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C A N C E R

Hematopoietic stem cell transplantation in its 60s:  
A platform for cellular therapies
Christian Chabannon,1* Jurgen Kuball,2 Attilio Bondanza,3 Francesco Dazzi,4 Paolo Pedrazzoli,5 
Antoine Toubert,6 Annalisa Ruggeri,7,8 Katharina Fleischhauer,9 Chiara Bonini10*

Over the last 60 years, more than a million patients received hematopoietic cell transplantation. Having incorpo-
rated multiple changes in clinical practices, it remains a complex procedure facing a dual challenge: cure of the 
underlying disease and prevention of relapse while controlling potentially severe complications. Improved un-
derstanding of underlying biological processes resulted in the design of innovative therapies engineered from 
defined cell populations and testing of these therapies as addition or substitution at virtually every step of the 
procedure. This review provides an overview of these developments, many of them now applied outside the his-
torical field of hematopoietic cell transplantation.

INTRODUCTION
Over the last decade, biotechnological and scientific breakthroughs 
have revolutionized the field of cellular therapies and their applica-
tions in various medical disciplines, including immunotherapy of can-
cers. A pillar for these developments comes from the experience and 
understanding gained from clinical application of hematopoietic stem 
cell transplantation (HSCT) over more than half a century. Modern 
cellular therapies not only owe part of their development to HSCT but 
also hold great promise for improving its applicability, safety, and effi-
cacy and can even substitute for it, as well as find new applications 
outside of their original field.

HSCT AS A MODEL FOR REGENERATIVE MEDICINE
HSCT was initially developed with the aim of rescuing bone marrow 
(BM) failure after accidental high-dose radiation. It was the first re-
generative approach to enter clinical practice (1) and had a profound 
impact in the medical community (2). The regenerative power of HSCT 
relies on the ability of HSCs to self-renew and differentiate into pro-
genitors and mature cell types and thus to replenish the damaged 
hematopoietic tissue after a preparative conditioning regimen (high-
dose cytotoxic agents or large-field irradiation used to control the 
underlying malignant disease). The source of HSCs can be either au-
tologous or allogeneic; in the latter (allo-HSCT), this results in the 
establishment of hematopoietic host-donor chimerism. Reports pub-
lished by continental registries such as European Society for Blood 

and Marrow Transplantation (EBMT) (3) demonstrate ongoing ac-
tivities at hundreds of centers worldwide, accounting for thousands 
of transplants, which makes HSCT the only example of a cell trans-
plant procedure used on a large scale. However, although the concept 
of HSCT is more than 60 years old, major inequalities persist in the 
access to these therapies: Most of the reported activity takes place in 
North America, Europe, East Asia, and, more recently, Middle East 
and South America; in other parts of the world where low- to middle-
income countries are represented in higher proportions and where 
many candidate patients live, access to HSCT remains limited be-
cause of financial constraints (4). Furthermore, serial surveys demon-
strate persistent unequal access to autologous and allogeneic HSCT 
across European countries, in relation to gross national products and 
heterogeneous organizations for health care delivery (3).

Self-tolerance facilitates the engraftment of autologous HSCs, 
thereby largely eliminating clinical risks associated with prolonged 
immunodeficiency, rejection, and graft-versus-host disease (GVHD) 
associated with allo-HSCT. In case of malignancy, cancer cells resid-
ing in the patient’s BM or peripheral blood (PB) can contaminate 
autologous HSC harvests; our inability to efficiently trace the fate of 
infused cells in vivo makes it difficult to fully understand the contri-
bution of infused contaminating tumor cells to relapses (5). Exten-
sive purification of harvested stem cells did not substantially modify 
relapse rates or survival so far, suggesting that residual host-resident 
malignant cells remain the major source of relapse (6); this view might 
be revisited in the future when deeper molecular responses could be 
induced by induction or salvage treatments or when more efficient 
purging techniques enter the market.

