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Abstract—Modern wireless sensor networks (WSNs) for In-
ternet of Things (IoT) applications require low-complexity algo-
rithms for positioning, due to the large number of nodes with
low power consumption. Thus, simple received signal strength
indicator (RSSI) based ranging techniques represent an attractive
option for low power systems such as LoRa ones. However,
interactions of the RSSI with a real-world environment are
difficult to predict and often lead to significant errors in the
localization process. Based on this, a novel algorithm is proposed
to improve the RSSI ranging output by a Wiener-based method.
According to the free-space path loss model, the distance is
expressed as an exponential function of the collected RSSI
measures, considering, during the training and calibration phase,
the channel model information, i.e., the received power at 1
m and the loss exponent. The presented algorithm minimizes
the distance logarithm error, instead of interpolating the free-
space path loss model as in common solutions, resulting in a
more precise ranging and positioning. Moreover, we also study
the possibility to suitably combine the diversity information
coming from the LoRa physical layer modes, corresponding to
different data rates and bandwidths. The performance of the
proposed algorithm is evaluated by using both simulated and real
experimental data sets, proving the effectiveness of the presented
solution compared to existing RSSI-based methods.

Index Terms—Radio Localization, RSSI, IoT, LoRa network,
Wiener filter.

I. INTRODUCTION

OCALIZATION is fundamental for many IoT applica-

tions where, for instance, sensed measurements shall be
paired with device positions [1]. While Global Positioning
System (GPS) is the default solution to most localization
problems, for the case of IoT, external GPS devices may not
represent a viable solution due to the high cost and power
consumption. Furthermore, it cannot be used in most indoor
environments. In all these cases, the current position may be
computed exploiting the ongoing communication itself without
the need for an external device.

Long Range (LoRa) is an emerging technology, suitable
for the Internet of Things (IoT) market, since it targets low-
power wide-area (LPWA) networks of wirelessly-connected
and battery-powered nodes, operating in the Industrial, Scien-
tific and Medical (ISM) bands.

The LoRa physical layer has been designed for outdoor
transmissions and is able to cover a range of 3050 km, however
distances of about 35 km are more common in rural areas. It
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is based on a chirp spread spectrum modulation (CSS) [2],
which allows long distance communications with a limited
power consumption, prolonging the battery life to years [3],
[4].

However, since it operates in the sub-GHz band, the same
technology can be also exploited in dense urban and indoor
environments due to its high penetration and robustness to
noise and multipath fading effects [4]-[6].

The peculiar long-range and low-power features of LoRa
makes it an interesting candidate for both outdoor and indoor
IoT applications, even to support localization. On the one
hand, it may be profitably used for positioning in outdoor
environments in industrial applications and smart environment,
such as smart metering and environment monitoring. On
the other hand, its penetration capability allows to exploit
LoRa for indoor localization. Indeed, while recent solutions
for positioning in large facilities, such as warehouses and
multistores, require the installation of several access points
due to the short range of the common WiFi and Bluetooth
Low Energy (BLE) based RF signals, the LoRa long range
feature would allow the deployment of a lower number of
nodes or access points to achieve comparable operations.

Preliminary experiments have been already carried out to
show that LoRa technology can be used to develop localization
systems, exploring LoRa communication for Time of arrival
(ToA), Time Difference of Arrival (TDOA) or Angle of Arrival
(AoA) based localization solutions [2]-[5]. Nonetheless, these
methods require either additional hardware on the antenna
side (AoA) or highly precise (ToA) and synchronized (TDoA)
clocks. Conversely, Received Signal Strength Indicator (RSSI)
values can be obtained without additional hardware, thus
representing the less complex and energy-hungry ranging
approach.

RSSI ranging is negatively affected by unknown propa-
gation environments. As such, localization algorithms which
exploit channel state information definitely provide better per-
formance at the expenses of a significant greater complexity.
While they are used to improve accuracy in WiFi Networks
[7], the complexity issue and related energy consumption
prevents their implementation in simple LoRa devices. By
improving ranging, our aim is to provide an effective way to
improve localization results from any localization algorithm.

