
CZ(3, 5) produces radii within 5% of the exact figures at a cost of
<50 ms per step. This is faster than ZBr(5) and about 17× slower
than ROBP. At the same time, our experiments showed that Poly
could not proceed beyond k = 4 within 20 min for most random
systems with d ≥ 4 due to the exponential scaling of the required
projection.
Fig. 5. Average estimator radii for ZCo(5) (�), ZBr(5) (+), CZ(0, 5) (×),
CZ(1, 5) (◦), CZ(2, 5) (▽), CZ(3, 5) (∗), and Poly (·) in ten dimensions. ROBP
averages ∼2.5 (not shown).

To better understand the performance of the CZ observers, Fig. 6
shows a single step of the computation (32). The upper left panel
shows a randomly generated zonotope representing (AX̂k−1 +

BwW ). The solid lines are bounded error measurements and the
red set is the intersection in (32). The top-right and bottom-left
panels show enclosures of this intersection by zonotopes, the first
computed as in Bravo et al. (2006), and the second by applying
Proposition 1 and subsequently eliminating all constraints. The lat-
ter enclosure is sharper, suggesting that the reduction methods in
Section 4.2 can provide improved zonotopic enclosures of intersec-
tions. However, the intersection is strongly centrally asymmetric
and cannot be accurately enclosed by any zonotope. In contrast,
the bottom-right panel shows a sharper enclosure computed us-
ing a constrained zonotope of intermediate complexity, computed
by applying Proposition 1 and subsequently eliminating one of the
two constraints from the result. This demonstrates the secondma-
jor advantage of CZ observers; because basic set operations can be
done efficiently on the CG-rep., it is possible to propagate superior
enclosures of intermediate complexity through further computa-
tions.

6. Application to set-based fault diagnosis

The results of Section 5 demonstrate that constrained zonotope
computations can provide set-based state estimates with a
significantly better compromise between accuracy and efficiency
than existing methods. However, the widespread use of highly
efficient ellipsoidal and parallelotopic estimators suggest that their
accuracy is often sufficient, and additional cost and complexity
is unwarranted. The purpose of this section is to highlight an
important application, namely fault detection, in which estimation
accuracy is critical, and hence constrained zonotopes offer
significant new capabilities.

The use of set-based state estimators for fault detection has
receivedmuch attention recently (Ingimundarson et al., 2009; Rosa
et al., 2010; Scott et al., 2014; Tabatabaeipour, Odgaard, Bak, &
Stoustrup, 2012; Tornil-Sin, Ocampo-Martinez, Puig, & Escobet,
2012). Consider an LTI model of the form (31) representing the
nominal plant dynamics under linear feedback. The basic fault
detection approach is to use a set-based estimator of the form (33),
and to check the inclusion

yk ∈ C(AOk−1 + BwW ) + DvV (34)

online for each k. Failure indicates that the system is no longer
described by the nominal model; i.e., a fault has occurred. In this
context, one set-based state estimator is superior to another if it
results in a failure of (34) in fewer time-steps after the onset of a
fault.

Below is a comparison of the performance of several observers
for this task for a model for a low-frequency permanent-magnet
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Fig. 6. Random zonotope (cyan) intersected (red) with bounded-error measurements (solid lines) (top-left), and zonotopic enclosures (green) of the intersection (red)
computed as in Bravo et al. (2006) (top-right) and by using Proposition 1 and subsequently eliminating all constraints (bottom-left) or only one constraint (bottom-right) as
in Section 4.2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 2
Nominal (1) and Faulty (2) model parameters.

Model Ra (�) L × 10−3 (H) Ke × 10−2 (V rad/s) J1 × 10−4 (N m s2/rad) fr ×10−4 (Nm s/rad)

1 1.2030 5.5840 8.5740 1.4166 2.4500
2 1.5030 5.5840 8.5740 1.4166 2.4500
DC motor (Liu, Zhang, Liu, & Yang, 2000):
di(t)
dt

dn(t)
dt

 =


−Ra/L − Ke/L
Kt/J1 − fr/J1

 
i(t)
n(t)


+


1/L
0


u(t)


y1(t)
y2(t)


=


1 0
0 1

 
x1(t)
x2(t)


where the input u is the armature voltage, the states are the current
i and motor speed n, and the parameters Ra, L, Ke, Kt , J1, and fr
are, respectively, the resistance, inductance, torque constant, back
EMF constant, motor inertia, and friction coefficient. The torque
constant Kt (Nm/amp) is related to Ke by Kt = 1.0005Ke. Table 2
gives values for one nominal and one faulty model, which differ by
a 0.3 � increase of the armature resistance (see Liu et al., 2000).

