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ABSTRACT 
Introduction. Metabolic syndrome (MetS) is a complex, multifactorial disease that poses a 

major public health problem. MetS increases the risk of coronary heart disease (CHD), 

atherosclerotic cardiovascular diseases (ASCVD), type 2 diabetes mellitus (T2DM), and all-

cause mortality. Currently, there are a many different criteria that define MetS but the 

physiopathology is not completely understood both in terms of clinical progression and genetic 

contribution.  

Aims. The present work characterizes MetS components (obesity, hypertension, glucose, etc.) 

as one continuous phenotype and genetic components of the proposed MetS score were 

estimated using both family-based samples and population-based samples.  

Methods. In the first step, Confirmatory Factor Analysis (CFA) was used to select a model 

with the best fit. After the selection of the best factor structure and development an algorithm 

to calculate the score, heritability was performed in both pedigrees and SNPs/markers data. For 

the first sample, SOLAR (Sequential Oligogenic Linkage Analysis Routines) software was used 

to obtain the estimates. For the second sample, genetic variance components were calculated 

by fitting a linear mixed model (LMM) using two types of genetic relatedness matrices 

(Identity-By-Descend, IBD and Genome-Wide Complex Trait Analysis, GCTA), different 

levels of Linkage Disequilibrium (LD) pruning (0.20 – 0.80 and no LD pruning), and suggestive 

Genome-Wide Association Study (GWAS) SNPs. 

Results. According to the analyses, the best CFA model was the bifactor model; estimated 

coefficients were used to calculate the MetS score. The score showed good performance and 

good agreement compared to the International Diabetes Federation (IDF) criteria, the gold 

standard used for clinical diagnosis.  

With regards to the estimation of genetic variance, heritability was significant and ranged from 

0.1 to 0.4 in whole samples and in all models. The heterogeneity of the results was due to the 

different samples and different types of matrix inputs into the LMMs. Heritability obtained 

using the GCTA matrix was significantly increased compared to the IBD matrix. No significant 

differences between family data and genetic data (markers) in Sardinia samples were observed 

using an LD threshold of 0.80 with no pruning. 

Conclusions.  Evidence of complex interactions in metabolic syndrome and significant genetic 

contributions were obtained from these analyses. Increased knowledge of the environmental 

and genetic components could allow for better assessment and identification of patients with 

this syndrome. 
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1. INTRODUCTION 

 

1.1 Background 
Metabolic syndrome (MetS) is a multi-component human disease that is gradually increasing 

worldwide, particularly in countries with increasing obesity trends, sedentary lifestyle, and high 

consumption of calories. MetS represents a major health problem due to the increased the risk 

of coronary heart disease (CHD), atherosclerotic cardiovascular diseases (ASCVD), and type 2 

diabetes mellitus (T2DM), as well as the risk of all-cause mortality (Kassi, Pervanidou, Kaltsas, 

& Chrousos, 2011). MetS is characterized by chronic low grade inflammation as a consequence 

of the complex interplay between genetic and environmental factors. 

A cluster of interconnected risk factors defines MetS. The core components of metabolic 

syndrome include the following features: abnormal body fat distribution (high value of waist 

circumference or BMI>30), insulin resistance (diabetes and elevated glucose levels), 

atherogenic dyslipidemia (TGR, LDL, HDL), and elevated blood pressure (Systolic and 

Diastolic Blood Pressure, SBP and DBP, respectively).  

However, the predominant risk factors appear to be abdominal obesity and, most importantly, 

insulin resistance. 

Due to the multiple components and clinical implications, there is currently no universally 

accepted pathogenic mechanism or clearly defined diagnostic criteria for MetS. Additionally, 

there is no standardized or validated method to assess the severity of aggregated Metabolic 

Syndrome risk factors and there are no studies with replicated and validated results that examine 

the genetic contribution of MetS.  

 

 

1.2 Research questions and thesis outline 
Metabolic syndrome and the underlying components reflect a complex polygenic background, 

interactions of which are not completely understood. For this is reason, the focus of my project 

is to answer the following research questions concerning the definition of MetS and the genetic 

influences: 

 

-! Which is the best model to describe the cluster of Metabolic syndrome? Is it possible to 

have a score to determine the degree of pathology? 



-! What is the genetic variance using the newly proposed score and different types of 

samples?  

-! Is the proportion of variation in MetS that is captured by genotyped SNPs compared to 

one captured by family information?  

-! Which genetic variants or genes are associated with MetS? Are these results 

demonstrated in the literature or something new?  

  



2. DEFINITION OF METABOLIC SYNDROME 

 

2.1 Terms and criteria for the diagnosis  
There is still debate as to whether this entity represents a specific syndrome or is a surrogate of 

combined risk factors that put the individual at particular risk. 

Several terms have been proposed to describe this clustering: metabolic syndrome, metabolic 

disorder, syndrome X, insulin-resistance syndrome, etc. The most commonly used term to 

define this pathology is the first one, metabolic syndrome. 

In clinical practice, many organizations attempt to define criteria for diagnosis. Currently, 

several definitions exist and, due to which factors are emphasized, different components, and 

relationships are used to describe the pathology (Table 1). 

The first analysis was performed in 1998 by the World Health Organization (Alberti & Zimmet, 

1998; Zimmet, Alberti, & Shaw, 2005). This organization focused the attention on insulin 

resistance as the major risk factor for diagnosis. One year later, the European Group for Study 

of Insulin Resistance (EGIR) proposed additional changes to the previous definition, but the 

focus remained the same (Balkau & Charles, 1999).  

In 2001, the National Cholesterol Education Program-Third Adult Treatment Panel (NCEP-

ATPIII) introduced alternative clinical criteria that did not identify insulin resistance as the 

most important evidence (due to laborious measurements), but instead identified the higher 

long-term risk of ASCVD ("Third Report of the National Cholesterol Education Program 

(NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in 

Adults (Adult Treatment Panel III) final report," 2002). 

In 2005, and later in 2009, the International Diabetes Federation (IDF) modified the previous 

criteria set by the ATPIII. A novel feature, abdominal obesity, was introduced as a required 

characteristic of MetS (Alberti et al., 2009). A summary of the four most commonly used MetS 

definitions is shown in Table 1. 

For international comparisons and to facilitate research on MetS etiology, a commonly agreed 

set of criteria exists that define MetS (Alberti et al., 2009).  

According to the most recent consensus statement, patients are diagnosed with MetS if they 

have three or more of the following features (Grundy, Brewer, Cleeman, Smith, & Lenfant, 

2004; Grundy et al., 2005):  

-! Elevated serum triglycerides (≥1.7 mmol/L) or drug treatment for elevated 

triglycerides.  



-! Reduced serum HDL cholesterol (in men: <1.0 mmol/L; in women: <1.3 mmol/L) or 

drug treatment for reduced HDL cholesterol.  

-! Increased blood pressure (systolic ≥130 and/or diastolic ≥85 mm Hg) or 

antihypertensive drug treatment.  

-! Increased fasting plasma glucose (>5.6 mmol/L) or glucose lowering drug treatment.  

-! Increased waist circumference (containing an ethnic specific cut-off point). However, 

recommendations on cut-off points for Caucasians differ considerably; a waist 

circumference ≥94 cm for men and ≥80 cm for women, corresponding with the BMI 

cut-off point for overweight, or a waist circumference ≥102 cm for men and ≥88 cm for 

women, corresponding with the BMI cut-off point for obesity, is recommended (Alberti, 

Zimmet, & Shaw, 2005). 

  



Table 1. Definition of Metabolic syndrome 

 NCEP-ATPIII WHO EGIR IDF 

Absolutely required None Insulin resistance 

(IGT, IFG, T2D 

or other evidence 

of IR)  

Hyperinsulinemia 

(plasma insulin 

>75th percentile 

Central obesity 

(waist 

circumference!): 

"94 cm (M), 

"80 cm (F) 

Criteria Any three of 

the five below 

Insulin resistance 

or diabetes, plus 

two of the five 

criteria below 

Hyperinsulinemia, 

plus two of the 

four criteria 

below 

Obesity, plus 

two of the four 

criteria below 

Obesity Waist 

circumference: 

>40 inches 

(M), >35 

inches (F) 

Waist/hip ratio: 

>0.90 (M), >0.85 

(F); or BMI 

>30kg/m2 

Waist 

circumference: 

>0.94  cm (M), 

>0.80 cm (F) 

Central obesity 

already required 

Hyperglicemia Fasting 

glucose "100 

mg/dl or Rx  

Insulin resistance 

already required 

Insulin resistance 

already required 

Fasting glucose 

" 100 mg/dl 

Dyslipidemia TG "150 

mg/dl or Rx 

TG "150 mg/dl 

or HDL-C: <35 

mg/dl (M), <39 

mg/dl (F) 

TG "177 mg/dl or 

HDL-C: <39 

mg/dl 

TG " 150 mg/dl 

or Rx 

Dyslipidemia(second, 

separate criteria) 

HDL 

cholesterol: 

<40 mg/dl 

(M), <50 

mg/dl (F) 

  HDL 

cholesterol: <40 

mg/dl (M), <50 

mg/dl (F); or Rx 

Hypertension >130 mmHg 

systolic or >85 

mmHg 

diastolic or Rx 

"140/90 mmHg "140/90 mmHg 

or Rx 

>130 mmHg 

systolic or >85 

mmHg diastolic 

or Rx 

Other criteria  Microalbuminuria   
!Criteria for central obesity are specific for each population; values are given for European men and 
women 
 

  



 

2.2 Prevalence of Metabolic Syndrome  
Prevalence of MetS varies and depends on the criteria that are used and the types of 

populations. Sex, age, race, and ethnicity influence the syndrome in different ways. 

Prevalence is relatively high in all populations and is rising worldwide (Aguilar, Bhuket, 

Torres, Liu, & Wong, 2015). The cause of these increases are related to a number of factors 

such as demographics, type of lifestyle, diet, and physical activity. MetS prevalence 

increases dramatically with BMI increment according to gender (van Vliet-Ostaptchouk et 

al., 2014). 

MetS becomes more prevalent with increasing age and is associated with a rise in age-

associated diseases and disabilities. Some studies have found that MetS prevalence 

increases with age through approximately 60-75 years. The plateau in prevalence estimates 

after the sixth and seventh decade is likely due to survival effect (Cameron, Magliano, 

Zimmet, Welborn, & Shaw, 2007; Cornier et al., 2008; Ford, Giles, & Mokdad, 2004; 

Lechleitner, 2008).  

Other population studies have confirmed this trend. For example, in the NHANES 2003-

2006 cohort, the prevalence estimate of MetS was equal to 20% and 16% (male and female, 

respectively) in people under the age of 40, 41% and 37% in people aged 40-59 years, and 

52% and 54% in people aged 60 years and older (Ford et al., 2004; Kassi et al., 2011).   

Prevalence of MetS is also dependent on the definition used, according to race and ethnicity. 

Values vary dramatically between countries. Differences may be due to cultural differences, 

different waist circumference thresholds, or different combinations of individual 

components of MetS used in different populations (Scuteri et al., 2015). For this is the 

reason, it is currently not possible to estimate only one value of prevalence. 

  

2.3 Risk factors  
Many middle-aged people with MetS are at risk of developing ASCVD in the near future 

(e.g., 10-year risk), have a two-fold increased risk of developing coronary heart disease 

(CHD), and have a five-fold increased risk of developing T2DM in the next five to ten years 

(Ford, 2005).  

To prevent or delay the onset of ASCVD and diabetes, underlying risk factors need to be 

modified or removed. There are multiple underlying risk factors for MetS including genetic 

factors, physical inactivity, over nutrition, and abdominal obesity. 



For people with both MetS and abdominal obesity, weight reduction is the first priority. 

Both weight reduction and maintenance of a lower weight are the best way to prevent 

metabolic risk factors. Increasing physical activity has beneficial effects on both metabolic 

and ASCVD risks. Also, reduction of total calories and diet with fruits, vegetables, and 

grains is encouraged to decrease the risk of MetS, ASCVD, and diabetes (Ervin, 2009; 

Grundy et al., 2005). 

 

2.4 Clinical manifestations and treatments  
Due to the complex pathology, the clinical manifestations are a cluster of conditions with 

no immediate physical symptoms. Usually people with MetS display central obesity, a 

strong family history of diabetes mellitus, and insulin resistance.  

Currently, no defined therapies are available. The best approach to clinical management is 

to consider different treatments for each component (e.g., obesity, hypertension, etc.). 

However, prevention of MetS is important because it increases the risk of several health 

complications, such as cardiovascular disease, T2DM, non-alcoholic fatty liver disease, 

youth MetS, and the risk of adult outcomes. Promotion of a healthy lifestyle and family 

intervention is effective at reducing the incidence of T2DM compared with placebo 

(Vattikuti, Guo, & Chow, 2012). In addition, three-generation family histories provide 

evidence of conditions associated with MetS. 

 

2.5 Clustering of MetS 
There are multiple interrelated causal mechanisms that underlie MetS development. 

Knowledge about the mechanisms and the degree of association between MetS components 

will help the community determine prevention and intervention of cardiovascular disease 

and diabetes (Cornier et al., 2008). Most likely the clustering of these features is caused by 

multiple underlying, interrelated causal mechanisms.  

Although MetS is believed to have multifactorial causes, the most accepted and unified 

hypothesis to describe the pathophysiological basis of MetS is insulin resistance and 

abdominal obesity (Eckel, Grundy, & Zimmet, 2005; Reaven, 1988).  

In addition, the pathogenesis of hypertension as a condition of MetS is only partially 

understood and not considered to be one of the primary causes (Laaksonen et al., 2008). 