Control of residual malignant cells through recognition of non-
self targets by donor immune cells is a major advantage of allogeneic 
HSCT, which is associated with lower relapse rates but higher toxic-
ity than autologous HSCT. Moreover, allogeneic but not autologous 
HSCT can mediate a form of regenerative medicine required for 
some inherited or acquired disorders affecting the hematopoietic 
tissue at large, which can be cured by replacing the recipient’s dys-
functional BM with a fully functional donor-derived hematopoietic 
system. Since the first reports on the feasibility and early demon-
strations of clinical utility of allogeneic HSCT, the procedure has been 
greatly refined (7); different stem cell sources [BM, PB cells mobilized 
from donors, and cord blood (CB) units] can now be used. Related 
and unrelated donors can be solicited. Adding nonmyeloablative or 
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reduced-intensity conditioning regimens to originally designed mye-
loablative conditioning regimens provides an opportunity to offer allo-
HSCT not only to children or young and fit adults but also to older 
and frailer patients. The introduction of megadoses of CD34+ cells (8) 
and, more recently, modified immunosuppressive regimens, in partic-
ular the use of posttransplant cyclophosphamide, has allowed a breach 
of major clinical importance in the dogma that allogeneic HSCT is 
feasible only when donor and recipients are fully matched for human 
leukocyte antigen (HLA) genes and antigens (“HLA identity”) (9). 
Our ability to collect cells from haploidentical donors now allows 
identification of one or more potential donor for virtually all recipi-
ents. The clinical experience and in-depth knowledge of HSCT accu-
mulated over the years provide a platform to develop more complex 
engineering procedures with the aim to genetically correct and per-
manently cure congenital and acquired disorders (Fig. 1).

CELLULAR GENE THERAPIES COMPLEMENTING DEFICIENT 
HEMATOPOIETIC FUNCTIONS
To avoid the substantial toxicities associated with allo-HSCT, elegant 
alternatives were developed for situations where restoring deficient 
hematopoietic functions is the primary goal. For some monogenic 
diseases, being able to express a normal copy of the gene in HSCs 

offers an opportunity for long-term clinical improvement and possi-
bly permanent cure because the pool of genetically modified autolo-
gous HSCs will self-renew and eventually differentiate into mature 
cells expressing sufficient amounts of the protein to produce the de-
sired phenotype. In the early 1990s, gene therapy was pioneered with 
genetically engineered T lymphocytes and HSCs as a treatment for 
inherited adenosine deaminase severe combined immunodeficiencies 
(ADA-SCIDs) (10, 11). Further efforts resulted in successful clinical 
applications for other lethal or life-threatening immunodeficiencies 
(12–14) and congenital disorders, including metabolic neurodegen-
erative diseases (15, 16) and hemoglobinopathies (Fig. 2A) (17–19).

Increased safety of newer vectors for gene transfer (20) has facil-
itated clinical translation of gene therapy approaches. Although viral 
vectors are currently used in about 65% of gene therapy clinical trials 
(21), less expensive nonviral gene transfer vectors are also undergo-
ing clinical evaluation (22, 23). Finally, the recent development of 
gene editing technologies, which allow gene disruption and more pre-
cise gene correction, is likely to further speed up the applicability of 
gene therapy. In 2016, more than 20 years after the first clinical ap-
plication, the first HSC-based gene therapy product has received mar-
keting authorization from the European Medicines Agency (EMA), 
thus representing a major milestone and prototype for a new class of 
cell therapy drugs (table S1).