Bothmodels were discretized by forward Euler with a sampling
interval of 1 ms to obtain models of the form:

xk = A(i)xk−1 + B(i)uk−1 + Bw(i)wk−1, (35)
yk = C(i)xk + Dv(i)vk, (36)

where i = 1, 2 distinguishes the nominal and faulty models.
Specifically, A(i), B(i), and C(i) were obtained from discretization,
and the measurement and process noise terms were added with
Dv(i) = I, i = 1, 2. The matrices Bw(i) were obtained assuming
5% uncertainty in Ra, Ke, J1, and fr , and computing the worst-case
additive error when the current and the motor speed are bounded
in, respectively, [−2, 2] V and [−150, 150] rad/s:

Bw(1) =


−0.0085 −0.0006
−0.0603 0.0002


,

Bw(2) =


−0.0101 −0.0006
−0.0595 0.0002


.

We assume x0 ∈ X0 ≡


0.06 0
0 0.6


,

0.6
70


, wk ∈ W ≡ {I, 0}, and

vk ∈ V ≡


0.06 0
0 0.6


, 0

, ∀k ∈ N. Finally, we apply uk = uN −

K(yk − xN) with saturation limits uk ∈ [0, 12] V, where uN = 6 V
maintains the nominal steady-state xN = (0.2 A, 70.3 rad/s) and
K is the LQ gain with Q = I and R = 0.1.

To compare the fault detection capabilities of the set-based
state estimators discussed in Section 5, each estimator was ap-
plied to the nominal model (i = 1), using online measurements
yk generated by simulating the faulty model (i = 2) with random
x0, wk, and vk uniformly distributed in X0, W , and V , respectively.
We did not compare the exact observer Poly because it was found
in Section 5 to have much higher complexity than the competing
methods, although it has been applied for fault detection in low di-
mensional systems previously (Rosa et al., 2010; Tabatabaeipour,
2015; Tabatabaeipour et al., 2012). Fig. 7 shows the number of time
steps required for each estimator to detect the fault through a fail-
ure of (34), averaged over 500 simulations. Among past methods,
ZBr(5) is the most effective by far. However, ZBr(5) requires 2.5
more steps than ZC(0, 5) on average, and the constrained zonotope
observers show a clear trend of decreasing detection time with in-
creasing nc . Notably, CZ(3, 5) detects the fault nearly 8 steps before
ZBr(5) and 18 steps before ROBP on average. These results demon-
strate that constrained zonotopes can provide significantly faster
fault detection, thereby reducing the potential for serious harm fol-
lowing a fault.

7. Conclusions

Constrained zonotopes provide a new set representation that
combines the flexibility of convex polytopes with the efficiency
and scalability of zonotopes, with regard to several key set oper-
ations. In addition, the complexity of these sets can be accurately
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Fig. 7. Average time steps needed to detect the fault.

and efficiently reduced, making them practical for long sequences
of set-based computations. Numerical studies demonstrate that
constrained zonotopes provide significant improvements over the
existing state-of-the-art in the context of set-based estimation and
fault detection.

Appendix. Reduction implementation details

Here are the implementation details for rescaling Z =

{G, c,A, b} as described in Section 4.1. Algorithm 1 below is used
to compute an interval E ≡ [ξL, ξU ] such that B∞(A, b) ⊂ E ⊂

[−1, 1] for use in Proposition 4. Algorithm 1 also returns R ≡

[ρL, ρU
] ⊂ Rng satisfying

Rj ⊃

ξj : Aξ = b, |ξi| ≤ 1, ∀i ≠ j


, ∀j. (A.1)

R is used for constraint reduction as described below.
Consider the rearrangements of Aξ = b:

ξj = a−1
ij bi −


k≠j

a−1
ij aikξk, ∀i, j : aij ≠ 0. (A.2)

Beginning with E = [−1, 1], each iteration of Algorithm 1 at-
tempts to refine each Ej by bounding the right-hand side of (A.2)
with ξk ∈ Ek, ∀k ≠ j, using interval arithmetic.

