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Abstract (Italiano) 

La crescente disponibilità di dati omici ha determinato un importante 

cambiamento nel paradigma della ricerca scientifica, passando da uno studio 

“contesto specifico” focalizzato su un singolo aspetto biologico, ad un studio 

su larga scala guidato dai dati. L’analisi simultanea di diversi livelli omici 

potrebbe aiutare a chiarire la relazione tra caratteristiche o perturbazioni del 

sistema molecolare non rilevate in precedenza con un fenotipo specifico, 

specialmente nel caso di malattie complesse, come il cancro. A tal fine, un 

approccio computazionale integrativo in grado di gestire l'eterogeneità dei 

dati e la complessità biologica può consentire un'indagine approfondita di 

programmi di espressione genica disregolati responsabili dei meccanismi di 

insorgenza e di progressione della malattia. La ricostruzione dei pattern 

regolatori dei fattori determinanti della trascrizione (fattori di trascrizione, 

TF), che presiedono allo schema di espressione genica, potrebbe anche 

aiutare a ottenere informazioni sulle firme molecolari che guidano i fenotipi 

della malattia, offrendo così nuove ipotesi di ricerca. 

In questa tesi è stato sviluppato un approccio di “data fusion”, incentrato 

sull'integrazione a più livelli di dati omici per la modellizzazione di 

background trascrizionali su larga scala. La sua strategia di ricerca combina 

efficacemente un approccio network-centrico per ricostruire l'interattoma 

trascrizionale con la modellizzazione offerta dalla teoria Bayesiana, ed è in 

grado di indagare probabilisticamente, su scala genomica, le regolazioni 

trascrizionali e le sottostanti firme molecolari. 

Questo lavoro di ricerca fa parte del progetto "Rete Ematologica 

Lombarda (REL) cluster biotecnologico per l'implementazione dell'analisi 

genomica e lo sviluppo di trattamenti innovativi nelle neoplasie 

ematologiche", che mira a stabilire un centro di riferimento per lo studio 

delle neoplasie ematologiche, con particolare attenzione alle neoplasie 

mieloidi. 

La metodologia proposta è stata infatti applicata ad un tipo di patologia 

mieloide, la leucemia mieloide cronica (LMC), di cui è noto l’evento 

genetico causale, ma l’alterato ruolo trascrizionale alla base della 

progressione della malattia non è stato ancora approfondito a livello 

genomico. 
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Abstract (English) 

The increasing availability of omics data has caused an important 

paradigmatic shift in scientific research from case-based studies towards 

large scale data-driven research. The simultaneous interrogation of different 

omics levels, could help to elucidate the interrelation of previously-

undetected system features or perturbations with a specific phenotype, 

especially in complex diseases, such as cancer. To this aim, an integrative 

computational approach able to deal with data heterogeneity and biological 

complexity may allow a deep investigation of dysregulated gene expression 

programs responsible of disease onset and progression mechanisms. The 

reconstruction of transcriptional determinants (transcription factors, TFs) 

regulatory patterns, which preside over the gene expression scheme could 

also help to gain insights into molecular signatures driving disease 

phenotypes, offering new research hypotheses.  

In this thesis, I have developed a data fusion approach focused on “multi-

layered” omics data integration for modeling large-scale transcriptional 

background. Its framework efficiently combines a network-centric approach 

to reconstruct the transcriptional interactome to probabilistically inspect, on 

a genome-wide scale, the transcriptional regulations and the underlying 

regulative signatures.  

This work is part of the project “Rete Ematologica Lombarda (REL) 

biotechnology cluster for the implementation of genomic analysis and the 

development of innovative treatments in hematological malignancies”, 

which aims at establishing a reference center for the study of hematological 

malignancies, with focus on myeloid neoplasms.  

The proposed methodology has been applied to the case of a myeloid 

disorder, the Chronic Myeloid Leukemia (CML), whose causative genetic 

event is known but its emerging transcriptional altered role in disease 

progression has not yet been deeply investigated at a genomic level. 
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Chapter 1 

1 Introduction 

This first introductory chapter focuses on the importance of data 

integration in the biomedical research, which has been revolutionized in the 

last years by the advance of high-throughput technologies and the resulting 

increase of omics data volume. The following sections go back over the main 

steps of this phenomenon, describing the challenging characteristics of this 

type of data. Moreover, the need of exploiting computational integrative 

models for data organization and interpretation, which may help to translate 

novel biological knowledge into improved diseases understanding, will be 

also discussed.  

The final aim of this chapter is to provide an overview of the key concepts 

on which the methodology proposed in this PhD thesis is focused. 

1.1 The Omics revolution 

Over the past decade, the development of next generation sequencing 

(NGS) technologies has considerably expanded the biological knowledge at 

molecular level, providing the possibility to study the underlying 

mechanisms involved in human disease or human health processes on 

genome scale. This so-called “Omics revolution” enabled the investigation 

of biological systems through massively parallel sequence acquisition or 

simultaneous molecular measurements, providing a holistic description of the 

considered cellular phenomenon [1–3]. 

Omics is a term used to indicate all data gathered from high-throughput 

techniques, and each omics research field (or domain) specifies the category 

of experimental data to which it refers [4]. The most important domains are 

briefly described below.  

 Genomics, which concerns the study of organisms’ whole 

genome and its genetic variations. 
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 Transcriptomics, which enables the genome-wide assessment of 

gene expression patterns in cells and tissues.  

 Proteomics, which deals with the study of proteins and their 

molecular modifications, trying to assess the cellular levels of 

each protein encoded in the genome. 

 Epigenomics, which focuses on genome-wide characterization of 

reversible modifications of DNA (which does not change its 

sequence) or DNA-associated proteins, such as histones and 

transcription factors, with the aim to understand the regulations 

of the gene expression.  

 Metabolomics, which simultaneously quantifies multiple small 

molecule types (metabolites), produced by cellular metabolic 

functions. 

The continued progression of new sequencing technologies has 

encouraged to develop large-scale sequencing projects, such as 1000 

Genomes Project [5], The Cancer Genome Atlas (TCGA) [6], the 

Encyclopedia of DNA Elements (ENCODE) [7], and other big genomics 

projects reported in Fig. 1.1.  

 

Figure 1.1: Big genomics projects diffusion over the last decade.  

Source: adapted from Brandi D. [8]  

The international 1000 Genomes Project is a government backed initiative 

launched in 2008 that aims to sequence the entire genome of thousands of 

people from around the world and it is continuing to grow as the largest 

worldwide data set on human genetic variation.  

The US-funded TCGA instead contains cancer genomic data from 33 

different tumor types and clinical data from more than 11,000 patients. 

Another ongoing project is ENCODE, a consortium found in 2003 by 

National Human Genome Research Institute (NHGRI), whose main 

objective is to map and characterize all functional elements within the 
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genome, using different omics approaches applied not only to the human 

genome but also to genomes of several model organisms.  

The spread of big genomics projects determined an increasing volume of 

sequencing data (see Fig. 1.2), which is anticipated to exceed 2 exabytes (2 

million terabytes) by 2025 [8,9].  

 

Figure 1.2: The growth of NGS data in the last decade. The chart represents 

the exponential increase of sequencing data for genomics research .  
Source: Brandi D. [8]  

The resulting increased availability of biological data and clinical data, 

generated at unprecedented speed and scale, led the biomedical research to 

the realm of Big Data [10]. This widely accepted definition encloses four 

important features, commonly known as the 4 Vs: Volume of produced data, 

Velocity, the measure of how fast the data is generated, Variety of data 

sources and time scales from which data are collected, and Veracity, the 

uncertainty characterizing the data quality. Within the Omics era of life 

sciences, all of biological data produced from high-throughput techniques 

can be defined as Big “Omics” Data [11].  

1.2 Big Omics data integration challenge 

The increasing availability of big omics data determined an important 

paradigm shift in scientific research from case-based studies toward large 

scale data-driven research. Whilst this phenomenon has revolutionized 

biomedical studies, the intrinsic omics data structure determined by various 

biological principles and experiment designs raises challenging 

characteristics in addition to the aforementioned 4Vs [11], reported in Table 

1.1 below.  
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Table 1.1: Big Omics data characteristics 

Big Omics data 

characteristics 
Description 

Hierarchical Data is generated at different 

biological levels ranging from 

molecules, cell tissues to systems 

(Highly) 

Heterogeneous 

Data is produced using different 

omics methods and the resulting 

datasets differ in size, format and 

dimensionality 

Complex Data can be recorded as multi-level 

information obtained simultaneously 

from over thousands of molecules 

Dynamic Data provides only a snapshot of 

biological processes or states that 

change with conditions and over time 

This table summarizes big biological data inherent characteristics. 
Source: Adapted from Li Y, Chen L [11] 

Given these properties, the main challenge is translating the driving force 

or causal relationship among biological elements depicted by omics data, 

into meaningful knowledge of clinical relevance, helping to decipher the 

mechanisms of biological processes and complex diseases, such as cancer.  

From this perspective, interrogating more different omics levels instead a 

single layer could help to elucidate the genotype and phenotype interrelation 

and the combined influence on disease onset and progression [12]. For 

example, the integration of genomics and proteomics data from brain tumor 

tissues has allowed the identification of biomarker signatures, resulting in a 

better diagnosis accuracy, as demonstrated by Petrik et al. [13]. Other 

studies, like the one presented by Sohal et al., demonstrated the viability of 

integrating genomic data collected from different laboratories and public 

databases, such as the NCBI’s Gene Expression Omnibus (GEO) [14], 

discovering common gene expression signature characteristics of cells 

involved in leukemia processes.  

It clearly emerges that the integration process of heterogeneous omics 

data, or so-called omics data fusion, becomes a key point for biomedical 

research to capture previously-undetected system features or perturbations 

within a pathological scenario [15]. Moreover, in the context of precision 

medicine, combining genome-scale molecular data with patients-specific 

clinical information can shed a light on diseases molecular process, and on 
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novel biomarkers discovery, improving molecular-targeted diagnosis and 

personalized therapeutics (see Fig. 1.3) [16]. 

 

Figure 1.3: Conceptual model of multi-omics data integration for precision 

medicine. Source: adapted from Sun Y. et al [12]  

In this challenging scenario, Systems Biology provides a new way for 

system-wide study exploiting heterogeneous data integration, to discover 

coherent biological signatures underlying data and to predict phenotypic 

outcomes.  

1.3 Systems Biology for Omics data integration 

Biological regulation is the results of a structured multi-dimensional 

circuits of relations among biological entities (i.e. genes, proteins, or 

metabolites), whose functions redundancy, driving cooperation or 

competition are the hallmarks of system complexity and robustness to 

external environment. Describing such composite system through its inner 

components provides a representation of the global entity, whose important 

properties can be missed by analyzing its elements separately. 

The research field of Systems Biology (SB) revolves around this main 

concept, considering that the phenotype of any individual organism is the 

reflection of the simultaneous multitude of molecular interactions combined 

in a holistic manner to produce such a phenotype [17]. Its final objective is 

to mathematically model biological systems to describe their structure, 

dynamics and changes after perturbations, trying to simulate the outcome 

responses for a given input stimulus.  

An emerging SB branch is network biology, whose approach consists to 

emphasize intracellular molecular interactions, translating them into 

mathematically well‐defined networks. A key characteristic is the possibility 
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to integrate data from heterogeneous sources, mapping omics data onto 

biological networks, enhancing the data with the connectivity information 

encoded within the network architecture.  

The use of network biology as an integrative approach is considerably 

grown over the last ten years, following also the big omics data spread 

[18,19], as demonstrated by the number of related publications, reported in 

Fig. 1.4.  

 

Figure 1.4: Network Biology as integrative approach related publications. 

Data are extracted from PubMed using the query ‘network’ AND 

‘integration’ for title and abstract word of published publications. 

Whilst network biology offers a natural scaffold upon which omics data 

can be integrated, the development of bioinformatics pipelines to support 

this integration, applying appropriate standards and quality controls-metrics 

on this noisy data is fundamental. The reconstruction of hundreds to 

thousands of molecular interrelating relationships, which globally constitute 

an interactome, requires robust computational methods to scale and 

investigate such complexity [18], in order to prioritize novel biological 

hypotheses generated from data for experimental validation.  

Combining a network-based integrative approach with computational 

modeling could indeed reveal crucial mechanisms of regulation presiding 

over physiological functions and their dysregulated counterpart in disease. 

Within this perspective, a deeply investigation of transcriptional interactions 

which serve as convergence points of oncogenic and pathogenic signaling, 

could be a useful strategy, since under these regulations relies the first level 

signature of gene activities, whose expression patterns are altered by the 

disease. 

 

 

Following these considerations, in this dissertation we present a multi-

layered data fusion approach and the results of our research applied to the 

Chronic Myeloid Leukemia (CML) case-study. This PhD thesis is part of the 
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project “Rete Ematologica Lombarda (REL) biotechnology cluster for the 

implementation of genomic analysis and the development of innovative 

treatments in hematological malignancies”, aimed to define the molecular 

basis of this type of cancers, with a specific focus on myeloid neoplasms. 

Chronic myeloid leukemia is a myeloid disorder that originates in the 

bone marrow, and is caused by a specific mutation. Despite this important 

discovery allowed to develop a targeted therapy, the resistance to the 

approved treatment is a recurring phenomenon in an increasing proportion 

of patients. The treatment indeed does not eradicate cancer cells, which 

continue to progress within a landscape of unclear molecular mechanisms of 

the disease. To overcome these barriers, innovative integrative approaches 

are definitely needed, to investigate the multiplicity and complexity of 

genetic and epigenetic changes underlying the molecular cross-talk of 

signaling pathways, which may be altered by leukemia.  

 

The developed approach exploits the complementarity of the information 

gained from omics experimental sources, and applied to the case-study, 

reconstructs, with a network-based approach, its transcriptional genomic 

interactome. In order to scale and infer this complexity, the data fusion 

method provides a Bayesian modeling and a simulating framework to 

investigate transcriptional signatures on a genome-wide scale. 

1.4 Thesis Outline 

The content of the thesis is organized as follows:  
 

Chapter 2 gives a theory overview of the crucial points faced with the 

proposed data fusion approach, to provide all conceptual bases for a better 

comprehension of the developed method. The chapter gives a description of 

omics data sources useful for our aim, some background on biological 

networks and on the related properties, with a main focus on transcriptional 

network.  

Since the approach is based on a Bayesian formalism, an explanation of 

the underlying Bayesian theory, which allowed the modeling and inference 

of the considered transcriptional context, is provided. Moreover, an outline 

of the Chronic Myeloid Leukemia disease background, to which the method 

has been applied, is depicted. 

 

Chapter 3 all the steps of the proposed approach will be described in details, 

starting from a computational integrative analysis for reconstructing the 

transcriptional interactome, passing through its Bayesian modeling within a 

hybrid structure learning scheme, to obtain a probabilistic model which can 

be exploited to investigate transcriptional signatures. 
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Chapter 4 the robustness of the proposed method compared to other 

regulatory network reconstruction strategies, and the related results will be 

illustrated.  

 

Chapter 5 the obtained results applying the methodology to the case of 

Chronic Myeloid Leukemia will be described. 

 

Chapter 6 some concluding remarks, a final discussion on the results 

obtained and future directions of the work will be presented. 

 

An Appendix will follow containing supplementary materials useful to 

better understand the results achieved by applying our approach. 
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Chapter 2 

2 Background 

The aim of this chapter is to give all the theoretical fundamentals for 

understanding the proposed data fusion approach applied to the 

transcriptional context of the case study.  

The first paragraph presents the omics data source that can be used for 

extract useful information to reconstruct transcriptional landscapes. Since 

the implemented transcriptional modeling is based on a network-centric 

approach, the following section describes its biological principles and the 

topological measures derived from graph theory to investigate specific 

molecular patterns.  

In the third part of the chapter, a brief overview of the transcriptional 

regulatory network reconstruction methods is provided, with a particular 

focus on the Bayesian formalism exploited to probabilistically inspect the 

reconstructed transcriptional model.  

2.1 Omics sources for transcriptional background 
reconstruction 

The vast amount of generated biological data in recent years has 

determined the necessity to store and organize experimental data within 

public repositories, and make them available for scientific community. 

Structuring the data-driven information with the existing knowledge, 

available on online databases, is fundamental to accurately reconstruct the 

molecular interactions behind the considered biological processes. To this 

aim, the translation of the experimental-derived information into functional 

meaningful associations inside specific pathways becomes a natural part of 

the integration process [20], and can expand the knowledge-based networks 

in the context of human disease.  

Given the considerable number of existing databases publicly accessible 

online retrieving biological data and knowledge, as reported by Fernández-
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Suárez X. et al [21] and by Pathguide resource [22], in the following sections, 

we distinguish between data-driven repositories, which store high-

throughput data, and literature-derived repositories, covering the 

information on cellular signaling cascades and processes. The next databases 

description is focused on those which store biological information useful for 

supporting transcriptional background reconstruction tackled in this 

dissertation.  

Within the context of data-driven databases, a brief description of the 

exploited omics data will be provided. 

2.1.1 High-throughput data repositories 

In the growing field of omics science, the storage and organization of 

high-throughput quality data became a very important goal to promote the 

reuse of archived data. Following specific submission pipelines and quality 

control metrics, every scientist or laboratory that, for example, belongs to a 

research project or consortium, can share and deposit its experimental data 

in these databases.  

 

 

ENCODE 

The international Encyclopedia of DNA Elements (ENCODE) consortium 

started in 2003 with the aim to identify all functional elements in the human 

genome, and then extended to model organisms. It is currently implemented 

in four phases, from the initial pilot phase focused on 1% of the genome, to 

the actual fourth one on more than 80% of the genome. To store and organize 

the vast amount of data produced by several research groups during these 

years, ENCODE has created a big project portal to freely access to the data, 

ensuring that specific quality standards are met before data releasing [23].  

The database offers a wide-range of data from different high-throughput 

sequencing (seq, in short-form) techniques, as shown in Fig. 2.1, depending 

on the targeted biological process to explore. These included DNase-seq 

(Dnase I hypersensitive sites seq) for studying the DNA accessibility through 

its conformation; RNA-seq to investigate the expression of genes and in 

terms of transcripts abundance; RRBS (Reduced representation bisulfite 

seq), WGBS (whole-genome bisulfite seq) for studying the genome 

methylation state, or ChIP-seq to map physical binding events along the 

genome.  

 

 

 

https://en.wikipedia.org/wiki/Human_genome
https://en.wikipedia.org/wiki/Human_genome


Background 

 

 11 

 

Figure 2.1: ENCODE assays and data matrix snapshots from the project 

portal. 

Data are obtainable in raw and processed format, correlated with its 

experimental metadata (i.e. the assay protocol, sample replicates details, the 

obtained files list), and quality tags (i.e. sequencing read length and depth, 

sample replicate concordance, inconsistencies in the analysis pipeline), for 

different types of tissues and cell lines, classified by availability of data e.g. 

cell line defined as Tier 1 means that a prodigious volume of data are 

accessible with a remarkable potential for combinatorial and integrative 

analyses.  

As highlighted by the numbers of available biosamples reported in Fig. 

2.1, the most prominent and applied technique is Chromatin 

immunoprecipitation followed by deep sequencing (ChIP-Seq). 

 

ChIP-seq is a mainstream method in genomics and epigenomics, which 

sequences genomic DNA fragments that co- precipitate with a DNA-binding 

protein that is under study (see Fig. 2.2), typically a molecule that, acting on 

a specific DNA portion, performs its function as regulator of the 

transcriptional process (a transcription factor, TF), or as chromatin-

modifying enzyme (that can be both a TF or a histone), or components of the 

basal transcriptional machinery (RNA polymerase) [24]. The target molecule 

is identified through a specific antibody that allows to isolate the DNA 

portion bound to it. Each experiment is paired to a control sample, (“input 

DNA sample”) in which no specific antibody is used, and typically consists 

of genomic DNA. This sample is necessary to establish the noisy background 

and estimate the fragments distribution in the absence of specific binding.  

DNA fragments are then purified and sequenced as reads, which are then 

mapped onto the reference genome. The regions that are significantly 

enriched for ChIP-reads, can be detected using ad-hoc algorithms as peaks, 

through the comparison with input reads. This peaks along the genome 

represent candidate binding regions of the studied molecule.  
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Figure 2.2: Experimental overview of the ChIP-sequencing technology.  
Source: Botcheva K., et al. [25] 

This technology has the potential to identify all DNA segments in the 

genome physically associated with one of the aforementioned molecular 

targets, offering a genome-wide perspective of its biological binding events.  

 

All the binding information gained from ChIP-Seq experiments targeting 

transcription factors has also been organized in another ENCODE-related 

database, Factorbook, providing a complete set of sequences features and 

structural DNA information around the genomic regions bound by all the 

considered TFs. 

Furthermore, ChIP-seq results can also be integrated with other types of 

genomic assays, including gene expression, DNA methylation or chromatin 

conformation, to understand mechanisms of genomic functions from 

multiple aspects, leading to important discoveries related to disease-

associated transcriptional regulation, tissue-specificity of epigenetic 

regulation, and chromatin organization [26]. 

 

 

 

NCBI – GEO 

The Gene Expression Omnibus (GEO) is an international public 

repository built and managed by the National Center for Biotechnology 

Information (NCBI). It hosts and freely distributes more than 32,000 data 

series, comprising raw data, processed data and metadata which are indexed 

and cross-linked. The related submissions are deposited by individual 

laboratories, Data Coordinating Centers, or by microarray facilities on behalf 
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of their clients [27]. As depicted in Fig. 2.3., GEO provides a wide range of 

archived data, comprising microarray technology, next-generation 

sequencing data, which exhibits a rapid increase since 2008, and other forms 

of high-throughput functional genomic data. Methods like ChIP-seq, 

included under ‘genome binding/occupancy profiling by NGS’ definition are 

increasing at higher rate than other NGS assays, highlighting their important 

impact on research community.  

 

Figure 2.3: Distribution of the number and types of selected studies released 

by GEO each year since inception. Source: Barrett T., et al. [27] 

Microarray assay described by ‘Expression profiling by array’ term 

represents the most common study type submitted to the database by an order 

of magnitude compared to the recent NGS techniques, although its growth 

rate is slowing. It is the first approach that made the transcriptomics analysis 

possible, and despite the increasingly turning to RNA-seq technology, 

remains a well-established approach for measuring gene expression levels, 

both in its static or dynamic profiling. 

The first type of experimental design is a static sampling experiment 

where samples are collected from distinct biological groups without respect 

to time. The gene expression profiling in its dynamic scheme is instead a 

temporal experiment, where samples are collected over a time window to 

characterize temporal dynamic spectrum and underlying developmental or 

progressive biological mechanisms. 

In both forms, the aim is profiling the entire repertoire of RNA transcripts 

of a cell or a tissue, globally defined as transcriptome.  

 

The experimental starting point for a microarray is a set of short genomic 

DNA probes complementary to the cellular transcripts. As represented in 

Fig. 2.4., transcripts are extracted from samples of the biological site to be 
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investigated, labeled with fluorescent dyes (either one color or two), washed 

to remove unbound sample, hybridized to the array, and scanned with a laser. 

