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Abstract

Distinct social networks are interconnected via membership overlap, which plays a key role

when crossing information is investigated in the context of multiple-social-network analysis. Un-

fortunately, users do not always make their membership to two distinct social networks explicit,

by specifying the so-called me edge (practically, corresponding to a link between the two accounts),

thus missing a potentially very useful information. As a consequence, discovering missing me edges

is an important problem to address in this context with potential powerful applications. In this

paper, we propose a common-neighbor approach to detecting missing me edges, which returns good

results in real-life settings. Indeed, an experimental campaign shows both that the state-of-the-art

common-neighbor approaches cannot be effectively applied to our problem and, conversely, that

our approach returns precise and complete results.

Keywords: Social networks, identity management, membership overlap.

1 Introduction

In recent years, (on-line) social networks have been showing a rapid development growth becom-

ing probably the main actor of the Web 2.0. The rapid and revolutionary diffusion of social net-

works among all segments of the population has attracted the interest of researchers from several

fields of computer science, such as digital forensics [40, 24], user behaviour [6], trust and reputation

[26], steganography [25, 28], also for the applications that the analysis of involved data can enable

[61, 22, 13, 38, 14, 12]. In this landscape, Social Network Analysis and Social Network Mining have

assumed an important role because both the large volume of data and their graph-based organization

have enforced the development of specific models and methods allowing the study of social-network

data to discover knowledge from them. Clearly, the graph-based data schema gives a great information

∗A shorter abridged version of this paper appears in “Discovering Links among Social Networks”, by F. Buccafurri,

G. Lax, A. Nocera, and D. Ursino, in the Proc. of the European Conference on Machine Learning and Principles and

Practice of Knowledge Discovery in Databases (ECML PKDD 2012), Bristol, United Kingdom, 2012. Springer. [17]
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power to links among data, because it allows people profiles, resources, activities, and so on, to be

directly (and indirectly) related. The crucial role of relationships in the expression of an individual’s

personality and social identity, traditionally recognized by social sciences, is even strengthened in the

field of virtual societies, in which relationship links are the main form of expression of participation

of individuals to the community. To make more challenging the analysis of this reality, consider

that the reference scenario does not consist of a single, isolated, independent social network, but is a

constellation of social networks, each forming a community with specific connotations, but strongly

interconnected with each other. It is a matter of fact that, despite the inherent underlying hetero-

geneity, the interaction among distinct social networks is the basis of a new emergent internetworking

scenario enabling a lot of strategic applications, whose main strength will be just the integration of

possibly different communities yet preserving their diversity and autonomy. Clearly, social mining

and analysis approaches may strongly rely on this huge multi-network source of information, which

reflects multiple aspects of people personal life, thus enabling a lot of powerful discovering activities.

From this perspective, links among different social networks assume a fundamental role. They

connect the same user on two different social networks who thus assumes the role of passing point of

information from one social network the other. For this reason, we call this user i-bridge1. The link

derives from the explicit user’s declaration (sometimes supported and encouraged by specific tools)

consisting in the insertion of me edges [1]. Unfortunately, for disparate reasons, users do not always

make their membership to two distinct social networks explicit, by specifying the so-called me edge

(practically corresponding to a link between the two accounts), thus missing a potentially very useful

information. As a consequence, in the overall underlying (social internetworking) graph a big number

of missed me edges exists, whose discovery represents a very important issue. In other words, an

interesting problem of missing link detection arises, which partially overlaps with a link prediction

issue, because we may expect that a portion of missing me edges will be inserted in a next stage in the

graph.

In this paper, we deal with the above problem by proposing an effective solution experimentally

tested in a real-life Social Internetworking Scenario (SIS, for short) [15]. To the best of our knowledge,

the problem of detecting me edges has not been investigated in the literature, but the approach we

adopt in this work, which exploits a recursive notion of common-neighbor similarity, suggested us to

prior verify whether common-neighbor approaches for link prediction [47] can be directly applied to

our problem. The answer to this question was definitely negative, as intuitively explained in Section

2 and experimentally confirmed in Section 6, thus motivating our work. Our solution is based on a

notion of node similarity, whose usage allows us to detect whether a suitable threshold is exceeded

and then a missing me edge between two nodes is detected. The similarity between two nodes is

obtained by combining two contributions: a string similarity between the associated usernames, and

a contribution based on a suitable recursive notion of common-neighbor similarity. The neighborhood

1The prefix “i-” stands for “internetworking” and is used to avoid ambiguity with the classic notion of “bridge” [33].

Observe that an i-bridge is a node, whereas a (classic) bridge is an edge.
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similarity allows these errors to be detected and avoided. As a consequence, it is important to clarify

that the problem we are addressing does not deal with the case in which a user with membership overlap

between two social networks chooses the corresponding account names very different from each other.

It is worth noting that, under this case, often falls the situation in which a user voluntarily keeps

the two accounts separated in their respective social networks and thus avoid also to have common

friends. Therefore, also neighborhood similarity fails.

The plan of this paper is as follows: in the next section, we examine related literature. In Section

3, we present our recursive notion of similarity. On the basis of this notion, we design the method

we use to detect missing me edges. This is described in Section 4. In Section 5, we determine the

computational complexity of our approach. In Section 6, we illustrate the experiments we have carried

out to verify the performances of our technique. Finally, in Section 7, we draw our conclusions and

sketch possible future evolutions of our research.

2 Related work

In this section, we survey the literature related to the topics addressed in this paper. It is discussed

subdivided into three categories, one for each subsection.

2.1 Identifying users on the Web

The detection of me edges in a SIS can be seen as a special case of the problem of identifying users on

the Web. As a matter of fact, it allows the features of i-bridge users to be detected. Identifying users on

the Web has received a great attention in several application scenarios, such as personalization. A lot of

work is devoted to verify whether user profile information can be sufficient to address this problem. In

[23] the authors define and implement a framework that provides a common base for user identification

for cross-system personalisation among Web-based user-adaptive systems. The corresponding user

identification algorithm combines a set of identification properties, such as username, name, location

or email address, and classifies a user as identified if such a combination exceeds a suitable threshold.

In [42], a technique based on user profiles for identifying users across social systems is proposed.

This technique has been successfully validated on three social tagging networks (Flickr, Delicious

and StumbleUpon). The limit of this technique is that only few users make their profile available

in social tagging platforms. A method to identify users on the basis of profile matching is proposed

in [60]. In this paper, data from two popular social networks are used to evaluate the importance

of fields in the Web profile and to develop a profile comparison tool. The authors of [64] provide

evidence on the existence of mappings among usernames across different communities. Starting from

the observation of the data in BlogCatalog, they infer 7 hypotheses on the relationships among the

usernames selected by a single person in different communities. On the basis of such hypotheses, they

propose an approach that, given a username u in a source community and a target community c,

generates a set of candidate usernames in c corresponding to u. The approach first generates a set
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of usernames from u by adding and removing suitable prefixes and suffixes. Then, it exploits a Web

search on Google aimed at checking for the existence of each candidate username in such a way as to

reduce the returned set of usernames.

In [48], the authors propose an approach to creating a digital footprint of a user joining multiple

social media services by using username, display name, description, location, profile image and number

of collections. An important task in this activity is played by the measurement of the similarity of the

user profiles on different social networks. This task is performed by means of Jaro Winkler similarity

and Wordnet-based ontologies. Profile disambiguation is then performed by means of automated

classifiers. The authors prove also that userID and name are the most discriminative features for

disambiguating user profiles. In [5], the authors propose an approach for user profile matching based

on Conditional Random Fields that extensively combines the usage of profile attributes and social

linkage. They demonstrate the importance of social links for identity resolution and show that some

profiles can be matched only thanks to social relationships between online social network users. This

approach is suitable when profile is poor, incomplete or hidden due to privacy settings. The authors

show that their approach significantly outperforms common attribute-based approaches and can find

matches that are not discoverable by using only profile information. In [65], the authors aim at

addressing the cross-media user identification problem by proposing a methodology, called MOBIUS,

for finding a mapping among identities of individuals across social media sites. This methodology

consists of three key components: the first one identifies users’ unique behavioral patterns that lead

to information redundancies across sites; the second one constructs features that exploit information

redundancies due to identified behavioral patterns; the third one employs machine learning for effective

user identification. [36] proposes a framework that combines authorship analysis and machine learning

techniques for the detection of multiple identities in social networks. In [44], the authors formalize the

problem of identifying all the accounts of the same individual in different social networks and propose

an algorithm to solve it. They theoretically prove the algorithm’s performance on Random Graphs.

In [43], the authors investigate how subtle correlations in a user’s activity patterns across different

sites may be exploited to infer that two accounts correspond to the same person. They analyze a

variety of features, including similarity of temporal access patterns, textual content, geo-tags, and

social connections.

2.2 Link prediction

From another point of view, the detection of me edges in a SIS is somewhat related to link prediction.