In [2], RSSI based localization algorithms have been evalu-
ated for LoRa outdoor scenarios in noisy environment, while
in [4], a RSSI based ranging estimation has been proposed
for LoRa indoor applications. Preliminary results in [8] have
shown how RSSI-based ranging with LoRa provides accept-
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able results in an indoor environment; on the other side, local-
ization in an urban neighborhood scenario resulted in errors up
to hundreds of meters. Suitable methods are thus required to
improve the performance of RSSI-based localization solutions
for LoRa systems.

Filtering techniques (e.g. Particle, Bayesian, and Kalman)
are usually applied to the localization process [9]-[11] to filter
out noisy measurements and improve accuracy.

In this paper we derive a new method to improve RSSI rang-
ing accuracy by solving a Wiener-Hopf equation which mini-
mizes the distance logarithm derived from the Friis path loss
model equation. Further, we formulate the distance logarithm
as a linear combination of RSSI measurements coming from
different LoRa physical layer transmission configurations, or
modes, obtained by varying the modulation parameters. In this
sense, the solution of the Wiener-Hopf equations represents
the weights of such combination, used for deriving distance
and positioning. Note that the proposed algorithm represents
a valid alternative to the commonly employed interpolation
methods [12], [13].

In order to better characterize the proposed algorithm in the
statistical sense, the performance of the proposed solution has
been evaluated by considering both real experimental data and
simulations based on a model whose parameters are derived
from the same data set [8], [14], therefore integrating the
experimental results with larger simulated data sets.

Simulation results prove the effectiveness of the proposed
method, whose complexity may be kept low solving the
Wiener-Hopf equation by the stochastic gradient algorithm
[15], as specified in Sec. III-B.

The rest of the paper is organized as follows. In Section
II, we describe the system model, while the implementation
details of the proposed Wiener block filter are described in
Section III. In Section IV, we show performance evaluation
results of the proposed solution when applied both to simulated
and publicly-available experimental data. Finally, we conclude
and discuss future research plans in Section V.

II. SYSTEM DESCRIPTION

LoRa communication systems have been specifically de-
signed to cover long distances at low data rates with low
power consumption [3], making this technology particularly
well suited to IoT applications. In more details, LoRa de-
fines the physical layer parameters based on a chirp spread
spectrum (CSS) modulation, while LoRa wide area network
(LoRaWAN) addresses the system architecture and network
protocols for LoRa capable devices, providing a medium
access control (MAC) to allow several LoRa end-devices to
communicate with a LoRa gateway through LoRa modulation
[16].

A. LoRa Physical Layer

Since LoRa CSS modulation encodes information through
chirps with a linear variation of frequency over time, a
frequency offset between the transmitter and the receiver
may be seen as a timing error, and compensated easily at

the demodulator, making the receiver also robust to Doppler
frequency shifts [16].

The modulation diversity may be obtained by changing the
following physical layer parameters: the bandwidth B, the
spreading factor S and the code rate R..

The LoRa standard unconventionally defines the spreading

factor as
S = log, (N.) (D

where NV, is the number of chips per symbol.

In LoRa, the chirp rate is equal to the bandwidth B and the
duration of a symbol T is defined as
25

Ts = Vil
Furthermore, the LoRa physical layer includes a forward
error correction code, whose code rate 2. may be set equal
to 4/(4+n) with n € 1,2,3,4.
Since a symbol corresponds to S information bits, the useful
bit rate R is given by

2

B
Ry = 52—SRC 3)

Different spreading factors S and code rates R. may be set in
10 physical layer modes as reported in Table I. The main idea
of this work is to exploit the diversity that may derive from
measuring RSSI values at the different transmission modes,
used as input for a Wiener filter to improve ranging operation.

TABLE I: Configurations of different LoRa modes

Mode | B (kHz) | R.

