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Abstract

The term assortativity indicates the tendency, for a network node, to be
directly connected to other nodes that are someway similar. In more technical
terms, a given feature is assortative in a network if the probability that an arc
exists between two nodes having this feature is greater than the probability
that an arc exists between two generic nodes. The role of assortativity in real-
world and online social networks has been largely investigated in the literature,
in which, starting from degree assortativity, several forms of assortativity have
been analyzed. When moving from a single-social-network to a multiple-social-
network perspective, new specific traits can be studied, also under the assorta-
tivity magnifying glass. This is the case of membership overlap among networks
(i.e., the fact that people belong to more online social networks) as expression of
different traits of users’ personality. In this paper, we deal with the above issue,
by defining two different measures of membership overlap assortativity, called
Loose and Constrained Inter-social-network Assortativity, respectively and by
observing that in two of the most representative online social networks, namely
Facebook and Twitter, membership overlap is assortative.

Keywords: assortativity, assortative mixing, online social networks,
membership overlap, Facebook, Twitter

1. Introduction

In real-world social interactions, individuals tend to associate with similar
ones, having common (social or demographic) characteristics, thus favoring ho-
mophilic relationships (Lazarsfeld and Merton, 1954; McPherson et al., 2001).
Moreover, it may happen that individuals act similarly to their social ties due
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to some form of mutual influence, often referred as contagion. Homophily and
contagion, together with opportunity structures influencing social tie formation
(e.g., spatial proximity, working in the same organization) and sociality mech-
anisms (unlike homophily, independent of the attributes of actors in the dyad)
are the main reasons why a real-world social network exhibits assortative mix-
ing (Ackland, 2013). Assortative mixing (often called assortativity) (Newman,
2002) is an empirical measure describing a positive correlation in the traits and
personal attributes of people socially connected with each other, as age, educa-
tion, socio-economic status, physical appearance, religion, etc. In other words,
considering for example socio-economic status, we say that it is assortative in a
community if the probability that two people with similar socio-economic sta-
tus belonging to this community are friends is higher than the probability that
randomly selecting two people, they are friends.

While assortativity can be in general empirically observed and there are a
number of reasonable ways to measure its level in social networks, it is more
difficult, sometimes impossible by means of pure observational studies, to un-
derstand why people in a social network are assortatively mixing w.r.t. a given
dimension (Shalizi and Thomas, 2011). Indeed, both opportunity structures
and sociality mechanisms can mask the real level of homophily. Moreover,
when assortativity is detected with respect to a changeable attribute or cul-
tural preference, it becomes very hard to understand whether this characteristic
is influencing friendship formation (following the homophilic rule encoded into
the old adage “birds of a feather flock together”) or, vice versa, it is friendship
that influences attitudes and preferences (as effect of social contagion, possibly
restricted to the case of imitation).

Despite the difficulty of explaining the exact underlying process, the empiri-
cal observation of assortative mixing of a social network has been considered of
remarkable importance since many years, with strong interest by sociologists,
as it represents the fundamental initial step to understand the phenomenon of
friendship formation and social influence in a community. In recent years, the
rapid growth of online social networks has reinforced interest in assortativity,
moving the center of gravity towards computer science, still keeping the role
of sociological aspects always crucial. Moreover, online social networks, with
the abundance of embedded information about people, even related to their
sentimental state and physical health (Shirazi et al., 2013), are huge living lab-
oratories for studying assortativity. On the other hand, it is not obvious whether
assortative mixing, especially that of psychological states (Bollen et al., 2011),
takes place also in situations where social ties are not mediated by physical
contacts but only by online networking services. Finally, online social networks
introduce new specific characteristics (e.g., Likes, reciprocity, etc.) which can
be analyzed under the assortativity magnifying glass, to improve our knowl-
edge about how people interpret and metabolize social network tools and the
psycho-sociological implications.

For all these reasons, studying for which properties online social networks
exhibit assortative mixing is an important issue in social network analysis. As
a matter of fact, degree-degree Newman (2002), BC-BC (where BC stands for
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betweenness centrality) (Goh et al., 2003), and happiness assortativity (Bliss
et al., 2012; Bollen et al., 2011) are types of assortativity already studied in
the context of online social networks. Data extracted from an online social
network, such as Facebook, Twitter, LiveJournal, etc., are typically used to
characterize it in terms of degree of assortativity (even negative, talking in this
case about disassortativity) with respect to a given trait, but also to infer general
rules concerning social influence in online social networks.

However, to the best of our knowledge, no observation aimed at studying
assortative mixing with respect to multi-social-network traits has been provided
so far. Indeed, a single user can join multiple social networks, leading to have
membership overlap among different social networks. Thus, membership overlap
occurs whenever a user belongs to different online social networks. This feature
plays an important role in online communities, as it allows the expression of
different traits of users’ personality (sometimes almost different identities), also
enabling, as side effect, the passage of information from one social network to
another. Moreover, a recent study has shown that higher levels of membership
overlap are positively associated with higher survival rates of online communities
(Zhu et al., 2014).

From all the above observations, it clearly follows that studying whether
online social networks exhibit assortative mixing with respect to membership
overlap is a new, challenging, and important problem. In more technical words,
the problem to address is to understand whether two users of a given online
social network S are friends in S with higher probability than the generic case
if they both belong to other online social networks.

In the present work, we study this issue, concerning explicit membership
overlap. Explicit membership overlap occurs when a user shows in the home
page of his account in a social network the link to his account in another social
network. We introduce two different definitions of assortativity (called Loose
and Constrained Inter-social-network Assortativity, respectively) and measure
their value in Facebook and Twitter, two of the most representative online
social networks (Gjoka et al., 2010; Patriquin, 2007; Vasalou et al., 2010). The
results obtained in this paper show that both real-life social networks exhibit
assortativity according to the Loose and Constrained notions.

A relationship between explicit membership overlap assortativity and im-
plicit membership overlap (i.e., when membership overlap is not declared by
the user) is also studied, showing that our assortativity can be related to a form
of social behavior which, as side effect, may reduce privacy consisting in keeping
separated two accounts in case of implicit membership overlap.

