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a b s t r a c t

Active fault diagnosis (AFD) can be used to improve the diagnosability of faults by injecting a suitably
designed input into a process. When faults are described as discrete switches between linear systems
with uncertainties boundedwithin zonotopes, an optimal open-loop input guaranteeing diagnosis within
a specified time horizon can be computed efficiently by solving a Mixed Integer Quadratic Program
(MIQP). In this article, the constrained zonotope (CZ) set representation recently developed by the authors
is used to extend the MIQP approach to general polytopic uncertainties without sacrificing efficiency.
Next, this approach is combined with a CZ-based set-valued observer in a moving horizon framework
to achieve rigorous closed-loop AFD. This method can greatly accelerate diagnosis relative to the open-
loop approach, but requires online optimization. To reduce the online cost, we propose a method for
solving the open-loop problem explicitly with respect to past measurements and inputs, which requires
only observability of the nominal and faulty models. The effectiveness of the proposed approaches is
demonstrated through several numerical examples.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The detection and diagnosis of malfunctions and other ab-
normal events (i.e., faults) is an essential control task for
engineered systems in the chemical, power, aerospace, and me-
chanical domains (Gao, Cecati, & Ding, 2015; Tchakoua et al., 2014;
Yu, Woradechjumroen, & Yu, 2014). Without corrective action,
faults can lead to performance degradation and potentially criti-
cal situations. However, fault detection and diagnosis are challeng-
ing due to the presence of disturbances, measurement noises, and
the actions of feedback controllers. Approaches to automatic fault
diagnosis can be classified as either active or passive. In the pas-
sive approach, input–output data are collected in real-time and
faults are diagnosed based on comparisons with a process model
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or historical data. In contrast, the active approach involves inject-
ing a signal into the system to improve the diagnosability of poten-
tial faults with minimal impact on the nominal system (Gao et al.,
2015).

This article considers input design for active fault diagnosis
of linear systems subject to bounded process and measurement
noise, and faults modeled by discrete changes in the system
matrices. Several works have addressed this problem using
inputs that excite specially designed residual signals in the
presence of faults (Kerestecioglu & Cetin, 2004; Niemann, 2006).
A multi-model stochastic formulation is considered in Blackmore,
Rajamanoharan, andWilliams (2008) and Cheong and Manchester
(2015), where inputs are designed to minimize the probability
of incorrect diagnosis. A similar approach for nonlinear systems
is given in Streif, Petzke, Mesbah, Findeisen, and Braatz (2014).
Several multi-model formulations with deterministic bounds on
the measurement and process noises have also been proposed.
Interestingly, these either provide an input that is guaranteed
to identify the correct model within a specified time horizon,
or conclude that no such input exists. The article (Nikoukhah &
Campbell, 2006) considers noises that are energy-bounded within
ellipsoids. Pointwise-in-time polytopic bounds are considered in
Nikoukhah (1998), but costly computationswith high-dimensional
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polytopes are required. More recently, an efficient method using
pointwise bounds described by zonotopes was developed, making
it tractable solve diagnosis problems with high dimension and/or
multiple fault models (Scott, Findeisen, Braatz, & Raimondo,
2014). Extensions of the preceding approaches include methods
for nonlinear systems (Andjelkovic, Sweetingham, & Campbell,
2008; Paulson, Raimondo, Braatz, Findeisen, & Streif, 2014), hybrid
stochastic–deterministic approaches (Marseglia, Scott, Magni,
Braatz, & Raimondo, 2014; Scott, Marseglia, Magni, Braatz, &
Raimondo, 2013), methods with input and robust state constraints
(Andjelkovic & Campbell, 2011; Scott et al., 2014), and robust MPC
with diagnosis constraints (Raimondo, Marseglia, Braatz, & Scott,
2013).

The above approaches are all open-loop in the sense that the
computed active input is applied with no online modification. The
design of exogenous active inputs for closed-loop systemshas been
studied (Ashari, Nikoukhah, & Campbell, 2012a,b). However, the
feedback lawwas given a priori, not designed for fault diagnosis. In
Stoican, Olaru, Seron, and De Doná (2012), the authors propose a
fault tolerant control method which relies on the computation of
invariant sets and a reference governor scheme to isolate faults.
While the feedback law was also given a priori, the reference
was suitably chosen to guarantee the separation of the residual
sets for the healthy and faulty dynamics. In Niemann, Stoustrup,
and Poulsen (2014), a given feedback controller is temporarily
modified to make a residual more sensitive to faults. A closed-
loop approach for stochastic models is presented in Puncochar,
Siroky, and Simandl (2015) and Simandl and Puncochar (2009),
where the input minimizes nominal control objectives and risks
associatedwith incorrect diagnosis. Finally, a deterministic closed-
loop approach using polytopes is described in Tabatabaeipour
(2015).

In this context, the present article makes three main contribu-
tions. First, the open-loop input designmethod in Scott et al. (2014)
is generalized. This method provides guaranteed diagnosis for
linear multi-model systems with initial conditions, disturbances,
and measurement noises bounded pointwise by zonotopes.
Here, the constrained zonotope computations recently proposed in
Scott, Marseglia, Raimondo, and Braatz (2016) are used to extend
this approach to general polytopic uncertainties, while maintain-
ing the efficiency of the original approach (see Section 3). Second,
a new closed-loop input design method is developed by apply-
ing the open-loop method of Section 3 within a moving horizon
framework, where onlinemeasurements are incorporated through
set-valued observers (Section 4). This method potentially provides
much less conservative active inputs on average (e.g., reduced
length, norm), while maintaining the guarantee of fault diagno-
sis within a given time horizon. Among existing closed-loop ap-
proaches, such a guarantee is only provided by the method in
Tabatabaeipour (2015). However, that method uses polytope pro-
jection operations that scale exponentially in the system dimen-
sion (Althoff, Stursberg, & Buss, 2010; Fukuda, 2004). Numerical
experiments in Scott, Findeisen, Braatz, and Raimondo (2013)
clearly show that such projections are intractable for systems with
more than 2 or 3 states. In contrast, our use of constrained zono-
topes here avoids this computation completely. Our third contri-
bution is a method for computing an explicit feedback law off-line
for cases where computing open-loop inputs online is prohibitive
(Section 5). This is enabled by the use of finite-memory set-valued
observers, at the cost of some additional conservatism. Compared
to our preliminary results in Raimondo, Braatz, and Scott (2013),
the closed-loop approaches here use more effective observers (en-
abled by the developments of Section 3), and the explicit method is
generalized to address the case of incomplete statemeasurements.
1.1. Problem formulation

Consider a discrete-time system with time k, state xk ∈ Rnx ,
output yk ∈ Rny , input uk ∈ Rnu , disturbance wk ∈ Rnw , and
measurement error vk ∈ Rnv . In each interval [k, k + 1], k =

0, 1, . . . , the system evolves according to one of nm possible linear
models. The matrices of these models are distinguished by the
argument i ∈ I ≡ {1, . . . , nm}:

xk+1 = A(i)xk + B(i)uk + r(i)+ Bw(i)wk, (1)
yk = C(i)xk + s(i)+ Dv(i)vk. (2)

The model i = 1 is nominal, and the rest are faulty. Models
representing multiple, simultaneous faults can be included in I if
desired (Scott et al., 2014). The constant vectors r(i) and s(i) are
used to model additive faults such as sensor and actuator bias. Let
x0 ∈ X0(i) represent any information known about x0 prior to
k = 0, given that model i ∈ I is active. X0(i) can depend on i if,
e.g., it has been constructed from previous measurements through
(2). We assume that (wk, vk) ∈ W × V , ∀k ∈ N, and that W ,
V , and X0(i) are bounded convex polytopes. Our objective is to
design input sequences that guarantee fault diagnosis over a finite
horizon N . Specifically, assuming that one model i∗ ∈ I is active
on [0,N] (i.e., the test interval), we aim to design an input that can
identify i∗ with certainty, while simultaneously satisfying convex
polytopic constraints uk ∈ U, ∀k ∈ N, and minimizing a quadratic
cost function. The proposedmethods are appropriate for designing
short test signals that are applied periodically, or after a fault has
been detected but not diagnosed.

