
Università degli Studi di Pavia
Facoltà di Ingegneria

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL’INFORMAZIONE

PhD in Electronics, Computer Science and Electrical Engineering

PhD Thesis
XXX cycle

Workload characterization and autoscaling in
Cloud environments

Candidate:

Momin I.M. Tabash
Matricola 432910

Supervisor:

Prof. Maria Carla Calzarossa

Co-supervisors:

Prof. Luisa Massari
Prof. Daniele Tessera

Academic Year 2016/2017

Acknowledgements

This thesis is the result of hard work and commitment to achieve one of my noble goals

in life. First of all, my PhD journey was not a straight path: I have experienced a lot of

changes in my personal attitudes between happiness and struggling. I felt quite lucky

to work with a great team in the Performance Evaluation Lab. I should take this oppor-

tunity to express my sincere gratitude to my supervisors Prof. Maria Carla Calzarossa,

Prof. Luisa Massari and Prof. Daniele Tessera for their excellent supervision, feed-

back and guidance. Without their efforts this work would have been impossible. Many

thanks to them for giving me different opportunities to attend summer schools and

international conferences and for their encouragement.

On a more personal level, I would like to thank my parents; my father Ismail and

my mother Fathiya for their love and support. Last but not least, I will not forget my

brothers and sisters for their continuous support demonstrated in many ways. Special

thanks to everybody engaged in supporting me during my PhD journey.

Thank you all!

i

Abstract

Cloud computing is becoming a successful key factor in many types of business,

because it enables an efficient model for resource provisioning. Even though resources

can be provisioned on demand, they need to adapt quickly and in a seamless way to the

workload intensity and characteristics and satisfy at the same time the desired perfor-

mance levels. Autoscaling policies are devised for these purposes. In this thesis work,

we apply a state-of-the-art reactive autoscaling policy to assess the effects of deploying

the HTTP/2 server push mechanism in Cloud environments. A simulation environ-

ment based on the CloudSim simulation toolkit has been designed and developed to

exploit a Web workload on a realistic Cloud infrastructure. Workload characterization

based on measurements collected on a real Web server has been carried out to derive

workload models to be used for workload description in the simulation experiments.

These experiments have shown that the autoscaling mechanism is beneficial for Web

servers even though pushing a large number of objects might lead to server overload.

ii

List of Publications

1. M. C. Calzarossa, M. L. D. Vedova, L. Massari, D. Petcu, M. I. M. Tabash, and D.

Tessera, “Workloads in the Clouds,” in Principles of Performance and Reliability

Modeling and Evaluation, Springer Series in Reliability Engineering, L. Fiondella

and A. Puliafito, Eds. Springer, 2016, vol. 7084, pp. 552–550.

2. M. C. Calzarossa, L. Massari, M. I. M. Tabash, and D. Tessera, “Cloud autoscal-

ing for HTTP/2 workloads,” in Proc. of the 3rd International Conference on

Cloud Computing Technologies and Applications (CloudTech’17), 2017.

After the paper “Cloud autoscaling for HTTP/2 workloads” has been presented at the

CloudTech’17 conference, we have been invited to submit an extended version of the

paper to a special issue “Cloud Computing, IoT, and Big Data: Technologies and Appli-

cations” of the journal “Concurrency and Computation: Practice and Experience”with

guest editors: Mostapha Zbakh, Mohammed Bakhouya, Mohamed Essaaidi and Pierre

Manneback”.

iii

Table of Contents

Abstract ii

1 INTRODUCTION 1

1.1 Motivation . 2

1.2 Cloud computing . 4

1.2.1 Cloud service models . 4

1.2.2 Virtualization . 6

1.3 Resource Provisioning . 7

1.4 Thesis contribution . 8

1.5 Thesis organization . 8

2 STATE OF THE ART 9

2.1 Autoscaling techniques . 10

2.1.1 Rule based approach . 11

2.1.2 Reinforcement learning . 13

2.1.3 Control theory . 13

2.1.4 Time series analysis . 14

2.2 Cloud simulation tools . 16

2.2.1 Comparison of Cloud simulation tools 18

3 WORKLOAD CHARACTERIZATION 19

3.1 Workloads in the Clouds . 20

3.1.1 Workload categories . 20

3.1.2 Workload monitoring and profiling 22

3.1.3 Workload scheduling . 24

3.2 Web workloads . 25

3.3 Workload characterization methodology 27

iv

TABLE OF CONTENTS v

3.3.1 Selection of characterizing parameters 27

3.3.2 Exploratory data analysis . 28

3.3.3 Multivariate Analysis Techniques 28

4 SIMULATION ENVIRONMENT 30

4.1 CloudSim simulation toolkit . 31

4.2 Basic CloudSim entities . 36

5 CLOUDSIM TOOLKIT EXTENSIONS 41

5.1 Introduction . 42

5.2 Web workload generator . 43

5.3 Autoscaling policy . 45

5.3.1 Discrete sampling policy . 45

5.3.2 Average load policy . 47

5.3.3 Autoscaling policy configuration 48

5.4 Broker level extensions . 48

5.4.1 User-based scheduling policy . 49

5.4.2 Content push configuration . 49

5.5 VM level extensions . 50

5.6 Monitoring component . 51

5.7 Simulation configurations . 51

6 EXPERIMENTAL RESULTS 52

6.1 Dataset description . 53

6.2 Workload models . 54

6.3 Simulation experiments . 58

6.3.1 User arrival patterns . 58

6.3.2 Simulation scenario . 60

6.3.3 Discrete sampling policy . 61

6.3.4 Average load policy . 65

6.3.5 Summary . 68

7 CONCLUSIONS 69

7.1 Future work . 70

Bibliography 71

List of Figures

1.1 Scaling up the computing resources by adding new VMs 3

1.2 Scaling down the computing resources by removing VMs 3

1.3 Layered architecture of three Cloud service models 5

1.4 Effects of the static resource provisioning:(over-provisioning (a)) and

(under-provisioning (b)) and (dynamic resource provisioning (c)). The

solid curves represent the required capacity, while dashed curves repre-

sent the available capacity . 7

3.1 Example of a record of access log stored according to the Common Log

Format. 26

3.2 Example of a record stored according to the Combined Log Format . . . 26

4.1 Scheduling policy model . 33

4.2 Time-shared policy for VMs and Cloudlets 34

4.3 Space-shared policy for VMs and Cloudlets 34

4.4 Layered architecture of the CloudSim simulation toolkit 35

4.5 CloudSim UML class diagram . 36

4.6 CloudSim high level modeling . 39

4.7 Simulation life cycle . 40

5.1 Architecture of the simulation environment 42

5.2 Multi layer workload description . 44

5.3 Configuration of a user class . 45

5.4 Discrete sampling policy over four time steps with five allocated VMs

and lower and upper thresholds equal to 40% and 80% 46

5.5 Average load policy with a time window of five time units 47

5.6 Example of server push feature . 50

vi

LIST OF FIGURES vii

6.1 Percentile values of page interarrival time of the users who requested

more than one page . 55

6.2 Cumulative distribution function of the page interarrival time 55

6.3 Average size of primary pages in Cluster 2 (a)) and (Gaussian distribu-

tion fitted in the range [0,10000[(b)) and (Gaussian distribution fitted

in the range [10000,25000] (c)). 57

6.4 Daily request arrival pattern. 59

6.5 Snapshot of the home page of the Website of the University of Pavia. . . 59

6.6 Experimental scenario. 60

6.7 Step functions of the number of allocated VMs as a function of simulated

time with no push (a) and full push (b) of the Web content 62

6.8 Boxplots of the VM utilization for the no push (a) and full push (b)

experiments . 63

6.9 Cumulative distribution functions of the page load time with full push

(black curve) and no push (red curve) 64

6.10 Number of allocated VMs and of busy VMs as a function of time for no

push (a) and full push (b) . 64

6.11 Step functions as a function of simulated time with partial push (a) and

full push (b) . 65

6.12 Boxplots of the VMs utilization of for the partial push (a) and full push

(b) . 66

6.13 Cumulative distribution functions of the page load time with full push

(black curve) and with partial push (red curve) 67

6.14 Number of allocated VMs and of busy VMs as a function of time for

partial content push (a) and full content push (b) 68

List of Tables

2.1 Comparison of different Cloud simulators 18

6.1 Main characteristics of the log files of the University of Pavia 53

6.2 Centroids of the four clusters . 56

6.3 Characteristics of the users who request only one page 58

6.4 Simulation parameters . 61

6.5 Page load time expressed in seconds under no push and full push config-

urations . 63

6.6 Page load time expressed in seconds under partial and full push config-

urations. 67

viii

Chapter 1

INTRODUCTION

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Nowadays Cloud computing is becoming a successful key factor in many types of busi-

nesses because it enables an efficient model for resource provisioning and allows cus-

tomers to significant reduce the upfront costs for acquiring hardware and software

resources as well as the costs associated with the deployment, management and main-

tenance of these resources. In addition, Cloud computing enables providers to offer

unlimited virtualized resources based on an on demand model.

Cloud computing introduces a good level of flexibility, by allowing customers to pay

only for the actual use of resources according to a “pay per use” model. This model

offers numerous advantages and allows customers to benefit from increased resource

availability, elasticity and improved fault tolerance.

Cloud environments are very suitable for hosting applications and services whose work-

load intensity rapidly changes. Provisioned resources have to cope with workload fluc-

tuations. Wherever these resources are not sufficient to handle workload peaks, the

Quality of Service (QoS) is negatively affected. On the contrary, provisioning for peak

workloads results in plenty of resources being underutilized.

Provisioning resources to the varying workload demands is a complex process. There-

fore, for increasing the efficiency and reducing the cost of deploying services in Cloud

environments, it is necessary to devise dynamic resource provisioning policies and au-

tomatically adjust the allocated resources to workload intensity and characterization.

This objective can be achieved by autoscaling policies that add or release resources

to satisfy the QoS constraints according to their actual load. Autoscaling policies en-

able Cloud customers to provision resources when the workload demand increases and

deprovision unused resources when the demand decreases. Unexpected workload fluc-

tuations should also be handled seamlessly. The workload is processed by the Virtual

Machines. A Virtual Machine (VM) is a software artifact that executes other software

as if it was running on a physical resource directly.

Typical autoscaling scenarios are illustrated in Figures 1.1 and 1.2. As can be seen,

a Web application is deployed in a Cloud environment consisting of three pools of re-

sources. The Web application provides the service to the Cloud users. Each pool of

resources consists of different number of Virtual Machines (VMs). The autoscaling

policy is configured and monitors the Web application performance. The resources re-

quirements for this Web application are three VMs allocated in the pool of resources 1

1.1. MOTIVATION 3

and two VMs are allocated in each of the other two pools. New user arrival cause an in-

crease in requests and an overutilization of the available allocated resources. Thus, the

autoscaling policy decides to add some resources to each pool (see Figure 1.1). In par-

ticular, two VMs are provisioned to computing resources 1 and one VM is provisioned

to each of the other two pools. On the contrary, the autoscaling policy deprovisions

some resources from each pool when the number of users decreases (see Fig. 1.2). As

can be seen, the autoscaling policy deprovisions seven VMs in total.

Figure 1.1: Scaling up the computing resources by adding new VMs

Figure 1.2: Scaling down the computing resources by removing VMs

4 CHAPTER 1. INTRODUCTION

1.2 Cloud computing

Cloud computing paradigm has recently received increased attention from academia

and industry. According to a forecast from Cisco [1], more than 92% of the workloads

will be processed in Cloud data centers by 2020. Gartner1 predicts an increase in the

infrastructure compute service space as the Cloud adoption becomes mainstream.

Resources can be provisioned in response to workload fluctuations avoiding resource

under-utilization or over-utilization, while maintaining the desired of QoS.

Cloud providers must ensure the compliance of the Service Level Agreement (SLA). We

recall that an SLA is a formal agreement between a Cloud provider and its customers,

defining in quantitative terms the functional and non-functional aspects of the service

being offered [2].

The five essential characteristics of Cloud computing identified by NIST [3] are sum-

marized as follows:

• On demand provisioning of resources.

• Broad network access able to handle of user requests.

• Resource pooling between multiple Cloud customers with different resource re-

quirements.

• Rapid elasticity, that is, the ability to vary resources according to the load.

• Transparent resource usage monitoring.

1.2.1 Cloud service models

According to NIST, three standard models are associated with Cloud computing,

namely:

• Software as a Service (SaaS) represents a software distribution model in which

customers use applications running on a Cloud provider infrastructure. Cus-

tomers can access the services from different devices, but they do not need to

manage or control the Cloud infrastructure.

• Platform as a Service (PaaS) represents a Cloud service model where a Cloud

provider provides customers with a platform and the ability to run, manage and

1http://www.gartner.com/technology/home.jsp

1.2. CLOUD COMPUTING 5

develop applications and services. A customer has full control of the applications

being deployed but does not manage or control the underlying infrastructure.

• Infrastructure as a Service (IaaS) represents a Cloud service model where

resources (e.g., computing power, storage, networks) are provided as a service. A

customer has full control of storage, applications and operating system but limited

control of the networking components (e.g., firewalls). In detail, customers are

provided with storage, networks and other resources where they can deploy and

run software, components including an operating system and applications.

Figure 1.3: Layered architecture of three Cloud service models

Figure 1.3 shows a layered Cloud service model that consists of different components

managed according to the privileges granted by each Cloud service model. Each model

assigns certain responsibilities to the Cloud provider and allows customers to focus

more on their business.

With the SaaS model, the customer consumes only applications running on the Cloud

infrastructure, and accessible from various devices. The Cloud provider manages every-

thing (i.e., infrastructure, load balancers and firewalls, operating systems and runtime

environments). Browser-based interfaces can be used to access and customize services.

6 CHAPTER 1. INTRODUCTION

With the PaaS model, customers access an operating system and additional services

that allow them to run their own applications. Customers are not aware of low level

components that are managed directly by the provider.

With the IaaS model, customers can manage all the components of the Cloud infras-

tructure. In addition, they can deploy applications and install operating system images

and additional software. In this model, customers have the responsibility to patch/up-

date/maintain all software components.

1.2.2 Virtualization

Virtualization – one a basic technology in Cloud environments – introduces a layer of

abstraction between physical hardware resources and operating systems. The technol-

ogy behind virtualization – known as Virtual Machine Monitor (VMM) or hypervisor –

separates the compute environments from the actual physical infrastructure. A Virtual

Machine is a software artifact that executes other software as if it was running on a

physical resource directly. Virtualization enables multiple virtual machines to share

physical resources [4].