Figure 1 shows the global mechanisms and the causal connections between MetS features. 

As shown in Figure 1, the core of this disease is defined by obesity and insulin resistance, 

which work together and are considered by most criteria to be the causes of the syndrome. 



Next, hypertension, dyslipidemia, glucose intolerance, and microalbuminuria are 

recognized as MetS components. Additional risks factors are included in the complex 

mechanism but they usually are not used in the criteria. Together, these components 

collaborate to increase the risk of cardiovascular disease and T2DM. 

 

 

 
 

Figure 1 - Mechanisms and the causal connection between its features 

 

 

 

2.6 MetS models 
In recent years, to examine the pattern of the MetS, several studies used factor analysis, a 

method that explains the correlation among a set of variables in terms of a smaller set of 

unobserved “factors”. The following techniques are commonly used: Confirmatory Factor 

Analysis (CFA), which is hypothesis driven data reduction technique, and Exploratory 

Factor Analysis (EFA), which is a data-driven technique.  

In most cases, owing to the explorative and subjective nature of EFA, results of EFA studies 

on MetS are inconsistent. By contrast, conclusions of CFA studies have thus far been quite 

consistent, suggesting that MetS features included in the most widely accepted definitions 

represent a unified disease construct (Shen, Goldberg, Llabre, & Schneiderman, 2006). 

Published CFA studies have tested various hypothetical models, including single-factor 

model, 2-factor, 3-factor, 4-factor (called Correlated CFA models), bifactor CFA models, 



and hierarchical CFA models, to determine which model best represents the factor structure 

underlying MetS (Babyak & Green, 2010; Li & Ford, 2007; Martinez-Vizcaino et al., 2010; 

Pladevall et al., 2006; Shen et al., 2006).  

Briefly, as mentioned above, there are different characteristics that describe the CFA 

models. 

The single-factor model is the simplest CFA model. A one-factor model specifies a single 

dimension underlying a set of measures and, thus, provides a parsimonious explanation for 

the responses on these measures. Figure 2 is a graphical presentation of a model with a 

single factor (F1) and a number of variables (X1, X2, X3). 

 

 
Figure 2 - Single-factor model 

 

The correlated CFA model specifies two or more factors underlie a set of measured 

variables and that these factors are correlated. Figure 3 presents a model for five variables 

with two correlated factors.  

 

 
Figure 3 - Two-factor model 

 



 

The bifactor model may include a general factor associated with all variables and one or more 

groups of factors associated with a limited number of measures (Figure 4).  

 

 
Figure 4 – Bifactor model 

 

The last model, the hierarchical CFA model, usually contains two to four first-order factors and 

one second-order factor underlying the first-order one (Figure 5).  
 

 
Figure 5 – Hierarchical factor model 

 
 

In addition, to consider all standard MetS components, several changes to the current MetS 

definition have been suggested in the scientific literature.  



In order to increase the predictive ability of MetS for T2DM and cardiovascular disease (CVD), 

some studies have proposed to add features to the definition of MetS (Shen et al., 2006). These 

features include sex and age, which have important roles in the definition of MetS. Among 

others, some studies suggest adding circulating adiponectin, C-reactive protein (CRP), albumin, 

APOB, and free fatty acid levels (FFA) or fatty liver (Povel et al., 2013).  

Currently, it is unclear if MetS represents one statistical entity after addition of one or more of 

these features.  

Another important point is that in the current binary MetS definition, part of the information is 

lost. For example, a minor change in triglyceride levels from 1.70 mmol/L to 1.64 mmol/L, 

could result in an individual no longer being classified as having MetS (Hillier et al., 2006). 

However, this change in triglyceride levels has only a minor effect on the metabolic profile and 

the risk for T2DM and ASCVD of this individual. Furthermore, when plotted against the 

number of positive features, the risk for ASCVD increases continuously, with no suggestion of 

a threshold effect (Woodward & Tunstall-Pedoe, 2009).  

Currently, some groups are working on a new definition that considers metabolic syndrome as 

a continuous trait (Graziano et al., 2015; Janghorbani & Amini, 2016; Soldatovic, Vukovic, 

Culafic, Gajic, & Dimitrijevic-Sreckovic, 2016; Wiley & Carrington, 2016).  

For example, recently, several authors have developed and validated a continuous MetS score 

to clustering its components in different ways and with different results (Gurka, Ice, Sun, & 

Deboer, 2012; Gurka, Lilly, Oliver, & DeBoer, 2014; Ragland, 1992; Wijndaele et al., 2006). 

For epidemiological analyses, there are many advantages to using continuous traits instead of 

binary ones. For example, the binary definition has lower statistical power than the continuous 

definition; cardiovascular and diabetes risks increase progressively with increasing number of 

MetS risk factors, whereas using the continuous trait, a cut-off point for the components could 

be removed. Therefore, the continuous score is less error prone than the binary score (Ragland, 

1992).  

Table 2 illustrates all recent studies that implement MetS score as continuous trait in adult 

populations.   

As shown in Table 2, some characteristics are common for all studies (e.g., waist 

circumference, HDL, etc.). Only a few studies have added new elements in the definition (e.g., 

sex or age). 

  



Table 2 - Summary of approaches used to calculate the continuous MetS in adult 

 

STUDY OBESITY LIPIDS GLUCOSE 

INSULINE 

BP  OTHER STATISTICAL 

APPROACH 

NHANES 1999-

2010 (Gurka et al., 

2014) 

WC HDL, 

TGR 

- SBP - CFA; one-factor 
model 

D.E.S.I.R. cohort 

(Hillier et al., 

2006) 

WC HDL, 

TGR 

glucose SBP - Principal 
component 
analysis 

PANIC study, 
KIHD, DR’s 
EXTRA study 
(Viitasalo et al., 
2014) 

WC TGR, 

HDL 

Glucose, 

insuline 

BP - z-scores 

Healty Hearts 

study (Wiley & 

Carrington, 2016) 

 

WC TGR, 

HDL 

glucose SBP, 

DBP 

Sex Standard 
deviations and 
weigth from 
PCA 

Flemish study 

(Wijndaele et al., 

2006) 

WC TGR, 

HDL 

glucose BP  Summing 
individual PC 
scores , each 
weighted for the 
relative 
contribution 
PC1 and PC2 In 
the explained 
variance 

Ghana, Nigeria 

and Kenya 

(Tekola-Ayele et 

al., 2015) 

WC, BMI TGR, 

HDL 

glucose SBP, 

DBP 

- Sum of 
standardized 
residuals of 
MetS 
component traits 

 
 
  



3. GENETIC EPIDEMIOLOGY OF METS 
 
3.1 Complex genetic disease  
When a complex pathology is considered as a whole, both the clinical and genetics aspects must 

be considered in order to describe it. When diseases are at least partially or mostly heritable, 

the methods of genetic epidemiology are used to identify phenotypic variability. Some 

complex, multifactorial diseases can be caused by a combination of genetic and environmental 

factors.  

Genetic epidemiology focuses on genetic predisposition to disease and the joint effects of 

genetic and non-genetic (environmental) effects on disease risk. This type of research seeks to 

identify links between disease and genetic factors that increase the risk of disease. Depending 

on which kinds of scientific questions the researchers want to answer, different study 

approaches can be used (Cichon et al., 2009). For example, heritability, candidate genes study, 

and association analysis can be performed to discover new mechanisms.  

Table 3 shows some of the common term definitions used in the following chapters. Details of 

the analysis and definition are illustrated in the Materials and Methods chapter.  

 

Table 3 – Definition of terms 

TERM DEFINITION 

Heritability Proportion of the variance of a trait  that is due to 

genes 

Complex disease Disease caused by of multiple genetic and/or factors 

SNPs Single Nucleotide Polymorphisms; specific position 

(among 3.2 billion in the genome) where 

chromosomes carry different nucleic acids 

Common SNPs "5% frequency. Approximately 10 million in the 

genome These SNPs are targeted in GWAS 

Linkage Disequilibrium  Correlation between SNPS that are close together  

Genome Wide association study (GWAS) A systematic search for common SNPs that influence 

a disease or traits 

Genome Wide SNP chip (array) A system for assaying 300.000 to 1.000.000 SNPs 

for an individual subjects, using an array of bead-

based or hybridation assay on a glass slide 

 

 



3.2 Genetic aspects  
Briefly, a list of the most important features of MetS (i.e., characteristics of T2DM, 

dyslipidemia, and obesity) are described below, in terms of both definition and heritability.  

 

3.2.1 Type 2 diabetes  
The risk of developing T2DM is approximately 3-4 times higher among first degree relatives 

of diabetic subjects compared to subjects without a family history of diabetes (Rich, 1990). 

Similar numbers have been calculated from the offspring of diabetic subjects. If one parent has 

diabetes, the risk that the offspring will develop the disease is about 40%, and if both parents 

have diabetes the risk is approximately 70%. This supports the hypothesis that there are familial 

factors that contribute to the disease and suggests that these factors, to some extent, are additive. 

Very high concordance rates of T2DM have been reported in monozygotic twins. These studies 

most likely have overestimated concordance by ascertaining twins based upon disease status, 

which does not distinguish between familial genetic and non-genetic components. One 

population-based twin study suggested concordance rates of 34% among monozygotic and 16% 

among dizygotic twin pairs. Thus, approximately 40% of variability of the diabetic phenotype 

may be heritable (familial genetic). In one recent study, heritability seemed to be higher for 

diabetes (0.60), than for diabetes alone (0.26). There are also a few monogenic forms of diabetes 

with similarities to adult T2DM but that generally develop at earlier ages (American Diabetes, 

2009). Maturity onset diabetes of the young (MODY) represents insulin deficient/insulin 

sensitive forms of T2DM that make up about 5% of all diabetic cases (Olokoba, Obateru, & 

Olokoba, 2012). MODY is caused by defects in β-cells that eventually lead to insulin 

deficiency. MODY1 is caused by mutations in the hepatocyte nuclear factor 4α gene 

(chromosome 20q12-q13.1), MODY2 by mutations in the glucokinase gene (chromosome 

7p15-p13), MODY3 by mutations in the hepatocyte nuclear factor 1α gene (chromosome 

12q24.2), MODY4 by mutations in the insulin promoter factor 1 (chromosome 13q12.1) and 

MODY5 by mutations in the hepatocyte nuclear factor 1β gene (chromosome 17cen-q21.3). 

Diabetes can also develop as a consequence of mutations in the insulin receptor gene 

(chromosome 19p13.2) or in mitochondrial DNA (tRNALeu). In addition, familial forms of 

adipose tissue deficiency (partial and congenital lipodystrophy) are associated with diabetes 

(American Diabetes, 2009).  

 



3.2.2 Dyslipidemia – Lipid metabolism 

The lipid metabolism pathway has been shown to play an important role in the genetic 

background of MetS. Heritability estimates for plasma triglyceride and HDL cholesterol levels 

range from 20 to 87%. In a recent study that includes twins reared apart, genetic factors 

contributed to one third of the variability of plasma triglycerides and nearly half of the 

variability of HDL cholesterol levels. In particular, triglyceride levels appear to be highly 

influenced by individual-specific environmental factors (Shirali et al., 2016). Several studies 

have shown that the most important variants associated with lipid metabolism are present in 

LPL, CETP, ZNF259 genes. 

Lipoprotein lipase is encoded by the LPL gene and is expressed in the myocardium, adipose 

tissue, and skeletal muscle. The LPL gene is located in the short arm (p) of chromosome 8 at 

position 22 (Mirhafez et al., 2016).  

Cholesterylester transferase protein (CETP), encoded by the CETP gene, plays a key role in 

cholesteryl ester transfer from HDL-C to TG-rich lipoprotein but its role in MetS pathogenesis 

is not clear. CETP has been reported to play a role in CVD pathogenesis and CETP 

polymorphisms are associated with MetS. Studies have demonstrated a relationship between 

CETP polymorphisms and increased risk of Coronary Artery Disease (CAD) (Frosst et al., 

1995). The CETP gene is located on the long arm (q) of chromosome 16 at position 21.   

The ZNF259 gene is located in the long arm of chromosome 11 (q) at position 23. Zinc finger 

ZPR1 protein, encoded by the ZNF259 gene, has been shown to affect lipid levels in the blood 

and ZNF259 polymorphisms have been associated with increased risk of coronary heart disease 

(Waterworth et al., 2010). 

 

3.2.3 Obesity 

Pathogenesis of obesity involves multiple interactions between environmental and genetic 

factors (Srivastava, Srivastava, & Mittal, 2016). Heritability estimates range between 20%-90% 

for obesity and between 30%-50% for abdominal obesity. Many of the available estimates 

include non-genetic familial factors, thus reflecting household effects. In Pima Indians, 

heritability was 80% for body fat and waist circumference and 50% for BMI (Thompson, 

Ravussin, Bennett, & Bogardus, 1997). Most studies agree on a heritability of BMI around 

50%, and the remaining variability of BMI seems to be largely attributed to shared 

environmental factors (Dubois et al., 2012). Studies of twins have shown that the propensity to 

gain weight in response to overfeeding is largely heritable (Garver et al., 2013). In the largest 

review conducted by Elks et al., the median heritability in siblings was estimated to equal 0.75 



(Elks et al., 2012). Monogenic obesity often develops in childhood and progresses over time. 

Obesity cases due to single mutations have been reported in 11 different genes including leptin, 

leptin receptor, POMC and MC4R genes (O'Rahilly & Farooqi, 2006). However, several 

genome-wide association studies (GWAS) have revealed numerous genetic susceptibility loci 

for obesity risk and some GWAS results have been replicated in different populations (Visscher 

P , Brown M , McCarthy M , & Yang, 2012). 