Probes that match with transcribed RNA hybridize to their complementary 

target and emanate a fluorescent signal, which is detected by a scanner. Raw 

data consists in light signals whose intensity is then used as a measure of 

gene expression. This raw information can be retrieved in CEL format, which 

stores results of the intensity calculations. 

 

Figure 2.4: Workflow summary of microarray experimental procedure. 

Source: Miller M.B., et al. [28] 

During these steps, some artifacts can be generated, due to the 

experimental variability that affects the procedure. The advance in the 

identification of such biases has led to the development of both quality 

control standards and computational methods to deal with systematic 

variation, ensuring well-performed microarray experiments.  

 

Instead of using molecular hybridization to capture transcript molecules 

of interest, RNA-seq samples transcripts present in the starting biological 

material by direct sequencing. Transcript sequences are then mapped back to 

a reference genome and counted to assess the level of each expressed gene 

in the genome. Despite the depth of the information gained with this 

technique, its relative high cost, the inherent heterogeneity, and the lacking 

of appropriate and defined standards, which are currently being established, 

microarray continues to remain a widely used tool to reconstruct 

transcriptomics profiles [29].  

 

 

EMBL-EBI – ArrayExpress 

The ArrayExpress Archive of Functional Genomics Data is an 

international functional genomics database hosted by the European 

Bioinformatics Institute (EMBL-EBI). It archives data from over 7,000 
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public sequencing and 42,000 array-based studies comprising over 1.5 

million assays in total [30]. Alongside GEO, ArrayExpress is regarded by 

major journals as an important extended high-throughput data repository.  

Data available for download is represented in a structured and 

standardized MAGE-TAB (MicroArray Gene Expression Tabular) format, 

where investigation design, array descriptions, and processed data are 

described. This format also facilitates linking to open source analysis 

environments such as Bioconductor [31]. For sequencing data, ArrayExpress 

stores raw data to the European Nucleotide Archive (ENA) [32], processed 

data (e.g. gene expression levels) and its metadata, describing the sample 

properties and the experimental design, are instead available on the 

ArrayExpress portal.  

To facilitate reproducible research, data compliance is promoted using 

Minimum Information About a Microarray Experiment (MIAME) or 

Minimum Information about Sequencing Experiment (MINSEQE) 

guidelines. In this way, each submission is automatically scored by these 

criteria allowing users to quickly recognize high-quality data sets. 
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2.1.2 Literature-curated repositories 

An important goal of the research once the network interactions are achieved, 

is that the reconstruction gives rise to a signaling pathway in a biologically 

consistent and meaningful manner so as to allow the mathematical analysis 

of the emerging properties of the network. This expansion of the knowledge-

based network toward a better comprehension of leading complex diseases 

mechanisms can be supported by current understanding on cellular signaling 

systems. 

A variety of repositories containing information on cell signaling 

pathways have been developed in conjunction with methodologies to access 

and analyze the data for getting insights on biological dynamics. The main 

pathway annotation databases are Reactome, Kyoto Encyclopedia of Genes 

and Genomes (KEGG), WikiPathways, Nature Pathway Interaction Database 

(PID), Pathway Commons and Gene Ontology [33,34].  

In the following section, a description of Reactome, indicated as one of 

the most complete and curated pathway databases, and of the Gene Ontology 

Consortium, a comprehensive resource regarding the functions of genes and 

gene products are provided.  

 

 

Reactome 

The Reactome Pathway Knowledgebase provides reactions for any type 

of biological process, ranging from signal transduction, cellular transport, 

DNA replication and metabolism, organizing them as an ordered hierarchical 

network of molecular transformations. It has entries for 10,719 human genes, 

and supports the annotation of 24,704 specific forms of proteins, providing 

a coverage for 22 non-human species. Pathways are presented as chains of 

chemical reactions and the data model is based on classes, such as event or 

physical entity, with given properties (e.g. type of molecular interaction). 

Physical entities comprise proteins, RNA, DNA, small molecules and 

molecular complexes. An event, instead, can be either a ReactionLikeEvent, 

representing all reactions that convert an input into an output, or a 

PathwayLikeEvent, which groups together several related events. Cross 

references to several external databases are provided, and every two years 

all the information is reviewed, to keep it updated.  

Reactome can be directly browsed or queried by text, or using ad-hoc 

tools through a web interface, or programmatically accessed, allowing data 

download for its visualization and analysis. 

 

 

Gene Ontology (GO) 

The Gene Ontology (GO) Consortium represents the most complete 

resource currently available for computable knowledge concerning the 

functions of genes and their products. It was established in 2000 to provide 
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a controlled vocabulary for annotating homologous gene and protein 

sequences in different organisms.  

Its knowledgebase is characterized by two main components. The first is 

the Gene Ontology (GO), which provides the logical structure of the 

biological functions (‘GO terms’), each one classified with a unique 

identifiers, and how these functions are related to each other (‘relations’), 

displayed as a directed acyclic graph.  

GO relations are represented using a graph-based terminology, and node 

is used to refer to GO terms.  

To define the relationships among nodes, a parent-child framework has 

been implemented, where a parent refers to the node closer to the root(s) of 

the graph, and child to that closer to the leaf nodes, as represented in Fig. 2.5 

below. 

 

Figure 2.5: Graph-based representation example of GO relations. The 

arrowhead indicates the direction of the relationship; dotted line represents 

an inferred relationship, i.e. one that has not been expressly stated. The 

formal mathematical/logical representation of the inference made in the 

graph above would be “is a part of→part of”. 
Source: http://www.geneontology.org/page/ontology-relations 

The second component is the corpus of GO annotations, evidence-based 

statements relating a specific gene product (a protein, non-coding RNA, or 

macromolecular complex) to a specific ontology term. Each annotation is 

characterized by a unique identifier, and is linked to the evidence supporting 

that biological conclusion, typically a specific publication from the 

biomedical literature. 

The GO describes functions considering three interrelating perspectives:  

 molecular function (MF), which refers to the molecular-level of 

activities performed by gene products, 

 cellular component (CC), describing the locations relative to 

cellular structures in which a gene product performs its function, 

 biological process (BP), the larger processes, also defined as 

‘biological program’ accomplished by multiple molecular 

activities 

The number of terms and relationships categorized in these three aspects 

of the Gene Ontology are reported in Table 2.1 below. 

 

http://www.geneontology.org/page/ontology-relations
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Table 2.1. Gene Ontology annotated terms statistics  

Aspects 
Terms 

(classes) 
Relationships 

Molecular function 10,417 14,039 

Cellular Component 4,022 7,854 

Biological Process 29,146 71,372 

Latest data as at October 2016; Source: The Gene Ontology Consortium [35] 

Currently, the GO knowledgebase includes experimental findings from 

almost 140,000 published papers, represented as over 600,000 

experimentally-supported GO annotations. These provide the core dataset for 

additional inference of over 6 million functional annotations for a diverse set 

of organisms spanning the tree of life [35]. 
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2.2 Basic concepts of Biological Networks 

Availability of biomedical pathways and networks based on large-scale 

data gathering through diverse omics data sources offers new opportunities 

to explain the causality of relationships among biological entities, unraveling 

disease mechanisms [17,20,36]. Within this network-centric framework, the 

starting point is to use the mathematical concept of graph for representing 

omics layers as a network, and topological measures, belonging to the graph 

theory, to identify valuable biological properties. 

In the first part of this section, the empirical and the mathematical 

description of graphs, that represent networks, are introduced with some of 

the basic definitions behind graph theory, useful to study network structure. 

Then, a brief description of the main categories of biological networks will 

be provided, focusing on the one that defines transcriptional regulations, the 

transcriptional regulatory network, and its challenging features to model.  

2.2.1 Definitions and mathematical preliminaries 

The basic mathematical concept used to model networks is a graph. This 

can be formally represented by a graphical structure G = (V, E), composed of 

a set of N nodes or vertices, 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}, and a set of edges or links, 

𝐸 = {(𝑉𝑖, 𝑉𝑗): 𝑉𝑖, 𝑉𝑗  ∈ 𝑉). The single edge e=(𝑉𝑖, 𝑉𝑗) represents the relation 

occurring between two nodes, and depending on the nature of the interactions 

in the graph, it can be directed (see Fig. 2.6, (a)) or undirected (see Fig. 2.6, 

(b)).  

 

Figure 2.6: Graph representation. Two graphs with three nodes each one: (a) 

directed, (b) undirected 

In a directed graph, an edge e = (i, j) ∈ 𝐸 is an ordered pair, which 

represents the direction of the relation. The edge, in this case, is composed 

of a source node s(e) = i and a target node t(e) = j. Directed graphs are mostly 

suitable for the representation of schemas describing biological pathways or 

procedures which show the sequential interaction of elements at one or 

multiple time points and the flow of information throughout the network.  
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On the other hand, in an undirected graph, an edge is an unordered pair, 

since there is no direction associated with an edge. The two nodes joined by 

the edge e can be considered as source or target indifferently. 

A biological network can be also described through a weighted graph in 

which each edge is associated to a weight function w: E→R, where R denotes 

the set of all real numbers. The weight wij of the edge between nodes i and j 

represents the relevance of the connection. Usually, a larger weight 

corresponds to higher reliability, or affinity of a connection. 

 

A widely used way to represent the structural information stored in a 

network is through an adjacency matrix. The adjacency matrix A is defined 

as an NxN squared matrix in which each entry a ij corresponds to the link 

between the nodes i and j. In particular, for an unweighted link aij will be 1 

when there is a link between (i, j) ∈ V and 0 otherwise. For a weighted 

graph, the values aij of the related adjacency matrix will correspond to the 

edge weights.  

 

 

 

Figure 2.7: Graphs representation using adjacency matrixes. (a) An 

undirected graph with 5 vertices and 7 edges and its adjacency matrix (b). 

A directed graph with 5 vertices and 8 edges (c) and its adjacency matrix (d). 

2.2.2 Structural properties 

Looking at different network properties can provide valuable insight into 

the internal organization of a biological network. The topological measures 

give also insights into the evolution, stability, and dynamic responses of the 

system [37]. 

In the following, we provided an overview of the main properties that are 

commonly analyzed in networks and can be exploited in the context of 

transcriptional interactome modeling. 
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Degree Centrality 

The most elementary characteristic of a node is its degree k, which shows 

the number of interactions of a given node, also indicating the relevance of 

a particular node to the large scale structure of a network. For a node i, the 

degree centrality is calculated as  

For directed graphs, each node is obviously characterized by two degree 

centrality measures, the in-degree (the number of edges ending in i), and out-

degree (the number of edges from i to other nodes), respectively reported in 

Eq. 2.2.  

The average degree <k> is the average of all the vertex degree in the 

graph. Nodes with high degree are called hubs since they are connected to 

many adjacent nodes (neighbors) and tend to be essential for sustaining the 

integrity of the network [38]. Formally, the degree of a node i (ki) is given 

as 

 
𝑘𝑖 = ∑ 𝐴𝑖𝑗

𝑛

𝑗=1

 (2.3) 

where A is the adjacency matrix and n is the number of network nodes.  

The degree distribution P(k) of a network measures the proportion of selected 

nodes with degree k. Formally, if there are n nodes in total in a network, and nk 

of them have degree k, the degree distribution is calculated as P(k) = nk /n.  

 

The degree of a node explains the general topological features of the network 

and can only capture the local structure of network nodes, since only the 

immediate neighborhood (nearest neighbors) of the vertex of interest is 

considered. To this aim, several global centrality measures are used in graph 

theory [39] to investigate patterns and rules hidden in the structural network 

domains. Most of these rely on the path concept.  

A path from a vertex i to a vertex j is a sequence of edges which must be 

crossed to go from i to j with no edge traversed more than once. The graph 

distance 𝛿(𝑖, 𝑗) is the length of a path, and among all possible paths, the one 

with the smallest length is called shortest path. On the contrary, the diameter 

of a graph G is the longest shortest path taken over all pair of distinct nodes, 

𝑖, 𝑗 ∈ 𝑉(𝐺) which are connected by at least one path.  

It follows that a graph is connected when there is a path between every 

pair of vertices, and there are no unreachable vertices, otherwise if exist two 

 𝐶𝑑(𝑖) = 𝑑𝑒𝑔(𝑖) (2.1) 

 𝐶𝑑 𝑖𝑛(𝑖) = 𝑑𝑒𝑔𝑖𝑛(𝑖) 

𝐶𝑑 𝑜𝑢𝑡(𝑖) = 𝑑𝑒𝑔𝑜𝑢𝑡(𝑖) 
(2.2) 



Background 

 

 22 

nodes in G such that no path in G has those nodes as endpoints, the graph is 

disconnected. 

 

 

Betweenness Centrality 

Betweenness centrality (BC) of a given node i is related to how frequently 

a node occurs on the shortest paths between all the pairs of nodes in the 

network. Formally, for distinct nodes 𝑖, 𝑗, 𝑤 ∈ 𝑉(𝐺) let σij be the total number 

of shortest paths between i and j and σij(w) be the number of shortest paths 

from i to j that pass through w. Moreover, for 𝑤 ∈ 𝑉(𝐺), let V(i) denote the 

set of all ordered pairs, (i, j) in V(G) × V(G) such that i, j, w are all distinct. 

Then the BC is calculated as  

 
𝐵𝐶(𝑤) = ∑

𝜎𝑖𝑗(𝑤)

𝜎𝑖𝑗

𝑛

(𝑖,𝑗)∈𝑉(𝑤)

 (2.4) 

It is a widely applied measure in the context of regulatory networks, since 

nodes with high BC, termed as “bottlenecks”, exerting a key role in the 

essential functional and dynamic properties, and their disruption could 

greatly affect the network capacity of response and robustness [40,41].  

 

Figure 2.8: Graphical representation of betweenness centrality measure. 

Nodes A, B, C, D, E and F are well connected and maintain efficient network 

communication. Numbers in parentheses refer to each node’s BC, which 

indicates how many of the shortest paths between all other node pairs in the 

network pass through it. For example, to reach node C from node F, 

information flow is efficient and only passes through D.  

Clustering Coefficient 

The clustering coefficient Ci of a node n is a measure of the fraction of 

connected neighbors of the considered node. A node with ki links can have 

at most (
𝑘𝑖

2
) = 𝑘𝑖(𝑘𝑖 − 2)/2  pairs of its neighbors connected to each other. 

Denoting ti as the number of links among the neighbors of node n, then the 

clustering coefficient is defined as  
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𝐶𝑖 =

2𝑡𝑖

𝑘𝑖(𝑘𝑖 − 1)
 (2.5) 

It provides an idea of the level of interconnectivity in the neighborhood 

of a node, indicating also the modularity and connectivity patterns at a lower 

(more local) scale [42]. 

The average of Ci over all nodes in the network is 

 
< 𝐶 >=

1

𝑁
∑ 𝐶𝑖

𝑁

𝑖=1

 (2.6) 

Higher values of the average clustering coefficient can be related to 

greater redundancy and robustness in biological networks.  

 

For decades, molecular interaction networks were considered either 

completely regular or completely random. However, the obvious existence 

of molecules with a very high number of interactions is a fact that cannot be 

explained by either of the two models. In regular networks, all nodes have 

the same connectivity. In random graphs (see Fig. 2.9), links are placed 

randomly among nodes and their connectivity follows a Poisson distribution, 

which means that the existence of nodes with an extraordinarily high number 

of links is very improbable. Recent studies [37,43] have shown that in many 

biological networks, the degree distribution follows a power-law distribution 

that is 𝑃(𝑘)~𝑘−𝛾  with parameter γ being often between 2 or 3. In such 

networks, most nodes have a small number of links, but a small fraction of 

nodes (hubs) have a very large number of edges. Because in such networks 

no ‘typical node’ (typical ‘scale’) exists, they are called scale-free, as shown 

in Fig. 2.9.  

 

Figure 2.9: Random network and Scale-free network properties. 
Source: Chan S.Y, Loscalzo J [44]. 
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Scale-free networks are very robust, extraordinarily resilient to random 

component failures. Even after a high number of nodes are removed, the rest 

are still held together by the hubs so that the network often does not become 

disintegrated and can still fulfill its function. As the number of hubs is 

relatively very small compared to the number of nodes with few links, the 

chance that a randomly removed node is a hub is small. The intentional 

removal of hubs, on the other hand, is often critical for network’s integrity 

and proper function, that is, scale-free networks have a high hub 

vulnerability.  

Another important feature of biological networks is modularity, the 

tendency to contain nodes communities. Since genome-wide interaction 

networks are highly connected, modules should not be understood as 

disconnected components but rather as components that have dense 

intracomponent connectivity and sparse intercomponent connectivity. 
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2.2.3 Biological Networks models 

In network biology, according to Barabasi et al. [45], we can distinguish 

different types of networks, in relation to the molecular interactions which 

they model. The five main categories are briefly described below.  

 Protein-protein interaction (PPI) networks. Nodes of PPI 

networks are proteins and edges represent their physical 

interactions. 

 Metabolic Network. Nodes of metabolic networks are 

metabolites that are linked if they participate in the same 

biochemical reactions. 

 Signaling networks show how extracellular signals are propagated 

in the cells using multiple signal transduction pathways. 

 Co-expression networks in which genes with similar co-expression 

patterns are linked. 

 Gene Regulatory network (GRN). In this network, a node can 

represent a gene, the transcribed mRNA, and the coded protein 

simultaneously. The links are directed and indicate a regulatory 

interaction which governs the cellular gene expression process.  

Since the proposed approach focuses on a particular type of GRN, the 

transcriptional regulatory network, next section will provide a complete 

description of the underlying transcriptional biological mechanisms which 

these kind of network tries to model, and its challenging characteristics.  

 

 

Transcriptional regulatory networks 

Genes and gene products interact on several levels. At the genomic level, 

transcription factors (TFs) can activate or inhibit the transcription of genes 

finalized to the production of mRNA transcripts, which are transduced into 

proteins (see Fig. 2.10 (A)). This represents a major control point in gene 

expression processes operated by TFs, presiding over precise spatial and 

temporal control mechanisms responsible for the intricate cellular processes 

of developmental specification and adult tissue homeostasis.  

TFs account for almost 7% of genes (~1,400) in the human genome, and 

to exert their role, TFs bind in a DNA sequence-specific manner the promoter 

region of a target gene, near its Transcription Start Site (TSS) to allow the 

initiation of the transcription process.  

This event is also triggered by the interaction of TFs with other 

transcriptional machinery components, such as RNA polymerase and 

chromatin-remodeling complexes (i.e. transcriptional co-activators and co-

repressors), and by the behavior of TFs as epigenetic regulators, acting on 

the conformation of DNA for its accessibility [46] (see Fig. 2.10 (B)).  

Moreover, TFs have the ability to directly regulate their expression, 

through the control of their own gene transcription, and, interacting 
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cooperatively with other TFs [47], giving rise to intricate TFs regulatory 

circuits (see Fig. 2.10 (C)). A target gene can be controlled by more than one 

TF, providing a flexible regulation in a combinatorial manner, that is very 

likely to confer a fitness advantage under different environmental conditions 

[48]. 

 

Figure 2.10: Molecular functions of TFs. (A) The gene expression process, 

from genes, encoded within genomic DNA and packaged inside chromatin 

structure, to their transcribed products (mRNAs) and then proteins. (B) 

Regulation of TFs expression and activity. (C) Mechanisms of TFs network 

state stability, influenced by numerous extrinsic and intrinsic mechanisms. 
Source: Adapted from Wilkinson A.C et al [47] 

Given the determinant role of TFs in defining gene expression profiles in 

response to several cellular signaling cascades, not surprisingly then, 

mutations to transcription factors and molecules that comprise and modify 

the chromatin landscape, commonly underlie the altered gene expression 

profiles that are characteristic of cancer cells. Centrally to the realization of 

personalized medicine, investigating genetic mutations alone often fail to 

accurately predict disease progression [47]. Understanding the TF network 

states associated with a certain disease within a unique output (e.g., gene 

expression profile), may help to accurately predict clinical response and 

outcome [46,49]. 

 

To this aim, TFs interplay can be modeled with transcriptional 

regulatory networks (TRNs), whose nodes represent both transcription 

factors and their target genes (TGs), and directed edges define the regulatory 

interactions among TFs, and from TFs to their targets.  
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Given the synergic behavior of TFs, at local level TRNs are characterized 

by several regulation motifs, configurations of regulators and target genes 

that occur repeatedly within network structure, suggesting a modular 

network organization. Such motifs represent the simplest units of the 

network architecture required to create specific patterns of inter-regulation 

among TFs and TGs. They are conserved in diverse organisms from bacteria 

to human, and carry out specific dynamic cellular functions [50]. Examples 

of transcriptional motifs described below are reported in Fig. 2.11.  

Negative autoregulation occurs when a transcription factor represses the 

transcription of its own gene; on the contrary, cascades of gene expression 

create consecutive activation of genes. The downstream gene is activated 

when its regulator reaches the relevant threshold of activation, and using also 

a negative regulation, genes can be sequentially stimulated and repressed. 

Feedback loops are made of two TFs that regulate each other. Feed-forward 

loops (FFL) consists of three layers of regulation in which, at the top, the 

master regulator, indicated with TF1, in Fig. 2.11 (D), regulates the two 

underlying strata. The intermediate regulator, middle manager or broker, 

(TF2) together with the master regulator control the TF at the bottom (TF3), 
which is therefore identified as the regulated vertex or workhorse. Each of 

the three interactions in the FFL can be either activation or repression 

mechanisms [50]. 

 

Figure 2.11: TRNs motifs. (A) TF autoregulation; (B) Feedback loop; (C) 

Transcriptional cascades; (D) Feedforward loop.  

Arrowheads in this representation do not discriminate between activating and 

repressing transcriptional functions. 

As can emerge from these considerations, the underlying transcriptional 

architecture in TRNs is hierarchical. The high molecular complexity due to 

the combinatorial nature of TFs interactions, enriched in loops (cycles) of 

regulation, impacts on network size, culminating in large “hairball” 

structure. It becomes clear that the aforementioned structural organization 

cannot be easily detectable, making it difficult to formulate simple 

conclusions regarding the logic or outputs of these networks, especially if 

the model reflects a genome-wide perspective [51]. 
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Traditionally, biomedical research has applied a reductionist approach to 

study the transcriptional background, focusing on a specific known mutated 

TF [52,53] or on small fraction of crucial TFs to explore a specific cellular 

process [54,55], isolating them from other regulatory elements that 

collectively form the context in which TFs operate. To instead maintain a 

global point of view on transcriptional interactions and cooperation, its study 

on a genomic level could shed a light on understanding the molecular 

mechanisms of human biology and pathogenesis. 
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2.3 Transcriptional regulatory networks 
reconstruction: an overview 

The availability of completely sequenced genomes and the wealth of 

literature on gene regulation have enabled researchers to model the 

transcriptional interactions system of some model organisms in the form of 

a network. The study and characterization of such interactomes started from 

simple model organisms, from the metazoan Caenorhabditis elegans, to the 

bacterium Escherichia coli and yeast Saccaromices cerevisiae, easier to 

investigate than human networks, since their genomes contain less genes 

than human genome, and can also be engineered through targeted 

experiments.  

