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Abstract (English)

The application of high-throughput sequencing technologies has made
available data relating to different molecular entities for the same biolog-
ical system (e.g. DNA, RNA, proteins, “omics-data” hereafter), allowing
to obtain a more complete picture of the molecular mechanisms associated
with human diseases. However, the large amount of heterogeneous data
has raised the need to create bioinformatics methodologies to extrapolate
information that could improve our understanding of human diseases (e.g.
diagnostic biomarkers and therapeutic targets). The methods currently
available do not meet all the needs of research projects, in terms of data
types, data size, type of result generated, computational cost and software
availability. The problem of the integration of multi-omic data is there-
fore nowadays an open challenge in several biomedical research projects.
In this context, knowledge about the complex web of direct and indirect
interactions among macromolecules at genome scale is a powerful resource
to explain multiple omics measurements, highlighting the molecular mech-
anisms underlying diseases. The increasingly recognized importance of the
use of network principles and methods for the study of human diseases has
led to a new field of knowledge called “network medicine”.

In this work, a new method for integration of omics data (mND) is
proposed for the prioritization and classification of genes, using information
coming from molecular interactions (protein-protein interaction networks)
and multi-omics data. In particular, the described approach quantifies the
relevance of a gene in a biological process taking into account the network
proximity of the gene and its first neighbours to other altered genes in a
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genome-scale gene network. Beyond the novel way of prioritizing genes,
mND introduces a layer-specific gene classification to underline gene roles
in each layer and suggests molecular mechanisms in relation to the datasets
studied. mND has been shown to outperform other leading alternative
methods in finding altered genes in network proximity in one or more layers
and in recovering known cancer genes. Moreover, thanks to its versatility,
the proposed method has been applied to analyze (i) multi-omics data and
(ii) multiple samples of same omic type.

In the first type of application, mND was used to integrate multi-omics
data of two different complex and heterogeneous diseases, such as: breast
invasive carcinoma (BC) and autism spectrum disorders (ASDs). In BC, the
integrative analysis of mutations and differential expression data collected
from The Cancer Genome Atlas underlined a disease gene module supported
by multiple biological evidences and led to enrichment in relevant pathways
involved in breast cancer. In ASDs, mND integrated genomic, epigenomic
and transcriptomic data obtained from several large studies on ASDs. Our
study suggested a gene network significantly enriched in genes supported
by one or more of the considered evidence (genomics, epigenomics, and
transcriptomics) and that participate in several pathways relevant to ASDs.

In the second type of application, mND was used to integrate mutation
profiles detected by means of whole-exome sequencing (WES) of subjects
observed in breast cancer initiating cells. The integrative analysis allowed
the identification of networks of functionally related genes that are “hot
spots” of mutations in breast cancer initiating cells, molecular pathways
and actionable targets. WES data analysis revealed the need to develop
a software that allows the integrative analysis of mutations detected by
multiple variant callers. In fact, the problem of identifying mutations from
WES data of paired mutation-control samples is not simple because each
variant caller encodes the same information relating to mutations in mul-
tiple ways, the number of mutations identified by each variant caller varies
significantly and the overlap between the variants caller is very low. To this
aim, “isma”, an R package for the integrative analysis of somatic mutations
detected by multiple pipelines, was also introduced. isma provides a series
of functions to integrate and analyze the results of different variant callers,
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to highlight the most reliable mutation sites, to quantify the consensus, to
underline potential outliers and integrate evidences from publicly available
mutation catalogues.

In conclusion, this research activity introduces an important advance
in the class of multi-omics methods: a new way to quantifiy the relevance
of genes on the basis of their complex web of interactions and multi-omics
data. Importantly, mND is applicable to a broad range of data types and
experimental designs. Furthermore, mND is available to the scientific com-
munity as R software package (https://www.itb.cnr.it/mnd) with an ex-
tensive documentation covering installation, usage and reproducible exam-
ples. The obtained results indicate that the proposed method could help
to unravel the networks of molecular players associated with the biological
process under investigation. When applied to study a human disease, the
multi-omics networks found by mND are useful sources of biomarkers and
actionable targets.
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Abstract (Italian)

L’applicazione delle tecnologie di sequenziamento di nuova generazione
ha reso disponibile grosse quantita di dati relativi a entita molecolari diffe-
renti per lo stesso sistema biologico (e.g. DNA, RNA, proteine, nel seguito
“dati-omici”), allo scopo di ottenere un quadro pitt completo dei meccanismi
molecolari associati alle malattie umane e sviluppare migliori strumenti dia-
gnostici, prognostici e terapeutici. Tuttavia, la grande quantita di dati e la
loro eterogeneita ha fatto emergere la necessita di sviluppare nuovi metodi
di analisi. Infatti, i metodi attualmente disponibili non rispondono a tutte
le necessita dei progetti di ricerca, in termini di tipo di dato, dimensione,
tipo di risultato generato, costo computazionale e disponibilita del soft-
ware. Il problema dell’integrazione di dati multi-omici ¢ quindi oggigiorno
ricorrente in progetti di ricerca in campo biomedico. In questo contesto,
la conoscenza delle complesse interazioni dirette (fisiche) e indirette (fun-
zionali) tra macromolecole su scale genomica € una risorsa importante per
spiegare le evidenze biologiche. La crescente rilevanza per lo studio delle
malattie umane, dell’'uso di principi e metodi relativi ai network biologici
ha portato al nuovo campo del sapere denominato “network medicine”.

A supporto di questa necessita, in questa tesi, ¢ stato quindi svilup-
pato un nuovo metodo per l'integrazione di dati omici, mND. Il metodo
proposto permette di ottenere una prioritizzazione e una classificazione dei
geni rilevanti nel processo biologico preso in considerazione, utilizzando le
informazioni provenienti dalle interazioni molecolari (protein-protein inte-
raction networks) e dai dati omici (per esempio, frequenze di mutazione
e variazione a livello di espressione, nel seguito “layer”). In particolare,
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I’approccio descritto quantifica 'importanza di un gene in un processo bio-
logico tenendo conto della vicinanza nel network del gene e dei suoi primi
vicini rispetto agli altri geni alterati. Oltre al nuovo modo di creare una
prioritizzazione dei geni, mND introduce una classificazione dei geni speci-
fica per layer che permette di individuare il ruolo funzionale del gene e di
suggerire 1 meccanismi molecolari fra i geni coinvolti. E’ stato dimostrato
che mND ha prestazioni superiori rispetto ai metodi alternativi disponibi-
li nell’individuare geni alterati vicini nel network in uno o piu layer e nel
prioritizzare geni associati al cancro. Inoltre, grazie alla sua versatilita, il
metodo proposto ¢ stato applicato per analizzare: (i) dati multi-omici e (ii)
la stessa tipologia di dato omico a livello di singoli soggetti.