Link prediction is a task of link mining aiming at predicting the (even future) existence of a link

between two objects [47, 3]. In the contest of social networks, it focuses on predicting friendships among

users. Often, social networks are represented as graphs [10]. As a consequence, several link prediction

approaches are totally based on the structural properties of these graphs [46]. A first possibility

to perform this task consists in analyzing common neighbors. Based on preferential attachment,

[4] experimentally verifies that the probability of a relationship between two nodes is proportional
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to the product of the number of their neighbors. Some approaches to link prediction rely on the

notion of shortest-path distance that is computed by means of several similarity measures, such as

the Katz coefficient, PageRank and SimRank. Due to the high computational cost of these measures,

approximations have to be adopted to make them effective. In any case, whenever the number of nodes

is considerable, the application of these methods may result in a too long running time. In conjunction

with all the above techniques, strategies may be used to enhance the accuracy of predictions. Also

the use of unseen bigrams [29] can help in the link detection task. Here, the similarity between a

node A and a node B is computed by taking into account the similarity between the nodes B and C,

where C is the node most similar to A. Furthermore, the quality of link detection can be improved

by means of clustering techniques aiming at identifying the graph components that introduce noise

in the similarity computation [46]. [54] proposes the application of statistical relational learning to

link prediction in the domain of scientific literature citations. In this approach, statistical modeling

and feature selection are integrated into a search mechanism over the space of database queries in

such a way as to define feature candidates involving complex interactions among objects in a given

relational database. [61] analyzes the localization in space and time of a large number of users by

means of their call detail records. This analysis shows that users with similar movement routines are

strongly connected in a social network and have intense direct interactions. This result allows implicit

ties in the social network to be predicted with a significant accuracy starting from the analysis of the

correlation between user movements (i.e., their mobile homophily).

In [41], the authors focus on the link prediction task which can be formulated as a binary classi-

fication problem in social network. In particular, they propose a sparse semi-supervised classification

algorithm called STKPM, based on empirical feature selection. They show that STKPM outperforms

several outstanding learning algorithms with smaller test errors and more stability. The dynamics

of link creation and the social influence phenomenon that may trigger information diffusion in the

social graph is investigated in [2]. In [39], the authors propose a Ordered Weighted Averaging (OWA)

operator and a Prediction Ensemble Algorithm (LPEOWA). It assignes the aggregation weights for

nine local information-based link prediction algorithms with three different OWA operators. Experi-

ments show that LPEOWA obtains a more stable prediction performance and improves the prediction

accuracy, in comparison with the nine individual prediction algorithms. The relationship between

node closeness and link prediction is investigated in [45], where the authors use proximity to cap-

ture the degree of “closeness” of two nodes in the network. They introduce new metrics that model

different types of interactions that can occur between network nodes. These metrics are evaluated

on data about URL recommendation on Digg and Twitter. In [55], the authors propose a nonpara-

metric link prediction algorithm for a sequence of graph snapshots over time. It predicts links based

on the features of endpoints, as well as those of the local neighborhood around the endpoints them-

selves. The authors prove the consistency of their estimator and give a fast implementation based on

locality-sensitive hashing. Experiments show that this approach behaves well when sharp fluctuations

of nonlinearities are present. In [32], the authors provide a formal definition of link recommendation
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across heterogeneous networks. They propose a ranking factor graph model (RFG) for predicting links

in social networks. Starting from the intuition that people make friends in different networks with

similar principles, they find several social patterns that are general across heterogeneous networks.

These patterns are exploited to develop a transfer-based RFG model that combines them with net-

work structure information. This way, they can investigate the fundamental principles that drive link

formation and network evolution. In [52], the authors present a link prediction approach for friend rec-

ommendation that operates by traversing all paths of a limited length on the basis of the “algorithmic

small world hypothesis”. The experimental validation is carried out on both synthetic and real data

sets (Epinions, Facebook and Hi5). In [57], the authors propose a link prediction approach that inte-

grates classic node-similarity-based measures with community information obtained from community

detection algorithms. They show that the inclusion of community information improves the accuracy

of similarity-based link prediction methods. Heterogeneous and reciprocal link prediction, where links

are reciprocally determined by both entities that heterogeneously belong to disjoint groups, is investi-

gated in [22]. The nature and causes of interactions in these domains make the prediction of this kind

of link significantly different from the one of conventional links. The authors propose a novel learnable

framework called ReHeLP, which learns heterogeneous and reciprocal knowledge from collaborative

information and demonstrate its impact on link prediction. In [30], the authors develop supervised

learning approaches for link prediction in multi-relational networks and demonstrate that a supervised

approach to link prediction can enhance performance. They also present results on three diverse, real-

world heterogeneous information networks and discuss the trends and tradeoffs of supervised and

unsupervised link prediction in multi-relational setting. To design efficient algorithms for large scale

networks, researchers increasingly adapt methods from advanced matrix and tensor computation. [58]

proposes a novel approach of link prediction for complex networks by means of multi-way tensors. In

addition to structural data, they consider temporal evolution of a network. The proposed approach

applies the canonical Parafac decomposition to reduce tensor dimensionality and to retrieve latent

trends. Experiments show significant improvements for evolutionary networks in terms of prediction

accuracy measured through mean average precision. In [37], the authors extend the SAN framework

with several leading supervised and unsupervised link prediction algorithms and demonstrate perfor-

mance improvement for each algorithm on both link prediction and attribute inference. They find that

attribute inference can help inform link prediction. In [59], the authors study the prediction problem

when a certain relationship will happen in the scenario of heterogeneous networks. They extend the

link prediction problem to the relationship prediction one by defining both the target relation and the

topological features. Then, they model the distribution of relationship building time with the use of

the extracted topological features.

From the above analysis, it is evident that our approach can be related only with common-neighbor

ones. However, despite their apparent closeness to ours, we can easily realize that they are not directly

applicable to our context. Indeed, the notion of common-neighbors relies, in general, on the notion

of common identity of the friends of a user. But discovering the common identity of users in different
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social networks is for us the output of the problem, leading to a sort of recursive definition of the

problem itself. We have experimentally confirmed the above claim by showing that the application of

the state-of-the-art common-neighbors approaches to our problem returns very unsatisfying results.

The results of these experiments are reported in Section 6.

2.3 Data de-anonymization

The problem addressed in this paper can be related to the problem of re-identification of anonymized

social network data [50, 49, 53] faced in the field of privacy. In particular, in [50], de-anonymization

of a network is done by using an auxiliary network only on the basis of membership overlap and

structural similarity between the two networks. The authors give a demonstration of their solution

by applying it to Flickr and Twitter, showing that a third of the users who are verifiable members

of both Flickr and Twitter can be recognized in the completely anonymous Twitter graph with 12%

error rate. Evidently, the overall precision of the above technique is definitely smaller than that of

this paper. Indeed, whereas [50] detects only a third of the positive cases with 12% error rate, our

technique can identify if two accounts in different social networks belong to the same person with a

precision of 90% on the whole dataset (with a recall of 69%) instead of only a third as in [50]. On

the other hand, the gap of precision and recall of the two techniques is not surprising, as [50] operates

in conditions more disadvantageous than ours (i.e., anonymized data). From this point of view, our

approach and those falling into the field of social data de-anonymization, even strongly related, are

not significantly comparable.

In [63], the authors study privacy-sensitive information that are accessible from the Web and how it

could be exploited to discover personal identities. The considered scenario assumes that an adversary

knows a small piece of “seed” information about a targeted user and conducts extensive and intelligent

search to identify the target over both the Web and an information repository collected from it. In

particular, the authors model two kinds of attacker, namely tireless and resourceful attackers, analyze

possible attacking mechanisms and quantify the threats of both types of attacks to general Web users.

They show that a large portion of users are highly identifiable, even when only a small piece of (possibly

inaccurate) seed information is known to the attackers. In [62], the authors propose SybilDefender, a

sybil defense mechanism that leverages the network topologies to defend against sybil attacks in social

networks, where an adversary creates multiple bogus identities to compromise the running of the

system. The proposed approach is based on performing a limited number of random walks within the

social graph. A de-anonymization algorithm based on node similarity measurement in proposed in [35].

This algorithm is exploited to evaluate the privacy risk of several “light” anonymization algorithms

on real datasets. In [56], the authors propose an automated approach to re-identifying nodes in

anonymized social networks, which uses machine learning. It uncovers artefacts and invariants of any

black-box anonymization scheme from a small set of examples. The authors show that their approach

is effective even when only small numbers of samples are used for training. The problem of user

data de-anonymization in dynamic social networks (i.e., by taking user data updates into account) is
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investigated in [31]. Here, the authors show that by utilizing correlations between sequential releases

data can be de-anonymized more easily. In [38], the authors investigate conditions under which an

adversary may de-anonymize a social network user by means of some auxiliary information. They

consider two scenarios. In the former, the adversary has no information about the anonymized graph

and they show that an adversary can predict when the node-overlap between the anonymized and

auxiliary graphs is low. In the latter, the adversary is able to gain some information about the

anonymized graph and they show that an adversary can identify pairs of anonymized and auxiliary

graphs with high node-overlap.

Finally, we observe that social internetworking is related to multidimensional network analysis

[7, 21], as each social network of a SIS can be considered as a layer (or dimension) of a single multi-

layer network. Moreover, a me edge acts as an interconnection edge in interdependent networks. The

interested reader can find a solid repertoire of basic concepts and analytical measures, which takes

into account the general structure of multidimensional networks, in [8]. In the same paper a complete

framework for multidimensional network analysis is proposed and tested on different real world net-

works. However, the specific problem addressed in this paper cannot be related to studies done in the

above field.