The increasing advance in experimental techniques as well as in 

computational methods make genome-scale regulatory network 

reconstruction a feasible task, at least for these well-studied organisms. The 

obtained knowledge led the resulting networks to be considered as gold 

standards, whose validated interactions are available in RegulonDB [56] for 

E. coli, and in Saccharomyces Genome Database (SGD) [57] and 

YEASTRACT [58] repositories for S. cerevisiae, respectively.  

On the other hand, reconstruct such networks in non-model organisms, as 

in the human context, requires robust computational approaches to learn 

directly from data or from existing knowledge (i.e. curated databases or from 

published experimental research works) the interactions of a state-specific 

regulatory circuitry, which remains largely unknown.  

 

Figure 2.12: Transcriptional regulatory networks reconstruction approaches 
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Several approaches have been developed through recent years, trying to 

reconstruct TRNs and to make inference on TFs activities. 

Template based methods transfer interactions between homologous 

components from a model organism to the organism of interest [59]. Starting 

with a known regulatory network (used as a template), the information about 

interactions can be transferred to genes that have been determined to be 

orthologous in a target genome of interest.  

Reverse engineering approaches [60], aimed at determining the 

expression state of a genome, use microarray experiments to detect similar 

patterns in gene expression that stem from similar regulatory interactions.  

Other “physical” methods are based on the principle that TFs recognize 

their targets through specific sequences (binding motifs). Genes that share 

common sequences in their regulatory regions are more likely to be under 

similar regulation. This logic has been extensively used to infer TF binding 

motifs. On the other hand, if the TF motif is known, a gene whose regulatory 

region contains one or more instance of this motif is more likely to be the 

regulatory target of this TF.  

Most of these inferential strategies rely on exploiting a single source of 

data, providing a partial and potentially biased reconstruction. As He B. and 

Tan K. [61] pointed out in their recent review, among current computational 

approaches for constructing TRN models there is a lack of integrative 

genome-wide methods which, combining multiple, independently generated 

observations (such as gene expression, in vivo TF binding and chromatin 

modification states, protein abundance measure, etc.), can strengthen the 

resulting models and provide novel insights from the inferred network 

structure. A particular issue is to find a method able to deal the biological 

complexity of these systems, and sufficiently robust to scale their genomic 

dimension allowing multiple data integration. Among the mathematical 

formalisms used to model the transcriptional information, as linear 

regression, statistical correlation or Bayesian theory, this last one, through 

Bayesian networks, offers an ideal framework for heterogeneous data 

integration, using a combination of two mathematical areas: probability and 

graph theory [62].  

For such reasons, the proposed data fusion approach exploits the Bayesian 

formalism to jointly analyze complementary transcriptional data under a 

single unified framework.  
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2.4 Modelling transcriptional regulations using 
Bayesian Networks 

2.4.1 Bayesian Networks 

A Bayesian network (BN) is a graphical representation of the joint 

probability distribution (JPD) of a set of random variables 𝑋 = {𝑋1, … , 𝑋𝑛}. 

BN is described as 𝐵 =< 𝑆, 𝛩 >, where the encoding of this probability 

distribution is defined by a network structure S and a set of model parameters 

Θ, which describes the probability distribution of model’s variables [63]. 

Model structure S is represented as a directed acyclic graph (DAG), whose 

vertices (or nodes) are the random variables, and their conditional 

dependencies are described by directed edges. In particular, each variable is 

assumed to be independent of its non-descendants given its set of parents, 

denoted as 𝒑𝒂(𝑋𝑛).  

 

Figure 2.13: Graphical representation of a Bayesian Network. Node A is 

conditionally independent of D and E given B and C. The BN relationships 

can be described through the factorization of the full JPD into component 

conditional distributions: P(A,B,C,D,E,F,G,H)= P(D) PI P(H) P(B|D) P(C|E) 

P(A|B,C) P(F|A,H) P(G|A) 
Source: Adapted from Bansal M. et al [64] 

Under this Markov assumption, the joint probability distribution of all 

nodes of the model is given as  

 

𝑃(𝑋) = ∏ 𝑃(𝑋𝑖 | 𝒑𝒂(𝑋𝑖) = ∏ 𝜃𝑋𝑖|𝒑𝒂(𝑋𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

 (2.7) 

where each variable 𝑋𝑖 is described by a parameters’ set (θi) which defines 

the variable distribution conditional on its parents.  
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Given a DAG, let {𝑋1, … , 𝑋𝑛} be a topological ordering of variables of S, 

where with parents nodes (ancestors) are ordered before children 

(descendants). The set {𝑋1, … , 𝑋𝑖−1}  includes only parents and non-

descendants of Xi. 

In the case of transcriptional models, a TF node (parent node) can 

regulates the expression of a target node (child node) which can be either a 

TF or a gene vertex. The underlying structure represents the causal 

relationships among variables that, in this context, are the regulatory 

interactions among transcription factors (TFs) and from TFs to genes.  

 

In this way, relationships among BNs variables can be described at both 

qualitative and quantitative level. At a qualitative level, since the edges  

represent simply dependence and conditional independence relations. At 

quantitative level, with family of joint probability distributions, whose form 

depends on the type of network variable, which can be discrete or 

continuous.  

In the case of discrete variables, each node takes finite values so that the 

JPD representation is given by a conditional probability table (CPT), 

specifying probabilities according to all possible joint configurations of 

parents. For continuous nodes, multivariate continuous distributions do not 

have a unique representation, and it is possible to use a linear Gaussian 

conditional distribution for each node and hence the multivariate Gaussian 

as joint distribution. In this case, the linear Gaussian density of Xi given its 

𝒑𝒂(𝑋𝒊) = {𝑈1, … , 𝑈𝑘} implies that is normally distributed around a mean 

value that depends linearly on the values of 𝒑𝒂(𝑋𝒊). The variance of this 

Normal distribution is independent of the parents’ values. In this 

representation 𝜃𝑋𝑖|{𝑢1,..,𝑢𝑘} = 〈𝑎0, … , 𝑎𝑘, 𝜎〉.  

 

𝑃(𝑋𝑖|𝑢1, … , 𝑢𝑘)~𝑁 (𝑎0 + ∑ 𝑎𝑖

𝑖

∙ 𝑢𝑖 , 𝜎2) (2.8) 

Continuous data allow the inference of network models without suffering 

from information loss due to discretization. Moreover, continuous models 

are more parsimonious than discrete models since they require fewer 

parameters to describe variable dependencies. 

2.4.2 Learning Bayesian Networks 

In order to perform an efficient inference and correct representations of 

transcriptional dependencies, the definition of BN model from a TRN can be 

implemented learning its structure from experimental data.  

Given a dataset 𝐷 = {𝐷1, … , 𝐷𝑛} where 𝐷  is an instantiation of all the 

variables in X, learning BN structure from D corresponds to finding a model 

structure that best fits the observed data.  
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The model-learning algorithm usually assumes a specific form of the 

conditional probability function. Any function can be used, including 

Boolean and linear functions. But there will be a tradeoff between model 

realism and model simplicity. More realistic models will have more 

parameters, which will require more experimental data and greater 

computational effort to solve.  

Finding the optimal BN represents indeed an NP-hard (nondetermistic 

polynomial-time) problem [65], both the running time and memory usage of 

exact learning are exponential in the number of variables. In order to face 

this limit, several empirical investigations have been carried out on 

developing approximation methods, which collectively have been classified 

in the literature as constraints-based and score-based structure learning 

algorithms [66].  

The first algorithms class learns a BN structure as a constraint satisfaction 

problem. In this approach, properties of conditional independence among 

variables are estimated by a statistical hypothesis test, such as mutual 

information test or the exact Student’s t test, to construct a partially oriented 

graph, retaining or rejecting candidate edges using the observed 

dependencies and independencies.  

The second approach learns a Bayesian network as a heuristic 

optimization problem, exploiting a statistically motivated scoring function. 

To evaluate the goodness of fit of each candidate structure model (G*), the 

process assigns to it a score, which the algorithm tries to maximize.  

 
𝐺∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝐺∈𝐺𝑛

𝑆𝑐𝑜𝑟𝑒(𝐺|𝐷) (2.9) 

where Gn is the set of all possible structures (DAGs), Score(G|D) is a given 

score function measuring the degree of fitness of any candidate DAG (G). 

The score typically approximates the probability of the structure given the 

data and represents a compromise between how well the network fits the data 

and how complex the network is.  

An important property of the scoring function is its decomposability. A 

scoring function is decomposable if the value assigned to each structure can 

be expressed as a sum of local values that depend only on each node (Xi) and 

its parents, as denoted in the Eq. 2.10. 

 
𝑆𝑐𝑜𝑟𝑒(𝐺 | 𝐷) = ∑ 𝐹𝑎𝑚𝑆𝑐𝑜𝑟𝑒(𝑋𝑖 | 𝒑𝒂𝑮(𝑋𝑖) | 𝐷)

𝑛

𝑖=1

 (2.10) 

The Bayesian Information Criterion (BIC) [67] is among the most popular 

scoring metric, which asymptotically approximates the posterior probability 

of the DAG. It is based on the maximization of criteria that combines a term 

describing the likelihood of the observations, and another one that penalizes 

the complexity of the model.  
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𝐵𝐼𝐶(𝐵, 𝐷) = 𝑙𝑜𝑔𝛲𝑟(𝐷|𝐺, 𝜃𝑀𝐿) −

1

2
𝐷𝑖𝑚(𝐺)𝑙𝑜𝑔𝑁 (2.11) 

where 𝜃𝑀𝐿 is an estimate of the model parameters, obtained by likelihood 

maximization, and Dim(G) is the network dimension, also defined in Eq. 

2.10. It represents the number of model parameters, and N the size of the 

dataset. The second term of Eq. 2.11 is a penalty term which has the effect 

of discouraging overly complicated structures and acting to automatically 

protect from overfitting. 

 

Constraint-based approaches have been shown to be sensitive to error 

propagation [68] and do not give an indication of the relative confidence in 

the model, which is instead provided, on the other hand, to the score-based 

methods. Both strategies scale to large networks poorly, because the number 

of possible graph structures or tests rises exponentially as the size of a 

network increases.  

A third class of learning structure methodologies is represented by hybrid 

algorithms, that, exploiting the best of both worlds, have therefore proved 

successful in learning causal graphs from data [69,70]. Typically, they start 

with a constraint-based search to find the skeleton of the network and then 

employ a score-based scheme to identify a high-scoring network structure. 

To circumvent the high-dimensional search space problem of all possible 

structures, and to reduce the inherent uncertainty of models retrieved by 

heuristic learning schema, is possible to incorporate prior knowledge into the 

algorithm framework.  

2.4.3 Prior knowledge integration in Bayesian Network learning 

In recent years, different studies have so far been carried out in order to 

develop BN learning methodologies for recovering transcriptional regulatory 

networks. Several methods [71,72] have focused their learning procedure 

only on gene expression profiles in their static or dynamic (or time-series) 

forms.  

The early works in this area attempted to reconstruct networks from 

microarray data alone. Friedman et al. [73] and Murphy and Mian [74] were 

among the first to apply a Bayesian structure learning strategy on time-series 

data, trying to capture transcriptional dynamics in the temporal domain. The 

limited number of monitored time points, and, for the static gene expression 

profiles case, the relative limited number of experimental samples, are 

nevertheless statistically insufficient for reconstructing even a network with 

moderate size.  

Moreover, data only gives a partial picture of regulatory mechanisms, 

which, combined to inherent noisy and sparse nature of experimental source, 

potentially affect the truthfulness of inferred results, leading to incorporate 

unreliable biological transcriptional regulations [75,76]. 
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To improve the performance and the accuracy of network reconstruction 

process, is possible to introduce prior knowledge into the learning process.  

Several types of prior information can be introduced during network 

learning such as known associations between genes and transcription factors 

(TFs), TF binding-sites or genomic context information. The biological prior 

integration can be effectively achieved within the framework of BNs as they 

offers a well-founded way to introduce prior knowledge, by exploiting the 

possibility to specify prior probabilities for network models. Moreover, BNs 

present the characteristic to decompose the global model in local ones and, 

for this reason, also the prior introduction over a network can be realized 

considering probabilities for each individual edge. 

Several studies have so far been carried out in order to develop 

methodologies to integrate prior information in BN learning. 

Le Phillip et al. [77] approached this problem clamping edges and non-

edges which means that knowledge about interactions is transformed into 

hard constraints. The presence of a relationship leads to set the respective 

prior probability to 1 and conversely absence of an edge to a prior probability 

equal to 0; each simulation selects randomly clamped edges and non-edges.  

Bernard and Hartemink [78] selected as model prior transcription factor 

binding location data, forcing the search procedure to add arcs in a specific 

position, and eliminating all graphs lacking these recommended edges. Data 

about TF binding location suggests the presence of a connection by means 

of a p-value that is inversely related to the network edge probability. 

Therefore, they derived a function to map the described evidence into 

probabilistic terms. Using the edge-wise decomposition that is the 

subdivision in local models, a factorable informative prior over networks is 

obtained. 

Imoto et al. [79] and Werhli et al. [80] expressed biological priors in terms 

of energy function, measuring the degree of agreement between the explored 

network and the prior information. The total energy can be decomposed into 

the sum of local contributes, that is local energy defined by a gene and its 

parents. This formulation allows to evaluate the difference between prior 

structure and learned network as a unique quantitative probabilistic value 

without transforming it into edge probabilities. Even though this framework 

has been successfully used by several authors, it is limited in the application 

to small networks because of complexity and computational time [81].  

Other work allows the integration of multiple types of prior knowledge 

into a Bayesian framework [79,82]. While it may be obvious that 

incorporating more data or prior knowledge into the network reconstruction 

process will give better learning results, there currently exists no quantitative 

analysis of the effects of data set size and amount of prior knowledge on 

learning performance for networks with realistic topology. In addition, these 

methods are always applied on networks or biological pathways with a small 

group of variables from model organisms, such as S. cerevisiae, lacking of 

an integrative method which could handle large-scale interactions. 
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All the above mentioned works highlighted an improved fidelity of 

network reconstruction using prior knowledge in their learning schema. They 

further confirms that exploiting a unique source of information is usually not 

sufficient for an accurate and robust regulatory mechanisms reconstruction, 

which can be overcome through data integration, as already discussed in the 

previous sections (see Sec. 1.3; Sec. 2.2, Sec. 2.3), and which is instead a 

central focus of the work done in this thesis.  

2.4.4 Bayesian networks inference 

BNs have been studied also as an instrument of inference, supporting 

reasoning about events in a domain with inherent uncertainty. A Bayesian 

network is a complete simulation system able to predict the value of an 

unobserved variable under particular conditions (the posterior probability of 

a variable given the observations gathered on any of the other variables) and, 

on the other hand, able to find the most probable set of initial conditions for 

an observed status.  

In the case of transcriptional models, once the underlying structure have 

been reconstructed, their probabilistic inference through a Bayesian model 

allows to prioritize transcriptional interactions and as a consequence, the 

related gene expression regulators, with the aim to uncover the dynamics of 

the underlying regulatory programs. 

 

Given the model structure and a set of input values, referred to commonly 

as the findings or evidence, BN derives the posterior probabilities for a target 

of interest. This is known as probabilistic inference on the target, and the 

value with the highest belief or probability is its prediction. 

By inference, we mean computing  

 𝑃(𝑋𝑖|𝑋𝑗) ∝ ∑ 𝑃(𝑋𝑖, 𝑋𝑗, 𝑋𝑘)

𝑘≠𝑖,𝑗

 (2.12) 

where Xj represents a set of observed variables, Xi represents a set of 

hidden variables whose value we are interested in estimating, and Xk are the 

irrelevant (nuisance) hidden variables.  

For instance, given evidence e (i.e. the expression level) of a target node 

I in the regulatory network, inferences about the likely values of other nodes 

of the model or of a subset of them (Y) can be made as 𝑃(𝑌|𝐸 = 𝑒). 

More generally, inferences of the values of a set of variables may be made 

given the evidence of another set of variables, by marginalizing over 

unknown variables. This marginalization operation is equivalent to consider 

all possible values that the unknown variables may take, and averaging over 

them [83]. 
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Conceptually, inference is straightforward, P(A|B) is calculated as a 

product of relevant conditional probability distributions, using Bayes’ rule 

to calculate any posterior probabilities. 

 
𝑃(𝐴|𝐵) =

𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (2.13) 

where P(A|B) and P(B|A) are conditional probabilities, and P(A) and P(B) 

are the probabilities of observing A and B independently of each other, called 

marginal probabilities.  

Computationally, a number of methods have been developed, exploiting 

the structure of the BN model to derive efficient exact or approximate 

inference algorithms, collectively defined as inference engines. They allow 

to interrogate the BN using the evidence, for computing solutions to queries 

against the knowledge base [84]. 

Exact inference, that means having a closed form solution, is only possible 

in a very limited set of cases, meaning that given a model 𝑃𝛷, a variable X 

and a value 𝑥 ∈ 𝑉𝑎𝑙(𝑋), compute 𝑃𝛷(𝑋 = 𝑥) is NP-hard.  

The “easier” situations for this type of probabilistic inference are when 

all hidden nodes are discrete, or when all nodes (hidden and observed) have 

linear Gaussian distributions, in which case the network is just a sparse 

parameterization of a joint multivariate Gaussian [85]. Exploiting the chain-

rule decomposition of the joint 𝑃(𝑋) = 𝑃(𝑋1), 𝑃(𝑋2|𝑋1), 𝑃(𝑋3|𝑋1, 𝑋2), …, the 

algorithm constructs the join distribution over all nodes and then marginalize 

it.  

When the exact inference is not computationally feasible, or there is no 

closed-form solution, an approximate inference can be applied. Within the 

field of approximate Bayesian inference, variational and Monte Carlo 

methods, and Belief propagation are currently the mainstay techniques, 

which will be not used in the context of this work, and whose detailed 

description can be found in Murphy K.’s study [86]. 
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2.4.5 Chronic Myeloid Leukemia: a case study 

Chronic myeloid leukemia or chronic myelogenous leukemia (CML) is a 

myeloproliferative neoplasm that originates in the hematopoietic stem cell 

(HSC) of the bone marrow, and is caused by a specific mutation. The 

hallmark of CML is indeed the presence in this cells of a balanced 

translocation between the long arms of chromosomes 9 and 22, 

t(9;22)(q34;q11.2), which is known as the Philadelphia (Ph) chromosome. 

This translocation results in the formation of the BCR-ABL1 fusion gene, as 

illustrated in Fig. 2.14, which, in turn, is translated into a chimeric Bcr-Abl 

protein with deregulated tyrosine kinase activity.  

 

Figure 2.14: Molecular biology of CML disease. 

The normal tyrosine kinase activity of the ABL protein is tightly 

regulated, but it changes into constitutive activity due to the traslocation. In 

this way, BCR/ABL is able to transduce signals in various cellular processes 

in an autonomous fashion, triggering multiple downstream pathways, which 

lead to enhanced cell proliferation and transformation, reduced growth factor 

dependence, resistance to apoptosis, and genetic instability [87]. 

This results in the expansion of the leukemic cell population, initially 

characterized by overproduction of mature myeloid cells with normal 

morphology (chronic phase). As the disease advances (accelerated phase, 

followed by blast crisis), leukemic stem cells acquire additional 

chromosomal aberrations and mutations, which involve transcription factors 

[88,89], contributing to disease progression. However, at present, little is 

known about the molecular mechanisms underlying disease progression, but, 

most likely, activation of oncogenic factors and/or mutations leading to loss 

of function of tumor suppressor genes in hematopoietic stem cells are 

involved [90]. Since TFs control expression of genes essential for the normal 

functioning of the hematopoietic system and regulate development of 
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distinct blood cell types, in the event of genetic perturbations, their 

molecular roles can be altered, resulting in uncontrolled proliferation of 

immature blood cell lineages and sometimes depletion of one or more blood 

cell lineage as occurs in leukemia [89]. The lack of a deep understanding of 

the molecular mechanisms underlying the disease reflects on the problem of 

drug resistance, which is poorly understood.  

The therapy of choice uses targeted inhibitors of the enzymatic activity of 

the BCR-ABL1 protein product. This treatment does not eradicate cancer 

cells, which continue to progress, and an ever increasing percentage of 

patients fail primary cure, and only 10–20% can discontinue therapy and 

achieve long-term treatment-free remission [91].  

In order to improve the current CML knowledge and, consequently, the 

therapeutic strategies, there is still a significant clinical need to develop 

novel integrative approaches to investigate on a large-scale the pleiotropic 

effect of constitutive BCR-ABL1 activity. In support of this, expression 

studies revealed that BCR-ABL1 dramatically perturbs the CML 

transcriptome [92], resulting in altered expression of genes.  

It became clear that such scenario is a suitable candidate for the proposed 

data fusion approach, aimed at omics data integration to reconstruct and 

investigate the transcriptional signatures on a genome-wide perspective.  
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Chapter 3 

 A Bayesian Data Fusion based 
approach for learning genome-
wide TRNs 

Since our data fusion method relies on omics data integration, the first 

step is represented by the TRN reconstruction on a genome-wide scale, 

which may help to define the global picture of the physiological or disease 

status at the molecular network level.  

Once the backbone of the transcriptional system is defined, in order to 

scale its complexity and infer the underlying transcriptional signatures, it is  

then converted into a Bayesian model and integrated with transcriptomics 

data for its probabilistic investigation.   

3.1. Genome-wide TRN construction 

Formally, a TRN can be defined as a directed graph 𝑇𝑅𝑁 = 〈𝑉, 𝐸〉, where 

V is the set of TFs and genes vertices, and E is a ordered pairs set of genomic 

edges composed in turn by two subsets, describing the regulatory 

interactions among TFs (E1) and from TFs to genes (E2).  

𝑉 = {𝑇𝐹1, … , 𝑇𝐹𝑖 ; 𝐺1, … , 𝐺𝑘} 

𝐸 = {
𝐸1 = {(𝑇𝐹1, 𝑇𝐹2), … , (𝑇𝐹𝑖, 𝑇𝐹𝑗)}      ∀𝑖∀𝑗 , 𝑖 ≠ 𝑗

𝐸2 =  {(𝑇𝐹1, 𝐺1), … , (𝑇𝐹𝑖, 𝐺𝑘)}
 

 

To accurately reconstruct the genomic transcriptional regulations which 

constitute a TRN, ChIP-seq data is the suitable source of information to 

achieve this goal, as described in Sec. 2.1.1 and Sec. 2.3. Their potential lies 

in revealing the high-dimensional interrelationship level of TFs binding sites 
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across the entire genome. If on one side it is useful for understand the 

cooperation and the interactions on a genome-scale, on the other hand, as all 

experimental data source, has a noisy nature which may lead to false positive 

associations. This feature can be controlled starting the study from raw data 

and adopting some appropriate expedients at different steps of the 

computational analysis.  