Evidence also suggests that obesity is influenced by genes that are regulated by other genes. 

For example, SNPs in the FTO gene that are associated with obesity could be due to linkage 

disequilibrium between FTO and other genes (Fawcett & Barroso, 2010).  

 

3.3 MetS heritability  
One tool that accounts for genetic effects is the estimation of the heritability coefficient, which 

quantitatively evaluates how much of the phenotypic variance is compatible with a genetic 

transmission across generations (for more details see chapter 4.4).  

In this case, MetS is a complex polygenic disease and the genetic basis of the syndrome is under 

investigation. Several lines of evidence support a genetic basis for the disease. 

Recent studies suggest that complex networks of metabolic pathways modulated by interactions 

between genetic and environmental factors underlie MetS. 

Due to the complexity of the pathology and the many criteria that define MetS status, several 

studies have evaluated heritability, yielding different results.  

Most of the results were obtained through estimation of MetS components independently (e.g., 

Body Mass Index, Blood pressure, HDL, etc.) (Bosy-Westphal et al., 2007; van Dongen, 

Willemsen, Chen, de Geus, & Boomsma, 2013). Globally, authors have discovered a moderate 

to high heritability for all traits (Teran-Garcia & Bouchard, 2007) and significant differences 

across age and gender have been found.  

Other studies have used metabolic syndrome as a binary phenotype. One study conducted by 

the Jackson Heart Study used ATPIII criteria (Khan et al., 2015) and another study used Dutch 

data (Henneman et al., 2008) to carry out heritability estimations considering MetS as a binary 

trait. These studies found significantly different results ranging from 19-38% (Bellia et al., 

2009; Henneman et al., 2008; Khan et al., 2015; Lin et al., 2005). 

To summarize, studies have shown that genetic effects influence the variability of MetS and 

indicate that, in representative population-based samples, metabolic syndrome and its 

components are moderately to highly heritable. Even if several heritability values exist in the 

literature, no single study has obtained results using Mets as continuous trait. 



 

3.4 MetS GWAS  
Representative and significant heritability estimates can be used to obtain an estimate of the 

total genetic variation of traits but are not informative about loci or associations with particular 

SNPs. Earlier genome-wide linkage studies reported links between MetS and several 

chromosomal regions including 1p34.1, 10p11.2, and 19q13.4 (Loos et al., 2003). 

The hypothesis that MetS has a genetic component is also supported by GWAS and post-

GWAS results that have found significant SNPs and pathways associated with MetS 

(Kristiansson, 2012; Pollex & Hegele, 2006; Povel, Boer, Reiling, & Feskens, 2011; Wu et al., 

2015).  

Due to the availability of GWAS catalogues and many GWAS MetS results, systematic reviews 

have been conducted during the last years (Fall & Ingelsson, 2014; Povel et al., 2011). 

Povel et al. (Povel et al., 2011) conducted a systematic review on genes associated with MetS. 

Using HuGE Navigator and eligibility criteria, they selected 87 articles, including a total of 125 

associated genes. At the end of the analysis, authors found evidence for an association with 

MetS and eight SNPs.  

All of these SNPs were also associated with an individual MetS feature, with most SNPs being 

associated with dyslipidemia. This result suggests that lipid metabolism plays a central role in 

MetS development.  

Comparable results were obtained in a Finnish study. Significant genes from lipid metabolism 

pathways were found to play a key role in the genetic background of MetS. The authors also 

found little evidence for pleiotropy linking dyslipidemia and obesity to other MetS traits such 

as hypertension and glucose intolerance (Kristiansson, 2012). 

As in heritability analysis, some GWASs have been conducted by considering each component 

independently while considering MetS as the main trait. 

For example, results published by the STAMPEED consortium carried out GWAS using MetS 

components individually. SNPs in or near 15 genes were significantly associated with at least 

one of the 11 traits studied (e.g., BMI, DBP, SBP, and HDL).  

Furthermore, MetS was associated with several variants in genes including BUD13, ZNF259, 

APOA5, LPL, and CETP. This GWAS was conducted using 7 independent studies, comprising 

22,161 participants from European ancestry. In this study, five SNPs (BUD13 rs10790162, 

ZNF259 rs2075290, APOA5 rs2266788, LPL rs295, and CETP rs173539) were associated with 

MetS (Kraja et al., 2011).  



Some GWASs have confirmed and replicated these published results in different populations, 

while other studies tried to identify new loci associated with the syndrome. This is the case for 

a GWAS study conducted in 2011 that considered five different populations. Three new loci 

associated with metabolic disorder were identified in this study (Avery et al., 2011). These loci 

(APOC1, BRAP and PLCG1) were in or near genes associated with atherogenic dyslipidemia, 

vascular inflammation, type I diabetes, and central adiposity.  

These examples demonstrate that not all genetic variants that explain part of the clustering of 

MetS features are also associated with MetS itself. In addition, some results have been 

replicated in different populations for validation, whereas other results appear to reveal new 

loci.  

Currently, due to the variability of the results, it is unclear how and which set of genes 

contribute to the development of MetS. The genetics of MetS involves a large number of genes 

with weak effects, however, they may interact with each other and work synergistically with 

environmental factors (e.g., diet, physical activity, alcohol intake, and smoking) in the 

pathogenesis of the MetS (Andreassi & Botto, 2003).  

No standard genetic test is available that may be used for diagnosis of MetS. The lack of 

confirmed associations is likely due to the complex interplay between genes and environmental 

factors that are necessary for expression of this phenotype (Joy, Lahiry, Pollex, & Hegele, 

2008). Finally, more analysis considering MetS as a unique pathology that is not divided by 

each component is needed to better understand the complexity and the interrelationships of this 

syndrome.  

  



4. MATERIALS AND METHODS 

 

4.1 Populations 
Three populations were considered to carry out the following analyses: 

-! The Gubbio population (external validation and heritability using family data) 

-! The Sardinia population (MetS score, heritability, and GWAS) 

-! The ARIC sample (heritability using SNP information)!

Gubbio Population Study is a prospective epidemiological investigation on blood pressure 

and cardiovascular risk factors that began in 1983 and concluded in 2007 in Gubbio, a town in 

central Italy. Three surveys (between 1983-1985, 1988–1992, and 2001–2007) were conducted 

over the course of 25 years (Cirillo et al., 2014; Menotti et al., 2009).  

These surveys targeted patients aged 5 years or older, living within medieval walls with their 

close relatives living outside. Among the 6,831 participants, 51.78% were residents within the 

medieval city (Cirillo et al., 2014). 

Information on demographic, clinical, anthropometric, and environmental variables was 

collected. All participants provided their informed written consent. At each survey, 

genealogical information was also registered and updated through a structured interview 

administered to each participant. From these data, nuclear and extended pedigrees were drawn. 

Nuclear pedigrees are two-generation families with first-degree relationships, that is, parent–

offspring and/or siblings. Drawings of extended pedigrees were carried out to include: three 

generations when applicable, the nuclear family of spouses in the second generation, and, 

consequently, all first cousins (maternal and paternal) in the third generation (Khoury, Beaty, 

& Cohen, 1993). Data from the last survey carried out in 2001-2007 have been considered in 

this analysis due to comparability of data collected in the Sardinia population in terms of span 

of years.  

 

The Sardinia Population Study was a large population-based epidemiologic survey carried 

out in villages of the Ogliastra region in Sardinia, Italy, between 2002-2008 (Biino et al., 2011; 

Cappello et al., 1996).  

People were invited to participate by means of public advertisement and letters sent to every 

family. Samples of blood, anthropometric and blood pressure measurements, and bioelectrical 

impedance analyses were collected. In addition, a standardized interview including socio-



demographic, lifestyle, medical, and pharmacological history was obtained (Cappello et al., 

1996). All participants provided informed written consent.  

Among the 12,517 subjects, 8,102 (3,485 men and 4,617 women older than 18 years) were 

included in the analysis due to complete information on their MetS components. MetS score 

algorithm implementation was conducted using this sample size.  

Some of the whole phenotype data, equal to 1,270 subjects, also contained genetics (SNPs) and 

pedigree information.  

Analyses were performed using these types of samples because both of these populations have 

particular characteristics: no immigration and isolated populations (details are included in the 

Discussion chapter).  

 

The Atherosclerosis Risk in Communities Study (ARIC), sponsored by the National Heart, 

Lung and Blood Institute (NHLBI), was a prospective epidemiologic study conducted in four 

U.S. communities (Investigators, 1989). ARIC was designed to investigate the causes of 

atherosclerosis and its clinical outcomes, and variations in cardiovascular risk factors, medical 

care, and disease by race, gender, location, and date. It consisted of a large sample of unrelated 

individuals and some families across North America. Specifically, the population was recruited 

from four centers across the United States: Forsyth County, North Carolina; Jackson, 

Mississippi; Minneapolis, Minnesota; and Washington County, Maryland. For this study, a 

restricted subgroup of European-Americans was considered. The ARIC population consisted 

of 8,592 unrelated subjects. 

 

4.2 Outcomes 

4.2.1 MetS components 

Weight was determined on a portable electronic scale to the nearest 0.1 kg, height was measured 

to the nearest 0.5 cm with a stadiometer, and waist circumference was measured at a mid-

distance between iliac crest and rib cage and was rounded to the nearest 0.1 cm. Body mass 

index (BMI) was calculated as kg/m2. Bioelectrical impedance (BIA 101, RjL/Akern Systems, 

Detroit, MI), measuring the resistance and reactance, was used to determine many body 

composition parameters including fat mass percentage. SBP and DBP were measured in both 

arms with a standard mercury sphygmomanometer (Miniatur 300 B, Speidel & Keller) 

according to the ESH guidelines ("2003 European Society of Hypertension-European Society 

of Cardiology guidelines for the management of arterial hypertension," 2003). The arm with 

the higher pressure was used subsequently and the average value was obtained. Biochemical 



analyses, including HDL, TGR and fasting blood glucose levels, were obtained in a central 

laboratory. 

 

4.2.2 MetS scores  

After selection of the CFA model, a MetS continuous score including gender was calculated 

using a newly proposed equation.   

The MetS binary variable was created using the IDF criteria to compare our results with the 

gold standard. 

 

4.2.3 Genotyped data  

DNA samples were isolated from blood of Sardinia and white American participants and 

genotyped using 500K Affymetrix Genome-Wide Human SNP 6.0 Array.  

Experiments were performed using the following recommended protocol as described in the 

Affymetrix manual. Briefly, total genomic DNA (500 ng) was digested with Nsp I and Sty I 

restriction enzymes, ligated to adaptors, and amplified using a primer that recognizes the 

adaptor sequence. Amplified DNA was then fragmented, labeled, and hybridized to 

oligonucleotide probes attached to the surface of an array in a GeneChip Hybridization Oven 

640 (Affymetrix, Inc. Santa Clara, CA, USA), followed by washing and staining procedures 

performed on a GeneChip Fluidics Station 450. Arrays were finally scanned using the 

GeneChip Scanner 3000 7G (Affymetrix, Inc.) (LaFramboise, 2009). 

The obtained 321 CEL intensity files were analyzed with executables included in the 

Affymetrix Power Tools package (APT version 1.12.0). Quality Control was performed using 

the Contrast QC algorithm. 

 

4.3 Statistical analysis 
A diagram of the analytical process is presented in Figure 6. Analyses were divided in two 

macro areas, including the clinical and genetic aspects. 

Specifically, the first step was to analyze the clinical aspect of the syndrome. Using the CFA 

model and comparisons between models, the best model that described the syndrome globally 

was chosen. Subsequently, using the CFA results, a newly proposed equation was used to obtain 

a score. External validation was performed to guarantee the effectiveness of the newly proposed 

score. 

As shown in the flow-chart, the second part of this study included the estimation of heritability 

due to the availability of pedigree and GWAS data. Finally, previous GWAS analysis of the 



new quantitative traits was carried out. All data analyses were analyzed using R (v. 3.2.1) 

software (Team, 2005). 

 

 
Figure 6 - Flow chart of steps taken in statistical analysis 

 

 

4.3.1 Descriptive analysis  

The normal distribution was determined using Kolmogorov-Smirnov test. Descriptive statistics 

were presented as the mean ± standard deviation. In addition, numbers and percentages were 

determined for all variables. Frequencies of MetS components were summarized for each 

population.  



For normally distributed variables, Student’s t-test was used to compare gender differences. If 

needed, data are given for men and women, separately.  

 

4.3.2 MetS score from the Sardinia population 

As described in the Introduction chapter, EFA and CFA were performed in the Sardinia 

population. Four-factor model, bifactor, and hierarchical models were analyzed and compared 

to select for the best one.  

Using results from the selected model, an algorithm used to compute MetS as a continuous 

variable that summarizes clinical parameters could then be proposed (Graziano et al., 2015). 

This algorithm summarizes waist circumference, BMI, blood pressure, blood glucose, HDL-

cholesterol, and triglycerides into one quantitative phenotype. In this way, the syndrome could 

become clinically interpretable and useful for evaluation of the association with cardiovascular 

diseases and for investigating genetic components.  

After fitting different CFA models (CFA with a single factor, correlated CFA, bifactor CFA, 

and hierarchical CFA), several goodness-of-fit criteria were used to choose the best one (Kline, 

2015):  

- comparative fit index (CFI) >0.9,  

- standardized mean square residual (SMSR) closer value to 0, 

- root mean square of approximation (RMSEA) value < 0.08 and,  

- the smallest AIC/BIC. 