3 The notion of similarity

Our approach operates in a Social Internetworking System (SIS) resulting from the interconnection

of a number of distinct social networks. We start with the basic notion of underlying graph, which is

the layer we deal with.

Definition 3.1 A t-Social-Internetworking Graph is a directed graph G = 〈N,E〉, where N is the

set of nodes, E is the set of edges (i.e., ordered pairs of nodes) and N is partitioned into t subsets

S1, . . . , St. The graphs corresponding to S1, · · · , St are called social graphs. Given a node a ∈ N

we denote by S(a) the social graph which a belongs to. E is partitioned into two subsets Ef and

Em. Ef is said the set of friendship edges and Em is the set of me edges. Ef is such that for each

(a, b) ∈ Ef , S(a) = S(b), while Em is such that for each (a, b) ∈ Em, S(a) 6= S(b). Given a node a

we denote by Γ(a) the set of nodes in S(a) such that, for each b ∈ Γ(a), (a, b) ∈ Ef . Γ(a) is said the

set of neighbors of a. Finally, given a node a ∈ N we denote by indegree(a) the cardinality of the set

{(y, x) ∈ Ef | x = a} and by outdegree(a) the cardinality of the set {(x, y) ∈ Ef | x = a}.

A t-Social-Internetworking Graph G = 〈N,Ef ∪ Em〉 is the graph underlying a SIS composed

of t social networks. Each node a of G is associated with a user joining the social network whose

underlying graph is S(a). An edge (a, b) ∈ Ef means that the user b is a friend of the user a in the

social network of S(a). An edge (c, c′) ∈ Em means that the user c in the social network of S(c) has

declared a me edge between herself and the user c′ in the social network of S(c′). In other words,

c is an i-bridge and, therefore, c and c′ are actually associated with the same user, and a me edge
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Figure 1: An example of a 2-Social-Internetworking Graph.

Node Username

n1 johnsmith

n2 william89.hernandez

n3 andersoncamera

n4 diamond

n5 brown78

n6 obviouslywilliams

n7 jonespict

n8 mary richardson

n9 zmiller

n10 wilsondj

Node Username

n11 dj smith

n12 brownontwitter

n13 william.hernandez

n14 taylormusic32tv

n15 moore816

n16 maria richardson

n17 hotjackson

n18 t.davis

n19 wildboy

n20 rodriguez sr

Table 1: Nodes and usernames into consideration.

interconnect different the two social networks S(c) and S(c′). From now on, throughout this section,

consider given a t-Social-Internetworking Graph G = 〈N,Ef ∪ Em〉.

Example 3.1 Figure 1 shows an example of a 2-Social-Internetworking Graph. In this figure, S1 and

S2 are two social graphs corresponding to two social networks, say SN1 and SN2. As a consequence,

the nodes n1 . . . n10 represent accounts of users joining SN1, whereas n11 . . . n20 are associated with

users belonging to SN2. Table 1 associates each node with the corresponding username. An example

of an edge belonging to Ef is (n1, n2); it indicates that n2 is a friend of n1. The edge (n5, n12) is

an example of an edge belonging to Em; it indicates that n5 and n12 are two accounts of the same

user in different social networks (SN1 and SN2, respectively). Finally, the set of neighbors of n1 is

{n2, n3, n4, n5}.

Our approach is based on a recursive notion of “inter-social-network” similarity aimed to detect

missing i-bridges of G. The similarity between two nodes a and b (belonging to two different social

networks) is obtained by combining two contributions: a string similarity between the usernames
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associated with a and b and a contribution based on a suitable notion of common-neighbors similarity.

The latter component leads to a recursive definition of the overall inter-social-network similarity.

Indeed, the common-neighbors notion has to rely on the same notion because neighbors belong to

different social networks, and, hence, common nodes have to be detected too.

Concerning string similarity, several functions have been proposed in the literature, such as Jaro-

Winkler, Levenshtein, QGrams, Monge-Elkan, Soundex [34]. Any of them may be adopted to measure

username similarity in our approach. As a consequence, our technique is parametric w.r.t. the string-

similarity function. We have evaluated the application of the different functions in Section 6.2.

Before defining our notion of similarity, we have to introduce a preliminary notion, which the

common-neighbors contribution relies on. Indeed, we detect a missing me edge between a and b if a

suitable combination of the string similarity between the usernames associated with them, according

to the metric Q, and the (recursive) similarity of the top-k similar pairs each composed of a friend of

a and a friend of b, is greater than a suitable threshold, for a given k.

Thus, we have preliminarily to define how to select such top-k pairs. This is related to the next

definition.

Definition 3.2 Given a positive integer k0, a pair of nodes a, b ∈ N such that S(a) 6= S(b), a string-

similarity metric Q, and a non-negative integer n, we inductively define TopnQ(a, b, k0) as follows:

1. Top0Q(a, b, k0) is any subset of C = {(xa, yb) | xa ∈ Γ(a), yb ∈ Γ(b)} containing the top-k0

elements of C w.r.t. the metric Q.

2. For any 0 < i ≤ n, TopiQ(a, b, k0) is any subset of C = {(xz, yw) | (z, w) ∈ Topi−1
Q (a, b, k0), x ∈

Γ(z), y ∈ Γ(w), (xz, s) 6∈ TopjQ(a, b, k0), (s, y
w) 6∈ TopjQ (a, b, k0), 0 ≤ j ≤ i − 1} containing the

top-ki elements of C w.r.t. the metric Q, where ki = d k0
(1+i)1+i e and s denotes any node in N .

In this definition, TopiQ(a, b, k0) indicates the set of the ki most similar pairs of nodes (x, y) such

that the distance between x (resp., y) and a (resp., b) is i.

Example 3.2 Consider the nodes n1 and n11 of Figure 1. Assume that Q is the Levenshtein met-

ric [34]. First we compute Top0Q(n1, n11, 2). For this purpose Γ(n1) = {n2, n3, n4, n5}, Γ(n11) =

{n12, n13, n14, n15}. The values of the similarities between the pairs belonging to C are shown in Table

2. The two selected pairs for Top0Q(n1, n11, 2) are (n2, n13) and (n5, n12) because they have the highest

similarities.

Now, we compute Top1Q(n1, n11, 2). For this purpose, we must consider the friends of n2 and n5,

on the one hand, and the friends of n13 and n12, on the other hand. Then, we construct C by taking

all the possible pairs of nodes such that the former belongs to Γ(n2)∪Γ(n5) and the latter belongs to

Γ(n13)∪Γ(n12). After this, we compute the corresponding similarities. They are reported in Table 3.

Now, we compute k1 = d 2
(1+1)1+1 e = 1. Finally, Top1Q(n1, n11, 2) = {(n8, n16)} because this is the pair

showing the highest similarity in Table 3.
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n12 n13 n14 n15

n2 0.0526 0.8947 0.1053 0.1053

n3 0.1429 0.1176 0.1333 0.0714

n4 0.1429 0.2941 0.0667 0.0000

n5 0.3571 0.1176 0.0667 0.1250

Table 2: Similarities between the usernames associated with Γ(n1) and Γ(n11).

n16 n17

n6 0.0588 0.0588

n7 0.1250 0.1000

n8 0.8750 0.2667

Table 3: Similarities between the usernames associated with Γ(n2) ∪ Γ(n5) and Γ(n13) ∪ Γ(n12).

Concerning the contribution of neighbors, we have to consider a particular situation that may

significantly affect the precision of our technique. Suppose we have two nodes z and w belonging to

different social networks and consider x ∈ Γ(z) and y ∈ Γ(w). Assume that x (resp., y) has a very

high indegree in the corresponding social network (e.g., x is a public figure). In this case, the presence

of x in Γ(z) (y in Γ(w), respectively) is not significant in defining the real life relationships of z and w.

To prevent this effect, we introduce the scaling coefficient δt(x), for a given node x, which plays the

role of deleting the contribution of x in affecting the similarity of a pair of nodes whenever x belongs

to the neighborhood of one of these two nodes but x has a public-figure indegree (which the parameter

t is related to).

Definition 3.3 Let x ∈ N be a node of G and t > 0 be an integer number. We define δt(x) =

1− indegree(x)
max(indegree(x),th)

, where th is said public-figure threshold.

In the definition of δt(x), the parameter th represents the indegree threshold above which a user

can be considered a public figure in the social network of x. A possible way to estimate th is to set a

suitable number of magnitude orders to increase the average indegree, say ψ, of the considered social

network. For example, a reasonable value for t is th = 100 · ψ. Observe that δt(x) tends to 0 as much

as the indegree of x tends to be equal or higher than the public-figure threshold th, obtaining the

expected effect.

Example 3.3 In Figure 1, consider the nodes n1 and n11, and the nodes n2 ∈ Γ(n1) and n13 ∈ Γ(n11).