2. Preliminaries

2.1. Constrained zonotopes and set operations

The new methods in this article are largely enabled by
computations with constrained zonotopes, a new class of sets
introduced in Scott et al. (2016) as an extension of the zonotopes.

Definition 1. A set Z ⊂ Rn is a constrained zonotope if there exists
(G, c,A, b) ∈ Rn×ng × Rn

× Rnc×ng × Rnc such that

Z = {Gξ + c : ∥ξ∥∞ ≤ 1, Aξ = b}. (3)

In contrast to standard zonotopes, Definition 1 permits linear
equality constraints on ξ. The columns of G are called the
generators, c is the center, and Aξ = b are the constraints. We use
the shorthand Z = {G, c,A, b} and Z = {G, c} for constrained and
standard zonotopes, respectively.

Constrained zonotopes are substantially more flexible than
zonotopes. Indeed, a central result in Scott et al. (2016) is that Z
is a constrained zonotope iff it is a convex polytope; i.e., iff Z is
bounded and ∃(H, k) ∈ Rnh×n

× Rn such that Z can be written in
the halfspace representation (H-rep) Z = {z ∈ Rn

: Hz ≤ k}. We
refer to (3) as the constrained generator representation (CG-rep) of
Z . Converting from H- to CG-rep is simple, and while the converse
is difficult in general, it is never required in the proposed methods
(Scott et al., 2016).

The CG-rep has two primary advantages compared to the
H-rep. First, it trivializes the computation of some important set
operations. Let Z,W ⊂ Rn, Y ⊂ Rk, R ∈ Rk×n, and define

RZ ≡ {Rz : z ∈ Z}, (4)
Z ⊕ W ≡ {z + w : z ∈ Z, w ∈ W }, (5)
Z ∩R Y ≡ {z ∈ Z : Rz ∈ Y }. (6)

Eq. (4) is a linear mapping of Z , (5) is the Minkowski sum, and (6)
is a generalized intersection that arises in state estimation (see
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Section 4.1). With Z , W , and Y in CG-rep, (4)–(6) are given in
CG-rep by

RZ = {RGz,Rcz,Az, bz}, (7)

Z ⊕ W =


[Gz Gw], cz + cw,


Az 0
0 Aw


,

bz
bw


, (8)

Z ∩R Y =


[Gz 0], cz,

 Az 0
0 Ay

RGz −Gy


,

 bz
by

cy − Rcz


. (9)

Clearly, these computations can be done efficiently and robustly,
even in high dimensions. In contrast, with Z and Y in H-rep,
Minkowski sums and linear mappings with singular R (e.g., poly-
tope projection) both become extremely computationally de-
manding and numerically unstable in dimensions greater than
about 10 (Althoff et al., 2010; Fukuda, 2004). For zonotopes, (4)–(5)
can again be computed trivially, but (6) is not a zonotope and its
approximation is very difficult (Bravo, Alamo, & Camacho, 2006).

The second advantage of the CG-rep is that efficient and
effective methods are available for enclosing a given constrained
zonotope within another of lower complexity (i.e., with fewer
generators and constraints) (Scott et al., 2016). This availability is
essential because the results of (7)–(9) can be more complex than
the arguments. Similar reduction techniques are also available
for zonotopes, but effective methods for polytopes in H-rep are
computationally demanding (Broman & Shensa, 1990). Thus, with
the CG-rep limited through reduction techniques, the constrained
zonotopes constitute a new class of sets with the ability to balance
accuracy and efficiency very effectively.

2.2. Reachable set notation and computations

In this section, we demonstrate the computation of reachable
sets for (1)–(2) using constrained zonotopes. Below, a tilde
designates a sequence associated with (1)–(2). Specifically, ỹ =

(y0, . . . , yk) ∈ R(k+1)ny , with x̃ and ṽ defined similarly, and ũ =

(u0, . . . ,uk−1) ∈ Rknu , with w̃ defined similarly. Moreover, we
index subsequences by ỹℓ:k = (yℓ, . . . , yk) for 0 ≤ ℓ ≤ k. Define
the solution mappings

(φk, ψk) : Rknu × I × Rnx × Rknw × Rnv → Rnx × Rny

so that φk(ũ, i, x0, w̃, vk) and ψk(ũ, i, x0, w̃, vk) are the state
and output of (1)–(2) at k, respectively, given the specified
inputs. Strictly, φk does not depend on vk, but it is included
for convenience. Let φ̃ℓ:k(ũ, i, x0, w̃, ṽ) = (φℓ, . . . , φk) and ψ̃ℓ:k
(ũ, i, x0, w̃, ṽ) = (ψℓ, . . . , ψk), where we have abbreviated (φj,
ψj) = (φj, ψj)(ũ0:j−1, i, x0, w̃0:j−1, vj), ℓ ≤ j ≤ k.

For each i ∈ I and ũ ∈ Rknu , define the reachable state and output
sets on [ℓ, k] by

Φ̃ℓ:k(ũ, i) ≡ {φ̃ℓ:k(ũ, i, x0, w̃, ṽ) : (x0, w̃, ṽ) ∈ X0(i)× W̃ × Ṽ },

Ψ̃ℓ:k(ũ, i) ≡ {ψ̃ℓ:k(ũ, i, x0, w̃, ṽ) : (x0, w̃, ṽ) ∈ X0(i)× W̃ × Ṽ },

where W̃ = W × · · · × W and Ṽ = V × · · · × V with k
and k + 1 products, respectively. Dependence on (X0(i), W̃ , Ṽ ) is
omitted for brevity. The reachable state and output sets at k are
Φk(ũ, i) ≡ Φ̃k:k(ũ, i) and Ψk(ũ, i) ≡ Ψ̃k:k(ũ, i).

Note that (1)–(2) recursively define matrices Ã(i), B̃(i), etc.,
which depend on ℓ and k, such that

φ̃ℓ:k(ũ, i, x0, w̃, ṽ) = Ã(i)x0 + B̃(i)ũ + r̃(i)+ B̃w(i)w̃,

ψ̃ℓ:k(ũ, i, x0, w̃, ṽ) = C̃(i)φ̃ℓ:k(ũ, i, x0, w̃, ṽ)+ s̃(i)+ D̃v(i)ṽ.

Using (4)–(6), it follows that

Φ̃ℓ:k(ũ, i) = Ã(i)X0(i)⊕ B̃(i)ũ ⊕ r̃(i)⊕ B̃w(i)W̃ , (10)
Ψ̃ℓ:k(ũ, i) = C̃(i)Φ̃ℓ:k(ũ, i)⊕ s̃(i)⊕ D̃v(i)Ṽ . (11)

Now, supposing that X0(i),W , and V are constrained zonotopes,
denote X0 = {G0(i), c0(i),A0(i), b0(i)}, W = {GW , cW ,AW , bW },
and V = {GV , cV ,AV , bV }. It is readily shown that W̃ is also a
constrained zonotope with cW̃ = (cW , . . . , cW ), bW̃ = (bW , . . . ,
bW ), GW̃ = diag(GW , . . . ,GW ), and AW̃ = diag(AW , . . . ,AW ), and
Ṽ is analogous. Thus, the above reachable sets can be computed
efficiently using (7)–(8). Moreover, these sets take the form

Φ̃ℓ:k(ũ, i) = {GΦℓ:k(i), φℓ:k(ũ, i),A
Φ
ℓ:k(i), b

Φ
ℓ:k(i)}, (12)