Using results of the CFA model, a newly proposed equation was used to obtain a score that 

summarizes its components. If differences between gender were discovered, two equations 

were reported. 

 

4.3.3 External validation 

After proposing a new score, validation analysis using ROC curve and external validation were 

carried out to evaluate the performance of the score. A new cut-off point using Youden’s Index 

was also proposed to dichotomize the trait (Weng, 2001).  

Characteristics of the population score values were analyzed and compared with the gold 

standard. In particular, the following score characteristics were verified in the sample:  

-! If the score computed using the proposed algorithm ranged between the predicted 0 and 

100.  

-! If it is normally distributed. 

  



4.4 Theories about the heritability analysis  

4.4.1 Definition of heritability (h2) 

To facilitate the estimation of genetic components and to understand the architecture of the 

disease, heritability of the newly proposed score was carried out using both pedigrees and 

marker/SNPs information. 

The concept of heritability was introduced by Fisher and Wright (Norton & Pearson, 1976; S. 

Wright, 1921) to refer to variance for phenotypes that is explained by sharing of genomic 

regions. Based on this theory, twin studies are useful because twins are exposed to the same 

environmental factors. This reduces environmental variability and genetics can therefore be 

better quantified. 

Many definitions of heritability have been proposed but in general, heritability represents the 

amount of variation in a phenotype that is influenced by genetic variation. Mathematically, 

heritability is defined as the proportion of variance for a phenotype that is explained by sharing 

genomic regions. Specifically, it is defined as the proportion of total variance in a population 

for a particular measurement, taken at a particular time or age, that is attributable to variation 

in additive genetic or total genetic values (termed the narrow-sense heritability or just 

heritability, h2), or the broad-sense heritability (H2), respectively (Visscher, Hill, & Wray, 

2008). 

 

In statistical models, observed phenotypes take into account the contribution of unobserved 

genotype (G) and unobserved environmental factors (E): 

 

Phenotype (P) = Genotype (G) + Environment (E) 

 

The variance of the observed phenotypes (!"#) can be expressed as a sum of unobserved 

underlying variances, !$#%and !&#. 

 

!"
# = %!$

# + !&
# 

 

Broad-sense heritability (H2) is defined as )# = !$
# !"

#, which is the proportion of genotypic 

variance that is responsible for the proportion of phenotypic variance. 

However, genetic variance can be partitioned into the variance of additive genetic effects 

(breeding values; !*#), of dominance genetic effects (interactions between alleles at the same 



locus; !+#), and of epistatic genetic effects (interactions between alleles at different loci; !,#) 

(Vinkhuyzen, Wray, Yang, Goddard, & Visscher, 2013): 

 

!$
# = %!*

# + !+
# + !,

# 

 

If the narrow-sense heritability does not include epistatic and dominance effects, then the final 

formula is  ℎ# = !*
# !"

#. 

h2 is the parameter usually used to indicate heritability because dominance and other non-

additive genetic effects that are based on sharing two copies do not contribute to phenotypic 

resemblance. This is because individuals transmit only one copy of each gene to their offspring 

and then relatives share only one or no copy that are “identical-by-descent” (IBD). Identical 

twins and sibs are the most important exceptions.  

In the equation ℎ# = !*
# !"

#, the numerator and denominator need attention for a correct 

assignment. The denominator contains the total observed variation, excluding variation that is 

due to known fixed factors and covariates, such as sex, age, and cohort. The numerator contains 

variation that is due to genetic additive values in the population. They are defined as the sum 

of the average effects of parental genes that give rise to the mean genotypic value of their 

progeny. Narrow sense heritability is time and population specific. 

Traditionally, heritability is estimated from simple designs, such as simple functions of the 

regression of offspring on parental phenotypes, the correlation of full or half sibs, and the 

difference in the correlation of monozygotic (MZ) and dizygotic (DZ) twin pairs. Recently, 

availability of genotype information on a large number of loci has made it possible to estimate 

genetic contribution using genetic relatedness among unrelated data.  

This is useful because instead of testing the effect of each SNP independently on the trait like 

a GWAS (Genome-wide association study) or CVAS (common variant association study), a 

total variance explained by fitting all SNPs simultaneously can be obtained.   

 

4.4.2 Heritability using LMM 

Briefly, the classical method to estimate heritability is based on a simple assumption about 

correlations between relatives such as: ./0 1 23456783%7 , 1 23456783%: = ;7:%ℎ#%, where ;7: is a 

coefficient that depends on the pedigree relationship. For example, the coefficient equals unity 

if the relatives are monozygotic twins, ½ if they are parents and offspring, ¼ if they are uncle 

(aunt) and nephew (niece), and so on. The use of the empirical correlation to estimate ℎ# does 

not take into account or resemble each other, not only for genetic reasons, but also for 



environmental ones (James J. Lee, Vattikuti, & Chow, 2016; Zuk, Hechter, Sunyaev, & Lander, 

2012). 

Alternative methods for estimating the total heritability attributable to addittive common 

variants (i.e., the narrow-sense heritability) is via the Linear Mixed Model (LMM), also called 

Mixed Linear Models (MLMs) (Bonnet, Gassiat, & Lévy-Leduc, 2014; de Los Campos, 

Sorensen, & Gianola, 2015; David Golan & Rosset, 2011; Hall & Bush, 2016; Hu & Yang, 

2014; J. Yang et al., 2010; J. Yang, Manolio, et al., 2011). The model is mixed because it jointly 

accounts for fixed (#) and random (<5 and e) effects in the equation: 

 

= = >? + <5 + @ 

 

where = is the vector%(BC1) of phenotypic trait, X is the matrix (BCF) of observed covariates 

(i.e., sex, age, principal component of genetic substructure, etc.) corresponding to the fixed 

effect in #, <5%is the vector%(BC1) of additive random effects (the degree of genomic individual 

sharing), <5~HIJ(0, !*#L), and e is the vector %(BC1) of residual  random effects (representing 

environmental, non-genetic effects), @~HIJ(0, !&#M). 

In particular, elements in the vector <5%are correlated because they include the known sharing 

gene information (G), the genetic variance is assumed equal to the sum of the squares-effect 

sizes of S loci: !*# = NO#O∈Q , and the environmental contribution to phenotype is assumed 

equal to !&# for all the subjects. Therefore, the mean vector and the covariance matrix of y are: 

 

R = = >?%%%%%&%%%%%I(=) = !*
#L + !&

#M 

 

The recently developed LMM approach (J. Yang et al., 2010) defines a polygenic additive 

model with many markers of small, null, and outlier markers with large effects. The key 

assumption is that we are interested in the value NO#O∈Q %,%rather than each of the individual 

effects size NO%, these effect sizes may be regarded as “nuisance” offset parameters. 

The variance of the random effects (!*#%and%!&#, or the heritability: %ℎ# = !*
# !"

#, and the total 

variance: !"# = %!$# + !&#) %are typically fit using Maximum Likelihood (ML), or REstricted 

Maximum Likelihood estimation (REML), which are iterative methods that find the best fit for 

the model. A likelihood ratio test (LRT) is performed, examining the significance of the genetic 

random effects on the fit model, yielding P-values. 

Depending on which type of data is available for the analysis, differences in estimation of the 

genetic relationship matrix, G is reflected in the evaluation of heritability. Thus, for pedigree 



data where relationships are known, elements of G are the coefficient of actual genetic 

relatedness derived from probabilities of Identity-By-Descent (IBD), L = X"&+. In the 

population data where dense marker data are known but family information is unknown, 

elements of G are the expected IBD based on the Identity-By-State (IBS) coefficients, L =

X,Y+, or the Genetic Relationship Matrix (GRM) between pairs of subjects that are captured by 

observed markers, L = X$Z[. The heritability using GWAS data is sometimes called “SNP-

heritability”. 

 

4.4.3 Estimating Identity-By-Descend (IBD) matrices 

To identify the degree of relatedness between each pair of study samples, Identity-By-Descend 

IBD estimation can be done using either the method of moments (MoM) (Purcell et al., 2007) 

or maximum likelihood estimation (MLE) (Milligan, 2003).  

Likelihood estimators (MLE) are based on a probability models of the sampled data. In this 

case, the unit of sampling is a pair of individuals, each one of which has been assayed 

genetically at L loci. The estimator is based on the assumption of independently segregating 

marker loci. The likelihood for the overall sample, therefore, is simply the product of the 

likelihoods across the loci.!
In MoM, a correction factor based on allele counts is used to adjust for sampling. However, if 

allele frequencies are specified, no correction factor is conducted since the specified allele 

frequencies are assumed to be known without sampling. In particular, Pr(IBD=0)=k0, 

Pr(IBD=1)=k1, = Pr(IBD=2)=k2, and each IBD coefficient pair is calculated from 0.25_` +

0.5(1 − _b − _`).  

Although MLE estimates are more reliable than MoM, the IBD MoM method is 

computationally more efficient relative to MLE. For these computational reasons, only IBD 

MoM was used in the analysis.  

 

4.4.4 Estimating genetic relationship matrices (GRMs) 

Estimates of genetic sharing across study samples using GWAS datasets is often represented as 

a genetic relationship matrix (GRM).  

If the information captured by the GWAS dataset represented 100% of all genetic variation, 

this analysis would yield a perfectly accurate estimate of trait heritability. Because genotyping 

technologies do not capture all genetic variants, the estimation of shared genetic variations are 

limited to the genotyped information. Thus, when properly adjusted for factors, the variance 



explained by GWAS-genotyped SNPs can be considered a surrogate of the heritability due to 

additive genetic effects (narrow sense heritability).  

In this way, the most common GRM is implemented by Yang et al., called Genome-wide 

Complex Trait Analysis (GCTA) (J. Yang, Lee, Goddard, & Visscher, 2011). This tool has 

been followed to estimate heritability using marker information. Due to large-scale, genome-

wide single nucleotide polymorphism (SNP) genotyping sample sizes, the computational 

process can be very intensive. 

As mentioned previously, one of the core functions of GCTA is to estimate the genetic 

relationships between individuals from the GWAS SNPs. In practice, the genetic relationship 

between the individuals j and k is typically based on the additive sharing of alleles across all 

(N) genotyped SNPs, according to the following equation: 

 

;7c =
1
J
%

C7: − 2F7 C7c − 2F7
2F7 1 − F7

d

7e`

 

 

where C7: is the number of copies of the reference allele for the ith SNP on the jth individual, and 

pi is the frequency of the reference allele. Importantly, this model of relatedness assumes an 

additive effect for SNPs and is typically created using autosomal SNPs only. 

To avoid the possibility of including the non-genetic effect, authors suggest to exclude closed 

subjects (one individual of a pair whose relationship is greater than a specified cut-off value, 

e.g., 0.025). 

GCTA is also sensitive to linkage disequilibrium (LD). Heritability can be under or 

overestimated in influential regions with high or low LD. This correction is currently under 

debate, (S. Lee et al., 2011) suggesting that LD has a relatively minimal effect. (Hill & Maki-

Tanila, 2015) However, other authors argue that in region where there is high LD near causal 

variants, heritability is overestimated, which is the opposite for areas of low LD. 

Thus, LD pruning before estimation of GRM can be used to filter SNPs using an LD threshold. 

In this way, heritability can be estimated by decreasing the potential for confounding due to 

LD. 

 

4.4.5 Phenotype Correlation-Genotype Correlation (PCGC) 

Recently, another ingenious method to estimate heritability was developed by Golan (D. Golan, 

Lander, & Rosset, 2014). It is called phenotype correlation-genotype correlation (PCGC) 



regression and it is derived from the well-known Haseman-Elston regression method (Haseman 

& Elston, 1972). 

Under the previous additive LMM for convenience without fixed effects, and using 

“normalized” phenotypes =7 and genotypes C7, where the values =7%and%C7% have been centered 

to have mean 0 and standardized to have variance 1, we have the following relationship: 

 

./0 =7; =: = R =7; =: = ℎ#L7: 

 

where L7: is the genetic correlation between individuals i and j; given by: 

  

L7: = %./0 C7; C: =
1
J
% C7cC:c

d
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Thus, under additive model with random effects, the estimated slope of the regression of the 

empirical phenotypic correlation (=7; =:) onto the genetic correlation (C7; C:)%is the heritability 

of the trait, ℎ#. 

The PCGC regression approach for estimating heritability is easy to understand and implement; 

it produces unbiased estimators. More precisely, the PCGC regression estimator is a moments-

based estimator; it looks at pairs of individuals at a time (Mitchell et al., 2015) and the 

covariates can be considered using the phenotype residuals before the PCGC. 

 

4.4.6 Beyond heritability analysis 

Each of the heritability estimation methods described above make different assumptions about 

the model generating phenotype, discussed in detail by Zaitlen et al., Lee et al., and Yang et al. 

(Zaitlen & Kraft, 2012) (J. J. Lee & Chow, 2014; S. Yang et al., 2014). Here, we reported some 

hot-spots beyond heritability. 

 

A. Choose unrelated subjects 

One of the core functions of the GTCA method is to estimate the genetic relationship matrix, 

leaving out closer relatives (e.g., 3rd cousins or closer; cut-off = 0.025). The reason was to avoid 

the possibility that the resemblance between close relatives could be due to non-genetic effects 

(shared environment). In this case, heritability includes not only genetic effects but also 

environmental components. The estimate of heritability from an analysis with many close 

relatives would be similar to the estimate using only those relatives and fitting an AE model, 



excluding the common environment in the ACE model (v. par. 4.5). Such an analysis would 

not tell us something new and would not be informative with respect to variation due to causal 

variants that are in LD with common SNPs (Visscher, Yang, & Goddard, 2010). Kumar et al. 

claim that this filtering is subject to a lot of error, and does not resolve the cryptic relatedness 

in the observed GTCA (Kumar, Feldman, Rehkopf, & Tuljapurkar, 2016). 