Nel primo tipo di applicazione, mND e stato utilizzato per integrare
dati multi-omici di due differenti patologie eterogenee: tumore alla mam-
mella (BC) e autismo (ASD). Nel BC, I'analisi integrativa delle mutazio-
ni e dei dati di espressione differenziale raccolti da The Cancer Genome
Atlas ha evidenziato un modulo connesso tra i geni prioritizzati da mND e
ha correttamente individuato pathways coinvolti nel carcinoma mammario.
Nell’ASD, mND e stato utilizzato per integrare dati di genomica, di epige-
nomica e di trascrittomica ottenuti da numerosi studi. La nostra analisi ha
suggerito un modulo di geni significativamente arricchito di geni supporta-
ti da una o piu evidenze biologiche considerate (genomica, epigenomica e
trascrittomica) e che partecipano a diversi pathways rilevanti per I’ASD.

Nel secondo tipo di applicazione, mND e stato utilizzato per integra-
re profili di mutazione di soggetti affetti dal cancro alla mammella, di cui
¢ stato sequenziato l'intero esoma (Whole Exome Sequecing, WES) della
parte tumorale con proprieta staminali. L’analisi integrativa ha consentito
I'identificazione di un network di geni arricchito di mutazioni, contenen-
ti potenziali target per il trattamento del cancro alla mammella. Inoltre,
I’analisi dei dati di WES ha fatto emergere la necessita di sviluppare un
software che consentisse I’analisi integrativa delle mutazioni identificate da
degli strumenti che eseguono la chiamata delle varianti (variant caller). In
effetti, il problema di identificare le mutazioni dai dati WES non & semplice
perché ogni variant caller codifica le stesse informazioni relative alle mu-
tazioni in piu modi, il numero di mutazioni identificate da ciascun variant
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caller varia in modo significativo e la sovrapposizione tra i variant caller e
molto bassa. A questo scopo ¢ stato introdotto “isma”, un pacchetto soft-
ware in R per 'analisi integrativa delle mutazioni somatiche rilevate da piu
variant caller. isma fornisce una serie di funzioni per integrare e analizzare
i risultati di diversi variant caller, di evidenziare i siti di mutazione piu af-
fidabili, di effettuare un’analisi di consenso, di evidenziare possibili outliers
e di integrare siti gia catalogati da altri studi.

In conclusione, questa attivita di ricerca introduce un importante pro-
gresso nella classe dei metodi multi-omici: un nuovo modo per quantifi-
care la rilevanza dei geni sulla base della loro complessa rete di intera-
zioni e dei dati multi-omici. E’ importante sottolineare che mND & ap-
plicabile a un’ampia gamma di tipi di dati e patologie. Inoltre, mND
¢ disponibile per la comunita scientifica come pacchetto software in R
(https://www.itb.cnr.it/mnd) con una vasta documentazione che copre in-
stallazione, utilizzo ed esempi riproducibili. I risultati ottenuti indicano che
il metodo proposto potrebbe aiutare a districare la complessita molecola-
re dei networks associati al processo biologico preso in esame. Negli studi
relativi alle malattie umane, i networks multi-omici individuati da mND
possono fornire un utile supporto per la selezione di biomarcatori e terapie
mirate.
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Chapter

General introduction and
thesis overview

1.1 Background

Current sequencing technologies allow us to collect data related to dif-
ferent types of molecular entities (DNA, RNA, proteins, etc.) for the same
biological system. The availability of these heterogeneous datasets enables
the reconstruction of a more complete picture of the molecular events as-
sociated with human diseases.

In this context, integrative approaches for the analysis of “omics” data,
such as the genome, the transcriptome, the epigenome, the proteome, are
valuable to support a better understanding of biological systems and the
development of successful precision medicine [1-6]. The goal of precision
medicine is to target the right treatments to the right patients at the right
time [7] (Figure 1.1) and “-omics” approaches can facilitate the clarification
of biological processes whose mechanisms are still unclear [2].

This would be especially helpful for complex and heterogeneous diseases
where multiple factors are responsible for the phenotypes, such as autism



[2,8-10] and cancer [6,11-13].
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Figure 1.1: Multi-omics data integration for precision medicine. Multi-
omics data are collected from patients and then integrated to develop molecular
signatures (e.g. biomarkers, network/pathway signatures) that can be used to
identify patients that are most likely to benefit from a treatment.

However, an ongoing challenges in the era of precision medicine and
multiomics is the integration and interpretation of several “-omics” to boost
understanding of biological mechanisms [5,14-17].

There are many issues that make integrative analyses a challenge, for ex-
ample: the biological interpretation and knowledge, the data-preprocessing
of different existing data types and formats, the heterogeneity of omics data,
the complexity of biological systems, the different type of technology and
their technological limits, the missing values, the low number of biological
samples and high number of biological variables.

In this scenario, biological networks, composed of direct and indirect
interactions among genes, are powerful resources to explain multiple omics
measurements and to highlight molecular mechanisms underlying diseases
[18-20]. In particular, the principle of network diffusion, thanks to its power
of quantifying network proximity considering simultaneously all the possi-
ble network paths between query genes, has been proposed to solve several
problems in biological data analysis [21,22]. Considering all possible paths
among the nodes, network-diffusion caputeres the complexity of biological



networks and enable the identification of systems-level properties of molecu-
lar systems. Recently, many methods have been proposed that rely on some
kind of network diffusion. In these models, scores derived from omics mea-
surements are propagated throughout a network of molecular interactions
in order to obtain a quantitative estimation of network proximity between
the molecular entities involved.

However, current methods require a specific combinations of biological
data and their applicability is limited by the number of omics and experi-
mental designs. Therefore, the revolution of high throughput technologies
demanded the development of more versatile methods for the integration
of “-omic” data.

1.2 Thesis overview

Following the above considerations, the aim of this thesis is to develop a
new approach based on network-diffusion that is able to integrate multiple
biological evidences without restrinctions in terms of layer number and
data types. This thesis project has been carried out at the Institute of
Biomedical Technologies of the National Research Council (Segrate, MI).

The following chapters are organized as follows.

Chapter 2 introduces the fundamentals of the mathematical machinery
of network diffusion, the main methods that use network diffusion processes
for the integrative analysis of omics data and open issues.

Chapter 3 presents a novel network-based method for the integration
of multi-omics data, called mND [23]. Firstly, algorithm is introduced;
secondly, computational cost and mND R package are described; lastly,
performance comparison between mND and leading alternative methods
are discussed.