S | Sensitivity (dBm)

1 125 4/5 | 12 -134
2 250 4/5 | 12 -131
3 125 4/5 | 10 -129
4 500 4/5 | 12 -128
5 250 4/5 | 10 -126
6 500 4/5 | 11 -125
7 250 4/5 | 9 -123
8 500 4/5 1 9 -120
9 500 4/5 | 8 -117
10 500 4/5 | T -114

B. Channel Path Loss Model

Radio channel characterization in a specific environment
may be obtained from Friis transmission equation, deriving a
relationship between the RSSI value, i.e., the received power
P, and the distance between two transceivers [8], [17]-[21]:

P =—(10nlog;,d — A) 4)

where A is the received power in dBm when the distance
between the transmit and receive antennas is 1 m, and n the
path loss exponent of the specific environment.
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The distance d may be obtained as
A—P
d = 10C70n) (5)
While the parameter A only depends on the physical properties
of the transceiver, the path loss exponent n is determined by
both the specific propagation environment and the transmitted
signal spectrum.

Although Friis equation may be applied only under the
ideal free space condition, perfect antenna alignment and
polarization, without considering fading effects, the model
may be used in real environments where the parameters A
and n are empirically determined through measurements [8],
[22].

III. RSSI-BASED WIENER RANGING ALGORITHM

As reported in [8], equation (4) may be used to find the
A and n values for a specific propagation environment, via a
logarithmic interpolation performed over a data set collected
during the calibration/training phase.

In this work, we propose an alternative method which aims
to improve the ranging accuracy by means of a Wiener filter,
whose coefficients are computed during the training phase,
using the channel characterization described in Section II-B.
Moreover, we propose to improve the ranging performance by
exploiting the different RSSI values measured for each LoRa
mode.

The different LoRa settings may be quickly generated
through few code statements during the configuration phase
of each node.

A. Wiener Approach Formulation
Solving equation (4) by the distance logarithm
_ 4 PG
~ 10n 10n
where the index i refers to the i'" measurement of the training
phase, and d(¢) represents the estimated ranging distance.
The estimation of the distance logarithm may be improved

by a weighted average of the measured RSSI values of each
LoRa modes

log, o d(i) (6)

N,
) mA P
om0t =3 (10~ ) @
J J

Jj=1
where N,, is the number of used LoRa modes, which is
equal to 10 if all the transmission modes are used, and A;,n;
represent respectively the path loss intercept and exponent for
each mode.

Equation (7) can be re-written as

N,
logy d(i) = Ag — > w;P;(i) (8)
j=1

No Ay
where Ag =3 ;" Ton;

The vector w = [wy, wa, ..., wy,, ] may be viewed as being
composed of the coefficients of a Wiener block filter, which

can be computed by minimizing the mean square error of the
distance logarithm, defined as

e=FE { [IOglo d(z) —logyg dA(Z)} 2} )

The error defined in (9) keeps the formulated problem linear
with respect to the Wiener coefficients w; which may be
computed by replacing log; d(i) in (9) with (8), and setting
the following partial derivatives equal to zero

Oe

ij =0, forj=1,2,..., Ny, (10)

The solution of equations (9), (10) may be obtained by
inverting an autocorrelation matrix of size N,, X N,, or by
looking for a stochastic gradient iterative solution.

Since the accuracy of the estimated ranging distance by
means of RSSI measures decreases with higher distances, the
minimization of the distance logarithm error may be viewed
as a sort of non-linearly weighted error computation.

B. Wiener Coefficients Computation

Solving equations (9,10) for the coefficients w; leads to the
following Wiener-Hopf equation

(11

where Rp = {rp(k)} is the autocorrelation matrix whose
elements are rp(k = j — 1) = E{P;(i)P(¢)}, and rgp =
{rap(k)} is the cross-correlation vector whose elements are
defined as rq4p(k) = E {[Ao — logy,d(i)]Px(¢)}, and
7,0 =1,2,..., Ny,. Once the coefficients w; are calculated, the
estimated distance oz(z) may be computed using equation (8).

It is important to underline that when N,, = 1, the
presented Wiener approach can be reduced to a simple single
coefficient solution, which represents a valid alternative to
different interpolation methods applied to (5).