 

B. Population structure 

The problem of confounding by population structure, family structure, and cryptic relatedness 

in heritability analysis is widely appreciated. Statistical methods for correcting these 

confounders include linear mixed models (LMMs), genomic control, family-based association 

tests, structured association, and eigenstrat (Zhou & Stephens, 2012). Compared to other 

methods, LMMs can capture all of these confounders simultaneously, without knowledge of 

which are present and without the need to tease them apart. 

Shin and Lee suggest that the mixed model methodology was useful to reduce spurious genetic 

associations produced by population stratification, even with a high degree of admixture (Shin 

& Lee, 2015). To achieve these goals, the authors simulate datasets based on the HapMap data 

under various scenarios. Results indicate that the mixed-model approach performs well in 

controlling for population structure/admixture. It has a similar performance as that based on 

Principal Component Analysis (PCA). However, the approach combining mixed-model and 

principal component analysis does not perform as well as either method itself (Liu, Zhao, Patki, 

Limdi, & Allison, 2011). Correction for population structure and selection of unrelated subjects 

to obtain an unbiased estimation of heritability is still under debate.   

 

C. Missing heritability 

To summarize, different values of variance explained can be obtain based on availability of 

sample size and type of population (family or population-based samples). The discrepancy 

between estimates of ℎ# from studies of pedigrees and the percentage of the variance ascribable 

to phenotype-associated SNPs identified with high confidence in GWAS is called “missing 

heritability”. The differences between two types of estimation are still unknown but have been 

studied previously (Blanco-Gomez et al., 2016; Manolio et al., 2009; Zuk et al., 2012). Zaitlen 

and Kraft define “bottom-up” heritability, the ℎ# computed given a GWAS using the effect size 

estimates from the markers with a pre-specified genome-wide significance level (P < 10-5, or P 

< 10-6), and “top-down” heritability, the ℎ# computed with all the markers, and their ratio is a 

crude relative measure of missing heritability (Zaitlen & Kraft, 2012). 



D. h2 dissemination  

Regarding interpretation of heritability values, in general it ranges from 0 to 1, from no 

heritability trait (0%), which means no genetic effect, to full heritability trait (100%), which 

means strong genetic contribution. Even if there are many heritability studies, it is difficult to 

compare the results and make conclusions, but it is very useful to the investigation of the 

architecture and for discovering specific genetic component of the complex traits (James J. Lee 

et al., 2016). The GTCA method is quite robust. It should remain a valuable tool in quantitative 

genetics for some time to come (J. J. Lee & Chow, 2014). 

 

4.5 Heritability analysis in the three study samples 
Using family data (Gubbio and Sardinia) and two GWAS datasets (ARIC and Sardinia), 

heritability of MetS scores were estimated in two ways:  

- using pedigree design (both nuclear and extended families) and  

- using population design.  

 

4.5.1 Family data (Gubbio and Sardinia) 

Due to the availability of pedigree data in Gubbio and Sardinia samples, Maximum-likelihood 

heritability estimates were performed by classical ACE models.  

In these models, parameters are estimated under the assumption that the variance of the trait is 

attributable to a combination of non-shared environmental factors (E), common environmental 

variance (C), and additive genetic variance (A). Combinations of this parameters are denoted 

as follows:  

 

E model = null model, 

AE model = additive + environmental,  

CE model = no genetic component, and  

ACE model = full model.  

 

Each hypothesis was tested against the null model by use of the likelihood ratio test computed 

as −2[hBijkl − hBimn44], where hBi is the log-likelihood. The likelihood ratio has a p# 

distribution with the degrees of freedom equal to the number of parameters in the null model 

minus the number of parameters in the ACE/AE/CE models. 



All models were adjusted for age, but not for gender because it is included in the MetS equation. 

Sibs-household (q#) and household effects (q#) were considered in nuclear and extended 

pedigrees, respectively.  

 

4.5.2 Unrelated individual data (Sardinia and ARIC) 

Estimation of heritability was carried out under a number of different scenarios. In particular, 

for both Sardinia and ARIC samples, two types of matrices were considered to impute the 

relationship of unrelated subjects: the IBD and GCTA matrices. 

All models were adjusted for age and principal components (PCs) if necessary. 

LD pruning with two different thresholds were utilized to estimate both IBD and GCTA 

matrices. Pruning with LD equal to 0.20, 0.80 and no threshold were used to capture the 

differences between heritability and linkage disequilibrium.  

Also, these analyses, considering three LD thresholds, were repeated with Phenotype 

Correlation-Genotype Correlation (PCGC) using the same GRM GCTA as impute to estimate 

heritability. 

 

4.5.3 Genome-Wide Association Study (GWAS) (Sardinia and ARIC) 

Estimation of “bottom-up” heritability in Sardinia and ARIC samples was computed by 

classical GWAS analysis (Barsh, Copenhaver, Gibson, & Williams, 2012; H. Zhang, Liu, 

Wang, & Gruen, 2007). In brief, GWAS analysis of genotyped data was composed by the 

following essential steps:  

 

-! data pre-processing and quality control (QC), 

-! principal component analysis (PCA), and 

-! association analysis for typed data. 

A. Data pre-processing 

Several Quality Control (QC) procedures were performed on the genotype data. This step 

involves both SNPs, sample, and family filtering. In this step, selected SNPs and individuals 

were excluded from analysis (Wang, Barratt, Clayton, & Todd, 2005; W. Zhang et al., 2008). 

In the SNP-level filtering, the call rate for a given SNP is defined as the proportion of 

individuals in the sample for which the corresponding SNP information is not missing. In the 

Sardinia population, we used a call rate filter equal to 95%; the minor allele frequency (MAF) 

refers to the frequency at which the second most common allele occurs in a given population. 

SNPs for which the MAF was less than 1% were removed. Another pre-processing filter applied 



to this population was the Hardy-Weinberg Equilibrium (HWE). This type of equilibrium says 

that alleles and genotype frequencies in a population remain constant from generation to 

generation in the absence of other evolutionary influences. HWE is generally measured at a 

given SNP using a chi-squared goodness-of-fit test between the observed and expected 

genotypes.  SNPs which had a HWE test statistic corresponding to a P-value less than 1x10-6 

were removed.  

Another important concept is Linkage Disequilibrium (LD). It refers to a nonrandom assortment 

of alleles at two loci. LD pruning was performed using a several threshold values (0.20, 0.50, 

and 0.80) to eliminate a large degree of redundancy in the data and reduce the influence of 

chromosomal artifacts. 

In the sample-level filtering, call rate, similar to SNP-level filtering, refers to exclusion of 

individuals who are missing genotype data across more than a pre-defined percentage of typed 

SNPs. The threshold for Sardinia population was equal to 95%.  

For family-based data only, families with more than 5% Mendel errors (considering all SNPs) 

and SNPs (i.e., based on the number of trios) with more than 10% Mendel error rate were 

discarded. 

 

B. Principal Component Analysis (PCA) 

Another parameter evaluated was ancestry, which was carried out using Principal Component 

Analysis (PCA). PCA is one approach used to visualize and classify individuals into ancestry 

groups based on reference panels (Liu et al., 2011; Reich, Price, & Patterson, 2008). Sardinia 

and ARIC populations were compared with CEPH (Utah residents with ancestry from northern 

and western Europe) (abbreviation: CEU in black) and other population, Yoruba in Ibadan, 

Nigeria (abbreviation: YRI); Japanese in Tokyo, Japan (abbreviation: JPT); and Han Chinese 

in Beijing, China (abbreviation: CHB). The first PCs capture information of latent population 

substructure and usually the first 10 PCs are considered as possible confounders (conservative 

approach). For Sardinia and ARIC, we selected the first PC because no evident sub-structures 

were revealed (see par. 5.6). 

 

C. Model used to test association  

Association analysis for the MetS score was conducted by linear regression analysis, adjusting 

for age, PCs, and for family information (using IBD matrix) in Sardinia and ARIC samples. A 

single additive model was selected; each SNP was represented as the corresponding number of 

minor alleles (0, 1, 2). 



The fixed threshold for genome-wide significance was set at the consensus level of  

P < 5×10-8 and a genome-wide suggestive P-values if 1×10-5 > P > 5×10-8 because of the larger 

number of tests conducted in a genome-wide survey. These thresholds help to avoid false 

positives and ensure that reported associations in other samples from the same population. The 

typed SNPs identified as genome-wide significant (P < 10-4) were used to estimate the “bottom-

up” heritability using both IBD and GCTA matrices. 

 

All data analyses were analyzed using R (v. 3.2.1) software (Team, 2005). ACE models were 

performed by function implemented in SOLAR (Sequential Oligogenic Linkage Analysis 

Routines) software package Eclipse version 7.6.4 (Almasy & Blangero, 1998).  

SNP-based heritability estimation, collection whole genetic/frequencies information, 

estimation of matrices, GWAS analysis, and linear mixed models were performed using R 

packages as SNPRelate (Zheng et al., 2012), SNPstats, GenABEL (Karssen, van Duijn, & 

Aulchenko, 2016), and PLINK 1.9 (Purcell et al., 2007). 

  



5. RESULTS 
 

5.1 Characteristics of the study populations 
Table 4, below, describes the clinical characteristics and phenotypic details of Gubbio, 

Sardinia, and ARIC participating cohorts, regarding the MetS score components (BMI, SBP, 

SBP, WC, glucose, TRG, HDL). Sample size, mean, standard deviation (SD) and range are 

reported by gender. 

In particular, characteristics of the Gubbio population are described in the first part. As reported 

in the Materials and Methods chapter, only the third survey was considered. A sample of 4,111 

subjects were analyzed from this cohort (1,852 males and 2,259 females). 

Summary characteristics for the Sardinia population are reported in the middle section of Table 

4; a total of 8,102 subjects were enrolled for the implementation of the MetS score equation. In 

total, 3,485 males and 4,617 females were enrolled in the Sardinia population.  

Finally, ARIC contained the largest sample size in this analysis. Sample size was equal to 8,592 

subjects, including 4,419 females and 4,173 males (Table 4, last section). 



 Table 4 - Descriptive features of Gubbio, Sardinia and ARIC samples 

 GUBBIO SARDEGNA ARIC  
Men, N = 1852 Women, N = 2259 Men, N = 3485 Women, N = 4617 Men, N = 4173 Women, N = 4419 

Mean ± 
SD 

Range Mean ± 
SD 

Range Mean ± 
SD 

Range Mean ± 
SD 

Range Mean ± 
SD 

Range Mean ± 
SD 

Range 

BMI 
(kg/m2) 

27.15 ± 
3.77 

13.78 -
45.11 

26.14 ± 
4.83 

15.79 –
50.37 

26.5 ± 3.9 15.8-48.9 25.2 ± 4.9 14.3-50.7 27.42 ± 
3.97 

16.10 – 
56.26 

26.65 ± 
5.48 

14.91 – 
55.20 

Waist 
circ. (cm) 

93.05  ± 
11.12 

56–140 85.08 ± 
13.96 

52–135 93.0 ± 
10.5 

60.2-
135.7 

84.7 ± 
13.4 

52.7-
146.5 

99.60 ± 
10.36 

66 - 171 93.14 ± 
14.81 

52 - 169 

HDL 
(mg/dl) 

49.40 ± 
12.47 

22–109 61.37 ± 
14.40 

24–117 47.7 ± 
11.5 

19.1-
121.0 

56.6 ± 
12.3 

17.7-
120.4 

43.78 ± 
12.19 

9.63 – 
128.01 

57.42 ± 
17.01 

11.55 – 
134. 82 

TRG 
(mg/dl) 

139.4 ± 
96.46 

17–1377 107.4 ± 
61.51 

23–630 125.6 ± 
96.3 

21.5-
1456.5 

94.8 ± 
55.8 

15.7-
870.7 

 147.30 ± 
97.9 

24 – 1876 128.87 ± 
82.58 

26 - 1563 

Glucose 
(mg/dl) 

94.29 ± 
23.30 

59–346 89.82 ± 
22.08 

56–388 99.7 ± 
25.0 

56.4-
435.9 

92.6 ± 
23.4 

54.2-
426.9 

 105.05 ± 
30.6 

53.88 – 
517.67 

102.86 ± 
30.85 

36.97 – 
446. 47 

SBP 
(mmHg) 

130.88 ± 
15.79 

87–221 128.6 ± 
19.12 

87–217 130.9 ± 
16.3 

83-220 125.2 ± 
18.3 

80-200 120.16 ± 
16.03 

72- 206 117.05 ± 
17.45 

61 - 203 

DBP 
(mmHg) 

77.93 ± 
8.92 

45–115 75.48 ± 
9.53 

47–111 82.9 ± 
10.0 

50-130 79.1 ± 
10.2 

40-150  73.60 ± 
10.01 

12-130  69.88 ± 
9.66 

27 - 129 

Age 
(years) 

53.44 ± 
16.08 

11–92 55.95 ± 
16.57 

8–93 49.1 ± 
17.5 

18-100 49.4 ± 
17.7 

18-98  54. 69 ± 
5.68 

44 - 66 54.01 ± 
5.67 

44 - 66 

Variables are expressed as means ± standard deviation 



5.2 MetS scoring 

As illustrated in the flow chart at the beginning of the chapter (Figure 6), the first step was to 

carry out Confirmatory Factor Analysis to select the best model that describes metabolic 

syndrome. Comparing three different CFA models, the best CFA fitting, represented by the 

lowest AIC and BIC scores and adequate summary indices, was found to be the bifactor model 

with one general factor (g) and three specific factors (Graziano et al., 2015).  

