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Abstract—The present paper deals with modelling of
complex microgrids and the design of advanced control
strategies of sliding mode type to control them in a de-
centralized way. More specifically, the model of a micro-
grid including several distributed generation units (DGus),
connected according to an arbitrary complex and meshed
topology, and working in islanded operation mode (IOM), is
proposed. Moreover, it takes into account all the connection
line parameters and it is affected by unknown load dynam-
ics, nonlinearities and unavoidable modelling uncertainties,
which make sliding mode control algorithms suitable to
solve the considered control problem. Then, a decentral-
ized second order sliding mode (SOSM) control scheme,
based on the Suboptimal algorithm is designed for each
DGu. The overall control scheme is theoretically analyzed,
proving the asymptotic stability of the whole microgrid
system. Simulation results confirm the effectiveness of the
proposed control approach.

Index Terms—Microgrids, Sliding mode control, Uncer-
tain Systems.

I. INTRODUCTION

IN recent industrial research, one of the most relevant key
challenges deals with the evolution of the power grid and

electricity generation and distribution networks [1]. In this
context, the terms “microgrid” and “Smart Grid” indicate the
realization of a resilient and sustainable power network in
which the local distributed consumers play a vital role.

In a typical Smart Grid, the presence of new technologies
and tools for the smart metering of the processes is mandatory,
above all because of the increasing presence of Renewable
Energy Sources (RES), such as photovoltaic panels or wind tur-
bines. The latter, by nature, are characterized by unpredictable
behaviors which make the adoption of suitable robust control
strategies essential to regulate the electrical signals of the so-
called Distributed Generation units (DGus) with respect to the
nominal ones [2]. A microgrid is an electrically connected
cluster of DGus equipped with its own control and Energy
Management System (EMS) [3], in order to allow the so-called
Islanded Operation Mode (IOM). Technologies used for power
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systems have to include protections, data acquisition units and
robust control equipments. Automation is widely spread in this
systems so that, in the last decades, several works have been
published to cope with the aforementioned problem.

The controllers introduced in the literature are of several
types, including PI control algorithms [4], [5], H∞ controllers
[6], [7], or Model Predictive Control [8], [9], formulated both
in the so-called Grid Connected Operation Mode (GCOM) and
in IOM. The last case is particularly interesting since islanded
microgrids offer several promising advantages in reducing
power losses, smoothly integrating RES and increasing the
network resiliency.

Among the control strategies, also Sliding Mode Control
(SMC) methodology has been applied to power systems [10]–
[18]. In fact, SMC is very appreciated for its robustness
properties against a wide class of uncertainties and perfectly
fits the control problem to solve [19], [20]. Moreover, in a
typical DGu, the interface medium between the grid and the
energy source is a voltage source converter (VSC). This element
provides an alternate voltage signal to the load, given the direct
current voltage energy source.

The VSC can be very critical, because it can be responsible of
disturbances affecting the system. On the other hand, the control
signal generated by the VSC is discontinuous by construction.
SMC belongs to the class of Variable Structure Control Systems
so that it seems perfectly adequate to control the VSC. In
fact, power electronic systems represent a typical example
in which the discontinuous control is intrinsically provided.
The so-called chattering phenomenon is already attenuated
by construction thanks to the presence of the VSC output
filter [21], [22]. In this paper, the Suboptimal Second Order
Sliding Mode (SSOSM) control algorithm [23]–[25] is proposed
to regulate the microgrid voltage. The choice of a SSOSM
control algorithm is motivated by the fact that it is a very
easy-to-implement solution even in practical cases. In fact, it is
intrinsically a bilevel control law as required to act directly on
the switches of the VSC; it does not require the knowledge of
the time derivatives of the so-called sliding variable; moreover
it has only one control parameter, which makes the tuning
procedure quite easy. Note however that, in order to obtain
more regular modulating signals, Higher Order Sliding Mode
controllers can be applied by increasing the natural relative
degree of the auxiliary system, as shown in [12].