Traditionally, the operating systems are responsible for managing the allocation of

physical resources (i.e., CPU, memory, disk and network bandwidth). On the contrary,

hypervisors manage the execution of operating systems by booting, suspending or shut-

ting down VMs as required. Some hypervisors also support replication and migration of

Virtual Machines without interruption. Examples of the hypervisors are Xen2, QEMU3

and VMWare4.

2https://www.xenproject.org/
3https://www.qemu.org/
4https://www.vmware.com/

1.3. RESOURCE PROVISIONING 7

1.3 Resource Provisioning

The resource allocation problem is a major issue in distributed computing. In Cloud

environments where customers request a variety of services characterized by dynami-

cally changing requirements, the problem is even more complex.

Traditional allocation solutions based on static resource provisioning are not suitable

for Cloud environments since they lead to poor performance. In fact, over-provisioning

resources to meet potential demand peaks can result in significant costs and unused

capacities as depicted in Figure 1.4(a). In contrast, planning resources for the average

load may lead to overload conditions as shown in Figure 1.4(b). To avoid these issues,

Cloud resources must be dynamically adjusted in response to demand fluctuations as

depicted Figure 1.4(c). This emphasizes the need of sophisticated resource provisioning

mechanisms.

(a) (b) (c)

Figure 1.4: Effects of the static resource provisioning:(over-provisioning (a)) and

(under-provisioning (b)) and (dynamic resource provisioning (c)). The solid curves

represent the required capacity, while dashed curves represent the available capacity

Autoscaling has received significant attention to minimize the amount of allocated

resources without violating QoS constraints. Autoscaling enables Cloud computing in-

frastructure to be elastic and highly available. Herbst et al. [5] explain the relation

between scalability and elasticity. Scalability is the ability of a system to sustain in-

creasing workloads by making use of additional resources. In contrast the elasticity,“is

the degree to which a system is able to adapt to workload changes by provisioning and

de-provisioning resources in an autonomic manner, such that at each point in time the

available resources match the current demand as closely as possible”. In other words,

the elasticity covers how quickly a system can respond to fluctuating resource demands.

8 CHAPTER 1. INTRODUCTION

Thus, autoscaling techniques enable elasticity.

Autoscaling automates the allocation/deallocation of the resources to match the appli-

cation demands. Hence, the key feature of autoscaling is to allow dynamic provisioning

of virtualized resources in response to the workload variability [5, 6].

1.4 Thesis contribution

The main contributions of this thesis work are summarized as follows:

• Development of detailed models of a Web workload (see Chapter 3);

• Design and development of a simulation environment based on the CloudSim

simulation toolkit that enables workload generation and performance monitoring

and the deployment of different autoscaling policies (see Chapter 5);

• Implementation of reactive autoscaling policies into the simulation environment

(see Section 5.3);

• Testing of the developed environment for the analysis of the performance of the

HTTP/2 server push mechanism deployed in Cloud environments (see Chapter

6).

1.5 Thesis organization

This thesis is organized as follows. In Chapter 2 the state of the art in the field of

autoscaling policies and Cloud simulator tools is presented. Workload characterization

and modeling are addressed in Chapter 3. The simulation environment that has been

designed and developed is explained in Chapters 4 and 5. The setup of the experimental

environment and the results of the tests performed to assess the benefits of autoscaling

policies for the HTTP/2 server push mechanism are described in Chapter 6. Finally,

some conclusions and open research issues are given in Chapter 7.

Chapter 2

STATE OF THE ART

9

10 CHAPTER 2. STATE OF THE ART

This chapter presents the state of the art in the framework autoscaling policies for

cloud environments and discusses open challenges as well as strengths and weaknesses

of the various policies. In addition, the characteristics of the main Cloud simulators

developed in the research environment are described.

2.1 Autoscaling techniques

Autoscaling policies are designed with particular goals, focusing on several application

architectures or Cloud environment offering different capabilities (see, e.g., [7, 8]). Poli-

cies differ in their scaling indicators and in their final goals/evaluation criteria (e.g.,

prediction accuracy, SLA requirements). A policy can be designed to cope with load

conditions (e.g., workload bursts, diurnal patterns), and focus on various aspects, such

as workload prediction, adaptivity to dynamically varying workload characteristics and

oscillation mitigations.

Autoscaling policies need to monitor performance indicators to determine whether

and when scaling operations need to be triggered. In literature various studies [9, 10,

11, 12] classify autoscaling polices into reactive policies and proactive. Reactive policies

react to the actual load and allocate new resources in response to the workload intensity.

Proactive policies attempt to predict the load. These predictions are usually performed

at fixed intervals or when big surges of traffic are expected. The main advantage of these

policies is that they can predict unplanned load spikes. The accuracy of the predictions

depends on the adopted approach. Two approaches, namely, Moving Window Average

and Linear Regression, are often used for making predictions.

Moving Window Average is a simple method to smooth sequential data and is typically

applied to time-based data, such as the computation of VMs utilization. The Moving

Average aggregation will slide a window across the data and emit the average value

of that window. For example, given the data [1, 2, 3, 4, 5, 6, 7], the calculation of a

simple moving average with windows size of 5 is as follows:

• (1 + 2 + 3 + 4 + 5)/5 = 3

• (2 + 3 + 4 + 5 + 6)/5 = 4

• (3 + 4 + 5 + 6 + 7)/5 = 5

This method helps to detect workload fluctuations.

2.1. AUTOSCALING TECHNIQUES 11

Linear Regression is often used to build a model of the relationships between a de-

pendent variable (output) and independent variable or variables (input). If there is

only one independent variable, the method is called simple linear regression, otherwise

it is called multi linear regression [13].

The problem of scaling the Cloud resource has been extensively studied and many

autoscaling techniques have been proposed by researchers, such as:

• Rule-based;

• Reinforcement Learning;

• Control Theory;

• Queuing Theory;

• Time series analysis.

Various autoscaling policies apply these techniques: a brief overview of these techniques

is provided in what follows.

2.1.1 Rule based approach

One of the most common approaches applied to devise autoscaling policies is the rule

based approach [14]. This approach is very simple to setup, manage, and implement,

since scaling decisions are triggered according to some defined rules. These rules usu-

ally rely on measurements of performance metrics, such as CPU load, memory usage,

I/O operations, throughput, response time. Two thresholds are ofter set, namely, an

upper threshold for scaling up and a lower threshold for scaling down.

Stability in trigging actions is also required for avoiding oscillation, that is, opposite

actions frequently performed in short time (i.e., allocating new resources and then deal-

locating resources or vice versa). For example, when the CPU utilization exceeds the

upper threshold, one or more VMs will be allocated to the pool of resources to reduce

the utilization. Suppose that this drops the utilization to less than the lower threshold,

as a consequence one or more of the allocated VMs will be deallocated, thus causing

oscillation. Therefore, it is effective to avoid frequent scaling actions. These actions

have to consider the cooling time, that is, a common solution adopted to tackle oscilla-

tion and it is a minimum time has to be set between two opposite scaling actions. The

given time avoids new scaling actions and enables the new added VMs to settle into

12 CHAPTER 2. STATE OF THE ART

running mode. This prevents the Cloud from reacting too quickly and this situation

should be prevented as it results in resource wastage and SLA violation.

Dutreilh et al. [15] have proposed a threshold-based technique. Two thresholds are set

to dynamically adapt the resources of virtualized applications by allocating or deallo-

cating VMs. The implementation of the technique relies on SLA metrics, such average

response time to meet the Service Level Objectives. SLO is a key element of SLA

between the Cloud provider and Cloud customer. SLOs are agreed upon as a means of

measuring the performance of Cloud services itself. These metrics measures services,

such as, average response time, accounting, security and they can be used to negoti-

ate/monitor the Cloud customer requirements based on the agreed SLA. The proposed

policy considers five parameters: an upper threshold, a lower threshold, a fixed amount

of Virtual Machines to be allocated or deallocated, and two parameters for inertia du-

rations, one for scaling up and the other for scaling down. In [16], the authors present

a lightweight approach to enable cost-effective elasticity for Cloud applications. This

approach operates a fine-grained scaling at the resource level (e.g., CPUs, memory,

I/O) and a VM-level scaling. This policy enables monitoring service that monitors

each running application in two levels. At first level, an entry monitor examines the

requests arrival rate and response time over a finite interval, while the other level moni-

tor examines the resources utilization. The policy applies an automatic reactive scaling

mechanism and scaling actions are performed to meet the response time targets of each

incoming request. An integrated and autonomic Cloud resource scaler has been de-

veloped by Hasan et al. [17]. This approach extends the typical two thresholds and

add two levels of thresholds parameters in making scaling decisions. The first level,

is set a parameter which is slightly below the higher threshold and the other level is

set a parameter which is slightly above the lower threshold. The scaling actions are

performed according to the CPU load and the response time over network. Chieu et

al. [18] implemented a dynamic scaling algorithm for automated provisioning of Vir-

tual Machines based on thresholds. A threshold on the number of active sessions is

set in each Web server as scaling indicator. The scaling algorithm is implemented in a

monitoring service and its scaling actions are performed based on the statistics of the

scaling indicator. Al-Haidari et al. [19] analyze the impact of the utilization thresholds

and the scaling size factor (i.e, number of instances to be added in each scaling action)

on the performance of the Cloud services during the provisioning process. These two

scaling factors are considered to cope with workload spikes and to improve the response

2.1. AUTOSCALING TECHNIQUES 13

time.

2.1.2 Reinforcement learning

Reinforcement learning is an automatic decision-making approach defined as an interac-

tion process between a learning agent (the autoscaling controller) and its environment

(the target approaches). This technique gained popularity because of its ability to

fast learn optimal elasticity policies at runtime without the need of prior knowledge of

the application performance model. Q-Learning is a classic algorithm used by fuzzy

autoscaling controllers for dynamic resource allocation [20]. A fuzzy reinforcement

learning controller is proposed in [21]. This controller automatically scales up or down

resources to meet performance requirements. In particular, workload and response time

are monitored and the resource allocation is adapted to maintain the desired SLA, cost

and response time. Asgari et al. [22] propose an automatic resource provisioning ap-

proach based on reinforcement learning for autoscaling resources according to a Markov

Decision Process (MAP). The scaling decision is taken according to the four categories

offered by MDP (i.e., conditions, operations, transmitted possibilities and rewards).

Three factors are evaluated including SLA violation rate, scaling cost and number of

scales. In [23] the authors propose two reinforcement learning techniques. In first one,

the standard policies are evaluated by proper initialization of the learning functions.

In second one, convergence speedups (i.e., increasing the rate of convergence in process

of learning to solve problem) are applied for model-based reinforcement learning. In

addition, a complete policy evaluation is introduced to detect changes at regular inter-

vals into the learning phases. In [24] Barret et al. apply the Q-learning algorithm to

determine an optimal autoscaling policy on a given platform. Their approach is based

on agents learning in parallel on the same autoscaling task and sharing information

regarding their experiences. This approach takes advantage of the inherent parallelism

associated with distributed computational platforms. In addition, a state action space

formalism is devised for learning optimal policies in the Cloud.

2.1.3 Control theory

Control theory deals with influencing the behavior of dynamic systems. The aim is

to define the type of controller, i.e., reactive or proactive, that automatically adapts

resources in response to the application demands. The controller replies according to

the monitoring output and then sends the feedback to be compared with the refer-

14 CHAPTER 2. STATE OF THE ART

ence values, e.g., associated with the SLA. The feedback of the input is the differ-

ence between actual and desired output level. Usually, a controller aligns the actual

output to the reference. A control-theoretic elasticity management approach based

on fuzzy control that enables qualitative specifications of elasticity rules is proposed

in [25]. Response time or CPU load are the parameters used for evaluating the per-

formance. Zhu and Agrawal [26] propose a multi-input-multi-output feedback control

model-based dynamic framework for resource provisioning. This framework adopts re-

inforcement learning to tune parameters to guarantee the optimal application benefit

within the time constraint. Padala et al. [27] introduce a resource control system that

automatically reacts to the changes of a shared infrastructure to maintain application

SLOs. This system is a combination of an online model estimator and a multi-input

multi-output resource controller. The estimator collects performance metrics, while

a controller allocates/deallocates the resources when needed. Kalyvianaki et al. [28]

present an advanced controller that dynamically reacts to the workload changes without

any prior knowledge of the application. This controller integrates a Kalman filter into

feedback controllers that track the CPU utilization and dynamically update the alloca-

tions in order to meet the desired QoS. In [29] the authors apply techniques to augment

the conventional closed-loop control framework by making automatic control robust for

practically use in real environments. A self-trained proactive elasticity technique for

Cloud-based services that automatically adjusts itself in response to the workload is

presented in [30].

2.1.4 Time series analysis

Time series analysis is an approach applied for modeling and predicting the future be-

havior of a given phenomenon based on the historical data. Methods such as Moving

Average, Auto Regression and Auto Regressive Integrated Moving Average are used to

detect patterns and predict unforeseen values. Time series analysis is a key enabler of

proactive autoscaling techniques. Typically time series analysis is utilized for workload

or resource usage prediction. In [31] the authors applied a Fast Fourier transform in

order to perform offline extraction of cyclic workload patterns. Different frameworks

(e.g., CloudScale [32] and PRESS [33]) are used to perform long term cyclic patterns

extraction and resource demands prediction.

Hu et al. [34] present a framework for predicting the incoming workloads and proac-

tively provisioning the required resources by adding number of Virtual Machines to

2.1. AUTOSCALING TECHNIQUES 15

reduce the latency and improve the QoS. The prediction is based on the historical

workload and includes three modules (i.e., monitor, filter, predictor). A proactive au-

toscaling approach combined with different models (i.e., predictive model, cost model)

is proposed in [35]. A workload prediction model based on time series and machine

learning techniques is developed for predicting unforeseen workload patterns. In [36]

Khan et al. propose a model that allows proactive analysis of workload patterns and

estimation of the autoscaling operations. Three main entities of the autoscaling oper-

ations, such as, health monitor, a user-defined launch configuration that captures the

parameters necessary to create and terminate resources and a load balancing compo-

nent (i.e., load balancer, queue) are identified. The interactions between these entities

are quantified as variables and coordinated by an autoscaling component. The model

enables the analysis of the relations between the autoscaling operations and workload

patterns. In [37] three models predict the workload based on the analysis of monitored

data using time series analysis. In addition, new trigger strategy for automatic scaling

mechanism is proposed to reduce the delay. The trigger strategy is based on a pattern

matching model (i.e., a method matching the sequence with some historic patterns,

and based on the string matching algorithm and Euclidean distance).

16 CHAPTER 2. STATE OF THE ART

2.2 Cloud simulation tools

Simulation tools are widely used to simulate the behavior of Cloud environments and

evaluate their performance. In addition, these tools open up the possibility of evalu-

ating different scenarios in a controlled environment. The simulation experiments are

repeatable. Different workload characteristics can be considered for testing resource

provisioning policies.

