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Abstract—Objective: Contemporary and future outpatient
long-term artificial pancreas (AP) studies need to cope with
the well-known large intra- and inter-day glucose variability
occurring in type 1 diabetic (T1D) subjects. Here we propose an
adaptive Model Predictive Control (MPC) strategy to account for
it and test it in silico.
Methods: A Run-to-Run (R2R) approach adapts the sub-
cutaneous basal insulin delivery during the night and the
carbohydrate-to-insulin ratio (CR) during the day, based on some
performance indices calculated from subcutaneous continuous
glucose sensor data. In particular, R2R aims, first, to reduce the
% of time in hypoglycemia and, secondarily, to improve the % of
time in euglycemia and average glucose. In silico simulations are
performed by using FDA-accepted University of Virginia/Padova
T1D simulator enriched by incorporating three novel features:
intra- and inter-day variability of insulin sensitivity, different
distributions of CR at breakfast, lunch and dinner, and dawn
phenomenon.
Results: After about two months, using the R2R approach with
a scenario characterized by a random ±30% variation of the
nominal insulin sensitivity the time in range and the time in
tight range are increased by 11.39% and 44.87%, respectively,
and the time spent above 180 mg/dl is reduced by 48.74%.
Conclusions: An adaptive MPC algorithm based on R2R shows
in silico great potential to capture intra- and inter-day glucose
variability by improving both overnight and postprandial glucose
control without increasing hypoglycemia.
Significance: Making an AP adaptive is key for long-term real
life outpatient studies. These good in silico results are very
encouraging and worth testing in vivo.

Index Terms—Automatic adaptation, model, type 1 simulator,
subcutaneous glucose sensor, subcutaneous insulin delivery

I. INTRODUCTION

IN the past decade the diabetes community has seen un-
precedented advances in artificial pancreas (AP) technol-

ogy, which moved from short-term inpatient studies to short
trials at home employing wireless, portable, wearable AP
systems. A comprehensive review of the early developments
in the AP field and of the first inpatient closed-loop control
studies can be found in [1], and several recent reviews high-
light additional progresses in this field [2], [3], [4]. In [5]
an AP system based on a Modular Model Predictive Control
architecture (MMPC)has been proposed with the core module

C. Toffanin, M. Messori, F. Di Palma and L. Magni are with the Department
of Civil Engineering and Architecture, University of Pavia, Pavia, Italy. R.
Visentin and C. Cobelli are with the Department of Information Engineering,
University of Padova, Padova, Italy Via G. Gradenigo 6/B, 35131 Padova, Italy
(phone: +39 049 827 7661; fax: +39 049 827 7699; correspondence e-mail:
cobelli@dei.unipd.it). $ equal contribution. A preliminary version of the work
was presented at the 19th World Congress of the International Federation of
Automatic Control (IFAC) kept in Cape Town, South Africa, 24-29 August
2014.

being is the Model Predictive Control (MPC) described in
[6], [7]. For in-vivo testing the MMPC has been implemented
on the Diabetes Assistant (DiAs) [8], a wearable platform,
which has been previously tested and validated vs. Sensor
Augmented Pump therapy (SAP) in feasibility, safety and
efficacy. Several studies were conducted in adults in gradually
less structured and less monitored settings: inpatient first [9],
[10], 2-day in hotel settings [11], [12], and, recently, 2-month
evening & night at home [13]. The formerly conducted studies
had a limited duration and were restricted to evening and night,
thus allowing to neglect the impact of intra- and inter-day
glucose response variability of each subject, e.g. to insulin and
meals. The latter is a well-known phenomenon and became
a major issue with the introduction of longer (week/month)
home trials. This large subject-specific variability calls for an
adaptive controller.
In [14], [15] the control adaptation is obtained by updating
of the model parameters every sample (5 or 10 minutes).
Differently, in this paper an adaptive MPC algorithm based
on the Run-to-Run (R2R) approach is proposed. The R2R is
a well-known learning-type control algorithm [16] that learns
information about the control quality from the current run and
changes the control variable to apply in the next run. The R2R
strategy has already been used for glucose control in patients
with Type 1 diabetes (T1D) on the basis of a few daily self-
monitoring blood glucose (SMBG) measurements [17], [18],
[19], [20], [21] or using continuous glucose monitoring (CGM)
[22], [23], [24], [25], [26], [27] to adapt day-by-day basal
insulin delivery or the insulin meal bolus.
R2R in the AP context (i.e. with continuous time (5-10
minutes) closed-loop control suggestions) was introduced in
[28], where the aggressiveness of the controller was adapted
by using the maximum and minimum glucose values provided
by CGM. In this work, we propose a much more realistic
R2R approach for tuning the MPC algorithm which adapts the
basal insulin delivery during the night and the time-varying
carbohydrate-to-insulin ratio (CR) during the day. The R2R
adaptation is based on well-accepted performance metrics, e.g
the % time spent below & above the euglycemic range and
average glucose, with priority given to avoid hypo phenomena.
In silico simulations are performed by using the 2013 version
of the FDA-accepted University of Virginia/Padova Simulator
[29] enriched by three novel features: i) incorporation of intra-
and inter-day variability of insulin sensitivity (SI), described
in [30]; ii) different distributions of carbohydrate-to-insulin
ratio (CR) at breakfast, lunch and dinner; and iii) dawn
phenomenon.
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II. MULTIPLE-DAY T1DM SIMULATOR

The three new features introduced into the FDA-accepted
University of Virginia/Padova T1D simulator [29] to create a
realistic month scenario to test the MPC R2R adaptive strategy
are described below.