In order to limit the computation complexity of the calibra-
tion, the coefficients w; may be computed by the stochastic
gradient algorithm [15]

-1
W = RP rqgp

Wit1 = W + ue(z)Pl (12)

where e(i) = logy, d(7) —logyo d(i), p is a suitable step size,
and P; = [Py(i), P2(3),- -+, Pn,, (2)].

It is important to highlight that the proposed solution has
a very low impact, and it can be implemented by using the
RSSI values measured by employing the original firmware,
while equation (7) and (12) can be easily added to the internal
board firmware.

IV. PERFORMANCE EVALUATION

The proposed algorithm performance has been evaluated by
using the freely available experimental data set [14] detailed in
[8]. As outlined in the following, the experimental data have
been also used to define the main parameters of the simulation
model, used to better evaluate the algorithm performance in a
statistical sense.

The proposed algorithm has been compared with a modi-
fied version of a common RSSI method, to exploit anyway
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Fig. 1: Plant of the indoor environment used for channel characterization measurements

TABLE II: Average ranging error (in m), indoor experimental dataset

Input data LI mode 1 | Wiener mode 1 | LI mode average | Wiener all modes
average RSSI 14 5.3 23.1 154
maximum RSSI 4.63 5.5 10.48 6.5
instantaneous RSSI 16.65 5.3 26.47 16.74

Fig. 2: A view of the experimental setup used for channel
characterization measurements of the indoor environment

the multi-mode information. Specifically, the modified RSSI
algorithm is obtained by averaging the estimated distances for
the different modes through the logarithmic fitting of equation
(5). As a special case, we also consider when only one single
LoRa mode is used in both the proposed and the compared
approaches. This corresponds to the mono-dimensional case
with only one Wiener coefficient in the presented algorithm,
and to a common RSSI method [21] for the other solution.

The proposed Wiener-based approach may be seen as an
alternative to the use of equation (5), which represents the
state-of-the-art (SoA) of RSSI based localization techniques.
This is the reason why we also compare the performance
of the two algorithms in the mono-dimensional case, without
exploiting diversity.

Fig. 3: A view of the experimental setup used for channel
characterization measurements of the outdoor environment

A. Ranging Experimental Results

We consider the indoor and outdoor scenarios described in
[8], testing the proposed algorithm performance by considering
11 anchors with 100 RSSI measurements for each LoRa mode
configuration in the data set [14].

For the indoor scenario, the training phase of the algorithm,
i.e., equations (11,4), considers the reference data of the
indoor channel characterization, based on 100 RSSI values
for each LoRa mode, collected at different distances between
the transmitter and the receiver, varying from 1 to 35 m, with
a step size equal to 5 m (see the environment plant in Fig. 1,
and a view of the experimental setup in Fig. 2).

In order to make the obtained results independent on the
training phase, we have used different environments for the
training and evaluation phases, by considering different but
similar propagation conditions. Thus, the two experimental
indoor environments, used respectively for channel character-
ization and experimental results, are different since they have
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been collected in different buildings.

The outdoor data set has a similar structure, i.e., two distinct
environments used for channel characterization and localiza-
tion results, considering 11 anchors at distances from the target
ranging from 68 to 466 m. Since when the distance increases,
the configurations (modes) with the higher performance may
go out of their sensitivity because the code-rate is too high
for the considered distance, we have chosen the modes with
acceptable receiver performance at the higher distances. In
particular, we only select the modes 1 and 5 of Table I. Fig.
3 shows a view of the outdoor experimental setup.

In Table II, the minimum and the average ranging errors are
shown for different algorithms and setups, for the indoor data,
as detailed in the following:

o RSSI method [21] with logarithmic interpolation training
by using the received RSSIs for the mode 1 only (LI
mode 1);

o proposed Wiener-based solution by using the received
RSSIs for the mode 1 only (Wiener mode 1);

o modified-RSSI method with logarithmic interpolation
training by using averaged distances computed using all
ten modes (LI mode average);

o proposed Wiener-based approach by using the received
RSSIs for all the 10 modes (Wiener all modes).

The ranging distances have been computed by taking as
inputs the single, i.e., instantaneous, the maximum and the
averaged RSSI values over each set of 100 measurements.