To be realistic, assume that the involved social networks SN1 and SN2 are LiveJournal and Twitter,

respectively. Their average indegree has been estimated to 37.29 and 105.51, respectively [11]. Assume
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that th is computed as th = 100 · ψ, where ψ represents the average indegree of the considered

social network. Now, δt(n2) = 1 − 1
max(1,100·37.29) = 0.9997, because n2 belongs to LiveJournal and

δt(n13) = 1− 1
max(1,100·105.51) = 0.9999, as n13 belongs to Twitter. Thus, min(δt(n2), δt(n13)) = 0.9997.

In fact, in our leading example, we have no public figure and, consequently, the effects of the scaling

coefficient are negligible. Conversely, consider a scenario in which n13 is the node associated with

President Obama. Currently, President Obama has about 27M followers in Twitter. In this case,

δt(n13) = 1 − 27·106
max(27·106,10551) = 0, and this implies that the presence of n13 in Γ(n11) makes the

pair (n2, n13) not significant (no matter the value of δt(n2)) in characterizing the real life relationship

between n1 and n11.

Now we introduce the notion of me-aware similarity Qme(x, y) between two nodes whose role will

be clear in the following. In words, Qme(x, y) takes the presence of a me edge between x and y into

account, by upgrading to 1 their similarity independently of their string similarity.

Definition 3.4 Given a string similarity metric Q and a pair of nodes x, y ∈ N such that S(x) 6= S(y),

we define the me-aware similarity Qme(x, y) between x and y w.r.t. Q, as Qme(x, y) = 1 if (x, y) ∈ Em,

Qme(x, y) = Q(x, y) otherwise.

The rationale underlying this definition is the following: our approach exploits string similarity as

an indicator to verify if two nodes in two different social networks are associated with the same user.

The presence of a me edge between these two nodes directly guarantees this condition, with no need

of further evaluations.

Example 3.4 Consider the nodes n5 and n12 of Figure 1. We have previously seen that, by applying

the Levenshtein similarity metric, Q(n5, n12) = 0.3571. In this case, we have that Qme(n5, n12) = 1

because there exists a me edge between these two nodes.

We are ready to define our similarity function. As said above, it is obtained as a combination

of two contributions, namely, the string-similarity component and the common-neighbors one. The

underlying intuition is that if two accounts, belonging to different social networks, are associated with

the same user, even though there is no me edge between them, they will have usernames somewhat

related each other and, moreover, they share a (even low) number of friends. This condition can be

verified by exploring real-life social networks and does not mean that the two users have a strong

overlap of their neighbors, congruently with the diversity among the communities included in different

social networks. However, we argue that it is highly probable that an even little neighbor overlap will

occur2.

Definition 3.5 Given a pair of nodes a, b ∈ N such that S(a) 6= S(b), a string-similarity metric Q, a

public-figure threshold th, two integers n ≥ 0 and k0 > 0, we inductively define the similarity operator

Tn
Q(a, b, k0) as follows:

2Recall that we are not interested in cases of users who voluntarily keep two accounts separated in their respective

social networks, in which the above conditions are not verified, as explained in the introduction of this paper.

12



1. T 0
Q(a, b, k0) = Q(a, b).

2. For any 0 < i ≤ n,

T i
Q(a, b, k0) = (1− βi) · T

i−1
Q (a, b, k0)+ βi ·

∑
(x,y)∈Top

i−1

Q̃
(a,b,k0)

Q̃(x,y)

|Topi−1

Q̃
(a,b,k0)|

where βi =
1

(i+1)i+1 and Q̃(x, y) = min(δt(x), δt(y))·Q
me(x, y), for any x, y ∈ N such that S(x) 6= S(y).

The above definition of similarity is recursive. At the basic step, only the direct string-similarity

value concurs to define the similarity between two nodes a and b. At step i, the similarity is obtained

as a linear combination of the similarity of the step i−1, and the new common-neighbors contribution.

This is obtained as the average of the reduced (by δt – see Definition 3.3) me-aware similarity between

the top-ki pairs w.r.t. the same metric. ki is derived, at each step, as an exponential reduction of k0,

which is an input parameter allowing us to modulate the size of the neighbors overlapping considered

relevant for the similarity computation. Observe that the above linear combination depends on the

βi parameter, which is exponentially decreasing as i increases, making quickly less important the

common-neighbors contribution when leaving from the root nodes a and b.

Example 3.5 Consider the nodes n1 and n11 of Figure 1. Assume that Q is the Levenshtein metric,

that n = 1 and k0 = 2, as in the previous examples, and assume given a public-figure threshold th.

Now, T 0
Q(n1, n11, 2) = Q(n1, n11) = 0.5556. β1 =

1
22

= 0.25.

Top0
Q̃
(n1, n11, 2) = {(n5, n12), (n2, n13)}.

T 1
Q(n1, n11, 2) = (1− 0.25) · T 0

Q(n1, n11, 2) + 0.25 · Q̃(n5,n12)+Q̃(n2,n13)
2 .

Moreover, Q̃(n5, n12) = min(δt(n5), δt(n12)) ·Q
me(n5, n12) = min(δt(n5), δt(n12)) · 1 =

min(0.9995, 0.9998) = 0.9995.

Q̃(n2, n13) = 0.9997 · 0.8947 ' 0.8944.

Therefore, T 1
Q(n1, n11, 2) = 0.75 · 0.5556 + 0.25 · 0.9995+0.8984

2 = 0.6534.

Top1
Q̃
(n1, n11, 2) = {(n8, n16)}.

T 2
Q(n1, n11, 2) = (1− 0.11) · T 1

Q(n1, n11, 2) + 0.11 · Q̃(n8, n16) =.

Now, Q̃(n8, n16) = 0.8750.

Therefore T 2
Q(n1, n11, 2) = (1− 0.11) · T 1

Q(n1, n11, 2) + 0.11 · Q̃(n8, n16) =

0.8889 · 0.6534 + 0.1111 · 0.8750 = 0.6781.

Now we are ready to define the effective tool we provide to detect me edges, obviously based on

the above notion of similarity. Indeed, Definition 3.5 leads to an ineffective computation, covering in

the worst case the whole graph G. Anyway, we can observe that when, during the computation, we

reach a step h whose contribution to the overall similarity is under a given small ε, we expect that

from now on involved neighbors do not give us any meaningful information. Thus, we can stop here

the iteration. This is encoded into the next definition.
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Definition 3.6 Given a pair of nodes a, b ∈ N such that S(a) 6= S(b), a string-similarity metric Q,

an integer number k0 > 0, and a number ε ranging in the real interval (0, 1], we define the ε-similarity

Sε
Q(a, b, k0) between a and b w.r.t. Q as T h

Q(a, b, k0), where h > 0 is the least number (if any) such

that |T h
Q(a, b, k0)− T h−1

Q (a, b, k0)| < ε.

Example 3.6 Consider the nodes n1 and n11 in Figure 1. Assume that k0 = 2, ε = 0.03 and that

Q is the Levenshtein metric. Then, the 0.01-similarity Sε
Q(n1, n11, 2) between n1 and n11 w.r.t. Q is

T 2
Q(n1, n11, 2) = 0.6781, because T 2

Q(n1, n11, 2) - T
1
Q(n1, n11, 2) = 0.0247.

From this example and the previous one we can draw an important conclusion. In fact, we can see

that nodes n1 and n11 have a “moderate” string similarity (i.e., equal to 0.5556) that does not allow

us to say if they are associated with the same user or not. The examination of their neighbors leads

to an increase in their similarity that becomes first equal to 0.6534 and then equal to 0.6781. This

allows us to solve the uncertainty caused by the “moderate” string similarity and to conclude that n1

and n11 are associated with the same user and that a hidden me edge exists between them.

Clearly, our approach is really effective if the ε-similarity Sε
Q(a, b, k0) between two nodes a and b

always exists. This is ensured by the following theorem.

Theorem 3.1 Given a pair of nodes a, b ∈ N such that S(a) 6= S(b), a string-similarity metric Q,

an integer number k0 > 0, and a number ε ranging in the real interval (0, 1], then the ε-similarity

Sε
Q(a, b, k0) between a and b w.r.t. Q exists.

Proof. We have to prove that there exists h > 0 such that |T h
Q(a, b, k0)− T h−1

Q (a, b, k0)| < ε.

From Definition 3.5 it follows that, for any i > 0:

|T i
Q(a, b, k0)− T i−1

Q (a, b, k0)| = βi ·

∣∣∣∣∣∣



∑

(x,y)∈Topi
Q̃
(a,b,k0)

Q̃(x, y)

|Topi
Q̃
(a, b, k0)|

− T i−1
Q (a, b, k0)




∣∣∣∣∣∣
.

Because βi ·

∣∣∣∣∣

(∑
(x,y)∈Topi

Q̃
(a,b,k0)

Q̃(x,y)

|Topi
Q̃
(a,b,k0)| − T i−1

Q (a, b, k0)

)∣∣∣∣∣ < βi, it suffices to prove that there exists h > 0

such that βh < ε. Recall that βi =
1

(1+i)1+i . Consider the inequality
1

(1+i)1+i < ε, i.e., (i+1) > logi+1
1
ε .