The plan of this paper is as follows: Section 2 presents related literature
about assortativity. The reference scenario is illustrated in Section 3. Section 4
presents our assortativity measures. Section 5 describes the experimental cam-
paign carried out on real social networks both to validate the new assortativity
measures and to compute the assortativity/disassortativity degree of social net-
works. Moreover, the interpretation of the results is also discussed. Section 6
illustrates an important implication of membership overlap assortativity in the
context of privacy. Finally, in Section 7, we draw our conclusions.
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2. Related Work

The concepts of assortativity and degree assortativity have been introduced
in the renowned paper of Newman (Newman, 2002). Here, the author defines
a measure of connection assortativity for networks and shows that real social
networks are often assortative. A further important study concerning social
network assortativity has been proposed in (Newman and Park, 2003), in which
the relation between clustering and assortativity in the communities composing
a social network is investigated. In the wake of (Newman, 2002), Catanzaro
et al. (2004b) showed that, while the majority of technological and biological
networks appear to be disassortative with respect to the degree, social networks
are generally assortative.

A study about the relationship between assortativity and centrality can be
found in (Goh et al., 2003). Degree assortativity for co-author networks is stud-
ied in (Catanzaro et al., 2004a). Xulvi-Brunet and Sokolov (2005) present two
algorithms to change the correlation degree among nodes in a network by keep-
ing unchanged the degree distribution. They show that, although the degree
distribution remains unchanged, the variations on assortativity level cause sig-
nificant changes on several other parameters, such as clustering coefficient, shell
structure and percolation. Kossinets (2006) performs some sensitivity analyses,
showing that, as for other structural parameters of social networks, assorta-
tivity can be dramatically altered by missing data. Ahn et al. (2007) analyze
assortativity on Cyworld, MySpace and Orkut. They compute the degree as-
sortativity of these networks and find that online social networks, encouraging
activities that cannot be copied in real life, do not show a similar degree corre-
lation pattern to real-life social networks. An opposite behavior is observed for
those online social networks handling activities similar to real-life ones. Hu and
Wang (2009) study the structural evolution of large online social networks and
argue that, with the huge increase of the size of these networks, many network
properties, such as density, clustering, heterogeneity, and modularity, show a
non-monotone behavior. In (Wilson et al., 2009), the authors found that inter-
action graphs present a higher assortativity than social graphs and proved their
conjectures on Facebook. An interesting application of degree assortativity is
proposed by Benevenuto et al. (2009) to classify YouTube users in spammers,
promoters, and legitimates. Johnson et al. (2010) study the relationship between
Shannon entropy and degree assortativity, finding that the maximum entropy
does not typically correspond to neutral networks but to either assortative or
disassortative ones.

The most relevant and recent studies on Twitter assortativity have been car-
ried out by Kwak et al. (2010); Bollen et al. (2011); Bliss et al. (2012). The anal-
ysis of Twitter assortativity (Kwak et al., 2010) showed that users with 1,000
followers or less are likely to be geographically close to their reciprocal-friends
and also have similar popularity with them. Bollen et al. (2011) investigate
the assortativity of psychological states in Twitter and show that assortativity
takes place at the level of happiness or subjective well-being. A study on the
assortativity of happiness in Twitter has been performed by Bliss et al. (2012).
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The main result is that average happiness scores of users are correlated with
those of their neighbors.

Our paper lies in the wake of the literature about assortativity mentioned
above. However, to the best of our knowledge, it represents the first attempt
to define assortativity on multiple social networks instead of on single social
networks. This paper extends the preliminary study on assortativity appeared
in (Buccafurri et al., 2013b). Herein, the Loose and the Strict Internetwork-
ing Assortativity have been initially defined and measured for Facebook. The
additional contributions of this paper can be summarized as follows. First, we
measure and study the Loose Inter-social-network Assortativity for Twitter.
Second, having investigated the limits of the Strict Internetworking Assorta-
tivity, we define the Constrained Inter-social-network Assortativity, which is
measured and studied for both Facebook and Twitter. Third, we provide the
interpretation of the experimental results that regard behavioral and sociolog-
ical aspects of social network people. Fourth, we introduce here a theoretical
framework more precise than (Buccafurri et al., 2013b), as the null model pre-
serves degree distribution and assortativity of the studied network whereas, in
(Buccafurri et al., 2013b), the null model assumes degree uniform distribution
and absence of degree assortativity. Finally, we identify an interesting rela-
tionship between explicit membership overlap assortative mixing and implicit
membership overlap, which discovers the (surprising) result that assortativity
may be source of private information leakage, as it can improve the chance of
disclosing implicit membership overlap.

3. Reference Scenario

We refer to a (real-life) scenario in which users operate in a multi-social-
network environment (Okada et al., 2005; Buccafurri et al., 2014a; Zhu et al.,
2014), thus joining multiple social networks. As usual in social network analysis,
we model social networks as graphs. To capture the interaction among nodes
belonging to different social networks, a special type of edge, namely me edge,
which interconnects different social networks, is introduced. A me edge from a
to b indicates that a and b are two accounts (in two different social networks)
of the same user.

The resulting graph is called Multi-Social-Network System and is defined as
follows.

Definition 3.1. A Multi-Social-Network System (MSNS) Ω is a directed graph
⟨N set, Eset⟩, where N set is the set of nodes, Eset is the set of edges (i.e., ordered
pairs of nodes), and N set is partitioned into subsets each corresponding to a
social network. Given a social network S belonging to Ω, we denote by N set(S)
the partition of N set including the nodes of S and by N(S) its cardinality.

Given d ≥ 0, we denote by N set
d (S) ⊆ N set(S) the set of nodes of S with

degree d and by Nd(S) its cardinality. Each social network is said to belong to
Ω. Given a node a ∈ N , we denote by S(a) the social network which a belongs
to. Eset is partitioned into two subsets Eset

f and Eset
m .
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Eset
f is said the set of friendship edges and Eset

m is the set of me edges. Eset
f

is such that for each (a, b) ∈ Eset
f , S(a) = S(b), whereas Eset

m is such that for

each (a, b) ∈ Eset
m , S(a) ̸= S(b). Given a social network S belonging to Ω, an

i-bridge b (of S) is a node of S such that there exists a me edge (b, x) such that
S(b) = S.

We say that b is an i-bridge (from S(b)) towards S(x). Given a node a ∈ N set,
we denote by Γ(a) the set of nodes in S(a) such that (a, b) ∈ Eset

f for each
b ∈ Γ(a). Γ(a) is said the set of neighbors of a. Given two social networks S
and T belonging to Ω, we denote by Bset(S) the set of the i-bridges of S and
by Bset(S, T ) the set of the i-bridges of S towards T . B(S) and B(S, T ) denote,
respectively, the cardinalities of the sets Bset(S) and Bset(S, T ). Given d ≥ 0,
we denote by Bset

d (S) ⊆ Bset(S) the set of i-bridges of S with degree d and
by Bset

d (S, T ) ⊆ Bset(S, T ) the set of i-bridges of S towards T with degree d.
Finally, we denote by Bd(S) and Bd(S, T ) the cardinalities of the sets Bset

d (S)
and Bset

d (S, T ).