The Wiener algorithm, based on exploiting the mode diver-
sity, performs better with respect to the average of the single-
mode estimated distances, while the proposed algorithm that
uses one mode only performs better than its counterpart that
uses the LI, when considering the mean error.

We think that the performance of the algorithms which use
only one mode are better, especially in terms of mean errors,
than the ones gained by taking into accounts all modes because
the number of measurements is too low to represent a sufficient
statistic.

To verify this hypothesis, we have derived a more significant
number of measurement samples from a simulation model,
based on both the indoor and outdoor channel datasets of
[14]. We modeled the received RSSI values as a log-normal
distribution with mean and variances computed from the
experimental measurements. By doing this, it was possible
to emulate 1000 samples for the training phase and 106
measurements for computing the results shown in Table III,
for which the mean values are similar to the fully experimental
ones in Table II, for the indoor scenario.

B. Localization Experimental Results

From the previous simulation results, we derive that com-
bining the diversity information coming from the different
transceiver modes, it is possible to extract more accurate
ranging distances.

We further exploit such results to improve localization
performance: we have employed the estimated distances ob-
tained from the instantaneous RSSIs as inputs of a trilateral
localization algorithm [18], with a variable number of anchors
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Fig. 4: Experimental minimum, average and maximum local-
ization error (m), using trilateration with 3 anchors, indoor
scenario
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Fig. 5: Experimental minimum, average and maximum local-
ization error (m), using trilateration with 6 anchors, indoor
scenario

in the interval [3,7]. The distance between each anchor and
the target varies from 1 to 35 m in indoor environment and
from 68 to 466 m in outdoor environment as specified in [14].
In this way, the statistical meaning of the experimental data is
better exploited.

As shown in Fig. 4-5, the proposed all mode Wiener-
based method gives the best localization accuracy results, in
terms of the minimum, average and maximum positioning
errors, considering 3 and 6 anchors. The same performance
trend is confirmed in Fig. 6, where the minimum and mean
localization distance errors diminish with increasing number
of used anchors.

Since the results of Fig. 6 may suffer from a poor data
statistic, the mean distance errors in Fig. 7 and 8 have been
computed by using the simulated data set as explained previ-
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TABLE III: Average ranging error (in m), indoor simulated dataset

‘ LI mode 1 ‘ Wiener mode 1 ‘ LI mode average ‘ Wiener all modes
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Fig. 6: Experimental minimum and average localization er-
ror versus the number of anchors, using trilateration, indoor
scenario
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Fig. 7: Mean localization error versus the number of anchors,
using trilateration, indoor scenario

ously, for both the indoor and outdoor data sets. The simulated
outcomes confirm that the proposed algorithm performs better
than the LI one in each configuration. In particular, LI method
always performs better in mode 1 than all modes, while the
proposed approach show similar better performance in both
settings.

Although the accuracy of the presented results may look
poor, it is anyway comparable with the more recent literature:
as an example, in [23] the authors achieve an indoor localiza-
tion accuracy of approximately 20 — 30 meters, while in [24]
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Fig. 8: Mean localization error versus the number of anchors,
using trilateration. Outdoor data mode 1 and 5.

the obtained outdoor accuracy is a few hundred meters (up to
500 m).

As final remark, although the proposed solution in all modes
configuration gives the best results, Fig. 4-8 show that similar
performance, and sometimes even better, are achieved when
using only one mode. This is due to the limited number of real
experimental measurements to correctly represent a sufficient
statistic. Because of that, as stated before, we have derived
a more significant number of measurement samples from a
simulation model that is, anyway, derived from the indoor and
outdoor real experimental channel datasets in [14]. The results
from the so obtained large number of measurements confirm
that Wiener all modes performs better than Wiener 1 mode,
as shown in Fig. 7, or give the same performance as in Fig.
8, but never worse than single mode. The similar performance
refers to the outdoor scenario (Fig. 8), where, in general, RSSI
methods are less performant due to the distances larger than
in indoor environment. Indeed, since RSSI decays with the
distance logarithmic, their values are less trustable for ranging
estimate with large value, especially for the LoRa modes with
higher code-rates. Thus, we envision future improvements of
the proposed algorithm especially for outdoor scenario. In
particular, we aim at developing an optimal diversity modes
selection by choosing only the filter coefficients with the
maximum absolute value, in order not to include the effect
of the less performant modes on the final accuracy.