Ψ̃ℓ:k(ũ, i) = {GΨℓ:k(i), ψℓ:k(ũ, i),A
Ψ
ℓ:k(i), b

Ψ
ℓ:k(i)}, (13)

with the generator matrices GΦℓ:k(i) = [Ã(i)G0(i) B̃w(i)GW̃ ] and
GΨℓ:k(i) = [C̃(i)GΦℓ:k(i) D̃v(i)GṼ ], the centers φℓ:k(ũ, i) = φ̃ℓ:k(ũ, i,
c0(i), cW̃ , cṼ ) and ψℓ:k(ũ, i) = ψ̃ℓ:k(ũ, i, c0(i), cW̃ , cṼ ), constraint
matrices AΦℓ:k = diag(A0(i),AW̃ ) and AΨℓ:k = diag(AΦℓ:k,AṼ ), and
right-hand sides bΦℓ:k = (b0(i), bW̃ ) and bΨℓ:k = (bΦℓ:k, bṼ ). Note that
the sole ũ-dependence in these sets is through the centers, which
are the ‘nominal’ state and output vectors of (1)–(2) and are linear
in ũ. This fact is central to the input design procedure developed
below.

3. Open-loop input design

This section considers the optimal design of open-loop active
inputs for fault diagnosiswhen (X0(i),W , V ) are constrained zono-
topes. The results extend the passive method in Scott et al. (2016)
and the activemethod for zonotopes in Scott et al. (2014). Note that
if (X0(i),W , V ) are specified as convex polytopes inH-rep, they can
be easily converted to CG-rep as shown in Scott et al. (2016).

Consider an input ũ = (u0, . . . ,uN−1) ∈ RNnu and the corre-
sponding output ỹ = (y0, . . . , yN) ∈ R(N+1)ny . We assume that ũ
must be synthesized before y0 is known, although this can be re-
laxed when the cost of input design is negligible (see Remark 1).
For a fixed horizon N , if model i is active on [0,N], then ỹ must be
an element of the reachable output set for the ith model over the
time horizon from 0 to N:

ỹ ∈ Ψ̃0:N(ũ, i, X0(i)). (14)

Note that Ψ̃0:N is written herewith explicit dependence on X0(i) for
clarity. Conversely, if (14) fails, then iwasnot active on [0,N]. Thus,
(14) provides a sharp online test for ruling out models in I. Accord-
ingly, our objective is to find an input guaranteeing that (14) will
hold for exactly one i ∈ I. The required property of ũ is, ∀i, j ∈ I
with i ≠ j:

Ψ̃0:N(ũ, j, X0(j)) ∩ Ψ̃0:N(ũ, i, X0(i)) = ∅. (15)

We remark on the ease of satisfying (15) after Corollary 2.

Definition 2. Let I ⊂ I and X I
0 ≡ {X0(i)}i∈I . An input ũ ∈ RNnu is

said to separate (I, X I
0) in N steps if (15) holds ∀i, j ∈ I with i ≠ j.

The set of all such inputs is SN(I, X I
0).

Inputs used for active fault diagnosis should be minimally
invasive in some sense. Here, inputs are ranked according to their
length first, and an objective function second. Let ŨN = U×· · ·×U
withN products. The smallest integerN such that ŨN ∩SN(I, X I

0) ≠

∅ is called the minimum separation horizon for (I, X I
0). Assuming

N < ∞, an optimal input separating (I, X I
0) in N steps is defined as

any solution1 of

inf{JN(ũ) : ũ ∈ ŨN ∩ SN(I, X I
0)}, (16)

where JN(ũ) =
N−1

ℓ=1 uT
ℓRuℓ and R is positive semidefinite.

1 It is clear from (15) that SN (I, X I
0) is open, so we should speak of ε-solutions

having objective values within ε > 0 of the infimum.
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Solving (16) is challenging because the constraint ũ ∈ SN(I, X I
0)

is nonconvex (Theorem 1). However, when W , V , and X0(i), ∀i ∈

I, are zonotopes, (Scott et al., 2014) shows that (16) can be
reformulated as a mixed-integer quadratic program (MIQP) that
can be solved efficiently. A key step in that reformulation is to show
that, using the notation of Section 2.2,

SN(I, X I
0) = {ũ : N(i, j)ũ ∉ Z(i, j), ∀i, j ∈ I, j ≠ i}, (17)

where N(i, j) ≡ C̃(j)B̃(j)− C̃(i)B̃(i) and

Z(i, j) ≡ {[GΨ0:N(i) − GΨ0:N(j) ], ψ0:N(0, i)− ψ0:N(0, j)}. (18)

Using the zonotopic structure of Z(i, j), N(i, j)ũ ∉ Z(i, j) can be
expressed as an inequality constraint on the optimal objective
value of a linear program (LP), which converts (16) to a bilevel
program that is finally reformulated as an MIQP (see Scott et al.
(2014) for details).

Corollary 2 below shows that the form (17) can be recovered,
albeit with different matrices N(i, j) and zonotopes Z(i, j), in
the case where W , V , and X0(i) are constrained zonotopes (see
Appendix for proof). With this accomplished, (16) can be solved
exactly as in Scott et al. (2014). We first prove a direct analogue
of (17) with a constrained zonotope Z (i, j) appearing in place of
Z(i, j).

Theorem 1. An input ũ belongs to SN(I, X I
0) iff

N(i, j)ũ ∉ Z (i, j), ∀i, j ∈ I, i ≠ j, (19)

where

Z (i, j) ≡


[GΨ0:N(i) − GΨ0:N(j) ], ψ0:N(0, i)− ψ0:N(0, j),
AΨ0:N(i) 0

0 AΨ0:N(j)


,


bΨ0:N(i)
bΨ0:N(j)


. (20)

We now recover the form (17) with higher dimensional
zonotopes Z+(i, j) appearing in place of Z(i, j). Denote Z (i, j) =

{GZ (i, j), cZ (i, j),AZ (i, j), bZ (i, j)}.

Corollary 2. An input ũ belongs to SN(I, X I
0) iff

N(i, j)
0


ũ ∉ Z+(i, j) ≡


GZ (i, j)
AZ (i, j)


,


cZ (i, j)

−bZ (i, j)


, (21)

for all i, j ∈ I, i ≠ j.

Note that, since Z+(i, j) is compact, there must exist ũ ∈

SN(I, X I
0) provided only that N(i, j) ≠ 0; i.e., models i and j do not

have identical output controllability matrices.
The optimization (16) can now be solved as follows. First,

compute B̃(i), C̃(i), and Ψ̃0:N(0, i, X0(i)) as in Section 2.2, which
provides everything necessary to form N(i, j) and Z (i, j) for all
i, j ∈ I. Next, Z+(i, j) is formed from Z (i, j) via (21), which
characterizes SN(I, X I

0) in the same mathematical form as (17), so
that the algorithm in Scott et al. (2014) can be used to solve (16)
as an MIQP. This algorithm can efficiently accommodate polytopic
state constraints in (16) for each i ∈ I, which are omitted here
for brevity. Finally, this optimization can be repeated with N
increasing from 1 until a feasible program is generated or some
maximum N is exceeded.