Each node a of an MSNS represents a user account in S(a). The occurrence
of an edge (a, b) ∈ Eset

f means that b is a friend of a (observe that both a and
b belong to the same social network). Moreover, for some social networks, such
as Facebook, the friendship relation is symmetric, so that the corresponding
subgraph has a symmetric edge relation too. An edge (c, c′) ∈ Eset

m means that
c and c′ are accounts of the same user in two different social networks. As a
consequence, c is an i-bridge1 and a me edge exists from S(c) towards S(c′).

Example 3.1. Figure 1 shows an example of an MSNS, according to Definition
3.1, involving three social networks, namely Twitter, Facebook, and Google+.
For the sake of presentation, sometimes, we shorten “Facebook” into “Fb”,
“Twitter” into “Tw”, and “Google+” into “G+”. In this example of MSNS,
we have that N set = {n1, n2, . . . , n16}, N set(Fb)= {n1, n2, . . . , n4}, N set(Tw)=
{n5, n6, . . . , n12},N set (G+)= {n13, n14, n15, n16}, N(Tw)= 8, N(Fb)= 4, N(G+)=
4. An example of me edge is the edge (n7, n1). This models the fact that n7 and
n1 are two accounts of the same user in Twitter and Facebook, respectively.
The others me edges in Eset

m are (n6, n4), (n8, n13), and (n11, n14). Similarly
to (n7, n1), the two nodes of each me edge denote two accounts of the same
user in two different social networks. Friendship edges Eset

f are the remaining
edges. In the picture, me edges are represented by dashed lines. Gray nodes
(i.e., nodes n1−n4) represent accounts of Facebook, black nodes (n5−n12) are
Twitter accounts, whereas the remaining white nodes (n13 − n15) are Google+
accounts. Thus, for instance, S(n2) = Fb, S(n7) = Tw, S(n15) = G+. Observe
that Facebook, differently from Twitter and Google+, is a social network with
symmetric friendship relation and, therefore, a friendship edge (ni, nj) exists

1The prefix “i-” stands for “inter-social-networks” and is used to avoid ambiguity with the
classic notion of “bridge” (Easley and Kleinberg, 2010). Observe that an i-bridge is a node,
whereas a (classic) bridge is an edge.
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Figure 1: A visual representation of the MSNS of Example 3.1 composed of three social
networks.

in Facebook if and only if the edge (nj , ni) exists too. n6 is an i-bridge to-
wards Facebook, because there exists the me edge (n6, n4) and n4 belongs to
Facebook. The set of i-bridges of Twitter is Bset(Fb)= {n6, n7, n8, n11}, having
cardinality B(Tw)= 4. The set of the i-bridges of Twitter towards Facebook is
Bset(Tw,Fb)= {n6, n7}, with cardinality B(Tw,Fb)= 2. The set of neighbors of
n4 (i.e., Γ(n4)) consists of the nodes n2 and n3.

From now on, consider given an MSNS Ω.

4. Membership Overlap Assortativity

In this section, we define how to measure explicit membership overlap assor-
tativity. Recall that explicit membership overlap occurs when a user belonging
to a social network S1 declares to have an account also on a second social net-
work S2. To do this, the user first creates an HTML link to the URL of the
account on S2, and publishes this link in the home page of his account in S1.
According to the model introduced in the previous section, a user with explicit
membership overlap is an i-bridge and is the source of a me edge.

We measure two forms of membership overlap assortativity, depending on
the characteristics analyzed. The first characteristic is just to be an i-bridge
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(towards any social network). The second characteristic is to be an i-bridge
towards the same target social network. In particular, we define:

� Loose Inter-social-network Assortativity (LIA), as the positive correlation
of nodes of an online social network in the characteristic of being an i-
bridge.

� Constrained Inter-social-network Assortativity (CIA), the positive corre-
lation of nodes of an online social network S in the characteristic of being
an i-bridge from S to a given social network T (different from S).

To formally define the above measures, we need some preliminary definitions.

Definition 4.1. Let S and T be two social networks of Ω. We define:

1. The Loose i-Bridge Friend Fraction of S as

LBFS =


∣∣{b∈Bset(S) | Γ(b)∩Bset(S)̸=∅}

∣∣
B(S) if B(S) > 0

0 otherwise

2. The Constrained i-Bridge Friend Fraction of S towards T as

CBFS,T =


∣∣{b∈Bset(S,T ) | Γ(b)∩Bset(S,T )̸=∅}

∣∣
B(S,T ) if B(S, T ) > 0

0 otherwise

In words, the Loose i-Bridge Friend Fraction of a social network S measures
the fraction of the i-bridges of S having at least one friend that is an i-bridge.
The Constrained i-Bridge Friend Fraction of a social network S represents the
fraction of the i-bridges of S towards T having at least one friend that is an
i-bridge towards T too.

Example 4.1. Consider the MSNS represented in Figure 1. In this case, Bset(Tw)
is the set {n6, n7, n8, n11}, Bset(Tw, Fb) is the set {n6, n7}, whereas Bset(Tw, G+)
is the set {n8, n11}. As a consequence, LBFTw = 3

4 because, differently from
n11, the nodes n6, n7, and n8 have at least one i-bridge among their friends.
CBFTw,Fb = 1 because both n6 and n7 have a me edge towards Twitter and
are friends of each other. Vice versa, CBFTw,G+ = 0 because neither n8 nor n11

have an i-bridge towards Google+ among their friends.

Now, we introduce the concept of null model of a graph (Newman, 2002;
Bayati et al., 2010) adapted to our scenario. This notion provides the theoretical
reference necessary to measure the bias of real-life social networks w.r.t. the case
in which no membership overlap assortativity exists. This approach is commonly
adopted in literature in this context (Holme and Zhao, 2007; Bliss et al., 2012).
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Definition 4.2. The null model of Ω = ⟨N set, Eset
f ∪Eset

m ⟩ is the random MSNS

Ω̂ = ⟨N set, Eset
f ∪ Êset

m ⟩ such that:

P
(
(a, b) ∈ Êset

m

)
=

∣∣∣{(p, q) ∈ Eset
m | p ∈ S(a), q ∈ S(b), p ∼ a, q ∼ b}

∣∣∣∣∣∣{(p, q) | p ∈ S(a), q ∈ S(b), p ∼ a, q ∼ b}
∣∣∣

where P(X) stands for probability of X and x ∼ y denotes that |Γ(x)| = |Γ(y)|.
Given a social network S in Ω, we denote by Ŝ the corresponding random social
network in Ω̂.