HSCT: a platform for cellular therapies

HSCT: immunotherapeutic aim

GVLNK, NKT, 
T cell infusion Infusion of MSCs

CAR/TCR
 gene

therapy

Suicide
 gene

therapy

Infusion of
allo-depleted

T cells

Infusion of
antigen-speci�c

T cells

GVI GVHD or
rejection

HSCT: regenerative aim

HSCT for solid tumors
and

autoimmune diseases

(Non-hematopoietic)
Stem cell

transplantation

Hematopoietic stem cell-
based gene therapy for

congenital disorders

-

Fig. 1. HSCT: A platform for cellular therapies. The major biological determinants of clinical outcome after HSCT are the ability of HSCs to regenerate the host hemato-
poietic system and the immunological events associated with the procedure in the case of allogeneic donors: the beneficial effects of graft-versus-leukemia (GVL) and 
graft-versus-infection (GVI) and the detrimental effects of GVHD and rejection. Cellular therapy approaches relying on the regenerative capacity of stem cells have also 
stemmed from HSCT in recent years and have been tested in clinical trials to treat congenital and acquired diseases. In addition, specific cell-based immunotherapy ap-
proaches have been designed to boost graft-versus-tumor (GVT) and GVI and to promote immunological tolerance, thus controlling both GVHD and graft rejection. NK, 
natural killer cells; NKT, natural killer T cells.C
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INDUCTION OF IMMUNOLOGICAL TOLERANCE 
AND IMMUNE MODULATION
Understanding of biological mechanisms underlying 
the clinical efficacy of autologous and allogeneic HSCT 
inspired other applications for these medical procedures 
beyond oncology and inherited disorders. One example 
is induction of tolerance to solid organ transplanta-
tion by concomitant HSCT (24). Early studies in liver 
transplantation suggested that the presence of hemato-
poietic microchimerism was associated with immuno-
logical tolerance to the graft, supporting the hypothesis 
that HSCT from the same donor could promote donor- 
specific tolerance. This approach was successfully tested 
in the context of kidney transplant from living donors 
(25). Several recent international multicenter studies 
demonstrated the ability of a high-dose cytotoxic reg-
imen associated with autologous HSCT to modulate the 
reactivity of immune cells against autologous tissues and 
to improve the clinical condition of subsets of patients 
affected by severe multiple sclerosis (26, 27) and, possibly, 
other autoimmune or chronic inflammatory disorders 
[reviewed in (28)].

ALLOGENEIC HSCT AS A MODEL OF  
ANTITUMOR IMMUNOTHERAPY
The mechanisms by which allo-HSCT contributes to 
the control of malignant diseases—the vast majority of 
indications—were progressively unraveled by the man
agement and understanding of the many immune com
plications that specifically occur after infusion of donor 
cells. Allo-HSCT is associated with delayed immune 
recovery—explaining why recipients are prone to in-
fections (Fig. 2B)—and GVHD, whereby donor-derived 
immune cells attack recipient tissues and organs (29). 
Moderate GVHD is associated with improved disease 
control (30). Infusion of the same donor blood mono-
nuclear cells mediating GVHD—the so-called donor-
lymphocyte infusions (DLIs)—can control relapse in 
recipients of allogeneic HSCT (31).

Although introduction of tyrosine kinase inhibitors 
(TKIs) has largely suppressed the need for allogeneic 
HSCT in chronic myeloid leukemia (CML), the DLI 
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Fig. 2. From HSCT to cellular therapy. Timelines summarizing 
the milestones in the history of HSCT that led to the development 
of cellular therapy and in particular to HSC gene therapy (A), to 
cellular therapy approaches able to promote IR after HSCT (B), and 
to cancer immunotherapy (C). Clinical HSCT milestones have a gray 
background if they are related to the donor source, and a white 
background and an oval shape if they are related to conditioning 
regimens. Milestones relating to advances in biotechnology and 
cellular therapy are highlighted with a black border, whereas mile-
stones in gene therapy are highlighted with a gray border. RV, 
retroviral vectors; LV, lentiviral vectors; SCID-Xl, X-linked severe com-
bined immune deficiency; CGD, chronic granulomatous disease; 
WAS, Wiskott-Aldrich syndrome; -thal, -thalassemia; MLD, meta-
chromatic leukodystrophy; x-ALD, x-linked adrenoleukodystrophy; 
G-CSF, granulocyte colony-stimulating factor; UCBT, umbilical cord 
blood transplantation; MUD, matched unrelated donor.
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experience gained in this indication provided important information 
on efficacy and toxicity. DLIs induce durable remissions that are even 
longer than those achieved after the primary transplant procedure 
(32). The effective cell dose depends on disease stage and the type of 
stem cell donor used (33). Serial infusions of escalating cell doses max-
imize DLI efficacy and decrease the risk of GVHD (34). DLI is less 
practicable in other hematological or nonhematological malignancies 
that are less sensitive and where the pace and the bulk of neoplastic 
growth require high CD3+ cell doses that, given early after the trans-
plant, frequently produce severe GVHD. These hurdles have been con-
firmed in acute myeloid leukemia (AML) (20% responses) (35) and 
myelodysplastic syndromes (30 to 40% responses) (36), whereas DLIs 
appear more effective in chronic lymphoid malignancies (up to 80%) (37).