As shown in Figure 7, the bifactor CFA model was the best way to summarize MetS 

components. In detail, the general factor (g) was the MetS syndrome and was used to estimate 

the newly proposed score. The other three factors summarized f1 “the obesity trait”, f2 the 

“blood pressure trait” and f3 the “lipid trait”. Only the glucose feature was independent from 

the other factors.  

 

 
 

Figure 7.  Bifactor CFA model 

 

The indexes from this model and its results were used to propose the equation. 

Algorithms to calculate MetS score (g) were based on bifactor results and were defined by the 

sum of each centered and scaled MetS variable (x’s) weighted with the corresponding ratio 

between factor loading (λ’s) and residual variance (ϑ’s) of the general factor g of  bifactor CFA 

model (McDonald, 2013): 
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Metabolic syndrome correlation structure was modeled by gender group (two-group CFA) 

because some components were statistically different. When significant group differences in 

factor loadings/residual variances were detected, factor score estimates were considered 

separately for each gender group (Viitasalo et al., 2014). Finally, g scores were rescaled in the 

range of 0 to 100 with: 100 ∗ (! − min)/(,.* − min).  
Results from this equation were used to calculate the MetS score for each individual. A 

continuous trait, normally distributed, that summarizes common components of MetS was 

obtain for each sample. 

As shown in detail below, due to statistically significant differences in gender, two algorithms 

were performed: 

 

For males: 
Gm = 0.645*WC + 0.933*BMI + 0.059*SBP + 0.087*DBP + 0.011*GLU -0.022*HDL+ 

0.003* TRIG - 63.0 

 

For females: 
Gf = 0.342*WC + 0.636*BMI + 0.133*SBP + 0.146*DBP + 0.021*GLU -0.027*HDL +  

0.009*TRIG - 44.4 

 

5.3 Comparison the proposal score with other criteria 
In Figure 8, three ROC curves are illustrated using the proposal score calculated in the Sardinia 

population compared with the three most common criteria (IDF, harmonized, and ATPIII).  

As shown in Table 5, the IDF criteria had the best performance compared with the others 

criteria (sensitivity and specificity were equal to 0.802 and 0.803, respectively).  

 

Table 5. Sensitivity and Specificity of each criteria 

Criteria (overall cut-off) Sensitivity (SE) Specificity (SE) 

IDF criteria (36.3) 0.802 ± 0.02 0.801 ± 0.01 

ATPIII criteria (35.05) 0.769 ± 0.02 0.738 ± 0.01 

Harmonized criteria (34.3) 0.738 ± 0.02 0.801 ± 0.01 

 



 

Figure 8 a) three compared ROC curves using Harmonized, IDF and ATPIII criteria 
b) ROC curve of MetS score for identifying Metabolic Syndrome (using IDF criteria) 
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In detail, MetS Score effectiveness, compared with IDF criteria, was evaluated using ROC 

(Receiver Operating Characteristics) curve (Hajian-Tilaki, 2013). The optimal cut-off was also 

calculated to determine the presence or absence of metabolic syndrome. Using Youden’s Index 

(J), the optimal cut-point (c) was equal to 36.33 with 0.80 specificity and 0.80 sensitivity 

(Figure 8).  

A good concordance measured using Cohen's Kappa and 36.33 as cut-off point was obtained 

(coefficient of agreement was equal to 0.55). 

 

5.4 External validation in the Gubbio population  
This score was validated using another Italian population. External validation was performed 

on data from the Gubbio Population Study (Cirillo et al., 2014; Graziano, Grassi, Bonati, 

Zanchetti, & Biino, 2016). 

Data from the last survey, carried out in 2001-2007 (sample size equal to 4,111 subjects), was 

considered for the validation due to the availability of all seven phenotypes and the 

comparability with data collected in the Sardinia population in terms of span of years.  

ROC curve analysis was conducted for assessing the performance of the MetS score as a binary 

classifier, both in the whole sample and stratified by sex (Table 6).  

 

Table 6. Metabolic Syndrome Score in Gubbio population 

 MEN WOMEN 

Mean (SD) Range Mean (SD) Range 

MetS score 37.26 (10.95) 0.13–89.59 30.59 (10.07) 5.03–73.23 

 

 

In addition, Cohen’s Kappa was computed to measure agreement between the MetS diagnosis, 

obtained by applying the proposed cut-off of 36.33 to the MetS score in the Gubbio sample, 

and the gold standard diagnosis using IDF criteria.  

Performance evaluation of the MetS score revealed AUC equal to 0.89, specificity equal to 

0.75, and sensitivity equal to 0.86, thus confirming the good predictive accuracy of the score as 

a binary classifier (Figure 9). 

Furthermore, a Cohen’s Kappa of 0.80, 0.77, and 0.82 in the whole sample, in men, and in 

women, respectively, shows a good agreement between the MetS diagnosis through the 

proposed cut-off and the gold standard, IDF criteria (Graziano et al., 2016).  



The MetS score calculated in this population has a value of 37.26 (SD = 10.95) in men and 

30.59 (SD = 10.07). 

 

 
Figure 9 - Receiver operating characteristic (ROC) curves for MetS score 

 

Due to the availability of a twenty-five years span life, collection of individual ages was 

considered and plotted to compare with the MetS score. As the literature suggests, prevalence 

of MetS increases with age. As shown in Figure 10, a positive trend is observed until the fourth 

decade and a plateau of MetS score value is obtained in the fifth decade. Due to missing values 

and deaths of older people, a decrease in the MetS score is observed in the last decade. 

Considering the cut-off point equal to 36.33, founded in ROC curve analysis, MetS variable 

increases dramatically with age in the fifth decade. Due to missing values, the last decade in 

the graph is not representative of the MetS trend. 

 Results of the external validation support the applicability of the model in clinical practice for 

diagnosis and screening. It also supports the possibility of using the model to evaluate the 
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genetic component of this complex disease and to discover genomic regions involved in the 

clinical presentation of this disorder.  

 
 

Figure 10 - MetS over time, and in the table, the values corresponded each decade 

 

5.5 Heritability using the family data 
 

5.5.1 Gubbio population study 

A total of 711 nuclear pedigrees were available for heritability analysis in the Gubbio 

population. All models were adjusted for age. AE and ACE (both households and sibs-

household effects) models were performed. As shown in Table 7, heritability is statistically 

significant in each model. h2 is estimated to equal 35% under the AE model assumption.  

 

Table 7. Heritability analysis in Gubbio population (n=2620, 711 pedigrees) 

 

MODEL 

 

h2 (SE) 

 

c2 (SE) 

Variance due 

to covariates 

AE  0.354*** (0.051) - 0.199 

ACE (Household effects) 0.129*     (0.118) 0.128*     (0.060) 0.199 

ACE (Sibs-household effects) 0.300*** (0.061) 0.094*** (0.049) 0.194 

*p<0.05; *** p<0.0001 
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If familial environmental factors are considered, ACE (sibs-household and household effects) 

model estimations were statistically significant. In the first case, h2 and c2 (household effect) 

were both equal to 13%; in the second case, h2 was higher than the first one and equal to 30% 

and c2 (sibs-households) was lower and equal to 9%.  

 

5.5.2 Sardinia population study 

Due to the availability of pedigree information, MetS heritability was also estimated in the 

Sardinia population. A total of 589 pedigrees, n = 8,096 subjects, was collected and analyzed 

to calculate additive and environmental factors. Again, all models were adjusted only for age 

because gender is included yet in the definition of the score. h2 was statistically significant and 

equal to 34% in the AE model. 

When c2 (household effects) were considered, both c2 and h2 were significant, but h2 was lower 

than before and equal to 29% and c2 was equal to 3%. Results are summarized in Table 8.  

 

Table. 8 Heritability analysis in Sardinia population (n=8096, 589 pedigrees) 

 

MODEL 

 

h2 (SE) 

 

c2 (SE) 

Variance due 

to covariates 

AE 0.340*** (0.0224) - 0.221 

ACE (Household effects) 0.292*** (0.0225) 0.027* (0.050) 0.221 

*p<0.05; *** p<0.0001 

 

Sibs-household effects were not calculated because only extended pedigrees were analyzed in 

this sample. 

 

5.6 Heritability using marker information and LD thresholds 

 

5.6.1 Sardinia population study 

A total of 1,163 subjects were considered to estimate heritability using IBD and GCTA. 

Subjects from the Sardinia samples demonstrated, in part, relatedness in the within-family 

design.  

Figure 11 shows the relatedness inference from IBD estimates. Specifically, estimates of the 

IBD coefficients, k0 and k1, were used to infer relatedness. 

 

 



 
Figure 11 - Relatedness inference from IBD estimates 

 

Each point is for a pair of samples and the diagonal line (red line) represents k0 + k1 equal to 

1. Parent-offspring pairs are expected to occur at k1 = 1 and k0=0 and duplicates (or identical 

twins) at k0 = k1 = 0. As illustrated in Figure 11, a duplicate subject is present, also pairs of 

samples with kinship coefficient estimates for full sibs (k0 = 0.25 ± 0.08, k1 = 0.50 ± 0.10), 

half sibs (k1 = 0.50 ± 0.08, k0 = 1 - k1), and first cousins (k1 = 0.25 ± 0.08, k0 = 1 - k1) are 

present.  As shown in Figure 11, many supposed “unrelated” subjects in the Sardinia samples 

(1/3 of the total samples) as expected are close or very closely related subjects. PCA confirms 

this common ancestral origin displaying no population subgroups (substructure) using the first 

four PCs (Figure 12).  

 

 



 
Figure 12. Plot the principal component pairs for the first four PCs of the Sardinia sample 

 

The PCs number K=4 is found at the eigenvalue in which an elbow of an eigenvalue decay is 

observed on the scree plot (Cattell, 1966), and on the diagonal of scatter matrix of Figure 12, 

the percent of variation accounted by the first four principal components is plotted. 

The implication is that the population structure may be accounted for by using the kinship 

matrices (IBD or GTCA), without the need of fitting PCs as fixed effects. As previously 

described, for calculating heritability, two types of matrices and three levels of LD were 

considered. The number of SNPs (m) selected for the analysis are shown in Table 9 at the top. 

In detail, m = 65,298, 22,6771 and 46,1015 were considered for heritability estimation after LD 

pruning equal to 0.20, 0.80 and no LD, respectively. 

All heritability estimates of MetS (adjusted for the fixed effects of age and PC1), both using 

IBD and GCTA matrix, were significant. In particular, considering the IBD matrix (Table 9, 

top left) and applying an LD threshold equal to 0.20, h2 of metabolic syndrome was equal to 



0.243 (0.179 - 0.307); using an LD threshold equal to 0.80, heritability was estimated to be 

0.273 (0.120 - 0.347), and using no LD pruning, h2 estimate was equal to 0.262 (0.189 - 0.334). 

Using the GCTA matrix (Table 9, top right) and different levels of LD threshold, for LD equal 

to 0.20, h2 was estimated to be 0.408 (0.308 - 0.508); applying an LD threshold of 0.80, h2 was 

equal to 0.355 (0.268 - 0.441), and without LD pruning, h2 was equal to 0.332 (0.250 - 0.413).  

 

5.6.2 ARIC population 

Similar to the Sardinia study, Figure 13 shows the relatedness inference from IBD estimates. 

Only pairs with kinship coefficient estimates >1/32 are plotted. At the bottom of the figure, the 

red line represents the independent subjects with k0 + k1 equal to 1, whereas the red line at the 

top of the figure represents the parent-offspring pairs. Only 619 pairwise on 8592 x 8591/2 

were offline from the diagonal line, suggesting a negligible hidden relatedness. 

 

 
Figure - 13 Relatedness inference from IBD estimates 

 



Next, PCA was performed to differentiate if there is a latent population substructure. As shown 

in Figure 14, the scatter matrix of the first four PCs selected using the scree plot illustrates that 

there are no significant population structure differences. 

 

 
Figure 14. Plot the principal component pairs for the first four PCs of the ARIC sample 

 

Therefore, as in the Sardinia samples, heritability analysis was performed using IBD or GCTA 

matrices and applying three levels of LD pruning, without the need of fitting PCs as fixed 

effects. In each case, heritability was significant. The number of SNPs (m) selected for the 

ARIC heritability analysis are shown in Table 9, at the bottom. Specifically, the number of 

subjects (n) was equal to 8,592 and the number of SNPs equal to 70,594, 273,341, and 571,466 

were considered for heritability estimation after LD pruning at 0.20, 0.80 and no LD, 

respectively. 

Using the IBD matrix (Table 9, bottom left) and LD = 0.20, h2 was equal to 0.101 (0.059 - 

0.150); using an LD threshold equal to 0.80, h2 was estimated to be 0.152 (0.089 - 0.215). 



Finally, using no threshold LD, h2 was equal to 0.117 (0.065 - 0.168). In models using the 

GCTA matrix (Table 9, bottom right), heritability was higher than the IBD matrix and 

statistically significant using all three of the LD thresholds. Specifically, for LD = 0.20, h2 was 

equal to 0.206 (0.135 - 0.277); using LD = 0.80, h2 was equal to 0.227 (0.148 - 0.305); and 

finally, without LD pruning, h2 was estimated equal to 0.195 (0.126 - 0.264). 