Therefore, the null model of Ω is obtained by keeping the nodes of Ω and its
friendship edges and by randomly replacing the source node a and the target
node b of any me edge with, respectively, a node a′ ∈ S(a) with the same degree
as a and a node b′ ∈ S(b) with the same degree as b. This way, we preserve
node degree distribution and node degree assortativity, so that the measure of
membership overlap assortativity is not affected by the node degree distribution
and assortativity of the networks analyzed.

We recall that, social networks show degree assortativity meaning that there
is positive correlation between the degree distribution of two nodes at the end
of an edge randomly chosen Newman (2002). Degree assortativity is the most
common form of assortativity used in network analysis, whereby similarity be-
tween nodes is defined in terms of the number of connections the nodes have
Piraveenan et al. (2012).

The next step is to compute Loose i-Bridge Friend Fraction (for a given
social network S in Ω) and Constrained i-Bridge Friend Fraction (for a given
pair of social networks S and T in Ω) in the null model. This allows us to
define our measures of assortativity as a difference between the value of Loose
i-Bridge Friend Fraction and Constrained i-Bridge Friend Fraction (as defined
in Definitions 4.1) observed in the real-life social networks and the theoretical
values computed in the null model.

Given a social network S in Ω, its Loose i-Bridge Friend Fraction in the
null model Ω̂ is the probability of an i-bridge of Ŝ to have another i-bridge as
a friend. Similarly, given two social networks S and T in Ω, the Constrained
i-Bridge Friend Fraction of S toward T in the null model Ω̂ is the probability of
an i-bridge of Ŝ towards T̂ to have an i-bridge towards the same social network
T̂ as a friend.

This is encoded in the following definition.

Definition 4.3. Given two social networks S and T in Ω, we define:

1. The Loose i-Bridge Friend Fraction of S in the null model Ω̂ as:

L̂BFS = P
(
Γ(b) ∩ Bset(Ŝ) ̸= ∅ | b ∈ Bset(Ŝ)

)
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2. The Constrained i-Bridge Friend Fraction of S towards T in the null model
Ω̂ as:

ĈBFS,T = P
(
Γ(b) ∩ Bset(Ŝ, T̂ ) ̸= ∅ | b ∈ Bset(Ŝ, T̂ )

)
where P(X) stands for probability of X and, we recall, Bset(Ŝ) is the set
of i-bridges of Ŝ and Bset(Ŝ, T̂ ) is the set of the i-bridges of Ŝ towards T̂
– see Definition 3.1.

The above probabilities can be computed by the following theorem, where
we model degree assortativity by increasing by a coefficient e the probability
that the ends of an edge chosen at random are nodes with same degree, w.r.t.
the case of absence of assortativity.

Theorem 4.1. Let S and T be two social networks of Ω, u be the maximum
degree of i-bridges of S, and e the degree assortativity parameter, defined as the
increment of probability of having as neighbor an i-bridge with the same degree

w.r.t. the no-degree-assortative case (i.e.,
Ng(S)
N(S) ), then:

L̂BFS =
∑u

d=1
Bd(S)
B(S) ·

(
1−

∏u
g=1 P

(
Ng(S)− δgd, γgd, Bg(S)− δgd

))
(1)

ĈBFS,T =
∑u

d=1
Bd(S,T )
B(S,T ) ·

(
1−

∏u
g=1 P

(
Ng(S)− δgd, γgd, Bg(S, T )− δgd

))
(2)

where:

P(n, a, b) =
∏b

k=0
n−a−k
n−k

γgd =


(

Ng(S)
N(S) + e

)
· d if g = d(

Ng(S)
N(S) − e

u−1

)
· d otherwise

δgd =

{
1 if g = d
0 otherwise

and, we recall from Definition 3.1, N(S) is the number of nodes of S, B(S) is
the number of i-bridges of S, B(S, T ) is the number of i-bridges of S towards
T , Nd(S) is the number of nodes of S with degree d, Bd(S) is the number of
i-bridges of S with degree d and, finally, Bd(S, T ) is the number of i-bridges of
S towards T with degree d.

Proof. First, we prove (1). L̂BFS is computed as the sum for any degree
1 ≤ d ≤ u of the product of two factors: (i) the probability of having an

i-bridge with degree d (i.e., Bd(S)
B(S) ) and (ii) the probability that this i-bridge

has another i-bridge among its neighborhood. To compute the second term,
the d neighbor nodes of the considered i-bridge are partitioned on the basis of
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their degree into u sets, one for each possible degree and γgd · d is the size of
the g-th set. The probability of not finding an i-bridge inside the g-th set is
P
(
Ng(S) − δgd, γgd, Bg(S) − δgd

)
where Ng(S) and Bg(S) are the number of

nodes with degree g and the number of i-bridges with degree g, respectively.
Observe that when g = d the total number of nodes and i-bridges have to
be reduced by 1 because we must ignore the starting i-bridge (δgd plays this
role). The function γgd takes into account the degree assortativity, modeled by
e. Specifically, the probability of having as neighbor an i-bridge with the same

degree (
Ng(S)
N(S) ) is increased by e and this additional probability is uniformly

subtracted from the remaining possible degrees. P(n, a, b) can be computed by
observing that it follows a hypergeometric distribution and, thus:

P(n, a, b) =

(
b
0

)
·
(

n− b
a

)
(

n
a

) =
(n− b)!

a! · (n− b− a)!
· a! · (n− a)!

n!
=

=
(n− b)!

n · (n− 1) · (n− 2) · · · · (n− b)!
· (n− a)!

(n− a− b)!
=

1

n · (n− 1) . . . (n− b+ 1)
·

· (n− a) · (n− a− 1) . . . (n− a− b+ 1) · (n− a− b)!

(n− a− b)!
=
∏

k=0..b

n− a− k

n− k

The proof of (1) is thus concluded.
The proof of (2) is obtained as for (1), by considering the set of i-bridges

from S towards T instead of the set of all i-bridges.
Now we are ready to give the formal definition of Loose Inter-social-network

Assortativity and Constrained Inter-social-network Assortativity.