For the first stage of omics data integration process within the proposed 

data fusion approach, a bioinformatics pipeline has been developed in order 

to handle the data volume and its inherent experimental heterogeneity, with 

the final aim of building up the genomics transcriptional profiles.  

3.1.1 Computational integrative analysis for TRN design 

Combining quality control metrics with stringent p-value cut-offs for 

binding signals (peaks) detection allows to discover, filter and evaluate TFs-

specific profiles along the genome from sequence alignment data (BAM file) 

of each considered ChIP-seq experiment. Moreover, a scoring method to 

quantitatively weight the strength of the target-TF interaction has been also 

introduced to remove weak and potentially false relations.  

The analysis is carried out on UNIX command line, and is integrated with 

some genomic tools to allow the set-up of the pipeline. Its main steps are 

reported in Fig. 3.1, and are described below. 

 

Figure 3.1: ChIP-seq bioinformatics analysis pipeline 
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Peak calling 

Peaks detection of a ChIP sample involves the use of specific algorithms 

looking for the regions of significant tag enrichment that are typically 

assumed to reflect transcription factor binding to the sequence region. The 

Model-based analysis of ChIP-seq (MACS) method in its stable version 

(v.1.4.2) [93] was implemented as peak calling algorithm.  

Starting from reads count data, it removes redundant reads that are 

repeatedly mapped to the same location, and calculates the reads distribution 

for each genomic position along the DNA double-strands, comparing and 

normalizing it to the background (reads from input/control sample). Peaks 

mapped to the two strands are treated separately to build two coverage 

density profiles. The distance between the modes of the two distributions 

represent the fragment size (d) bound by a certain TF (see Fig. 3.2 (A)), and 

will be used by MACS to detect regions significantly enriched in the ChIP 

sample. 

 

Figure 3.2: Peak model and binding profile built by MACS. (A) TF Peak 

model, where d=164 represents the estimated DNA fragment size. The red 

and blue curves model the percentage of reads (tags) at each base pair on the 

two DNA strands, respectively the forward and reverse strands. The black 

one represents the union of the two distributions. (B) From the final TF 

binding profile, peaks within a specific chromosome region is represented  

In the end, an empirical false discovery rate is calculated for each peak, 

assessing its statistical significance. As result, MACS retains only peaks 

whose p-value is < 1.00𝑒−05.  

The final output consists of a BED (Browser Extensible Data) file with 

genomic locations of the called peaks, that are the peaks’ lengths, and a 
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summits file, which reported the summit height of each identified peak, 

corresponding to its intensity.  

The genome-wide binding profile of the considered TF is in this way 

reconstructed, and visualized as in Fig. 3.2 (B).  

 

Since each ChIP-experiment can be conducted with more than one 

replicate to assess its biological variability (biological replicates), the 

aforementioned procedure has to be repeated for each replicate for each TF 

sample. 

 

 

Replicates evaluation 

In order to derive a consensus binding profile for each analyzed TF, 

replicates from the same experiment are sorted by genomic coordinates, 

concatenated and merged, combining the overlapping peaks of a genomic 

interval into a single peak, which spans all of the combined features. To this 

aim, BEDTools [94] is applied to finally retain those peaks observed in all 

the considered replicates.  

 

 

Peaks significance assessment  

All peaks of each TF consensus BED file, obtained from the previous step 

of analysis, are ranked by their p-values calculates by MACS. To further 

evaluate their statistical significance, with the aim of avoiding the inclusion 

of spurious interactions, a stringent p-value cut-off of 10−9 has been applied 

as additional constraint. Peaks with a p-pvalue less than this threshold are 

retained for the last steps of the analysis. 

 

 

Peaks genomic annotation 

To associate a genomic region to a specific gene bound by a specific TF, 

all the genomic coordinates of peaks, that passed the statistical significance 

filtering, are annotated to the human reference genome (GRCh37/ hg19 

version). If the binding coordinates are from a previous genome assembly, 

such as hg18, the CrossMap (Convert Genome Coordinates Between 

Assemblies) tool [95], integrated to the pipeline, can be used to convert the 

coordinates ranges between genome assemblies before the annotation step.  

Only those peaks which map the promoter of a gene, which is defined 

through its Transcription Starting Site (TSS), a region of DNA that initiates 

transcription of a particular gene, will be retained in the final output, and 

classified as promoter-associate peaks.  

In this way, for each initially analyzed TF-ChIP sample, we will obtain a 

genome-wide TF binding profile.  
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This annotation step is computationally linked to the following phase of 

analysis since both depend to the same R package, TFTargetCaller [96]. 

 

 

Peaks scoring 

Given the heterogeneity of the TF binding signal around the TSS region, 

that can be narrow for factors requiring binding close to the promoter, 

whereas it will be broader for factors that may bind further away and still 

affect the expression of their targets. Moreover, the co-occurrence of TF 

peaks in the proximity of the promoter, assumes that (1) genes with many 

peaks in proximity to their TSS are more likely to be targets and (2) peak 

proximity to the TSS increases the probability of the gene being a target. 

This determines several overlapping peaks with different width and intensity 

and in order to minimize artifacts and false positive interactions, within the 

applied pipeline they will be quantitatively weighted.  

The scoring metric developed by Sikora-Wohlfeld et al. [96] gives a 

measure of the confidence of the TF binding and as a consequence, this 

numerical value is directly proportional to the strength of the interaction.  

Using a ClosestGene approach which (1) assigns peaks to their closest 

gene, (2) scores peaks based on the distribution of all peaks around the TSSs, 

and (3) considers (summing) all peaks assigned to a particular gene, all the 

peaks along the genome for all the evaluated TFs will be weighted (see Fig. 

3.3).  

 

Figure 3.3: Overview of the ChIP-seq scoring procedure.  
Source: Adapted from Sikora-Wohlfeld et al. [96] 

The scoring function calculates, for each TF profile, the cumulative 

distribution of peaks distances to their closest genes, and computes the scores 

calculating the fraction of peaks observed at the given distance from the TSS 

(𝑓𝑖), interpreting it as a probability. The interaction score (𝑠𝑡𝑓,𝑔) between a 
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TF and a target gene is calculated as the sum of – 𝑙𝑜𝑔10 transformed scores 

𝑓𝑖 for individual peaks assigned to a given gene (the formula is reported in 

Fig. 3.3). Higher is the score, stronger is the binding. 

In this way, each TF binding profile is annotated to the reference genome 

assembly, each gene is then associated with its TSS, and the related mapped 

peaks are scored. All the interactions to which correspond a zero score will 

be discarded.  

 

The omics TF binding profiles, obtained with the aforementioned 

bioinformatics analysis are then computationally integrated in order to 

reconstruct the transcriptional interactome maintaining the genome-wide 

perspective. Each profile can be view as a graph with a single regulator node 

and all its genomic regulated genes as target nodes.  

Since TFs cooperatively regulates each other, as described in Sec. 2.2.3, 

all the resulting graphs (one for each of the considered ChIP-seq 

experiments) are integrated, exploiting these regulatory modules to build a 

genomic Transcriptional Regulatory Network. Moreover, since to each 

directed interactions is assigned a score representing the strength of the 

binding, the transcriptional relationships of the TRN will be weighted, with 

a relative measure of the interactions confidence.  
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3.2 TRN Bayesian modeling 

The Bayesian framework conceived within this work exploits the multi-

layered omics data integration to model large-scale transcriptional networks.  

To this aim, a hybrid structure learning algorithm has been developed, 

able to use the data-driven transcriptional interactions as a prior knowledge. 

The algorithm also exploits integrated gene expression profiles for both 

assigning prior probabilities to each individual transcriptional relation, and 

for learning the model parameters during its search process. 

3.2.1 Transcriptional Bayesian model definition 

The Bayesian theory requires that the network which has to be modeled 

must be a directed acyclic graph (DAG), lacking of directed cycles or loops 

(see Sec. 2.4.1). Transcriptional networks are instead characterized by many 

loops of regulation, a classical property of the dynamic crosstalk among TFs, 

as already described in Sec. 2.2.3. To match this biological peculiarity with 

the acyclicity constraint, the proposed framework exploits the property of 

TRNs, whose regulations set can be divided in turn in two subsets, as 

described in the previous section, defining the interactions among TFs 

(which contains the regulatory loops), and among TFs and genes.  

The approach for modeling a TRN into a Bayesian Network (BN) firstly 

decomposes such TRN into its fundamental parts, as shown in Fig. 3.4: a TF-

TF Component, consisting of TF-TF edges, and a TF-Genes Component, 

consisting of edges from TFs to genes.  

Since the loops issue is just included in the TF-TF component, it 

undergoes to an iterative process aimed not only at removing cycles, but also 

at initializing the model structure and defining the priors of the algorithm. 

Within this scheme, as first step, the procedure evaluates the type of edges 

among TFs, ranking and sorting them in decreasing order if they are 

weighted, otherwise it shuffles all the arcs and assigns an equal weight to 

them. In this case, all TF-TF edges are weighted and were ranked by their 

relative weight, the binding score, in a decreasing order. The process, then 

tries to remove one arc at a time, starting from edges with lower weight, and 

checking, at every iteration, if the TF-TF component is still connected. The 

procedure ends when a minimal connected DAG is found. 
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.  

Figure 3.4: Transcriptional BN definition. Decomposition of a genomic 

Transcriptional Regulatory Network (TRN) allows to operate on the TF-TF 

component, characterized by many regulatory loops, i.e. feedback loops (as 

shown in the magnifying glass) to initialize the BN structure model and its 

structural constraints. The obtained DAG is then combined with the TF-

Genes Component to define a genomic transcriptional BN. 

All the TF-TF edges excluded from this structure initialization constituted 

an arcs whitelist (W), which will represent the search space of the possible 

structural models of the algorithm. 

The resulting DAG is combined with the TF-Genes Component, to obtain 

again a genomic transcriptional network, but designed as a Bayesian model 

(TBN). 

 

The second step for defining the initial BN, graphically depicted in Fig. 

3.5, is represented by TBN integration with transcriptomics data that is gene 

expression (GE) profiles, in order to obtain a fully observable Bayesian 

network.  

The underlying distribution is modeled as a joint multivariate Gaussian, 

where the conditional density of each variable (a TF, or a gene) given its 

parents, can be represented as a linear Gaussian model (see Sec. 2.4.1).  
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Figure 3.5: GE data integration step of the transcriptional BN. The GE data 

were integrated in the Transcriptional BN (TBN) and in the related arcs 

whitelist, defining them as inputs of the search algorithm. The box on the 

right highlights a peculiarity of the learning procedure, described in the 

Section 3.2.2. 

Moreover, this omics data source is also used to calculate the correlation 

by the classic Pearson Correlation Coefficient among the expression values 

of TFs nodes included in the TBN. This measure, which defines the linear 

dependence of each TFs pair, is estimated as follows 

 
ρ(𝑇𝐹1,𝑇𝐹2) =

1

𝑁 − 1
∑ (

𝑇𝐹1𝑖 − 𝜇𝑇𝐹1

𝜎𝑇𝐹1

) (
𝑇𝐹2𝑖 − 𝜇𝑇𝐹2

𝜎𝑇𝐹2

)

𝑁

𝑖=1

 (3.1) 

where 𝜇𝑇𝐹1
, 𝜎𝑇𝐹1

 are the mean and standard deviation of TF1, respectively, 

and 𝜇𝑇𝐹2
, 𝜎𝑇𝐹2

 are the mean and standard deviation of TF2, considering that 

each variable has N scalar observations. 

This correlation is then assigned to each TF-TF interaction and is 

exploited as an extraction probability associated to each arc.  

The algorithm scheme indeed plans on evaluating in the model each edge, 

belonging to the whitelist. The probability of an arc to be sampled is 

equivalent to the estimated correlation.  

3.2.2 The hybrid structure learning algorithm 

The developed algorithm follows the search and score paradigm, typical 

of the hybrid class of structure learning methodologies, as described in Sec. 

2.4.2.  

It proposes a heuristic search over the space of all possible structures 

derived from the whitelist, which encloses the informative structural priors 

concerning the TF-TF relations. Every extracted arc from the whitelist will 
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be evaluated in the TBN, using the Bayesian Information Criterion (BIC) as 

scoring metric.  

Its mathematical formulation is slightly different of that reported in the 

Eq. 2.11. Since the distribution of the TBN is assumed to be jointly 

multivariate Gaussian, in this context, the BIC score can be expressed in 

terms of the residual sum of squares (RSS) 

 𝐵𝐼𝐶 = 𝑛 log(𝑅𝑆𝑆 𝑛⁄ ) + 𝑘 log(𝑛) (3.2) 

where n is the number of observations (the GE dataset size), and k is the 

number of parameters in the model.  

Moreover, supposing that each variable of the BN model is linearly 

dependent upon its continuous parents, we consider the TBN as the sum of 

all local models.  

Thus, we modeled two BIC scores, a local one that is used to assess the 

local improvement in the network before and after a whitelisted arc addition, 

and a global one which represents the BN score computed as the sum of all 

BIC scores from local models, as shown in Eq. (3.3) and Eq. (3.4), 

respectively.  

 𝐵𝐼𝐶𝑙𝑜𝑐𝑎𝑙 = ∆𝐵𝐼𝐶 = 𝐵𝐼𝐶𝑜𝑙𝑑 − 𝐵𝐼𝐶𝑛𝑒𝑤

= 𝑛 log(𝑅𝑆𝑆𝑜𝑙𝑑 𝑅𝑆𝑆𝑛𝑒𝑤) − ∆⁄ 𝑘 ∗ log(𝑛) 
(3.3) 

 

 
𝐵𝐼𝐶𝑔𝑙𝑜𝑏𝑎𝑙 = ∑ 𝐵𝐼𝐶

𝑚

𝑖=1

 (3.4) 

where m denotes the number of local models composing the transcriptional 

BN.  

The second term in Eq. (3.3) is a penalty term that takes into account the 

edge changes; since many of the whitelisted arcs comes from TRN regulatory 

loops, the algorithm can add a new arc between two nodes (∆𝑘 = 1) or 

reverse the directionality of an existing BN arc (∆𝑘 = 0), as illustrated in the 

box of Figure 3.5. 

 

All the steps of learning process are detailed below and presented in Fig. 

3.6, in which is reported the pseudo code of the algorithm.  

At each iteration, the algorithm randomly draws from the whitelist a group 

of arcs (w) (i.e. one hundred) to test in the transcriptional BN (step 5). This 

sampling process is guided by correlation, which is exploited as an extraction 

probability associated to each whitelisted edge.  

The algorithm adds every sampled arc, one by one, to the BN model, 

learns the model parameters from gene expression (GE) data, and evaluates 

the newly obtained BN using BIClocal score. Since our learning schema is 
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designed for parallel computing, all the arcs extracted from the whitelist are 

tested simultaneously.  

Thus, the process evaluates all the computed BIClocal, selects as best 

model the solution that maximizes Eq. (3.3) (step 8), and then includes the 

corresponding arc into the model (step 9). The BN structure and its new score 

(𝐵𝐼𝐶𝑔𝑙𝑜𝑏𝑎𝑙𝑛𝑒𝑤) are updated, and the process moves forward (steps 9-11) until 

the stop criterion (defined at the step 4) is met.  

The algorithm ends its iterations when the new model score does not 

improve more than a fixed threshold compared to the score of the previous 

network (𝐵𝐼𝐶𝑔𝑙𝑜𝑏𝑎𝑙𝑜𝑙𝑑). 

Given the vulnerability of structure learning methods to getting trapped 

in a local optimal network during their search phase, the learning procedure 

provides also a strategy to prevent this problem (steps 13-14). When the stop 

condition is verified, the algorithm tries to move out of this potential local 

minimum for 10 consecutive times, combining an increased arcs sampling 

size (wi) (i.e. the dimension of the whitelist is doubled) with a 

correspondingly augmented proportion of arcs to test. We considered the 

BICglobal computed on the model before starting this procedure as 

𝐵𝐼𝐶𝑔𝑙𝑜𝑏𝑎𝑙𝑜𝑙𝑑; if in any of these steps the new solution is not better than the 

old one, at the last iteration the algorithm stops, otherwise it accepts the new 

model structure and continues the search process. At the end of each 

algorithm run, the heuristic procedure returns as output a learned 

transcriptional BN. 
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Figure 3.6: Pseudo code of the hybrid algorithm for learning a transcriptional 

BN structure 

When learning BN structures from experimental data, the uncertainty 

about individual network structures has to be taken into account, especially 

in the absence of any gold standard network as for the human transcriptional 

context. For this reason, we delineated a “consensus approach” for the 

identification of structural consistencies across all the learned models. 

 Hybrid Structure Learning Algorithm  

1: Procedure  Hybrid Struct. Learning (TBN, D, W) 

Inputs:      TBN, transcriptional BN model containing the genomic variables Xi, i=1, ..., n 

                 D, Gene Expression Dataset representing the evidence for all Xi 

                W, arcs whitelist 

Output:    TBN*, learned TBN 

 

2: 𝐵𝐼𝐶𝑔𝑙𝑜𝑏𝑎𝑙𝑜𝑙𝑑 BICglobal estimation on TBN 

3: cnt=0 

4: while (𝐵𝐼𝐶𝑔𝑙𝑜𝑏𝑎𝑙𝑛𝑒𝑤 − 𝐵𝐼𝐶𝑔𝑙𝑜𝑏𝑎𝑙𝑜𝑙𝑑 ) 𝐵𝐼𝐶𝑔𝑙𝑜𝑏𝑎𝑙𝑛𝑒𝑤⁄  > threshold 
 

         %Phase I: Whitelisted arcs evaluation 

5:      extract w ⊂ W, where (𝑇𝐹𝑖 , 𝑇𝐹𝑗 ) ∈ 𝑊  

6:       𝐵 = ∅ 

7:     for all arc ∈ w do 

7.1
**

:       insert the arc in the TBN 

7.2:         learn model parameters from D 

7.3:         B(arc)  BIClocal estimation  

7.4:  end for 
 

        %Phase II: Update the TBN model  

8:     (𝑇𝐹𝑖 , 𝑇𝐹𝑗 )
𝑏𝑒𝑠𝑡

= max(𝐵) 

9:     𝑡𝐵𝑁∗ = 𝑡𝐵𝑁 ∪ (𝑇𝐹𝑖 , 𝑇𝐹𝑗 )
𝑏𝑒𝑠𝑡

 

10:   delete (𝑇𝐹𝑖 , 𝑇𝐹𝑗 )
𝑏𝑒𝑠𝑡

from W 

11:   𝐵𝐼𝐶𝑔𝑙𝑜𝑏𝑎𝑙𝑛𝑒𝑤  BICglobal update on TBN* 

 

        %Phase III: Escape from Local Minimum  

13:   if (𝐵𝐼𝐶𝑔𝑙𝑜𝑏𝑎𝑙𝑛𝑒𝑤 >  𝐵𝐼𝐶𝑔𝑙𝑜𝑏𝑎𝑙𝑜𝑙𝑑  ) then 

13.1:       if cnt < 10 then 

13.2:            extract wi ⊂ W where size(wi)=2*size(w)  

13.3:            cnt= cnt+1  

13.4:            wi= w 

13.5:            continue   %go to step 6 

13.6:       elseif cnt == 10 

13.7:            end procedure 

13.8:       end if         

13.9: else  

14:          cnt =0 

14.1:       𝐵𝐼𝐶𝑔𝑙𝑜𝑏𝑎𝑙𝑜𝑙𝑑 = 𝐵𝐼𝐶𝑔𝑙𝑜𝑏𝑎𝑙𝑛𝑒𝑤  

14.2:      continue   %go to step 5 

14.3: end if 

 

15: end while 

 

 

**

Possible arc operations (∀𝑖∀𝑗 , 𝑖 ≠ 𝑗): 

1. arc addition: 𝑇𝐵𝑁 ′ ← 𝑇𝐵𝑁 ∪ (𝑇𝐹𝑖 , 𝑇𝐹𝑗 ) 

2. arc reversal: 𝑇𝐵𝑁 ′ ← 𝑇𝐵𝑁 \ (𝑇𝐹𝑖 , 𝑇𝐹𝑗 )  ∪  (𝑇𝐹𝑗 , 𝑇𝐹𝑖 )  
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3.2.3 Consensus Transcriptional BN definition 

To assess the variability and the unavoidable uncertainty about the correct 

network structure, it is necessary to evaluate all added edges from learned 

TBNs in order to find a single consensus BN structure.  

To this aim, a confidence threshold has been defined, considering it as the 

minimum degree of confidence for an edge to be significantly accepted in a 

final Consensus Bayesian Network.  

For each learned TF-TF edge (eij), we compute its strength (wij) 

considering the BN models (m), in which this transcriptional relationship 

appeared, and their related scores (BICglobal).  

 

𝑤𝑖𝑗 = ∑ (𝐵𝐼𝐶𝑔𝑙𝑜𝑏𝑎𝑙(𝑚))

𝑛

𝑚=1

 (3.5) 

Edges with high confidence (significant edges present in more than half 

of the learned network structures, and in the best scenario, present in all the 

network structures) are strongly weighted and more likely to be included in 

the final consensus model.  

The percentile distribution of the edge weights combined with the edge 

frequencies were used to rank all the considered arcs and to assess a 

confidence threshold, ensuring that the obtained transcriptional consensus 

BN is acyclic and fully connected. 

3.3 TRN Inference 

The systematic perturbation of transcriptional networks enables the 

elucidation of gene functions and regulatory relations that underlie biological 

processes. Current experimental methods of modulating transcriptional 

networks mainly rely on targeted single-gene overexpression (inducing the 

gene to increase its protein product, knockout (deleting its functionality), and 

knockdown (reducing of a certain threshold its activity).  

Although these technologies provide powerful strategies for perturbing 

individual genes, they may not be suitable for global or combinatorial 

perturbation of transcriptional networks. Many complex diseases, as well as 

treatments required to counteract those conditions, may involve 

simultaneous or dynamic changes in the expression levels of many genes, 

which are not accessible by screens that target genes one at a time.  

Moreover, without a specific hypothesis, the target of these in-vitro 

experiments potentially is each molecule of the system, and this may be 

unfeasible to do in practice.  

To this aim, simulating in silico a perturbation of the system and 

propagate the effect of such intervention on the entire network, could help to 

get insights in the underlying regulatory modules.  
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We defined a perturbation model for each TF included in the consensus 

transcriptional BN (TBN), implementing a knockout effect on the 

transcriptional expression, to allow the investigation of TFs influence. 

Since the distribution of the modeled TBN is assumed to be a multivariate 

Gaussian, the conditional probabilities have the form of a Gaussian model, 

as described in Sec. 2.4.1, and can also be view as a set of regression 

equations. 

If J is a set of nodes, then denotes the vector of variables indexed by J. In 

the following notation, XC(J) are the conditioning variables of XJ.  