These observations demonstrate that antitumor efficacy of allo-
HSCT—the so-called GVL effect—is mostly mediated by donor-
derived immune effectors, thus qualifying allogeneic HSCT as a form 
of immunotherapy. DLI also paved the way for modern develop-
ments in allo-HSCT, no longer seen as a “one-shot body part replace-
ment,” but rather as a complex procedure. To maintain and enhance 
the immunotherapeutic effects of allo-HSCT for malignant disorders, 
maintenance therapies are required. These can include the sequential 
administration of cell-based therapeutics including but not limited to 
DLI (Fig. 2C) (38) or additional application of defined drugs (39). 
Except for the already mentioned introduction of TKI for CML, none 
of the new drugs that entered the market in the past two decades have 
eliminated the need for HSCT and its immunotherapeutic effects (40). 
In contrast, some of the recently developed cellular therapies such as 
chimeric antigen receptor (CAR) T cells can not only complement tra-
ditional HSCT but also be administered on their own in transplant-
ineligible patients.

CELLULAR THERAPY TO IMPROVE IMMUNE RECONSTITUTION 
AND PREVENT GVHD AFTER ALLO-HSCT
Delayed immune reconstitution (IR) is a major concern after allo-
geneic HSCT (41), especially in recipients of CB, haploidentical HSCT, 
and T cell–depleted transplants. In addition to the graft source and 
conditioning regimen, many recipient parameters are associated with 
a delayed IR, including advanced age, the nature of the underlying dis-
ease and the types of previous treatment, and cytomegalovirus (CMV) 
status of the donor and recipient. GVHD has a major detrimental and 
long-lasting effect on IR. The need to boost IR while limiting the risk 
of GVHD has produced a variety of cellular therapy approaches cur-
rently under clinical testing.

TITRATING AND SECURING DONOR IMMUNE CELLS INFUSED 
INTO RECIPIENTS
The number of infused donor immune cells, especially T cells, can 
heavily affect clinical outcome in the recipient, in part through trigger-
ing of GVHD (42). In clinical practice, allogeneic grafts are nevertheless 
minimally engineered and mostly T cell–repleted products. Stringent 
T cell depletion results in the near abrogation of GVHD, albeit at the 
cost of increased relapse rates and delayed immune recovery, culminat-
ing in increased non-engraftment or rejection episodes (43, 44). Al-
though these drawbacks initially had offsetting effects on survival 
(43, 44), more recent data demonstrate an overall survival benefit of 
in vitro T cell depletion, with fewer chronic complications such as 
GVHD (45).

Many attempts have been made to further improve donor graft 
engineering by selective depletion of defined T cell subsets and by 
engineering DLI to further control their activity in vivo after infu-
sion into the patient. Most of these approaches are based on the ex-
perimental demonstration that alloreactivity preferentially clusters 
in specific T cell subsets, such as naïve T cells (46). The explanation 
is that alloreactivity to minor histocompatibility antigens (mHAgs) 
follows the classical rules of self-HLA–restricted peptide presentation, 
and the mHAg peptides have generally never been encountered by the 
patient (46). On the other hand, the mode of recognition in alloreac-
tivity to major HLA mismatches is cross-reactivity (47) mediated by 
both naïve and memory T cells (48). Therefore, depending on the na-
ture of the alloantigen, alloreactivity can be found only in the naïve or 
also in the memory compartment. On the basis of these consider-
ations, the possibilities of negatively and/or positively selecting spe-
cific T cell subsets, such as naïve versus memory T cells, or sorting 
and infusing unconventional lymphocytes, such as T cells or CD1-
restricted T cells, represent innovative cellular therapy approaches 
(49–51). These approaches are currently reaching clinical practice due 
to major improvements in in vitro selection procedures.