Definition 4.4. Let S be a social network of Ω. We define the Loose Inter-
social-network Assortativity of S as:

LIAS = LBFS − ̂LBFS

LIA measures how much a social network is biased w.r.t. the null model in
terms of probability of finding i-bridges among the friends of an i-bridge. CIA
can be defined as follows:

Definition 4.5. Let S and T be two social networks of Ω. We define the
Constrained Inter-social-network Assortativity of S w.r.t. T as:

CIAS,T = CBFS,T − ĈBFS,T
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Also in this case, this measure gives us an index of how much the behavior
of i-bridges is far from the random case. In particular, the higher the value of
CIAS,T , the higher the correlation among i-bridges from S to T . To measure
this form of bias when considering any target social network T , we introduce
the following definition.

Definition 4.6. Let S be a social network of Ω. We define the Constrained
Inter-social-network Assortativity of S as:

CIAS =

∑
T∈(Ω\{S}) B(S, T ) · CIAS,T∑

T∈(Ω\{S}) B(S, T )

Intuitively, CIA of a social network measures how much it is biased w.r.t. the
null model in terms of probability of finding i-bridges among the friends of an
i-bridge, which are coherent in terms of target social network. This is obtained
by computing the weighted mean of the Constrained Inter-social-network Assor-
tativity values of S w.r.t. the other social networks, where the weight of CIAS,T

is the number of i-bridges from S towards T . Indeed, we expect that the higher
the number of i-bridges the more relevant a social network in the computation of
CIA. As a matter of fact, our notion of Constrained Inter-social-network Assor-
tativity is conceived to improve Strict Internetworking Assortativity presented
in (Buccafurri et al., 2013b), which associates the same weight with each so-
cial network. The drawback of Strict Internetworking Assortativity is that this
measure is too much susceptible to the measured CIA w.r.t. very marginal and
little used social networks.

Example 4.2. Consider again the MSNS represented in Figure 1. To com-
pute L̂BF Tw, we need B(Tw)= 4, B1(Tw)= B2(Tw)= 1, B3(Tw)= 2, N(Tw)= 8,
N1(Tw)= 4, N2(Tw)= N4(Tw)= 1, N3(Tw)= 2, u = 3. For the sake of simplicity,
we assume that this network has no degree assortativity (i.e., e = 0). As a conse-

quence, L̂BF Tw =
1
4 ·
(
1−P(3, 1/2, 0)·P(1, 1/8, 1)·P(2, 1/4, 2)

)
+ 1

4 ·
(
1−P(4, 1, 1)·

P(0, 1/4, 0) · P(2, 1/2, 2)
)
+ 1

2 ·
(
1 − P(4, 3/2, 1) · P(1, 3/8, 1) · P(1, 3/4, 1)

)
≈

1
4 ·
(
1− 1 · 0.88 · 0.66

)
+ 1

4 ·
(
1− 0.75 · 1 · 0.38

)
+ 1

2 ·
(
1− 0.63 · 0.63 · 0.25

)
= 0.74

In words, Tw shows no Loose Inter-social-network Assortativity. Indeed,
three of four of its i-bridges have another i-bridge among their neighbors, thus
LBFTw = 0.75 and LIAFb = LBFFb − L̂BF Fb = 0.01. Obviously, as we are
dealing with a toy syntectic example, the results about assortativity are mean-
ingless.

5. Experiments

The aim of this section is to test the the proposed assortativity measures on
real-life data sets. We studied membership overlap assortativity on Facebook

and Twitter, which are the online social networks with the highest number of
users and have attracted the attention of many researchers (see, for instance,
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(Gjoka et al., 2010; Patriquin, 2007; Kwak et al., 2010)). According to our
theoretical framework, we consider Facebook and Twitter as part of a Multi-
Social-Network System (MSNS) composed of 9 real-life online social networks.
In the following sections, we describe the datasets used for our analysis, the null
model instance, the results obtained, and, finally, we discuss about the main
issues arisen from our study.

5.1. Collected Data and Sample Significance

In our experiments, we consider an MSNS consisting of the following so-
cial networks: Facebook, Twitter, YouTube, LiveJournal, Flickr, MySpace,
LinkedIn, Google+, and VK, selected among the most popular. To extract rela-
tionships between social network accounts (both friendship edges and me edges),
we use XFN and FOAF standards. XFN (XHTML Friends Network) (XFN,
2013) uses an attribute, called rel, to specify the kind of relationship between
two accounts. Possible values of rel are me, friend, contact, co-worker, and
parent. FOAF (Friend-Of-A-Friend) (Brickley and Miller, 2013) is a human
readable ontology serialized into an XML document encoding human relation-
ships.

We cannot use existing datasets as they do not contain information about
me edges. For this reason, we extract samples by ourselves. To do this, we
cannot rely on a specific crawling technique because, in this case, the way
of proceeding of the crawler introduces some biases in the parameter esti-
mation (for instance, a crawler specific for i-bridges, such as BDS (Bucca-
furri et al., 2012a, 2014b) and SNAKE (Buccafurri et al., 2014c), produces
a sample with a fraction of i-bridges higher than the average fraction of i-
bridges in the network, thus biasing the estimation of LIA and CIA). Thus, to
avoid biases, we uniformly sample the networks of our interest (i.e., Facebook
and Twitter). The uniform sampling of a social network is generally not
trivial. However, for Facebook and Twitter, this activity is facilitated by
how user identifiers are organized. Both social networks adopt 64-bit identi-
fiers for user accounts. In particular, the URL address of the profile page of
a Facebook (resp. Twitter) user is http://www.facebook.com/YYY (resp.,
http://twitter.com/account/redirect_by_id?id=YYY), where YYY is a 64-
bit numeric identifier. Thanks to this mechanism, to obtain a uniform sample,
it suffices to generate numbers uniformly at random in a suitable interval and,
for each number, to verify whether it corresponds to an existing account (be-
cause an account could have been deleted). If this is the case, we compute the
number of its friends, to estimate the average degree of the investigated network
(which is one of the parameters of the network null model). Moreover, if the
account is an i-bridge, then its first- and second-level neighbors are visited, to
obtain the information necessary for the computation of Loose and Constrained
Inter-social-network Assortativity. These MSNS samples are clearly centered
on the social network to investigate, because they mainly represent its users,
their friendship and me edges towards the other networks of the MSNS. Ob-
serve that, to avoid bias, nodes of the first- and second-level neighbors of the
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Figure 2: Convergence of LBF versus number of i-bridges.

Number of seen nodes 9,452,867

Number of visited nodes 136,103

Number of i-bridges 1142

Number of edges 9,311,127

Table 1: The characteristics of our dataset.

starting i-bridge at each iteration are not considered in the computation of our
assortativity measures and in the estimation of social network parameters.