The proposed control approach is decentralized and each
controller uses only voltage local information. This implies that
communication networks among DGus are not necessary. The
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Figure 1. The considered electrical single-line diagram of a typical AC microgrid composed of two DGUs

asymptotic stability of the overall controlled system has been
analytically verified. Note that, differently from [12], in this
paper the stability properties have been proved not neglecting
the dynamics of the interconnecting distribution lines.

II. PRELIMINARY ISSUES

Consider the schematic electrical single-line diagram of a
typical microgrid composed of two DGUs in Figure I. The
renewable energy source of a DGu can be represented by a
direct current (DC) voltage source VDC, and it is interfaced
with the electrical network through the so-called Voltage-
Source-Converter (VSC). Usually, the VSC is equipped with a
resistive-inductive filter (RtLt) able to extract the fundamental
frequency of the VSC output voltage. The electrical connection
point of the DGu to the rest of the power network is the so-
called Point of Common Coupling (PCC) where a three-phase
parallel resistive-inductive-capacitive load (RLC) is located.
The DGui can exchange power with the DGuj through the
resistive-inductive line (RijLij).

In IOM the PCC voltage and frequency could deviate
significantly from the desired values, due to the power mismatch
between the DGu and the load. Therefore, in IOM the DGu
has to provide the voltage and frequency control in order to
keep the load voltage magnitude and frequency constant with
respect to the reference values. Specifically, in this paper the
frequency is controlled in open-loop by equipping each DGu
in the microgrid with an internal oscillator which provides the
Park’s transformation angle θ(t) =

∫ t
t0
ω0dτ , with ω0 = 2πf0,

f0 being the nominal frequency.
Note that, in the dq-coordinates, the generated active and

reactive powers can be expressed as

P =
3

2
(VdItd + VqItq ), Q =

3

2
(VqItd − VdItq ), (1)

with Vd and Vq being the direct and quadrature components
of the load voltage vabc, Itd and Itq being the direct and
quadrature components of the generated current itabc . Usually,
in order to decouple the active and reactive power control, the
PCC quadrature voltage component Vq is steered to zero, such
that the active and reactive powers in (1) become

P =
3

2
VdItd , Q = −3

2
VdItq , (2)

which depend only on the direct and quadrature current
component, respectively.

III. PROBLEM FORMULATION

Consider a microgrid of n DGus. The network is represented
by a connected and undirected graph G = (V, E), where the
nodes V = {1, ..., n}, represent the DGus and the edges
E ⊂ V × V = {1, ...,m} represent the distribution lines
interconnecting the DGus. The network structure can be
represented by its corresponding incidence matrix D ∈ Rn×m.
The ends of edge k are arbitrary labeled with a ‘+’ and a ‘-’.
Then, one has that

dik =


+1 if i is the positive end of k
−1 if i is the negative end of k
0 otherwise .

Consider the scheme reported in Figure I and assume the system
to be symmetric and balanced. For the sake of simplicity, the
dependence of the variables on time t is omitted throughout this
paper. In the stationary abc-frame, by applying the Kirchhoff’s
current (KCL) and voltage (KVL) laws, the dynamics equations
of the microgrid in IOM are expressed as follow,

d
dtvabc = [Ct]

−1itabc + [Ct]
−1[D]i

abc
− [Ct]

−1w
abc

d
dt itabc = −[Lt]

−1[Rt]itabc − [Lt]
−1v

abc
+ [Lt]