Additional opportunities to promote beneficial GVL while taming 
detrimental GVHD are offered by gene transfer technologies. The in-
fusion of donor T cells expressing a suicide gene [thymidine kinase 
(TK) or icaspase 9 (iCas9)] to patients undergoing HSCT has been 
tested in several clinical trials. The activation of the suicide machin-
ery is highly effective in abrogating acute GVHD in all reported tri-
als (52–54), resulting in conditional approval by the EMA of a gene 
therapy medicinal product consisting of TK-engineered allogeneic 
T lymphocytes (table S1). Further attempts to engineer human T cell 
progenitors in feeder-free culture conditions, taking advantage of 
Notch signal activation (55), or in thymic-like niches (56) were re-
cently reported.

Once clinically apparent, GVHD is largely refractory to conven-
tional treatment and is therefore an ideal target to test new cellular 
therapies. Two approaches produced encouraging results.

A preclinical study (57) of regulatory T (Treg) cells that are potent 
mediators of immunological tolerance in the periphery (58) prompted 
a clinical trial where 23 patients received Tregs as prophylaxis for GVHD 
after CB transplantation (59). Compared with identically treated 108 
historical controls, there was a reduced incidence of acute GVHD with-
out unwanted effects. The results were largely confirmed in the hap-
loidentical setting (60).

An alternative strategy involves harnessing the equally potent im-
munosuppressive activity of mesenchymal stromal cells (MSCs) (61). 
Usually obtained from the BM, these cells exhibit phenotypic and 
functional features of tissue fibroblasts (62). In contrast to Tregs, which 
may prevent GVHD, MSCs have only been shown to be efficacious 
when administered at the time of GVHD (63), rather than prophy-
lactically (64). Several subsequent studies confirmed MSCs’ efficacy 
in GVHD, with about 40 to 50% of the patients responding and achiev-
ing long-term survival (65). A convincing mechanism was recently 
proposed, whereby MSC-mediated immunosuppression results from 
the induction of MSC apoptosis by patients’ cytotoxic cells, the presence 
of which can be used as a biomarker to predict clinical responses (66).

ANTIVIRAL T CELL ADOPTIVE THERAPIES
A defective T cell recovery, worsened by reduced thymic function in 
adults and by GVHD, is associated not only with impaired responses 
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to reactivation of herpes viruses such as CMV and Epstein-Barr virus 
(EBV) but also with opportunistic infections by adenoviruses (AdVs) 
and fungal pathogens (Candida and Aspergillus). These complications 
led to develop donor-derived antiviral cellular therapies (Fig. 2B). 
The first demonstration was offered in 1992 (67) with the successful 
transfer of CMV-specific T cell clones, soon followed by the transfer 
of EBV-specific T cells (68). Thereafter, in vitro generation of virus-
specific T cells was achieved using HLA class I/peptide multimer cell 
sorting (69) or interferon- (IFN-) secretion capture assays (70). The 
advantage of this last option is the enrichment of CD4+ and CD8+ 
T cells, both required for long-lasting immunity, without the need for 
HLA restriction. It may also be applied to multipathogen-derived anti
genic viral peptides. Good manufacturing practice (GMP)–compliant 
procedures are available for CMV-, EBV-, and AdV-specific T cells, 
but manufacturing conditions remain a limitation for many centers. 
A major hurdle for this approach is raised by pathogen-naïve do-
nors, as exemplified by CB HSCT, for which the in vitro isolation of 
pathogen-specific T cells is a daunting task. This resulted in the usage 
of partially matched, third party–derived, virus-specific T cells, the first 
“off-the-shelf” immunotherapy products used in clinical trials (71, 72). 
Being obtained from healthy subjects other than the transplant donors, 
these T cell products have the advantage of being immediately avail-
able. The products are well characterized and can be selected on the 
basis of the viral epitope specificity and on the 
HLA restriction element. Being only partially 
matched with the recipient, third party, viral-
specific T cells usually do not persist long term 
but often long enough to bridge to IR.