A. Intra- and Inter-day Variability of Insulin Sensitivity
A recent study was conducted on T1DM subjects, who

underwent a mixed meal with triple tracer approach at break-
fast (B), lunch (L) and dinner (D), with all meals having
same amount and composition [31]. This allowed to reliably
estimate SI at B, L, D: in fact, the particular protocol de-
sign allowed to eliminate the confounding effects of meal
composition, and thus we were able to relate the intra-day
glucose variability to the sole SI variability. The results of
the experiment revealed the existence of diurnal patterns of
SI, with, on average, SI lower at B than L and D. This
knowledge has been incorporated into the simulator [30], in
which SI is described by model parameters Vmx and kp3,
representing insulin action on glucose utilization by tissues and
on glucose production by the liver, respectively. In particular,
each in silico subject has been associated to a certain intra-day
variability pattern, namely the nominal pattern. Distribution of
Vmx and kp3 at B, L, and D are shown in Fig.1a,b. The inter-
day variability is then generated by randomly modulating the
nominal pattern (see Scenario 1 in Section III-C). In addition,
a slower increasing/decreasing trend of SI has been added (see
Scenario 2 in Section III-C).
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Fig. 1. (a): distributions of Vmx at Breakfast (left), Lunch (middle), and
Dinner (right). (b): distributions of kp3 at Breakfast (left), Lunch (middle),
and Dinner (right). (c): distributions of CR at Breakfast (left), Lunch (middle),
and Dinner (right).

B. Distributions of Carbohydrate-to-Insulin Ratio at Break-
fast, Lunch and Dinner

On the basis of the time-varying SI, each in silico subject
has been equipped with multiple CR, which vary at B, L, and

D. Multiple CR are determined similarly to what described
in [29]. Each in silico subject, with its specific SI nominal
pattern, receives 40, 80, and 60 g of carbohydrates (CHO),
respectively for the determination of CR values at B, L, and
D, starting from its basal level. The optimal insulin bolus is
determined so that (1) glucose concentration, measured 3 hours
after the meal, is between 85% and 110% of the basal; (2)
the minimum glucose concentration is above 90 mg/dl; and
(3) the maximum glucose concentration is between 40 and 80
mg/dl above the basal level. CR is then calculated as the ratio
between the amount of ingested CHO and the optimal insulin
bolus:

CRj =
CHOj

bolusj
, with j = B,L,D

Distribution of CR at B, L, and D are shown in Fig.1c.
Correction Factor (CF) was determined with the so-called 1700
rule [32] that is,

CF =
1700

TDI

where TDI is the total daily insulin, determined for each virtual
patient as the sum of optimal insulin boluses at B, L, and D,
and of the basal infusion rate.

C. Dawn Phenomenon

A model of nocturnal glucose variability has been developed
to describe the ”dawn” phenomenon, which consists in a rise
in blood glucose concentrations in early morning due to both
an increased Endogenous Glucose Production (EGP) and an
increased insulin requirements [33], [34]. In particular, Mallad
et al [33] quantified an almost 30 mg/dl increase in glucose
concentration from 3:00 am to 7:00 am and observed an
increase of EGP of about 1.5 mg/kg/min in the same interval.
Thus, we modelled the EGP variation as a linear increase
of basal EGP (EGPb) from 3:00 am to 7:00 am. Similarly,
the increased insulin requirement is described as a decrease
in insulin-dependent glucose utilization (Uid). Inter-subject
and inter-day variability of both time interval and magnitude
of EGPb increase and Uid decrease are obtained as random
modulation of the averages reported in [33].

III. RUN-TO-RUN STRATEGY FOR ADAPTIVE MPC TUNING

The MPC algorithm considered in this paper is the linear
model predictive control described in [7] used to calculate
insulin delivery during the day. The principal parameters used
for control tuning and individualization are the basal insulin
delivery, the CR, the CF and the body weight (BW). In
particular, the MPC computes an insulin variation with respect
to the basal profile, uses CR and CF (taking into account
also the insulin on board) to compute the insulin reference
in the cost function, and BW and CR to tune the control
aggressiveness (q). The goal of this paper is to propose an
adaptive MPC in order to: (i) optimize the tuning of the
controller parameters; (ii) adapt them to the slow inter-day
variability. A good candidate approach is the so-called R2R
strategy, which adjusts the parameters to be used in the next
day (run) on the basis of the performance measured during the
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previous day (run). In particular, at the end of each day the
MPC parameters are modified using the basal and CR values
updated through R2R strategy. The choice of the performance
metrics is a critical point. The success of R2R strategy needs
to be assessed by appropriate performance metrics. CGM
sensors (key component of an AP) allow to calculate clinically
relevant metrics, including, e.g., the percentage of time spent
in euglycemic range, the percentage of time spent below and
above the range, and the average glucose. In particular, since
a major concern in T1D therapy is to avoid hypoglycemia, the
updating law is primarily designed to lead to 0 the percentage
of time spent below 70 mg/dl. Once this primary goal is
achieved, a secondary updating law is designed to reduce the
percentage of time spent above 180 mg/dl and to lead the
average Blood Glucose (BG) to the desired target.

A. Algorithm: theory

This approach has been applied to update either the basal
insulin delivery or the meal insulin bolus. Since the bolus is
strictly related to the amount of carbohydrates in the meal,
the update is realized through the CR parameter. In order to
keep independent the effects of these two variables, the basal
delivery adaptation is computed during the night, i.e. when
no meal perturbations are present, whereas the CR update
is performed during the day by keeping the basal delivery
constant. Moreover, the evaluation intervals are continually
adapted in order to be disjointed, even in presence of varying
mealtimes across the days. The basal therapy is updated within
the night interval, where it is assumed to be constant. The run
period is set equal to 24h, which corresponds to the circadian
rhythm of subjects variations. For each run, the variation of the
basal insulin rate is proportional to the applied basal delivery
and to the performance indices computed during the previous
run. In order to give priority in avoiding hypoglycemia, a
switching condition depending on the percentage of time spent
below 70 mg/dl is introduced. In particular, at run k, the
updating law is defined as follows:

b(k + 1) =


b(k) − b̄kb1T

b
b (k) if T b

b (k) > 0

b(k) + b̄(kb2T
b
a(k)