Being 1
ε > 1, the function logi+1

1
ε is monotonically decreasing as i increases. Conversely, (i + 1) is

monotonically increasing. As a consequence, a number h > 0 exists such that βh < ε, and, therefore,

the proof is concluded. 2

4 Discovering links among social networks

In this section we focus on the main goal of this paper, that is the detection of me edges in a SIS.

Consider given a Social Internetworking System (SIS) composed of t social networks, whose underlying

Social Internetworking Graph is G = 〈N,Ef ∪ Em〉. Due to the hugeness of the search space and the
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high sparsity of me-edges [11], we risk to meet prohibitive obstacles of infeasibility if we do not pose

the problem in a suitable way. Accordingly, we consider the following two problems:

P1 (node-seed crystallization problem): finding missing me edges in G, starting from a seed a, where

a ∈ N is a node of G.

P2 (edge-seed crystallization problem): finding missing me edges in G, starting from a seed (a, b),

where (a, b) ∈ Em is a me edge occurring in G.

Observe that problem P2 could be reduced to problem P1. However, we will address P2 using a

specific heuristics, which takes into account that the seed is a me edge instead of a single node and

allows us to gain in terms of efficiency. This explains why we keep the two problems separated.

Both problems above require the solution of two sub-problems, reflecting the fact that their nature

allows us to use only a generate-and-test approach:

S1: Find a suitable set of candidate pairs (a, b), such that b /∈ S(a) and (a, b) /∈ Em, and

S2: For each candidate (a, b) achieved at the previous step, decide if there exists a missing me edge

between a and b.

Clearly, the solution of sub-problem S2 is independent of the problem which S2 belongs to (among

P1 and P2). For step S2, our idea is to use our recursive notion of similarity introduced in the

previous section. Recall that the similarity between two nodes a, b defined in Section 3 is obtained

by combining two contributions: a string similarity between the usernames associated with a and b,

and a contribution based on a suitable notion of common-neighbors similarity. Concerning the first

contribution, as pointed out in Section 3, there exist several already defined functions for computing the

similarity between two strings, each characterized by specific features (e.g., Jaro-Winkler, Levenshtein,

QGrams, Monge-Elkan, Soundex, etc. [34]). The function Q(a, b) (receiving two nodes a and b) in

Algorithm 1 can be considered parametric w.r.t. the string-similarity function. We can choose one of

the above functions on the basis of the desired target. For instance, QGrams is very severe and assigns

quite low similarity degrees, Jaro-Winkler is more permissive whereas Soundex is very permissive. In

Section 6.2 the application of the different functions in our technique is experimentally evaluated.

The function implementing the resolution of sub-problem S2 is reported in Algorithm 1. It starts

from a pair of nodes a, b candidate to have a me edge. This pair is discarded if the value of Q(a, b)

is lower than a suitable threshold thc. Otherwise, a function S is called, which implements the

computation of Sε
Q(a, b, k0) (see Definitions 3.5 and 3.6). If the value returned by this function is

greater than a suitable threshold thd, then (a, b) is detected as me edge. Otherwise, it is discarded. The

function S is reported in Algorithm 2. It is recursive because it implements the operator T n
Q(a, b, k0)

of Definition 3.6. It receives as arguments: an integer k0 > 0, a (small) real ε > 0, a list L of triplets

〈a, b, s〉, where a and b are nodes and s is a [0, 1] real value, the value of S at the previous step (at

the initial step of the recursion this value coincides with Q(a, b)), and an integer i > 0 representing
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ALGORITHM 1: S2

Input (a, b): the candidate me edge

Input thc: a candidate threshold

Input thd: a detection threshold

Input k0: an integer

Input ε: a number in the real interval (0, 1]

Variable L: a list of triplets of the form 〈a, b, s〉
1: L := ∅;
2: if (Q(a, b) > thc) then

3: insert the triplet 〈a, b,Q(a, b)〉 into L

4: if (S(k0, ε, L,Q(a, b), 1) > thd) then

5: return true;

6: end if

7: L := ∅
8: end if

9: return false;

the step of the recursion. To explain what is s, observe that, to implement T n
Q(a, b, k0), we need as

argument the list L storing, at the step i > 1 of the recursion, the top-ki node pairs w.r.t. the metric

Q̃i(a, b, k0). Thus, in this case, s represents just Q̃i(a, b, k0). At the initial step of the recursion (i = 1),

s is just the string similarity value Q(a, b).

The correspondence between Algorithm 2 and Definitions 3.5 and 3.6 is quite clear. We just have

to highlight that the result of the computation of the operator Topi
Q̃
(a, b, k0) (see Definitions 3.2 and

3.6) is embedded in the list L, as described above.

The computation of Topi
Q̃
(a, b, k0) is implemented by Algorithm 3. The function Top receives two

nodes a and b, a positive integer ki, and the public-figure threshold th. It returns a list L of ki triplets

〈a′, b′, Q̃i(a′, b′, k0)〉, where a′ ∈ Γ(a), b′ ∈ Γ(b) and (a′, b′) is one of the top-ki pairs w.r.t. the metric

Q̃. We remark that the metric here used includes the scaling coefficient δ of Definition 3.3.

4.1 Node-seed crystallization problem

In this section, we deal with the solution of problem P1. Let a be a node in G. The goal is to find

the missing me edges involving a. Concerning sub-problem S1, we observe that it is not a trivial

task, because an exhaustive generate-and-test approach is prohibitive, because the number of b /∈ S(a)

such that (a, b) /∈ Em is at most the number of nodes of all the social networks of the SIS but S(a).

We know that we have to leave the ambition of obtaining a complete technique, so the exhaustive

generate-and-test approach is not necessary. But this is in not enough, because a blind generate-

and-test approach has very low chances to succeed, due to the size of the universe we deal with and

the very low density of explicit and implicit me edges. To solve this problem we have heuristically

identified a nice property of social networks: With a high probability, some of the nodes belonging to

the neighbors of two nodes linked by a me edge are in turn linked by a me edge, showing an assortative

behavior of on-line social networks, already observed in literature for the node degree [51]. We call

this property bridge-assortativity [18]. We tested this property by analyzing a sample which includes
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ALGORITHM 2: S
Input k0: an integer

Input ε: a number in the real interval (0, 1]

Input Li: a list of triplets 〈a, b, s〉
Input Si−1: the similarity value of a and b at step i− 1

Input i: an integer

Output Si: the similarity value of a and b at step i

Variable β: a [0,1] real

Variable ki: an integer

Variable avgS: a real

Variable Li+1: a list of triplets 〈a, b, s〉
1: Li+1 := ∅; β := 1

ii
; ki := dk0 · βe

2: if (k=1) then

3: Si := Si−1

4: else

5: assign to avgS the average value of the similarities of the node pairs of Li

6: Si := (1− β) · Si−1 + β · avgS
7: end if

8: if (|Si − Si−1| ≥ ε) then

9: for each 〈a, b, s〉 in Li do

10: add the list returned by Top(a, b, ki) to Li+1

11: end for

12: return S(i+ 1, Li+1, Si)

13: else

14: return Si

15: end if

473,121 nodes, 403 i-bridges, and an average degree of 222.3261. We computed the expected value

of the random variable: number of i-bridges in the neighborhood of a node. This can be obtained as

the expected value of a hypergeometric distribution, i.e. E(N) = r·h
n , where r represents the number

of i-bridges in the sample, h is the average degree and n is the number of nodes in the sample. As

a consequence, the expected value is 0.189. By contrast, we experimentally found that the average

number of i-bridges occurring in the neighborhood of an i-bridge is 8.275, showing a high biasing w.r.t.

the random case.

On the basis of the above result, we consider the neighbors of a and we select those having a me

edge. Let b be one of them and let (b, b′) be the corresponding me edge. Thus, the neighbors of b′ are

promising nodes for the detection of me edges with a (see Figure 2).

We are ready to describe the algorithm that solve the node-seed crystallization problem. It uses the

above heuristic observation for sub-problem S1 to find promising candidates and then uses Algorithm

1 presented earlier to solve sub-problem S2.

Our algorithm receives a node a ∈ N and builds a set M ′ of candidate me edges, such that

M ′ ∩ (Ef ∪ Em) = ∅. Then, for each candidate pair (a, c) ∈M ′ it uses Algorithm 1 to detect missing

me edges. The function P1 implementing our approach is reported in Algorithm 4.