Algorithm 1.

(1) Assign E := [−1, 1], R := [−∞, +∞], i = j = 1.
(2) If aij ≠ 0, assign

Rj := Rj ∩


a−1
ij bi −


k≠j

a−1
ij aikEk


, Ej := Ej ∩ Rj.

(3) If j < ng , assign j := j + 1 and go to Step 2. Otherwise, if
j = ng and i < nc , assign (i, j) := (i + 1, 1) and go to Step 2. If
(i, j) = (nc, ng), terminate.

Algorithm 1 can be applied iteratively to further refine E. If E∩R =

∅ in some iteration, then Z = ∅. Thus, Algorithm 1 can potentially
detect an empty constrained zonotope without solving an LP as in
Section 3.1.

The bounds obtained fromAlgorithm 1 can be greatly improved
by preconditioning the constraints (Neumaier, 1990), which does
not affect Z , since {G, c,A, b} = {G, c, PA, Pb} for any invertible P.
In our implementation, [A|b] is taken to reduced row echelon form
by Gauss–Jordan elimination with full pivoting prior to applying
Algorithm 1. In each step of elimination, the pivot element is
chosen as the element in the unreduced submatrix (omitting
the final column b) that is largest relative to the infinity norm
of the row it occupies (see Neumaier, 1990 for a discussion of
preconditioning strategies). Since column pivoting changes the
ordering of ξ, column pivots must be carried out on G as well. The
total complexity of preconditioning and Algorithm 1 is O(n2

cng +

ncn2
g).
Upon termination of Algorithm 1, the CG-rep of Z is rescaled as
per Proposition 4. For (A.1) to remain valid, Rmust also be rescaled
as

Rj := [(ρL
j − ξm,j)/ξr,j, (ρ

U
j − ξm,j)/ξr,j], ∀j. (A.3)

Next are the details of forming Z̃ by eliminating one constraint
from the CG-rep of Z by the method in Section 4.2. In particular, it
remains to estimate the Hausdorff error Hj ≡ maxz̃∈Z̃ minz∈Z ∥z̃ −

z∥2 used for selecting j. First, note that eliminating ξj using (28)
actually preserves the constraint aT1ξ = b1 implicitly, although it
is not present in the CG-rep of Z̃ . However, the ability to enforce
the bound |ξj| < 1 has been lost because this variable no longer
appears in the CG-rep of Z̃ . From this observation, it can be shown
that

Z̃ = {Gξ + c : Aξ = b, |ξi| ≤ 1, ∀i ≠ j}. (A.4)

It follows that

Hj = max
ξ

min
δ∈B∞(A,b)

∥G(ξ − δ)∥2, (A.5)

s.t. Aξ = b, |ξi| ≤ 1, i ≠ j.

To estimate Hj, let d∗
≡ (ξ∗

− δ∗), where (ξ∗, δ∗) is an optimal
solution of (A.5). Note that Ad∗

= 0 and |d∗

i | ≤ 2 for all
i ≠ j. Moreover, recall that we have available R = [ρL, ρU

]

satisfying (A.1). If |ρU
j |, |ρU

j | < 1, then (A.1) shows that the bound
|ξj| ≤ 1 is redundant in the definition of B∞(A, b). Otherwise,
max(|ρL

j |, |ρ
U
j |) − 1 provides an indication of how far B∞(A, b)

would extend outside of [−1, 1] in the δj-direction if the constraint
|δj| ≤ 1 were omitted. Thus, the action of the outer program in
(A.5) is approximated by the requirement that

d∗

j = rj ≡ max

0,max(|ρL

j |, |ρ
U
j |) − 1


. (A.6)

To simplify further, the inequality constraints |d∗

i | ≤ 2 are relaxed
by penalizing the norm of d in the objective function, which gives
the estimate Ĥj ≈ H∗

j ≡ min{∥Gd∥
2
2 + ∥d∥

2
2 : Ad = 0, dj = rj}.