Many simulation tools have been developed for Cloud environments, such as CloudSim,

iCanCloud, GreenCloud, MDCSim, EMUSIM and CloudAnalyst. CloudSim [38] is one

of the most popular simulation toolkits is one of the most popular simulation toolkits.

It is a generalized, extensible simulation framework, developed in Java that enables

contributions from other developers. In addition, it provides great flexibility to create

simulation scenarios. In this thesis work, CloudSim toolkit has been extended (see

Chapter 5) to create new features and functions to cope with our simulation scenarios.

In Chapter 4, more details and explanations of the CloudSim will be provided.

In what follows, a brief review of the other Cloud simulation tools is presented.

The iCanCloud simulator [39] has been designed and built to conduct large experi-

ments and provide a flexible and fully customizable global hypervisor for integrating

any Cloud brokering policy. In addition, it contains a user-friendly GUI for configuring

and lunching simulations and provides in-depth simulation of physical layer entities

such as cache, allocation policies for memory and file system models.

GreenCloud [40] is an extension of the NS21 network simulator which focuses on simu-

lating the communications between processes running in the Cloud at the packet level.

Both NS2 and GreenCloud are written in C++ and OTcl2. GreenCloud provides plu-

gins that allow the use of physical layer traces which make experiments more realistic.

GreenCloud extracts, aggregates, and obtains information about the consumed energy

in the data centers. For instance, a packet loss probability in the optical fiber depend-

ing on the transmission range can be obtained via simulation of signal propagation

dynamics. GreenCloud is specially designed to simulate and test power consumption

of the datacenter components (e.g., server, switches, links).

MDCSim [41] is a commercial event driven simulator for the design and analysis of large

scale, multi-tier data centers. It manipulates different features of the data center (i.e,

number of tiers, scheduling algorithms, communication mechanisms), does not support

1https://www.isi.edu/nsnam/ns/
2http://nile.wpi.edu/NS/otcl.html

2.2. CLOUD SIMULATION TOOLS 17

GUI. In addition, it supports estimation of power consumption.

EMUSIM [42] is an integrated architecture to anticipate and predict service behavior

on Cloud platforms. It is based on both simulation and emulation. The EMUSIM

is built on top of architecture and operation details of Automated Emulation Frame-

work3 and CloudSim toolkit. This architecture automatically extracts information from

application behavior via emulation and then uses this information to generate the cor-

responding simulation model. This model is then used to build a simulated scenario.

CloudAnalyst [43] is a discrete event simulator built on top of CloudSim toolkit. This

tool allows users to model various scenarios where data centers and users are in dif-

ferent geographic locations. In addition, it supports visual modeling and simulation

of large scale applications and allows description of application workloads, based on

information of geographic location of users generating traffic, location of data centers,

number of users and data centers, and number of resources in each data center. This

information enables CloudAnalyst to generate information about response time and

processing time of requests. The simulation results consist of different metrics, such as

response time of the requests, processing cost. CloudAnalyst provides some features

that can be summarized as follows:

• easy to use GUI;

• flexibility in customization and configuration of the simulation experiments;

• repeatability of simulation experiments;

• graphical output.

3http://emuframework.sourceforge.net/

18 CHAPTER 2. STATE OF THE ART

2.2.1 Comparison of Cloud simulation tools

A limited number of Cloud simulation tools is available for public. Table 2.1 presents

a summary and a comparison of the various Cloud simulators. The table lists the main

characteristics of the simulators, such as programming language, distribution.

Simulator Platform Programming language Networking Simulator type Distribution

CloudSim CloudSim Java Limited Event driven Open Source

iCanCloud OMNeT/MPI C++ FULL Event driven Open Source

GreenCloud NS2 C++/OTcL FULL Packet Level Open Source

EMUSIM AEF Java Limited Event driven Open Source

CloudAnalyst CloudSim Java Limited Event driven Open Source

MDCSim AEF/CloudSim C++/Java Limited Event driven Commercial

Table 2.1: Comparison of different Cloud simulators

As can be seen, all the tools are open source but MDCSim is commercial. As shown,

GreenCloud is a packet level simulator. This means that whenever a data message

has to be transmitted between the simulator entities, a packet structure with its pro-

tocol headers is allocated in the memory and is processed by the associated protocol.

CloudSim, iCanCloud, EMUSIM, CloudAnalyst and MDCSim are event-based simula-

tors. They are not processing small simulation objects, such as packets individually,

but they make interactions between objects. This method reduces simulation time

considerably and improves scalability. As can be seen, all tools support either full

or limited networking. GreenCloud and iCanCloud offer full support to communica-

tion model by completely implementing TCP/IP protocol reference model. This allows

capturing the dynamics of widely used communication protocols such as IP, TCP and

UDP. CloudSim, EMUSIM, CloudAnalyst and MDCSim implement limited communi-

cation support. For example, in CloudSim, the transmission delay and bandwidth are

accounted. A network package is provided with CloudSim, that maintains a data center

topology in the form of a directed graph, where the bandwidth and delay parameters

are assigned to edges. Similarly, simplified communication support is implemented in

MDCSim.

Chapter 3

WORKLOAD

CHARACTERIZATION

19

20 CHAPTER 3. WORKLOAD CHARACTERIZATION

Workload characterization plays a key role in many performance studies. The term

workload refers to all inputs received and processed by a given technological infrastruc-

ture. Understanding the properties and the behavior of the workloads is important for

different performance issues. In particular, Cloud services being deployed nowadays

are characterized by dynamic changes in load intensity.

Workload characterization is the basis for devising and evaluating efficient resource pro-

visioning policies. The evaluation of the Quality of Service (QoS) perceived by users

also requires a good understanding of the workload properties.

This chapter discusses the basic concepts of workload in the Clouds, the workload char-

acterization and the specific issues related to generation of Web workloads. In addition,

the technologies applied to develop a workload model will be also explained.

3.1 Workloads in the Clouds

Cloud workloads are composed by a collection of various applications and services

characterized by its own performance and resource requirements and constraints usually

specified in the form of Service Level Agreements [44]. The complete lifecycle of the

workloads in the Clouds includes different aspects that refer to the characterization at

the design time (i.e., workload categories, structures and patterns), the matching at

the deployment time (i.e., resource requirements and scheduling) and the conditions of

the execution time (i.e., failure analysis and prediction). The workload dynamics affect

Cloud performance. In fact, workload can suddenly grow or shrink as a consequence

of the user interactions. In particular, the use of virtualization and shared resources

could lead to performance degradation. The degradation is often due to interference

and resource contention arising from the co-location of heterogeneous workloads on the

same physical infrastructure and overheads caused by the resource management policies

being adopted.

3.1.1 Workload categories

The term workload refers to all inputs of a system, e.g, applications, services, trans-

actions, data transfers. These inputs are submitted by the users and processed by a

Cloud infrastructure. These inputs usually correspond to the online interactions be-

tween users and Web application and to jobs to be processed in batch mode.

The behavioral characteristics of the Cloud workloads can be specified in terms of qual-

3.1. WORKLOADS IN THE CLOUDS 21

itative and quantitative attributes. These attributes are analyzed to identify workload

categories that focus on aspects, such as:

• Processing model;

• Architectural structure;

• Resource requirements;

• Non-functional requirements.

These dimensions play an important role in the formulation of the Cloud management

strategies and in assessment of the expected service level.

The processing model addresses two types of workload categories, namely online (i.e.,

interactive) and offline (i.e., batch or background). These workload categories are char-

acterized by different behaviors and performance requirements. Moreover, they have

a different impact on management policies (e.g., resource scheduling, VM placement,

VM migration). An interactive workload is typically composed of short lived processing

tasks submitted by a variable number of concurrent users. On the contrary, a batch

workload is composed of compute intensive long lived tasks.

The architectural structure is another dimension that takes account of the processing

and data flows characterizing each individual Cloud application. In particular, these

flows are described by the number and types of services or tasks being instantiated by

a Cloud application and their mutual dependencies.

The workloads also are classified according to the amount of resources used, namely:

• Compute or I/O intensive;

• Elastic or bandwidth sensitive.

In general, network bandwidth is a critical resource for online interactive workloads,

while batch workloads are often characterized by intensive storage and computing re-

quirements. In addition, the resource requirements of some workloads are stable, that

is, evenly distributed across their execution, whereas other workloads, such as those

associated with the online services, exhibit specific temporal patterns, e.g., periodic,

bursting, growing, on/off.

The dimension describing the non-functional requirements refers to SLA constraints,

such as performance, dependability and security. In particular, reliability is very impor-

tant in Cloud environments especially when deploying business-critical or safety-critical

22 CHAPTER 3. WORKLOAD CHARACTERIZATION

applications. Reliability denotes the probability that workloads can successfully com-

plete in a given time frame. The presence of failures decreases the reliability. Failures

are due to various types of events, e.g., software bugs, exceptions, overflows and time-

outs. In detail, for data intensive workloads, a sudden increase in the rate at which data

are submitted for processing can lead to failures, thus making the service unavailable.

Moreover, failures are often correlated, that is, they often occur between dependent or

co-located services or applications.

3.1.2 Workload monitoring and profiling

Monitoring and profiling are the basis for measuring the qualitative and quantitative

attributes of the workloads. In general, monitoring keeps track of all the activities per-

formed in the Cloud by the workloads being processed and of the status of the resources

either allocated and available. Profiling focuses on describing how workload exploits

the Cloud resources. These activities play a critical role when addressing different

problems, such as capacity planning and resource management, performance tuning,

billing, security and troubleshooting, SLA verification. To tackle specific monitoring

issues, various approaches have been devised (e.g., measurement sources and accuracy,

sampling granularity, intrusiveness and scalability).

Workload attributes can be monitored at runtime to describe the resource usage. Two

perspectives can be adopted to collect measurements, namely, Cloud provider and Cloud

user perspective. The main targets of Cloud monitoring are:

• Client;

• Virtual Machine;

• Physical machine.

In details, individual VMs and resource usage of physical machines can be measured

by the hypervisor. This service is performed by the Cloud provider. On the contrary,

Cloud users have limited privileges for monitoring their workloads. They could use log-

ging and profiling facilities. Because of the VM isolation – a virtualization technology

that hides the characteristics and performance of the underlying physical machines and

the VM management policies – Cloud users use profiling facilities made available by

the providers (see, e.g., [45, 46]).

3.1. WORKLOADS IN THE CLOUDS 23

The application logs are exploited to correlate the resource usage with workload in-

tensity and characteristics.

Monitoring tools collect measurements about resource usage by deploying distributed

software agents. Generally, monitoring approaches rely on system tools and interfaces

(e.g., vmstat, iostat, netstat) or on proprietary solutions. Alhamazani et al. [47] have

studied various monitoring techniques that monitor different application components

(e.g., Web server, compute service, storage service and network). In addition, they con-

sider various QoS parameters, including CPU utilization, bandwidth, throughput and

response time to be monitored. The QoS statistics can assist the Cloud providers to

maintain the SLA and customer satisfaction. Moreover, depending on the monitoring

capabilities of the virtualization technologies, ad-hoc scripts can be used for sampling

low level quantitative attributes, such as CPU waiting times, number of virtual memory

swaps, TLB flushes and interrupts [48]. VM scheduling and provisioning events, (e.g.,

number and types of allocated VMs) can also be collected by monitoring agents [49].

The granularity and level of details of the measurements have to be chosen with the

aim of limiting the monitoring intrusiveness. Measurements are usually stored into

tracelogs, that is, collections of time stamped records with various types of information

(e.g., resource demands, scheduling events, application specific data).

Resource usage of individual workload activities can be measured by Profiling. In detail,

profiling can be exploited by Cloud users for optimal dynamic resource provisioning and

by Cloud providers for tuning VMs placement and scheduling policies [50]. Profiling

has to cope with new challenges due to interference among co-located VMs. Indeed, the

sharing of hardware resources could result in unpredictable behaviors of hardware com-

ponents, such as cache, CPU pipelines and physical I/O devices [51]. Typical solutions

for collecting profiling measurements are based on dynamic instrumentation and sam-

pling hardware performance counters. An alternative approach is based on measuring

at the hypervisor level the overall behavior of the VMs hosting the target applications.

Monitoring and profiling are essential aspects of Cloud computing. However, no portable

and interoperable tools are available. There are many open source and commercial tools

addressing specific targets and platforms [52, 53]. Examples of open source monitor-

ing tools are: Nagios1, that is part of the OpenStack suite2, Ganglia3, Collectl4 and

1http://nagios.sourceforge.net
2http://www.openstack.org
3http://ganglia.sourceforge.net
4http://collectl.sourgefourge.net

24 CHAPTER 3. WORKLOAD CHARACTERIZATION

MonALISA5. Cloud providers offer several commercial tools such as, Amazon CloudWatch,

Microsoft Azure Watch, IBM Tivoli Monitoring, Rackspace, RightScale, Cloudify,

Aneka. While these monitoring facilities are designed to be deployed in Cloud environ-

ments, external monitoring services like CloudHarmony6, CloudSleuth7, CloudClimate8

and Up.time9, focus on monitoring applications and infrastructures from multiple lo-

cations on the Internet.

The development of a common framework of workload monitoring is an open issue,

that might be seen as an obstacle for users to deploy their applications [54]. Some

recent studies have introduced the concept of Monitoring as a Service (MaaS) [55, 56]

to improve the scalability and effectiveness of monitoring service consolidation and

isolation.

3.1.3 Workload scheduling

Workload scheduling is a challenging issue in Cloud environments. In particular, the

mapping between jobs/tasks and VMs is an open research aspect. The problem of

finding an optimal mapping is NP-complete and therefore it is hard to deal with exact

methods when the number of VMs and tasks is large. For this reason, (meta-)heuristics

are currently used to find sub-optimal solutions. Meta-heuristics based on methods,

such as neural networks, evolutionary algorithms or set-of-rules, are proved to be effi-

cient in solving optimization problems related to scheduling.

The scheduling problem addresses different objectives, such as to minimize makespan,

data transfer, energy consumption and economic cost to satisfy SLAs. Simple ap-

proaches take into consideration one objective at a time. More sophisticated approaches

are aimed at combining multiple objectives into a single aggregate objective function

(see, e.g., [57]) or considering multi-objective algorithms (see, e.g., [58, 59]).

A recent survey summarizes the evolutionary approaches for scheduling in Cloud envi-

ronments [60]. The different viewpoints for scheduling and the corresponding objectives

are identified as follows:

• Scheduling for user QoS whose main objectives are the makespan and cost mini-

mization, as well as application performance and reliability;

5http://monalisa.caltech.edu
6http://cloudharmony.com
7http://cloudsleuth.net
8http://www.cloudclimate.com
9http://www.suptimesoftware.com

3.2. WEB WORKLOADS 25

• Scheduling for provider efficiency whose main objectives are load balancing, max-

imization of the resource usage and energy savings;

• Scheduling for negotiation whose main objectives are to satisfy both user and

provider goals.