+kb3
Gb

m(k) −Gb
T

Gb
T

)
if T b

b (k) = 0

where b is the basal insulin delivery, the constants kb1, kb2,
kb3 are the R2R gains, Gb

T is the glycemic target, b̄ is the
initial basal therapy, and T b

b , T b
a , Gb

m are the R2R performance
indices associated with the night interval. In particular, T b

b

is the percentage of time spent below 70 mg/dl, T b
a is the

percentage of time spent above 180 mg/dl, and Gb
m is the

average glucose concentration in the evaluation interval, which
is equal to the night interval delayed by 3 hours. It is worth
emphasizing that, if a meal occurs within this interval, its end
is set equal to the meal time. A similar updating law is used
to optimize the CR values, which are assumed to be constant
along n daily intervals [tBj ; tBj+1], j = 1, ..., n, with tBn+1 = tB1 .
In particular, at run k, the updating law for the jth interval is
defined as follows:

Bj(k + 1) =


Bj(k) − B̄jk

B
1 T

Bj

b (k) if TBj

b (k) > 0

Bj(k) + B̄j(k
B
2 TBj

a (k)+

kB3
G

Bj
m (k) −GB

T

GB
T

)
if TBj

b (k) = 0

where Bj(k) = 1/CRj(k) is the inverse of the CR at run
k during the interval j, the constants kB1 , kB2 , kB3 are the
R2R gains, GB

T is the glycemic target, constant for all the
intervals, B̄j is the initial value in the interval j, and T

Bj

b ,
T

Bj
a , GBj

m are the R2R performance indices associated with
the j interval. In particular, TBj

b is the percentage of time spent
below 70 mg/dl, TBj

a is the percentage of time spent above 180
mg/dl, and G

Bj
m is the average glucose concentration collected

in the jth evaluation interval. The maximum length of each
jth evaluation interval is 7h; it starts from the meal time in
the jth interval and is truncated if another meal occurs.

The stability of the proposed strategy can be demonstrated
by applying the method described in [27], where a R2R
approach for adapting a piecewise basal therapy in an open-
loop context is proposed. A key assumption is the use of
disjoint intervals. Indeed, if the intervals of basal and bolus
insulin delivery are not disjoint, the problem moves from
several scalar to a multivariable framework, with a significant
increase of complexity both in terms of algorithm tuning and
stability analysis.
The initial value b̄, B̄ are usually set equal to the values
adopted for the conventional basal-bolus therapy, while the
gains kb1, kb2, kb3,kB1 , kB2 , kB3 are equal for all the intervals and
all the patients.
The tuning of the gains must consider, in addition to stability
issues, performance and safety issues. In particular, there is
a trade-off between a R2R algorithm that learns quickly (the
value of the parameters mainly depends from the last days) or
slowly (the value of the parameters depends from a longer past
period). The main drawback of a faster R2R is that it is more
affected by occasional situations and prone to several safety
problems related to important inter-day life style variability.
The drawback of a slower R2R is that a longer time is required
to improve the performance. In any case, daily changes of
the patient’s life style (e.g. stress, exercise, different meals)
must be compensated by the MPC controller and not by the
R2R strategy that should only learn slow changes in patient
behaviour (i.e. weeks/month). In silico robustness scenarios
have been of great help in fine tuning the gains.

B. Real life algorithm

The introduced algorithm has strong theoretical properties,
but needs some adjustments in order to cope with the un-
certainties of a real life scenario and possible malfunctioning
of an AP system. In particular, the following aspects are
considered:

• Memory limitation: the AP system stores only a limited
amount of data, not allowing covering the entire 24-hour
period.
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• Malfunctioning: likely events are pump occlusions and
connectivity losses.

• User over rules: to ensure safety, the AP allows the user to
change all settings, including the controller suggestions
(boluses), the algorithm (from closed- to open-loop) or
by setting a temporary basal rate.

• Hypothesis violation: the algorithm assumes no over-
lapping between the intervals and non occurrence of
simultaneous events, e.g. only one meal per interval. Such
a situation is likely not happening in a real life scenario.

In order to handle the memory limitation, the update for
each parameter is computed as soon as the needed data have
become available, with the purpose to reduce the amount of
data to store. The update is performed only if the user has not
changed its clinical parameters and if no malfunctioning has
occurred. Indeed, these events would introduce changes in the
performance indices that are not directly caused by the control
algorithm tuning. Moreover, the data for a specific interval can
be limited by the occurrence of events like a previous meal
that still influences the glucose concentration or a closed-loop
interruption due to system failure; in this case the update is
computed only if the amount of available data is above a
certain threshold. Multi-consecutive meals are considered if
they occur in the same interval; in this case the CR update is
performed as usual by using as evaluation interval the union
of the evaluation intervals.

C. Simulation scenario

The R2R algorithm is tested on the 100 in silico adults
of the simulator described in Section II. The night interval
considered for basal insulin update is [0:00 am; 8:00 am] for
all the patients. The n (n = 3) time intervals that define the
piecewise constant CR are defined by tB1 = 8:00 am, tB2 =
1:00 pm, tB3 = 8:00 pm for all the patients.