V. CONCLUSIONS AND FUTURE WORKS

We have proposed a block Wiener algorithm able to com-
bine the RSSI values received for different LoRa modu-
lation configurations, to improve ranging and localization
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performance. In the simulation results, we have given more
importance to the indoor case for mainly two reasons: the
indoor data set is more complete and accurate, and the indoor
case is more interesting from the application point of view,
since other powerful techniques, like merging the RSSI outputs
with a GPS receiver, not always can be applied to indoor
environments.

The proposed method may be implemented without any
additional extra energy cost for the RSSI measurements, while
the complexity of the ranging algorithm may be kept low by
using the least mean square (LMS) solution of the Wiener-
Hopf equations. Future works will be devoted to extending
the proposed Wiener approach to different technologies where
similar techniques can be successfully applied, like ultra wide-
band (UWB) and passive devices [25], [26].

As further step we aim to increase the algorithm perfor-
mance by accurately selecting a subset of modes for which
the diversity effect is maximum, with a twofold objective of
simplifying the algorithm complexity, and gaining, at the same
time, improved results. This interesting future development is
suggested by the results obtained when using only one mode,
taking into account the fact the less performant modes affected
the final accuracy with negative effects. In this sense, the best
diversity modes may be selected by choosing only the filter
coefficients with the maximum absolute value.

REFERENCES

[1] R. C. Shit, S. Sharma, D. Puthal, and A. Y. Zomaya, “Location of
things (lot): A review and taxonomy of sensors localization in iot
infrastructure,” IEEE Communications Surveys Tutorials, vol. 20, no. 3,
pp- 2028-2061, thirdquarter 2018.

[2] K. H. Lam, C. C. Cheung, and W. C. Lee, “Lora-based localization
systems for noisy outdoor environment,” in Proc of IEEE WiMob 17,
ser. IEEE WiMob’17, Oct 2017, pp. 278-284.

[3] LoRa-Alliance, “Lorawan what is it? a technical overview or lora and
lorawan,” Nov. 2015.

[4] B. Islam, M. T. Islam, and S. Nirjon, “Feasibility of lora for indoor
localization,” Univ. of North Carolina at Chapel Hill, techreport, Dec.
2017.

[5] J. Haxhibeqiri, A. Karaagac, F. V. den Abeele, W. Joseph, I. Moerman,
and J. Hoebeke, “Lora indoor coverage and performance in an industrial
environment: Case study,” in Proc. of IEEE ETFA 2017, ser. IEEE ETFA
’17, Sept 2017.

[6] R. Henriksson, “Indoor positioning in lorawan networks,” Master’s
thesis, 2017.

[71 S. Abdul Samadh, Q. Liu, X. Liu, N. Ghourchian, and M. Allegue,
“Indoor localization based on channel state information,” in 2019 IEEE
Topical Conference on Wireless Sensors and Sensor Networks (WiSNet),
Jan 2019, pp. 1-4.

[8] E. Goldoni, L. Prando, A. Vizziello, P. Savazzi, and P. Gamba,
“Experimental data set analysis of rssi-based indoor and outdoor
localization in lora networks,” Internet Technology Letters, vol. 0,
no. ja, p. €75, €75 ITL-18-0065.R1. [Online]. Available: https:
/lonlinelibrary.wiley.com/doi/abs/10.1002/it12.75

[9] J. Svecko, M. Malajner, and D. Gleich, “Distance estimation using

rssi and particle filter,” ISA Transactions, vol. 55, pp. 275 — 285,

2015. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0019057814002523

R. Chen and Y.-H. Lin, “Apply kalman filter to rfid received signal

strength processing for indoor location,” in 4th International Conference

on Awareness Science and Technology, Aug 2012, pp. 73-77.