Synthetically, Algorithm 4 proceeds as follows. It receives as argument the starting node a. For

each node b ∈ Γ(a), we consider its me edges (b, b′), if any. For each node c ∈ Γ(b′), we consider (a, c)
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ALGORITHM 3: Top
Input a, b: a node

Input ki: an integer

Input th: an integer

Output L: a list of triplets 〈a, b, s〉
Variable t: a triplet 〈a, b, s〉
Variable c: an integer

Variable δt(a), δt(b), Q̃(a,b): a real

1: L := ∅; c := 0

2: for each a′ in Γ(a) do

3: for each b′ in Γ(b) do

4: δt(a) := 1− indegree(a)
max(indegree(a),th)

5: δt(b) := 1− indegree(b)
max(indegree(b),th)

6: Q̃(a,b) := min(δt(a), δt(b)) ∗Q(a′, b′)

7: if (c < ki) then

8: insert the triplet 〈a′, b′, Q̃(a,b)〉 into L

9: sort L in a descending order

10: c := c+ 1

11: else

12: t := L.get(ki − 1)

13: if (Q̃(a,b) > t.s)) then

14: replace the triplet in the position (ki − 1) of L with the triplet 〈a′, b′, Q̃(a,b)〉
15: sort L in a descending order

16: end if

17: end if

18: end for

19: end for

20: return L

ALGORITHM 4: P1

Input a: the starting node

Output M ′′: the set of detected me edges

Variable M ′: a set of candidate me edges

1: M ′ := ∅; M ′′ := ∅
2: for each node b ∈ Γ(a) do

3: for each edge (b, b′) ∈ Em do

4: for each node c ∈ Γ(b′) do

5: if (the edge (a, c) /∈ Em) then

6: insert the me edge (a, c) in M ′

7: end if

8: end for

9: end for

10: end for

11: for each node pair (a, c) ∈ M ′ do

12: if (S2(a, c)) then

13: insert the me edge (a, c) in M ′′

14: end if

15: end for

16: return M ′′
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Figure 2: An example of the me edge detection approach.

as a candidate me edge. Then, for each candidate me edge (a, c) Algorithm 1 is used to verify whether

this pair is a missing me edge or not. Finally, Algorithm 4 returns the set M ′′ of detected me edges.

4.2 Edge-seed crystallization problem

In this section we deal with the solution of problem P2. Let (a, b) ∈ Em a me edge in G. The goal

is to find missing me edges in G starting from the seed (a, b). The solution of the sub-problem S2

is the same as problem P1. So, the reader may refer Algorithm 1 presented earlier. For the sub-

problem S1 we use again the bridge-assortativity property described in the previous section. Recall

that, according to this property, with a high probability, some of the nodes belonging to the neighbors

of two nodes linked by a me edge are in turn linked by a me edge. In this case, we can apply the

assortativity property in a direct way, by considering as promising candidate all the pairs (a′, b′) such

that a′ ∈ Γ(a) and b′ ∈ Γ(b) and the edge (a′, b′) /∈ Em.

Observe that the assortativity property may lead us to consider as promising candidates every

pair (a′, x), for each a′ ∈ Γ(a), and every pair (b′, y), for each b′ ∈ Γ(b), where x and y are found as

shown in the solution of problem P1, thus reducing problem P2 on (a, b) to |Γ(a)|+ |Γ(b)| problems

P1. Clearly, this may increase the recall of the solution, but is more costly in terms of efficiency. This

issue is discussed in detail in Section 5.

The solution to problem P2 is implemented in Algorithm 5. It receives an existing me edge node

(a, b) and builds a set M ′ of candidate me edges, such that M ′ ∩ (Ef ∪ Em) = ∅. Then, for each

candidate me edges (a′, b′) it uses Algorithm 1 to verify whether it is a missing me edge or not. Finally,

it returns the set M ′′ of detected me edges.

5 Complexity issues

In this section, we analyze the computational complexity of our approach. We distinguish the opera-

tions that involve network accesses from those executed in memory, remarking that they differ in time
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ALGORITHM 5: P2

Input (a, b): the starting me edge

Output M ′′: the set of detected me edges

Variable M ′: a set of candidate me edges

1: M ′ := ∅; M ′′ := ∅
2: for each node pair (a′, b′) ∈ Γ(a)× Γ(b) do

3: if (the edge (a′, b′) /∈ Em) then

4: insert the edge (a′, b′) in M ′

5: end if

6: end for

7: for each node pair (a′, b′) ∈ M ′ do

8: if (S2(a′, b′)) then

9: insert the me edge (a′, b′) in M ′′

10: end if

11: end for

12: return M”

of (at least) nine orders of magnitude. We denote by O(f(n)) I/Os, for a given function f(n), the

asymptotical evaluation of the number of operations involving network accesses vs the input variable

n.

The first result concerns the computational complexity of the operator T h
Q(a, b, k0). Intuitively, the

number of operations performed by T h
Q(a, b, k0) depends on k0 because it represents an upper bound of

the number of pairs that the operator selects at each step for the further computation. In other words,

k0 sets the maximum degree of the computation tree produced by the operator. Moreover, the number

of operations performed by T h
Q(a, b, k0) depends on the maximum degree of S(a) and S(b), denoted by

d, because the operator, at the i-th step, visits the whole neighborhood of the nodes selected at the

previous step. The dependance on k0 and d of the complexity of T h
Q(a, b, k0) is stated by the following

theorem.

Theorem 5.1 Given a pair of nodes a, b ∈ N such that S(a) 6= S(b), a string-similarity metric Q,

an integer number k0 > 0, and denoting by d the maximum degree of S(a) and S(b), it holds that:

T h
Q(a, b, k0) is O(k0) I/Os +O(k0 · d

2) in the worst case.

Proof. From Definition 3.5, clearly there exists an algorithm for the computation of T h
Q(a, b, k0)

proceedings as follows:

1. It visits the nodes a and b. This costs 2 I/Os.

2. It computes Q(a′, b′) for each pair (a′, b′) ∈ Γ(a) × Γ(b). This costs d2 in-memory operations

(in-memory for short).

3. It selects the top k0 node pairs among those of Step (2) above. This requires (2 · k0) I/Os + d2

in-memory.
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4. It iterates the previous steps for h times. This costs:

h∑

i=1

(2 · k0)

(1 + i)(1+i)
I/Os+

h∑

i=1

d2

(1 + i)(1+i)
in-memory.

As a consequence, the overall cost for the computation of T h
Q(a, b, k0) is:

(
2 + 2 · k0 +

h∑

i=1

(2 · k0)

(1 + i)(1+i)

)
I/Os +

(
d2 + d2 · k0 +

h∑

i=1

(d2 · k0)

(1 + i)(1+i)

)
in-memory.

Now, we have that:

h∑

i=1

1

(1 + i)(1+i)
=

h∑

i=1

1

(1 + i)
·

1

(1 + i)i
<

h∑

i=1

1

(1 + i)i
.

Recalling that, for c > 0,

n∑

j=1

1

(1 + c)j
=

(
1 +

1

c
· (1−

1

(1 + c)n
)

)

we have that:

h∑

i=1

1

(1 + 1)i
= 1 +

1

1
· (1−

1

(1 + 1)h
) = 2−

1

2(h−1)
< 2.

As a consequence, the overall cost for the computation of is:

T h
Q(a, b, k0) =

(
2 + 2 · k0 +

h∑

i=1

(2 · k0)

(1 + i)(1+i)

)
I/Os +

(
d2 + d2 · k0 +

h∑

i=1

(d2 · k0)

(1 + i)(1+i)

)
in-memory

Thus,it holds that:

T h
Q(a, b, k0) < (2+2 · k0+2 · k0 · 2)I/Os+ (d2+ k0 · d

2+2 · k0 · d
2) = O(k0)I/Os+O(k0 · d

2)in-memory.

As far as this result is concerned, we observe that the contribution O(k0 · d2) to the overall

complexity of the operator is negligible for realistic values of d (typically, ranging from 50 to 200)

by taking into account that O(k0 · d
2) concerns in-memory operations. As a consequence, the cost of

T h
Q(a, b, k0) is in practice dominated by O(k0) I/Os.

The next theorem determines the worst-case complexity of the operator Sε
Q(a, b, k0). Again, the

analysis highlights the dependance of the computational cost on both k0 and d, because Sε
Q(a, b, k0)

is implemented by iterating the computation of T h
Q(a, b, k0). Moreover, the complexity cost depends

on ε which the number of iteration steps derives from.
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Theorem 5.2 Given a pair of nodes a, b ∈ N such that S(a) 6= S(b), an integer number k0 > 0, a

number ε in the real number (0, 1], and denoting by d the maximum degree of the nodes of S(a) and

S(b), it holds that: Sε
Q(a, b, k0) is O(k0 · ln(

1
ε )) I/Os +O(k0 · d

2 · ln(1ε )) in the worst case.

Proof. In Theorem 3.1, we proved that the maximum number of steps h necessary for the

computation of Sε
Q(a, b, k0) is strictly linked to βi. We recall that βi = 1

(i+1)(i+1) is a parameter

tuning the contribution of the common-neighbors in the computation of the similarity between a and

b. Specifically, in Theorem 3.1, we showed that h > 0 and h must be set in such a way that βh < ε.

Thus: βh < ε ⇔ (1 + h)(1+h) > 1
ε ⇔ (1 + h) > log(1+h)

1
ε ⇔ 1 + h > ln( 1ε ) ·

1
ln(1+h) ⇔ h >

ln(1ε ) ·
1

ln(1+h) − 1.

This inequality can be made stricter by requiring that h > ln( 1ε ) ·
1

ln(1+h) . Now, recall that h is a

discrete positive number. As a consequence, it can be either equal to 1 or higher than 1. In the latter

case we have that 1
ln(1+h) < 1; therefore, the inequality h > ln( 1ε ) ·

1
ln(1+h) can be made stricter by

requiring that h > ln( 1ε ).