Figure 15 shows a scatter plot matrix comparing the three threshold levels, illustrating that 

matrices imputed using an LD threshold equal to 0.80 or without LD pruning have the same 

trend, demonstrating similar pairwise genetic relatedness results across LD pruning. 

 

 
Figure 15 - Scatter plot matrix comparison (LD=0.20,0.80, none) in ARIC sample 



Table 9 – Summary results from Sardinia and ARIC samples  

  IBD GCTA 
SARDNA 

 
LD cut-off 0.20 0.80 ALL 0.20 0.80 ALL 

n=1163 
 

n. of SNPs 65298 
 
0.243* 
 
0.179 - 0.307 
 
  - 

226771 
 
0.273* 
 
0.120 - 0.347 
 
     - 

461015 
 
0.262* 
 
0.188 - 0.337 
 
      - 
 

65298 
 
0.408* 
 
0.308 - 0.508 
 
0.203  

226771 
 
0.355* 
 
0.268 - 0.441 
 
0.158 

461015 
 
0.332* 
 
0.250 - 0.413 
 
0.145 

heritability  

95%CI 

h2PCGC 
 

ARIC 
n=8592 

n. of SNPs 70594 
 
0.1015* 
 
 
0.031 - 0.149 
 
     - 

273341 
 
0.152* 
 
 
0.089 - 0.215 
 
     - 

571466 
 
0.117* 
 
 
0.065 - 0.168 
 
       - 

70594 
 
0.206* 
 
 
0.135 - 0.277 
 
0.176 
 

273341 
 
0.227* 
 
 
 0.148 - 0.305 
 
0.203 
 

571466 
 
0.195* 
 
 
0.126 - 0.264 
 
0.174 

heritability 

 

 
95%CI 
 
h2PCGC 
 

heritability estimation using IBD and GCTA matrices at LD=0.20, 0.80 and no LD pruning; n=sample size, *=p-value <0.0001,  
95%CI= 95% approximate symmetric confidence interval.



5.7 Heritability using suggestive genome-wide association 

5.7.1 Sardinia population 

Genotype data were filtered on the basis of quality control measures (see Chapter 4.5). After 

Quality Control, GWAS was carried out using a sample size equal to 1,163 subjects with a total 

of 361,504 SNPs. A single marker linear regression with age as a covariate and 52 sub-groups 

obtained by Hierarchical Average Clustering on the Identity By State (IBS) matrix for 

controlling hidden family structure of the “unrelated” subjects (see par. 5.6.1) was performed.  

The number of clusters K = 52 was selected cutting the dendrogram at the default threshold, h 

= 15. 

Results of typed SNPs are shown in Table 10 and displayed in a Manhattan plot of Figure 16, 

where the two lines indicate the Bonferroni threshold and the less stringent P-value. 

 

Table 10 - SNPs with suggestive P-values (P<10-4) in the Sardinia sample 
 

SNP.id Chromosome  Position (BP)           MAF P-value 
rs4862188 4 184355370 0.305291 5.02E-25 
rs3883013 15 85088657 0.305681 1.08E-24 
rs2880301 13 20100534 0.304878 4.01E-24 
rs3883014 15 85088729 0.292813 1.96E-22 
rs3013384 1 243087578 0.369584 5.66E-13 
rs7184960 16 89961661 0.011608 9.69E-08 
rs1819043 1 202432002 0.416594 1.72E-07 
rs2270459 16 89979851 0.012038 1.97E-07 
rs11158185 14 58431087 0.094234 6.87E-07 
rs6586608 8 17369652 0.471195 9.68E-07 
rs10955346 8 105311364 0.242882 1.69E-06 
rs4448239 8 105309928 0.242033 1.90E-06 
rs2730268 7 158759451 0.047496 2.02E-06 
rs12699098 7 71277486 0.310181 2.03E-06 
rs11076654 16 90074085 0.011082 2.23E-06 
rs1867523 15 35551374 0.2513 2.43E-06 
rs17567007 15 28201539 0.086414 2.48E-06 
rs10486666 7 35547956 0.098404 2.58E-06 
rs17332419 5 60136626 0.053833 3.61E-06 
rs10904949 10 17439939 0.130603 4.06E-06 
rs2494356 1 42823366 0.494411 4.12E-06 
rs2730276 7 158758611 0.047474 4.54E-06 
rs2622759 15 35549647 0.25631 4.61E-06 
rs1536651 1 42823768 0.492685 5.35E-06 
rs10509940 10 113120504 0.365633 6.34E-06 
rs1259724 12 32029577 0.271815 6.88E-06 
rs1550744 15 35550795 0.253478 6.91E-06 
rs2392369 7 35537950 0.106466 8.12E-06 



rs318331 15 35543852 0.254091 8.72E-06 
rs17094008 14 58428106 0.090278 9.13E-06 
rs874599 7 158077350 0.416021 1.03E-05 
rs11973244 7 158075769 0.459895 1.16E-05 
rs4244290 10 113127090 0.389276 1.17E-05 
rs4723436 7 35647449 0.282515 1.20E-05 
rs373634 16 24164724 0.230735 1.34E-05 
rs373690 14 58021286 0.168966 1.35E-05 
rs2765315 13 101672045 0.047414 1.54E-05 
rs2788223 6 720465 0.313149 1.62E-05 
rs17331746 5 60116613 0.055751 1.77E-05 
rs10141903 14 82018202 0.433995 1.83E-05 
rs2281273 6 1590446 0.029336 1.91E-05 
rs7112116 11 96686871 0.486547 1.94E-05 
rs2896871 11 96672691 0.476611 1.95E-05 
rs9838604 3 181346790 0.329321 2.26E-05 
rs738370 22 35982672 0.29199 2.29E-05 
rs1997883 22 36103709 0.263113 2.34E-05 
rs7001464 8 1220024 0.312608 2.39E-05 
rs17606892 4 37965518 0.101563 2.68E-05 
rs381901 16 24152467 0.243327 2.70E-05 
rs12287911 11 96670957 0.476273 2.71E-05 
rs11253637 10 15810354 0.028497 2.75E-05 
rs996604 11 96672579 0.475494 2.81E-05 
rs1499968 3 117699039 0.068847 2.96E-05 
rs1499097 3 1227382 0.239583 3.26E-05 
rs1190100 14 58015648 0.166233 3.40E-05 
rs6651244 8 128217462 0.0162 3.44E-05 
rs5755921 22 36104730 0.267212 3.46E-05 
rs5995155 22 36102700 0.263997 3.51E-05 
rs6707241 2 46584852 0.341516 3.58E-05 
rs10836637 11 36937056 0.313523 3.61E-05 
rs268821 14 58033552 0.179406 3.65E-05 
rs10509941 10 113127257 0.409716 3.83E-05 
rs7101678 11 96686388 0.470406 3.91E-05 
rs10950200 7 69865264 0.243668 4.01E-05 
rs1383349 11 36938773 0.314064 4.05E-05 
rs17423790 7 71273602 0.231441 4.16E-05 
rs2781007 9 86266068 0.239424 4.25E-05 
rs1681946 6 64216909 0.477528 4.37E-05 
rs7116990 11 96680330 0.475779 4.51E-05 
rs4665522 2 23040960 0.109809 4.54E-05 
rs11860279 16 61140529 0.106989 4.84E-05 
rs17101549 14 75096934 0.02972 5.03E-05 
rs13236867 7 54896159 0.17962 5.05E-05 
rs11144596 9 78339320 0.129273 5.11E-05 
rs17221776 10 109414982 0.062769 5.16E-05 
rs11860196 16 61139382 0.105517 5.26E-05 
rs228556 1 79650782 0.177603 5.29E-05 



rs9319845 18 70283365 0.049308 5.42E-05 
rs6759518 2 27486595 0.067863 5.43E-05 
rs6597610 9 136091096 0.114789 5.43E-05 
rs1452967 11 96669797 0.47745 5.44E-05 
rs10885145 10 113140675 0.28821 5.63E-05 
rs9667859 11 96679894 0.473386 5.77E-05 
rs4716356 6 169824254 0.25 5.98E-05 
rs10053787 5 128568188 0.116269 6.02E-05 
rs17490471 4 11449278 0.168966 6.02E-05 
rs3000891 1 12699337 0.061039 6.29E-05 
rs10430541 10 56824247 0.211952 6.54E-05 
rs17008750 2 119287185 0.050347 6.56E-05 
rs755542 8 1846758 0.155885 6.57E-05 
rs2025214 14 81949014 0.377846 6.57E-05 
rs2677822 6 133923532 0.153184 6.77E-05 
rs1544954 16 62866857 0.340536 6.81E-05 
rs2274914 9 86500979 0.471195 6.95E-05 
rs431718 14 56531186 0.278979 7.36E-05 
rs1247489 10 78003580 0.316423 7.36E-05 
rs12932136 16 7611973 0.40203 7.44E-05 
rs2677821 6 133922011 0.153114 7.48E-05 
rs10802680 1 238536388 0.467326 7.56E-05 
rs10124390 9 86549939 0.444107 7.85E-05 
rs12122035 1 50726052 0.030095 8.24E-05 
rs800562 8 116709020 0.314703 8.35E-05 
rs11942525 4 48205942 0.026667 8.41E-05 
rs2225378 14 83583841 0.323401 8.51E-05 
rs10520433 4 180669418 0.054206 8.54E-05 
rs1681947 6 64217440 0.480224 8.65E-05 
rs2511606 8 105295695 0.182958 8.75E-05 
rs4590798 10 113194854 0.351852 8.77E-05 
rs823608 8 16787703 0.018487 8.80E-05 
rs7207189 17 51537585 0.340069 8.86E-05 
rs228564 1 79646081 0.172978 8.92E-05 
rs693420 1 238055618 0.195652 8.96E-05 
rs17072059 13 49255972 0.042132 9.31E-05 
rs2298100 1 238048325 0.195482 9.33E-05 
rs513000 16 1092871 0.076425 9.42E-05 
rs17061497 6 132921520 0.087927 9.63E-05 
rs7920368 10 113201886 0.351082 9.63E-05 
rs11726451 4 59852381 0.480503 9.65E-05 
rs10505391 8 122175826 0.092943 9.73E-05 
rs5999861 22 35923192 0.414422 9.74E-05 
rs6807027 3 60092789 0.465176 9.82E-05 
rs10504891 8 91171216 0.025541 9.97E-05 
rs7302568 12 55869990 0.054819 9.97E-05 
rs1541967 4 54382119 0.14298 9.98E-05 

 

 



A total of 124 selected SNPs (P-values <10-4) were used to calculate IBD and GCTA matrices. 

Results show that five Bonferroni significant SNPs are located in four chromosomes:  

2 SNPs, rs3883013 and 3883014 (gene mapped, UBE2Q2P1), in chromosome 15. Other SNPs 

in chromosome 4 (rs4862188 in WWC2/CDKN2AIP Gene), chromosome 13 (rs2880301, in 

TPTE2/MPHOSPH8) and chromosome 1 (rs3013384). 

 

Heritability was significant (P = 1.5e-40 and P = 1.1e-109) and equal to 0.158 (approximate 

symmetric 95% CI: 0.135 to 0.182) and 0.293 (approximate symmetric 95% CI: 0.268 to 0.319) 

using IBD and GCTA matrices, respectively.  

 
Figure 16 – Manhattan plot from Sardinia typed SNPs 

 

 



Figure 17 displays a heatmap of pairwise linkage disequilibrium (LD) measurements 

calculated for selected SNPs. The upper triangle represents R2 measures between pairs of SNPs. 

R2 can ranged from 0 (SNPs in Linkage Equilibrium) to 1 (Linkage Disequilibrium).  

Here, results showed that only a few SNPs are in LD. This means that almost all of the selected 

SNPs have an independent contribution into the estimated genetic effect on MetS. 

 
Figure 17 – LD matrix from selected SNPs (Sardinia) 

 
 

  



5.7.2 ARIC population 

GWAS from genotyped ARIC data was carry out using a sample size equal to 8,592 subjects 

with a total of 570,390 SNPs, after QC. A single marker linear regression with covariates of 

age and 10 PCs was performed. 

GWAS results are displayed in the Manhattan plot (Figure 18) and selected SNPs are collected 

in Table 11. 