The gains are fixed to kb1 = 0.15, kb2 = 0.175, kb3 = 0.005,
and Gb

T = 115 mg/dl, for the basal and to kB1 = 0.3, kB2 =
0.05, kB3 = 0.01, and GB

T = 115 mg/dl, for CR update.
Two in silico scenarios are considered: the first, Scenario

1, is a 56-day scenario allowing to test the ability of R2R
to optimize the tuning of controller parameters, and is char-
acterized by a random ±30% variation of the nominal in-
sulin sensitivity from the beginning and throughout the trial.
The second, Scenario 2, lasts 28 days and aims to test the
adaptation of R2R to a slow increasing/decreasing trend of
insulin sensitivity; this is realized by combining the insulin
sensitivity variability model with a linear modulation of the
nominal insulin sensitivity from ±10% at the beginning to the
±30% at the end of the trial. For both scenarios, the CR of
each interval is initialized with the nominal value randomly
modified of ±20%. Three meals per day are considered at
8:00 am, 1:00 pm, and 8:00 pm containing 40 g, 80 g, and 60
g of CHO, respectively; these settings are chosen in order to
mimic the habits occurring in real life, like those observed in
[13]. Moreover, if the BG falls below 65 mg/dl, the protocol
prescribes a rescue carbohydrate dose of 16 g, defined as hypo-
treatment (ht). Two ht are separated by at least 30 minutes.
The CGM sensor is affected by the error noise described in

[7]. The simulations are performed by using the closed-loop
MPC strategy (CL) described in [7] and the adaptive MPC
enhanced by R2R strategy (CLR2R).

D. Metrics and statistical analysis

Performance metrics follow the consensus statement end-
points for AP trial described in [35] and include average
(A) BG and standard deviation (SD), percentage of time
spent in euglycemic range [70-180] mg/dl (Tr), percentage
of time spent in tight range [70-140] mg/dl (Ttr), percentage
of time spent above 180 mg/dl (Ta), percentage of time spent
above 250 mg/dl (Ta250), percentage of time spent below 70
mg/dl (Tb), percentage of time spent below 60 mg/dl (Tb60),
percentage of time spent below 50 mg/dl (Th), average number
of ht per patient (#ht), percentage of basal, bolus and the total
daily insulin (TDI) delivered to the patient. These metrics are
computed during day & night (D&N), during night (N, 0:00
pm - 8:00 am), and as an average of all the post-prandial (PP)
periods (4h) of the specified week.

Median [25th, 75th] percentiles for non-Gaussian distributed
data and mean (± standard deviation) otherwise are reported
for the various indices. Confidence intervals on the mean or
median are reported as well. The gaussianity and homoscedas-
ticity of the data distributions are assessed by the Lilliefors test
and two-sample F-test, respectively. In order to evaluate the
significant differences, the more appropriated statistical test is
selected based on the characteristics of the data distributions.
If at least one distribution is non-Gaussian, the Wilcoxon
rank sum test is used; if both distributions are Gaussian and
homoscedastic, a two-sample t-test is performed; otherwise,
if the homoscedasticity is not satisfied, the two-sample t-test
with Satterthwaites approximation is used.

The performance of CL and CLR2R is also evaluated by
using the Control Variability Grid Analysis (CVGA) intro-
duced in [36] and subsequently improved in [6]. A single point
represents the couple of 2.5 and 97.5 percentiles of BG values
reached by the virtual patient during the considered week.

IV. RESULTS

Scenario 1: The results are shown in Figs.2-4. The simulated
BG on Week 1, Week 4, and Week 8 are represented in Fig.2
as median [25th, 75th] percentiles: the postprandial overshoots
detected after breakfast and dinner (Fig.2a) are considerably
reduced after a month of R2R (Week 4, Fig.2b). A further
reduction is achieved after two months (Week 8, Fig.2c), also
with a reduced BG variability.
Performance metrics are shown in Fig.3, where median
[25th, 75th] percentiles of average BG (a), percent time in
range (b), percent time in tight range (c) and percent time spent
above 180 mg/dl (d) are shown: while performance indices
in CL simulations remain substantially unchanged, all the
CLR2R indices improve day-by-day exhibiting a substantially
monotone trend.
CVGA plots (Fig.4) confirm the CLR2R improvement by
better populating the center of the A and B zones.
Numerical comparison of CL vs CLR2R on the whole trial
duration is reported in Table I for Scenario 1, where the
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Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8
A (mg/dl) 0.86% 2.51% 3.75% 4.81% 4.47% 5.38% 6.36% 6.29%
Tr (% ) 1.69% 6.15% 7.72% 8.31% 9.67% 9.52% 10.73% 11.39%
Ttr (%) 5.6% 15.31% 25.82% 28.37% 33.89% 43.05% 43.06% 44.87%
Ta (%) 7.94% 18.66% 28.30% 33.95% 42.67% 47.49% 46.81% 48.74%

TABLE I
COMPARISON OF THE PERCENTAGES OF IMPROVEMENTS REACHED

THROUGH THE USE OF THE R2R ALGORITHM WITH Scenario 1.

improvement shown by CLR2R is evident. All the performance
details on Week 1, Week 4 and Week 8, i.e. during the first, the
fourth and the last week of the trial, are reported in Table II. It
is worth noting that indices related to hypoglycemia, i.e. Tb,
Tb60, Th, #ht, are always non-Gaussian with median, 25th

and 75th percentiles equal to 0 in both CL and CLR2R. These
results do not mean the total absence of hypoglicemic events.
In fact, the CVGA reported in Fig.4 of Week 1, Week 4 and
Week 8 show that for some patients the minimum BG is less
than 50 mg/dl. In all the runs CLR2R is able to reduce the
points in D zone. Over the weeks there are no significant
changes of the basal and bolus percentages, while there is
a significant increase of TDI delivered by CLR2R vs. CL.

Table I shows the improvements of CLR2R measured as
percentage vs. CL along the 8 weeks of Scenario 1. After one
week: the time spent above 180 mg/dl is reduced by 7.94%,
the average BG is reduced by 0.86%, the time in tight range
is increased by 1.69%, and the time in range by 5.6%. After
a month (Week 4), the decrease of the time spent above 180
mg/dl is 33.95% and the average BG is decreased by 4.81%,
whereas the time in range is increased by 8.31% and the time
in tight range by 28.37%. After two months (Week 8), the
performance remains stable. The CR and basal changes carry
on during the R2R process and are reported in Table III.