Each conditional variable {𝑋𝐽|𝑋𝐶(𝐽)}  has a normally distributed mean, 

defined as (𝜇𝐽 + ∑ 𝑏𝑘𝐽(𝑋𝑘 − 𝜇𝑘)𝑘𝜖𝐶(𝐽) ), variance vJ (fixed for a given set of 

conditioning variables), and linear coefficients 𝑏𝑘𝐽; the resulting conditional 

model for j=1,…,n is given by 

 𝑋𝐽 = 𝜇𝐽 +  ∑ 𝑏𝑘𝐽(𝑋𝑘 − 𝜇𝑘)𝑘𝜖𝐶(𝐽) + (𝑣𝐽)1/2𝑍𝐽)  (3.6) 

in which Z1,…,Zn are independent standard normal random variables. The 

matrix B=[𝑏𝑘𝐽] can be thought as regression coefficients [85].  

In the model, when the mean of a variable changes (i.e. if the node is 

perturbed), and if this node has a successor, the mean of this last one changes 

consequently.  

 

Figure 3.7: Perturbation propagation model 

If the mean of the perturbed node X1 changes from 𝜇1 to 𝜇′1, the new 

value for 𝜇2 is  

𝜇′2 = E[𝑋2] = 𝐸[𝐸[ 𝑋2|𝑋1] = 𝐸[𝜇2 + 𝑏12(𝑋1 − 𝜇1)

= 𝜇2 + 𝑏12(𝜇′1 − 𝜇1) 
(3.7) 

The mean 𝜇3 of the X3 vertex, which is the successor of X2, also changes 

as a result of the 𝜇2 variation.  
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More generally, if the mean of a node i is perturbed, the effect of this 

change (𝜏) is propagated and can be summed along every directed path which 

emanates from node i [85].  

In this way, instantiating a knockout effect on the expression/function of 

each TF included in the consensus TBN that consists in setting to zero the 

expression value of a TF, the perturbation is then propagated along each its 

transcriptional regulation, resulting in an expression change of its genomic 

targets (both TFs and genes).  

Through the calculation of the marginal probability (see Sec. 2.4.4) on the 

network nodes, the effect of such perturbation is then estimated, comparing 

the mean before and post the “stimulus” induction.  

 𝜇𝑝𝑒𝑟𝑡 = 𝜇𝑝𝑜𝑠𝑡 − 𝜇𝑝𝑟𝑒 = ∆𝜇 (3.8) 

For each node, we can estimate the perturbation effect (𝜏) in terms of 

expression value changes (∆𝜇). 

Considering the scale of the perturbation impact on 𝜇𝑝𝑜𝑠𝑡 and comparing 

it to 𝜇𝑝𝑟𝑒 in the context of this probabilistic model, it is possible to evaluate 

the type of regulation exerted by a certain TF on the considered target (i.e. 

potential repression or activation). If 𝜇𝑝𝑜𝑠𝑡 > 𝜇𝑝𝑟𝑒, we could infer that the 

TF originally has an inhibitory effect, otherwise (𝜇𝑝𝑜𝑠𝑡 < 𝜇𝑝𝑟𝑒,) it acts as an 

activator. 

Moreover, for each perturbation model, we also obtain the distribution of 

𝜏 from ∆𝜇𝑛 calculated for all nodes (n) of the network. Using a variation 

threshold applied on the model standard deviation (𝜎𝑝𝑒𝑟𝑡 ), the perturbed 

targets (PTs) can be ranked and filtered in order to identify the signature of 

the knocked TF.  

3.4 Method Implementation 

The implementation of the described methodology for parallel execution 

has been done in Matlab, tested both on a standard PC (P7 CPU 4.0 GHz, 32 

GB RAM), and on a high performance computing environment, the 

HiPerGator 2.0 cluster (30,000 Intel cores, with 4 GB RAM per core). 

For perturbation model simulations some code from Bayesian Network 

Toolbox (BNT, Murphy K. [86]) has been exploited.  

Data preprocessing, file management, and integration aimed at creation of 

the molecular networks used in the following were performed with Python 

scripts that integrate several functions of several libraries, in particular 

Bioinformatics extension of the Orange Data Mining Suite [97] and 

NetworkX [98] packages. This last one allows to create network in 

Cytoscape compatible format.  
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All the networks represented and topologically analyzed in this work has 

been visualized with Cytoscape (v.3.3.0) [99], an open source bioinformatics 

platform for the visualization, integration and analysis of molecular 

interaction networks. 
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Chapter 4 

3 Validation of the Methodology 

The peculiarities of our novel approach optimized for learning large-scale 

transcriptional BNs make finding other similar methods difficult, especially 

in the class of hybrid BN learning algorithms, which exploit prior 

knowledge, GE data and directed regulations but without forcing the search 

process with severe constraints.  

To evaluate the performance of our method, we selected SAGA algorithm 

[100], the only approach with some common grounds with our strategy, and 

ARACNe (Algorithm for the Reconstruction of Accurate Cellular 

Networks), which is the most widely used technique for regulatory network 

reconstruction from gene expression data [101].  

For the aforementioned reason, despite some common features, we 

excluded a recent Bayesian structure learning tool, Bnlearn [102] due to its 

strict way to specify the structural priors, inconsistent with our methodology.  

The validation has been accomplished using data from yeast S. cerevisiae, 

since only a few experimentally verified eukaryotic transcriptional networks 

are available as gold standards, like yeast and E. coli. This last one has a 

transcriptional network not sufficiently large and complex to apply our 

hybrid learning strategy, and is poorly enriched of TFs coregulations. 

 

In the following sections, a briefly introduction of the regulatory network 

reconstruction approaches considered in this work is provided.  

Given the inherent noisy nature of omics data sources, which potentially 

contains incorrect information, the robustness of the proposed Bayesian data 

fusion based approach has been tested to increasing percentages of false 

priors and compared to the other selected strategies. The obtained results 

from such comparison are then reported. 
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4.1 Competing methods 

A brief overview of the regulatory network reconstruction methods 

selected for the comparison is provided. 

 

 

SAGA - Banjo 

SAGA is a hybrid Bayesian learning algorithm, implemented in the Banjo 

(Bayesian Network Inference with Java Objects) software [103], which 

combines Simulated Annealing with a greedy search, using Bayesian 

Dirichlet equivalence as a scoring metric to evaluate the generated network.  

It allows arc addition and reversal, and the possibility to specify a 

structural prior as well as a list of forbidden arcs that must not be added 

(blacklist) to the model. This method does not exploit an arcs whitelist 

strategy, but it infers the network structure from discretized gene expression 

data. Banjo ends its search when one of the termination criteria are met (i.e. 

fixed number of explored networks, search threshold time, maximum number 

of restarts reached), and returns as output the learned network with the best 

score. 

 

Figure 4.1: BANJO components 

Within the search loop (Searcher is the core of the Banjo algorithm), Banjo 

allows various combinations of Proposer, CycleChecker, Evaluator, and 

Decider components to handle the aforementioned aspects of each iteration 

step. 

The first step, Proposer, implements the SAGA algorithm which searches a 

graph structure (Grough) to be evaluated according to the data. After a change in 
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the graph, Grough is proposed, then it is scanned for cycles, through the Cycle 

Checker. If it contains a cycle, Grough is discarded, and the search goes back to 

the Proposer to request another network change; if not, Grough goes to the next 

step. The acyclic graph G is then evaluated, Evaluator, according to the scoring 

function described above. The Decider considers, possibly stochastically, 

whether to accept the proposed network (as the new current network) and best 

scored networks are then reported.  

 

 

ARACNe 

ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) 

is an information-theoretic based approach that implements a Gaussian 

Kernel estimator [104] to estimate the joint probability distributions and then 

computes the mutual-information (MI) between all pair of variables, using 

the calculated pairwise MIs to build up the gene network. Considering two 

variables X and Y, the MI is calculated as follow 

 

𝑀𝐼(𝑋; 𝑌) =
1

𝑀
∑ 𝑙𝑜𝑔 (

𝑓(𝑥𝑖𝑦𝑖)

𝑓(𝑥𝑖)̂𝑓(𝑦𝑖)̂
)

𝑀

𝑖=1

 (4.1) 

MI(X;Y) is equal to 0 if and only if X and Y are statistically independent. 

In experimental setting, the estimated MI never equals zero. Under this 

scenario, the recovered gene network would be full connected (each gene is 

connected to all the other genes of the network).  

To remove redundant hence false predicted connections among genes, 

ARACNe implements a bootstrap strategy that allows to compute a random MI 

given the number of observations. This approach allows to set a threshold that 

discriminates between statistically dependent and independent pairs of genes, 

given the data. The threshold over the MIs consents to remove most of the false 

positives predicted interactions. To this aim, the Data Processing Inequality 

(DPI) has also been implemented.  

The data processing inequality in information theory states that given three 

random variables X, Y and Z, then the mutual information between X and Y is 

greater than or equal to the mutual information between X and Z. That is 

MI(X;Y) > MI(X;Z).  

In this context, it is used as a pruning strategy, in order to remove indirect 

interactions, scanning all the full connected triplets of genes in the network and 

removing the recovered connection with lowest MI. 

For our test, we used the last version of this algorithm, ARACNe-AP 

[105], that works on reconstructing transcriptional networks taking as inputs 

a GE dataset and a predefined list of regulators (TFs). Its strategy consists of 

computing MI for every TF/target pair, without estimating it for all pair of 

network variables, and reconstructing MI networks from bootstrapped GE 

samples. A consensus network is then generated from the significant edges 

detected across all bootstrap runs.  
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Bnlearn 

Another tool for learning BN structures and estimating their parameters is 

the R package Bnlearn, which however cannot be used for our purposes. It 

implements a hybrid algorithm, the Max-Min Hill-Climbing, to reconstruct 

the network from GE data, combing network reconstruction with a Bayesian-

scoring greedy hill-climbing search to orient the edges. It allows to specify 

a structural prior in the form of a DAG, but it forces all the arcs designed as 

priors to be included in the final model, preventing the addition of any other 

extra arc. This constraint makes this approach not appropriate to handle 

transcriptional network problems, as regulatory loops, and for this reason, it 

has been discarded from our comparison. 

4.2 Yeast transcriptional benchmark network 
reconstruction 

Due to the scarcity of validated Eukaryotic transcriptional networks, 

regarded as gold standards, among the existing model organisms, yeast S. 

cerevisiae regulatory interactions have been deeply investigated in recent 

years. This information is retrieved in yeast databases, such as 

Saccharomyces Genome Database (SGD) [57] and YEASTRACT [58].  

We retrieved all available transcriptional regulations in yeast among 

known TFs and target genes, which map only verified ORFs (Open Reading 

Frames, which identify the codifying portion of the DNA sequence) from 

both repositories. The resulting regulatory interactions were then integrated 

to obtain a complete transcriptional relationships set.  

As transcriptomics source, we used the normalized GE dataset from the 

study of Spellman et al [106], considering only those genes identified by the 

authors as cell-cycle regulated. Given the presence of missing values, we, 

selected only those genes with a missing values rate less than 10%. Then, a 

k-nearest-neighbor imputation has been performed, obtaining a final 

complete dataset of 473 cell-cycle related genes expressed in 77 samples.  

Combing the validated transcriptional binding information with GE data, 

we defined as ground truth a yeast regulatory network (yTRN) composed of 

33 TFs and 437 target genes, and 3,299 transcriptional regulations, as 

illustrated in Fig. 4.2. 
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Figure 4.2: The reconstructed yeast transcriptional regulatory network 

(yTRN) 

4.3 False prior information setting 

Our Bayesian data fusion based approach exploits a data-driven prior 

knowledge, and as previously described, the inherent data nature is noisy and 

potentially contains incorrect information.  

To test the robustness of our method to false priors, we randomly added 

an increasing number of false edges to the yTRN, from 10% to 60% of the 

total number of TF-TF regulations. We considered each known interaction 

as true positive (TP), and every additional incorrect arc as false positive (FP). 

The performance of our method was evaluated for each FPs percentage and 

then compared to Banjo and ARACNe-AP.  

The yTRN underwent the BN definition procedure, as illustrated in Sec. 

3.2.1, and is decomposed in its fundamental parts: a TF-TF Component, 

characterized by 33 TFs and 249 interactions, and a TF-Genes Component 

with 470 nodes and 3,050 edges. Using the option for unweighted 

transcriptional data, the TF-TF Component underwent to the iterative 

process in order to obtain an initial DAG with 33 nodes and 32 TF-TF arcs. 

Combining it with the other Component, the structure of the initialized model 

of 470 nodes and 3,082 edges is defined.  

This starting TRN and the arcs whitelist, whose dimension varied 

according to the considered FPs rate, as described in Table 4.1, were used 

for testing the proposed approach in all of the six incorrect prior conditions.  
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Table 4.1: Incorrect priors rates tested for the method validation 

 Edges whitelist 

Tested FPs rate #of FPs 
Total #of edges 

(FPs+TPs) 

10% 25 242 

20% 50 267 

30% 75 292 

40% 100 317 

50% 125 342 

60% 150 366 

This table summarizes the number of FPs and TPs edges included in the whitelist 
for each considered FPs rate 

4.4 Robustness evaluation to false prior results 

We collected 100 learned transcriptional BNs for each tested FPs 

percentage, for which we evaluated the computational performance of our 

learning schema, considering the time used by our algorithm to learn all the 

obtained networks, as illustrated in Fig. 4.3. The average computational time 

estimated on the total number of transcriptional BN models for all the FPs 

levels varied from 1.61 minutes to 2.00 minutes.  

 

Figure 4.3: Performance evaluation of the hybrid structure learning 

algorithm on yeast network. For all the considered FPs levels, we analyzed 

the execution time of the search strategy to learn the BN model structures, 

comparing it to the number of edges of each learned network. 

We then applied the “consensus” approach, described in Sec. 3.2.3, on 

each set of learned networks. For all the analyzed FPs percentages, we 
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selected the 25th percentile of the arcs weights distribution to find the 

confidence threshold which guarantees a full connectivity of the related yeast 

Consensus BNs (yTBNs).  

To examine the performance of our algorithm throughout all FPs tested 

levels, we considered the percentage of FPs added in the final consensus 

yTBN comparing it to the total rate of FPs enclosed in each whitelist, 

reported in Table 4.1. The number of FPs edges added in the every final 

model is low and it remains so despite the increasing false priors available 

in the whitelist, as shown in Fig. 4.4, and then in Fig. 4.5 and in Table 4.2.  

 

Figure 4.4: Robustness of our method to erroneous priors. For each 

considered FP rate (reported as percentage on the performance line), we 

reported the percentage of FPs added in the final consensus BN compared to 

the total rate of FPs enclosed in each whitelist. We can conclude that the 

method is quite robust to wrong prior information. 

Application of Banjo algorithm 

In order to estimate the joint probability distribution of all the variables 

in the network, Banjo first discretizes GE data using a quantile discretization 

procedure. The Proposer/Searcher strategies were set to random local move 

and simulated annealing, respectively. The amount of time Banjo uses to 

explore the yTBN space was set to five hours (designated as stop criterion), 

since this time window has been indicated by the author as optimal to reach 

the highest sensitivity [103]. All the other parameters such as 

reannealingTemperature, coolingFactor, and so on, were left with their 

default values. The parameters setting can be found in the Appendix Sec. 

A.1. 

Banjo was evaluated in each incorrect prior scenario taking as input data 

the discretized GE yeast dataset, the same initial structures (i.e. DAG 

structures characterized by TF-TF interactions) exploited by our approach, 

and a blacklist, to avoid gene-gene interactions and unrealistic regulations 
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from genes to TFs. All results are summarized in Table 4.2 and in Fig. 4.5, 

where the comparison of Banjo and our developed method is represented.  

 

Figure 4.5: Performance comparison of the proposed Data Fusion 

approach and Banjo. We analyzed the FPs edges added in the Consensus BNs 

for each FPs rate tested with our hybrid structure learning strategy and Banjo. 

 
 

Application of ARACNe-AP algorithm 

ARACNe-AP cannot be evaluated under these incorrect prior conditions 

since it infers the network structure using the GE data and a list of regulators 

(the considered 33 yeast TFs).  

Once specified the input data, the algorithm calculates the MI threshold 

using the input GE matrix, computes 100 reproducible bootstraps from gene 

expression samples, and then consolidates these results using an 

implemented edges significance test to return a final consensus network.  

A MI threshold of 0.2989 has been calculated on data and the obtained 

yeast consensus network after the bootstrap step is composed of 348 nodes 

and 1,003 interactions, whose representation is shown in Fig. 4.6 
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Figure 4.6: The consensus yeast TRN reconstructed by ARACNe-AP 

Due to its implementation, ARACNe-AP does not allow to specify a 

structural prior. In this way, to determine its performance on our input data, 

we compared the interactions of this network with those included in the 

reconstructed yTRN, as described in Sec. 4.2, to estimate the number of TPs 

and FPs, whose percentage is reported in Table 4.2.  

Table 4.2: Methods comparison results 

 

 

FPs 

rate 

DF approach

 

BANJO

 

ARACNe-AP

 
#of 

Consensu

s edges 

Added 

FPs 

#of 

Consensus 

edges 

Added 

FPs 

#of 

Consensus 

edges 

Added 

FPs 

    

10% 50 8% 69 60% 

1003 70% 

20% 58 12% 69 60% 

30% 56 10% 69 60% 

40% 60 12% 69 40% 

50% 69 11% 69 40% 

60% 76 12% 69 60% 

 

As shown in Table 4.2 and in the figures above, our Bayesian data fusion 

based approach is robust to the increasing amount of false positive prior 

information. From the comparison with Banjo and ARACNe-AP, it can be 

pointed out that our algorithm outperforms both methods, producing a 

significant improvement in structural accuracy, even with a progressively 

higher FPs rate.  

ARACNe-AP bases its structural reconstruction only on a single source 

of data (GE data), and this penalizes the correctness of the inferred 
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transcriptional relations, 70% of which are false positives predicted 

interactions.  

On the other hand, Banjo allows to specify a structural prior, but its 

implemented constraints and parameters, whose setting is not trivial (i.e. 

initialTemperature, coolingFactor, reannealingTemperature, etc.), does not 

enable to acquire an accurate learning. Moreover, it has a limitation on the 

maximum number of parents allowed for each network node. As the author 

advised in Banjo documentation, this criterion must be less than 7 for memory 

requirements needed for the learning. Banjo requires also a list of forbidden 

arcs, to avoid the insertion of interactions from genes to TFs, whose definition 

for large-scale transcriptional networks is equivalent to 2n (where n is the 

number of genes) interactions to exclude.  

The search schema of our approach does not impose a constraint on the 

number of interacting variables or on the number of parents for each variable, 

and it is fast and scale well as illustrated in Fig. 4.3, thanks to its learning 

schema based on local learning executable in parallel.  
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Chapter 5 

4 Results from the Data Fusion 
approach applied to the CML case 

In this chapter, we present the results obtained by applying the proposed 

approach to the case of Chronic Myeloid Leukemia, starting from the CML 

transcriptional regulatory network reconstruction, and passing through its 

Bayesian network modeling to probabilistically assess the underlying 

structure with the hybrid learning algorithm. Finally, after a consensus 

transcriptional interactome has been defined, it can be exploited as a 

predictive perturbation model, aimed at investigating the hidden 

transcriptional signatures. 

5.1 CML genome-wide transcriptional regulatory 
network 

The CML transcriptional regulatory network is represented by all 

transcriptional interactions identified along the genome, inferred from the 

analysis of ChIP-seq experiments, available on the ENCODE repository for 

the K562 leukemia Tier 1 cell line, specific for the considered disease.  

Despite the quality criteria established by the ENCODE Consortium for 

data publication, not all the required standards has been respected. To better 

control the noise and the experimental variability among replicates of the 

same sample, further quality criteria, described below, have been applied for 

selecting the data to analyze. 
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 Sample accessibility: raw ChIP-seq experimental data in BAM 

format. 

 Control sample availability: each ChIP-seq experiment must 

have a corresponding control experiment. 

 Biological replicate availability: each sample must have a 

minimum of two biological replicates to assess its experimental 

variability. 

 Sample treatment: no pharmacological treatment has been 

administered. 

 Samples sequencing depth (for both “case” and control samples): 

20 million usable fragments. 

 Priority on the laboratory that produces data: if a ChIP-seq 

experiment for a certain TF is available from two different labs 

of the consortium, the lab with more complete metadata and with 

data matching the aforementioned filters is preferred.  

Applying such criteria, 65 TF ChIP-seq experiments has been considered, 

each one isolating binding data of a specific TF, to retrieve the related raw 

data, controls and biological replicates.  

TFs experiments were then analyzed with the integrative bioinformatics 

pipeline, described in detail in Sec. 3.1.1, whose steps performed peak 

calling, replicates evaluation, peak significance analysis, annotation of 

promoter-overlapping peaks, and finally a quantitative weighting of TF-

target interactions. The final aim of this procedure is to filter and integrate 

the transcriptional information underlying each ChIP-experiment for 

reconstructing the binding profile of every TF along the genome. Moreover, 

the statistical constraints set across the analysis steps allows to discard 

potentially false interactions, as represented by the numbers in Table A1 of 

the Appendix Sec. A.2. This Table also reports the TFs list analyzed in this 

study.  

Every obtained omics binding profile represents the regulon of each 

considered TF, in other words, the group of genomic targets regulated by the 

analyzed transcription factor. All TFs regulon size is illustrated in Fig. 5.1 

below. On average, the number of target nodes regulated per TF is 7,363.  
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Figure 5.1: Regulon size of each analyzed TF. 

A functional annotation of the considered TFs has been performed using 

the Epifactors database [107] and GO molecular functions terms, whose 

results are annotated in Table A2 of the Appendix Sec. A.3. In summary, 

among the analyzed 65 TFs, 27 of them have a sequence-specific binding 

(TFSS) with a particular molecular motif, 12 TFs exert also an epigenetic 

function, 11 TFs have a role combining the TFSS and epigenetic functions, 

and 13 TFs have a general function, as cofactors of the transcriptional 

machinery. 

 

Since each transcriptional interaction of all regulons is weighted with the 

binding score (bs), introduced during the integrative analysis, the score 

distribution along these relationships is represented as follows 

 

Figure 5.2: Binding scores distribution. 
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Each regulon can be described through a graph, with the considered TF as 

a single regulator node and all its genomic targets as regulated nodes, as 

depicted in Fig. 5.3. The underlying transcriptional interactions are 

symbolized by directed and weighted edges from the regulator TF to its 

targets (which can be both genes and TFs), and the weight (w) is the bs, 

directly proportional to the strength of the transcriptional relation.  

 

Figure 5.3: Graph representation of an omics TF binding profile. 

We obtained a graph for each TF profile, and exploiting the property of 

transcriptional networks, in which TFs have a synergic behavior, regulating 

each other as described in Sec. 2.2.3, all the resulting graphs were 

computationally integrated in order to build a genome-wide Transcriptional 

Regulatory Network for the considered disease context. The reconstructed 

CML genome-wide TRN is illustrated in Fig. 5.4.  

 

Figure 5.4: The reconstructed genome-wide TRN for CML. (A) the genomic 

TRN; (B) TFs subnetwork, representing the core of the TRN. 
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This network reflects the genomic landscape of transcriptional targets, 

since it is composed of 20,876 nodes (65 TFs and 20,811 target genes), and 

478,558 directed and weighted edges. The amaranth colored nucleus 

represents the TFs core, whose subnetwork is illustrated in Fig. 5.4 (B). This 

core is characterized by 1,857 coregulatory interactions, and 30 of which are 

autoregulation, self-controlled regulation operated by the TF itself. 