As a consequence, we have that the maximum number of steps necessary for the computation

of Sε
Q(a, b, k0) is max(1, ln( 1ε )) = ln(1ε ), being 0 < ε ≤ 1. Theorem 5.1 states that the worst case

complexity for each step is O(k0) I/Os +O(k0 · d
2), then the proof is concluded. 2

Clearly, by applying the reasonings seen for Theorem 5.1, we can say that the cost of S ε
Q(a, b, k0)

is in practice dominated by O(k0) I/Os.

The next theorem specifies the worst-case complexity of the sub-problem S2. Again, the analysis

evidences the dependance of the computational cost on k0, d, and ε, because S2 relies on Sε
Q(a, b, k0).

Theorem 5.3 Given a pair of nodes a, b ∈ N such that S(a) 6= S(b), an integer number k0 > 0, a

number ε > in the real interval (0, 1], and denoting by d the maximum degree of the nodes of S(a) and

S(b), it holds that: S2 is O(k0 · ln(
1
ε )) I/Os +O(k0 · d

2 · ln(1ε )) in the worst case.

Proof. A direct algorithm solving S2 first verifies, in constant time, if the candidate pair (a, b)

has a string similarity higher than a certain threshold. If this is not the case, the algorithm halts.

Thus, we have to consider the other case, in which the algorithm computes Sε
Q(a, b, k0), which costs

O(k0·ln(
1
ε )) I/Os +O(k0·d

2·ln(1ε )) in-memory operations according to Theorem 5.2. As a consequence,

the worst-case complexity coincides with that of Sε
Q(a, b, k0). 2

Now, we can compute the complexity of problem P1. This analysis highlights the dependance of

this complexity on (1): k0, d and ε, as P1 relies on S2, and (2): on the maximum number dm of me

edges for an i-bridge, because for each of these nodes, an algorithm solving P1 must visit all the nodes

linked to it by means of a me edge.

Theorem 5.4 Given a pair of nodes a, b ∈ N such that S(a) 6= S(b), an integer number k0 >

0, a number ε in the real interval (0, 1], and denoting by d the maximum degree of the nodes of

S(a) and S(b), and by dm the maximum number of me edges for an i-bridge, it holds that: P1 is

O(k0 · dm · d2 · ln(1ε )) I/Os +O(k0 · dm · d4 · ln(1ε )) in the worst case.

22



Proof. Clearly, there exists an algorithm solving P1 that proceeds as follows:

1. It visits a. This costs 1 I/O.

2. It visits the neighbors of a to verify if they have me edges. This requires d I/Os.

3. It visits the nodes linked to the neighbors of a by means of a me edge. These nodes are d · dm

and, then, their visits cost d · dm I/Os.

4. For each neighbor of a of Step (3) above, it solves the sub-problem S2 to verify if a me edge

exists between it and a. The number of neighbors of the nodes of Step (3) is d2 · dm, whereas,

from Theorem 5.3, the cost of the resolution of S2 is O(k0 · ln(1ε )) I/Os +O(k0 · d2 · ln(1ε ))

in-memory operations. As a consequence, the overall cost of this step is: O(k0 · d
2 · dm · ln(1ε ))

I/Os +O(k0 · d
4 · dm · ln(1ε )) in-memory operations.

Finally, the overall cost of P1 is 1 I/O+d I/Os+d · dm I/Os+O(ln(1ε ) · 2 · k0 · d2 · dm) I/Os

+O(k0 · d
4 · dm · ln(1ε )) in-memory operations = O(k0 · dm · d2 · ln(1ε )) I/Os +O(k0 · dm · d4 · ln(1ε ))

in-memory operations. 2

Also in this case, by applying the reasonings seen for Theorem 5.1, we can say that in the reality

d4 in-memory operations cost much less than 2 · d2 I/Os. As a consequence, the cost of problem P1

is in practice dominated by O(k0 · dm · d2 · ln(1ε )) I/Os.

Now, the following theorem analyzes the worst case complexity of problem P2. This analysis

evidences the dependance of the computational cost on k0, d, and ε, because P2 uses S2.

Theorem 5.5 Given a pair of nodes a, b ∈ N such that S(a) 6= S(b), an integer number k0 > 0, a

number ε in the real interval (0, 1], and denoting by d the maximum degree of the nodes of S(a) and

S(b), it holds that: P2 is O(k0 · d
2 · ln(1ε )) I/Os +O(k0 · d

4 · ln(1ε )) in the worst case.

Proof. A direct algorithm solving P2 first visits a and b, and this costs 2 I/Os. Then, for each

of the d2 pairs (a′, b′) ∈ Γ(a)× Γ(b), it solves the sub-problem S2. From Theorem 5.3, this step costs

d2 ·O(k0 · ln(
1
ε )) I/Os +d2 ·O(k0 ·d

2 · ln(1ε )) in-memory operations. As a consequence, the overall cost

of P2 is: 2 I/Os+d2 ·O(k0 · ln(
1
ε )) I/Os +d2 ·O(k0 ·d

2 · ln(1ε )) in-memory operations = O(k0 ·d
2 · ln(1ε ))

I/Os +O(k0 · d
4 · ln(1ε )) in-memory operations. 2

By applying the reasonings done for the previous theorems, the cost of problem P2 is in practice

dominated by O(k0 · d
2 · ln(1ε )) I/Os.

Finally, we observe that if P2 is solved by reducing it to (|Γ(a)|+ |Γ(b)|) problems P1, its cost is

O(k0 · dm · d3 · ln(1ε )) I/Os that is d · dm times the cost of the direct algorithm solving P2 described

above.
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6 Experiments

In this section, we present our experimental campaign aimed at determining the performances of

our approach. Because it operates on a SIS, we had to extract not only the connections among the

accounts of different users in the same social network but also the connections among the accounts

of the same user in different social networks. To handle these connections, two standards encoding

human relationships are generally exploited. The former is XFN (XHTML Friends Network) [27]. It

simply uses an attribute, called rel, to specify the kind of relationship between two accounts. Possible

values of rel are me, friend, contact, co-worker, parent, and so on. A (presumably) more complex

alternative to XFN is FOAF (Friend-Of-A-Friend) [9]. In both of them information about me edges

is that explicitly declared by users. To handle all the technicalities linked to this task, we leverage

on SNAKE [20], a tool supporting the extraction of data from social network accounts. The SISs

considered in our experiments are composed by several social networks (e.g., Twitter, LiveJournal,

YouTube, Flickr, and Advocato), which are highly representative (they are among the top-10 social

networks in terms of population).

6.1 Application of the state-of-the-art common-neighbor approaches

As described in Section 2, we have to prior verify whether common-neighbor approaches for link

prediction [47] can be directly applied to our problem. However, a first aspect has to be considered.

In our scenario, the notion of common neighbors cannot be the classical one, because the neighbors

of examined pairs belong to different social networks. As a consequence, we cannot expect that two

examined neighbors have common nodes in strict sense. To overcome this drawback we have just to

re-define the notion of node identity. Coherently with our setting, it simply suffices to consider as

identical two nodes linked by a me edge. At this point, classical common-neighbor techniques can be

directly applied.

Given two nodes a and b in G such that S(a) 6= S(b), the considered (state-of-the-art) techniques

[47] are reported in Table 4. In the first and second columns of this table, we include the definition of

the similarity index they rely on.

We tested all the above techniques in our SIS by preliminarily constructing a set M of 100 node

pairs linked by a me edge and then by running them on M . For each technique, we obtained a set

M ′ of detected me edges. Clearly, M ′ represents a set of true positives. Finally, we measured the

sensitivity of the techniques as the ratio |M ′|
|M | , obtaining the results reported in the third column of

Table 4.

The analysis of such values clearly shows that no effective result can be obtained if common-

neighbor techniques are adopted. This has motivated our further study, whose experimental validation

is reported in the next sections.
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Index Name Definition Sensitivity

Salton Index (SAI) sSAI
ab

=
|Γ(a)

⋂
Γ(b)|√

|Γ(a)|×|Γ(b)|
0.01

Jaccard Index (JAI) sJAI
ab

=
|Γ(a)

⋂
Γ(b)|

|Γ(a)
⋂

Γ(b)|
0.01

Sorensen Index (SOI) sSOI
ab

=
2|Γ(a)

⋂
Γ(b)|

|Γ(a)|+|Γ(b)|
0.01

Hub Promoted Index (HPI) sHPI
ab

=
|Γ(a)

⋂
Γ(b)|

min(|Γ(a)|,|Γ(b)|)
0.00

Hub Depressed Index (HDI) sHDI
ab

=
|Γ(a)

⋂
Γ(b)|

max(|Γ(a)|,|Γ(b)|)
0.01

Leicht-Holme-Newman Index (LHNI) sLHNI
ab

=
|Γ(a)

⋂
Γ(b)|

|Γ(a)|×|Γ(b)|
0.01

Resource Allocation Index (RA) sRA
ab

=
∑

z∈Γ(a)
⋂

Γ(b)
1

|Γ(z)|
0.01

Local Path Index (LPI) sLPI
ab

= A2 + εA3 0.03

( A is the adjacency matrix of G)

Table 4: The tested common-neighbor approaches.

6.2 Similarity notion validation

A first experiment aims at validating our similarity notion that represents the basis of our approach.