Scenario 2: The results shown in Figs. 5-7 and Tables III,
IV, are similar to those described above. After 4 weeks, the
improvement of CLR2R vs. CL is evident: both median and
variability ([25th, 75th] percentiles) are decreased (Fig.5b).
The distribution of outcome metrics also highlights the im-
provement of the CLR2R vs. CL (which slightly worsens
the performance), revealing the ability of R2R approach to
follow the slow trend of inter-day variability. The comments on
hypoglycemic metrics and delivered insulin discussed above
still hold. All the performance details on Week 1 and Week 4
are reported in Table IV showing that, at the end of the trial
(Week 4), the performance obtained with both CLR2R and CL
are very similar to their counterparts at Week 4 of Scenario
1. CVGA results further underline the importance of the R2R
approach to control blood glucose in a time-variant fashion,
i.e. the sole CL is not fully adequate to follow slow inter-
day variations, with a consequent decrease of performance
with respect to the beginning of the trial; however this does
not affect the safety of the control, since the performance
are virtually superimposable to those obtained at Week 4 of
Scenario 1. The CRs and basal changes carry on during the
R2R process and are reported in Table III.

Fig. 2. Comparison of average glucose time courses in CL (blue) vs CLR2R

(magenta) on Week 1 (a), Week 4 (b), and Week 8 (c) of Scenario 1.
Continuous lines are the median across patients, with [25th, 75th] percentiles
as shading.

V. CONCLUSION

Making an AP adaptive is key for long-term real life
outpatient studies. An adaptive MPC algorithm based on R2R
has been presented and has shown in silico the great potential
to capture intra- and inter-day glucose variability. In silico
one- and two-month simulations have been performed by
using the FDA-accepted University of Virginia/Padova T1D
simulator enriched by three novel features: intra- and inter-
day variability of insulin sensitivity, different distributions of
CR at breakfast, lunch and dinner, and dawn phenomenon.
The R2R CGM based strategy uses the % of time spent
below 70 mg/dl, the % of time spent above 180 mg/dl, and
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Fig. 3. Performance metrics of CL (blue), and CLR2R (magenta) along the
8 weeks of Scenario 1: median (dots) [25th, 75th] percentiles (bars) of the
average BG (a), time in range (b), time in tight range (c) and time above 180
mg/dl (d) on 100 virtual patients.
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Fig. 4. CVGA of CL (blue square) vs CLR2R (magenta circle) on Week
1 (a), Week 4 (b), and Week 8 (c) of Scenario 1. Each point represents the
coordinates (x is the 2.5 percentile and y is the 97.5 percentile of glucose
values) associated to a single patient.
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Fig. 5. Comparison of average glucose time courses in CL (blue) vs CLR2R

(magenta) on Week 1 (a), and Week 4 (b) of Scenario 2. Continuous lines
are the median across patients, with [25th, 75th] percentiles as shading

the distance of average glucose from a target to adapt the
basal insulin delivery during the night and and the CR during
the day. Priority is given to avoid hypoglycemia, so that a
switching strategy is derived. Both overnight and postprandial
glucose control have been improved with no increase of
hypoglycemia events by the adaptive MPC R2R strategy.
These encouraging in silico results achieved in a realistic one
month conditions pave the way to an in vivo test of the
proposed adaptive strategy with potential benefits for T1D
subjects.
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Week 1
D&N N PP

A (mg/dl)
CL 151.35 (± 23.60) [146.66,156.03] 140.40 [129.06, 152.11] [137.78,144.50] 162.55 (± 32.04) [156.19,168.91]

CLR2R 150.05a (± 21.35) [145.82,154.29] 139.62a [129.26, 151.08] [137.10,143.22] 161.23a (± 29.28) [155.42,167.04]

SD (mg/dl)
CL 30.74 [24.44, 36.27] [29.20,32.65] 14.17 [11.37, 19.16] [13.82,16.43] 33.10 [27.29, 41.12] [32.24,36.15]

CLR2R 30.10a [24.24, 34.94] [28.51,31.77] 14.12 [11.55, 19.43] [13.87,16.43] 32.66a [26.82, 38.70] [31.62,35.15]

Tr (%)
CL 84.57 [71.91, 91.76] [77.64,84.18] 100.00 [96.27, 100.00] [96.87,99.48] 70.89 [48.60, 84.74] [60.77,70.96]

CLR2R 86.00a [74.56, 92.59] [79.82,85.67] 100.00a [96.99, 100.00] [97.81,99.90] 73.41a [52.49, 86.06] [64.01,73.49]

Ttr (%)
CL 35.71 [22.67, 59.12] [34.16,44.56] 47.53 (± 29.48) [41.68,53.38] 26.58 [9.67, 44.34] [23.50,32.98]

CLR2R 37.61a [25.22, 59.92] [35.97,46.06] 49.36a (± 28.56) [43.70,55.03] 28.12a [11.50, 45.15] [24.81,34.38]

Ta (%)
CL 14.49 [5.17, 27.61] [13.94,20.53] 0.00 [0.00, 2.64] [0.00,1.74] 28.37 [9.94, 51.40] [25.99,36.82]

CLR2R 13.34a [5.12, 25.26] [12.88,18.74] 0.00a [0.00, 1.76] [0.00,1.55] 26.57a [9.86, 47.51] [24.33,34.40]

Ta250 (%)
CL 0.00 [0.00, 1.55] [0.00,1.39] 0.00 [0.00, 0.00] [0.00,0.00] 0.00 [0.00, 3.10] [0.00,2.79]