Chapter 4-5 present two applications of mND approach to integrate
multiple biological evidences. In the first application, results emerged from
several studies of genomics, epigenomics and transcriptomic on Autism
Spectrum Disorders are integrated by mND method [24]. This work has

3



been carried out within the project “Genome, Environment, Microbiome
& Metabolome in Autism: an integrated multi-omics systems biology ap-
proach to identify biomarkers for personalized treatment and primary pre-
vention of Autism Spectrum Disorders” (GEMMA) supported by European
Union’s Horizon 2020 research and innovation programme. In the second
application, mutation profiles observed in breast cancer initiating cells are
integrated by mND method to find the networks of functionally related
genes that are “hot spots” of mutations. This work has been carried out in
collaboration with IRCCS Istituto Nazionale dei Tumori (Milano)! within
the project “Integrative Mutational Analysis of patient-derived Breast Can-
cer Initiating Cells to disentangle tumor genetic complexity and identify
actionable targets for precision medicine” (INTEROMICS BCIC-IMA) sup-
ported by Italian Ministry of Education, University and Research.

Chapter 6 summarizes the main conclusions of this research activity,
limitations and future directions.

Finally, Appendix A contains further results on mND’s performance
assessment. In Appendix B “isma”, a new R package that integrates
analysis of mutations detected by multiple pipelines, is presented [25].

LAll patients participating in the study signed an informed consent according to the
Declaration of Helsinki. The study was approved by the Ethical Review Board of Fon-
dazione IRCCS Istituto Nazionale dei Tumori of Milan.



Chapter

Multi-omics data integration

The development of integrative methods is one of the main challenges
in bioinformatics. The principle of network diffusion - also referred to as
network propagation - thanks to its power of quantifying network proxim-
ity considering simultaneously all the possible network paths between query
genes, has been proposed to solve several problems in biological data analy-
sis. Indeed, network diffusion provides a quantitative estimation of network
proximity between genes associated with one or more different data types,
from simple binary vectors to real vectors. Therefore, this powerful data
transformation method has also been increasingly used in integrative analy-
ses of multiple collections of biological scores and /or one or more interaction
networks. This chapter presents an overview of the state of the art of bioin-
formatics pipelines that use network diffusion processes for the integrative

analysis of omics data, open issues and potential developments in the field.
1

!The contents of this chapter are included in the manuscript entitled: “Network dif-
fusion promotes the integrative analysis of multiple omics”, under review in Frontiers in
genetics. Authors: N. Di Nanni, M. Bersanelli, L. Milanesi, E. Mosca.



2.1 Integrative analyses of multiple omics

“Omics” technologies provide data related to different types of molec-
ular entities (e.g. DNAs, RNAs, proteins) at increasing sensitivity, down
to single-cell level [26]. This offers the opportunity for integrative analy-
ses that lead to a more comprehensive view of a biological system [5, 8].
However, integrative analyses involve several issues due to the types of bi-
ological information considered, coverage of the pool of molecular entities
under investigation, data distribution types, noise and research questions
that need to be addressed [16,27,28], just to mention a few. Therefore,
the development of integrative methods is one of the main challenges in
bioinformatics.

Integrative methods can be classified in three groups by objective (Fig-
ure 2.1 A): understanding of the molecular mechanisms (e.g. genes priori-
tization, function prediction, module detection), clustering of samples (e.g.
identification of disease subtypes) or prediction of samples’ outcome/phe-
notype (e.g. survival) [29]. These three objectives can be achieved using a
single type or multiple types of omics, possibly combined with data about
molecular networks (Figure 2.1 B), in a supervised or unsupervised settings.

From a methodological point of view, the arising importance of inter-
action networks and the type of statistical approach pave the way for a
first broad classification of integrative methods. In particular, these can
be divided into four broad classes depending on whether they use molecu-
lar networks and Bayesian theory: network-free non-Bayesian, network-free
Bayesian, network-based non-Bayesian and network-based Bayesian [14].

Molecular networks represent a powerful framework to integrate and ex-
plain omics datasets [14,18,19]. Network-based methods take into account
known (e.g. protein-protein interactions) and/or inferred (e.g. functional
relations found by gene co-expression analysis) relations between biological
variables. Significantly, network-based approaches enable the identification
of system-level patterns that reflect the architecture of molecular networks.
A common systems-level pattern is, for instance, the presence of gene net-
works that are “hot” spots of mutations in cancer and reflect the several
possible combinations of mutations that are likely to lead to a common



pathological phenotype, because affect the same pathway [30, 31].

In the last decades, the mathematical machinery of network diffusion
(ND) has been exploited in several network-based pipelines with different
aims, like gene prioritization, gene module identification, drug target predic-
tion and disease subtypying, thanks to its ability of amplifying association
between variables (e.g. genes) that lie in network proximity. This amplifi-
cation is realized by means of different methods that can be brought back
to random walks, random walks with restarts or diffusion kernels. Recently,
Cowen et al. [21] provided a general overview of the unifying mathematical
machinery of ND, showing its broad utility in several problems of genetic
research, while, previously, Wang et al. [32] described the application of ND
to predict gene function and phenotype.

In this chapter, we focused on the problem of jointly analysing biological
networks and multiple collections of scores (“layers”) derived from omics
assays, which is addressed by many pipelines relying on ND. We reviewed
the integrative methods by aim, input data type, molecular network, way
in which ND is exploited during the integrative analysis and application;
lastly, we discussed open issues and potential developments in the field.

2.2 Molecular networks

Network-based methods require, by definition, a molecular network that
enters the analysis pipeline at some point. The complex web of molecular
interactions that occur within human cells is often referred to as “interac-
tome” [30]. Such interactions can be of rather different types and are usually
distinguished in two classes: biophysical and functional [33]. Biophysical
interactions indicate actual molecular contact between two molecular en-
tities, such as protein-DNA biding or protein-protein binding in a protein
complex. Functional interactions indicate any kind of biologically relevant
interaction (at the molecular scale), like co-expression or synthetic lethality.
There is still no unique reference for the human interactome [34], but sev-
eral efforts are underway. Four proteome-scale PPI interaction maps have
recently been generated using different high-throughput approaches based
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Figure 2.1: Classification of integration methods. Criteria: (A) Goals; (B)
input data; (C) Network Diffusion (ND) model: Random Walk (RW), Random
Walk with Restart (RWR); Insulated Heat Diffusion (IHD), Diffusion Kernel (DK);
(D) Molecular network; (E) ND usage.

on binary interaction or complex mapping [34]. The Genotype-Tissue Ex-
pression (GTEx) project aims at the construction of a specific network for
each major human tissue [35]. Projects like ENCODE97 and the Roadmap
Epigenomics provide data about gene regulatory networks [36,37]. The
IMEx Consortium is an international collaboration of major public interac-
tion data providers aimed at establishing a non-redundant set of biophys-
ical molecular interactions [38]. In addition to primary databases, which
collect curated experimental data from small and/or large scale studies,
there are several meta-databases, which integrate data from several primary
databases, and prediction-databases, which also provide predicted (biophys-



ical and/or functional) interactions obtained from the analysis of biological
datasets [39]. Multiple collections of scores can be mapped on molecu-
lar networks in rather different ways, depending on data types and data
analysis purposes. The resulting networks can be classified in three broad
categories: multi-weighted networks, multiplex networks and networks of
networks.