Job scheduling and resource scaling are often interrelated [61]. Several frameworks have

been recently introduced to address resource scalability. For example, SmartScale [62]

is an automated scaling framework that uses a combination of vertical and horizontal

approaches to optimize both resource usage and reconfiguration overheads. Scaling

mechanisms are also encountered in [63]. In this work, different scalability patterns are

considered and a performance monitoring approach that allows automatic scalability is

proposed. Autoscaling is often interrelated with load balancing strategies. Even though

physical machines are often the main target of these strategies, effective load balancing

and resource allocation policies take into account the concurrent execution of different

application types, i.e., interactive, batch, and the mix of applications with different

resource requirements [64, 65, 66].

3.2 Web workloads

Web servers are the basic components of the Web. They host Websites and allow users

to access Web pages by means of HTTP protocol. In this thesis work, the term Web

server indicates the software components, whose primary function is to process the

HTTP requests received from the clients (i.e., users) and generate HTTP responses to

deliver Web pages to the clients. One important feature of the Web servers is the ability

to collect detailed information about their traffic, i.e. HTTP requests and responses.

This information is stored to log files.

For example, the Apache Web server10 provides very comprehensive and flexible logging

capabilities. The two main types of log files are the access log 11 and error log 12. Both

types of files contain information about the HTTP requests received by the Web server

and the corresponding HTTP responses. In particular, the error log stores information

about the requests that caused errors, such as requests for non existing files. This log is

very useful for troubleshooting. The types of information and the format of the access

10https://httpd.apache.org/
11https://httpd.apache.org/docs/1.3/logs.html#accesslog
12https://httpd.apache.org/docs/1.3/logs.html#errorlog

https://httpd.apache.org/
https://httpd.apache.org/docs/1.3/logs.html#accesslog
https://httpd.apache.org/docs/1.3/logs.html#errorlog

26 CHAPTER 3. WORKLOAD CHARACTERIZATION

log is configurable by means of the CustomLog directive 13 available in the Apache

configuration file.

The information stored in the logs is structured in records, one record per HTTP trans-

action. Two standard formats are available. The Common Log Format 14 includes the

the IP address of the client that issued the HTTP request, the date-time of the request,

the request line, the status code of the response message and the size of the requested

resource (see Figure 3.1).

On the contrary, the Combined Log Format 15 contains few additional fields, namely,

the User-agent and Referrer fields. The User-agent refers to the software agent used

by the client to issue the request, while the Referrer denotes the page from which the

request comes from. Figure 3.2 shows a record stored according to the Combined Log

Format.

Figure 3.1: Example of a record of access log stored according to the Common Log

Format.

Figure 3.2: Example of a record stored according to the Combined Log Format

The Apache Web server supports an additional log format, namely, the Forensic Log

that stores two records, one for the HTTP request message and one for the HTTP

response message, thus allowing a deeper level of detail. This format is not commonly

13https://httpd.apache.org/docs/1.3/mod/mod_log_config.html#customlog
14https://httpd.apache.org/docs/1.3/logs.html#common
15https://httpd.apache.org/docs/1.3/logs.html#combined

https://httpd.apache.org/docs/1.3/mod/mod_log_config.html#customlog
https://httpd.apache.org/docs/1.3/logs.html#common
https://httpd.apache.org/docs/1.3/logs.html#combined

3.3. WORKLOAD CHARACTERIZATION METHODOLOGY 27

used because it can cause overload on the server and the size of the corresponding log

file tends to increase very quickly.

3.3 Workload characterization methodology

Workload models are abstractions of the real workloads that capture their main char-

acteristics and reproduce the users behaviors. Various interesting works that model

the user behavior and derive representative workload models have been proposed in

the literature (see, e.g., [67, 68, 69, 70, 71]).

A Web workload consists of the HTTP requests issued by the clients toward Web or

proxy servers to download a page. This workload has been extensively studied and

characterized in [72, 73]. The main aspects considered refer to the page and the traffic

properties, the access patterns, and the user behavior.

In this work, we focus on workload characterization based on experimental approaches,

that is on the analysis of measurements collected on real infrastructures while the real

workload is being processed.

3.3.1 Selection of characterizing parameters

The definition of the basic workload components is the initial steps of any workload

characterization study. For example, the HTTP requests or a user-session can be

selected as workload component. A user-session consists of a set of requests, where the

time between consecutive requests, i.e., interarrival time, is smaller than a predefined

value. The workload is described by the intensity, e.g., request arrival rate. Additional

parameters are derived from log files or from performance monitors. A Web page

consists of an HTML file (i.e., primary page) and several embedded objects. Each

request can hence be described by its type (i.e., primary Web page or embedded object),

size, and interarrival time.

Once measurements have been collected, and the parameters describing the workload

have been selected, the properties of the workload and the behavior of the users need to

be uncovered as to build the corresponding models. In what follows, the main analysis

techniques are explained.

28 CHAPTER 3. WORKLOAD CHARACTERIZATION

3.3.2 Exploratory data analysis

Data analysis, that is, the process of preparing, transforming, evaluating and modeling

data to discover useful information, includes several steps. These steps range from

converting the data to a format appropriate for analysis (e.g., cleaning the dataset),

applying statistical and visualization techniques and interpreting the results. Statistical

methods are applied to discover the characteristics of the data. In particular, descriptive

statistics provide a quantitative description of the data. For example, measures of

dispersion (e.g., mean, range, variance, coefficient of variation, skewness, median and

percentiles) are important to describe the properties of each workload parameters.

Moreover, parametric statistics allow for exploring the strength of the relations between

the parameters. Pearson correlation coefficient ρxy provides a quantitative measure of

the extent to which parameter x is positively or negatively related to parameter y, that

is:

ρxy =
σxy
σxσy

,

where σxy denotes the covariance and σx and σy the standard deviations of the param-

eters x and y, respectively.

Visualization techniques are applied to summarize the distributions of the parameters

and identify potential outliers. The term outlier refers to workload components char-

acterized by an “atypical” value of one or more parameters. Outliers help in identifying

anomalies, unexpected behaviors or even errors in the measurements. Outliers removal

is crucial because of their potential effects on the workload models.

3.3.3 Multivariate Analysis Techniques

A further step of the workload characterization methodology deals with the analysis of

the components in the multidimensional space of their parameters. This step allows for

deriving models that capture and summarize the overall properties of the workload. For

this purpose, clustering techniques are applied. Clustering is an unsupervised process

that subdivides a set of observations (workload components) into homogeneous groups

(i.e., clusters) [74]. Clustering groups components with similar properties, whereas the

components across groups are quite distinct. The centroids of the clusters are often

used as representatives of the groups.

A very popular nonhierarchical clustering algorithm is the k-means [75]. This algorithm

3.3. WORKLOAD CHARACTERIZATION METHODOLOGY 29

iteratively partitions the data into k clusters by assigning each observation to the cluster

Cj that minimizes the objective function, that is:

k∑
j=1

∑
i∈Cj

‖xi − cj‖2

where xi and cj denote the ith observation and of the centroid of the cluster j, described

by the m parameters. ‖ · ‖ refers to the Euclidean distance. This algorithm minimizes

the distances within a cluster, while the distances among clusters are maximized.

Since the number of observations and the number of their characterizing parameters

are often quite large, to reduce the data dimensionality Principal Component Analysis

(PCA) [76] is applied. This analysis linearly transforms the potentially correlated pa-

rameters into a set of uncorrelated parameters, that is, the principal components.

In this thesis work, workload characterization is applied to derive models of Web work-

loads to be used to drive the simulation experiments with a realistic workload.

Chapter 4

SIMULATION ENVIRONMENT

30

4.1. CLOUDSIM SIMULATION TOOLKIT 31

Cloud environments are very complex. Therefore, testing and evaluating autoscaling

policies on real Cloud infrastructure requires large efforts. Moreover, it is very hard

to perform repeatable and controllable experiment on a real infrastructure. Thanks

to simulation, it is possible to overcome these issues and analyze different policies

under different configurations before their actual implementation and deployment into

a production environment. This chapter presents the CloudSim simulation toolkit and

describes its main components and features.

4.1 CloudSim simulation toolkit

The CloudSim simulation toolkit is a Java event-based Cloud simulator, developed and

maintained by the Cloud Computing and Distributed Systems Laboratory of the Uni-

versity of Melbourne [38]. It provides a generalized and extensible simulation framework

that enables modeling, simulation and experimentation of the Cloud infrastructures and

services. CloudSim offers many different functionalities:

• modeling and simulation of large scale Cloud computing environments;

• simulation of network connections among the simulated system components;

• virtualization engine that aids in creation and management of multiple, indepen-

dent and co-hosted virtualized services;

• space-shared and time-shared allocation of processing cores to virtual services.

Several entities, such as Data Centers, Hosts and VMs, communicate with the core

of CloudSim. These entities are also called components. Within a single Host, one

or more Virtual Machines can be allocated. A Virtual Machine is characterized by

a pre-assigned amount of resources, such as amount of memory, storage, bandwidth

and processing power. The Host component represents a physical machine, that is, a

server. Each Host has pre-assigned characteristics, such as memory, storage, number

of cores. In addition, management of Virtual Machines (e.g., creation and destruction)

is performed by the Host. The Data Center component is responsible to handle the

incoming requests and schedule them on the Virtual Machines for processing. The

simulation is driven by events occurring at ordered timestamps. These events have a

specific structure, defined in the ”SimEvent.Java”, that consists of the following fields:

• Event Type: specifies the type of event;

32 CHAPTER 4. SIMULATION ENVIRONMENT

• Event Start Time: defines the start time of the event;

• Event Waiting Time: defines the time spent in the waiting queue;

• Event Source Entity: defines the entity requesting the event for processing;

• Event Destination Entity: defines the entity that will actually execute/process

the event;

• Event Tag: defines the type of behavior to be simulated. Tags have predefined

event values associated with them;

• Event associated data to be processed: this field is optional and depends

on the type of event tag associated with the event.

Different scheduling policies are available in the CloudSim toolkit. For exmaple, VmAl-

locationPolicy is an abstract class that represents the provisioning policy of Hosts to

Virtual Machines in a Datacenter. This policy allocates Hosts for placing VMs. Once

a VM is allocated to an Host with sufficient resources, there are two options available

for scheduling VMs. The time-shared policy is such that the CPU cores can be shared

across multiple VMs at the same time, whereas with the space-shared policy dedicated

CPU cores are allocated to each individual VM. Figure 4.1 depicts the scheduling policy

model (i.e., space-shared, time-shared). The policies can be seen at the Host and VM

layers.

The Cloudlet scheduler is responsible for managing the actual workload on a VM.

Several Cloudlets run simultaneously on a given VM. Time-shared and space-shared

are implemented by the CloudletScheduler and allow processor sharing at the VM and

Cloudlet levels. The processing resources of a VM are allocated by the scheduling policy

implemented by the VmScheduler, which is the class representation of the scheduling

policy for the VMs.

VmShedulerTimeShared and VmShedulerSpaceShared are implemented by VmSched-

uler. Once the VmAllocationPolicy has found a Host with the necessary resources,

such as CPU cores, memory, network bandwidth and storage, the VM allocation is

performed and the processing shared policy is allocated by the VmScheduler and

CloudletScheduler. Figure 4.2 explains the mechanism of sharing the CPU cores by

VMs and Cloudlets. At a certain time, VM 0 and VM 1 share the two cores and the

Cloudlets are being processed at the same time on both cores.

4.1. CLOUDSIM SIMULATION TOOLKIT 33

Figure 4.1: Scheduling policy model

Figure 4.3 depicts the space-shared policy for VMs and Cloudlets. This policy dedicates

the two cores at certain time to one VM and each core processes only one Cloudlet at

a time.

34 CHAPTER 4. SIMULATION ENVIRONMENT

Figure 4.2: Time-shared policy for VMs and Cloudlets

Figure 4.3: Space-shared policy for VMs and Cloudlets

4.1. CLOUDSIM SIMULATION TOOLKIT 35

Figure 4.4 shows the multi-layered architecture of the CloudSim simulation toolkit.

As can be seen, the architecture consists of three layers, namely: User code, CloudSim

and CloudSim core simulation engine. The top layer is the User code used to define

Figure 4.4: Layered architecture of the CloudSim simulation toolkit

the basic entities of the Hosts, applications and VMs. In particular, the user specifies

the configurations of Virtual Machines to be allocated and their characteristics and

the requirements and characteristics of the workload. In addition, the user specifies

the policies for allocation or deallocation of the VMs. Scheduling the workload and

managing of the resource are performed by the broker.

The CloudSim layer consists of various modules and components that enable building

a Cloud simulation environment. The modules of this layer deals with resource provi-

sioning and VM allocation to the Hosts and with managing the VMs and the execution

of the application tasks (Cloudlets).

The lower layer corresponds to the core of the simulation engine that deals with the

communication between components, the processing of the events and the management

of the simulation clock. This layer implements a discrete event simulation framework

to coordinate the various components.

The main extensions designed and developed within this thesis work refer to the core

layer. In particular, the functionalities deal with:

36 CHAPTER 4. SIMULATION ENVIRONMENT

• definition of workload configuration and generation of the workload requests;

• implementation of new scheduling and provisioning policies;

• modeling of different Cloud scenarios.

As a result, the extensions of the basic functionalities of the CloudSim toolkit make

it possible to perform different tests based on specific scenarios and configurations, in

terms of workload scheduling, resource provisioning, VM allocation and performance

monitoring.

4.2 Basic CloudSim entities

This section briefly describes the main classes of the CloudSim toolkit and the charac-

teristics used to model and simulate a Cloud infrastructure. Figure 4.5 shows the most

important classes of the CloudSim toolkit. The CloudSim class includes the core of the

Figure 4.5: CloudSim UML class diagram

simulation since it manages the queue of the events, namely, future and deferred events.

An event is characterized by a time and after its creation it is scheduled into the queue

of future events where all events are stored according to their future occurrence time.

Once an event has occurred, it is moved to the deferred queue where it is processed.

4.2. BASIC CLOUDSIM ENTITIES 37

The CloudSim class is responsible for organizing and executing all the events of the

simulation. The events are registered by the CloudInformationService(CIS), a com-

ponent instantiated in the CloudSim class that keeps track of all the Cloud resources

and their IDs.