−1u
abc

d
dt iabc = −[L]−1[DT ]v

abc
− [L]−1[R]i

abc

, (3)

where s
abc

= [sT
a
, sT
b
, sT
c

]T ∈ R3n, sπ = [sπ1 , . . . , sπn ]T ∈
Rn, with π = a, b, c and s ∈ {v, it, w, u}, while i

abc
=

[iT
a
, iT
b
, iT
c

]T ∈ R3m, i
π

= [i
π1
, . . . , i

πm
]T ∈ Rm. In (3)

v
abc

, itabc , iabc , wabc , and u
abc

represent the following three-
phase signals: the loads voltages, the currents generated by
the DGus, the currents along the interconnecting lines, the
currents demanded by the loads, and the VSCs output voltages.
Moreover, in system (3) we used [M ] to denote the following
block diagonal matrix

[M ] =

M 0 0
0 M 0
0 0 M

 ,
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A =


0 ω0In×n C−1t 0 C−1t D 0

−ω0In×n 0 0 C−1t 0 C−1t D
−L−1t 0 −L−1t Rt ω0In×n 0 0

0 −L−1t −ω0In×n −L−1t Rt 0 0
−L−1DT 0 0 0 −L−1R ω0Im×m

0 −L−1DT 0 0 −ω0Im×m −L−1R

 , B =


0 0
0 0
L−1t 0

0 L−1t
0 0
0 0

 ,

Bw =


−C−1t 0

0 −C−1t
0 0
0 0
0 0
0 0

 , C =

[
In×n 0 0 0 0 0

0 In×n 0 0 0 0

]

where M ∈ {Ct, Lt, Rt, L, R}, with Ct, Lt, Rt being n×n
diagonal matrices and L, R being m×m diagonal matrices, e.g.,
Rt = diag{Rt1 , . . . , Rtn} and R = diag{R1, . . . , Rm}, with
Rk = Rij . Each three-phase variable of (3) can be transferred
to the rotating dq-frame by applying the Clarke’s and Park’s
transformations. In the following we use x[S] to denote the
vector [S1, . . . , Sn]T with S ∈ {Vd, Vq, Itd , Itq}, and x[Z] to
denote the vector [Z1, . . . , Zm]T , with Zk = Zij and Z ∈
{Id, Iq}. Then, the so-called state-space representation of the
whole system (3) can be expressed as

ẋ[Vd] = ω0x[Vq ] + C−1t x[Itd ] + C−1t Dx[Id] − C
−1
t wd

ẋ[Vq ] = −ω0x[Vd] + C−1t x[Itq ] + C−1t Dx[Iq ] − C
−1
t wq

ẋ[Itd ] = −L−1t x[Vd] − L
−1
t Rtx[Itd ] + ω0x[Itq ] + L−1t ud

ẋ[Itq ] = −L−1t x[Vq ] − ω0x[Itd ] − L
−1
t Rtx[Itq ] + L−1t uq

ẋ[Id] = −L−1DTx[Vd] − L−1Rx[Id] + ω0x[Iq ]
ẋ[Iq ] = −L−1DTx[Vq ] − ω0x[Id] − L−1Rx[Iq ]
yd = x[Vd]
yq = x[Vq ]

,

(4)

where x =
[
xT[Vd] x

T
[Vq ]

xT[Itd ]
xT[Itq ]

xT[Id] x
T
[Iq ]

]T
∈ R4n+2m is

the state variables vector, u = [uTd u
T
q ]T ∈ R2n is the input

vector, w = [wTd w
T
q ]T ∈ R2n is the disturbance vector, and

y = [xT[Vd] x
T
[Vq ]

]T ∈ R2n is the output vector. Then, the
previous system can be written as{

ẋ = Ax+Bu+Bww
y = Cx

, (5)

where A ∈ R(4n+2m)×(4n+2m) is the dynamics matrix of the
microgrid, B ∈ R(4n+2m)×(2n), Bw ∈ R(4n+2m)×(2n), and
C ∈ R2n×(4n+2m), defined as reported above, with I being
the identity matrix.

To permit the controller design in the next section, the fol-
lowing assumption is required on the state and the disturbance.