In a multi-weighted network, a series of weights are associated with
nodes and/or links. For instance, the same biological network can be char-
acterized by different omics weights on different layers (e.g. gene expression,
methylation, somatic mutations). A multi-weighted network therefore con-
sists of a single-layer network with multiple attributes associated with the
same nodes and links, but sometimes can be referred to as a multi-layer
network.

Two categories of structural multi-layer networks are multiplex net-
works and networks of networks. A multiplex is a collection of networks
with the same set of nodes and varying intra-layer topologies and inter-layer
relationships are trivially given [40]. A network of networks (sometimes
also referred to as heterogeneous networks) is a collection of networks with
different nodes (in principle also representing entities of different nature)
with multiple types of connections (specific intra-layer links and specific
inter-layer connections) [41]. The classification of multi-layer networks is
indeed non-trivial; for instance, the categories described can have signif-
icant overlaps. It is possible to build hybrid networks where on a core
multiplex some layer-specific nodes and links are introduced and conse-
quently different types of inter-layer links are established; for more details
about multilayer networks and their classification see the work of Kivela et
al. [41].

2.3 The unifying mathematical machinery of net-

work diffusion

Network diffusion processes can be summarized as the spreading of bi-
ological information throughout the network along network edges, initially
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retained in the so-called “seed nodes”. Each node will therefore gain or lose
biological information according to the network proximity to the seeds and
to its topological features.

From a mathematical perspective, considering a network G of n nodes,
the biological information is encoded in an n-dimensional array xy where
the i-th entry accounts for the amount of biological signal initially present
in node 7. Therefore, x( is defined as the initial state of the network. Then,
starting from ¢t = 0 up to a fixed time (finite or infinite) the state of the
network xp evolves according to the network topology until it reaches a
final state &, where, as previously mentioned, T' can either a finite or an
infinite time. Under the appropriate settings, when 7' = oo, the final state
of the diffusive algorithm may correspond to a steady state or steady-flow
state of an associated physical model, allowing a clear interpretation of the
results [42].

In general, the final state of a diffusion process consists of a graph-based
transformation fg of the initial biological information xy, which is linear
in most cases so that fg reduces to a matrix Mg and:

xr = fa(xo) = Mg - xo (2.1)

The diffusion processes used by integrative methods are classified, sim-
ilarly to Cowen et al. [21], on the basis of the specific transformation Mg
in four categories (Table 2.1 and Figure 2.1 C):

1. Random Walk (RW): Mg = [AD~1}¥;

2. Random Walk with Restart (RWR): Mg = a[I—(1—a)D 2 AD"2;
3. Insulated Heat Diffusion (IHD): Mg = o[I — (1 — a)AD™1]7L;

4. Diffusion Kernel (DK): Mg = e(P~4),

Here above, A is the adjacency matrix of the network, D is a diagonal
matrix of nodes degree (number of interactions), k is the number of time-
steps and « € (0, 1) is a tuning parameter.

10



Differently from Cowen et al. [21], we choose to differentiate between
RWR and IHD. In fact, the different normalization of the adjacency matrix
A (symmetric for the RWR, column normalization for the IHD) implies dif-
ferent behaviours in the relative diffusion processes. Indeed, the RWR im-
plies a symmetric diffusion where information flows through each link with
the same intensity in each direction [43]. Conversely, IHD implies an asym-
metric diffusion where information (or heat) tends to flow out from highly
connected nodes much easier than from poorly connected ones [44]. Such
differences in the diffusion matrix therefore imply dissimilar behaviours of
information flow, mainly in relation to network hubs: at infinite time in
the RWR hubs tend to naturally gather relatively more information than
in the IHD, since IHD is characterized by an intrinsic hub penalization.
Therefore, even if it is conceptually similar, RWR and IHD applied to com-
plex biological networks with thousands of vertices and tens to hundreds
thousands links, may present sensibly different results.

Independently from the specific kind of diffusion model, the matrix Mg
is usually hard to recover analytically because it implies inverting or power-
expanding a high-dimensional graph-based transition matrix: alternative
numerical approaches would be needed and the direct inversion of the ma-
trix M is possibly replaced with converging iterative procedures [45].

The choice of the most appropriate diffusion process depends on the
goal of the analysis. For instance, if one is interested only in considering
a local neighborhood of the seeds may choose RW with a finite number
of steps [46], while RWR and IHD quantify network proximity to seeds
considering simultaneously all the possible network paths among network
nodes [44,47].

2.4 How network diffusion is exploited by inte-
grative methods

ND requires data about the variables (x() and about their relations
(A). An important difference between integrative methods that use ND
concerns the type of network in use, that is the way in which the adjacency
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matrix is defined.
Three broad categories can be recognized (Table 2.1 and Figure 2.1 D):

e the topology of the network in use is defined by means of a priori
knowledge, e.g. collected from molecular interactions databases;

e a network is inferred from the analysis of one or more biological
datasets;

e a mixed approach that combines a priori and novel knowledge.

ND can be applied before, after or during the “integration step” of the
analysis pipeline (Table 2.1 and Figures 2.1 E - 2.2).

In the ND-first approach, ND is applied to a series of collections of ini-
tial scores, each of which summarizes data of a single sample or multiple
samples; the resulting collections of ND scores are subsequently integrated.
An example of this approach is TieDie [48], where ND is applied to two
collections of scores, one representing mutated genes while the other differ-
entially expressed genes, on the same network; the two resulting ND score
vectors are then jointly analysed and the minimum of the two ND scores of
a gene is considered as the one chosen for the gene.

The ND-after approach consists in the application of ND after a first
process of integration of different data types into a unique structure. For
instance, stSVM [46] first integrates omics data and subsequently applies
ND to define a global ranking of miRNA and mRNA using statistics about
their differential expression integrated in a heterogeneous network.

The ND-during refers to the application of a type of ND in which each
layer communicates information to one other. This is the case of SNF [49],
in which patient similarity networks, obtained from each of their data types
separately, exchange information during the ND process, leading to a unique
“fused” patient network.

12



ND-first approach

ln

tegration |,

—_—

Ly - integration |
)@ i —_—>

I\ |_n

e o I

13

Figure 2.2: Ways in which ND enters the integrative analysis pipeline.