As a further result of this experiment, we investigate the effectiveness of the string similarity functions

in our context. We started from the set M introduced in the previous section (i.e., a set of 100

real me edge-connected pairs). Then, we found another set, denoted by ¬M , of 100 node pairs not

connected by a me edge. To find two elements, say (c1, d1) and (c2, d2), of ¬M , we started from a me

edge-connected pair (a, b) and then we required that c1 = a, d1 ∈ Γ(b), c2 = b, d2 ∈ Γ(a). This way,

both (c1, d1) and (c2, d2) are not linked by a me edge, because d1 is a friend of a user (i.e., b) who is

identical to c1. The dual situation occurs for (c2, d2).

Then, we applied our approach on the pairs of M and ¬M and we obtained the sets TP , FP , and

FN , which are true positives, false positives, and false negatives, resp. For clarity, an element in TP

is a pair of M detected as me edge-connected pair by our technique, an element in FP is a pair of

¬M detected as me edge-connected pair by our technique, and an element of FN is a pair of M not

detected as me edge-connected pair by our technique.

To compute the performance of our approach we adopted three classical measures, namely precision

(as measure of correctness), recall (as measure of completeness) and F-measure (as the harmonic

mean of precision and recall). They are defined as: precision = |TP |
|TP |+|FP | , recall =

|TP |
|TP |+|FN | , and

F -measure = 2 · precision·recall
precision+recall .

Because the behavior of our approach (and, consequently, the values of precision, recall and F-

measure) depends on the function adopted for computing string similarity, we considered the most

common of these functions and, for each of them, we computed precision, recall and F-measure. This

way, we were able to determine the function(s) maximizing these measures. Obtained results are

shown in Table 5.

The main conclusion we can draw from the analysis of this table is that our approach presents

in general a very satisfying performance both in correctness and in completeness. Moreover, we

observe that we are free to choose the string-similarity function in a rich set. Indeed, 5 functions led
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Function Precision Recall F-measure

Jaro-Winkler 0.558 0.920 0.694

QGrams 0.908 0.690 0.784

Levenshtein 0.877 0.710 0.785

Smith-Waterman 0.840 0.790 0.814

Smith-Waterman-Gotoh 0.779 0.810 0.794

Monge-Elkan 0.779 0.810 0.794

Needleman-Wunch 0.500 1.000 0.667

Jaro 0.555 0.910 0.689

Soundex 0.500 0.990 0.664

Table 5: Precision, recall and F-measure of our approach for each string similarity function.

our approach to obtain a precision higher than 0.77 and 6 functions led it to obtain a recall higher

than 0.81. However, among the considered functions, QGrams (Needleman-Wunch, Smith-Waterman,

resp.,) proved to be that capable of assuring the best precision (recall, F-measure, resp.). The high

performance level of our approach is even more evident if we compare Tables 4 and 5 and if we

consider that, in this testbed, the definitions of recall and sensitivity coincide and, consequently, the

corresponding columns can be compared3.

6.3 Experiments on problem P1

In this section, we validate our approach for the resolution of problem P1 (see Section 4.1). For this

purpose, we consider a set M of already existing me edges. To derive M we applied BDS, a crawling

technique specifically conceived to operate on a SIS, instead of on a single social network, which is

highly capable of finding and returning explicitly declared me edges [19] (note that, to the best of our

knowledge, no other technique with this feature is available in literature). For each edge (a, c) of M

we give the node a as input to our algorithm and obtain a set M ′ of detected me edges having a as

source node. For each edge (a, ĉ) ∈ M ′ , we test whether ĉ coincides with c. In the affirmative case,

we can conclude that our strategy has been able of correctly reconstructing the original me edge.

The starting set M consists of 100 explicitly declared me edges and we consider QGrams as string-

similarity function, because it proved to assure the best precision (see Section 6.2). After running this

experiment, we obtained 57 cases in which the original me edge has been reconstructed. This implies a

percentage of success in detecting the original me edges equal to 57%. Observe that, at a first glance,

it is possible to conclude that this percentage is not very high. However, to correctly evaluate this

result, it is necessary to deepen the problem we are investigating. Indeed, given a node a, the nodes

that should be examined for the possible presence of a me edge with a are |N |−|S(a)| (i.e., the number

of all the users of the SIS minus the number of the users of the social network of a). For instance, in a

SIS comprising the most famous social networks (such as the SIS considered in our experiments), this

3Observe that, owing to the extremely low values of sensitivity, the computation of precision in Table 4 makes no

sense.
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number is higher than 109. This implies that, in 57% of cases, our approach is able to find the right

node among a set of 109 candidates.

6.4 Experiments on problem P2

The experiment presented in this section aims at computing the accuracy of our approach for the

resolution of problem P2 discussed in Section 4.2. In this case, we benefited from the support of a

human expert. We first applied a crawling technique to derive a sample of the SIS. As in the previous

experiment, to construct this sample, we applied BDS [16]. Our sample consisted of 93,169 nodes and

146,325 edges. 745 out of 146,325 were me edges. We randomly selected 160 me edges and put them

in a set M . We gave this set as input to our technique. The adopted string-similarity function was

QGrams, because it proved to assure the best precision. Our approach returned a set M ′ of 22 me

edges and a set of 133 non-me edges, from which we randomly selected a set ¬M ′ of 22 non-me edges

in such a way that me edges and non-me edges had the same weight. After this, we asked the human

expert to verify whether the elements of M ′ were actually me edges and the elements of ¬M ′ were

actually non-me edges. For each edge, the possible answers were true, false and unknown. Observe

that the value unknown reflects both uncertain cases and unreachable-page ones. At the end of the

experiment, we obtained that, as for M ′, the human expert returned tp = 16 true, fp = 4 false and 2

unknown. As for ¬M ′, she returned tn = 18 true, fn = 2 false and 2 unknown. Finally, we computed

the accuracy as the ratio
tp+tn

tp+tf+tn+fn
, obtaining the value 0.85, which denotes a very good performance

of our method.

6.5 Running time

In this section, we evaluate the running time of our approach. We carry out our experiments on a

server equipped with a 2 Quad-Core E5440 processor and 16 GB of RAM with the CentOS 6.0 Server

operating system. Specifically, we measure the time necessary for operations that involve network

accesses and in-memory operations. This allows us to quantify the value of the constants (I/Os and

in-memory operations) of the computational complexity defined in Section 5.

As a first experiment, we consider the I/O time versus the degree of nodes. We define five degree

bins according to the equi-depth binning strategy in such a way as to have approximately the same

number of nodes in each of them. This partition of nodes on the basis of their degree generated the

following five bins: (0..100], (100..250], (250..500], (500..750], (750..∞). Then, we visit each node and,

for each bin, we average the measured running time. Obtained results are reported in Figure 3.

From the analysis, it is evident that the I/O time has an almost linear trend w.r.t. the degree of

nodes.

As for the time of in-memory operations we know that typically they differ in time of (at least)

nine orders of magnitude w.r.t. the I/O time. For this reason, rather than measuring the time

of a single in-memory operation, we consider as an atomic operation the computation of the string
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Figure 3: Average I/O time vs node degree.

similarity (by adopting the QGrams similarity function) between the usernames of two nodes (which is

the most frequent operation that our approach performs) and we measure the time necessary for this

computation. Specifically, we estimate the average time for the computation of the string similarity

between the usernames of all the possible pair of nodes that we considered in our experiments. The

average running time for this atomic operation is 0.009 which still remains negligible w.r.t. the I/O

time.

The results of the experiments described in this section along with the computation complexity

analysis described in Section 5 allow us to conclude that our system is scalable. This statement

becomes even stronger if we consider that the discovery of missing me edge is a task that can be

performed in background.

7 Conclusion and future work

In this paper, we studied the problem of discovering missing me edges in a Social Internetworking

Scenario. The most evident information we can use to detect missing me edges, besides usernames,

concerns neighbors. By means of experimental campaign, we showed that state-of-the-art common-

neighbor techniques cannot be applied to solve this problem. Thus, the need of studying the problem

as new and finding a specific solution arises. We defined a suitable notion of “inter-social-network”

similarity that is recursive. Indeed, the common-neighbor notion has to necessarily rely on the same

notion because neighbors belong to different social networks. On the basis of this notion, we defined
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an algorithm to detect whether there is a missing me edge between two given nodes. The experimental

analysis of this approach on a real-life data set showed its correctness and completeness.

The results obtained in this paper can be useful for further investigations in the context of multiple

social networks. Indeed, the role of me edges is relevant for any phenomenon of information crossing

through different social networks, so discovering new me edges may strongly enrich the analysis capabil-

ities of social data, and strengthen multi-context analysis of people profiles. We believe that a number

of future directions of our research can be undertaken. A first research line we plan to investigate

is to apply our approach to privacy-aware solutions, in which user activities in a social network are

driven (through simple notifications or recommendations) in such a way that the privacy requirement

of a user of keeping separated two profiles can be autonomously controlled. Another extension we

are considering is to improve the effectiveness of our identification technique by using also additional

information such as behavioral contents (posts, messages, events, groups, etc.). A third direction of

further investigation is to study whether the empirical observation adopted in this paper to smartly

find good candidates is based on some theoretical property of social networks such as assortativity of

membership overlap.
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