A significant advantage of the above MIQP reformulation is
that the number of binary variables is proportional to the total
number of generators in the zonotopes defining SN(I, X I

0). When
(X0(i),W , V ) are zonotopes, complexity can be managed using
existing methods for reducing the number of generators in each
Z(i, j) (Althoff et al., 2010). This approach overestimates Z(i, j),
leading to a restriction of (16), and hence an optimal input
that is feasible in (16) but has a larger objective value than
necessary for separation. Case studies in Scott, Findeisen et al.
(2013) show that this approach achieves large efficiency gains
with minor added conservatism. In the present case, a similar
reduction in the number of binary variables could be achieved by
applying zonotope reduction methods to each Z+(i, j). However,
even reduction to a first-order zonotope (i.e., a parallelotope)
leaves as many generators as the dimension of the set, which
is much larger for Z+(i, j) than Z(i, j); i.e., ((N + 1)ny + 2nc)
versus (N + 1)ny, where nc is the number of constraints in each
Ψ̃0:N(0, i, X0(i)). A more flexible approach is to reduce Z (i, j)
using constrained zonotope techniques that can reduce both the
number of generators and constraints (Scott et al., 2016), and to
form Z+(i, j) only subsequently. The most aggressive reduction
possible with this scheme takes Z (i, j) to a first-order (N + 1)ny-
dimensional zonotope. Remarkably, this results in an optimization
problem with complexity that is independent of nw , nv , or nx.
Finally, (Scott et al., 2014) suggests several other complexity
reduction methods that are readily extended, including tests to
eliminate pairs of models satisfying (15) for all feasible ũ prior to
optimization.

4. Closed-loop input design

In the previous section, it was observed that an open-loop input
ũ will provide a complete fault diagnosis via the test (14) if and
only if ũ ∈ SN(I, X I

0). Moreover, a method was outlined for
computing an optimal element of this set. This section considers
the same input design problem in closed-loop; i.e., under the
assumption that uK+1 can be synthesized during the time interval
[K , K+1]with full knowledge of themeasurements ỹ0:K . As before,
the objective is to guarantee that (14) will hold for exactly one
i ∈ I. However, in the closed-loop setting, the requirement (15)
is too strong because ỹ0:K provides additional information about
the initial states, disturbances, andmeasurement noises consistent
with each model. Thus, diagnosis can potentially be achieved by
an input that is not an element of SN(I, X I

0), and is better than any
such element in terms of length and/or objective value.

The following development shows that, at each 0 ≤ K < N ,
the information provided by the measurements ỹ0:K can be
expressed in terms of the states X̂K+1|K (i) of a bank of set-valued
observers. Consequently, a sufficient condition for an updated
input ũK+1:N−1 to ensure diagnosis via (14) can be expressed as
the open-loop condition ũK+1:N−1 ∈ SN−K−1(I, X̂ I

K+1|K ), where
X̂ I
K+1|K ≡ {X̂K+1|K (i)}i∈I. Note that set-valued observers have been

used extensively for passive fault diagnosis (Ingimundarson, Bravo,
Puig, Alamo, & Guerra, 2009; Rosa, Silvestre, Shamma, & Athans,
2010; Seron, Zhuo, De Dona, & Martinez, 2008), and in Scott et al.
(2014) to reduce the cost of computing open-loop active inputs
when N is large. However, the input was not updated online, so
the approach here is distinct. Furthermore, this section extends the
preliminary results in Raimondo, Braatz et al. (2013) by enabling
the use of improved observers via the developments in Section 2.1
and Section 3.

4.1. Set-valued observers and the online update

The state of a set-valued observer at K + 1 is a set X̂K+1|K that
contains all xK+1 consistentwith (1)–(2), the constraints x0 ∈ X0(i)
and (wk, vk) ∈ W × V , and the measured outputs yk for all
k ≤ K . The subscript K + 1|K indicates that the observer state
uses all information available at time K , and distinguishes X̂K+1|K

from its refinement based on yK+1, X̂K+1|K+1. For each i ∈ I, we
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use a set-valued observer defined recursively through the relations
(dropping the i’s for brevity)

X̂k|k ⊃ X̂k|k−1 ∩ {xk : Cxk ∈ (yk − s)⊕ (−Dv)V }, (22)

X̂k+1|k ⊃ AX̂k|k ⊕ Buk ⊕ r ⊕ BwW , (23)

with X̂0|−1 ≡ X0(i). We assume in Section 4 that constrained
zonotopic enclosures X0(i) are available prior to k = 0, and address
the case where no such information is available in Remark 2 after
the developments of Section 5.1. Note that the sensitivity of the
observer to X0(i) diminishes with time and depends on the size of
the measurement error set V .

An observer is called exact if (22)–(23) hold with equality,
and conservative if at least one superset relation is strict. In
order to execute the required set operations, X̂k|k and X̂k+1|k are
typically represented by simple classes of sets such as ellipsoids,
parallelotopes, or zonotopes (Bravo et al., 2006; Chisci, Garulli,
& Zappa, 1996; Rosa et al., 2010). Often, some of the required
operations do not have exact representations within the class and
must be overapproximated, leading to a conservative observer
(e.g., zonotope intersection in Bravo et al., 2006).

Here, we use constrained zonotopic observers constructed by
directly applying (7)–(9) to the operations in (22)–(23). Note that
the intersection in (22) is exactly (9) with R = C and Y =

(yk − s)⊕ (−Dv)V . In principle, this observer is exact. In practice,
however, the complexity of the exact observer states quickly
becomes prohibitive. This fact severely limits the utility of existing
exact observers using polytopes in H-rep (Rosa et al., 2010;
Tabatabaeipour, 2015). Using the CG-rep, we avoid this issue by
reducing X̂k+1|k in each step to a target number of generators and
constraints using the methods in Scott et al. (2016). Although this
approach makes our observer conservative, comparisons in Scott
et al. (2016) show that its tradeoff between cost and complexity is
significantly better than existing methods.

Theorem4 (see the Appendix for proof) provides the theoretical
basis for updating an active input online at 0 ≤ K < N based on the
states of set-valued observers, X̂K+1|K (i), ∀i ∈ I. Specifically, we
prove that anupdated input ũK+1:N−1 ensures diagnosis via (14) if it
separates (I, X̂ I

K+1|K ) inN−K −1 steps. This requires the following
lemma, which shows that (14) can only hold if the future output
sequence ỹK+1:N lies in the set of outputs reachable from X̂K+1|K (i)
in N − K − 1 steps. For any k ≥ −1, let Φ̂k+1(ũ0:k, ỹ0:k, i) denote
the state X̂k+1|k(i) of (22)–(23) given ũ0:k and ỹ0:k.

Lemma 3. Choose any i ∈ I, ũ ∈ RnuN , ỹ ∈ Rny(N+1), and 0 ≤

K < N, and define (ũ−, ũ+) ≡ (ũ0:K , ũK+1:N−1) and (ỹ−, ỹ+) ≡

(ỹ0:K , ỹK+1:N). Then

ỹ ∈ Ψ̃0:N(ũ, i, X0(i)) =⇒ ỹ+ ∈ Ψ̃0:N−K−1(ũ+, i, X̂K+1|K (i)),

where X̂K+1|K (i) ≡ Φ̂K+1(ũ−, ỹ−, i). The converse holds for the exact
observer.

Theorem 4. Using the notation of Lemma 3,

ũ+ ∈ SN−K−1(I, X̂ I
K+1|K ) =⇒ (24)

ỹ ∈ Ψ̃0:N(ũ, i, X0(i)) for at most one i ∈ I.

The converse holds for the exact observer.

4.2. The direct method

In light of Theorem 4, a closed-loop input could be constructed
by computing updated open-loop inputs within a moving horizon
framework as follows. Prior to time k = 0, the set-valued observers
(22)–(23) are initialized via X̂0|−1(i) ≡ X0(i), ∀i ∈ I. Then,
a minimum separation horizon N and an optimal input ũ0:N−1
separating (I, X I

0) in N steps are computed as in Section 3. Now,
consider a generic time k ≥ 0, with previously computed data
uk and X̂k|k−1(i) available. At time k, uk is injected, yk is observed,
X̂k+1|k(i) is computed via (22)–(23) for each i ∈ I, and a new
optimal input ũk+1:N−1 is computed that separates (I, X̂ I

k+1|k) in at
most N − k − 1 steps. At k + 1, uk+1 is injected and the process is
repeated.