Method ND Category | Network | Goal Input Implementation
dmfind [42] RWR | SO, * A priori MD SM R
EMDN [50] RWR | MO, = Inferred MD GM and DM R
PPI, GE,
EPU [51] RWR | MN, A priori | GP thj;‘:;l?e“:iﬁgr’ity NA
networks
Co-expression, PPI,
GeneMANIA [52] | RWR | MN, A A priori | FP G‘é‘?{;ﬁ:?ﬁ;‘m Web
Shared protein domains
Mashup [53] RWR | MN, = A priori FP PPI Matlab
M-Module [54] RWR | MO, * Inferred MD GE and SM R
NetBags [55] DK SO, * A priori DS GE NA
NetICS [56] IHM | MO, = A priori GP GM and AB Matlab
NBS [47] RWR | SO, = A priori DS SM Matlab
NBS? [57] RWR | SO, Mixed DS SM Phyton
RegNet [58] RW MO, A Inferred GP GE and CNV R
Ruffalo [59] et al. | RWR | MO, * A priori GP GE and SM NA
Shi et al. [60] RW MO, x Mixed GP GE and SM NA
SRF [61] RWR | MO, * A priori DS GE and SM Java
SNF [49] DK MO, e Inferred SP, DS | GE and DM Matlab, R
stSVM [46] DK MO, A A priori PS, GP | GE and miRNA R
TieDie [48] IHM | MO, * A priori MD GE and SM SciPy, Matlab
WSNF [62] DK MO, e Inferred SP, DS | GE and miRNA R

Table 2.1: Network diffusion based methods for the integrative analyses
of multiple biological layers. ND: RWR: random walk with restart, DK: diffusion kernel,
THM: insulated heat model; Category: SO: single-omics integration, MO: multi-omics integration,
MN: multi-networks integrations; *: ND-first approach, A: ND-after approach, e: ND-during
approach; Goal: DS: disease subtyping, GP: gene prioritization, MD: module detection, FP:
function prediction, SP: survival prediction; Input: GE: gene expression, DM: DNA Methylation,
SM: Somatic Mutation, CNV: copy number variations, AB: Aberration events, PPI: Protein-

Protein interaction network.
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2.5 Integrative methods based on network diffu-
sion

On the basis of data types, integrative methods using ND can be dis-
tinguished in those that analyze a single type of omics, multiple omics or
multiple networks (Table 2.1 and Figure 2.3).

2.5.1 Single omics

Integrative methods for the analysis of a single type of omics consider
a series of molecular profiles, such as patient-wise mutation profiles.

The method called “dmfind” [42] compares ND scores obtained from
a series of descriptive statistics, such as gene mutation frequencies. Sub-
sequently, the network smoothing index (NSI) is obtained by comparison
of ND scores with initial molecular profiles [42]. When applied to gene
networks, NSI highlights genes in network proximity enriched by initial in-
formation according to a tuning parameter [30]. The integration is therefore
realised by subtracting NSIs belonging to two patient groups (ND-first), an
operation that prioritizes genes that participate in differentially enriched
modules [42].

NBS (Network-Based Stratification) [47] is a method that stratifies tu-
mor mutations finding clusters of similar patients. It applies ND to a
binary somatic mutation matrix (genes-by-samples). Then, the resulting
collections of ND scores are jointly analysed (ND-first) using a network-
constrained non-negative matrix factorization to find patient groups. It has
been applied to study 13 cancer types with exome-level mutation data [63],
liver cancer [64] and in a pan-cancer genomic analysis [65].

NetBags (NETwork Based clustering Approach with Gene signatures)
[65] essentially applies the strategy of NBS to a binary genes-by-samples
matrix that represents the significantly expressed genes.

NBS [47] uses a priori knowledge of molecular interaction networks that
are not cancer-specific. NBS? (Network-Based Supervised Stratification)
[57] was proposed to address this issue. Unlike previous approaches, the
weights of each molecular interaction are adjusted by a supervised strategy
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so that the stratification of propagated mutation profiles after random walk
is close to the pre-defined tumor subtypes.

2.5.2 Multi-omics

In multi-omics data integration each layer typically contains scores ob-
tained from a distinct omic assay. Most methods deal with two types of
layers (Figure 2.2).

2.5.2.1 Genomics and transcriptomics

Many methods tackled the problem of analysing the relation between
genomic aberrations and gene expression changes.

Ruffalo et al. [59] presents a ND-based method to predict “silent” players
in cancer by integration of somatic mutations and gene expression data,
where a silent player is a gene neither mutated nor differentially expressed
but which plays a role in cancer development and progression. Inputs are
represented as two binary matrices of somatic mutation and gene expression
(genes-by-samples). The authors explored several ways (e.g. the minimum,
the maximum, the product, the average) of combining diffusion scores (ND-
first) to obtain the features of a logistic regression model that predicts a
gene’s association with cancer.

Also Shi et al. [60] use patient-wise gene mutation and gene expres-
sion data to prioritize genes. The approach constructs a bipartite graph
of outlying genes and mutated genes considering an influence graph (that
captures a priori biological pathway information), mutational and expres-
sion data. A two-step diffusion is performed to calculate diffusion scores
for each patient and these scores are subsequently combined (ND-first) by
robust rank aggregation.

Differently from the methods described above that yield gene prioriti-
zations, TieDIE (Tied Diffusion Through Interacting Events) [48] has been
developed to identify a subnetwork that links a source gene set (S) carry-
ing genomic alterations to a target set (1) of differentially expressed genes
on the same a priori network. TieDIE transforms the two collections of
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input scores in the corresponding ND scores and then (ND-first) the min-
imum of the two scores of a gene is used as the final score for that gene.
TieDIE has been used to study several cancers, such as, Papillary Thyroid
Carcinoma [66], Prostate Cancer [67], Leukemia [68] and in an extensive
immugenomic analysis of 33 diverse cancer types [69].

Another method that seeks to identify gene modules is M-Module [54].
It infers co-expression networks from multiple data that represent disease
stage transitions. Then genes are ranked in each networks via ND, incor-
porating also gene mutations as priors. In each network, ND scores are
transformed in gene ranks, gene ranks into z-scores and the average z-score
across all is used to obtain a final gene rank (ND-first). Gene modules
are therefore identified using a graph entropy-based measure that quanti-
fies connectivity of a module in multiple networks. Authors of M-Module
proposed different variants of the algorithms: NMF-DM, in which modules
of each network are discovered using a non-negative matrix factorization
algorithm [70], SMMN, which uses modularity measure to discovery mod-
ules [71] and S2-)NMF a novel semisupervised joint nonnegative matrix
factorization algorithm [72]. M-Module has been applied to several studies
(e.g. [73-75]).

SRF [61] aims at discovering cancer subtypes by combining mutation
and expression data across samples. ND is applied only to the binary matrix
of gene mutations. The identification of subtypes is performed by rank
matrix factorization of the ranked diffusion matrix and ranked expression
matrix (ND-first).

Copy number variations (CNVs) are another type of genomics aberra-
tion that has been jointly analysed with transcriptomics. The main goal of
RegNet [58] is the quantification of the impact of gene expression changes
on user-defined target genes in a network inferred from gene expression and
CNVs. The approach learns a regulatory network by modelling the expres-
sion level of each gene as a linear combination of the expression levels of all
other potential regulator genes and the gene-specific copy number, lasso re-
gression is used in combination with a significance test for lasso [76] to find
the relevant predictors for each gene. Next, ND is applied using the learned
network to quantify impacts of sample-specific gene expression changes on
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other clinically relevant target genes using network-diffusion. RegNet was
able to predicts novel cancer gene candidates in oligodendrogliomas [77].