HARNESSING THE ANTITUMOR ACTIVITY 
OF ALLO-HSCT
Elimination of residual tumor cells relies on 
the recognition of TSAs, mHAg, and/or mis-
matched HLA molecules by immune effectors 
(Fig. 3). Immunological differences between 
donor and host offer an opportunity to elicit 
alloreactive donor T cell responses against poly-
morphic non–self-antigens expressed by pa-
tient cells. When the donor is an HLA-identical 
sibling, these antigens are exclusively mHAg, 
peptides derived from polymorphic intracel-
lular proteins processed and presented in the 
context of self-HLA restriction elements (73). 
The first mHAgs to be identified were HA-1 
and HA-2, which are specifically expressed on 
hematopoietic tissues and thus represent rel-
evant targets for a specific graft-versus-tumor 
(GVT) effect [reviewed in (74)]. This is con-
firmed by leukemia clearance after HLA-matched, 
but mHag-mismatched, allo-HSCT, concomi
tant with in vivo expansion of high-avidity cy-
totoxic T lymphocytes specific for HA-1 and 
HA-2 (75). mHags elicit high-avidity T cell re-
sponses. Depending on their narrow or broad 
tissue expression profile, targeting mHags might 
limit the risk of GVHD (76). Technological ad-
vances in big data genomics and proteomics have 
enabled the development of high-throughput 

technologies for mHAg screening: More than 50 mHAgs are identi-
fied to date [reviewed in (77)]. Of these, at least 13 are hematopoietic-
specific and thus represent promising new targets for cellular therapy.

In the case of HSCT from unrelated donors, in addition to mHAgs, 
mismatched HLA molecules can also serve as polymorphic targets 
for alloreactive T cells (Fig. 3). In general, unrelated donors are select-
ed to be matched for 9 to 10 of 10 HLA-A, HLA-B, HLA-C, DRB1, and 
DQB1 alleles; however, HLA-DPB1 is mismatched in more than 85% 
of the cases (78). In contrast to mHAgs, which are recognized by self-
HLA–restricted alloreactive T cells mainly from the naïve pool with a 
generally low precursor frequency, HLA-DPB1 mismatches elicit di-
rect T cell alloreactivity or cross-recognition by T cells that can reside 
in both the naïve and memory pools and generally have an at least 
1-log higher precursor frequency compared with T cells reactive to mHAg. 
Alloreactive T cells specific for mismatched HLA-DPB1 can elicit both 
GVT and GVHD, resulting in no overall survival benefit for HLA-
DPB1–mismatched compared with HLA-DPB1 allele–matched HSCT 
(78). However, increasing evidence suggests the existence of certain 
mismatch combinations that elicit limited T cell alloreactivity, thereby 
maintaining GVT without increasing GVHD. These so-called permis-
sive mismatches can be identified on the basis of polymorphisms reg-
ulating HLA-DP peptide binding (79), surface expression (80), or both 
and have entered current recommendations for unrelated donor 

Targets of T cells mediating GVT in cellular therapy
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Fig. 3. Targets of T cells mediating GVT in cellular therapy. Control of malignant disease by self-HLA–
restricted T cells can be targeted to tumor-specific antigens (TSAs; red), mHAgs (blue), or mismatched HLA 
molecules (pink). TSA-specific T cells are the only ones that are potentially present not only in the allogeneic 
but also in the autologous context. mHAgs are the only alloantigens in related sibling donors, whereas both 
mHAgs and mismatched HLA (mainly HLA-DP) can be recognized by unrelated or mismatched related donor 
T cells. TSA- and mHAg-specific T cells are found mainly in the naïve compartment and have a low precursor 
frequency, whereas alloreactive T cells against mismatched HLA occur both in the naïve and in the memory 
compartment and have a higher precursor frequency. APC, antigen-presenting cell. Autologous patient cells 
are depicted in gray, and donor T cells are depicted in blue.C
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selection [reviewed in (78)]. They also represent potentially promising 
targets for cellular therapy approaches (81).

Tumors with pronounced genomic instability, such as AML, can 
evade alloreactive immunological pressure. Relapse remains the leading 
cause of death after allo-HSCT. In a large proportion of patients re-
lapsing after a mismatched HSCT, mechanisms for tumor escape 
such as de novo genomic mutations have been identified, resulting in 
the permanent loss of only those HLA molecules targeted by alloreac-
tive donor T cells (82).