The main entities acting during the simulation, such as the Data Center and the Broker

can schedule new events and send messages to other events. For this purpose, they must

extend the SimEntity abstract class. TheDatacenter class represents the Data Center,

that is, the hardware infrastructure offered by Cloud providers. This class encapsulates

a set of compute Hosts that can either be homogeneous or heterogeneous with respect

to their hardware configurations (i.e., memory, number of cores, bandwidth and stor-

age). Furthermore, every Datacenter component instantiates a generalized application

provisioning component that implements a set of policies for allocating bandwidth,

memory, and storage devices to Hosts and VMs.

The Host class models a physical resource, such as a compute or storage device in

the Data Center. This class encapsulates important information, such as the amount

of memory and storage, the list and types of processing cores, an allocation policy

for sharing the processing power among Virtual Machines, and policies for provi-

sioning memory and bandwidth to the Virtual Machines. It is possible to change

these policies, by extending the respective abstract classes, namely, RamProvisioner,

BandwidthProvisioner and V mScheduler.

The VM class models the Virtual Machines, managed and hosted by a Cloud Host

component. To create a Virtual Machine it is necessary to specify its characteristics,

that is, the number of instructions it can process per second (expressed in MIPS), its

image size (expressed in Mbytes), its RAM (expressed in Mbytes), the bandwidth it

can use (expressed in Mbps), the Virtual Machine Manager, the broker responsible for

assigning the Cloudlet, and provisioning policy. In addition, it is necessary to specify

the policy for the Cloudlet scheduling. New policies for scheduling the Cloudlets can

be created by extending the CloudletScheduler abstract class.

The ProcessingElement (PE) class represents a CPU core of a physical machine. The

CPU unit is defined in terms of Millions Instructions Per Second (MIPS) rating. The

Data Center acts on behalf of the user. The Cloudlet entity is the smallest component

of an application service. It is executed as a task on a given VM. The Cloudlets corre-

spond to the workload to be processed by the VMs.

The Cloudlet class models the application services to be deployed. The characteris-

38 CHAPTER 4. SIMULATION ENVIRONMENT

tics of an application can be defined in term of its resource requirements, bandwidth,

memory and I/O operations. A Cloudlet can be seen as a process to be executed on a

Virtual Machine. The Cloudlet class includes the specifications of the cores that can

be used to execute the Cloudlet and the utilization models of CPU, RAM and band-

width. For creating new utilization models, it is necessary to implement the interface

UtilizationModel. These models represent a key aspect to consider for modifying the

behavior of the workload. When a Cloudlet is submitted to a Virtual Machine, its

execution time is estimated to schedule the event corresponding to the completion of

its processing. Since the VM capacity changes in response to the workload dynamics,

it is necessary to re-compute the expected completion time and update the remaining

number of instructions to be processed.

The class DatacenterBroker models a broker responsible for mediating negotiations

between Cloud application requirments and Cloud providers. The broker acts on be-

half of Cloud providers. It discovers suitable Cloud service providers by querying the

Cloud Information Service (CIS) and undertakes on-line negotiations for allocation of

resources/services that can meet the application QoS requirements. Within the simu-

lation, the broker is responsible for VM creation and deletion and to keep track of the

list of the Cloudlets submitted and executed on the VMs.

The abstract class SimEntity is able to handle events and send events to other enti-

ties. Subclasses of the SimEntity are: Datacenter, DatacenterBroker, CloudInforma-

tionService, CloudSimShutdown. Since the CloudSim is an event-driven simulator, it

is important to exchange these events between the simulation entities. Therefore, these

entities must extend the SimEntity class and override the contained methods to create,

process, and delete entities.

The BwProvisioner is an abstract class that models the policy of bandwidth provision-

ing to VMs. The main role of this component is to allocate the network bandwidth to

a set of competing VMs deployed on the data center. The class allows VMs to reserve

as much bandwidth as required, even though this is constrained by the total available

Host bandwidth.

The CloudletScheduler abstract class implements the policies that determine the share

of processing power of the Cloudlets in a Virtual Machine. Two types of provisioning

policies are implemented: space-shared and time-shared.

The DatacenterCharacteristics class contains configuration information of data center

resources.

4.2. BASIC CLOUDSIM ENTITIES 39

The RAMProvisioner abstract class represents the policy for allocating memory to

the VMs. The execution and deployment of VMs on a given Host is feasible only after

the RamProvisioner component has checked that the Host has the required amount of

free memory.

The VMMAllocationPolicy abstract class represents the provisioning policy of Hosts

to Virtual Machines in a data center. The main functionality of this class is to select

an available Host in the data center that meets the memory, storage, and availability

requirements for the VM deployment.

The VMsScheduler class is a component implemented by the Host component that

models the policies (i.e., space-shared, time-shared) required for allocating processor

cores to VMs.

Figure 4.6 depicts CloudSim high level modeling. All the resources of the Cloud en-

vironment have to register themselves in the Cloud Information Service entity that is

responsible to respond to the queries for the available resources.

Figure 4.6: CloudSim high level modeling

40 CHAPTER 4. SIMULATION ENVIRONMENT

The Cloudlets are received by the broker which checks the available resources by query-

ing the CIS. Then, the broker schedules the Cloudlets on the available VMs and keeps

track of their processing status.

A typical simulation experiment follows the life cycle shown in Figure 4.7.

Figure 4.7: Simulation life cycle

Each simulation scenario is defined by specifying the appropriate configurations. When

the simulator starts, all the simulation entities are created and instantiated according

to the specified configurations, modeling a full Cloud simulation environment.

Chapter 5

CLOUDSIM TOOLKIT

EXTENSIONS

41

42 CHAPTER 5. CLOUDSIM TOOLKIT EXTENSIONS

To generate the workload dynamics according to the devised workload models and

test the performance of autoscaling policies, a simulation environment has to cope with

different Cloud scenarios. For this purpose, we develop a framework built on top of the

CloudSim simulation toolkit. This chapter describes the extensions of the CloudSim

toolkit designed and implemented in this thesis work.

5.1 Introduction

To setup a simulated Cloud environment, it is necessary to define the required com-

ponents and integrate them into the simulator. These components – that interact at

simulation time with the core of the CloudSim toolkit – are used to generate a Web

workload according to the devised workload models. The generated workloads are

scheduled and processed on the allocated VMs according to the scheduling policies

(i.e., Round Robin, Weighted Round Robin) specified at the broker. In addition, mea-

surements are collected on the computation process by the monitoring component. The

autoscaling component implements two policies (i.e., discrete sampling, average load)

that consider the load of the VMs and dynamically scale the computation resources.

Figure 5.1 summarizes the architecture of the simulation environment designed and

developed within this thesis work and outlines the interactions among the components

and with the core of the CloudSim toolkit.

CloudSim
Web

Workload
Generator

Interactive
Broker

Autoscaling
Policy

Workload
characteristics

Content push
configuration

Autoscaling
configuration

Simulation
configuration

Monitoring Log files

Figure 5.1: Architecture of the simulation environment

5.2. WEB WORKLOAD GENERATOR 43

As can be seen, the extensions deal with a Web Workload Generator, an Interactive

Broker, an Autoscaling Policy, and a Monitoring component. Configuration parame-

ters are specified to customize the behavior of the various components. In details, the

workload characteristics refer to the workload models identified from the analysis of

measurements. The Workload Generator generates the workload according to these

specifications. The produced workload is processed on the allocated VMs. Scheduling

the workload for processing is performed by the broker. The broker is also config-

ured in terms of the content push feature and the scheduling policy. The server push

mechanisms enable Web servers to speculatively deliver content to the client without

waiting for an explicit client request. The percentage of the content to be pushed by

the Web server and the scheduling policy (i.e., Round Robin, Weighted Round Robin)

are specified. The autoscaling policy is configured to monitor the load of the allocated

VMs, and it takes decisions on allocation or deallocation of the VMs based on the

monitoring data. The components of the simulation environment are interconnected

and integrated and ready to generate, schedule and process the workload on the pool

of resources.

5.2 Web workload generator

As already explained in Chapter 3, workload characterization is very important to un-

derstand the properties and the behavior of the workloads for different performance

issues. For example, to devise and evaluate new resource provisioning policies and

evaluate the QoS perceived by users – it requires a good understanding of the workload

properties. The user behavior can be modeled by means of probability distributions.

A probability distribution is a statistical function that describes the probability that a

random variable equals some values within a given range. The range is defined by the

minimum and maximum possible values. The distributions are characterized by factors

such as mean, standard deviation, skewness and kurtosis.

Web workload generator component is responsible for generating the Web workload

according to the probability distributions characterizing the attributes of the derived

workload models. The workload generation process takes advantage of the Stochastic

Simulation in Java (SSJ) software library1. The generated workload consists of a set

of users, characterized by their arrival times and their browsing behavior.Indeed, each

1http://simul.iro.umontreal.ca/ssj

44 CHAPTER 5. CLOUDSIM TOOLKIT EXTENSIONS

user can generate one or more sessions. A session is the set of the requests issued by

a user given that the time between consecutive requests is smaller than a predefined

value. Each request is described by a type (i.e., primary Web page, embedded object), a

size and an arrival time. A Web page consists of an HTML file (i.e., primary page) and

several embedded objects, Figure 5.2 shows the multi layer description of the workload

adopted in this work.

Figure 5.2: Multi layer workload description

The workload generator supports the generation of multiclass workloads. Each class

describes the characteristics and properties of the users. As an example, the configura-

tions of a class is shown in Figure 5.3. The user characteristics are specified in terms of

the number of requested pages and the number of objects per page, the interarrival time

between pages, the interarrival time between the page and its first embedded object,

the interarrival time between embedded objects, the size of the page and size of the

embedded objects. All these parameters are specified by the distributions identified by

the corresponding models.

5.3. AUTOSCALING POLICY 45

For example, the number of requested pages is defined by a uniform distribution in

the range [0,10]. Similarly, the number of objects per page is defined by a uniform

distribution in the range [1,35].

Figure 5.3: Configuration of a user class

5.3 Autoscaling policy

As already discussed, autoscaling policies deal with dynamically scaling the amount

of provisioned resources by taking into account the workload dynamics. In this thesis

work, two reactive autoscaling policies have been studied and implemented. These

policies react to the workload changes and base their decisions on the load conditions.

Scaling actions are triggered by some predefined thresholds.

The austoscaling component developed and integrated within the CloudSim toolkit

implements two policies, namely, a discrete sampling policy, and an average load policy.

This component receives the measured indicators of the VM performance from the

monitoring component.

5.3.1 Discrete sampling policy

The discrete sampling policy considers the status (idle, busy) of the CPU of all allocated

VMs at specific time steps and computes their average utilization. A new VM is

allocated when the average utilization of all VMs is above a given threshold for the

selected time steps. Similarly, a VM is deallocated when the average utilization of all

VMs is below a given threshold for the selected time steps.

Figure 5.4 shows a simple example of the computation of the average VM utilization.

In the example, we consider four time steps and five VMs and 40% and 80% for the

46 CHAPTER 5. CLOUDSIM TOOLKIT EXTENSIONS

scaling thresholds. As can be seen, at time step T1, three VMs are busy and two

are idle, so the average utilization is 60%. At time step T2, two VMs are busy and

three VMs are idle so the average utilization is 40%. At time step T3 and T4, the

average utilization is equal to 80% and 20%, respectively. The number of steps and the

Figure 5.4: Discrete sampling policy over four time steps with five allocated VMs and

lower and upper thresholds equal to 40% and 80%

thresholds are parameters specified in the custom configuration files. In this example,

the computed average utilization of all VMs at the four time steps is neither above nor

below the specified thresholds. Hence, no scaling actions are triggered.

5.3. AUTOSCALING POLICY 47

5.3.2 Average load policy

The average load policy considers the status (busy, idle) of the CPU of all VMs at a

fine-granularity sliding time window and computes the average utilization of each VM.

The policy triggers the scaling actions according to one of these three conditions:

• the utilization of at least one VM must be above or below the threshold for the

selected time window;

• the utilization of a given number/percentage of VMs must be above or below the

threshold for the selected time window;

• the average utilization of all VMs must be above or below the threshold for the

selected time window.

The average utilization of each VM relies on the values of the VM load provided by the

monitoring component.

Figure 5.5 shows an example of application of this policy. The thresholds are set to

80% and 40% and some VMs are allocated. The scaling actions are taken according to

the first condition and the average load is computed each 5 time units. For instance,

at time window 1, the average load of the allocated VMs is computed at T5. Suppose

that the average load of one VM is 80%, while the utilizations of the other VMs is

neither below nor above the thresholds. Therefore, a new VM is allocated according to

the first condition. Similarly, at time window 2, the average load of allocated VMs is

Figure 5.5: Average load policy with a time window of five time units

computed at T6. For example, we suppose that the average load of the allocated VMs

48 CHAPTER 5. CLOUDSIM TOOLKIT EXTENSIONS

is neither below nor above the thresholds, so the policy does not trigger any scaling

action. Finally, at time window 3, the average load is computed at T7. For example,

the average load of one VM is lower than 40%, while the average load of the other VMs

is neither below nor above the thresholds. So, this condition triggers the policy for

deallocating one of the VMs.

These autoscaling policies have been developed and implemented into CloudSim toolkit

and their computation mechanism is used in the simulation scenarios for taking scaling

actions in response to the workload dynamics.

5.3.3 Autoscaling policy configuration

As already discussed, the discrete sampling policy and the average load policy trigger

scaling actions for allocating or deallocating the VMs according to their load. These

policies are invoked regularly over time. Different configurations can be set to cope with

various simulation scenarios. The main configuration parameters can be summarized

as follows:

• minimum and maximum number of VMs to be allocated;

• number of VMs to start with;

• cooling time, that is, the minimum time between to consecutive scaling actions;

• number of time steps (or time window) to be used for computing the VM load;

• number (or percentage) of VMs to be allocated/deallocated when a scaling action

is taken.

5.4 Broker level extensions

As already explained in Sect. 4.2, the data center broker allows for managing the

Cloud resources. This component is responsible for the coordination between different

simulation components, i.e., monitoring, data center, Cloud Information Service. In

addition, it plays as key role in managing the simulation flow, starting from the user

requests scheduled according to one of the policies and assigning them to the VMs for

processing. Moreover, the broker is responsible of the allocation and deallocation of

the VMs.

5.4. BROKER LEVEL EXTENSIONS 49

5.4.1 User-based scheduling policy

The user-based scheduling policy is designed and developed for handling and scheduling

the incoming user requests on the allocated VMs to avoid the overload of the VMs and

to maximize the usage the allocated resources. The requests scheduling is performed

according to one of the scheduling policies i.e., Round Robin, Weighted Round Robin.

The broker invokes the specified policy for scheduling the user sessions on one of the

VMs. The VM is selected according to one of the following approaches:

• Round Robin: this policy handles requests in a rotational order which all re-

quests use a given resource without considering the actual load of the VMs.