2.5.2.2 Epigenomics and transcriptomics

The algorithm of M-Module is employed in EMDN framework (Epige-
netic Module based on Differential Networks) [50] to characterize epigenetic
modules by using differential co-methylation and co-expression networks,
without incorporating genes mutations information as prior information.
In this way EMDN applies ND as RW without restart, but with a symmet-
ric normalization of the adjacency matrix.

An interesting method that aims to find disease subtypes and predict

phenotypes is SNF (Similarity Network Fusion) [49]. It works without
constraints for the type of input but requires that samples are matched
across omics. First, networks of samples for the various types of omics
are built, then, networks are fused into one network by using the non-
linear method of message passing theory (KNN and graph diffusion) that
iteratively updates each of the network making it more similar to other
networks in each step.
Several studies in cancer have exploited SNF method to integrate GE and
DM data, like: Kidney Renal Cell Carcinoma [78], medulloblastoma [79];
further, thanks to its versatility, SNF has been used to integrate other
types of omics: miRNA and GE in Colorectal liver metastasis [80] and in
Ovarian cancer [81]; miRNA, mRNA, IncRNA, and DNA methylation in
Pancreatic Ductal Adenocarcinoma [82]; GE, miRNA and CNV in triple-
negative breast cancer [83].

2.5.2.3 Transcriptomics: mRNA and miRNA

Xu et al. [62] have proposed a modification of SNF method called
WSNF (Weighted Similarity Network Fusion) that takes into consideration
the level of importance of genes to identify disease subtypes. WSNF con-
structs a miRNA-TF-mRNA regulatory network from different interaction
databases, then assesses the weight of each features (miRNA, TF, mRNA),
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calculated as a linear combination of two terms: ranking of features ob-
tained using ND and expression variation across all patients in expression
datasets. Weights are introduced into the formula of Euclidean distance to
calculate the distance between two patients then SNF method is applied.

stSVM (smoothed t-statistic support vector machine) [46] combines a
priori network information and omics data (miRNA and GE) to discover
biomarker signature and predict disease prognosis. It smoothes gene-wise
statistics from experimental data (both miRNA and gene expression) over
the biological network, constructed by integration of PPI with miRNA-
target gene network, using a P-step random walk kernels. A permutation
test is conducted to select significant genes that will be used to train a
support vector machine (SVM) classifier. It has been used in an integrative
study of miRNA and GE to predict response to a monoclonal antibody in
Head and Neck Squamous Cell Cancer [84].

2.5.2.4 Genomics, Epigenomics and Transcriptomics

NetICS (Network-based Integration of Multi-omics Data) [56] prioritizes
cancer genes by their mediator effect, defined as the proximity of the gene
to aberration events (SM, CNV, DM, a differentially expressed miRNA),
differentially expressed genes and proteins in a molecular network given
a priori. The method uses a per-sample bidirectional THD process and
initial heat vectors (h1, hg2) are defined, respectively, as the number of the
aberrant and differentially expressed genes of the sample.

Final scores for all genes are obtained by means of the Hadamard product
of the exchanged heat matrices (E;, E9) (ND-first): E = E; o E».

Lastly, diffusion scores of all samples are combined to obtain global gene
ranking wvia a robust aggregation, in which a gene’s rank is calculated as
the sum of its per-sample ranks.

2.5.3 Integration of multiple networks

In the integration of multiple networks each layer represents a biological
network. The two main applications are gene function prediction and gene
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prioritization.

Mashup [53] uses ND on several protein-protein interaction networks to
predict gene function and genetic interactions. It applies RWR, algorithm
separately on each network and then a matrix factorization based tech-
nique is used to reduce dimension of the diffusion results (ND-first). The
feature learning step allows to obtain a low-dimensional feature vectors of
proteins that best approximates the RWR matrix and results more robust
to noise; feature vectors are used to train SVM classifiers to predict genetic
interactions.

Mostafavi et al. [52] developed GeneMANIA (Multiple Association Net-
work Integration Algorithm), a tool for predicting gene function by inte-
gration of multiple networks (e.g. co-expression, PPI, genetic interaction,
co-localization, shared protein domains). Given d networks encoded as ma-
trices W1, ..., Wy, they are integrated into a “composite network” (W omb),
obtained by weighted average of individual networks:

Wcomb — Z ap W,
h

where the vector a = [ay, ..., a4] corresponds to network weights and is
computed by solving a ridge regression problem. Then given the Weomb
matrix, a variation of the Gaussian field label propagation algorithm (a
RWR where functions of unlabeled data are predicted starting from differ-
ently labeled data and network structure) is applied to predict the gene
function. GeneMANTA has been applied in several studies (e.g. [85-87]
Differently from above methods, EPU (Ensemble Positive Unlabeled
learning) [51] uses a supervised learning method, that falls in the class of
Positive-Unlabeled learning method, for disease gene identification by inte-
grating multiple biological data sources (PPI, gene expression data, Gene
Ontology, Phenotype-gene association data and Phenotype similarity net-
work). ND is applied on three biological networks (Gene Expression net-
work, PPI network, Gene ontology similarity network) to obtain weights
for unlabelled genes (not associated with disease). The resulting three col-
lections of ND scores are combined into a set of integrated scores using,
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for each gene, the mean of its three ND scores (ND-first). These inte-
grated scores are used to train three machine-learned prediction models
(Weighted-KNN, Weighted-Naive Bayes, Weighted-SVM) and their results
are integrated by an ensemble learning algorithm.

2.6 Perspectives and open issues

Network-diffusion based approaches have been proposed to solve several

problems in biological data analysis, including integrative analyses. These
methods analyse multiple collections of scores derived from different omics
assays in combination with molecular networks or similarity networks, and
apply ND on such networks.
The main applications include: gene function prediction; gene prioritiza-
tion; identification of gene modules and molecular pathways; disease sub-
typing; and prediction of an outcome. In all these applications ND is a
tool to transform one or more initial vectors of scores into vectors that re-
flect the network proximity between network nodes on which the scores are
mapped. This operation provides different benefits:

e considering gene-centric datasets as a practical example, ND is a
powerful way to embed the information about molecular interactions
among genes into a gene-wise dataset;

e ND can be used to quantify the proximity between each pair of nodes
in a global way, that is considering all possible paths among the nodes,
overcoming the limits of local approaches (e.g. giving the same im-
portance to all direct neighbours of a node) and better capturing the
complexity of biological networks;

e ND highlights genes in network proximity and with high input scores.
By so doing, it amplifies genetic associations according to the ar-
chitecture of the molecular network, a result that offers insights in
agreement with the so-called local hypothesis; that is, the hypothesis
that genes that lie in network proximity within molecular networks
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co-work in the development of cellular functions and are therefore
co-responsible for pathological phenotypes [30];

e by a data analysis perspective, ND transforms sparse vectors into
dense vectors. This operation eliminates missing values and ties, two
situations that are often difficult to handle. This imputation step
facilitates the joint analysis of different data types and is particularly
important in the integration of multiple omics that vary in scope and
coverage. For instance, mutations may affect just a few tens of genes
of a tumor cell, while gene expression changes are observed for a much
higher number of genes. More generally, in a multi-omic analysis of
a biological process, only a subset of the genes is associated with the
various types of measured alterations. In this context, ND can be
used to highlight common network regions where different types of
omics signals converge;

e ND is suitable to analyse patient-level molecular profiles, promoting
studies within the scope of precision medicine.