Through the genomic annotation step of the analysis pipeline, some 

preliminary functional considerations can be done on the represented 

interactome, as reported in Table 5.1. 

Table 5.1. Functional nodes of the TRN 

Nodes type #of Nodes 

TFs regulator 65 

Protein coding genes 19,427 

Other TFs target 177 

miRNA coding genes 1,207 

Among the 20,876 nodes, there are 19,427 protein coding genes, 177 

nodes are genes which codify for TFs, for which the transcriptional binding 

profile is not available, and 1,207 of the total number of nodes are miRNA 

coding genes, which are regulated by all the considered 65 TFs.  

Given the high dimensional space of the transcriptional regulations in 

such interactome, it is not possible to make inference, since each TF from a 

topological point of view, is equally important to another TF of the network, 

as shown in Fig. 5.5 with the in–coming connectivity (In-degree) distribution 

that can be approximated by an exponential fit. 

 

Figure 5.5: In-Degree distribution of the TRN. 
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The out-coming connectivity (Out-degree) distribution instead is slightly 

different from zero, since the TRN aim is to include only regulations that 

start from TFs, excluding the interactions among genes.  

 

Figure 5.6: Out-Degree distribution of the TRN. 

The compactness of the network is also demonstrated through Table 5.2, 

reporting some topological metrics calculated on the entire network, and 

only on the TF-TF component, where the core of the transcriptional 

relationships is embedded. 

Table 5.2: TRN and TF-TF subnetwork topological metrics 

Network metrics On TRN On TF-TF subnt. 

Connected components 1 1 

Clustering coefficient 0.562 0.546 

Network diameter 5 4 

Avg. number of neighbors 45,803 41,877 

The diameter is relatively small if compared to the huge number of 

existing nodes in the TRN, highlighting a graph compactness, as shown by 

the connected components measure, and by the intermediate value of the 

clustering coefficient, whose values range from 0 to 1. 

Analyzing the Betweeness Centrality distribution of the TF-TF 

subnetwork, we have to take into account that the higher the value, the higher 

the relevance of the TF as organizing regulatory molecule in the network. As 

illustrated in Fig. 5.7, there is only one TF with a high BC, which however 

is a RNA polymerase, and not functionally informative for the considered 

disease scenario. Most of TFs relies instead on the same BC range that is 

equivalent to the same transcriptional importance.  
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Figure 5.7: Betweenness Centrality distribution among TFs nodes. 

5.2 From a genomic TRN to a Bayesian Network 
model  

As described in the section above, in this “hairball” regulatory network 

no inference can be done to investigate the transcriptional impact of each TF.  

To this aim, the TRN is transformed into a probabilistic model, and 

underwent to the Bayesian network (BN) definition process.  

As first step, we dissected this genomic network into a TF-TF Component, 

characterized by 1,827 edges among TFs, excluding the loops of 

autoregulation, and a TF-Genes Component, which included the remaining 

network edges.  

Applying the BN design process (see Sec. 3.2.1) to the TF-TF Component, 

all the weights of the arcs were sorted in decreasing order and ranked 

according to their binding score values. The procedure tried to remove one 

arc at a time, starting from edges with lower weight, to find a minimal 

connected DAG.  

At the end, we obtained a whitelist of 1,763 transcriptional relations and 

a minimal connected DAG, defined by 64 interactions. This DAG combined 

with the TF-Genes Component constituted the initial BN model, as depicted 

in Fig. 5.8. 

 

 

Transcriptomics integration 

Given the integrative scheme of our method, a second omics source of 

data is necessary to integrate the obtained BN.  

 

A gene expression (GE) compendium from microarray data of 122 CML 

patients is generated, deriving it through the integration of five GE datasets, 

retrieved from GEO and ArrayExpress databases (GEO accessions 



Results from the Data Fusion approach applied to the CML case 

 

 73 

GSE13159 [108], GSE47927 [109], GSE24739 [110]) (ArrayExpress 

accessions E-MTAB-2581 [111], E-MEXP-480 [112]) in CEL format. All 

transcriptional raw data were RMA normalized [113] and expressed on log2 

scale. All transcript probes were then annotated with the relative Gene 

Symbol. Probes mapping the same gene were median averaged, and all of 

them lacking of functional annotations (i.e. control probes, probes mapping 

uncharacterized loci) were discarded. In order to obtain a unique gene 

expression panel, only those genes expressed in all the evaluated profiles 

were retained in the final dataset. These steps of analysis were performed by 

limma package in R environment. [114]. 

 

The obtained transcriptomics compendium was integrated in the 

transcriptional BN, with the purpose of achieving a fully observable network, 

whose underlying probability distribution is modeled as (conditionally) 

Gaussian (see Sec. 3.2.1). 

Moreover, this omics source was also used to calculate the correlation 

among the expression values of TFs included in the network. This measure 

is assigned to each whitelisted arc, and will be exploited as a sampling 

probability by the learning structure algorithm, as detailed in Sec. 3.2.1 and 

in Sec. 3.2.2. The whitelist became a correlation whitelist (cw), and with the 

initialized GE integrated BN (TBN), composed by 11,986 (60 TFs) nodes 

and 282,533 edges, represented the input of the hybrid structure learning 

algorithm.  

These steps are summarized in the Fig. 5.8. 

 

Figure 5.8: TRN conversion into a Bayesian model 
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5.3 Structural assessment on CML transcriptional 
BN 

The obtained TBN and the related correlation whitelist underwent to the 

hybrid structure learning process of the proposed algorithm.  

After 100 runs, we collected 100 transcriptional BN models. The 

computational time required for learning all the obtained genomic networks 

is shown in Fig. 5.9, with an average learning time of 2.5 hours to obtain a 

final genome-wide TBN within a complete run of the algorithm. 

 

Fig. 5.9. Performance evaluation of the hybrid structure learning algorithm 

on the CML network. The execution time of the search strategy to learn the 

BN model structures is compared to the number of edges of each learned 

genomic network. 

In order to obtain a consensus transcriptional BN, we ranked and weighted 

all the TF-TF relations from the learned network structures, following the 

approach described in Sec. 3.2.3. We chose as confidence threshold the 

weight value corresponding to the 5th percentile of the arcs weights 

distribution, to avoid the inclusion of edges with low confidence.  

The resulting genome-wide consensus TBN is composed 11,986 nodes 

and 282,544 transcriptional interactions. The TF-TF core is defined by 70 

TF-TF edges, 30 of which had been reversed by the algorithm, as an effect 

of TRN regulatory loops. The topological metrics estimated on the TBN are 

reported in Table 5.3. 

 

 

 



Results from the Data Fusion approach applied to the CML case 

 

 75 

Table 5.3: Consensus TBN and TF-TF subnetwork topological metrics. 

Network metrics On TBN On TF-TF subnt. 

Connected components 1 1 

Clustering coefficient 0.025 0.0 

Network diameter 7 6 

Avg. number of neighbors 47,146 2,333 

Analyzing the incoming and the outcoming connectivity of each 

consensus TF node, we compare the difference between out- and in- degree 

(O-I), which measures the direction of the transcriptional information flow 

within a metric called hierarchy height (h), introduced in the study of 

Gerstein M.K. et al [115]. With possible values ranging from -1 to 1, this 

metric provides a normalized measure of the disparity between a given TF’s 

roles as a regulating factor and a regulated target.  

Specifically, it is calculated by normalizing the difference between the 

out- and the in-degrees by the sum of the out- and in-degrees. 

ℎ =
(𝑂 − 𝐼)

(𝑂 + 𝐼)
 

Lower h values indicate that a TF is heavily regulated and without many 

targets of its own (i.e., it is lower within a regulatory hierarchy), whereas 

higher h values indicate that a TF is a regulator of many other elements, and 

without many other elements responsible for its regulation (i.e., it is higher 

within a regulatory hierarchy). 

In other words, TFs with no in-degree (i.e., those regulated by no other 

TFs) have a range values of (0.5, 1], using this metric. TFs with no out-

degree (i.e., those regulating no other TFs) fall in this values interval [-1, -

0.5). TFs with balanced regulation (i.e., those regulated by the same number 

of TFs that they themselves regulate) have a range of [-0.5, 0.5] using this 

statistic.  

The resulting distribution of h, within our consensus TF-TF subnetwork, 

illustrated in Fig. 5.10 (B) allows to classify the regulator activity of different 

TFs classes that are master regulators, middle managers, and workhorses 

TFs. As the hierarchy is constructed by maximizing the number of edges 

from top to bottom, out-degree hubs are more likely to be found in the upper 

levels, while in-degree hubs are more likely to be found in the lower levels. 

These categories was not distinctly detectable in the initial TF-TF 

component where all nodes are interconnected to each other without an 

hierarchical order, as illustrated in Fig. 5.4, and with its calculated h 

distribution in Fig. 5.10 (A).  
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Figure 5.10 (A): h distribution on the TF-TF Component in the initial TRN.  

 

Figure 5.10 (B): h distribution on the TF-TF Component in the learned 

consensus.  

The transcriptional flow detected in the consensus TF-TF Component 

instead allowed to organize its underlying interactions into a three-layered 

hierarchy, represented in the figure below. 
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Figure 5.11: Transcriptional hierarchy for the CML. The color intensity and 

the size of TFs nodes are proportional to the incoming connectivity (e.g. 

small size combined with a darker color for a high in-degree). 

This hierarchy is composed of 16 master regulator TFs, at the top, 21 

brokers or middle managers, and the remaining 23 workhorses TFs, at the 

bottom. This topological organization can be view in a transcriptional 

functionality perspective, using the TFs annotations reported in Table A3 of 

the Appendix Sec. A.3., to correlate the impact on each TF on gene 

expression with its molecular function, as shown in Fig. 5.12.  

 

Figure 5.12: TFs functional hierarchical organization underlying the TBN. 
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5.4 Simulation of transcriptional perturbations  

Once the transcriptional structure has been assessed, the resulting TBN 

can be exploited to investigate the signatures of TFs, which are rising from 

the topological analysis performed at the previous step.  

Considering one TF at time, a knockout effect is implemented, setting its 

expression values to zero. From this process, we excluded the RNA 

polymerase (i.e. POLR3G, POLR2A), given its general function of catalyzing 

the DNA transcription for mRNA production. 

This in-silico perturbation is then propagated to the each network nodes, 

and quantified in terms of average variation (𝜇𝑝𝑒𝑟𝑡 𝑜𝑟 ∆𝑝𝑒𝑟𝑡), considering the 

average before and after the propagation of the perturbation. Clearly, if the 

variation is equal or slightly different from zero, we can conclude that the 

considered node is not influenced by the knocked TF or simply, it is not its 

target. 

The reconstructed distribution of this genomic variation allowed to rank 

the perturbed targets (PTs), considering the standard deviation of the 

estimated ∆𝑝𝑒𝑟𝑡 , to identify those PTs that are more influenced after 

knocking a certain TF, as depicted in Fig. 5.13.  

Given the considered high dimensionality of the transcriptional 

perturbations, we chose two thresholds to sort ∆𝑝𝑒𝑟𝑡 . The PTs whose 

variability is more than ±3σ or lies within the range ±3σ to ±2σ were finally 

retrieved. For each perturbation model, in this way, we obtained two 

different lists of ranked PTs. 

 

Figure 5.13: Transcriptional perturbation model distribution. 

The variation detected in the average expression value of the PTs can be 

correlated to the function exerted by the knocked TF on them. In other words, 
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if 𝜇𝑝𝑜𝑠𝑡 > 𝜇𝑝𝑟𝑒, we could infer that the considered TF negatively modulated 

the expression of its targets, reducing it; if instead 𝜇𝑝𝑜𝑠𝑡 < 𝜇𝑝𝑟𝑒 , the TF 

originally acted as a transcriptional activator.  

All knocked TF are investigated following this concept, counting the 

number on genomic PTs inhibited or activated after the effect propagation, 

as shown in Figs. 5.14-5.17. 

 

Fig. 5.14: PTs ranking for the ±3σ variation threshold – inferring 

transcriptional activation function. 

 

Fig. 5.15: PTs ranking for the ±3σ variation threshold – inferring 

transcriptional inhibition function. 
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Fig. 5.16: PTs ranking for the [±3σ to ±2σ] variation threshold – inferring 

transcriptional activation function. 

 

Fig. 5.17: PTs ranking for the [±3σ to ±2σ] variation threshold – inferring 

transcriptional inhibition function. 

Moreover, to test the significance of the two PTs groups, one for each 

variation threshold, an enrichment analysis has been performed, using the 

Reactome biological pathways database.  

All significant pathways (p-value <0.05, using the Benjamini Hochberg 

correction for multiple testing) were then aggregated for the TFs belonging 

to the same hierarchical layer, in order to reconstruct the common signatures.  

This classification is graphically reported in Figs. 5.18-5.20 below for the 

±3σ variation threshold. Each pathway is identified through a Reactome 

code, e.g. R-HSA-69306, where R refers to the database, HSA, the considered 

organism, “Homo sapiens”, and the numerical ID is the pathway identifier. 

From the list of enriched pathways, we did not consider the gene expression 

and transcription related processes that clearly are significant for all the 

evaluated layers. 
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Figure 5.18: Perturbed targets of master regulator TFs pathways enrichment. 

 

Figure 5.19: Perturbed targets of middle manager TFs pathways enrichment. 
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Figure 5.20: Perturbed targets of workhorses TFs pathways enrichment. 

For the other threshold, given the high number of PTs and the related 

pathways analyzed, we reported the first ten most significant biological 

processes for each considered TF in Table A3, Appendix Sec. A.4. 

 

Since the investigated disease is characterized by a molecular hallmark 

(see Sec. 2.4.5) involving the BCR and ABL1 genes, we explored the 

expression perturbations involving these two targets across all the knockout 

models. The 𝜇𝑝𝑒𝑟𝑡 distribution is represented in Fig. 5.21. 

 

Figure 5.21: Quantification of the expression perturbation for ABL1 and 

BCR genes. 
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Chapter 6 

5 Discussion and Conclusions 

In the era of ‘Omics’, data integration represents a challenging tool to 

deliver more comprehensive insights into the biological systems under study, 

helping to translate novel molecular knowledge into improved diseases 

understanding.  

In cancer, the context, in which dysregulated gene expression programs 

take place, has a profound impact on patients’ disease mechanisms and on 

preventive and curative therapies responses. The investigation of such 

context, aimed at reconstructing the transcriptional determinants of the 

underlying altered expression patterns, may allow to gain insights into 

molecular signatures driving disease phenotypes. To this aim, the 

development of robust computational approaches able to deal with omics 

data heterogeneity and the biological complexity is necessary.  

Given this challenging picture, within this three-year project, a data fusion 

approach has been developed, focused on multi-layered omics data 

integration for modeling large-scale transcriptional background. Its 

framework threads on three main aspects (i) the reconstruction of a 

transcriptional interactome using a network-centric approach, whose 

principles are inherited from graph theory and can be exploited to study the 

considered system; (ii) its mathematical modeling through a Bayesian 

formalism and consequently the probabilistic inspection on a genome-wide 

scale of the underlying transcriptional regulations with a hybrid structure 

learning; (iii) the investigation of the intrinsic transcriptional signatures, 

which characterize the resulting Bayesian model, simulating perturbations 

on system regulators at molecular level and propagating this effect following 

the transcriptional flow. 

In this work, we have investigated the application of the proposed 

methodology to the case of CML, a subtype of blood cancers whose causative 

genetic event is known but its transcriptional architecture has not been deeply 

investigated yet on a genomic level. This becomes of particular interest, since 
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novel hypotheses regarding altered transcriptomics and epigenomics patterns 

are emerging [116].  

For CML, the transcriptional regulatory network (TRN) was constructed 

starting from raw ChIP-seq data, applying a specific bioinformatics pipeline to 

control and correct the biological variability inherent of this kind of NGS data, 

using both quality metrics and statistical constraints to prune the set of genomic 

transcriptional interactions of potential false positive relationships, as 

highlighted in Table A1. The scoring method, introduced in the analysis 

pipeline, exploited as a filter to detect relevant bindings, has allowed also to 

weight the strength of the considered interactions. This first part enabled the 

regulon reconstruction of each considered CML regulator (TF), modeled as a 

graph, whose properties has been computationally integrated leading to the TRN 

definition on a genome-wide scale. 

The topological characterization of the TRN showed a high compactness and 

a complex connectivity among TF-TF interactions due to the synergic and 

cooperatively behavior of TFs, without leading back to meaningful biological 

conclusions.  

In order to assess the role of each regulator, assigning it to a level within 

a “chain-of-command” hierarchy, the obtained regulatory system was 

modeled as a Bayesian network (BN), inserting it in a hybrid structure 

learning framework. Its scheme, able to computational scale the genomic 

size of the modeled network (see Chapter 4 and Sec. 5.3), exploits the 

reconstructed transcriptional backbone as prior knowledge, integrating it 

with a further complementary omics data source. 

Within this joint learning framework, the network is integrated with a 

gene expression panel, composed by 122 transcriptomics profiles of CML 

patients, since our final aim is to identify transcriptional interactions which 

play a crucial role in the dynamic regulation of the gene expression program 

underlying the disease phenotype.  

Following this Bayesian learning strategy, the probabilistic structure is 

then assessed and the resulting model allowed to get topological insights of 

the binding patterns, organized into a stratified hierarchy representing the 

overall system-level regulatory wiring, which was not observable in the 

initial TRN (see Sec. 5.1).  

A three-tiered pyramidal structure was identified analyzing the ratio 

between the incoming and outcoming connectivity of all TFs presiding over 

all interactions of the network. This hierarchy clearly shows that the 

regulatory information is passed from the top to the bottom. A path within 

this topological organization represents a specific regulation of a 

downstream TF by an upstream one. Considering each path as a unique flow 

of transcriptional information, the number of paths through each node 

quantifies the amount of flow it controls. The specified TFs levels 

collectively regulate the non-regulator targets, lying in a lowest fourth layer 

that, due to its large dimension, has not been possible to graphically show in 

Fig. 5.1. Overall, the identified classes of TFs (master regulators, middle 

managers and workhorses TFs) can be interpret as the effect of their different 
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regulatory impacts on gene expression cellular programs, since the learning 

phase that allowed such reconstruction is driven by the transcriptome 

expression. Moreover, from a functional point of view, TFs which share an 

epigenetic function are located at opposite ends of the hierarchy, and the 

central layer is instead characterized by TFs with sequence specific binding. 

The correlation between the topological and functional aspects for TFs, 

established within this hierarchy, represents an interesting novelty for the 

considered disease. This emerging perspective for many of the analyzed TFs 

could be further experimentally investigated. On the contrary, for some TFs 

the transcriptional role outlined in one of the aforementioned classes is 

supported by the scientific literature, since its importance for the 

hematopoietic system has already been examined, as described below. 

CEBPB TF, that in this context is characterized as a master regulator (MR), 

within the hematopoietic system is effectively indicated as MR of steady-

state granulopoiesis (i.e. process production of a sub-type of white-blood 

cells called granulocytes), expressed at high levels to regulate genes involved 

in immune and inflammatory responses. Under stress conditions, such as the 

cancer microenvironments, CEBPB is involved in BCR–ABL-mediated 

myeloid expansion and leukemic stem cell exhaustion in CML chronic-phase 

[117].  

Members of the Jun family (JUN and JUND), that are key subunits of the 

transcription factor AP-1, are designated as MRs in healthy and cancer cells 

[118], given their crucial role in cell cycle progression, differentiation and 

programmed cell death. Not surprisingly, they are frequently overexpressed 

in leukemia, and their leukemogenesis actions are BCR-ABL1-induced 

[119].  

Despite RAD21 and SMC3 TFs belong to the same cohesin complex 

involved in DNA damage repair and whose composing genes are frequently 

mutated in myeloid neoplasms [120], these regulators are located at the 

opposite network layers as a result of their different effects in their regulating 

modules. 

GATA1 and GATA2 are two fundamental TFs which play a crucial role 

in gene regulation during development and differentiation of hematopoietic 

cells. They belong to the same layer, and their molecular recruitment is 

sequential; it is indeed know that GATA2 binds the promoter region of 

GATA1 whose expression can be repressed in the hematopoietic stem and 

progenitor cells [121]. 

To further study the underlying transcriptional signatures, a knockout 

effect was simulated on each considered TF, and then it was propagated 

following the genomic transcriptional flow of the Bayesian consensus 

structure. Given the high number of genes targets, to filter the perturbation 

effect on their expression (𝜇𝑝𝑒𝑟𝑡), two variability thresholds has been taken 

into account: 𝜇𝑝𝑒𝑟𝑡 < ±3σ and ±3σ < 𝜇𝑝𝑒𝑟𝑡 < ±2σ . The resulting two 

groups of perturbed genes (PTs) were firstly evaluated to investigate the 

transcriptional action of each knocked TF (activation or repression), 

considering the shift of the average expression before and after the 
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perturbation propagation. Due to the broad number of the considered PTs 

(2,208 and 447 unique targets for the two variation cut-offs, respectively) in 

this research context, we point out some of the obtained results with a 

literature correspondence, whose underlying hypotheses could be further 

experimentally investigated. 

In a recent study conducted by Prasad P. et al [122], the role of a SNF2 

family enzymes, which comprises several chromatin remodeling genes, has 

been investigated in blood cells. SNF2 family enzymes are crucial for the 

execution of normal blood cell developmental program, and defects in 

chromatin remodeling, caused by mutations or aberrant expression of these 

proteins, may contribute to leukemogenesis. 

Among them, they highlighted CHD2 TF and its interacting molecules as 

abundantly expressed in the blood cells related to their importance for the 

hematopoietic system physiology. These genes can be found as significantly 

perturbed for the ±3σ < 𝜇𝑝𝑒𝑟𝑡 < ±2σ threshold in our work and are reported 

in Table 6.1 below.  

Table 6.1. Some of the PTs after CHD2 TF knockout simulation. 

PTs 𝝁𝒑𝒓𝒆 𝝁𝒑𝒐𝒔𝒕 

SMARCA4 2.679669 5.880250 

MYC -0.209379 9.564277 

MORF4L2 -6.198733 4.487805 

SMARCA5 -16.425829 6.160511 

CHD4 2.974422 4.691987 

HELLS -7.770306 2.288726 

BTAF1 7.724028 6.941390 

BAZ1A 0.108133 5.662284 

SMARCA1 -0.573362 3.621152 

Moreover, within this signaling cascade, we emphasize the presence of 

MYC and SMARCA4 genes, since this last one is required for enhancer 

activation of MYC to stimulate its oncogenic transcription in leukemia [122]. 

Another useful comparison is represented by the knocked CTCF and 

MYC TFs. It is known that MYC is a target for the transcriptional repression 

exerted by CTCF, and Torrano V. et al [123] have experimentally 

demonstrated that the inhibition of CTCF expression in K562 cell line 

correlates with MYC overexpression, and conversely, the inhibition of MYC 

determines an expression increase for CTCF, as we can find in Table 6.2. 