 

 
Table 11. SNPs with suggestive P-values (P<10-4) in the ARIC sample 

 

SNP.id Chromosome Position (BP)    MAF      P-value 
rs8050136 16 53816275 0.406472 6.52E-09 
rs9941349 16 53825488 0.42004 1.28E-08 
rs9940128 16 53800754 0.432514 1.29E-08 
rs9939973 16 53800568 0.432204 1.65E-08 
rs1121980 16 53809247 0.432554 2.00E-08 
rs9930506 16 53830465 0.441803 2.31E-07 
rs7782904 7 1.37E+08 0.275082 1.04E-06 
rs1350146 3 36516326 0.084955 3.40E-06 
rs1521252 13 63424494 0.201004 3.41E-06 
rs3930017 7 76720582 0.423323 4.76E-06 
rs9838604 3 1.81E+08 0.365398 4.88E-06 
rs9838053 3 36494163 0.074181 6.06E-06 
rs6435822 2 2.15E+08 0.152098 8.10E-06 
rs2013012 1 64128209 0.257276 8.49E-06 
rs17527820 1 2.2E+08 0.103472 9.86E-06 
rs9397778 6 1.55E+08 0.247265 1.74E-05 
rs4678415 3 1.38E+08 0.349744 1.79E-05 
rs9730331 1 2.32E+08 0.302047 1.86E-05 
rs731632 3 1.38E+08 0.349942 2.00E-05 
rs4678260 3 1.38E+08 0.35025 2.04E-05 
rs16877320 6 15923026 0.045492 2.24E-05 
rs9419105 10 1.35E+08 0.169912 2.66E-05 
rs7185307 16 12046899 0.236732 2.76E-05 
rs7637666 3 1.38E+08 0.350839 3.18E-05 
rs41375446 6 28024408 0.051334 3.19E-05 
rs16893505 8 1.21E+08 0.019167 3.34E-05 
rs7615658 3 1.38E+08 0.349959 3.46E-05 
rs3773752 3 1.38E+08 0.347118 3.48E-05 
rs6782181 3 1.38E+08 0.354632 3.50E-05 
rs12683176 9 1.06E+08 0.020474 3.58E-05 
rs6769261 3 1.38E+08 0.349511 3.60E-05 
rs9951002 18 73426923 0.231188 3.90E-05 
rs1718123 12 1.22E+08 0.497586 3.90E-05 
rs4678409 3 1.38E+08 0.34986 3.96E-05 



rs6914640 6 1.55E+08 0.230513 3.99E-05 
rs10014286 4 1.66E+08 0.185871 4.35E-05 
rs2054468 3 1.38E+08 0.350268 4.47E-05 
rs12759915 1 1.99E+08 0.425628 4.48E-05 
rs7704854 5 57416499 0.187776 4.54E-05 
rs6087024 20 1031043 0.378536 4.57E-05 
rs7116004 11 81273554 0.340713 4.78E-05 
rs9888962 16 73749154 0.022292 5.06E-05 
rs6499646 16 53843533 0.079211 5.09E-05 
rs17709097 6 28002963 0.052206 5.18E-05 
rs4678408 3 1.38E+08 0.374738 5.18E-05 
rs9842371 3 1.81E+08 0.346199 5.37E-05 
rs4895708 6 1.48E+08 0.037673 5.43E-05 
rs2306589 17 34848874 0.475326 5.45E-05 
rs1952836 14 28576698 0.291078 5.59E-05 
rs7950435 11 81276907 0.340142 5.71E-05 
rs7761864 6 15994826 0.046682 5.76E-05 
rs6082455 20 21552504 0.36035 5.77E-05 
rs6496903 15 92736994 0.102778 5.78E-05 
rs17046025 4 1.66E+08 0.203628 5.89E-05 
rs10509483 10 85708756 0.016142 6.03E-05 
rs7183436 15 92737310 0.106132 6.11E-05 
rs4428477 6 88633009 0.112488 6.14E-05 
rs17032807 4 1.56E+08 0.01904 6.43E-05 
rs1924338 13 1.09E+08 0.399267 6.54E-05 
rs6485456 11 43766902 0.301293 6.60E-05 
rs12292013 11 7696338 0.18116 6.62E-05 
rs4412595 1 5830815 0.168161 6.77E-05 
rs2993123 1 42354111 0.267691 6.79E-05 
rs9393879 6 28018944 0.050848 6.88E-05 
rs867382 9 1.3E+08 0.049465 7.00E-05 
rs4072521 1 5830248 0.168645 7.03E-05 
rs1191378 14 28597909 0.226246 7.28E-05 
rs1191381 14 28602041 0.289192 7.51E-05 
rs9308491 1 2.32E+08 0.302933 7.54E-05 
rs7688470 4 22171998 0.204826 7.59E-05 
rs17044860 3 6461402 0.012903 7.60E-05 
rs12053372 2 99810055 0.244255 7.76E-05 
rs855349 1 64127189 0.323237 7.91E-05 
rs9725346 1 2.32E+08 0.332322 8.07E-05 
rs1180187 6 83967454 0.361945 8.08E-05 
rs2187539 11 81264443 0.340203 8.18E-05 
rs3935073 1 5830967 0.167831 8.29E-05 
rs1191379 14 28598952 0.294401 8.41E-05 
rs10982499 9 1.18E+08 0.048842 8.58E-05 
rs676160 11 1.21E+08 0.089687 8.67E-05 
rs9450829 6 88624437 0.041565 8.70E-05 
rs11023974 11 16541291 0.302247 9.28E-05 
rs1157836 9 1.18E+08 0.445539 9.31E-05 



rs10825738 10 57804722 0.136131 9.37E-05 
rs11937241 4 1.56E+08 0.018973 9.54E-05 
rs1679178 3 1.38E+08 0.159681 9.78E-05 
rs2030600 15 26344449 0.308928 9.79E-05 

 
 

A total of 87 selected SNPs (P < 10-4) were used to calculate IBD and GCTA matrices. Results 

show that five Bonferroni significant SNPs are all located in chromosome 16 (rs8050136, 

rs9941349, rs9940128, rs9939973, rs1121980), whole mapped in FTO gene.  

Heritability was significant (P = 1.1e-62 and P = 1.8e-137) and equal to 0.027 (approximate 

symmetric 95%CI: 0.024 to 0.031) and 0.086 (approximate symmetric 95%CI: 0.080 to 0.093) 

using IBD and GCTA approaches, respectively. 

 
Figure 18 – Manhattan plot from ARIC typed SNPs 

 

 



LD heatmap was calculated to evaluate LD for each pair of significant typed SNPs. Results are 

displayed in Figure 19. Similar to the Sardinia study results, few SNPs are in Linkage 

Disequilibrium, demonstrating that independent SNPs that contribute to estimate the genetic 

effect on MetS. 

 
Figure 19 – LD matrix from selected SNPs (ARIC) 

  



6. DISCUSSION 
 

MetS is a complex disease and knowledge of the underlying mechanisms may contribute to a 

better understanding of MetS pathogenesis. Currently, information about each component is 

available, however, few studies have evaluated both clinical and genetic aspects. In this thesis, 

the focus was to understand interactions between components that are known to contribute to 

the syndrome and to fill in gaps with regards to the genetic aspects. 

First, a model that summarizes the components will help us to understand in which factors are 

more relevant and in what way these factors contribute to MetS. Results have shown that the 

bifactor model is the best model to describe what happens when all components are taken into 

account. 

Three factors (lipids, fat, and BP) and a general variable (the syndrome) were identified when 

inter-correlation was considered. This result confirms that these factors are the focus of the 

physiopathology. 

Using a proposal algorithm derived from the bifactor model could have different advantages 

both in diagnosis and in discovery by taking account for continuous component values with the 

level of gravity, not binary information yes/no as has been done previously. The same reasoning 

could be applied for MetS itself, a value of gravity was indicated for each subject dependent on 

each of the seven components through a score (quantitative trait). In fact, when a continuous 

outcome variable is dichotomized, some of the information contained in the underlying 

distribution is discarded. In this case, whole MetS information through a continuous variable 

was taken into account. 

Another advantage in the scoring analysis was inclusion of the possibility to define scores for 

this syndrome using isolated populations. The Sardinia population has been geographically 

isolated for centuries, has undergone low immigration and slow population growth, and is 

characterized by a great deal of homogeneity in their genetic pool, in life style, and eating 

habits. Such genetic, demographic, and environmental isolation represents an ideal condition 

for studying complex diseases because of a reduction in background variability due to 

unpredictable factors, and this approach has proven to be extremely cost and time effective 

(Varilo & Peltonen, 2004; A. F. Wright, Carothers, & Pirastu, 1999). To permit the comparison 

with other types of samples (unrelated and not isolated samples), external validation was carried 

out. Nevertheless, scoring analysis was performed in other populations (Gubbio and ARIC) and 

results confirmed good agreement and good performance. 



After validation of the MetS score using different samples, the thesis was focused on estimation 

of genetic components using different approaches by the use of pedigree information and SNP 

data (Chen et al., 2015; Shetty, Qin, Namkung, Elston, & Zhu, 2011). 

Using GWAS data and consortium, genome-scale sequencing data provide an opportunity to 

estimate relatedness of individuals using marker information and then using this relatedness to 

infer heritability from the proportion of phenotypic variance explained by genotyped SNPs. 

These approaches have many advantages than the traditional ones. First, GWAS data allows 

empirical estimates of genomic sharing rather than relying on theoretical distributions used in 

family-based study designs. In addition, population-based datasets reduce variability and 

provide more precise estimates of heritability. Finally, collection of large twin or family-based 

cohorts is difficult and not cost-effective. 

However, pedigree and within-family design also have some advantages. For example, the 

coefficients of relatedness are blind to allele frequencies of causal variants. Moreover, the 

proportion of genetic variance explained by SNPs depends on the LD of measured SNPs and 

unknown causal variants. 

To reduce bias and to increase the precision of heritability estimates, LD pruning at different 

levels was conducted (one conservative level at 0.2, one less conservative at 0.8, and full 

information without LD pruning). Results demonstrated no significant differences between h2 

calculated using LD at 0.20, 0.80, and no LD and statistical significance in all of the cases. 

In general, bias in heritability estimations may also come from environmental factors that are 

not modeled in an adequate way. If individuals who share SNP genotypes more often than the 

average also tend to share a common environment, then the heritability explained by SNPs will 

be overestimated. 

This would be expected in the Sardinia population where closely related people were included 

in the sample without adjustment. In this case, the estimation of additive genetic variance could 

not be free of confounding by environmental factors. It is this reason why the estimates in Table 

9 are higher than heritability in family-based data adjusted for household effects (Gubbio and 

Sardinia) and the ARIC population adjusted for hidden population substructure. 

Generally, close relatives give more precision but potentially more bias, whereas distant 

relatives give less precision and less bias. In addition, precision in parameter estimates depends 

on the total number of individuals with a phenotype. In this case, a comparison between 

different types of populations, including relatives and with distant relationships, allows an 

unbiased estimation of heritability without much error. 



Beyond the methodological approaches, the key finding is that the heritability of MetS using 

the proposed score attributable to common genetic variants is high and significant. 

When focusing on the results of heritability, in general the estimates are significant in the entire 

samples and ranged between 0.1 and 0.4, with the combined value at about 0.2, which indicates 

the presence of marked genetic components in the phenotype.  

When pruned SNPs at LD = 0.80 were considered to calculate the matrices, h2 increased in both 

samples; from 0.243 to 0.273 in the Sardinia population and from 0.101 to 0.152 in the ARIC 

population, but decreased using all SNPs. Comparing the different approaches, results from the 

GCTA matrix appeared higher and more stable than the IBD matrix. 

The estimated heritability using the PCGC approach (Table 9 and Chapter 4.4.5) in ARIC 

samples was lower but similar compared to the GCTA approach, and equal to 0.176, 0.203, and 

0.174, when pruning SNPs with LD thresholds at 0.20, 0.80, and no LD, respectively. If the 

Sardinia samples were analyzed removing closely related family members, a similar heritability 

was obtained (0.203, 0.158, and 0.145 for LD at 0.20, 0.80, and no LD, respectively), indicating 

an overestimated heritability due to non-genetic factors. 

Heritability with suggestive GWAS results (at a significance threshold P < 10-4: 124 SNPs and 

84 SNPS in Sardinia and ARIC, respectively) suggest that significant genetic components 

combined with environmental factors were present in the syndrome. After prior selection of 

variants based on association with MetS, genetic variants and genetic interaction or family 

environment could make important contributions to estimate unbiased heritability. 

In particular, using ARIC GWAS results, the total fraction of the MetS variation explained in 

the identified SNPs remains small considering the total number of SNPs (after LD pruning) as 

expected from the literature on the “missing” heritability (Manolio et al, 2009). By comparison, 

in the Sardinia samples selected from an isolated population in which individuals were closely 

related to each other, heritability using both approaches had significant and similar values 

(GTCA with suggestive SNPs: 0.29, and GTCA with all SNPs: 0.33), which was also similar 

to heritability using a pedigree matrix without genetic markers (ACE model: 0.29 and 0.30 in 

Sardinia and Gubbio family samples, respectively). 

As reported in the literature, LD between markers and the unknown Quantitative Trait Loci 

(QTL) plays a central role in determination of genomic variances, (de Los Campos et al., 2015) 

especially when a large proportion of the markers used in the analysis are in LE with QTL, 

models can be incorrectly specified. However, complex traits (e.g., MetS) are possibly affected 

by large numbers of small-effect QTL. Close relatives share long chromosome segments and, 

under these assumptions, the patterns of allele sharing at markers and at QTL are very similar. 



Thus, high accuracy and very small bias in heritability estimates using SNP information can be 

obtained.  

On the other hand, considering distantly related subjects, the addition of a large number of 

markers that are in LE with QTL can lead to incorrect specification of relatedness and potential 

inconsistencies in estimates of heritability. 

One of the major limitations in this study is that this analysis does not consider newly emerging 

risk factors for MetS, such as the inflammatory state or procoagulant variables, that could 

interact with the other considered factors. Moreover, improvements could be taken into account 

with other risk factors. Another limitation is that results showed in this work considered only 

one genetic variance component. Future analyses will take into account dominance and epistatic 

models using new and more efficient algorithms for LMMs, for example the R package 

software (Covarrubias-Pazaran, 2016), or other Genomic Selection (GS)-based resources. 

To summarize, these results show that a significant genetic component is present in MetS. 

However, future analysis could be conducted to include more interpretation that fully 

understands the architecture of the pathology. 

Finally, GWAS analyses combining typed and imputed data were not used, because the focus 

of this project was to estimate the genetic component and to compare the results between 

different populations and Genetic Relationship Matrices. However, a meta-analysis GWAS 

using typed and imputed data to individual novel loci, gene pathways, and heritability, 

assuming that if causal QTL are in contained within the large marker panel there should be no 

missing heritability, will be performed in the future. 

In the coming years, adding important features listed above, a fuller picture of the genetic 

architecture of MetS will be obtained.
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