ND processes, which can be brought back to four classes (paragraph
2.2), require the tuning of a parameter (k or «) that controls the diffu-
sion process reach or the relative importance of topology and input scores.
In many cases, the issue about tuning of such parameter has been solved
showing that the performance of the proposed integrative method is robust
to small variations of the parameter. A dependency between the optimal
value and the network in use has been suggested [47].

Most methods apply ND to transform a series of input score collections
to get as many collections of ND scores - in which the network topology is
embedded - and, subsequently, combine the ND scores: we referred to these
methods as ND-first. The combination of a series of ND scores for the same
variable (e.g. a gene) is performed with simple mathematical operators,
such as the mean or the minimum, or with more elaborated techniques,
such as non-negative matrix factorization and support vector machines.
ND scores may require a step of transformation, such as normalization, to
enable the direct comparison between scores at different scale (e.g. [47]),
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or ranking, to work on the relative importance rather than absolute values
(e.g. [54,60]). Other integrative methods, firstly integrate multiple data
types, then use ND: we referred to these methods as ND-after. In these
methods, ND is one of the last steps that lead to the final output. A
third class of methods perform ND simultaneously with the integrative
step (ND-during). The class of simultaneous diffusion approaches is very
promising as it encodes the diffusion processes on multi-layer networks [88].
In principle, simultaneous diffusion allows to extend the classical analysis
of multi-omics data on complex networks. For instance, in the case of
heterogeneous networks, layer-specific nodes bring an indirect contribution
to the ND scores on each other layer. Such an output is not possible neither
in ND-first nor in ND-after approaches. ND-after integrative approaches
build an aggregate network encoding weighted or unweighted aggregate
links; such an aggregate network is therefore algebraically put together,
independently from the diffusion process. The same considerations hold
for ND-first approaches, but such integration issues are addressed once the
ND is performed on each layer separately. Therefore, ND-after and ND-first
approaches could be very informative about a specific biological analysis but
they present an intrinsic lack of scalability, as the way in which properly
combine and weigh networks (before or after ND) strongly depends on
the biological context. Conversely, an ND-during (simultaneous) approach
maintains the available biological information and avoids additional data
manipulations before and after the application of the diffusive algorithm.
However, simultaneous approaches may introduce computational issues as
omics data size and number of layers increase.

Most of the approaches do not assess the statistical significance of ND
scores. In several works it was proposed to use empirical p values [42],
which also provides also the benefit of mitigating the over-estimation of
hub importance. In a recent work, the calculation of empirical p values
using of degree-normalized random seeds was shown to be more accurate,
but computationally more demanding, than random seeds [89].

A specific combinations of omics (e.g. gene mutations and gene ex-
pression changes) and a quite specific formulation of the problem is often
required. While this specificity offers advantages within the domain of the
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original problem, it also poses constraints to applicability and further ex-
tension. Furthermore, efforts are still required to develop methods that
combine more than two omics.

Another important issue is the reliability of interactomes. The prob-
lem of defining a reference human interactome is open in molecular biology
as well as the problem of quantifying the reliability of such cell-scale re-
constructions, because experimental technologies currently used to detect
interactions involve a series of issues [34]; therefore a careful network se-
lection must be made by users based on the research questions they wish
to address. Moreover, some methods take into account the directions of
interactions in their algorithms, but cell-scale reconstructions do not pro-
vide information about “the direction” of the interaction, which requires a
deeper understanding of the mechanistic relation between the two interact-
ing partners. Modelling this information is not trivial and comes at the cost
of a relevant reduction of coverage in terms of genes that can be analysed.

In conclusion, current trends suggest that network diffusion is a tool
of broad utility in omics data analysis. It is reasonable to think that it
will continue to be used and further refined as new data types arise (e.g.
single cell datasets) and the identification of system-level patterns will be
considered more and more important in omics data analysis. However, the
methods currently available do not meet all the needs of research projects:
their applicability is limited by the number of omics and experimental de-
signs.
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Chapter

mND: gene relevance based
on multiple evidences in
complex networks

This chapter presents a novel use of the “mathematical machinery” of
network diffusion to integrate multiple omics. A new gene score (mND) is
proposed to integrate multiple biological data by quantification of genes’
relevance, taking into account the network proximity of the gene and its
first neighbours to other altered genes.

Since mND is applicable to a wide range of data types and experimental
projects, it introduces an important advance in the class of multi-omic
methods."

The contents of this chapter are published in: N. Di Nanni, M.
Gnocchi, M. Moscatelli, L. Milanesi, E. Mosca. (2019) “Gene relevance
based on multiple evidences in complex mnetworks”. Bioinformatics, btz652.
https://doi.org/10.1093 /bioinformatics/btz652.  License: Creative Commons Attri-
bution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
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3.1 A new network-diffusion method for the inte-
gration of multiple biological data

Multi-omics analyses, sample-level analyses, and multi-classes analyses
(e.g. multiple cell clusters) demand methods to highlight the importance
of altered genes considering, respectively, different types of summary infor-
mation across subjects or subject-specific molecular profiles. At the same
time, to explain complex patterns in these datasets (e.g. the heterogeneity
of mutation profiles of tumor samples) it is important to consider the com-
plex web of macromolecular interactions, which provides known relations
among the variables (e.g. genes) under analysis. Moreover, recent studies
have suggested to include the first neighbours in network-based methods
for the analysis of single omics [90,91] and multi-omics data [92].

Considering all these aspects and to overcome limitations of available
methods described in Chapter 2 (paragraph 2.6), a gene-score, named
“mND”, has been developed to assess gene relevance on the basis of gene
position in a genome-scale network in relation to one or more types of
biological evidences (“layers” hereafter) (Figure 3.1). The method allows
integration of both single type of omics and multiple omics, it is based
on the ND-first approach (Chapter 2, paragraph 2.4), uses the RWR algo-
rithm (Chapter 2, paragraph 2.3) and the a priori knowledge of molecular
interaction networks (Chapter 2, paragraph 2.4).