Since this is an equality constrained quadratic program, its solution
d̂ and duality multipliers λ̂ are known explicitly as the solutions of
the linear systemGTG + Ing×ng AT ej

A 0nc×nc 0nc×1

eTj 01×nc 0

d̂
λ̂


=

0ng×1
0nc×1
rj


, (A.7)

where ej ∈ Rng is the jth standard unit vector. Direct solution of
(A.7) for each j has a complexity of O(ng(ng + nc + 1)3). However,
in our implementation, it is donewith O((ng +nc)

3) complexity by
factoring the upper-left (ng + nc) × (ng + nc) submatrix in (A.7)
only once. Letting Q denote this submatrix, (A.7) is equivalent to
I(ng+nc )×(ng+nc ) Q−1ej

eTj 0

 
d̂
λ̂


=


0(ng+nc )×1

rj


(A.8)

where now ej ∈ Rng+nc . Once Q−1 is computed, solving (A.8) for
each j requires computing Q−1ej, executing a single elementary
row operation to eliminate the 1 in the bottom row, and solving
the resulting upper triangular system. We implement this using
the LU-factors of Q rather than Q−1.

To select j, we first check if rj = 0 for any j. If this holds, then
(A.1) and (A.4) imply that Z = Z̃ when j is selected. Failing this, we
choose the j that minimizes Ĥj.

We now give the details of the generator reduction method
outlined in Section 4.3. In particular, it remains to describe the new
zonotopic order reductionmethod alluded to there. Let Z = {G, c}.
The first step is to reorder the columns of G as G →


T V


such
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thatT ∈ Rn×n is invertible,which is doneby takingG to the reduced
row echelon form


In×n R


using Gauss–Jordan elimination with

the full pivoting. If G is found to be rank deficient, then Z is simply
reduced using the method in Combastel (2003). Otherwise, the
sequence of column pivots performed during elimination gives
the desired reordering


T V


, and R = T−1V. In each iteration

of elimination, the pivot element is chosen as the element in the
unreduced submatrix that is largest relative to the infinity norm
of the row it occupies. As a consequence, each element of R is less
than or equal to 1.

In the second step, a column v is chosen from V as described
below, and Z is written as follows, where V− denotes the matrix
formed by removing v from V:

Z = X + Y ≡ {[T v], c} + {V−, 0}. (A.9)

Next, the (n + 1)/n order zonotope X is conservatively reduced to
a parallelotope X̃ using the method in Chisci et al. (1996). Finally,
Z̃ = X̃ + Y is defined, which has one fewer generator than Z .

Let r be the column of R corresponding to v, so that r = T−1v.
Using the fact that ∥r∥∞ ≤ 1, Theorem 3 in Chisci et al. (1996)
states that theminimum volume parallelotope containing X is X̃ =

{[T(I + diag|r|)], c}. Thus, Z̃ = {[T(I + diag|r|) V−], c}.
It remains to find an effective heuristic for choosing the column

v. To do so, we investigate the volumes of X and X̃ . Using the
standard formula for the volume of a zonotope (Bravo et al., 2006)
and standard properties of the determinant,

v(X̃) = 2n
| det T det(I + diag|r|)|,

= 2n
| det T|Πn

i=1(1 + |ri|),

and, letting ti denote the ith column of T,

v(X) = 2n


| det T| +

n
i=1

| det[t1 · · · ti−1 v ti+1 · · · tn]|


,

= 2n


| det T| +

n
i=1

| det(T[e1 · · · ei−1 r ei+1 · · · en])|


,

= 2n
| det T|


1 +

n
i=1

|ri|


.

We choose the column v such that r = T−1vminimizes the volume
error v(X̃) − v(X). Note that determining this does not require
computing det T.

Direct application of this method to eliminate k generators has
complexityO(kn2ng) stemming from repeated factorization ofG. In
our implementation, this factorization is done only once, and both
T and R are updated directly via

T := T(I + diag|r|), R := (I + diag|r|)−1R−, (A.10)

where R− is formed by removing r from R. Z̃ can be recovered after
the update as Z̃ = {


T TR


, c}. At the same time, the updated

R matrix retains the property that every element is less than one,
since the elements of (I + diag|r|) are greater than one. Thus, all
of the information necessary for further reduction is available. The
complexity for reducing k generators isO(n2ng+kngn), where n2ng
results from the one time factorization of G, and knng results from
kng computations of v(X̃) − v(X) and k updates as per (A.10).
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