A drawback of this scheme is that it does not consider that the
updated input may be worse than the previous input. This cannot
occur if exact observers are used, but does happenwith the inexact
observers used here. To see that a previous input can be better, let
ũk:N−1|k−1 denote the optimal open-loop input computed at time
k − 1 (as indicated by the additional subscript |k − 1). At time
k, uk|k−1 is injected, leaving the shifted sequence ũk+1:N−1|k−1. If
implemented, the shifted sequence would guarantee diagnosis at
N by design. Even so, the shifted sequence does not necessarily
separate (I, X̂ I

k+1|k) when an inexact observer is used because the
observer states can be more conservative at k than they were are
k − 1, when the shifted sequence was designed (as the converse
of Theorem 4 does not hold). Thus, the attempt to compute a
better input sequence at k by finding the optimal input separating
(I, X̂ I

k+1|k) may fail because either no such input exists, or the
best among these inputs is not better than the shifted sequence.
The below algorithm fixes this problem by retaining the shifted
sequence in such cases (Step 9).

Algorithm 1 describes the complete moving horizon input
design method, where ũCL denotes the synthesized closed-loop
input sequence, Ldenotes the last time atwhich the input sequence
was updated (see Step 9), and k and L are absolute times, whereas
N is a horizon; i.e., the time required for diagnosis since the last
input update.

Algorithm 1 (Input: I, W , V , X I
0).

(1) Compute the minimum horizon N and an optimal ũ0:N−1|−1
separating (I, X I

0) in N steps.
(2) Set k = 0, L = −1.
(3) Inject uCL

k := uk|L.
(4) Measure yk.
(5) Remove i from I if

ỹL+1:k ∉ Ψ̃L+1:k(ũCL
L+1:k−1, i, X̂L+1|L(i)). (25)

(6) If k = L + 1 + N , terminate with output Iout := I.
(7) For each i ∈ I, compute X̂k+1|k(i) via (22)–(23).
(8) Compute the minimum horizon N∗ and an optimal input

ũk+1:k+N∗|k separating (I, X̂ I
k+1|k) in N∗ steps.

(9) If ũk+1:k+N∗|k is shorter than the shifted sequence ũk+1:L+N|L,
or if it is the same length and has a smaller objective value,
assign N := N∗ and L := k.

(10) Assign k := k + 1 and go to Step 3.

The next theorem is proven in the Appendix.

Theorem 5. Let N denote the value of N computed in Step 1 of Algo-
rithm 1. If N < ∞, then Algorithm 1 terminates in β ≤ N steps with
|Iout| = 1, and i ∉ Iout implies

ỹ0:β ∉ Ψ̃0:β(ũCL
0:β−1, i, X0(i)). (26)

Remark 1. In Algorithm 1, uCL
k+1 is computed before yk+1 becomes

available (i.e., during the interval [k, k+1]), which is different from
(Raimondo, Braatz et al., 2013), where uCL

k+1 depends on yk+1. The
latter is sensible only when the online computation time is much
faster than the sampling time, which is unlikely here but may be
possible for the explicit method described in Section 5.
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5. Explicit method

The online cost of the direct method is dominated by the
computation of the new separating input in Step 8. This section
moves this computation off-line at the expense of a weaker
set-valued observer, leading to an explicit control law that
approximates the action of the direct method. In Raimondo, Braatz
et al. (2013), an explicit method was presented for the case where
C(i) is invertible for all i ∈ I. The solution here requires only
observability and enables the use of more accurate observers.

Assumption 1. For each i ∈ I, (1)–(2) is observable and Ω + 1 is
the maximum observability index over all models. Moreover, sets
U ⊂ Rnu and Y ⊂ Rny are known that contain all permissible
inputs and all possible outputs, respectively, for all i ∈ I and k ∈ N.

Consider the computation of the updated sequence at time K .
The difficulty in moving this computation offline is that the sets
X̂K+1|K (i) are not known a priori. These sets depend on the sets
X0(i), which are known a priori, but also on the sequences ũ− ≡

ũ0:K and ỹ− ≡ ỹ0:K . To circumvent this, consider a partition of
U × Y into hyperrectangles Pσ ≡ Uσ × Yσ indexed by σ ∈ S ≡

{1, . . . , nσ }. Each permissible pair (ũ−, ỹ−) can now be assigned
to a set of the form Pσ0:K ≡ Pσ0 × · · · × PσK . The basic idea
behind the explicit method is compute offline a set of sequences ũ
indexed by σ0:K , each of which is appropriate for any pair (ũ−, ỹ−)
in Pσ0:K . Then, the online computation is reduced to simply looking
up which σ0:K the measurements belong to.

Two problems are evident. First, the number of input sequences
to be computed offline for use at K is |S|K+1, which is unmanage-
able for large |S| and K . Second, because we consider a finite diag-
nosis horizon, the inputs prepared for use at K are different from
those needed at K + 1. We address both problems here by design-
ing observers whose states at K + 1 depend only on (uK−j, yK−j)
with 0 ≤ j ≤ J , and do not depend on X0(i) at all.

5.1. Finite-memory set-valued observers

LetΩ be as inAssumption 1 and choose any integersK ≥ Ω and
J ∈ [Ω, K ]. Our aim is to construct an observer X̂K+1|K (i) based only
on the measurements ỹK−J:K and knowledge of the corresponding
inputs ũK−J:K . Using the notation of Section 2.2 and omitting the
i-dependence for convenience, we have

xK+1 = φJ+1(ũK−J:K , xK−J , w̃K−J:K , ṽK−J:K+1), (27)

ỹK−J:K = ψ̃0:J(ũK−J:K−1, xK−J , w̃K−J:K−1, ṽK−J:K ). (28)

These equations can be readily written in matrix form,

P
 xK+1
xK−J


= Q


ũK−J:K
ỹK−J:K


+ R


w̃K−J:K
ṽK−J:K


+ d (29)

where, e.g., P =


I −AJ+1

0 −C̃Ã


with C̃ and Ã as in Section 2.2. Since

J ≥ Ω , Assumption 1 implies that C̃Ã has full column rank, and
hence so does P. Thus, we may apply elementary row operations
to (29) by forming the augmented matrix [P|Q R d] and taking P
to its reduced row echelon form


I
0


by Gauss elimination, where

the zero matrix is [(J + 1)ny − nx]× 2nx. This puts (29) in the form xK+1
xK−J
0


=

 Q̂1

Q̂2

Q̂3

 
ũK−J:K
ỹK−J:K


+

 R̂1

R̂2

R̂3

 
w̃K−J:K
ṽK−J:K


+

 d̂1

d̂2

d̂3

 .
(30)
Since these operations eliminate the dependence of xK+1 on xK−J ,
the second block row in (30) is no longer needed. For fixed values
of (ũK−J:K , ỹK−J:K ), the first block row can now be used to compute
an enclosure of xK+1, noting that (w̃K−J:K , ṽK−J:K ) ∈ W̃ × Ṽ .
Moreover, the third block row imposes further constraints on the
possible values of (w̃K−J:K , ṽK−J:K ) that can be used to sharpen
this enclosure using the CG-rep. More generally, consider the case
where (ũK−J:K , ỹK−J:K ) is not known exactly, but is known to lie in
some partition elementUσ ×Yσ with σ ≡ σ0:J of length J+1. Then, xK+1

0


∈


Q̂1

Q̂3


(Uσ × Yσ)⊕


R̂1

R̂3

 
W̃ × Ṽ


⊕


d̂1

d̂3


. (31)

Since the hyperrectangles Uσ and Yσ can be written in G-rep, the
CG-rep of the right-hand side of (31) is easily computed using
(7)–(8). For brevity, denote this set simply by {Gσ, cσ,Aσ, bσ

}.
Then, (xK+1, 0) ∈ {Gσ, cσ,Aσ, bσ

}, and partitioning Gσ and cσ into
block rows accordingly, Proposition 3 in Scott et al. (2016) shows
that this relation is equivalent to

xK+1 ∈ X̂σ
K+1:K (i) ≡


Gσ
1 , c

σ
1 ,


Aσ

Gσ
2


,


bσ

−cσ
2


. (32)

This step provides the desired observer state X̂σ
K+1|K in CG-rep.