• Weighted Round Robin: this policy assigns to each VM a weight that deter-

mines the fraction of requests to be sent to a given VM. The lower the weight,

the larger the proportion of requests a VM receives.

The request scheduling is performed at simulation time according to the actual VM

load.

5.4.2 Content push configuration

Pushing the requested HTML page with its embedded objects as responses without

waiting for explicit requests from the client is a feature supported by the HTTP/2,

the new version of the HTTP/1.1 protocol [77]. In the simulation environment, the

server push mechanisms is implemented by the broker to improve the page load time.

The configurations of this mechanism, such as the percentage and the types of the

embedded objects to be pushed are set by the broker. Figure 5.6 shows a simple

example of server push mechanism, where the client requests an HTML page and the

server sends back the HTML file and its embedded objects i.e., a style sheet and an

image. Three responses are sent back by the server, the page.html file and its two

embedded objects (i.e., style.css and image.png).

50 CHAPTER 5. CLOUDSIM TOOLKIT EXTENSIONS

Figure 5.6: Example of server push feature

5.5 VM level extensions

As already discussed in Section 4.2, the VM class in the CloudSim represents the VM

in the simulation environment. It runs inside a Host and processes Cloudlets. This

processing happens according to a policy, defined by the CloudletScheduler. At VM

level, we implemented a new concurrent-based scheduling policy for processing user

requests. This policy is used to

• limit the maximum number of requests concurrently processed;

• implement a waiting queue;

• specify time-sharing granularity.

At the simulation time, the concurrent-based scheduling policy specifies a quantum

time to each request and enables their processing concurrently. When the maximum

number of requests concurrently processed is exceeded, the new arrival requests are

moved to the waiting queue.

5.6. MONITORING COMPONENT 51

5.6 Monitoring component

The monitoring component is crucial for the autoscaling component since it collects

measurements at the broker and VM side. In this thesis work, different monitoring

strategies have been developed.

At the VM side, the monitoring component is invoked frequently during the simula-

tion time by the broker to sample the status of the VMs at different time granularity.

Monitoring consists of collecting information on the VM status, such as the number of

requests concurrently processed, number of waiting requests. The performance of Web

requests, that is, their processing time and waiting time, can also be monitored.

At the broker side, the monitoring component collects information about the number of

allocated or deallocated VMs. The collected information are used by other simulation

components such as autoscaling, and the broker itself for the VM allocation/dealloca-

tion.

5.7 Simulation configurations

Different Cloud environment can be simulated by varying changes according to the

workload characteristics and the configurations of the simulator components.

Various parameters are set for each simulation experiment, such as number of VMs to

start with and the VM boot time, that is, the time needed by a newly allocated VM to

be up and running for processing the user requests. Time sharing quantum is another

configuration parameter used to set the time given to each request during its processing

on a VM. Similarly, the monitoring resolution is also set which specify the granularity

of sampling time used by the monitoring component to collect measurements of the

VM status.

Chapter 6

EXPERIMENTAL RESULTS

52

6.1. DATASET DESCRIPTION 53

This chapter describes the dataset used in the experiments as well as the results of

the Web workload characterization. The simulation scenarios developed for testing the

behavior of the autoscaling policy under different HTTP/2 content push configurations

and the results of these experiments are also presented.

6.1 Dataset description

The dataset used in this work is represented by the logs collected by the Web server

that hosts the official site of the University of Pavia. These logs are stored according

to the Extended Log File Format. In particular, each record contains various informa-

tion, such as the IP address of the client that issued the HTTP request, a timestamp

associated with the request, the User Agent string and the status code of the HTTP

response. Table 6.1 summarizes the characteristics of the dataset. The data refers to

four weeks between 24/01/2016 and 21/02/2016.

A preliminary analysis was applied for filtering, reformatting, and summarizing the

dataset. Users have been identified using the pair, IP address and User Agent. More-

over, within user activity, sessions have been identified. A session is defined as the

sequence of requests whose interarrival time, that is, the time between two consecutive

requests, is less that a predefined threshold.

The users have been classified into users who requested only one page and users who

requested more than one page. As results 252,474 users have been identified, one third

of the users requesting only one page.

Logging period 4 weeks

Number of requests 8,608,774

Table 6.1: Main characteristics of the log files of the University of Pavia

54 CHAPTER 6. EXPERIMENTAL RESULTS

6.2 Workload models

To identify workload models we analyze the user behavior in terms of its requests to

the Web server. In particular, we describe each user by nine parameters, namely: total

number of requests of primary pages, total number of requests of embedded objects,

average interarrival time between primary pages, average interarrival time between a

primary page and its first embedded object, average interarrival time between the first

and last embedded object, average interarrival time between embedded objects, total

size of the primary pages, number of requests of primary pages without embedded

objects, total size of the embedded objects. Various statistical techniques are applied

to analyze the user behavior and uncover differences and similarities among them. In

particular, it is necessary to compute the correlation coefficient between parameters as

to remove highly correlated parameters.

The Pearson correlation coefficient is computed for the users who requested more than

one page each – which measures the linear relationship between two variables. For

example, the correlation coefficient between the number of pages without embedded

objects and the number of primary pages is equal to 96.78%. As result, the number of

pages without embedded objects parameter has been removed.

In addition, we analyze the parameter distributions for the identification of the outliers.

In fact, the outliers, that is, the components whose parameter values are very different

from the typical ones, may distort the classification process. Hence, the original data

set has to be trimmed by removing the components having one or more parameters

with values greater than a predetermined percentile. In particular, the 99.2 and 99.5

percentiles are considered for the number of pages and number of embedded objects,

respectively. Figure 6.1 shows the percentiles of the page interarrival time of the users

who requested more than one page. As can be seen, values larger than 99.7 percentile

are quite different from the other values.

Figure 6.2 shows the cumulative distribution function of the page interarrival time,

highlighting the 99.7 percentiles that has been chosen to remove outliers. The total

number of users who have requested more than one page is 165,518. As result of the

filtering, 0.02% of the users who requesting more than one page have been removed.

The k-means clustering algorithm has been applied to group users with similar charac-

teristics. Number of primary pages, number of embedded objects, interarrival time of

the primary pages, average size of primary pages and average size of embedded objects

6.2. WORKLOAD MODELS 55

Figure 6.1: Percentile values of page interarrival time of the users who requested more

than one page

0 500000 1000000 1500000 2000000 2500000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Page interarrival time

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

Figure 6.2: Cumulative distribution function of the page interarrival time

are the parameters used in the clustering.

The users are partitioned into four groups, described by their centroid, i.e., the geomet-

ric centers of the clusters. The characteristics of the four clusters are shown in Table

6.2. As can be seen, cluster 1 is the largest one, grouping 49% of the users. The user

requests have very short interarrival times, compared with those of other users. Cluster

3 groups 40% of the users requesting large embedded objects. embedded objects. Clus-

ter 2 groups the users who request the largest number of pages and embedded objects,

that is, on average 32.61 and 83, respectively. Moreover, the users of Cluster 4 request

pages whose size is very large, i.e., 111,852 bytes, with longest interarrival time.

To summarize the behavior of the various parameters by means of probabilistic distri-

56 CHAPTER 6. EXPERIMENTAL RESULTS

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Number of users 79,023 13,864 65,077 4,554

Number of primary pages 4.81 32.61 5.29 3.63

Number of embedded objects 13.4 83 38 18.5

Primary page interarrival time [second] 9.305 17.917 10.508 43.301

Primary page size [byte] 53,737 31,880 23,169 111,852

Embedded object size [byte] 12,828 35,573 66,592 15,403

Table 6.2: Centroids of the four clusters

butions, fitting techniques are applied. A visual inspection of the parameters show that

their patterns can be modeled by different types of distribution. Thus, we use piecewise

functions. Figure 6.3(a) shows the distribution of the average size of primary pages in

cluster 2. As can be seen, the pattern is not clear and it does not fit to individual dis-

tribution. In addition, some peaks can change the behavior of the pattern, therefore, it

is necessary to fit the distribution to the proper ones. We fit this distribution by means

of two Gaussian distributions in the ranges [0,10000[and [10000,25000] and of one uni-

form. Figure 6.3(b) shows the Gaussian distribution in range [0,10000[with standard

deviation 2,395.44 and mean 5,319.74. Figure 6.3(c) shows the Gaussian distribution

in range [10000,25000] with standard deviation 3,817.667 and mean 17,399.8. Primary

page size is modeled as uniform distribution in the range [25001.19,119084.5] with fre-

quency 4518 and mean 72,042.23. Similarly, the other parameters of the clusters have

been fitted with proper distributions in order to obtain different workload models.

Users who have requested only one page are modeled separately since for these users

many parameters previously are meaningless. These users are 86,968 and, after ap-

plying the filtering process, they are 40,268 i.e., 46.3%. Table 6.3 shows some of their

characteristics.

6.2. WORKLOAD MODELS 57

Average size of primary pages [byte]

N
um

be
r

of
 u

se
rs

0 50000 100000 150000 200000

0
10

0
20

0
30

0
40

0
50

0
60

0

(a)

Average size of primary pages [byte]

N
um

be
r

of
 u

se
rs

0 2000 4000 6000 8000 10000

0
10

0
20

0
30

0
40

0
50

0
60

0

(b)

Average size of primary pages [byte]

N
um

be
r

of
 u

se
rs

10000 15000 20000 25000

0
10

0
20

0
30

0
40

0
50

0

(c)

Figure 6.3: Average size of primary pages in Cluster 2 (a)) and (Gaussian distribu-

tion fitted in the range [0,10000[(b)) and (Gaussian distribution fitted in the range

[10000,25000] (c)).

58 CHAPTER 6. EXPERIMENTAL RESULTS

Users

Number of users 40,268

Average number of embedded objects 21.81

Average time between primary page and first embedded object [second] 0.8419

Average interarrival time between embedded objects [second] 0.39621

Average primary page size [byte] 20,825

Average embedded objects size [byte] 646,726

Table 6.3: Characteristics of the users who request only one page

6.3 Simulation experiments

The derived workload models, described in the previous section are used to drive the

simulation experiments. A single class workload has been used in the simulations

and, in particular, the users who request one page have been considered. This section

presents the results of four simulation experiments aimed at assessing the behavior of

the autoscaling policies (i.e., discrete sampling, average load) and testing the HTTP/2

content push feature. As already pointed out, server push optimization mechanisms

allow Web servers to speculatively send resources without waiting for explicit client

requests. The push configuration parameters identify the bundle of Web resources to

be pushed.

6.3.1 User arrival patterns

The Web workload generator reproduces the workload according to the identified work-

load models. In the simulation experiments, more than 330,000 HTTP requests for Web

pages have been generated. Figure 6.4 shows the daily arrival pattern of the requests

as a function of time. As can be seen, the workload intensity is characterized by a

clear diurnal pattern, with much fewer requests – as little as 42 requests per minute –

during the night and early morning hours, and a peak of about 400 requests per minute

around noon.

To describe the composition of the Web pages in terms of number and size of embed-

ded objects, we analyze the structural properties of the Website (see the snapshot of

Figure 6.5). On average the Web pages reference 40 embedded objects each. The pro-

cessing time of each object is set proportional to its size. In detail, the processing time

6.3. SIMULATION EXPERIMENTS 59

Time [hours]

A
rr

iv
al

 r
at

e
[r

eq
s/

m
in

]

0 6 12 18 24
0

10
0

20
0

30
0

40
0

Figure 6.4: Daily request arrival pattern.

is described by two equally probable uniform distributions, one in the range [0.2, 2] µs

and the other in the range [110, 118] µs.

Figure 6.5: Snapshot of the home page of the Website of the University of Pavia.

Another important property of the workload is the interarrival time between two con-

secutive requests to the embedded objects of a given page. Since these times are usually

quite small, that is, one second or less, we model them using two uniform distributions

in the range [0, 1] s and [1, 2] s, respectively. The probabilities associated with these

distributions are 0.97 and 0.03.

60 CHAPTER 6. EXPERIMENTAL RESULTS

6.3.2 Simulation scenario

The experiments performed follow the simulation scenario depicted in Figure 6.6. As

can be seen, a pool of VMs is allocated to process Web requests. Some VMs are

VM status

Autoscaling
policy

VM Pool

Web page
requests

.

.

.

Figure 6.6: Experimental scenario.

allocated and some others are ready to be allocated depending on the workload intensity.

The autoscaling policy frequently checks the load of the allocated VMs by receiving

the monitoring data to react to the workload changes by allocating/deallocating VMs.

Several experiments have been carried out to select the most appropriate values of the

thresholds that trigger the autoscaling policy as well as the number of time steps or time

window in order to adapt the VM allocation/deallocation to the workload dynamics,

while minimizing the number of scaling operations. In details, the upper threshold is

set to 0.8 to maximize the VM utilization, while the lower threshold is set to 0.4 to

avoid fluctuation in VM allocation/deallocation. Note that, if the number of time steps

and the time window are too large, the autoscaling policy reacts slowly to the workload

changes.

Table 6.4 summarizes the parameters used in the simulations. In particular, these

parameters specify the minimum and the maximum number of VMs to be allocated

(equal to 1 and 100, respectively), the initial number of VMs (equal to 20). The boot

time of a VM is set to 30 seconds. In addition, to avoid oscillations in the number

of allocated/deallocated VMs, the cooling time, i.e., the minimum time between two

scaling actions, is set to 40 seconds.

6.3. SIMULATION EXPERIMENTS 61

Number of VMs Boot time Cooling time Thresholds Monitoring resolution

Min Max Start [s] [s] lower upper [s]

1 100 20 30 40 0.4 0.8 0.1

Table 6.4: Simulation parameters

As explained in Sect. 5.3, the autoscaling component developed in this thesis work

implements two reactive autoscaling policies (i.e., Discrete sampling, Average load).

These policies allocate/deallocate the VMs according to their actual load on a given

number of time steps or time window. The simulation experiments are performed

under different configurations aimed at assessing the behavior of autoscaling policies

and testing the HTTP/2 content push mechanisms.

The discrete sampling and average load policies have been evaluated using performance

metrics, such as number of scaling operations, VM utilization, page load time and

number of allocated VMs.

6.3.3 Discrete sampling policy

The behavior of the discrete sampling policy in response to the workload changes has

been tested and evaluated. In particular, two simulations have been carried out under

different content push configuration and the VMs usage is computed over four time

steps. The first experiment does not consider any content push. This means that each

embedded object is sent as response of a specific HTTP request. The second experi-

ment considers full content push, that is the embedded objects are sent to the client

without being explicitly requested.