CLR2R 0.00a [0.00, 1.12] [0.00,1.09] 0.00 [0.00, 0.00] [0.00,0.00] 0.00a [0.00, 2.23] [0.00,2.18]

% Bolus (%)
CL 40.53 [34.65, 45.15] [38.56,41.20] 0.00 [0.00, 0.00] [0.00,0.00] 60.43 [53.71, 64.71] [57.85,61.39]

CLR2R 40.37 [35.25, 44.98] [38.69,41.30] 0.00 [0.00, 0.00] [0.00,0.00] 61.13c [54.95, 65.17] [58.32,61.74]

% Basal (%)
CL 59.47 [54.85, 65.35] [58.80,61.43] 100.00 [100.00, 100.00] [100.00,100.00] 39.57 [35.29, 46.29] [38.60,42.15]

CLR2R 59.63 [55.02, 64.75] [58.69,61.31] 100.00 [100.00, 100.00] [100.00,100.00] 38.87c [34.83, 45.05] [38.26,41.68]

TDI (U)
CL 51.54 [44.01, 64.09] [51.37,56.92] 11.16 [9.48, 13.28] [10.84,11.98] 36.64 (±9.74) [34.71,38.57]

CLR2R 51.95a [44.29, 65.53] [51.75,57.70] 11.39a [9.66, 13.56] [11.00,12.21] 36.85 (±10.01) [34.86,38.83]
Week 4

D&N N PP

A (mg/dl)
CL 150.88 (± 23.29) [146.26,155.50] 141.94 (± 16.14) [138.74,145.14] 161.96 (± 32.27) [155.56,168.36]

CLR2R 143.62a (± 15.10) [140.62,146.61] 134.84a (± 9.93) [132.87,136.81] 154.41a (± 21.95) [150.05,158.76]

SD (mg/dl)
CL 30.78 [24.56, 36.01] [28.86,32.53] 14.08 [10.94, 18.79] [13.72,16.35] 32.27 [27.23, 39.95] [31.93,35.85]

CLR2R 27.57a [23.53, 32.81] [26.50,29.34] 14.62 [10.93, 17.91] [13.76,16.23] 31.07a [25.77, 36.09] [29.65,32.65]

Tr (%)
CL 83.89 [69.30, 91.33] [77.76,84.33] 100.00 [97.09, 100.00] [97.49,99.73] 70.23 [48.05, 83.99] [61.22,71.37]

CLR2R 90.86a [82.54, 95.06] [87.17,90.66] 100.00a [99.82, 100.00] [99.40,100.00] 82.27a [66.58, 90.73] [75.63,82.38]

Ttr (%)
CL 40.02 (± 23.02) [35.46,44.59] 46.90 (± 28.93) [41.16,52.64] 27.58 [9.29, 44.90] [23.13,33.18]

CLR2R 49.99a (± 17.90) [46.44,53.55] 58.62a (± 22.53) [54.15,63.09] 38.95a [21.19, 51.53] [32.72,41.08]

Ta (%)
CL 13.58 [5.32, 30.34] [13.56,20.24] 0.00 [0.00, 1.94] [0.04,1.49] 26.96 [10.26, 51.95] [25.24,36.54]

CLR2R 8.97a [4.61, 17.28] [8.73,12.13] 0.00a [0.00, 0.00] [0.00,0.00] 17.05a [8.95, 33.42] [16.69,23.58]

Ta250 (%)
CL 0.00 [0.00, 2.07] [0.00,1.16] 0.00 [0.00, 0.00] [0.00,0.00] 0.00 [0.00, 4.15] [0.00,2.32]

CLR2R 0.00a [0.00, 0.30] [0.00,0.29] 0.00 [0.00, 0.00] [0.00,0.00] 0.00a [0.00, 0.61] [0.00,0.59]

% Bolus (%)
CL 39.98 [34.56, 43.80] [38.25,40.93] 0.00 [0.00, 0.00] [0.00,0.00] 60.19 [53.14, 64.41] [57.32,60.86]

CLR2R 39.84 [35.31, 44.76] [38.41,40.98] 0.00 [0.00, 0.00] [0.00,0.00] 60.43 [54.90, 65.08] [58.53,61.36]

% Basal (%)
CL 60.02 [56.20, 65.44] [59.06,61.75] 100.00 [100.00, 100.00] [100.00,100.00] 39.81 [35.59, 46.86] [39.14,42.67]

CLR2R 60.16 [55.24, 64.69] [59.02,61.59] 100.00 [100.00, 100.00] [100.00,100.00] 39.57 [34.92, 45.10] [38.64,41.47]

TDI (U)
CL 52.05 [43.98, 65.04] [51.68,57.27] 11.19 [9.63, 13.36] [10.88,12.04] 36.89 (± 10.00) [34.91,38.88]

CLR2R 56.49a [46.31, 72.28] [54.64,61.87] 11.90a [10.08, 14.36] [11.59,13.00] 39.07a (± 11.97) [36.70,41.45]
Week 8

D&N N PP

A (mg/dl)
CL 147.97 [134.27, 167.09] [145.47,154.88] 142.59 (± 17.58) [139.11,146.08] 163.11 [138.83, 182.89] [154.99,168.04]

CLR2R 138.67a [132.39, 147.70] [137.22,141.98] 132.60a (± 9.91) [130.63,134.56] 148.33a [137.11, 159.92] [145.13,152.67]

SD (mg/dl)
CL 30.80 [24.67, 37.12] [29.43,33.07] 13.87 [10.92, 19.27] [13.78,16.52] 33.56 [27.75, 40.30] [32.38,36.27]

CLR2R 27.03a [23.35, 33.83] [26.59,29.86] 14.84 [12.45, 19.24] [14.34,16.82] 30.76a [26.11, 37.10] [29.88,33.30]