F. Zafari, 1. Papapanagiotou, and T. J. Hacker, “A novel bayesian

filtering based algorithm for rssi-based indoor localization,” in 2018

IEEE International Conference on Communications (ICC), May 2018,

pp- 1-7.

[12] Z. Cao, “Experimental exploration of rssi model for the vehicle intelli-
gent position system,” Journal of Industrial Engineering and Manage-
ment, vol. 8, no. 1, pp. 51-71, 2015.

[10]

[11]

[13] H. Linka, M. Rademacher, O. G. Aliu, and K. Jonas, ‘“Path loss models
for low-power wide-area networks: Experimental results using lora,” in
Mobilkommunikation - Technologien und Anwendungen. Vortrige der
23. ITG-Fachtagung, 16. - 17. Mai 2018 in Osnabriick. ITG-Fachbericht,
Bd. 278, 2018, pp. 10 — 14.

[14] E. Goldoni, “Experimental data set rssi measurements collected using
lora,” https://github.com/emanueleg/lora-rssi, 2018.

M. H. Hayes, Statistical Digital Signal Processing and Modeling, 1st ed.
New York, NY, USA: John Wiley & Sons, Inc., 1996.

A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A study
of lora: Long range & low power networks for the internet
of things,” Sensors, vol. 16, no. 9, 2016. [Online]. Available:
http://www.mdpi.com/1424-8220/16/9/1466

H. T. Friis, “A note on a simple transmission formula,” Proceedings of
the IRE, vol. 34, no. 5, pp. 254-256, May 1946.

E. Goldoni, A. Savioli, M. Risi, and P. Gamba, “Experimental analysis
of rssi-based indoor localization with ieee 802.15.4,” in Proc. of IEEE
EW2010, ser. IEEE EW2010, 2010, pp. 71-77.

A. Vizziello, S. Kianoush, L. Favalli, and P. Gamba, “Location based
routing protocol exploiting heterogeneous primary users in cognitive
radio networks,” in 2013 IEEE International Conference on Communi-
cations (ICC), June 2013, pp. 2890-2894.

S. Kianoush, A. Vizziello, and P. Gamba, “Energy-efficient and mobile-
aided cooperative localization in cognitive radio networks,” IEEE Trans-
actions on Vehicular Technology, vol. 65, no. 5, pp. 3450-3461, May
2016.

P. Jrke, S. Bcker, F. Liedmann, and C. Wietfeld, “Urban channel models
for smart city iot-networks based on empirical measurements of lora-
links at 433 and 868 mhz,” in 2017 IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), Oct 2017, pp. 1-6.

L. L. R. Campos, RF Positioning: Fundamentals, Applications and
Tools. Artech House, 07 2015.

P. Manzoni, C. T. Calafate, J.-C. Cano, and E. Hernndez-Orallo, “Indoor
vehicles geolocalization using lorawan,” Future Internet, vol. 11, no. 6,
2019. [Online]. Available: https://www.mdpi.com/1999-5903/11/6/124
N. Podevijn, D. Plets, J. Trogh, L. Martens, P. Suanet, K. Hendrikse, and
'W. Joseph, “Tdoa-based outdoor positioning with tracking algorithm in a
public lora network,” Wireless Communications and Mobile Computing,
vol. 2018, 2018.

R. Alesii, P. D. Marco, F. Santucci, P. Savazzi, R. Valentini, and
A. Vizziello, “Multi-reader multi-tag architecture for uwb/uhf radio
frequency identification systems,” in 2015 International EURASIP Work-
shop on RFID Technology (EURFID), Oct 2015, pp. 28-35.

S. Moscato, R. Moro, M. Bozzi, L. Perregrini, S. Sakouhi, F. Dhawadi,
A. Gharsallah, P. Savazzi, A. Vizziello, and P. Gamba, “Chipless rfid for
space applications,” in 2014 IEEE International Conference on Wireless
for Space and Extreme Environments (WiSEE), Oct 2014, pp. 1-5.

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Pietro Savazzi received the Laurea degree in Elec-
tronics Engineering and the Ph.D. degree in Elec-
tronics and Computer Science from the University
of Pavia, Italy, in 1995 and in 1999, respectively.