If a zonotopic observer is desired, the constraints can simply be
dropped, which is equivalent to dropping the third block row
in (30) and is done in all numerical experiments with zonotopic
observers herein. An alternative option is eliminate the constraints
from (32) using the constrained zonotope reduction techniques
in Scott et al. (2016). The constrained zonotopic observers used
herein compute X̂σ

K+1|K as in (32) and subsequently reduce the
number of constraints and generators to target values using these
techniques.

We call J+1 thememory of the observer, whichmust be at least
Ω + 1. The observer becomes more accurate as J increases. On the
other hand, the first observer state only becomes available at k = J .
In the meantime, no active input can be computed, and we simply
apply uk = 0 for k ≤ J .

Remark 2. The development of the direct method in Section 4.2
assumes that the polytopes X0(i) are known. The preceding
developments can be used to eliminate this assumption as follows.
The input is set to 0 for 0 ≤ k ≤ Ω . At k = Ω , enough information
is available to compute X̂σ

Ω+1|Ω(i), ∀i ∈ I, as discussed above. In
this computation, the right-hand side of (31) uses the fixed values
(ũK−J:K , ỹK−J:K ) in place of the set Uσ × Yσ . The observer (22)–(23)
is then initialized using X̂σ

Ω+1|Ω(i) and Algorithm 1 proceeds as
written.

5.2. The explicit method

Consider applying the finite-memory observer with memory
J + 1 for each i ∈ I, and denote the states X̂σ

K+1|K (i) for all i ∈ I
and σ ∈ S J+1

≡ S×· · ·× S. An essential feature of these observers
is that the states X̂σ

K+1|K (i) can be computed entirely offline, and
provide valid enclosures of the states xK+1 consistent with each
i ∈ I and any (ũK−J:K , ỹK−J:K ) in the partition element Uσ × Yσ .
Therefore, an optimal input separating (I, X̂σ,I

K+1|K ) can be computed
offline for each partition element σ ∈ S J+1.

Algorithm 1 is modified as follows. The input uCL
k is set to 0 for

0 ≤ k ≤ J . Now, consider any generic time k ≥ J with a pre-
computed input uCL

k available. At time k, Steps 3–5 are executed
as written. Steps 7–8 are accomplished by simply looking up the
partition element σ ∈ S J+1 such that (ũK−J:K , ỹK−J:K ) belongs
to Uσ × Yσ , and retrieving the pre-computed observer states
X̂K+1|K (i) ≡ X̂σ

K+1|K (i) and input ũOL
k+1:k+N∗|k ≡ ũ(σ). The remainder
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of the algorithm is unaltered. This procedure defines an explicit
control law, and we refer to Algorithm 1 with these modifications
as the explicit method.

The explicit method has a clear computational advantage
over the direct method, but it uses a weaker observer. Thus,
updated inputs will be accepted less frequently in Step 9,
thereby diminishing the advantages of a closed-loop input design
procedure. Moreover, J measurements must be accumulated
before the active input sequence can begin. Finally, note that
Step 5 eliminates some i ∈ I prior to termination, which leads to
the ability to compute improved input sequences in subsequent
steps. To take full advantage of this ability in the explicit method,
it is necessary to compute additional input sequences for every
partition element that separate, respectively, every possible subset
of models in I.

6. Numerical examples

6.1. Example 1

The first example compares the open-loop input designmethod
in Scott et al. (2014), which only permits X0(i), W , and V to be
zonotopes, with its extension in Section 3, which permits arbitrary
convex polytopes using constrained zonotope computations. Our
goal is to show that significant performance gains can be achieved
with only a minor increase in complexity. Consider the three
models defined by

A(1) =


0.6 0.2

−0.2 0.7


, A(2) =


0.6 0

−0.2 0.7


, A(3) =


0.6 0.2
0 0.7


,

and, for all i ∈ I ≡ {1, 2, 3},

B(i) =


−0.3861 0.1994
−0.1994 0.3861


, Bw(i) =


0.1215 0.0598
0.0598 0.1215


,

C(i) =


1 0
0 1


, Dv(i) =


1 0
0 1


, r(i) = s(i) =


0
0


.

Model i = 1 is nominal, while 2 and 3 have system faults. The
measurement noise is a zero-centered interval, given in G-rep
as V = {0.2I2×2, 0}. In contrast, X0(i) and W are chosen to be
constrained zonotopes for all i ∈ I:

W =


0.5 0 0.5
0 0.5 0.5


,


0
0


, [ 1 0.5 0.5 ] , −1


, (33)

X0(i) =


0.1 0 0.1
0 0.1 0.1


,


0
0


, [ 1 0.5 0.5 ] , 1


. (34)

The sets X0(i) are generally the results of observers, e.g., as in
Section 5.1, and may not be zonotopes. Similarly, W is often a
polytope when it is used to bound unmodeled nonlinear dynamics
(Dang, Le Guernic, & Maler, 2011). Finally, we require ∥uk∥∞ ≤ 3.

To apply the zonotopic method in Scott et al. (2014), W
and X0(i) are overapproximated by zonotopes by dropping the
constraints in (33)–(34). As described in Section 3, this method
conservatively reduces the number of generators in each Z(i, j)
to a fixed value prior to optimization. We chose (N + 1)ny here.
Similarly, in the method of Section 3, Z (i, j) is reduced to 2
constraints and (N + 1)ny + 2 generators. Fig. 1 clearly shows
that the use of constrained zonotopes leads to better performance
in both the length and norm of the input required to guarantee
diagnosis. Additionally, the constrained zonotope-based approach
also requires less time (0.01 s versus 0.13 s2). This counter-
intuitive result is due to the fact that the constrained zonotope-
based approach provides a diagnosis with a much shorter horizon
N (if the horizons were the same, the computation time of the
zonotope-based approach would be lower).

2 Laptop PC (Intel i7, 2.8 GHz, 8 GB RAM) running Windows 7 and using a single
core; optimization using CPLEX 12.4.
Fig. 1. Length andnormof open-loop inputs required for diagnosis using zonotopes
and constrained zonotopes in Example 1.

Fig. 2. Length andnormof open-loop inputs required for diagnosis using zonotopes
and constrained zonotopes in Example 2.

6.2. Example 2

To show the scaling of the proposedmethods,we repeat the first
comparison for a 10-state model with B(i) = 0.5I10×10, Bw(i) =

0.05I10×10, and C(i) = Dv(i) = I10×10, ∀i ∈ I ≡ {1, 2, 3}.
Moreover,

A(1) =



0.5 0.5 −0.5 −0.5 0 0 1 1 −0.1 0.1
0.5 0.5 −0.5 −0.5 1 1 0 0 −0.1 0.1

−0.5 0.5 −0.5 −0.5 0 0 1 0 −0.1 0.1
0.5 −0.5 −0.5 0.5 1 0 1 0 0.1 −0.1

−0.5 −0.5 −0.5 −0.5 0 0 1 1 0.1 0.1
0.5 0.5 −0.5 0.5 1 0 0 1 0.1 0.1
0.5 −0.5 0.5 −0.5 1 0 0 1 −0.1 −0.1

−0.5 0.5 0.5 −0.5 1 0 0 0 0.1 0.1
0.5 0.5 0.5 0.5 0 0 0 0 0.1 −0.1

−0.5 −0.5 −0.5 0.5 1 1 1 1 0.1 −0.1


,

and A(2) = A(3) = A(1) with the modifications aj,1(2) = 0 for
all j ∈ {1, . . . , 5}, and ajk(3) = 0 for all j ∈ {8, 9, 10} and
k ∈ {9, 10}. A(2) and A(3) are chosen to differ from A(1) in only
a few entries in order to make the separation problem challenging.
Finally, V = {0.1I10×10, 0} and, letting 1 be a column vector
of 10 ones, X0(i) = {0.4 [I10×10 1] , 0} , ∀i ∈ I, and W =
0.6 [I10×10 110] , 0, 0.51T, −1


. As in Example 1, each Z(i, j) is

reduced to (N+1)ny generators and eachZ (i, j) to two constraints
and (N + 1)ny + 2 generators.