As it generally happens in sample-based analysis, one of the major problems
of the extraction of data for social networks analysis is to obtain a sample
with size sufficient to correctly represent the original social network w.r.t. a
given parameter. In our case, because we focus on the LIA parameter, we use
a convergence-based approach, by iterating the i-bridge population described
above until a stable value of LBF is obtained. Figure 2 shows the trend of LBF
measured during the data collection. We observe that, after collecting about
100 i-bridges, the value of LBF measured keeps stable in the interval [0.85, 0.90]
and converges to about 0.86. As a consequence, we conclude that also a limited
number of i-bridges is sufficient to estimate LBF with good precision. However,
our experiments have been carried out on a number of i-bridges much higher
than the minimum one obtained by the convergence analysis reported above.

The characteristics of the real-life dataset so obtained are presented in Table
1. The dataset can be download at http://www.infolab.unirc.it/moa.html.
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S N(S) B(S) d
Twitter 554, 750, 000 5, 502, 461 62.9
Facebook 1.06 · 109 1, 253, 120 78.7

Table 2: Number of nodes N(S), number of bridges B(S), and average degree d of the null
model build for Twitter and Facebook.

5.2. Building the Null Model

To compute our measures of assortativity on Facebook and Twitter, we
need to build an instance of the null model defined in 4.2. To do this, we have
to estimate the parameters of these social networks as required by Theorem
4.1. Specifically, the number of users of Facebook is taken from the annual
report of December 2012 (Facebook, 2012), whereas that of Twitter is taken
from Brain (2013), which are the reports closest to the period of our sampling
activity. The number of i-bridges is obtained by multiplying the fraction of
i-bridges in our sample by the number of users. As for degree distribution of
nodes and i-bridges it is well known that degree distribution in social networks
follows a power law (Lu and Wang, 2014; Buccafurri et al., 2013a). Thus, in
our model, we used a power law distribution approximating the social network
characteristics measured in our sample. In particular, concerning the average
degree (d), we compute both that measured for only publicly accessible accounts
(as done in (Gjoka et al., 2010)) and the global average degree obtained as the
ratio between the number of edges and the number of visited nodes. We set d
to the last one because we consider all nodes of our dataset. Also the number
of i-bridges towards the diverse social networks has been inferred from that
measured in our dataset. Finally, for degree assortativity, we used the value
0.2 as estimated by Ugander et al. (2011). This value is consistent with earlier
studies in which it ranges from 0.120 to 0.363 (Newman, 2002, 2003). The
values of all these parameters are summarized in Table 2, where N(S) and
B(S) denotes the number of nodes and the number of bridges of the network S
(Definition 3.1). After the estimation of the null model parameters for Facebook
and Twitter, we are ready to start our experimental campaign.

5.3. Measuring the Membership Overlap Assortativity

In this section, we compute our assortativity measures on Twitter and
Facebook. First, we measure the Loose i-Bridge Friend Fraction LBF as the
fraction of i-bridges having an i-bridge in its neighborhood in our sample. Then,
we compute L̂BF by applying Theorem 4.1. Finally, LIA is computed on the
basis of Definition 4.4. The values of all these measures are reported in Table
3.

Now, we consider the Constrained Inter-social-network Assortativity. Specif-
ically, towards each social network of the MSNS, we compute the Constrained i-
bridge fraction CBF (according to Definition 4.1), and the Constrained i-bridge

fraction ĈBF in the null model (by means of Theorem 4.1). Then, we compute
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LBF L̂BF LIA
Twitter 0.861 0.110 0.751
Facebook 0.464 0.042 0.422

Table 3: Values of Loose i-Bridge Friend Fraction (LBF), Loose i-Bridge Friend Fraction of the

null model (L̂BF ), and Loose Inter-social-network Assortativity (LIA) measured in Twitter

and Facebook.

SN CBF Tw,SN ĈBF Tw,SN CIATw,SN weight

Facebook 0.701 0.024 0.677 0.380
YouTube 0.603 0 0.603 0.157

LiveJournal 0.923 0 0.923 0.015
Flickr 0.683 0 0.683 0.073
MySpace 0.574 0.002 0.572 0.163
LinkedIn 0.882 0 0.882 0.118
Google+ 0.280 0 0.280 0.029

VK 0.839 0 0.839 0.065

Table 4: Constrained i-bridge fraction CBF , Constrained i-bridge fraction ĈBF in the null
model, and Constrained Inter-social-network Assortativity (CIA) of Twitter towards the other
social networks.

the Constrained Inter-social-network Assortativity CIA w.r.t. the other social
networks, as described in Definition 4.5. The results are reported in Table 4 for
Twitter and Table 5 for Facebook.

We recall that the Constrained Inter-social-network Assortativity defined in
Definition 4.6 is obtained by computing the weighted mean of the Constrained
Inter-social-network Assortativities of S w.r.t. the other social networks. To
this aim, the last column of Tables 4 and 5 reports also the weight of such
terms.

This way, we compute CIATw = 0.675 and CIAFb = 0.894 according to
Definition 4.6.

To study the dependency of our results on degree assortativity and node
degree distribution included in the null model, we repeated our analysis for dif-
ferent values of degree assortativity and skew of the power law distribution. We
observed that the more the skew, the more the membership overlap assorta-
tivity. The same happens for degree assortativity, although in a much weaker
way. In particular, the lowest values of LIA and CIA (i.e., LIATw = 0.397,
LIAFb = 0.407, CIATw = 0.514 and CIAFb = 0.833) were obtained in the case
of degree assortativity and skew equal to 0. Thus, moving from the simplified
null model (adopted in Buccafurri et al. (2013b)), where no degree assorta-
tivity is considered and degrees are distributed uniformly (skew equal to 0),
towards a realistic null model, allows us to better highlight the strong tendency
of real-life social networks to exhibit assortative mixing in membership overlap.
An intuitive explanation of this phenomenon is that assuming the uniform de-
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SN CBF Fb,SN ĈBF Fb,SN CIAFb,SN weight

Twitter 1 0 1 0.135
YouTube 0.870 0.001 0.869 0.173

LiveJournal 1 0 1 0.023
Flickr 1 0 1 0.090
MySpace 0.859 0.015 0.844 0.534
LinkedIn 1 0 1 0.045
Google+ 0 0 0 0

VK 0 0 0 0

Table 5: Constrained i-bridge fraction CBF , Constrained i-bridge fraction ĈBF in the null
model, and Constrained Inter-social-network Assortativity (CIA) of Facebook towards the
other social networks.

gree distribution in the null model gives i-bridges more chances to have other
i-bridges in the neighborhood w.r.t. the case of skewed distribution, where the
most i-bridges have a so low degree that such a chance is negligible. Similar
consideration can be done for degree assortativity, as the tendency for high de-
gree i-bridges to mix only with other high degree nodes, reduces the number
of potential i-bridge friends. Thus, including in the null model degree assorta-
tivity and skewed node degree distribution decreases the (ground) membership
overlap assortativity w.r.t. the simplified null model.