Assumption 1 The load voltages Vdi and Vqi are locally
available at DGui, i = 1, . . . , n. The disturbances wdi and wqi
are unknown but bounded, of class C and Lipschitz continuous.

Remark 1 Note that Assumption 1 requires only the local

measurement of the load voltage that is used only by the
controller of DGui.

Now we are in a position to formulate the control problem.
Let Assumption 1 hold. Given system (3)-(5), design a decentral-
ized control scheme capable of guaranteeing that the tracking
error between any controlled variable and the corresponding
reference is steered to zero in a finite time in spite of the
uncertainties, such that the overall system is asymptotically
stable.

IV. THE PROPOSED DECENTRALIZED HIGHER ORDER
SLIDING MODE CONTROL SCHEME

In this section, the decentralized SSOSM control algorithm,
used to solve the aforementioned control problem, is designed.
Moreover, a Third Order Sliding Mode (3-SM) control algo-
rithm is proposed in order to obtain continuous control signals.

A. Suboptimal Second Order Sliding Mode (SSOSM)
Control Algorithm

Consider the state-space model (5) and select the so-called
sliding variables vector as

σ = y − y?
= Cx− y?, (6)

where y? = [x?
T

[Vd]
x?

T

[Vq ]
]T is the vector of reference values.

To permit the controller design, the following assumption is
required on the generation of reference values.

Assumption 2 The load voltage references V ?di and V ?qi are of
class C2 and with first time derivatives Lipschitz continuous.

Let r be the relative degree of the system, i.e., the minimum
order r of the time derivative σ(r) of the sliding variable in
which the control u explicitly appears. With reference to (6),
it appears that r is equal to 2, so that a Second Order Sliding
Mode (SOSM) control naturally applies [23], [25]. According
to the SOSM control theory, the so-called auxiliary variables
ξ1ν = σν and ξ2ν = σ̇ν , with the subscript ν = d, q, have
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to be defined and the corresponding auxiliary systems can be
expressed as{

ξ̇1ν = ξ2ν
ξ̇2ν = fν(x,w) + gνuν

, (7)

where uν are the control inputs previously defined, and ξ2ν is
assumed to be unmeasurable. More specifically, one has that

fd(x,w) = −
(
ω2
0In×n + C−1t L−1t + C−1t DL−1DT

)
x[Vd]

−C−1t L−1t Rtx[Itd ] + 2ω0C
−1
t x[Itq ]

−C−1t DL−1Rx[Id] + 2ω0C
−1
t Dx[Iq ]

−C−1t ẇd − ω0C
−1
t wq − ẍ?[Vd]

fq(x,w) = −
(
ω2
0In×n + C−1t L−1t + C−1t DL−1DT

)
x[Vq ]

−2ω0C
−1
t x[Itd ] − C

−1
t L−1t Rtx[Itq ]

−2ω0C
−1
t Dx[Id] − C

−1
t DL−1Rx[Iq ]

+ω0C
−1
t wd − C−1t ẇq − ẍ?[Vq ]

gd = gq = C−1t L−1t ,

(8)

are allowed to be uncertain with known bounds for each entry
as follows

|fνi(·)| ≤ Fνi , Gminνi
≤ gνii ≤ Gmaxνi

, i = 1, . . . , n ,

(9)

with Fνi , Gminνi
and Gmaxνi

, ν = d, q, being positive
constants. Note that, it is reasonable to assume that such
bounds exist. In fact, the functions fν depend on electrical
signals related to the finite power of the system, while gνii
are uncertain constant values. In practical cases, these bounds
can be estimated relying on data analysis and engineering
understanding.