Fig. 2 shows that the new constrained zonotope method
outperforms the zonotope method again. Remarkably, it is also
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Table 1
Fault model parameters.

Model Ra (�) L × 10−3 (H) Ke × 10−2 (V rad/s) J1 × 10−4 (N m s2/rad) fr×10−4 (N m s/rad)

1 1.2030 5.5840 8.5740 1.3528 2.3396
2 1.7725 5.5837 8.0203 1.3320 2.3769
3 1.4365 8.7548 7.7020 1.4185 4.1279
substantially more efficient, taking only 5.92 s compared to 129 s.
This is because the horizon required for diagnosis is reduced from
5 to 4, and due to the complexity of the considered models, this
leads to a dramatic reduction in computational effort.

6.3. Example 3

Next, the closed-loop input designmethodof (Raimondo, Braatz
et al., 2013) for zonotopic (X0(i),W , V ) is compared with its
extension in Section 4, which enables more accurate observers
using constrained zonotopes. consider the following model of a
low-frequency permanent-magnet DC motor, where the input u is
the armature voltage, the states are the current i and motor speed
n, and the parameters Ra, L, Ke, Kt , J1, and fr are, respectively, the
resistance, inductance, torque constant, back EMF constant, motor
inertia, and friction coefficient:

di(t)
dt

dn(t)
dt

 =


−Ra/L − Ke/L
Kt/J1 − fr/J1

 
i(t)
n(t)


+


1/L
0


u(t),


y1(t)
y2(t)


=


1 0
0 1

 
x1(t)
x2(t)


.

To keep the motor speed near 70.3 rad/s, the nominal input was
set to uc = 6 V, which was modeled by adding r(i) = B(i)uc to the
state equations. The active input us was added to uc , subject to the
constraint |us| ≤ 6 V. Table 1 gives the parameter values for the
nominal and two faulty models, corresponding respectively to an
increase of armature resistance and a disconnection of a coil from
the commutator bar (Liu, Zhang, Liu, & Yang, 2000) (Kt is always
determined by Kt = 1.0005Ke).

All models were discretized by forward Euler with a sampling
interval of 5 ms to obtain models of the form:

xk = A(i)xk−1 + B(i)uk−1 + Bw(i)wk−1, (35)
yk = C(i)xk + Dv(i)vk, (36)

where i = 1, 2, 3 distinguishes the nominal and faulty models.
Specifically, A(i), B(i), and C(i) were obtained from discretization,
and the measurement and process noise terms were added with
Dv(i) = I, i = 1, 2. The matrices Bw(i) were obtained assuming
5% uncertainty in Ra, Ke, J1, and fr , and computing the worst-case
additive error when the current and the motor speed are bounded
in, respectively, [−2, 2] A and [−150, 150] rad/s:

Bw(1) =


−0.0254 −0.0778
−0.3996 0.3026


, Bw(2)=


−0.0231 −0.0471
−0.3470 0.2798


,

Bw(3) =


−0.0282 −0.0589
−0.3926 0.1684


.

We assume X0(i) ≡


0.3 0
0 3


,

0.6
70


, V ≡


0.3 0
0 3


, 0


, and

W ≡


0.8 0 0.8 0.4
0 0.8 0.8 0.4


,

0
0

 
1 0 −1 0
0 −1 0.3 1


,


0
−1


. The sets

X0(i) are assumed to be unknown for the purposes of input design,
and are only used for simulating sample trajectories. The observers
used for closed-loop input design are initialized online using the
measurements (y0, y1)with u0 = u1 = 0 (see Remark 2). As in the
Fig. 3. Mean length and norm of closed-loop inputs required for diagnosis using
zonotopic and constrained zonotopic observers in Example 3.

previous examples, each Z(i, j) is reduced to (N + 1)ny generators
and each Z (i, j) to two constraints and (N + 1)ny + 2 generators.

Fig. 3 shows the mean length and norm of the optimal input
required for fault diagnosis for both closed-loop methods. Again,
the use of constrained zonotopes lead to better performance in
terms of both length and norm.

6.4. Example 4

The last example compares the explicit closed-loop approach of
Section 5with the direct closed-loop approach of Section 4 and the
open-loop approach of Section 3. Consider the models defined by

A(1) =

 0.6 0.2 0
−0.2 0.7 0
0 0.1 0.2


, (37)

A(2) = A(3) = A(1) with the modifications a1,2(2) = 0 and
a2,1(3) = 0, and, for all i ∈ {1, 2, 3},

B(i) =


−0.3861 0.1994
−0.1994 0.3861

0 0.12


, Bw(i) =

 0.1215 0.0598
0.0598 0.1215
0.01 0.002


, (38)

C(i) =


1 0 0
0 1 0.2


, Dv(i) =


1 0
0 1


, r(i) =


0
0
0


, s(i) =


0
0


.

Note that these models do not have full state measurements. The
extension of the explicit method to such systems is an important
contribution of this article relative to the preliminary results in
Raimondo, Braatz et al. (2013). Define V = {0.2I2×2, 0},

W =


0.1 0 0.1
0 0.1 0.1


,


0
0


, [ 1 0.5 0.5 ] , −1


, (39)

X0(i) =


0.1 0 0 0.1
0 0.1 0 0.1
0 0 0.1 0.1


,


0
0
0


, [ 1 0.5 0.5 0.5 ] , 1


. (40)

Finally, we impose the constraint ∥uk∥∞ ≤ 1.
The initial sets X0(i) are assumed to be unknown for the

purposes of input design. Rather, all methods inject u0 = 0, and
themeasurements (y0, y1) are used to compute the initial observer
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Fig. 4. Mean length and norm of inputs required for diagnosis in Example 4 using
the open-loop, direct closed-loop, and explicit closed-loop methods developed in
this article.

states X̂1|1(i). To achieve a consistent comparison with the closed-
loop methods, these initial states are used even for the open-
loop method, which computes an input sequence beginning with
u1. For the direct closed-loop approach, the complexity of the
optimization that must be solved online requires that uk is
computed before yk becomes available (i.e., during the interval
[k − 1, k]). Thus, this method must additionally inject u1 = 0,
predict X̂2|1(i), and produce its first nonzero control input in
time to inject at k = 2. In contrast, for the explicit closed-loop
approach, we assume that the online computation time is much
faster than the sampling time, so that uk can be computed with
knowledge of yk. Thus, the first nonzero control input for this
method is u1. Accordingly, we pre-computed separating inputs on
a grid on the 6-dimensional space of the variables (y0, y1,u0) only.
The grid covers the bounded interval [−1, 1] with four uniform
subintervals in each input dimension, and covers the interval
[−1.5, 1.5]with 6 uniform subintervals in each output dimension.
We assume that sets U ⊂ Rnu and Y ⊂ Rny contain all permissible
inputs and all possible outputs, respectively, for all i ∈ I and k ∈ N
(see Assumption 1). The total number of cells in 6-dimensions is
64

× 42
= 20,736. Inputs were computed on this grid for the task

of separating all three models, as well as for the tasks of separating
each combination of twomodels. The latter were used tomake use
of Step 5 in Algorithm 1 prior to the terminal time. The total cost
of pre-computing all inputs was 7.6 h on a single core (see specs
in Example 1). The cost of computing the input for separating all
three models on a single cell averaged 0.97 s. In all methods, each
Z (i, j) is reduced to two constraints and (N +1)ny +2 generators.