Tr(%)
CL 82.01 [69.88, 91.56] [77.06,83.67] 100.00 [94.87, 100.00] [96.33,99.55] 67.67 [49.30, 85.32] [60.68,70.79]

CLR2R 91.35a [84.59, 95.62] [88.45,91.93] 100.00a [99.87, 100.00] [99.78,100.00] 84.34a [70.61, 92.29] [78.57,84.98]

Ttr0 (%)
CL 36.12 [19.49, 58.25] [33.88,43.79] 46.68 (± 29.64) [40.80,52.56] 27.76 [9.09, 41.55] [22.66,32.80]

CLR2R 53.15a [43.59, 63.95] [50.14,56.85] 62.22a (± 20.78) [58.10,66.35] 42.22a [27.62, 54.22] [37.78,45.26]

Ta (%)
CL 15.10 [5.56, 29.50] [14.15,20.83] 0.00 [0.00, 3.39] [0.04,2.48] 27.60 [10.41, 50.70] [26.02,36.92]

CLR2R 7.74a [3.45, 14.28] [7.27,10.68] 0.00a [0.00, 0.00] [0.00,0.00] 15.17a [6.73, 28.36] [13.98,20.49]

Ta250 (%)
CL 0.00 [0.00, 2.83] [0.00,1.72] 0.00 [0.00, 0.00] [0.00,0.00] 0.00 [0.00, 5.65] [0.00,3.44]

CLR2R 0.00a [0.00, 0.05] [0.00,0.27] 0.00 [0.00, 0.00] [0.00,0.00] 0.00a [0.00, 0.11] [0.00,0.55]

% Bolus (%)
CL 40.51 [34.78, 43.48] [38.40,41.03] 0.00 [0.00, 0.00] [0.00,0.00] 60.73 [53.71, 64.07] [57.59,61.03]

CLR2R 39.80 [35.81, 43.83] [38.43,41.05] 0.00 [0.00, 0.00] [0.00,0.00] 60.15 [55.85, 64.27] [58.59,61.29]

% Basal (%)
CL 59.49 [56.52, 65.22] [58.97,61.60] 100.00 [100.00, 100.00] [100.00,100.00] 39.27 [35.93, 46.29] [38.97,42.41]

CLR2R 60.20 [56.17, 64.19] [58.94,61.57] 100.00 [100.00, 100.00] [100.00,100.00] 39.85 [35.73, 44.15] [38.71,41.41]

TDI (U)
CL 51.87 [44.25, 64.70] [51.57,57.06] 11.21 [9.62, 13.31] [10.88,12.02] 36.79 (± 9.83) [34.84,38.74]

CLR2R 60.78a [47.45, 75.19] [57.18,64.52] 12.30a [10.25, 15.33] [11.95,13.56] 40.63a (± 12.21) [38.20,43.05]
TABLE II

PERFORMANCE METRICS OF CL VS CLR2R AFTER ONE WEEK (WEEK 1), ONE MONTH (WEEK 4) AND TWO MONTHS (WEEK 4) WITH Scenario 1.
a P-VALUE < .001, b P-VALUE < .01, c P-VALUE < .05.

Scenario 2 after 4 weeks Scenario 1 after 4 weeks Scenario 1 after 8 weeks
CRB 15.4 [7.96, 25.07] [14.05, 19.33] 15.57 [7.69, 27.34] [14.86, 21.35] 23.79 [12.84, 36.12] [21.21, 29.41]

CRL (% ) 28.59 [14.61, 40.28] [24.99, 32.47] 32.43 [18.87, 44. 8] [27.96, 36.47] 46.05 [24.15, 59.32] [37.52, 49.61]
CRD (%) 30.5 [15.37, 43.2] [25.8, 34.27] 32.99 [15.28, 47.36] [27.58, 36.69] 43.64 [22.87, 60.66] [37.33, 48.54]
Basal (%) 7.94 [3.13, 24.05] [10.1, 17.32] 10.71 [3.27, 27.28] [10.65, 19.08] 15.76 [6.14, 36.93] [16.03, 26.88]

TABLE III
PERCENTAGES OF VARIATION DUE TO THE USE OF THE R2R ALGORITHM IN TERM OF MEDIAN [25th, 75th] PERCENTILES [CONFIDENTIAL INTERVALS].
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Week 1
D&N N PP

A (mg/dl)
CL 148.30 (± 16.25) [145.08,151.52] 136.50 [131.11, 147.83] [136.00,141.73] 159.65 (± 23.80) [154.92,164.37]

CLR2R 146.97a (± 14.76) [144.05,149.90] 136.10a [130.62, 146.51] [135.49,140.66] 158.16a (± 22.07) [153.78,162.54]

SD (mg/dl)
CL 30.41 [24.54, 34.68] [28.30,31.69] 14.07 [10.71, 19.52] [13.76,16.40] 32.58 [27.15, 39.82] [31.63,35.29]

CLR2R 29.51a [24.24, 33.71] [27.72,30.95] 13.94c [10.79, 19.41] [13.77,16.36] 31.94a [26.92, 38.37] [31.05,34.55]

Tr (%)
CL 86.22 [77.36, 92.21] [82.26,87.16] 100.00 [98.57, 100.00] [98.96,100.00] 74.14 [57.16, 84.92] [67.22,75.77]

CLR2R 87.29a [79.34, 93.19] [83.94,88.28] 100.00a [98.82, 100.00] [99.00,100.00] 76.10a [62.10, 86.74] [70.06,77.82]

Ttr (%)
CL 44.61 (± 18.15) [41.00,48.21] 53.76 [33.49, 67.12] [47.32,58.20] 28.03 [19.01, 43.66] [26.89,34.47]

CLR2R 46.09a (± 17.54) [42.61,49.57] 55.32a [36.04, 67.85] [49.00,59.45] 30.57a [20.24, 44.81] [28.46,35.86]