The i-th control law, uνi that we propose to steer ξ1νi
and ξ2νi , i = 1, . . . , n, to zero in a finite time in spite of the
uncertainties, in analogy with [25], can be expressed as follows

uνi = −ανiUmaxνi
sgn

(
ξ1νi −

1
2ξ1maxνi

)
, (10)

with bounds

Umaxνi
> max

(
Fνi

α∗νiGminνi

;
4Fνi

3Gminνi
− α∗νiGmaxνi

)
(11)

α∗νi ∈ (0, 1] ∩
(

0,
3Gminνi

Gmaxνi

)
. (12)

B. An Alternative Solution: Third Order Sliding Mode (3-
SM) Control Algorithm

Usually, to control inverters, the Pulse Width Modulation
(PWM) technique is used. To do this, the VSC requires
continuous control signals udi and uqi , that can be transferred
back to the stationary abc-frame and used to generate the gating
signals through the comparison with a triangular carrier. In
order to obtain continuous control signals, as suggested in [23],
the system relative degree can be artificially increased. As

proposed in [12], a Third Order Sliding Mode (3-SM) control
law to solve the microgrid voltage control problem in question,
can be introduced. Defining the auxiliary variables ξ1ν = σν ,
ξ2ν = σ̇ν and ξ3ν = σ̈ν , then the auxiliary system can be
expressed as

ξ̇1ν = ξ2ν
ξ̇2ν = ξ3ν
ξ̇3ν = φν(x,w, u) + γνµν
u̇ν = µν

, (13)

where µν is an auxiliary control variable, ξ2ν , ξ3ν are assumed
to be unmeasurable, while φν = ḟν and γν = gν are uncertain
smooth bounded functions, such that for each entry

|φνi(·)| ≤ Φνi , Γminνi
≤ γνii ≤ Γmaxνi

, i = 1, . . . , n,

(14)

with Φνi , Γminνi
and Γmaxνi

, ν = d, q being positive constants.
In this case, the 3-SM algorithm requires that the discontinuous
controls only affect σ(3)

ν , but not σ̈ν , so that the controls fed
into the plant are continuous.

Let σ̄νi = [σνi , σ̇νi , σ̈νi ]
T , then the i-th discontinuous

control law µνi can be expressed as follows

µνi = −ανi


µνi,1 = sgn (σ̈νi), σ̄νi ∈Mνi,1/Mνi,0

µνi,2 = sgn (σ̇νi +
σ̈2
νi
µνi,1

2ανi,r
), σ̄νi ∈Mνi,2/Mνi,1

µνi,3 = sgn (sνi), else
(15)

where

sνi = σνi+
σ̈3
νi

3α2
νi,r

+µνi,2
[ 1
√
ανi,r

(
µνi,2σ̇νi+

σ̈2
νi

2ανi,r

) 3
2 +

σ̇νi σ̈νi
ανi,r

]
,

(16)

with ανi,r being the reduced control amplitude, such that

ανi,r = ανiΓminνi
− Φνi > 0. (17)

In (15), (17) there are not parameters to be tuned, except for
the control amplitudes ανi , ν = d, q. In (15) the manifolds
Mνi,0,Mνi,1,Mνi,2 are defined as

Mνi,0 = {σ̄νi ∈ R3 : σνi = σ̇νi = σ̈νi = 0}
Mνi,1 = {σ̄νi ∈ R3 : σνi −

σ̈3
νi

6α2
νi,r

= 0, σ̇νi +
σ̈νi |σ̈νi |
2ανi,r

= 0}
Mνi,2 = {σ̄νi ∈ R3 : sνi = 0}.

(18)

From (15), one can observe that the controller of DGui requires
not only σνi , but also σ̇νi and σ̈νi . Yet, according to Assumption
1, only the load voltages Vdi and Vqi are measurable at DGui.
Then, one can rely on Levant’s second-order differentiator [26]
to retrieve σ̇νi and σ̈νi in a finite time. With reference to system
(13), for ν = d, q, and i = 1, . . . , n, one has