The possibility of isolating and expanding antigen-specific T cells 
has also resulted in the production of leukemia-specific cellular prod
ucts (Fig. 2C) that might overcome some of the limitations associated 
with alloreactive cells. Infusion of leukemia-specific T cells from an 
HLA-identical related donor induced remission in a patient with CML 
in accelerated phase (83). Prophylactic infusions of CD8+ T cells re-
active against PR1, WT1, and BCR-ABL peptides, isolated from re-
lated and unrelated HSCT donors and expanded in vitro, induced 
persistent remissions in 13 of 14 patients with CML (84). Infusion of 
WT1-reactive CD8+ T cells showed antileukemic activity in patients 
affected by relapse or high-risk AML (85). Finally, p190 BCR-ABL–
directed T cells induced leukemia control in patients with Philadelphia-
positive acute lymphoblastic leukemia (86). CD4+ donor T cells adoptively 
transferred after HLA-DPB1–mismatched unrelated donor HSCT in-
duced long-lasting remission of B cell leukemia and other hematologic 
malignancies (87). Clinical responses observed in these studies appeared 
tightly associated with in vivo persistence of transferred cells. Mod-
ulation of alloreactivity by means other than cell-based therapeutics 
was recently reported: Administration of immune checkpoint inhibitors 
to treat relapses appears feasible, although at the expense of GVHD and 
immune-mediated side effects in a large proportion of recipients (88).

BEYOND ALLOREACTIVITY: CELLULAR 
THERAPIES WITH ANTITUMOR ACTIVITY
Progress in fundamental immunology has re-
sulted in the development of immune cell ther-
apies outside of the allogeneic HSCT context, 
with possible applications for diseases that are 
not susceptible to alloreactivity. Adoptive T cell 
therapy using ex vivo expanded or engineered 
autologous patient T cells has emerged as an 
active field of investigation (89). However, the 
relatively low frequency of immune cells with 
antitumor activity in cancer patients, such as 
tumor-infiltrating lymphocytes, has limited the 
clinical success of these endeavors (89).

One of the most attractive opportunities 
offered by modern gene transfer technologies 
is the possibility to genetically and permanently 
redirect high numbers of T cells against tumor 
antigens by expressing either tumor-specific  
T cell receptors (TCRs) or CARs in autologous 
or allogeneic T cells. In addition, a new set of 
tumor antigens was recently explored by in-
depth analyses of alternative receptors like  
TCR (90). In recent years, impressive clinical 
successes were reported with CAR T cells tar-
geting CD19 in children and adults affected by 
a variety of B cell malignancies [for a review, 

see (91)]. This prompted pharmaceutical and biotech companies to 
race to obtain marketing authorizations for this category of medici-
nal products, the first two of which were recently granted (table S1). 
Current CAR T cells are generated in an autologous setting. Using 
an allogeneic source of T cells could allow for immediate availability 
(off-the-shelf product) but raises safety issues in terms of GVHD and 
efficacy, depending on their in vivo persistence.

Genome editing tools offer additional opportunities for cellular 
therapy. These are artificial “genetic scissors,” able to bind preselected 
genomic regions and induce a DNA double-strand break [reviewed in 
(92)]. Depending on the additional genetic tools that are combined 
with these scissors, the DNA break will result in gene disruption or in 
gene correction (92), beyond single gene addition permitted by viral vec-
tors. Genome editing of HSCs (93) and T cells produced convincing pre-
clinical results (94, 95) and has been successfully tested in patients (96, 97).

TRANSITIONING FROM CELL TRANSPLANTATION TO 
ADMINISTRATION OF SOMATIC CELLULAR THERAPY AND GENE 
THERAPY MEDICINAL PRODUCTS
Cell transplantation was historically developed as a service provided 
to patients by hospitals and blood centers, with an organization that 
shares many aspects with organ and tissue transplantation. In par-
ticular, the association of clinical, collection, and processing facilities 
usually serves one or a few transplant programs that are geographi-
cally contiguous. Although notable harmonization has resulted from 
initiatives such as accreditation using the Foundation for the Accredi-
tation of Cellular Therapy (FACT)–Joint Accreditation Committee 
ISCT-EBMT (JACIE) international standards for hematopoietic cel-
lular therapies (98), this type of organization leaves room for proce-
dural and organizational variation between programs. The regulatory 