5.4. Analysis of the Results and Discussion

Now, we analyze the main results obtained in our experiments, which are
summarized in Table 6. To fully understand them, it is worth recalling that
even the most assortative networks have an assortativity degree less than 0.4.
For instance, in the paper of Newman (Newman, 2002) discussed in Section
2, the most assortative network was the physics coauthorship one, which had
an assortativity value equal to 0.363. On the basis of this reasoning, we can
conclude that both Twitter and Facebook are highly assortative, as far as
membership overlap assortativity is concerned.

In practice, we can state that, given a user of Facebook or Twitter with an
account also in another social network (say T ), it is very likely that at least
one of his friends has an account in another social network (say T ′) – this is
expressed by the high value of LIA – and that T and T ′ coincide – this is implied
by the high value of CIA.

Keeping in mind that this paper does not attempt to separate homophily and
contagion (or possible further causes of assortative mixing), as usually done in
papers dealing with assortativity (e.g., (Bliss et al., 2012; Bollen et al., 2011)), we
try in some cases to give an intuitive explanation of our empirical observations.
Anyway, future work could be done to investigate these aspects.

Intuitively, the high LIA could be related to the propensity of people to
imitate their acquaintances in the declaration of me edges or, in general to be
influenced. As a matter of fact, the declaration of a me edge typically results
in an insertion of the logo/url of the target social network in the home page
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LIA CIA
Twitter 0.751 0.675
Facebook 0.422 0.894

Table 6: Loose Inter-social-network Assortativity (LIA) and Constrained Inter-social-network
Assortativity (CIA) of Twitter and Facebook.

of the user. Thus, the friends of this user could be enticed to declare their
secondary accounts in other social networks too. Conversely, it appears little
plausible that the characteristic of having a declared me edge in the user’s home
page can cause a homophilic friendship formation. However, this cannot be
completely excluded, because membership overlap could be seen as a trait with
social value, which could be related to the perceived level of expertise in the
artificial-technological dimension (with respect to which a homophilic behavior
could occur).

Consider now the results about CIA. By analyzing the results reported in
Table 4 and 5, it is evident that ĈBF is always very low. Indeed, in this case we
focus on a single target social network, so that very few i-bridges are considered
in the null model. Therefore, this implies a very low probability of finding
i-bridges having as neighbors i-bridges towards the same social network.

Note that, the low value of weight associated with some social networks is
due to the low number of their i-bridges. Indeed, these social networks have a
low number of users w.r.t. the others and the density of i-bridges is intrinsically
low. Clearly, the low number of i-bridges of these social network could lead to
a few accurate measure of the actual CIA w.r.t. these specific social networks.
However, recall that the final value of the CIA of a social network is computed
by weighting (on the basis of the number of i-bridges) the contribution coming
from the CIA w.r.t. each social network of the MSNS. As a consequence, the
final value measured for CIA is few susceptible to the measure error of the
contributions associated with these marginal and little used social networks.

The value of CIA of Twitter is lower than that of Facebook. This is moti-
vated by considering that Facebook allows its users to declare more me edges,
whereas Twitter allows for just one me edge to be declared. As a consequence,
in Facebook the same i-bridge may contribute to the increment in the CIA w.r.t.
more than one social network (by contrast, in Twitter an i-bridge contributes
only one time).

The decrement of the Twitter CIA may have several justifications. As
for Flickr, which is used to share and embed personal pictures, consider that
Facebook is a “personal” social network (i.e., it is centered on the person), and,
thus, it is natural that a user completes his personal profile by a me edge to his
personal photo collection. By contrast, because Twitter is centered on topics,
it is less presumable that its members use their unique me edge at disposal to
link their photo albums. Concerning MySpace, the number of its active users has
steadily declined since 2008 (Torkjazi et al., 2009). As a consequence, whereas
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Facebook users (who have the possibility to declare more me edges) have no
problem to keep their existing references to MySpace, Twitter users prefer to
point their unique me edge to a more popular social network.

An interesting observation can be drawn by examining the last row of Tables
4 and 5. In fact, there are no i-bridges from Facebook to VK (VKontakte) (its
weight is 0), whereas there are i-bridges from Twitter to VK (the weight is higher
than 0). This fact could be explained by considering that VK is the “Russian
Facebook”. As a consequence, it may happen that a user joining Facebook is
not motivated to join VK, and vice versa.

Observe that our assortativity measures are not influenced, as might appear
from a first analysis, by the popularity of the target social network, because the
null model used to compute the bias already takes into account the numerosity
of each social network, as the involved random variables have constrained car-
dinality. For instance, consider the results concerning me edges from Twitter

to Facebook. We observe that most of Twitter users (about 70%) declaring a
me edge towards Facebook have a friend behaving in the same way. Obviously,
a relevant portion of this percentage is not related to the membership overlap
correlation, as Facebook is highly attractive in the world of online social net-
works, and the measure of assortativity must be able to isolate the correlation
component. This is what happens in our case, as the value of ĈBF Tw,Fb (which
is measured on the null model) demonstrates that if a Twitter user would
choose the target of his me edge in a random way (i.e., with no correlation),
then the probability of choosing Facebook is by far the highest one. In this
sense, Facebook “dazzles” social network users in their me edge declaration, but
the measured CIA is not influenced by this phenomenon.

Finally, note that although the fraction of i-bridges w.r.t. the total number
of social network users is low (about 1 account in 250 is an i-bridge), the results
obtained in this paper are still significant because they concern a population
of almost 7 million of users (because Facebook and Twitter together involved
more than 1,6 billions of accounts in 2013).