Figure 6.7 shows the number of allocated VMs as a function of time. The request

arrival rate is also displayed. In particular, Figure 6.7(a) refers to the experiment with

no content push, while Figure 6.7(b) refers to the experiment with full content push.

The scaling operations in the experiment with no push account for 131 and 133 for

scaling up and down, respectively and the maximum number of allocated VMs is 23.

The scaling operations in the experiment with full push account 253 and 265 for scaling

up and down, respectively and the maximum number of allocated VMs is 24.

Note that, the request arrival rate is higher in the experiment with no push 6.7(a)

compared to the one with full push 6.7(b), since the Web server receives a separate

request for each embedded object.

62 CHAPTER 6. EXPERIMENTAL RESULTS

(a) (b)

Figure 6.7: Step functions of the number of allocated VMs as a function of simulated

time with no push (a) and full push (b) of the Web content

The boxplots of Figure 6.8 summarize the actual utilization of the VMs as a func-

tion of the number of allocated VMs. Figure 6.8(a) refers to the experiment with no

push. The average utilization of the allocated VMs is 0.60 and the maximum is 0.87.

Figure 6.8(b) refers to the experiment with full push. The average utilization of the

allocated VMs is 0.63 and the maximum is 0.88. As can be seen, in both experiments,

increasing the number of allocated VMs leads to a balanced VM utilization.

Page load time, that is, the time needed by the Web server to load the HTML file

with its embedded objects, is a good performance metric for evaluating the autoscaling

policies. Figure 6.9 shows the cumulative distribution functions of the page load time

as function of the simulated time. We notice very different behaviors with much smaller

times in the case of full push.

Table 6.5 presents some statistics of the page load time. As can be seen, the page load

time is significantly smaller in the case of full push, in particular its average is 2.8 s,

while in case of no push it is 21.3 s.

6.3. SIMULATION EXPERIMENTS 63

(a) (b)

Figure 6.8: Boxplots of the VM utilization for the no push (a) and full push (b)

experiments

Avg. Median 99-th percentile

No push 21.3 21.1 26.9

Full push 2.8 2.4 9.1

Table 6.5: Page load time expressed in seconds under no push and full push configura-

tions

The autoscaling behavior in response to the workload changes has been further an-

alyzed by looking at the status (idle, busy) of the allocated VMs. In particular, Figure

6.10 shows the number of allocated VMs (black step function) compared to the number

of busy VMs (blue curve) as a function of time. The red area in the diagram represents

the unused VMs allocated but in idle state. On average we discovered that 40% of the

allocated VMs in the no push are idle, while 37% the allocated VMs in the full push.

As can be seen, in the case of full push 6.10(b) the policy leads to better VM utilization

and VM deallocation.

64 CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.9: Cumulative distribution functions of the page load time with full push

(black curve) and no push (red curve)

(a) (b)

Figure 6.10: Number of allocated VMs and of busy VMs as a function of time for no

push (a) and full push (b)

6.3. SIMULATION EXPERIMENTS 65

6.3.4 Average load policy

Two experiments aimed at assessing the behavior of the average load policy have been

performed as well. The first experiment considers partial push, in which 45% of the

embedded objects are pushed by the Web server. The second experiment considers full

content push. In addition, the VMs usage is computed by choosing a time window

value of 5 seconds. The results of these experiments are explained in this section.

Firstly, we evaluate how the average load policy reacts to the workload dynamics. The

number of allocated VMs and request arrival rate as a function of time are shown in

Figure 6.11. Figure 6.11(a) refers to the experiment with partial content push, while

Figure 6.11(b) refers to the experiment with full content push. The VM allocation/deal-

location is evaluated by analyzing how many scaling operations are performed. In the

partial push experiment a total of 992 and 996 scaling up and down operations are

counted, whereas in the full push they are 835 and 838, respectively. In both experi-

ments, at maximum 28 VMs are allocated.

(a) (b)

Figure 6.11: Step functions as a function of simulated time with partial push (a) and

full push (b)

The average VMs utilization have been evaluated in both experiments. The actual

utilization of the VMs as a function of the number of allocated VMs is summarized by

the boxplots of Figure 6.12. Figure 6.12(a) refers to the experiment with partial push.

66 CHAPTER 6. EXPERIMENTAL RESULTS

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14 16 18 20 22 24 26 28

0.
0

0.
2

0.
4

0.
6

0.
8

VMs

A
ve

ra
ge

 u
til

iz
at

io
n

(a)

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14 16 18 20 22 24 26 28

0.
0

0.
2

0.
4

0.
6

0.
8

VMs

A
ve

ra
ge

 u
til

iz
at

io
n

(b)

Figure 6.12: Boxplots of the VMs utilization of for the partial push (a) and full push

(b)

The average VMs utilization is 0.58 and the maximum is 0.88. Figure 6.12(b) refers to

the experiment with full push. The average VMs utilization is 0.57 and the maximum

is 0.86. As can be seen, the behavior is similar as in the discrete sampling policy.

Figure 6.13 shows the results of the cumulative distribution function of the page load

time as function of time for the two experiments. Page load times exhibit very different

behaviors with much smaller times in the case of full push.

6.3. SIMULATION EXPERIMENTS 67

Figure 6.13: Cumulative distribution functions of the page load time with full push

(black curve) and with partial push (red curve)

Table 6.5 presents some statistics of the page load time. As can be seen, the page

load time decreases when the number of pushed objects increases. The page load time

is significantly smaller in the case of full push, in particular the average page download

is 2.8 s while in case of partial push is 6.9 s.

Avg. Median 99-th percentile

Partial push 6.9 6.7 15.9

Full push 2.8 2.4 9.1

Table 6.6: Page load time expressed in seconds under partial and full push configura-

tions.

The average load policy behavior when allocating/deallocating VMs in response to

the workload changes has been analyzed by looking at the status (idle, busy) of the

68 CHAPTER 6. EXPERIMENTAL RESULTS

allocated VMs. In particular, Figure 6.14 shows the number of allocated VMs (black

step function) compared to the number of busy VMs (blue curve) as a function of time.

The red area in the diagram represents the unused VMs allocated but in idle state. We

discovered that about 42% of the allocated VMs are idle in the partial push, while 43%

of the allocated VMs in the full push.

(a) (b)

Figure 6.14: Number of allocated VMs and of busy VMs as a function of time for

partial content push (a) and full content push (b)

6.3.5 Summary

The simulation experiments have shown that autoscaling considered in this work react

well to the workload changes by allocating or deallocating the VMs. In details, the scal-

ing actions performed by discrete sampling are fewer than the scaling actions performed

by average load. This leads to fewer fluctuation in VM allocation or deallocation.

The experiments have also shown an overall benefit in adopting the push feature in

terms of page load time. Page load times exhibit very different behaviors with much

smaller times in the case of full push compared with no push and partial push.

Moreover, by comparing the two policies under full content push, we notice that more

than half of the allocated VMs are idle. This emphasizes the importance of autoscal-

ing policies for saving costs by reducing the number of VMs. These results have been

published in a conference paper (see [78]).

Chapter 7

CONCLUSIONS

69

70 CHAPTER 7. CONCLUSIONS

This thesis work focuses on the study of Cloud workloads and on characterization

of Web workloads with the objective of devising models to be used to test the perfor-

mance of autoscaling policies. The workload characterization is based on measurements

collected on a Web server. Data analysis and exploratory techniques have been applied

for identifying the parameters that describe the user behavior. Moreover, workload

models have been derived by applying clustering and fitting techniques.

A simulation environment based on the CloudSim simulation toolkit has been designed

and developed to exploit a Web workload on a realistic Cloud infrastructure and imple-

ment state-of-the-art reactive autoscaling policies. These policies allocate/deallocate

the VMs according to their resource usage evaluated on a given number of time steps

or time window.

Various experiments aimed at assessing the impact of HTTP/2 content push mech-

anism on Cloud environment have been performed. The benefits of the server push

mechanisms have been evaluated using performance metrics, such as page load time,

VM utilization and number of allocated VMs. The autoscaling policies tested in the

experiments lead to rather balanced utilizations across VMs, when a larger number

of VMs allocated. The results of the simulation experiments have shown an overall

benefit in adopting the server push mechanism. In particular, the page load time is

significantly reduced and the amount of content being pushed does not influence the

behavior of the autoscaling policies.

7.1 Future work

As a future work it is possible to model different scenarios and workload classes. Re-

active and proactive autoscaling polices will be designed and tested to study their

sensitivity to push configuration parameters. In addition, the various features of the

HTTP/2 protocol will be tested on benchmarks deployed for the purpose and executed

on real a Cloud infrastructure that relies on the OpenStack software.

Bibliography

[1] Cisco, “Cisco global Cloud index: Forecast and methodology, 2014-

2019,” http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

global-cloud-index-gci/Cloud Index White Paper.pdf, 2015.

[2] M. Ghahramani, M. Zhou, and C. Hon, “Toward Cloud computing QoS archi-

tecture: Analysis of Cloud systems and Cloud services,” IEEE/CAA Journal of

Automatica Sinica, pp. 6–18, 2017.

[3] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” National

Institute of Standards and Technology, Tech. Rep. SP 800-145, 2011.

[4] J. E. Smith and R. Nair, “The Architecture of Virtual Machines,” Computer, pp.

32–38, 2005.

[5] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in Cloud Computing: What

It Is, and What It Is Not,” in Proc. of the 10th International Conference on

Autonomic Computing (ICAC’13). USENIX Association, 2013, pp. 23–27.

[6] N. M. Calcavecchia, B. A. Caprarescu, E. D. Nitto, D. J. Dubois, and D. Petcu,

“DEPAS: a decentralized probabilistic algorithm for auto-scaling,” Computing,

vol. 94, no. 8-10, pp. 701–730, 2012.

[7] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling Web Applications in Clouds:

A Taxonomy and Survey,” ACM Computing Surveys (CSUR’17), vol. 9, no. 4, pp.

39:1–39:34, 2017.

[8] M. S. Aslanpour, M. Ghobaei-Arani, and A. N. Toosi, “Auto-scaling Web appli-

cations in Clouds: A cost-aware approach,” Journal of Network and Computer

Applications, vol. 95, pp. 26 – 41, 2017.

71

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.pdf

72 BIBLIOGRAPHY

[9] H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada, “A Comparison of Rein-

forcement Learning Techniques for Fuzzy Cloud Auto-Scaling,” in Proc. of the

17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-

ing (CCGrid’17). IEEE, 2017, pp. 64–73.

[10] P. Tang, F. Li, W. Zhou, W. Hu, and L. Yang, “Efficient Auto-Scaling Approach

in the Telco Cloud Using Self-Learning Algorithm,” in Proc. of the IEEE Global

Communications Conference (GLOBECOM’15), 2015, pp. 1–6.

[11] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A Review of Auto-scaling

Techniques for Elastic Applications in Cloud Environments,” Journal of Grid

Computing, vol. 12, no. 4, pp. 559–592, 2014.

[12] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch, “AutoScale:

Dynamic, Robust Capacity Management for Multi-Tier Data Centers,” ACM

Transactions on Computer Systems, vol. 30, no. 4, pp. 14:1–14:26, 2012.

[13] F. Farahnakian, P. Liljeberg, and J. Plosila, “LiRCUP: Linear Regression Based

CPU Usage Prediction Algorithm for Live Migration of Virtual Machines in Data

Centers,” in Proc. of the 39th Euromicro Conference on Software Engineering and

Advanced Applications, 2013, pp. 357–364.

[14] A. Evangelidis, D. Parker, and R. Bahsoon, “Performance Modelling and Veri-

fication of Cloud-Based Auto-Scaling Policies,” in Proc. of the 17th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGRID’17),

2017, pp. 355–364.

[15] X. Dutreilh, A. Moreau, J. Malenfant, N. Rivierre, and I. Truck, “From Data

Center Resource Allocation to Control Theory and Back,” in Proc. of the IEEE

3rd International Conference on Cloud Computing, 2010, pp. 410–417.

[16] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight Resource Scaling for

Cloud Applications,” in Proc. of the 12th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computin (CCGrid’12), 2012, pp. 644–651.

[17] M. Z. Hasan, E. Magana, A. Clemm, L. Tucker, and S. L. D. Gudreddi, “Integrated

and autonomic Cloud resource scaling,” in Proc. of the IEEE Network Operations

and Management Symposium, 2012, pp. 1327–1334.

BIBLIOGRAPHY 73

[18] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal, “Dynamic Scaling of Web

Applications in a Virtualized Cloud Computing Environment,” in Proc. of the

IEEE International Conference on e-Business Engineering, 2009, pp. 281–286.

[19] F. Al-Haidari, M. Sqalli, and K. Salah, “Impact of CPU Utilization Thresholds

and Scaling Size on Autoscaling Cloud Resources,” in Proc. of the IEEE 5th In-

ternational Conference on Cloud Computing Technology and Science, 2013, pp.

256–261.

[20] M. Daswani, P. Sunehag, and M. Hutter, “Q-learning for history-based reinforce-

ment learning,” in Proc. of the 5th Asian Conference on Machine Learning, vol. 29.

PMLR, 2013, pp. 213–228.

[21] P. Jamshidi, A. M. Sharifloo, C. Pahl, A. Metzger, and G. Estrada, “Self-Learning

Cloud Controllers: Fuzzy Q-Learning for Knowledge Evolution,” in Proc. of the

International Conference on Cloud and Autonomic Computing (ICCAC’15), 2015,

pp. 208–211.

[22] B. Asgari, M. Arani, and S. Jabbehdari, “An efficient approach for resource auto-

scaling in Cloud environments,” International Journal of Electrical and Computer

Engineering, vol. 6, no. 5, pp. 2415–2424, 2016.

[23] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre, and I. Truck,

“Using Reinforcement Learning for Autonomic Resource Allocation in Clouds:

towards a fully automated workflow,” in Proc. of the 7th International Conference

on Autonomic and Autonomous Systems (ICAS’11), 2011, pp. 67–74.

[24] E. Barrett, E. Howley, and J. Duggan, “Applying reinforcement learning towards

automating resource allocation and application scalability in the Cloud,” Concur-

rency and Computation: Practice and Experience, vol. 25, no. 12, pp. 1656–1674,

2013.

[25] P. Jamshidi, C. Pahl, and N. C. Mendona, “Managing Uncertainty in Autonomic

Cloud Elasticity Controllers,” IEEE Cloud Computing, vol. 3, no. 3, pp. 50–60,

2016.

[26] Q. Zhu and G. Agrawal, “Resource Provisioning with Budget Constraints for Adap-

tive Applications in Cloud Environments,” IEEE Transactions on Services Com-

puting, vol. 5, no. 4, pp. 497–511, 2012.