˙̂
ξ1νi = −λ0νi

∣∣∣ξ̂1νi − ξ1νi ∣∣∣ 23 sgn
(
ξ̂1νi − ξ1νi

)
+ ξ̂2νi

˙̂
ξ2νi = −λ1νi

∣∣∣ξ̂2νi − ˙̂
ξ1νi

∣∣∣ 12 sgn
(
ξ̂2νi −

˙̂
ξ1νi

)
+ ξ̂3νi

˙̂
ξ3νi = −λ2νi sgn

(
ξ̂3νi −

˙̂
ξ2νi

)
,

(19)
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where ξ̂1νi , ξ̂2νi , ξ̂3νi are estimates of ξ1νi , ξ2νi , ξ3νi , re-
spectively, and λ0νi = 3Λ

1/3
νi , λ1νi = 1.5Λ

1/2
νi , λ2νi =

1.1Λνi , Λνi > 0, is a possible choice of the differentiator
parameters suggested in [26].

V. STABILITY ANALYSIS

With reference to the proposed decentralized sliding mode
control approach, the following results can be proved.

Lemma 1 Let Assumptions 1 and 2 hold. Given the auxiliary
system (7) controlled via the SSOSM algorithm (10)-(12), then
the sliding variables (6) and their first time derivatives are
steered to zero in a finite time tr, in spite of the uncertainties.

Proof: This result directly follows from [25, Theorem 1].

Let x̃ be the error given by the difference between the state
and the equilibrium point associated to the desired value of
voltages y? when w is constant, and let ũ be the corresponding
control input. Hence, the error system is defined as{

˙̃x = Ax̃+Bũ
σ = Cx̃

. (20)

Theorem 1 Let Assumptions 1 and 2 hold. Consider system
(3)-(5) controlled via the SSOSM control algorithm (10)-(12).
Then, given constant reference y? and constant disturbance
w, ∀ t ≥ tr,∀x(tr) ∈ R4n+2m, the origin of the error system
(20) is a robust asymptotically stable equilibrium point.

Proof: Consider the d component of the sliding variable
σd = x̃[Vd]. Compute now the first time derivative and the
second time derivative of σd, i.e.,

σ̇d = ˙̃x[Vd] = ω0x̃[Vq ] + C−1t x̃[Itd ] + C−1t Dx̃[Id]

σ̈d = ¨̃x[Vd] = −
(
ω2
0In×n + C−1t L−1t

+C−1t DL−1DT
)
x̃[Vd] − C

−1
t L−1t Rtx̃[Itd ]

+2ω0C
−1
t x̃[Itq ] − C

−1
t DL−1Rx̃[Id]

+2ω0C
−1
t Dx̃[Iq ] + C−1t L−1t ũd .

(21)

According to the equivalent control concept [19], by posing
σ̈d = 0, one obtains

ũdeq = Rtx̃[Itd ] − 2ω0Ltx̃[Itq ]
+LtDL

−1Rx̃[Id] − 2ω0LtDx̃[Iq ] .
(22)

Analogously, the q component of the sliding variable σq = x̃[Vq ]
and its time derivatives can be computed as

σ̇q = ˙̃x[Vq ] = −ω0x̃[Vd] + C−1t x̃[Itq ] + C−1t Dx̃[Iq ]

σ̈q = ¨̃x[Vq ] = −
(
ω2
0In×n + C−1t L−1t

+C−1t DL−1DT
)
x̃[Vq ] − 2ω0C

−1
t x̃[Itd ]

−C−1t L−1t Rtx̃[Itq ] − 2ω0C
−1
t Dx̃[Id]

−C−1t DL−1Rx̃[Iq ] + C−1t L−1t ũq .