In 1999, he joined Ericsson Lab Italy, in Milan, as
a system designer, working on broadband microwave
systems. In 2001 he moved to Marconi Mobile,
Genoa, Italy, as a system designer in the filed of 3G
wireless systems. Since 2003 he has been working
at the University of Pavia where he is currently
teaching, as an assistant professor, two courses on
signal processing and wireless sensor networks. His main research interests
are in wireless communication and sensor systems.



JOURNAL OF KTEX CLASS FILES, VOL. , NO.

Emanuele Goldoni received in 2007 the Master De-
gree in Informatics Engineering “cum laude” from
the University of Pavia, Italy, and the Ph.D. degree
in Electronic Engineering from the same University
in 2010.

He has published more than 20 papers in interna-
tional conferences, and he served as co-advisor of
10 thesis. His research interests include radio local-
ization, Wireless Sensor Networks, and performance
evaluation of networks. He is currently a freelance
IT and Network consultant for professionals, public
administrations, and small and medium-sized businesses.

Anna Vizziello received the Laurea degree in Elec-
tronic Engineering and the Ph.D. degree in Elec-
tronics and Computer Science from the University
of Pavia, Italy, in 2007 and in 2011, respectively.

She is currently a research fellow in the Telecom-
munication & Remote Sensing Laboratory at the
University of Pavia, Italy. From 2007 to 2009 she
also collaborated with European Centre for Train-
ing and Research in Earthquake Engineering (EU-
CENTRE) working in the Telecommunications and
Remote Sensing group. From 2009 to 2010 she
has been a visiting researcher at Broadband Wireless Networking Lab at
Georgia Institute of Technology, Atlanta, GA, in summer 2009 and 2010
at Universitat Politcnica de Catalunya, Barcelona, Spain, and in winter 2011
and in summer 2016 at Northeastern University, Boston MA. She has been
included in the 2018 list of N2Women: Rising Stars in Computer Networking
and Communications for outstanding and impactful contributions in the area of
networking/communications, supported by IEEE Communication Society. Her
research interests are Intra-Body networks, 5G Radio Technologies, Cognitive
Radio Networks, and Wireless Sensor Networks.

Lorenzo Favalli graduated in Electronic Engineer-
ing form Polytechnic University of Milan in March
1987 and obtained the PhD from the same university
in 1991.

He joined the University of Pavia in 1991 as
Assistant Professor and became Associate Professor
in 2000. His teaching duties include courses of
Digital Communications, Wireless Communications
Systems and Multimedia Communications. The re-
search activity of Prof. Favalli covers various aspects
of signal and video analysis and transmission in both
wireless and wired networks. His work also encompasses the exploitation
of adaptive techniques to improve flexibility and reliability of the commu-
nications chain, source and network modeling and improvements in signal
detection techniques in heterogeneous wireless environments.

Paolo Gamba is Professor at the University of
Pavia, Italy, where he leads the Telecommunica-
tions and Remote Sensing Laboratory. He received
the Laurea degree in Electronic Engineering “cum
laude” from the University of Pavia, Italy, in 1989,
and the Ph.D. in Electronic Engineering from the
same University in 1993.

He served as Editor-in-Chief of the IEEE Geo-
science and Remote Sensing Letters from 2009 to
2013, and as Chair of the Data Fusion Committee
of the IEEE Geoscience and Remote Sensing Society
(GRSS) from October 2005 to May 2009. He has been elected in the GRSS
AdCom since 2014, and he is currently the GRSS President. He has been the
organizer and Technical Chair of the biennial GRSS/ISPRS Joint Workshops
on "Remote Sensing and Data Fusion over Urban Areas from 2001 to 2015. He
also served as Technical Co-Chair of the 2010 and 2015 IGARSS conferences,
in Honolulu (Hawaii), and Milan (Italy), respectively. He has been invited to
give keynote lectures and tutorials in several occasions about urban remote
sensing, data fusion, EO data for physical exposure and risk management.
He published more than 140 papers in international peer-review journals and
presented nearly 300 research works in workshops and conferences.

ATV

N