6. A Privacy Threat related to Membership Overlap Assortativity

In this section, we show that membership overlap assortativity can be used
as a form of correlation to improve, as done in statistical attacks, the effective-
ness of those techniques able to discover that two accounts belonging to different
social networks are associated with the same user. Indeed, for disparate reasons
(often related to privacy concerns (Lee et al., 2013)), users do not always make
their role of i-bridge explicit by specifying their me edges. In this case, we talk
about implicit membership overlap. In the underlying graph, implicit mem-
bership overlap results in a big number of missed me edges. Discovering these
edges, also in case of anonymized profiles, may represent an issue with potential
(business) benefits for third parties but, obviously, also a serious threat to users’
privacy. On the other hand, solving this missing-link-detection problem gives us
information about the dynamic evolution of the MSNS, because we may expect
that a portion of missing me edges will be inserted in the graph later.
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Figure 3: A fragment of an MSNS in which me edges and possible me edges are shown.

This issue has been recently investigated in the literature (Buccafurri et al.,
2012b; Narayanan and Shmatikov, 2009). All these solutions, besides lexical
similarity between account names, use information coming from the neighbor-
hood to compute the likelihood that two accounts belonging to different social
networks are associated with the same user.

In this section, we highlight that a relationship between explicit membership
overlap assortativity (studied in this paper) and implicit membership overlap
exists, in the sense that assortativity can be related to a form of social behavior
which, as side effect, may be source of private information leakage, as it can
improve the chance of disclosing implicit membership overlap. In other words,
the knowledge acquired in this paper about explicit membership overlap as-
sortativity allows us to increase the effectiveness of those approaches (such as
(Buccafurri et al., 2012b; Narayanan and Shmatikov, 2009)) that, on the basis
of neighborhood information, discover implicit membership overlap.

Consider the example of Figure 3, showing a fragment of an MSNS composed
of three social networks (S1, S2, and S3). The node a is the account in S1 of
the user u, for whom we are looking for other accounts in other social networks
of the MSNS.

Observe that, if LIA of S(a) is high, then it is presumable that if a is an
i-bridge, then at least one of its neighbors is an i-bridge too. As a consequence,
if no friend of a is an i-bridge, then it is expectable that a is not an i-bridge.
Otherwise (i.e., a friend of a is an i-bridge), we expect that u is an i-bridge.

20



Therefore, we start a search to find other accounts of u.
The first contribution of our study in increasing the effectiveness of the

above approaches regards the selection of the accounts to be analyzed to dis-
cover that/those belonging to a given user. Indeed, it would be time-consuming
to test a large number of accounts, but thanks to the results obtained about
assortativity, this test can be performed only on a limited set of nodes. In
particular, with reference to Figure 3, we can consider first the neighbors of a
(i.e., nodes b . . . e) and then those nodes having a me edge (nodes b and c). The
neighbors of the nodes target of the above me edges are promising for being
other accounts of u.

The second contribution of our study regards the decision about whether a
selected account belongs to a given user. In particular, given the account a of
the user u, the probability that an account x, belonging to the set of candidates,
is associated with u can be biased also on the basis of CIAS(a),S(x). Indeed, a
high value of CIAS(a),S(x) increases the above probability due to the fact that
S(x) is a “preferential” social network for the i-bridges of S(a).

To be more concrete, consider again the example shown in Figure 3 and
suppose that the node a is the account of Mr. John Smith on Facebook, which
has johnsmith as screen name (i.e., the URL associated with the node a is
https://www.facebook.com/johnsmith), the node g is an account in MySpace

with screen name j smith (https://myspace.com/j_smith) and the node f is
an account in Twitter with again screen name j smith (https://twitter.com/
j_smith). In this example, as already said, the nodes f and g are selected as
possible accounts of Mr. John Smith. Every discovering techniques operating on
string similarity and/or neighborhood information (such as (Buccafurri et al.,
2012b; Narayanan and Shmatikov, 2009)) would return the same probability of
being account of the same user for the pair (a, f) and the pair (a, g), because f
and g have the same screen name and equal neighbors (i.e., no friend). So, on
the basis of the above techniques, the probability that f is an account of Mr.
Smith is the same as the probability that g is an account of Mr. Smith.

By contrast, thanks to the knowledge about the explicit membership over-
lap assortativity of the involved social networks, and, in particular, that CIA
of Facebook towards Twitter is much higher than that of Facebook towards
MySpace, we guess that https://twitter.com/j_smith is more likely an ac-
count of Mr. Smith than https://myspace.com/j_smith. Thus, assortativity
allowed us to prefer one possibility w.r.t. another one, which the previous ap-
proaches considered equivalent.

7. Conclusion

In this paper, we have observed that online social networks exhibit assorta-
tivity with respect to explicit membership overlap. To do this, we have provided
two measures of assortativity, which captures two different traits with respect
to which assortative mixing is studied. According to the approach commonly
used in network theory, based on the usage of the null model as a term of com-
parison, we have verified that both Facebook and Twitter are assortative w.r.t.
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these two measures. This result is very interesting, insofar the past literature
has shown that studying assortativity in social networks is per se important
but also because the present study does not check whether a given assorta-
tive behavior still exists when moving from real-life social networks to online
social networks, but it deals with assortativity with regard to a characteristic
specific of the online-social-network world. In particular, membership overlap
is a crucial trait in this world seen in its globality, where hundreds of online
social networks offer different (even opposite) characteristics in which one can
recognize and where the passage of information from one social network to an-
other can be conveyed only through membership overlap. Therefore, our result
about assortativity w.r.t. membership overlap affects the knowledge on how
the information flow crossing two social networks is structured (issue that we
plan to analyze in the future). The significance of the present study about
assortativity is thus related to the role that the concept of assortativity has
in the comprehension of complex networks. For example, it has been realized
that assortative networks w.r.t. node degree manifest resilience to node deletion
(Newman, 2002). Our form of assortativity leads to a similar result regarding
the interconnection between social networks, by showing that points of intercon-
nections are more resilient than the ground-truth case. As an another example,
it was recently shown in Ciglan et al. (2013) that degree assortativity has an
important role in community detection of real-world networks. It could be thus
interesting to investigate whether the new form of assortativity studied in this
paper can affect community detection in online social networks when the target
is to find communities overlapping between multiple social networks. As further
proof of significance of our research we have concluded our study by identify-
ing an interesting relationship between explicit membership overlap assortative
mixing and implicit membership overlap, which discovers the surprising result
that assortativity may be source of private information leakage, as it can im-
prove the chance of disclosing implicit membership overlap. Keeping in mind
that assortativity is only an empirical observation, we tried to explain, through
homophily and contagion, why our form of assortativity holds in online social
networks. However, this issue merits further analysis involving also sociological
aspects and different methodologies, which we plan to deal with in our future
research.
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