(23)

The corresponding equivalent control, obtained by posing σ̈q =
0 is

ũqeq = 2ω0Ltx̃[Itd ] +Rtx̃[Itq ]
+2ω0LtDx̃[Id] + LtDL

−1Rx̃[Iq ].
(24)

Considering that, after tr, σν = σ̇ν = 0, that is x̃[Vd] = x̃[Vq ] =
˙̃x[Vd] = ˙̃x[Vq ] = 0, one obtains the following set of algebraic
equations{

0 = C−1t x̃[Itd ] + C−1t Dx̃[Id]
0 = C−1t x̃[Itq ] + C−1t Dx̃[Iq ]

. (25)

Then, by using the relations in (25) and by substituting (22)
and (24) into system (20), the residual dynamics results in
being

˙̃x[Itd ] = DL−1Rx̃[Id] − ω0Dx̃[Iq ]
˙̃x[Itq ] = ω0Dx̃[Id] +DL−1Rx̃[Iq ]
˙̃x[Id] = −L−1Rx̃[Id] + ω0x̃[Iq ]
˙̃x[Iq ] = −ω0x̃[Id] − L−1Rx̃[Iq ]

. (26)

Remark 2 Note that, since the relative degree of the system is
r = 2, the original system with 4n+2m dynamic independent
equations, ∀ t ≥ tr, can be described by the 4n sliding
constraints σd = σq = σ̇d = σ̇q = 0, and by 2m independent
dynamic equations.

More specifically, the resulting reduced order dynamics
can be represented by the last two equations related to the
distribution lines dynamics. Moreover, these latter, according
to the sliding mode control theory [20], are the zero dynamics
of the system which can be written in a matrix form as[

˙̃x[Id]
˙̃x[Iq ]

]
= Ã

[
x̃[Id]
x̃[Iq ]

]
=

[
−L−1R ω0Im×m
−ω0Im×m −L−1R

] [
x̃[Id]
x̃[Iq ]

]
, (27)

where I is the identity matrix, and the matrix Ã is Hurwitz so
that x̃[Id] and x̃[Iq ] asymptotically converge to zero. Then, from
the algebraic equations (25), one can observe that also x̃[Itd]
and x̃[Itq ] asymptotically converge to zero, which concludes
the proof.

Remark 3 Note also that the eigenvalues λi, i = 1, . . . , 2m,
of matrix Ã are complex conjugates. Yet, considering realistic
values of the parameters R and L, one has that |Re{λi}| �
|Im{λi}|.

Lemma 2 Let Assumptions 1 and 2 hold. Let assume t0 ≥
tLd, t0, tLd being the initial time instant and the finite time
necessary for the convergence of the Levant’s differentiator
(19), respectively. Given the auxiliary system (13) controlled
via the 3-SM control law (15)-(18), then the sliding variables
(6) and their first and second time derivatives are steered to
zero in a finite time tr, in spite of the uncertainties.

Proof: This result directly follows from [27, Theorem 2].

Theorem 2 Let Assumptions 1 and 2 hold. Consider system
(3)-(5) controlled via the 3-SM control law (15)-(18). Then,
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Table I
ELECTRICAL PARAMETERS OF THE MICROGRID

DGus Filter Parameters Shunt capacitance Load Currents Reference Voltages
Rti [mΩ] Lti [mH] Cti [µF] Wdi [A] Wqi [A] V ?di [V] V ?qi [V]

DGu1 40.2 9.5 62.86 50 -20 120.0
√

2 0
DGu2 38.7 9.2 62.86 100 -15 120.0

√
2 0

DGu3 34.6 8.7 62.86 40 -10 122.4
√

2 0
DGu4 31.8 8.3 62.86 80 -18 117.6

√
2 0

Table II
ELECTRICAL PARAMETERS OF THE DISTRIBUTION LINES

Line impedance Zij Rij [Ω] Lij [µH]

Z12 0.25 1.2
Z23 0.27 1.3
Z34 0.24 1.8
Z14 0.26 2.1

given constant reference y? and constant disturbance w,
∀ t ≥ tr ≥ t0 ≥ tLd, ∀x(tr) ∈ R4n+2m, the origin of the error
system (20) is a robust asymptotically stable equilibrium point.

Proof: The proof is analogous to that of Theorem 1.