Ta (%)
CL 12.96 [6.57, 22.23] [11.85,16.78] 0.00 [0.00, 0.92] [0.00,0.72] 25.70 [12.50, 40.96] [22.44,31.33]

CLR2R 12.19a [6.35, 19.71] [10.88,15.33] 0.00a [0.00, 0.73] [0.00,0.61] 22.35a [12.14, 37.51] [20.78,28.85]

Ta250 (%)
CL 0.00 [0.00, 0.23] [0.00,0.24] 0.00 [0.00, 0.00] [0.00,0.00] 0.00 [0.00, 0.47] [0.00,0.49]

CLR2R 0.00a [0.00, 0.06] [0.00,0.14] 0.00 [0.00, 0.00] [0.00,0.00] 0.00a [0.00, 0.12] [0.00,0.29]

% Bolus (%)
CL 40.45 [35.36, 44.94] [38.75,41.45] 0.00 [0.00, 0.00] [0.00,0.00] 61.32 [55.39, 65.48] [58.29,61.69]

CLR2R 40.60 [35.41, 45.09] [38.92,41.50] 0.00 [0.00, 0.00] [0.00,0.00] 61.41c [55.96, 65.34] [58.66,61.97]

% Basal (%)
CL 59.55 [55.06, 64.64] [58.54,61.25] 100.00 [100.00, 100.00] [100.00,100.00] 38.68 [34.52, 44.61] [38.31,41.71]

CLR2R 59.40 [54.91, 64.59] [58.49,61.08] 100.00 [100.00, 100.00] [100.00,100.00] 38.59c [34.66, 44.04] [38.03,41.33]

TDI (U)
CL 51.11 [43.60, 64.31] [50.83,56.15] 11.03 [9.48, 13.21] [10.73,11.87] 36.14 (± 9.24) [34.31,37.98]

CLR2R 51.49a [44.08, 65.08] [51.35,57.07] 11.15a [9.47, 13.32] [10.85,12.04] 36.55a (± 9.56) [34.66,38.45]
Week 4

D&N N PP

A (mg/dl)
CL 150.06 (± 21.54) [145.79,154.33] 141.26 (± 15.03) [138.28,144.24] 158.93 [139.59, 181.48] [154.10,166.12]

CLR2R 143.11a (± 15.33) [140.07,146.16] 134.84a (± 9.89) [132.87,136.80] 149.69a [136.87, 166.02] [147.74,156.06]

SD (mg/dl)
CL 30.42 [24.48, 35.62] [28.68,32.37] 14.18 [10.73, 18.76] [13.76,16.39] 32.49 [26.67, 39.77] [31.84,35.72]

CLR2R 27.89a [23.46, 32.79] [26.50,29.26] 14.66 [11.20, 17.96] [13.78,16.26] 31.22a [26.14, 35.48] [29.68,32.57]

Tr (%)
CL 84.24 [71.28, 91.74] [79.13,85.11] 100.00 [97.97, 100.00] [97.24,99.69] 71.93 [51.39, 84.58] [62.79,72.90]

CLR2R 90.68a [82.71, 95.06] [87.39,90.70] 100.00a [99.97, 100.00] [99.72,100.00] 82.28a [66.38, 90.52] [75.98,82.59]

Ttr (%)
CL 41.21 (± 21.74) [36.90,45.53] 48.17 (± 27.94) [42.63,53.71] 28.01 [11.16, 44.50] [24.16,33.72]

CLR2R 50.32a (± 17.94) [46.76,53.88] 58.85a (± 22.22) [54.44,63.26] 38.99a [20.85, 51.73] [32.90,41.51]

Ta (%)
CL 13.71 [5.64, 27.99] [12.83,18.97] 0.00 [0.00, 1.63] [0.00,1.06] 26.82 [10.96, 48.57] [24.26,35.01]

CLR2R 8.67a [4.51, 16.88] [8.50,11.87] 0.00a [0.00, 0.00] [0.00,0.00] 16.71a [8.74, 32.87] [16.28,23.06]

Ta250 (%)
CL 0.00 [0.00, 1.23] [0.00,0.94] 0.00 [0.00, 0.00] [0.00,0.00] 0.00 [0.00, 2.47] [0.00,1.88]

CLR2R 0.00a [0.00, 0.03] [0.00,0.25] 0.00 [0.00, 0.00] [0.00,0.00] 0.00a [0.00, 0.07] [0.00,0.50]

% Bolus (%)
CL 39.48 (±6.72) [38.15,40.81] 0.00 [0.00, 0.00] [0.00,0.00] 60.30 [54.53, 64.62] [57.66,61.06]

CLR2R 39.51 (±6.33) [38.25,40.76] 0.00 [0.00, 0.00] [0.00,0.00] 60.59 [55.84, 64.40] [58.65,61.35]

% Basal (%)
CL 60.52 (±6.72) [59.19,61.85] 100.00 [100.00, 100.00] [100.00,100.00] 39.70 [35.38, 45.47] [38.94,42.34]

CLR2R 60.49 (±6.33) [59.24,61.75] 100.00 [100.00, 100.00] [100.00,100.00] 39.41 [35.60, 44.16] [38.65,41.34]

TDI (U)
CL 51.87 [43.81, 64.67] [51.40,56.86] 11.08 [9.66, 13.31] [10.83,11.98] 35.70 [28.77, 44.42] [34.39,38.40]

CLR2R 56.19a [46.85, 71.18] [54.59,61.63] 11.88a [10.22, 14.08] [11.48,12.85] 36.83a [29.54, 50.14] [36.10,41.14]
TABLE IV

PERFORMANCE METRICS OF CL VS CLR2R AFTER ONE WEEK (WEEK 1) AND ONE MONTH (WEEK 4) WITH Scenario 2.
a P-VALUE < .001, b P-VALUE < .01, c P-VALUE < .05.