Table 6.2. CTCF and MYC expressions variation comparison. 

TF KO 𝝁𝒑𝒓𝒆 𝝁𝒑𝒐𝒔𝒕 

 MYC 

CTCF 0.930602 9.309476 

 CTCF 

MYC 6.172792 8.395217 
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As further example, we can consider the components of cohesin complex, 

recurrently mutated in myeloid malignancies, representing one of just nine 

categories of genetic alterations thought to actively contribute to 

leukemogenesis [120]. The major four subunits are SMC1A, SMC3, RAD21 

and STAG1/2, which frequently co-locate on chromosome with CTCF 

transcription factor. Thus, we looked into their expression variations, having 

the RAD21, SMC3 and CTCF knockout simulations.  

Moreover, since co-occuring mutations involve also NPM1, DNMT3A 

and FLT3 genes, we also considered these targets in our comparative 

analysis, despite FLT3 not shown a significant perturbation in RAD21 

knockout. All evaluations are reported in following Tables 6.3-6.5.  

Table 6.3. The considered PTs after RAD21 TF knockout simulation. 

PTs 𝝁𝒑𝒓𝒆 𝝁𝒑𝒐𝒔𝒕 

STAG1 3.288470 5.473105 

STAG2 7.976062 5.576123 

SMC3 2.113087 7.194185 

SMC1A 0.994701 7.769760 

CTCF 6.172792 8.395217 

FLT3 15.501185 15.016965 

NPM1 -0.978991 8.456430 

DNMT3A 0.757536 6.175466 

Table 6.4. The considered PTs after SMC3 TF knockout simulation. 

PTs 𝝁𝒑𝒓𝒆 𝝁𝒑𝒐𝒔𝒕 

STAG1 2.041964 4.594141 

STAG2 12.244961 8.877212 

RAD21 5.917111 8.947476 

SMC1A 1.465333 6.636560 

CTCF 6.676750 6.676750 

FLT3 2.005014 7.027773 

NPM1 -0.698319 11.668327 

DNMT3A 1.188773 6.538875 

Table 6.5. The considered PTs after CTCF TF knockout simulation. 

PTs 𝝁𝒑𝒓𝒆 𝝁𝒑𝒐𝒔𝒕 

STAG1 1.300532 4.117925 

STAG2 13.226377 9.004134 

SMC3 2.113087 0.813818 

SMC1A 1.462021 6.636560 

RAD21 5.917111 8.947476 

FLT3 2.558819 9.253860 

NPM1 0.251016 12.491815 

DNMT3A 0.507685 6.013849 
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As emerge from the bold highlighted genes, NPM1 and DNMT3 are the 

most influenced targets of the aforementioned simulations. In the last years, 

these two epigenetic modifiers have been regarded as powerful follow-up 

markers for another type of myeloid disorder, the acute myeloid leukemia 

[124], suggesting a common molecular link to impede myeloid 

differentiation to the benefit of disease progression [125], that can be also 

investigated within this pathological context.  

From the experimental suppression of the epigenetic regulator EP300 in 

K562 cell line in the study of Giotopoulos G. et al. [126], a significant 

enrichment for genes involved in DNA replication, DNA repair, the control 

of mitosis and of the cell cycle has come out. In particular, among them, they 

found as not downregulated the multiple members of the minichromosome 

maintenance pre-replication complex (MCM3, MCM4 and MCM5), as well 

as its interacting proteins (MCM10) and loading/regulatory factors for 

replication origin licensing (CDT1 and GMNN). The related perturbations, 

in accord to the aforementioned results, are described in Table 6.6 for our 

EP300 in-silico knockout experiment.  

Table 6.6. The considered PTs after EP300 TF knockout simulation. 

PTs 𝝁𝒑𝒓𝒆 𝝁𝒑𝒐𝒔𝒕 

MCM3 -3.477105 6.909959 

MCM4 -0.016194 6.909951 

MCM5 3.148037 6.909641 

MCM10 -2.868991 3.130641 

CDT1 9.594106 10.274231 

GMNN 1.841851 4.575728 

In order to explore the impact of the transcriptional perturbed effects on 

the hallmark genes of CML, we quantified the perturbation on BCR and 

ABL1 targets, as shown in Fig. 5.21. Among the knocked TFs, BCR and 

ABL1 show a greater influence for the following regulators: ARID3A, 

important for B lineage commitment for human hematopoiesis [127], MAX, 

whose binding together with MYC is required for BCR upregulation [128], 

E2F4-E2F6 TFs, which play a crucial role in cell growth control [129], 

CEBPB, as already mentioned, essential in leukemogenesis-induced 

granulopoiesis, YY1 and MXI1 involved in hematopoietic stem cell 

differentiation [130].  

The PTs groups were then assessed for a functional association with the 

disease phenotype, through a pathways enrichment analysis. To resume the 

common transcriptional signatures among the investigated biological 

processes, all significant pathways has been clustered by hierarchical layer 

to which each TF belong and ranked by significance level.  

The prominent signature commonly shared among layers is the Immune 

system response (R-HSA-168256, R-HSA-1280218, R-HSA-5663205) 
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combined to cellular response to stress (R-HSA-2262752). Inspecting each 

TFs class enrichment, we can highlight: 

 For master regulator TFs, the most representative pathways 

concern cellular survival processes, as metabolism (R-HSA-

1430728, R-HSA-392499), cell proliferation (R-HSA-1640170, 

R-HSA-69278, R-HSA-69275, R-HSA-453274), DNA 

replication (R-HSA-69306) and apoptosis (R-HSA-109581). 

 For middle manager TFs, cell signaling pathways are 

predominant (R-HSA-194315, R-HSA-162582, R-HSA-

5607761, R-HSA-4086400, R-HSA-5687128, R-HSA-1169091), 

cell cycle related checkpoints processes (R-HSA-453274, R-

HSA-453279, R-HSA-68886) and pathways involving DNA 

repair mechanisms (R-HSA-73894). 

 For workhorses TFs the signatures converge on two type of 

cellular signaling: external stimulus transduction through the 

plasma membrane and its receptors (R-HSA-187037, R-HSA-

143357, R-HSA-5621487, R-HSA-1944138, R-HSA-74752, R-

HSA-376176, R-HSA-190236) and internal cellular signaling 

exploiting the vesicle trafficking (R-HSA-1660514, R-HSA-

199992, R-HSA-421837).  

The obtained findings show the potential of the proposed methodology 

which, focusing on omics data integration, provides a data-driven platform 

for transcriptional regulatory network inference on a genome-wide 

perspective. Thanks to the probabilistic framework, it is possible to test 

biological hypotheses and extract meaningful information in order to better 

understand the considered context, that can be a pathological landscape, as 

investigated within this project, or a pharmacological scenario, where 

treatment signatures on a genomic scale may be explored for assessing the 

molecular effects of the administered drug in terms of genes target 

expression perturbations, or a personalized medicine context, combining the 

topological changes, which reflect altered regulatory interactions with the 

disease status of a certain subtype of patients (i.e. known genetic mutations 

that modify the expression of specific genes).  

To our knowledge, the transcriptional CML background have not been 

investigated with an omics data fusion approach on a genomic scale. Of 

course, to better understand the emerging regulative signatures from the 

perturbation models, an experimental validation step is needed, planning 

targeted in-vitro experiments.  

Anyway, under this perspective, the developed method may be considered as 

a reliable data driven strategy for the definition of new research hypothesis, 

allowing to in-silico test them on a large scale of potential targets, to then narrow 

the search field planning focused experimental procedur
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Appendix  

A.1 Parameters setting for the tested regulatory 
network reconstruction methods 

ARACNe-AP 

 MI threshold calculation step:  

p-value threshold= 1𝑒−8 

seed= 1 

MI calculated threshold: 0.2989  

 Bootstrap step on GE input matrix:  

100 reproducible bootstraps are obtained using the seed and p-

value thresholds set at the previous step 

 Consolidation step:  

A consensus BN is built using a p-value threshold of 0.05 for the 

edge significance test  

------------------------------------------------------------------------------------------ 

Banjo 

SearcherChoice:      SimAnneal  

initialTemperature:    1000  

coolingFactor:    0.7  

reannealingTemperature   500  

maxAcceptedNetworkBeforeCooling 1000 

maxProposedNetworkBeforeCooling 10000 

minAcceptedNetworkBeforeReannealing 200  

ProposerChoice:      RandomLocalMove  

EvaluatorChoice:      default  

DeciderChoice:      default  

DiscretizationPolicy:     Q5  

minMarkovLag (for static data):   0  

maxMarkovLag (for static data):   0  

equivalentSampleSize:     1.0  

maxParentCount:      6  

maxTime:      5 hrs 

minNetworkBeforeChecking:    1000  
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A.2 ChIP-seq data filtering through the pipeline 

Table A1: The aim of this table is to highlight the filtering potential of the 

developed pipeline. Given the high number of the total analyzed replicates 

(more than two for each TF sample), here are reported only the identified 

peaks for the first replicate (Rep1). The “merged peaks” column refers to the 

combined peaks from each TF ChIP-replicate peak; in the last one, the final 

number of annotated peaks (target genes) and filtered by the binding score 

for each TF is reported. 

TF 
Rep1 

peaks 
Filtered by p-value 

Merged 

peaks 

Targets filtered 

by Score 

ARID3A 26,858 14,167 45,608 10,365 

ATF1 18,410 10,738 42,722 10,371 

ATF3 5,206 4,103 7,953 3,515 

BACH1 9,887 5,659 14,349 3,515 

BCLAF1 16,236 10,339 29,093 9,981 

BDP1 2,710 2,108 8,763 3,349 

BHLHE40 38,943 15,294 79,902 27,058 

BRF1 1,024 711 3,721 1,623 

BRF2 1,848 1,760 5,957 2,912 

CCNT2 26,797 9,415 48,941 9,817 

CEBPB 95,501 40,258 69,412 15,008 

CHD2 25,009 10,437 20,937 8,660 

CTCF 62,883 13,440 26,004 9,986 

CUX1 5,275 3,359 10,366 4,797 

E2F4 24,848 9,739 28,300 8,392 

E2F6 34,584 10,375 23,662 7,748 

ELK1 7,115 5,022 11,999 6,191 

EP300 5,628 3,575 7,972 3,898 

FOS 22,057 9,255 23,697 7,293 

GATA1 13,320 7,749 16,964 6,658 

GATA2 37,026 17,886 33,206 10,043 

GTF2B 6,872 4,189 7,739 3,667 

GTF2F1 11,246 7,533 17,100 7,643 

GTF3C2 10,681 8,120 52,264 11,947 

HCFC1 26,207 10,035 21,064 8,356 

HMGN3 19,355 8,680 20,713 8,558 

JUN 32,362 16,935 32,874 11,111 

JUND 62,351 23,234 45,930 12,570 

MAFF 25,106 10,548 29,491 9,976 

MAFK 23,028 10,548 27,600 10,271 

MAX 74,411 25,757 42,156 12,072 

MAZ 33,091 10,848 34,643 11,558 

MXI1 15,994 8,398 16,309 7,788 

MYC 50,678 17,636 31,347 10,404 

NELFE 3,365 2,280 3,503 1,456 

NFE2 8,020 4,306 8,022 3,715 

NFYA 10,888 5,691 9,164 4,918 

NFYB 14,002 4,151 10,421 5,518 

NR2C2 2,338 1,646 5,367 2,287 

NRF1 7,297 3,178 5,150 3,325 

POLR2A 44,845 17,839 34,959 7,652 
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POLR3A 6,236 2,857 4,221 2,014 

POLR3G 5,633 2,203 3,740 926 

RAD21 23,660 7,706 15,224 6151 

RCOR1 35,577 17,440 24,357 9,541 

RFX5 4,994 3,458 7,108 3,802 

SETDB1 22,897 16,025 29,854 8,505 

SIRT6 6,170 4,646 7,381 3,243 

SMARCA4 11,019 8,075 14,928 5,099 

SMARCB1 6,838 6,343 9,309 3,985 

SMC3 32,077 11,038 22,349 9,476 

TAL1 31,127 9,944 23,383 9,361 

TBL1XR1 11,867 7,777 27,856 9,860 

TBP 33,202 12,455 18,873 8,140 

TRIM28 14,716 11,389 19,428 5,860 

UBTF 36,322 15,646 31,212 8,544 

USF2 4,877 2,917 7,256 4,047 

XRCC4 1,349 1,107 1,923 743 

YY1 12,527 6,031 14,346 5,640 

ZC3H11A 5,579 4,197 14,854 7,082 

ZMIZ1 22,175 9,711 27,105 10,307 

ZNF143 37,202 17,941 34,204 11,883 

ZNF263 18,289 11,905 35,552 9,382 

ZNF274 6,425 4,792 20,573 7,110 

ZNF384 44,592 21,689 45,847 12,620 
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A.3 Functional annotation of the considered TFs 

Table A2: For each TF is reported the Gene Family to which it belongs and 

the annotated molecular function, if it is known: Epigenetic function, and/or 

binding specificity (Sequence-Specific TF, TFSS), general function, if it 

exerts a generic action within the transcriptional machinery, as RNA 

polymerase. 

TF Gene Family 
Molecular 

Function 

ARID3A 
AT-rich interaction domain 

containing 

Epigenetic 

funct 

ATF1 
Basic leucine zipper 

proteins 
TFSS 

ATF3 
Basic leucine zipper 

proteins 
TFSS 

BACH1 
Basic leucine zipper 

proteins 
TFSS 

BCLAF1 no_info_gene_family TFSS 

BDP1 
Myb/SANT domain 

containing 
general 

BHLHE40 
Basic helix-loop-helix 

proteins 
TFSS 

BRF1 General transcription factors general 

BRF2 no_info_gene_family general 

CCNT2 Cyclins general 

CEBPB 
Basic leucine zipper 

proteins 

Epigenetic 

funct, TFSS 

CHD2 DNA helicases 
Epigenetic 

funct 

CTCF Zinc fingers C2H2-type 
Epigenetic 

funct, TFSS 

CUX1 
CUT class homeoboxes and 

pseudogenes 
- 

E2F4 E2F transcription factors 
Epigenetic 

funct, TFSS 

E2F6 E2F transcription factors 
Epigenetic 

funct, TFSS 

ELK1 
ETS transcription factor 

family 
TFSS 

EP300 Zinc fingers ZZ-type 
Epigenetic 

funct 

FOS 
Basic leucine zipper 

proteins 
TFSS 

GATA1 
GATA zinc finger domain 

containing 
TFSS 

GATA2 
GATA zinc finger domain 

containing 
TFSS 

GTF2B General transcription factors general 

GTF2F1 General transcription factors general 

GTF3C2 
WD repeat domain 

containing 
general 
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HCFC1 X-linked mental retardation 
Epigenetic 

funct 

HMGN3 
Canonical high mobility 

group 

Epigenetic 

funct 

JUN 
Basic leucine zipper 

proteins 
TFSS 

JUND 
Basic leucine zipper 

proteins 
TFSS 

MAFF 
Basic leucine zipper 

proteins 
TFSS 

MAFK 
Basic leucine zipper 

proteins 
TFSS 

MAX 
Basic helix-loop-helix 

proteins 

Epigenetic 

funct, TFSS 

MAZ Zinc fingers C2H2-type 
Epigenetic 

funct 

MXI1 
Basic helix-loop-helix 

proteins 
TFSS 

MYC 
Basic helix-loop-helix 

proteins 
TFSS 

NELFE 
RNA binding motif 

containing 
general 

NFE2 
Basic leucine zipper 

proteins 
TFSS 

NFYA no_info_gene_family 
Epigenetic 

funct, TFSS 

NFYB no_info_gene_family 
Epigenetic 

funct, TFSS 

NR2C2 Nuclear hormone receptors TFSS 

NRF1 no_info_gene_family TFSS 

POLR2A RNA polymerase subunits general 

POLR3A RNA polymerase subunits general 

POLR3G RNA polymerase subunits general 

RAD21 Cohesin complex - 

RCOR1 
Myb/SANT domain 

containing 

Epigenetic 

funct 

RFX5 Regulatory factor X family TFSS 

SETDB1 Lysine methyltransferases 
Epigenetic 

funct 

SIRT6 Sirtuins 
Epigenetic 

funct 

SMARCA4 no_info_gene_family 
Epigenetic 

funct, TFSS 

SMARCB1 
Protein phosphatase 1 

regulatory subunits 

Epigenetic 

funct 

SMC3 Proteoglycans 
Epigenetic 

funct 

TAL1 
Basic helix-loop-helix 

proteins 
TFSS 

TBL1XR1 
WD repeat domain 

containing 

Epigenetic 

funct, TFSS 

TBP General transcription factors general 

TRIM28 Ring finger proteins 
Epigenetic 

funct 
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UBTF no_info_gene_family general 

USF2 
Basic helix-loop-helix 

proteins 
TFSS 

XRCC4 no_info_gene_family general 

YY1 Zinc fingers C2H2-type 
Epigenetic 

funct, TFSS 

ZC3H11A Zinc fingers CCCH-type TFSS 

ZMIZ1 Zinc fingers MIZ-type TFSS 

ZNF143 Zinc fingers C2H2-type TFSS 

ZNF263 Zinc fingers C2H2-type TFSS 

ZNF274 Zinc fingers C2H2-type TFSS 

ZNF384 Zinc fingers C2H2-type TFSS 

A.4 Reactome Pathways Enrichment for each TF 
perturbation model  

Table A3: For each TF the first ten most significant enriched pathways are 

reported, categorizing the TFs per hierarchical level. The enrichment has 

been performed for the perturbed targets (PTs) extracted applying µpert  range 

±3σ to ±2σ as variability threshold. 

MASTER TFs  

HMGN3  

Metabolism_R-HSA-1430728 9.15E-10 

Cell Cycle_R-HSA-1640170 3.28E-08 

Cell Cycle, Mitotic_R-HSA-69278 3.28E-08 

Immune System_R-HSA-168256 3.54E-06 

Processing of Capped Intron-Containing Pre-mRNA_R-HSA-72203 4.07E-06 

Viral Messenger RNA Synthesis_R-HSA-168325 4.98E-06 

  

JUND  

Metabolism_R-HSA-1430728 1.42E-08 

Cell Cycle, Mitotic_R-HSA-69278 1.28E-06 

Immune System_R-HSA-168256 1.48E-06 

Cell Cycle_R-HSA-1640170 1.59E-06 

Mitotic G2-G2/M phases_R-HSA-453274 4.51E-06 

Metabolism of proteins_R-HSA-392499 4.76E-06 

  

CCNT2  

Cell Cycle_R-HSA-1640170 3.91E-06 

Cell Cycle, Mitotic_R-HSA-69278 1.29E-05 

Immune System_R-HSA-168256 1.29E-05 

Metabolism_R-HSA-1430728 1.29E-05 

Cellular responses to stress_R-HSA-2262752 0.000156 

Viral Messenger RNA Synthesis_R-HSA-168325 0.000198 
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SUMOylation of DNA replication proteins_R-HSA-4615885 0.000335 

  

CEBPB  

Metabolism_R-HSA-1430728 3.03E-11 

Cell Cycle_R-HSA-1640170 0.000173 

Immune System_R-HSA-168256 0.000173 

Metabolism of proteins_R-HSA-392499 0.000229 

DNA Repair_R-HSA-73894 0.000617 

Cell Cycle, Mitotic_R-HSA-69278 1.09E-03 

Signaling by Rho GTPases_R-HSA-194315 1.12E-03 

  

ZNF143  

Cell Cycle_R-HSA-1640170 4.76E-08 

Cell Cycle, Mitotic_R-HSA-69278 4.76E-08 

DNA Replication_R-HSA-69306 7.15E-05 

G2/M Transition_R-HSA-69275 7.28E-05 

Immune System_R-HSA-168256 7.61E-05 

Mitotic G2-G2/M phases_R-HSA-453274 7.61E-05 

Synthesis of DNA_R-HSA-69239 8.58E-05 

  

HCFC1  

Immune System_R-HSA-168256 3.78E-08 

Metabolism_R-HSA-1430728 3.87E-08 

Cell Cycle_R-HSA-1640170 9.11E-07 

Cell Cycle, Mitotic_R-HSA-69278 2.74E-06 

Signaling by NGF_R-HSA-166520 3.16E-06 

Innate Immune System_R-HSA-168249 7.32E-06 

Infectious disease_R-HSA-5663205 1.12E-05 

  

JUN  

Cell Cycle, Mitotic_R-HSA-69278 3.84E-08 

Cell Cycle_R-HSA-1640170 1.70E-07 

Metabolism_R-HSA-1430728 1.70E-07 

Metabolism of proteins_R-HSA-392499 3.07E-07 

Viral Messenger RNA Synthesis_R-HSA-168325 3.09E-06 

Infectious disease_R-HSA-5663205 3.94E-06 

  

BCLAF1  

Metabolism_R-HSA-1430728 5.13E-10 

Cell Cycle_R-HSA-1640170 2.44E-07 

Cell Cycle, Mitotic_R-HSA-69278 6.78E-07 

Metabolism of proteins_R-HSA-392499 3.44E-06 

Immune System_R-HSA-168256 7.80E-06 

Cytokine Signaling in Immune system_R-HSA-1280215 2.10E-05 

Infectious disease_R-HSA-5663205 3.16E-05 
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Cellular responses to stress_R-HSA-2262752 6.71E-05 

  

SETDB1  

Cell Cycle_R-HSA-1640170 5.18E-08 

Metabolism_R-HSA-1430728 1.04E-07 

Cell Cycle, Mitotic_R-HSA-69278 1.12E-07 

SUMOylation of DNA replication proteins_R-HSA-4615885 1.87E-05 

Immune System_R-HSA-168256 1.93E-05 

Viral Messenger RNA Synthesis_R-HSA-168325 3.86E-05 

SUMOylation_R-HSA-2990846 6.89E-05 

SUMO E3 ligases SUMOylate target proteins_R-HSA-3108232 7.22E-05 

  

USF2  

Metabolism_R-HSA-1430728 6.32E-12 

Cell Cycle, Mitotic_R-HSA-69278 7.32E-11 

Cell Cycle_R-HSA-1640170 8.49E-11 

Metabolism of proteins_R-HSA-392499 9.12E-09 

Mitotic G2-G2/M phases_R-HSA-453274 4.00E-06 

M Phase_R-HSA-68886 5.16E-06 

Infectious disease_R-HSA-5663205 5.16E-06 

G2/M Transition_R-HSA-69275 5.16E-06 

  

E2F6  

Cell Cycle_R-HSA-1640170 8.60E-08 

Immune System_R-HSA-168256 8.60E-08 

Metabolism_R-HSA-1430728 1.52E-07 

Cell Cycle, Mitotic_R-HSA-69278 5.06E-07 

Metabolism of proteins_R-HSA-392499 9.71E-06 

Class I MHC mediated antigen processing & presentation_R-HSA-983169 1.15E-05 

  