VI. SIMULATION RESULTS

In this section, the proposed control solution is assessed in
simulation by implementing an AC islanded microgrid with
nominal frequency f0 = 60 Hz, and composed of four DGus
(n =4). The DGus are in a ring topology (m =4), as depicted
in Figure 2. The electrical parameters of the single DGus and
of the interconnecting distribution lines are reported in Table I
and in Table II, respectively.

We choose the control amplitude Umax, for all the decen-
tralized controllers, equal to 1000. Traditional PI controllers
are also used in the same test for the sake of comparison.
They are tuned by using Ziegler-Nichols method, and the

DGu1

DGu2

DGu4

DGu3

Z12

Z14

Z23

Z34

Figure 2. Scheme of the considered microgrid composed of 4 DGus. The
arrows indicate the positive direction of the currents through the power
network.

Table III
PI CONTROL PARAMETERS

Parameter Value Description

KPd = KPq 10 Proportional gain of voltage loop
KId = KIq 400 Integral gain of voltage loop
KPd = KPq 20 Proportional gain of current loop
KId = KIq 400 Integral gain of current loop

control parameters are reported in Table III. Note that the PI
control scheme works as voltage regulation through current
compensation. More precisely, the (outer) voltage controllers
generate current references for the (inner) current regulation.

The dynamic performances of the controlled microgrid
system in Figure 2 are validated considering unknown load
dynamics and voltage reference changes. In particular, at t =
0.04 s, V ?d2 becomes 114

√
2V, i.e., it is reduced by 5%, and

at t = 0.06 s, the power demanded by the local load of DGu4
increases by 25%, i.e., Wd4 becomes 100 A.

In Figure 3 the time evolution of the dq-components of the
load voltages is represented. One can observe the robustness
of the proposed decentralized SSOSM control approach (solid
lines) with respect to both reference and load variations. In
particular, the voltage dynamics of the neighbouring DGus are
not affected neither by load nor by reference variations and
faster voltage tracking performance than that by using the PI
control (dashed lines) is guaranteed.

In the same figure, also the time evolution of the d-
component of the generated currents and the exchanged currents
through the distribution lines interconnecting the DGus is
illustrated. In particular, by using the SSOSM control, one
can observe that when the voltage reference V ?d2 becomes
lower than the d-component of the voltage at PCC1 and PCC3,
respectively, then DGu1 and DGu3 (i.e., the neighbours of
DGu2) increase the generated current, and deliver, through the
distribution lines, the extra power to the DGu2, which, instead,
decreases its own generation. On the other hand, when the
local load of DGu4 requires more power, only DGu4 increases
its own generation.

Finally, the three-phase signals of the DGu2, i.e., the load
voltages (dashed lines) and the generated currents (solid lines)
are also shown in Figure 3, together with the a-phase of load
voltages. From this latter, one can observe that all the load
voltages are synchronized with frequency equal to the nominal
one f0 = 60 Hz.
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Figure 3. Comparison between SSOSM and PI controllers in presence of reference and load variation. a) Time evolution of the d-component of the
load voltages. b) Time evolution of the q-component of the load voltages. c) Time evolution of the d-component of the generated currents. d) Time
evolution of the d-component of the currents exchanged among the DGus through interconnecting power lines. e) Time evolution of the three-phase
signals (load voltage and generated current) of DGu2. f) Time evolution of the a-phase of the load voltages.
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VII. CONCLUSIONS

In this paper a decentralized SSOSM control scheme is
designed for an AC microgrid with arbitrary topology, affected
by unknown load dynamics and model uncertainties, operating
in IOM. The system has been modelled by introducing an
incidence matrix and the controller has been suitably designed
on the basis of the proposed model. The asymptotical stability
of the whole microgrid has been proved and the performance
of the proposed algorithm have been evaluated in simulation
considering a microgrid with four DGus in a ring topology.
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