74 BIBLIOGRAPHY

[27] P. Padala, K. Hou, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and A. Mer-

chant, “Automated Control of Multiple Virtualized Resources,” in Proc. of the 4th

ACM European Conference on Computer Systems (EuroSys’09). ACM, 2009, pp.

13–26.

[28] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-adaptive and Self-configured

CPU Resource Provisioning for Virtualized Servers Using Kalman Filters,” in Proc.

of the 6th International Conference on Autonomic Computing (ICAC’09). ACM,

2009, pp. 117–126.

[29] P. Bod́ık, R. Griffith, C. Sutton, A. Fox, M. Jordan, and D. Patterson, “Statistical

Machine Learning Makes Automatic Control Practical for Internet Datacenters,”

in Proc. of the Conference on Hot Topics in Cloud Computing (HotCloud’09).

USENIX Association, 2009.

[30] Y. Liu, D. Gureya, A. Al-Shishtawy, and V. Vlassov, “OnlineElastMan: self-

trained proactive elasticity manager for Cloud-based storage services,” Cluster

Computing, pp. 1977–1994, 2017.

[31] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Capacity Management and

Demand Prediction for Next Generation Data Centers,” in Proc. of the IEEE

International Conference on Web Services (ICWS’07), 2007, pp. 43–50.

[32] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale: Elastic Resource Scaling

for Multi-tenant Cloud Systems,” in Proc. of the 2nd ACM Symposium on Cloud

Computing (SOCC’11). ACM, 2011, pp. 5:1–5:14.

[33] G. Zhenhuan, G. Xiaohui, and J. Wilkes, “PRESS: PRedictive Elastic ReSource

Scaling for Cloud systems,” in Proc. of the International Conference on Network

and Service Management, 2010, pp. 9–16.

[34] Y. Hu, B. Deng, and F. Peng, “Autoscaling prediction models for Cloud resource

provisioning,” in Proc. of the 2nd IEEE International Conference on Computer

and Communications (ICCC’16), 2016, pp. 1364–1369.

[35] R. S. Shariffdeen, D. T. S. P. Munasinghe, H. S. Bhathiya, U. K. J. U. Bandara,

and H. M. N. D. Bandara, “Workload and Resource Aware Proactive Auto-scaler

for PaaS Cloud,” in Proc. of the IEEE 9th International Conference on Cloud

Computing (CLOUD’16), 2016, pp. 11–18.

BIBLIOGRAPHY 75

[36] M. N. A. H. Khan, Y. Liu, H. Alipour, and S. Singh, “Modeling the Autoscaling

Operations in Cloud with Time Series Data,” in Proc. of the IEEE 34th Symposium

on Reliable Distributed Systems Workshop (SRDSW’15), 2015, pp. 7–12.

[37] Y. Hu, B. Deng, F. Peng, and D. Wang, “Workload prediction for Cloud computing

elasticity mechanism,” in Proc. of the IEEE International Conference on Cloud

Computing and Big Data Analysis (ICCCBDA’16), 2016, pp. 244–249.

[38] R. N. Calheiros, R. Rajiv, A. Beloglazov, C. A. F. D. Rose, and R. Buyya,

“CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environ-

ments and Evaluation of Resource Provisioning Algorithms,” Software - Practice

& Experience, vol. 41, no. 1, pp. 23–50, 2011.

[39] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé, J. Carretero,

and I. M. Llorente, “iCanCloud: A Flexible and Scalable Cloud Infrastructure

Simulator,” Journal of Grid Computing, vol. 10, no. 1, pp. 185–209, 2012.

[40] D. Kliazovich, P. Bouvry, and S. U. Khan, “GreenCloud: a packet-level simulator

of energy-aware Cloud computing data centers,” The Journal of Supercomputing,

vol. 62, no. 3, pp. 1263–1283, 2012.

[41] S. H. Lim and B. Sharma and G. Nam and E. K. Kim and C. R. Das, “MDCSim:

A multi-tier data center simulation, platform,” in Proc. of the IEEE International

Conference on Cluster Computing and Workshops, 2009, pp. 1–9.

[42] R. N. Calheiros, M. A. Netto, C. A. D. Rose, and R. Buyya, “EMUSIM: an

integrated emulation and simulation environment for modeling, evaluation, and

validation of performance of Cloud computing applications,” Software: Practice

and Experience, vol. 43, no. 5, pp. 595–612, 2013.

[43] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “CloudAnalyst: A CloudSim-

Based Visual Modeller for Analysing Cloud Computing Environments and Appli-

cations,” in Proc. of the 24th IEEE International Conference on Advanced Infor-

mation Networking and Applications, 2010, pp. 446–452.

[44] M. C. Calzarossa, M. L. Della Vedova, L. Massari, D. Petcu, M. I. M. Tabash,

and D. Tessera, “Workloads in the Clouds,” in Principles of Performance and

Reliability Modeling and Evaluation, ser. Springer Series in Reliability Engineering,

L. Fiondella and A. Puliafito, Eds. Springer, 2016, pp. 525–550.

76 BIBLIOGRAPHY

[45] J. Du, N. Sehrawat, and W. Zwaenepoel, “Performance Profiling of Virtual Ma-

chines,” ACM SIGPLAN Notices, vol. 46, no. 7, pp. 3–14, 2011.

[46] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt, “Google-wide Profiling:

A Continuous Profiling Infrastructure for Data Centers,” IEEE Micro, vol. 30,

no. 4, pp. 65–79, 2010.

[47] K. Alhamazani, R. Ranjan, K. Mitra, F. Rabhi, P. Jayaraman, S. Khan,

A. Guabtni, and V. Bhatnagar, “An overview of the commercial Cloud moni-

toring tools: research dimensions, design issues, and state-of-the-art,” Computing,

vol. 97, no. 4, pp. 357–377, 2015.

[48] F. Azmandian, M. Moffie, J. Dy, J. Aslam, and D. Kaeli, “Workload Charac-

terization at the Virtualization Layer,” in Proc. of the 19th Int. Symp. on Mod-

eling, Analysis Simulation of Computer and Telecommunication Systems (MAS-

COTS’11). IEEE, 2011, pp. 63–72.

[49] R. Birke, L. Chen, and E. Smirni, “Multi-Resource Characterization and their

(In)dependencies in Production Datacenters,” in Proc. of the Network Operations

and Management Symposium (NOMS’14). IEEE, 2014.

[50] A. Do, J. Chen, C. Wang, Y. Lee, A. Zomaya, and B. B. Zhou, “Profiling applica-

tions for virtual machine placement in Clouds,” in Proc. of the 4th Int. Conf. on

Cloud Computing (CLOUD’11). IEEE, 2011, pp. 660–667.

[51] R. Weingärtner, G. Bräscher, and C. Westphall, “Cloud resource management: A

survey on forecasting and profiling models,” Journal of Network and Computer

Applications, vol. 47, pp. 99–106, 2015.

[52] J. Calero and J. G. Aguado, “Comparative analysis of architectures for monitoring

Cloud computing infrastructures,” Future Generation Computer Systems, vol. 47,

pp. 16–30, 2015.

[53] K. Fatema, V. Emeakaroha, P. Healy, J. Morrison, and T. Lynn, “A survey of

Cloud monitoring tools: Taxonomy, capabilities and objectives,” Journal of Par-

allel and Distributed Computing, vol. 74, no. 10, pp. 2918–2933, 2014.

[54] J. Huang and D. Nicol, “Trust mechanisms for Cloud computing,” Journal of

Cloud Computing, vol. 2, no. 1, pp. 1–14, 2013.

BIBLIOGRAPHY 77

[55] S. Meng and L. Liu, “Enhanced Monitoring-as-a-Service for Effective Cloud Man-

agement,” IEEE Transactions on Computers, vol. 62, no. 9, pp. 1705–1720, 2013.

[56] J. Mueller, D. Palma, G. Landi, J. Soares, B. Parreira, T. Metsch, P. Gray,

A. Georgiev, Y. Al-Hazmi, T. Magedanz, and P. Simoes, “Monitoring as a Service

for Cloud Environments,” in Proc. of the 5th Int. Conf. on Communications and

Electronics (ICCE’14). IEEE, 2014, pp. 174–179.

[57] T. Somasundaram and K. Govindarajan, “CLOUDRB: A framework for schedul-

ing and managing High-Performance Computing (HPC) applications in science

Cloud,” Future Generation Computer Systems, vol. 34, pp. 47–65, 2014.

[58] R. Duan, R. Prodan, and X. Li, “Multi-Objective Game Theoretic Scheduling of

Bag-of-Tasks Workflows on Hybrid Clouds,” IEEE Transactions on Cloud Com-

puting, vol. 2, no. 1, pp. 29–42, 2014.

[59] F. Zhang, J. Cao, K. Li, S. Khan, and K. Hwang, “Multi-objective scheduling

of tasks in Cloud platforms,” Future Generation Computer Systems, vol. 37, pp.

309–320, 2014.

[60] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung, and Y. Li, “Cloud

Computing Resource Scheduling and a Survey of Its Evolutionary Approaches,”

ACM Computing Surveys, vol. 47, no. 4, pp. 63:1–63:33, 2015.

[61] M. Mao and M. Humphrey, “Scaling and Scheduling to Maximize Application

Performance within Budget Constraints in Cloud Workflows,” in Proc. of the 27th

Int. Symp. on Parallel and Distributed Processing (IPDPS’13). IEEE, 2013, pp.

67–78.

[62] S. Dutta, S. Gera, A. Verma, and B. Viswanathan, “Smartscale: automatic ap-

plication scaling in enterprise Clouds,” in Proc. of the 5th Int. Conf. on Cloud

Computing (CLOUD’12). IEEE, 2012, pp. 221–228.

[63] C. Ardagna, E. Damiani, F. Frati, D. Rebeccani, and M. Ughetti, “Scalability Pat-

terns for Platform-as-a-Service,” in Proc. of the 5th Int. Conf. on Cloud Computing

- CLOUD’12. IEEE, 2012, pp. 718–725.

[64] D. Cheng, C. Jiang, and X. Zhou, “Heterogeneity-Aware Workload Placement and

Migration in Distributed Sustainable Datacenters,” in Proc. of the 28th Int. Symp.

on Parallel and Distributed Processing (IPDP’14). IEEE, 2014, pp. 307–316.

78 BIBLIOGRAPHY

[65] R. Singh, U. Sharma, E. Cecchet, and P. Shenoy, “Autonomic Mix-aware Provi-

sioning for Non-stationary Data Center Workloads,” in Proc. of the 7th Int. Conf.

on Autonomic Computing (ICAC’10). ACM, 2010, pp. 21–30.

[66] S. Spicuglia, M. Bjöerkqvist, L. Chen, G. Serazzi, W. Binder, and E. Smirni, “On

Load Balancing: A Mix-aware Algorithm for Heterogeneous Systems,” in Proc.

of the 4th Int. Conf. on Performance Engineering - ICPE’13. ACM, 2013, pp.

71–76.

[67] D. A. Menasce, “Scaling for e-business,” in Proc. of the 8th Int. Symposium on

Modeling, Analysis and Simulation of Computer and Telecommunication Systems

(MASCOTS), 2000, pp. 511–513.

[68] F. Duarte, B. Mattos, J. Almeida, and V. Almeida, “Hierarchal Characterization

and Generation of Blogosphere Workloads,” Boston University, Tech. Rep. BUCS-

TR-2008-028, 2008.

[69] M. Shams, D. Krishnamurthy, and B. Far, “A Model-based Approach for Test-

ing the Performance of Web Applications,” in Proc. of the 3rd Int. Workshop on

Software Quality Assurance (SOQUA’06). ACM, 2006, pp. 54–61.

[70] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida, “Characterizing User Be-

havior in Online Social Networks,” in Proc. of the 9th ACM SIGCOMM Conference

on Internet Measurement (IMC’09). ACM, 2009, pp. 49–62.

[71] D. Feitelson, Workload Modeling for Computer Systems Performance Evaluation.

Cambridge University Press, 2015.

[72] M. C. Calzarossa, L. Massari, and D. Tessera, “Workload Characterization: A

Survey Revisited,” ACM Computing Surveys, vol. 48, no. 3, pp. 1–43, 2016.

[73] D. Magalhães, R. N. Calheiros, R. Buyya, and D. G. Gomes, “Workload Model-

ing for Resource Usage Analysis and Simulation in Cloud Computing,” Comput.

Electr. Eng., vol. 47, no. C, pp. 69–81, 2015.

[74] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A Review,” ACM

Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.

[75] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y.

Angela, “An Efficient k-Means Clustering Algorithm: Analysis and Implementa-

BIBLIOGRAPHY 79

tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24,

no. 7, pp. 881–892, 2002.

[76] M. E. Tipping and C. M. Bishop, “Probabilistic principal component analysis,”

Journal of the Royal Statistical Society, Series B, vol. 61, no. 3, pp. 611–622, 1999.

[77] M. Belshe, R. Peon, and M. Thomson, Ed., “Hypertext Transfer Protocol Version

2 (HTTP/2),” https://www.rfc-editor.org/info/rfc7540, 2015, IETF.

[78] M. C. Calzarossa, L. Massari, M. I. M. Tabash, and D. Tessera, “Cloud autoscaling

for HTTP/2 workloads,” in Proc. of the 3rd International Conference on Cloud

Computing Technologies and Applications (CloudTech’17), 2017.

https://www.rfc-editor.org/info/rfc7540

	Abstract
	INTRODUCTION
	Motivation
	Cloud computing
	Cloud service models
	Virtualization

	Resource Provisioning
	Thesis contribution
	Thesis organization

	STATE OF THE ART
	Autoscaling techniques
	Rule based approach
	Reinforcement learning
	Control theory
	Time series analysis

	Cloud simulation tools
	Comparison of Cloud simulation tools

	WORKLOAD CHARACTERIZATION
	Workloads in the Clouds
	Workload categories
	 Workload monitoring and profiling
	Workload scheduling

	Web workloads
	Workload characterization methodology
	Selection of characterizing parameters
	Exploratory data analysis
	Multivariate Analysis Techniques

	SIMULATION ENVIRONMENT
	CloudSim simulation toolkit
	Basic CloudSim entities

	CLOUDSIM TOOLKIT EXTENSIONS
	Introduction
	Web workload generator
	Autoscaling policy
	Discrete sampling policy
	Average load policy
	Autoscaling policy configuration

	Broker level extensions
	User-based scheduling policy
	Content push configuration

	VM level extensions
	Monitoring component
	Simulation configurations

	EXPERIMENTAL RESULTS
	Dataset description
	Workload models
	Simulation experiments
	User arrival patterns
	Simulation scenario
	Discrete sampling policy
	Average load policy
	Summary

	CONCLUSIONS
	Future work

	Bibliography