E2F4  

Cell Cycle_R-HSA-1640170 8.38E-08 

Cell Cycle, Mitotic_R-HSA-69278 6.37E-07 

G2/M Checkpoints_R-HSA-69481 3.47E-06 

Programmed Cell Death_R-HSA-5357801 2.05E-05 

Cell Cycle Checkpoints_R-HSA-69620 2.73E-05 

Metabolism_R-HSA-1430728 2.73E-05 

Apoptosis_R-HSA-109581 2.73E-05 

  

TBL1XR1  

Metabolism_R-HSA-1430728 1.05E-08 

Cytokine Signaling in Immune system_R-HSA-1280215 4.89E-06 

Cell Cycle_R-HSA-1640170 2.22E-05 

Cell Cycle, Mitotic_R-HSA-69278 2.22E-05 

Infectious disease_R-HSA-5663205 4.20E-05 
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Immune System_R-HSA-168256 5.10E-05 

EPHB-mediated forward signaling_R-HSA-3928662 5.10E-05 

  

TBP  

Cell Cycle, Mitotic_R-HSA-69278 3.01E-08 

Metabolism_R-HSA-1430728 6.80E-08 

Cell Cycle_R-HSA-1640170 8.12E-08 

Metabolism of proteins_R-HSA-392499 1.37E-05 

Infectious disease_R-HSA-5663205 8.16E-05 

Mitotic G2-G2/M phases_R-HSA-453274 0.000253 

G2/M Transition_R-HSA-69275 0.000414 

S Phase_R-HSA-69242 0.00046 

  

ZMIZ1  

Cell Cycle, Mitotic_R-HSA-69278 1.13E-09 

Cell Cycle_R-HSA-1640170 1.13E-09 

Mitotic G2-G2/M phases_R-HSA-453274 3.50E-07 

Metabolism_R-HSA-1430728 4.89E-07 

G2/M Transition_R-HSA-69275 4.89E-07 

Immune System_R-HSA-168256 5.90E-06 

MAPK6/MAPK4 signaling_R-HSA-5687128 8.29E-06 

  

MIDDLE MANAGERS TFs  

  

MAZ  

Immune System_R-HSA-168256 2.00E-06 

Cellular responses to stress_R-HSA-2262752 1.64E-05 

Metabolism_R-HSA-1430728 1.64E-05 

Cell Cycle_R-HSA-1640170 7.24E-05 

Cell Cycle, Mitotic_R-HSA-69278 0.000401 

Innate Immune System_R-HSA-168249 0.000401 

  

TAL1  

Cellular responses to stress_R-HSA-2262752 1.12E-03 

G1/S Transition_R-HSA-69206 1.13E-03 

S Phase_R-HSA-69242 1.13E-03 

C-type lectin receptors (CLRs)_R-HSA-5621481 0.00113 

Cell Cycle, Mitotic_R-HSA-69278 0.001776 

Activation of NF-kappaB in B cells_R-HSA-1169091 0.002636 

MAPK6/MAPK4 signaling_R-HSA-5687128 0.002636 

Mitotic G2-G2/M phases_R-HSA-453274 0.002636 

Mitotic G1-G1/S phases_R-HSA-453279 0.002636 

Cyclin E associated events during G1/S transition_R-HSA-69202 2.64E-03 

  

MAFF  
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Metabolism_R-HSA-1430728 3.17E-09 

Cell Cycle, Mitotic_R-HSA-69278 2.28E-07 

Metabolism of proteins_R-HSA-392499 2.28E-07 

Cell Cycle_R-HSA-1640170 4.51E-07 

Viral Messenger RNA Synthesis_R-HSA-168325 3.65E-06 

Infectious disease_R-HSA-5663205 2.89E-05 

SUMOylation of DNA replication proteins_R-HSA-4615885 4.49E-05 

  

ZNF384  

Cellular responses to stress_R-HSA-2262752 2.40E-02 

  

BHLHE40  

Metabolism_R-HSA-1430728 1.22E-07 

Cell Cycle_R-HSA-1640170 9.46E-07 

Cell Cycle, Mitotic_R-HSA-69278 1.85E-06 

Infectious disease_R-HSA-5663205 1.60E-05 

Metabolism of lipids and lipoproteins_R-HSA-556833 5.37E-05 

  

BACH1  

Immune System_R-HSA-168256 7.06E-08 

Cell Cycle, Mitotic_R-HSA-69278 2.94E-07 

Cell Cycle_R-HSA-1640170 2.99E-07 

Metabolism_R-HSA-1430728 2.99E-07 

Processing of Capped Intron-Containing Pre-mRNA_R-HSA-72203 2.44E-06 

Metabolism of proteins_R-HSA-392499 1.20E-05 

  

NFE2  

Metabolism_R-HSA-1430728 3.98E-11 

Cell Cycle_R-HSA-1640170 2.18E-08 

Cell Cycle, Mitotic_R-HSA-69278 2.56E-08 

Cellular responses to stress_R-HSA-2262752 6.55E-06 

Infectious disease_R-HSA-5663205 7.95E-06 

Metabolism of proteins_R-HSA-392499 1.52E-05 

Innate Immune System_R-HSA-168249 1.69E-05 

  

FOS  

Metabolism_R-HSA-1430728 7.87E-08 

Metabolism of proteins_R-HSA-392499 1.21E-06 

Cell Cycle, Mitotic_R-HSA-69278 3.38E-06 

Cell Cycle_R-HSA-1640170 5.78E-06 

Immune System_R-HSA-168256 0.000153 

Asparagine N-linked glycosylation_R-HSA-446203 0.000201 

Transport to the Golgi and subsequent modification_R-HSA-948021 2.67E-04 

Innate Immune System_R-HSA-168249 6.81E-04 

DNA Repair_R-HSA-73894 6.81E-04 



Appendix 

 

 100 

  

ZNF274  

Infectious disease_R-HSA-5663205 2.44E-06 

Metabolism_R-HSA-1430728 7.37E-06 

Disease_R-HSA-1643685 2.44E-05 

Cellular responses to stress_R-HSA-2262752 2.44E-05 

Cell Cycle, Mitotic_R-HSA-69278 8.20E-05 

Cell Cycle_R-HSA-1640170 0.000112 

  

CHD2  

Immune System_R-HSA-168256 5.99E-09 

Cell Cycle_R-HSA-1640170 6.71E-07 

Cell Cycle, Mitotic_R-HSA-69278 8.80E-07 

Cellular responses to stress_R-HSA-2262752 8.80E-07 

Metabolism_R-HSA-1430728 9.43E-07 

Programmed Cell Death_R-HSA-5357801 1.82E-05 

S Phase_R-HSA-69242 2.17E-05 

Apoptosis_R-HSA-109581 2.30E-05 

  

MAX  

Signaling by Robo receptor_R-HSA-376176 3.05E-02 

Beta-catenin independent WNT signaling_R-HSA-3858494 3.05E-02 

TP53 Regulates Transcription of Cell Cycle Genes_R-HSA-6791312 3.05E-02 

Cellular responses to stress_R-HSA-2262752 0.048477 

DNA Replication_R-HSA-69306 0.048477 

S Phase_R-HSA-69242 0.048477 

PCP/CE pathway_R-HSA-4086400 0.048477 

  

GATA2  

Cell Cycle_R-HSA-1640170 4.75E-09 

Metabolism_R-HSA-1430728 3.62E-08 

Cell Cycle, Mitotic_R-HSA-69278 3.72E-08 

Immune System_R-HSA-168256 3.72E-08 

Processing of Capped Intron-Containing Pre-mRNA_R-HSA-72203 4.01E-06 

S Phase_R-HSA-69242 9.84E-06 

  

GATA1  

S Phase_R-HSA-69242 1.49E-05 

Cell Cycle, Mitotic_R-HSA-69278 3.79E-05 

G1/S Transition_R-HSA-69206 3.79E-05 

Cell Cycle_R-HSA-1640170 4.83E-05 

Cellular responses to stress_R-HSA-2262752 5.67E-05 

DNA Repair_R-HSA-73894 5.67E-05 

Synthesis of DNA_R-HSA-69239 5.81E-05 

DNA Replication_R-HSA-69306 5.81E-05 
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Immune System_R-HSA-168256 5.81E-05 

  

ARID3A  

Immune System_R-HSA-168256 3.84E-08 

Class I MHC mediated antigen processing & presentation_R-HSA-983169 4.34E-07 

Cell Cycle_R-HSA-1640170 1.10E-05 

Antigen processing: Ubiquitination & Proteasome degradation_R-HSA-983168 1.84E-05 

Cell Cycle, Mitotic_R-HSA-69278 3.86E-05 

Metabolism_R-HSA-1430728 3.86E-05 

Adaptive Immune System_R-HSA-1280218 8.10E-05 

Programmed Cell Death_R-HSA-5357801 1.02E-04 

  

GTF2F1  

Cellular responses to stress_R-HSA-2262752 0.002259 

Clathrin derived vesicle budding_R-HSA-421837 0.008771 

trans-Golgi Network Vesicle Budding_R-HSA-199992 0.008771 

C-type lectin receptors (CLRs)_R-HSA-5621481 0.021314 

G1/S Transition_R-HSA-69206 0.021314 

MAPK6/MAPK4 signaling_R-HSA-5687128 0.024419 

Class I MHC mediated antigen processing & presentation_R-HSA-983169 0.026602 

Assembly of the pre-replicative complex_R-HSA-68867 2.66E-02 

S Phase_R-HSA-69242 2.66E-02 

  

GTF3C2  

Cellular responses to stress_R-HSA-2262752 0.032419 

Class I MHC mediated antigen processing & presentation_R-HSA-983169 0.032419 

MAPK6/MAPK4 signaling_R-HSA-5687128 0.032825 

G1/S Transition_R-HSA-69206 0.032825 

Clathrin derived vesicle budding_R-HSA-421837 3.28E-02 

trans-Golgi Network Vesicle Budding_R-HSA-199992 3.28E-02 

Assembly of the pre-replicative complex_R-HSA-68867 4.93E-02 

S Phase_R-HSA-69242 4.93E-02 

ER-Phagosome pathway_R-HSA-1236974 4.93E-02 

C-type lectin receptors (CLRs)_R-HSA-5621481 4.93E-02 

  

ELK1  

Cellular responses to stress_R-HSA-2262752 9.17E-06 

Dectin-1 mediated noncanonical NF-kB signaling_R-HSA-5607761 0.012584 

S Phase_R-HSA-69242 0.012584 

Signal Transduction_R-HSA-162582 0.013404 

G1/S Transition_R-HSA-69206 0.013404 

Class I MHC mediated antigen processing & presentation_R-HSA-983169 0.013404 

C-type lectin receptors (CLRs)_R-HSA-5621481 0.013404 

NIK-->noncanonical NF-kB signaling_R-HSA-5676590 0.013404 
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MXI1 

 

Metabolism_R-HSA-1430728 6.00E-11 

Immune System_R-HSA-168256 3.39E-05 

Metabolism of proteins_R-HSA-392499 9.44E-05 

DNA Repair_R-HSA-73894 3.11E-04 

Signaling by Rho GTPases_R-HSA-194315 3.48E-04 

Innate Immune System_R-HSA-168249 4.56E-04 

Transcriptional Regulation by TP53_R-HSA-3700989 9.35E-04 

  

ATF1  

Cell Cycle, Mitotic_R-HSA-69278 1.75E-08 

Cell Cycle_R-HSA-1640170 1.75E-08 

Metabolism_R-HSA-1430728 2.24E-07 

G2/M Transition_R-HSA-69275 8.01E-06 

Mitotic G2-G2/M phases_R-HSA-453274 9.69E-06 

Immune System_R-HSA-168256 5.55E-04 

M Phase_R-HSA-68886 5.71E-04 

Programmed Cell Death_R-HSA-5357801 5.71E-04 

  

SMC3  

Metabolism_R-HSA-1430728 5.04E-08 

Infectious disease_R-HSA-5663205 8.35E-07 

Cell Cycle_R-HSA-1640170 1.35E-06 

Cell Cycle, Mitotic_R-HSA-69278 1.58E-06 

M Phase_R-HSA-68886 3.57E-05 

  

WORKHORSES TFs  

  

RCOR1  

Cellular responses to stress_R-HSA-2262752 2.63E-06 

Chromatin modifying enzymes_R-HSA-3247509 0.000485 

Chromatin organization_R-HSA-4839726 0.000485 

Immune System_R-HSA-168256 0.002509 

Signalling by NGF_R-HSA-166520 0.00275 

NGF signalling via TRKA from the plasma membrane_R-HSA-187037 0.003395 

Innate Immune System_R-HSA-168249 0.009326 

Signaling by SCF-KIT_R-HSA-1433557 0.017065 

Signaling by VEGF_R-HSA-194138 0.017065 

  

MAFK  

Immune System_R-HSA-168256 2.81E-07 

Metabolism_R-HSA-1430728 1.01E-05 

Signaling by VEGF_R-HSA-194138 1.06E-05 

Class I MHC mediated antigen processing & presentation_R-HSA-983169 1.14E-05 
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Infectious disease_R-HSA-5663205 2.61E-05 

MAPK family signaling cascades_R-HSA-5683057 3.03E-05 

Signaling by Insulin receptor_R-HSA-74752 3.03E-05 

  

YY1  

Cellular responses to stress_R-HSA-2262752 0.033672 

Immune System_R-HSA-168256 0.033672 

Clathrin derived vesicle budding_R-HSA-421837 0.033672 

trans-Golgi Network Vesicle Budding_R-HSA-199992 0.033672 

Class I MHC mediated antigen processing & presentation_R-HSA-983169 0.038476 

Synthesis of PIPs at the Golgi membrane_R-HSA-1660514 4.60E-02 

  

SMARCA4  

Cellular responses to stress_R-HSA-2262752 0.004824 

  

XRCC4  

Cell Cycle, Mitotic_R-HSA-69278 3.04E-07 

Cell Cycle_R-HSA-1640170 3.76E-07 

Immune System_R-HSA-168256 2.74E-05 

Viral Messenger RNA Synthesis_R-HSA-168325 2.74E-05 

G2/M Transition_R-HSA-69275 2.74E-05 

Metabolism_R-HSA-1430728 3.00E-05 

Mitotic G2-G2/M phases_R-HSA-453274 3.04E-05 

  

TRIM28  

Cellular responses to stress_R-HSA-2262752 0.021067 

Signaling by Robo receptor_R-HSA-376176 0.021067 

  

NFYB  

Signaling by Wnt_R-HSA-195721 9.53E-05 

Signalling by NGF_R-HSA-166520 1.24E-04 

Cell Cycle_R-HSA-1640170 1.24E-04 

Immune System_R-HSA-168256 0.000124 

Signaling by FGFR_R-HSA-190236 0.000213 

Cell Cycle, Mitotic_R-HSA-69278 0.000221 

Signaling by FGFR2_R-HSA-5654738 0.000229 

C-type lectin receptors (CLRs)_R-HSA-5621481 0.000229 

  

UBTF  

Processing of Capped Intron-Containing Pre-mRNA_R-HSA-72203 2.49E-06 

Tat-mediated HIV elongation arrest and recovery_R-HSA-167243 1.97E-05 

HIV elongation arrest and recovery_R-HSA-167287 1.97E-05 

Elongation arrest and recovery_R-HSA-112387 1.97E-05 

mRNA Splicing - Major Pathway_R-HSA-72163 1.97E-05 

Viral Messenger RNA Synthesis_R-HSA-168325 2.33E-05 
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GTF2B  

Cell Cycle_R-HSA-1640170 1.06E-08 

Cell Cycle, Mitotic_R-HSA-69278 1.06E-08 

Metabolism_R-HSA-1430728 9.67E-06 

G2/M Transition_R-HSA-69275 6.49E-05 

Mitotic G2-G2/M phases_R-HSA-453274 7.83E-05 

M Phase_R-HSA-68886 8.00E-05 

Immune System_R-HSA-168256 2.57E-04 

Regulation of PLK1 Activity at G2/M Transition_R-HSA-2565942 7.77E-04 

  

MYC  

Signalling by NGF_R-HSA-166520 3.40E-08 

Immune System_R-HSA-168256 4.23E-08 

Signaling by VEGF_R-HSA-194138 4.69E-08 

MAPK family signaling cascades_R-HSA-5683057 1.24E-07 

Interleukin-2 signaling_R-HSA-451927 1.54E-07 

Signalling to ERKs_R-HSA-187687 1.54E-07 

Signalling to RAS_R-HSA-167044 1.70E-07 

VEGFA-VEGFR2 Pathway_R-HSA-4420097 2.20E-07 

  

SMARCB1  

Cell Cycle_R-HSA-1640170 1.51E-08 

Cell Cycle, Mitotic_R-HSA-69278 1.51E-08 

Metabolism_R-HSA-1430728 1.51E-08 

Metabolism of proteins_R-HSA-392499 1.59E-05 

Infectious disease_R-HSA-5663205 2.35E-05 

Regulation of PLK1 Activity at G2/M Transition_R-HSA-2565942 3.70E-05 

  

SIRT6  

Cellular responses to stress_R-HSA-2262752 1.58E-06 

Immune System_R-HSA-168256 7.07E-05 

Transcriptional Regulation by TP53_R-HSA-3700989 0.000509 

Innate Immune System_R-HSA-168249 0.004515 

Activation of anterior HOX genes in hindbrain development during early 

embryogenesis_R-HSA-5617472 
4.52E-03 

Activation of HOX genes during differentiation_R-HSA-5619507 4.52E-03 

  

NR2C2  

Metabolism_R-HSA-1430728 4.39E-06 

Immune System_R-HSA-168256 3.22E-05 

Cell Cycle_R-HSA-1640170 7.86E-05 

Cell Cycle, Mitotic_R-HSA-69278 0.000474 

Transcriptional Regulation by TP53_R-HSA-3700989 0.000559 

Innate Immune System_R-HSA-168249 1.39E-03 
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CUX1 
 

Cell Cycle, Mitotic_R-HSA-69278 1.05E-05 

Cell Cycle_R-HSA-1640170 1.05E-05 

Immune System_R-HSA-168256 1.05E-05 

Metabolism_R-HSA-1430728 1.05E-05 

Cellular responses to stress_R-HSA-2262752 6.55E-05 

MAPK6/MAPK4 signaling_R-HSA-5687128 7.43E-05 

Viral Messenger RNA Synthesis_R-HSA-168325 9.54E-05 

DNA Replication_R-HSA-69306 1.30E-04 

Metabolism of polyamines_R-HSA-351202 2.43E-04 

  

RAD21  

Immune System_R-HSA-168256 6.30E-05 

Growth hormone receptor signaling_R-HSA-982772 0.003541 

Innate Immune System_R-HSA-168249 0.01155 

Metabolism of lipids and lipoproteins_R-HSA-556833 1.86E-02 

Metabolism_R-HSA-1430728 1.88E-02 

Cytokine Signaling in Immune system_R-HSA-1280215 2.15E-02 

Adaptive Immune System_R-HSA-1280218 2.15E-02 

CD209 (DC-SIGN) signaling_R-HSA-5621575 2.61E-02 

  

BRF2  

Cell Cycle, Mitotic_R-HSA-69278 4.09E-09 

Cell Cycle_R-HSA-1640170 6.95E-09 

Metabolism_R-HSA-1430728 7.76E-09 

Metabolism of proteins_R-HSA-392499 2.07E-07 

Infectious disease_R-HSA-5663205 7.20E-07 

Viral Messenger RNA Synthesis_R-HSA-168325 7.20E-07 

  

EP300  

Cellular responses to stress_R-HSA-2262752 9.17E-06 

Dectin-1 mediated noncanonical NF-kB signaling_R-HSA-5607761 1.26E-02 

S Phase_R-HSA-69242 0.012584 

Signal Transduction_R-HSA-162582 0.013404 

G1/S Transition_R-HSA-69206 0.013404 

Class I MHC mediated antigen processing & presentation_R-HSA-983169 1.34E-02 

C-type lectin receptors (CLRs)_R-HSA-5621481 1.34E-02 

NIK-->noncanonical NF-kB signaling_R-HSA-5676590 1.34E-02 

  

RFX5  

Cell Cycle_R-HSA-1640170 8.25E-08 

Cell Cycle, Mitotic_R-HSA-69278 8.25E-08 

Metabolism_R-HSA-1430728 1.90E-05 

Immune System_R-HSA-168256 7.44E-05 

G2/M Transition_R-HSA-69275 0.00015 
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Mitotic G2-G2/M phases_R-HSA-453274 1.80E-04 

M Phase_R-HSA-68886 1.07E-03 

  

NFYA  

Metabolism_R-HSA-1430728 1.37E-06 

Cell Cycle, Mitotic_R-HSA-69278 1.03E-05 

DNA Replication_R-HSA-69306 1.75E-05 

G1/S Transition_R-HSA-69206 1.75E-05 

S Phase_R-HSA-69242 3.43E-05 

Cyclin A:Cdk2-associated events at S phase entry_R-HSA-69656 3.43E-05 

  

ATF3  

Cell Cycle_R-HSA-1640170 1.06E-08 

Cell Cycle, Mitotic_R-HSA-69278 1.53E-08 

Metabolism_R-HSA-1430728 1.53E-08 

Processing of Capped Intron-Containing Pre-mRNA_R-HSA-72203 8.82E-07 

Metabolism of proteins_R-HSA-392499 1.73E-06 

mRNA Splicing - Major Pathway_R-HSA-72163 1.05E-05 

Viral Messenger RNA Synthesis_R-HSA-168325 1.09E-05 

  

BRF1  

Metabolism_R-HSA-1430728 4.88E-10 

Cell Cycle, Mitotic_R-HSA-69278 2.45E-09 

Cell Cycle_R-HSA-1640170 2.45E-09 

Infectious disease_R-HSA-5663205 2.31E-06 

Viral Messenger RNA Synthesis_R-HSA-168325 2.31E-06 

Processing of Capped Intron-Containing Pre-mRNA_R-HSA-72203 4.77E-06 

Metabolism of proteins_R-HSA-392499 4.92E-06 

  

CTCF  

Metabolism_R-HSA-1430728 5.18E-06 

Immune System_R-HSA-168256 1.00E-05 

Cellular responses to stress_R-HSA-2262752 3.21E-05 

Signalling by NGF_R-HSA-166520 0.000614 

Metabolism of lipids and lipoproteins_R-HSA-556833 0.000614 

Membrane Trafficking_R-HSA-199991 0.000959 

NCAM signaling for neurite out-growth_R-HSA-375165 9.79E-04 

Innate Immune System_R-HSA-168249 9.79E-04 

  

NRF1  

Cellular responses to stress_R-HSA-2262752 9.53E-05 

Immune System_R-HSA-168256 1.85E-04 

Transcriptional Regulation by TP53_R-HSA-3700989 0.000221 

Cell Cycle_R-HSA-1640170 0.001495 

HDR through Homologous Recombination (HR) or Single Strand Annealing 

(SSA)_R-HSA-5693567 
0.001495 
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Generic Transcription Pathway_R-HSA-212436 0.001624 

Innate Immune System_R-HSA-168249 0.002729 

Homology Directed Repair_R-HSA-5693538 0.002729 
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