T cell therapy in the era of precision medicine

Pr
ec

is
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n

Manufacturing/regulatory complexity

Minimally manipulated
products

DLI

Advanced therapy medicinal product

Graft or DLI engineering:
–Depletion of alloreactive T cells
–Sorted antigen-speci�c T cells
–Sorted T cell subsets

–Patient-speci�c
synthetic T cells

–TCR gene editing
–CAR gene editing

–Suicide gene therapy
–CAR T cells
–TCR gene transfer

–In vitro expanded T cells
speci�c for viral, minor
tumor antigens

–Multifunctional T cells

Fig. 4. T cell therapy in the era of precision medicine. Increased complexity in manufacturing costs and 
regulatory issues arise together with improved potency, specificity, and safety of cellular therapy products in 
the era of personalized precision medicine. The figure indicates the degree of precision (y axis) versus com-
plexity (x axis) for different cellular therapy approaches.C
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framework developed in the United States and in Europe postulates 
that human cells subjected to substantial engineering are medicinal 
products; these are intended to be placed on the market and must be 
manufactured in aseptic conditions as described in GMPs commonly 
used by the pharmaceutical industry. Adaptation of this organization 
to the production of such personalized medicines as CAR T cells 
from starting material procured by blood banks or hospitals (99) con-
tributes to but does not fully explain high price tags (up to US$475,000 
for tisagenlecleucel and US$377,000 for axicabtagene ciloleucel, not 
to mention the cost of inpatient administration and supportive care). 
The commercialization of these innovative therapeutics will raise un-
precedented medical, ethical, financial, and liability issues to be settled 
between all stakeholders. Because medicinal products made from 
human living cells or tissues are likely to not only exert positive ef-
fects but also trigger side effects over prolonged periods of time, if not 
for the entire remaining life span of treated individuals, long-term 
follow-up (up to 15 years) will be mandatory. Regulatory authorities 
such as the EMA and the U.S. Food and Drug Administration (FDA) 
are simultaneously pushing for rapid access to promising approaches 
and requesting accurate monitoring of their safety and efficacy in 
“real-life” conditions (100). This is where registries established by 
professional associations such as the EBMT or the Center for Inter-
national Blood and Marrow Transplant Research (CIBMTR) will po-
tentially prove of crucial importance. However, this will depend on their 
ability to capture sufficient details on the nature of cellular therapies 
in a timely fashion, in addition to the clinical data that they collect, 
which have already allowed successful postmarketing evaluation 
surveys of chemical drugs in the past.

CONCLUSIONS
Cellular therapies are among the most exciting innovations in med-
icine over the last decade and have the potential to offer curative solu-
tions to a number of dismal diseases that affect patients of all ages and 
thus represent a major social and economical burden. The rapid de-
velopments in this field have been made possible by combining ad-
vancements in biotechnology and improved knowledge of biological 
mechanisms underlying the efficacy and safety of cellular therapies. 
The latter has been fostered by the six decades of experience in HSCT, 
which has been the platform, the hub, and, in some cases, the spring-
board for the first cellular therapy protocols (Fig. 4). Our ability to 
not only continue striving for further improvement in the under-
standing and feasibility of these approaches but also overcome the 
logistic, economic, and regulatory challenges of harmonization and 
recognition by the relevant authorities will determine whether cellular 
therapies will fulfill their promise as a true breakthrough in modern 
medicine in years to come. Full cooperation from all stakeholders—
pharma industry, scientists, health care providers, health care payers, 
regulators, and, of course, patients—will be needed to reach this goal. 
Whether current upheaval in the field of hematopoietic cellular ther-
apies will signal the decline of the more than 60-year practice of BM 
transplantation remains to be seen; it is likely, however, that both cat-
egories of therapeutics will witness simultaneous and complemen-
tary developments in the near future.

SUPPLEMENTARY MATERIALS
www.sciencetranslationalmedicine.org/cgi/content/full/10/436/eaap9630/DC1
Table S1. A non-exhaustive list of somatic cell therapy and gene therapy medicinal products 
authorized by the FDA or EMA.
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