Fig. 4 shows that the explicit method outperforms the open-
loop method in both the mean length and norm of the inputs
required for diagnosis. On the other hand, the closed-loop direct
approach still provides the best performance, even though uk+1
is computed without knowledge of yk+1. As expected, the explicit
method provides some of the advantages of the direct closed-loop
approach when the cost of online optimization is infeasible.

7. Conclusions

A deterministic active FDI method based on constrained
zonotopes (CZs) was proposed in this paper. The use of CZs in
the optimization allows to consider general polytopic uncertainties
while maintaining the efficiency of the zonotope-based schemes.
The benefits have been demonstrated also in closed loopwhere CZs
permit to naturally capture the information coming from online
measurements, and lead to faster and less expensive diagnosis.
Finally, the use of finite memory observers allows, also for the case
of incomplete state measurements, to explicitly solve the input
design problem, thus dramatically reducing the online cost of the
proposed methods, at the cost of some additional conservatism.

Appendix. Proofs

Proof of Theorem 1. From (9) with R = I, the intersection on the
left-hand side of (15) is a constrained zonotope with constraintsAΨ0:N(i) 0

0 AΨ0:N(j)
GΨ0:N(i) −GΨ0:N(j)

 ξ =

 bΨ0:N(i)
bΨ0:N(j)

ψ0:N(ũ, j)− ψ0:N(ũ, i)

 . (41)

Thus, (15) holds iff @ξ satisfying ∥ξ∥∞ ≤ 1 and (41). Equivalently,
(15) holds iff ψ0:N(ũ, j) − ψ0:N(ũ, i) is not an element of the
constrained zonotope

GΨ0:N(i) −GΨ0:N(j)

, 0,


AΨ0:N(i) 0

0 AΨ0:N(j)


,


bΨ0:N(i)
bΨ0:N(j)


. (42)

Using ψ0:N(ũ, i) = C̃(i)B̃(i)ũ + ψ0:N(0, i) gives (19). �

Proof of Corollary 2. (21) ⇐⇒ (19) by Proposition 3 in Scott
et al. (2016). �

The below lemma is used in the proof of Lemma 3.

Lemma 6. Let i ∈ I, K ≥ 0, ũ0:K ∈ Rnu(K+1), ỹ0:K ∈ Rny(K+1), and
xK+1 ∈ Rnx . If ∃(x0, w̃0:K , ṽ0:K ) ∈ X0 × W̃ × Ṽ such that

ỹ0:K = ψ̃0:K (ũ0:K−1, i, x0, w̃0:K−1, ṽ0:K ), (43)
xK+1 = φK+1(ũ0:K , i, x0, w̃0:K , ṽ0:K ), (44)

then xK+1 ∈ Φ̂K+1(ũ0:K , ỹ0:K , i). The converse holds for the exact
observer.

Proof. Denote X̂k+1|k ≡ Φ̂k+1(ũ0:k, ỹ0:k, i), −1 ≤ k ≤ K .
Assume ∃(x0, w̃0:K , ṽ0:K ) as in the hypothesis and define x̃0:K ≡

φ̃0:K (ũ0:K−1, i, x0, w̃0:K−1, ṽ0:K ). For any 0 ≤ k ≤ K , if xk ∈ X̂k|k−1,
then (43) ensures that xk ∈ X̂k|k, and hence xk+1 ∈ X̂k+1|k by the
definition of xk+1. Since x0 ∈ X̂0|−1 = X0(i), finite induction gives
xK+1 ∈ X̂K+1|K .

Conversely, assume that xK+1 ∈ X̂K+1|K and the observer is
exact. To set up an inductive proof from K to 0, choose any 0 ≤ k ≤

K and any xk+1 ∈ X̂k+1|k. Since (22)–(23) hold with equality, there
must exist (wk, vk) ∈ W×V and xk ∈ X̂k|k−1 such that (1)–(2) hold.
Thus, finite inductionprovides x0 ∈ X0 and (wk, vk) ∈ W×V , ∀k ∈

{0, . . . , K}, such that (1)–(2) hold, which verifies (43)–(44). �

Proof of Lemma 3. If ỹ ∈ Ψ̃0:N(ũ, i, X0), then ∃(x0, w̃, ṽ) ∈ X0 ×

W̃ × Ṽ such that ỹ = ψ̃0:N(ũ, i, x0, w̃, ṽ). Define xK+1 ≡

φK+1(ũ−, i, x0, w̃−, ṽ−). By the definition of ψ̃ , it follows that ỹ+ =

ψ̃0:N−k−1(ũ+, i, xK+1, w̃+, ṽ+). But, by Lemma 6, xK+1 ∈ X̂K+1|K ,
and hence ỹ+ ∈ Ψ̃0:N−k−1(ũ+, i, X̂K+1|K ).

Conversely, if ỹ+ ∈ Ψ̃0:N−k−1(ũ+, i, X̂K+1|K ), then there exists
(xK+1, w̃+, ṽ+) ∈ X̂K+1|K × W̃+ × Ṽ+ with ỹ+ = ψ̃0:N−k−1(ũ+, i,
xK+1, w̃+, ṽ+). But, by Lemma 6, xK+1 ∈ X̂K+1|K implies that
∃(x0, w̃−, ṽ−) ∈ X0 × W̃− × Ṽ− such that

ỹ− = ψ̃0:K (ũ−, i, x0, w̃−, ṽ−), (45)
xK+1 = φK+1(ũ−, i, x0, w̃−, ṽ−). (46)

Letting, w̃ ≡ (w̃−, w̃+) and ṽ ≡ (ṽ−, ṽ+), it follows that ỹ =

ψ̃0:N(ũ, i, x0, w̃, ṽ), and hence ỹ ∈ Ψ̃0:N(ũ, i, X0). �
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Proof of Theorem 4. If ũ+ separates (I, X̂ I
K+1|K ) inN−K −1 steps,

then by definition ỹ+ ∉ Ψ̃0:N−k−1(ũ+, i, X̂K+1|K (i)) for all i ∈ I
except possibly one. By the contrapositive of Lemma 3, this implies
that ỹ ∉ Ψ̃0:N(ũ, i, X0(i)) for all i save one. The converse follows
from the converse of Lemma 3. �

Proof of Theorem 5. Let Tk denote the value of L + 1 + N in Step
6. The algorithm terminates when k = Tk. Clearly, T0 = N , and
Tk+1 = Tk unless N and L are updated in Step 9. An update requires
that k+N∗

≤ L+N , andhence Tk+1 = k+1+N∗
≤ L+1+N = Tk+1.

Thus, Tk is decreasing, and termination must occur for k = β ≤ N .
When k = β , Step 5 is visited and (25) reads

ỹL+1:β ∉ Ψ̃L+1:β(ũCL
L+1:β−1, i, X̂L+1|L(i)), (47)

where L is the time of the last update via Step 9. Let IL denote I
at the time of that update and note that ũCL

L+1:β−1 = ũL+1:β−1|L. By
design (see Step 8), this implies that (47) holds for all but one i ∈ IL,
and hence |Iout | = 1.

By Lemma 3, each i ∈ IL satisfying (47), and hence not in Iout ,
must also satisfy (26). Then, it remains to show that (26) also holds
for i ∉ IL. If i ∉ IL, then (25) must hold for some k < β , and
applying Lemma 3 with N := k and K equal to the value of L at k
implies (26). �
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