In particular, mND prioritizes genes considering their own importance
(in proportion to original evidences) and the importance of their network
location. It uses network diffusion scores that quantify the topological rele-
vance of a gene in the context of the distribution of the considered evidences
throughout the entire network and layer-specific highly “informative” first
neighbours. Therefore, genes are ranked considering their relevance within
each layer (e.g. number of mutations, p-values from differential expres-
sion analysis), their network proximity to other relevant genes as well as
the layer-specific-relevance of their neighbours; the statistical significance
of the gene scores defined by mND (mND score) is assessed by dataset
permutations.
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Furthermore, in addition to producing a global gene ranking, mND
introduces a new method to help unravel the role of a gene in each layer by
classifying it as a member of a module of high scoring genes, linker of high
scoring genes or, lastly, high scoring but isolated gene.

Unlike current methods, mND can be used in integrative analysis of
different types of omics (e.g. mutation, CNV and expression changes) or
multiple samples of same omic type (e.g. patient-level mutational analysis),
without particular constraints on the number of layers and layer type. It
works on a general gene-by-sample input matrix, where each column is a
vector of scores representing different data types (e.g. genomics, transcrip-
tomics) or the same type (e.g. fold changes or p-values from single cell
clusters).

The R package “mND” is available at URL: https://www.itb.cnr.it/mnd.

3.2 Algorithm development

The calculation of mND score requires an undirected interaction net-
work G and a matrix of initial scores X = [z, @2, ..., 1], in which x; € R"
with ¢ = 1,2, ..., L is the score vector over all vertices of G. The computation
of mND consists of five steps (Figure 3.1).

3.2.1 Network diffusion

Input scores X are smoothed by ND (RWR), obtaining the correspond-
ing network-constrained scores X*, using the following iterative procedure,
where the subscript ¢ € [0, c0) indicates the current iteration and Xy = X:

X1 =aWX,+ (1 —-a)Xy, X® = lim X, (3.1)

q— 00
where o € (0,1) is a scalar that weights the relative importance of topology
and input scores, and W is the symmetric normalized form of the adjacency

matrix A:
aij

NOENCH
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Figure 3.1: Flowchart of the analysis pipeline with mND. (1)
Network-diffusion is applied to the original dataset, composed of multiple lay-
ers Ly, Lo, ..., L, (e.g. different types of omics or multiple samples of same omic
type); (2) Identification of the top k neighbours for each gene in each layer; (3)
Calculation of mND score; (4) Empirical p-value assessment; (5) Classification of
genes across layers.

where a;; € A are the elements of the adjacency matrix and (d;, d;) are the
degrees of the corresponding genes.
The final matrix X is the matrix X 41 that satisfies the termination
criterion max(|X,11 — X,|) < 1076,

To enable direct multiplication of values belonging to different layers,
X is column-wise normalized by the maximum of each column, obtaining

the matrix X*.
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3.2.2 Neighbours selection

For each gene i, the top k; = min(k, d;) first neighbours with the highest
diffusion scores in each layer [ are selected as representatives of the network
proximity of the neighbourhood of i to the original scores in layer [, and
their network diffusion scores are summed:

T(i,1) = max{z aijaly|C € S} (3.3)
jeC

where w}fl € X* with j = 1,2, ..., N is the network-constrained value of j-th

gene in [-th layer (j # i), S is the set of all k;-subsets of 1,2,..., N and

3.2.3 Integration

At this point, the mND score for gene i is calculated as the product
between the sum of its network constrained scores (term g(i)) and the sum
of the contributions of its top k first neighbours (term t(7)):

L L
IR 1 N .
mND; = k—ig(z)t(z) - (Z xu> (Z T(i, l)) (3.4)
1=1 1=1
where L is the total number of layers and 0 < mND; < L2.

3.2.4 Significance assessment

The matrix X is permuted II times by swapping its rows and the corre-
sponding values of mND}L are used to calculate empirical p-values, defined

as the fraction of times that mNDj- is equal or greater than mND;:

14+ #{mND] > mND;}
b= I+1

(3.5)

The product of p; and mND; provides a gene score weighted by its estimated
statistical significance, as previously described [93]:
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mNDp; = —logio(p;) - mND; (3.6)

3.2.5 Classification

The distribution of initial and diffused scores is used to provide a layer-
specific gene classification that may suggest functional roles and offer mech-
anistic insights in relation to the datasets studied.

A gene 1 is classified by evaluating the membership of the gene in two gene
sets H; and N; which define, respectively, the high scoring genes according
to original data (X)) and neighbour information (T).

The gene set H; is composed of the high scoring genes in layer | of X, de-
fined using a layer specific criterion (e.g. the differentially expressed genes
at p < 0.05).

The gene set IN; is composed of the genes with the highest:

tp;; = —logio(py) - T(i,1) (3.7)

where p!, is the empirical p-value calculated comparing T to Tt, the latter
obtained with permuted X. The use of empirical p-value to scale T over-
comes the issue of ties due to genes with equal values of T

The cardinality of N; can be defined in different ways, considering:

e an ad hoc number of top values (e.g. in proportion to |Hj|);
e a threshold value for pl;
e a combination of the two previous criteria.

The gene ¢ is ISOLATED if it is in H; but its neighbourhood is not in
N; (Figure 3.2). If both the gene and its neighbourhood are in, respectively,
H; and N; the gene is part of a high scoring module and therefore is termed
MODULE (Figure 3.2). If the gene is not in H; but its neighbourhood is
in V;, then it is named as LINKER (Figure 3.2).
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Figure 3.2: Flowchart of gene classification across layers g;; represents the
i-th gene in [-th layer; T: TRUE, F: FALSE.

3.2.6 Optimization of k value

Lastly, the value of & can be optimized selecting a value that yields
connected networks enriched in initial scores.
To this aim, the 2 function at the basis of network resampling method
[42] is adapted, it calculates a network score considering top ranking genes
and shows to which extent such network score is expected if links among
genes are shuffled (keeping the same degree distribution). Such function
(designated here as ) is applied to the original scores X (R, 1) in layer
[ associated with the top n genes Ry, ranked by mND using a particular &k
value:

Qo(X (Rgn, 1), A(Rpn, 1)) = X (Rins )T A(Rip) X (Rpn, 1) = Wit (3.8)

where A(Ry,) is the adjacency matrix relative to Rp,,.
The resulting value wy,,; increases as the initial scores of the top ranking
connected genes increases.
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We define the global trend of wy,; over all layers among the top ¢ €
1,2, ...,n ranking genes at varying k, summing the wg,; values of each layer,
normalized by the maximum value observed in such layer using different k:

L

Wy =Y kel (3.9)

“— maxy; (Went)

The non-decreasing trend of wj,; varies in the interval [0, L] and highlights
the effect of k£ on the connectivity of top n ranking genes found by mND
and the presence of high initial scores in such gene networks.

3.3 Computational cost

The computational cost of mND depends on interactome size (number
of nodes and links), number of layers and number of permutations used in
significant assessment. In particular, ND is the rate-limiting step, which
is repeated several times during significance assessment. For example, the
computation of ND using STRING (11 796 genes and 309 850 links) on
2 layers of initial scores required approximately 30s on a server with dual
Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz, 64GB DDR4 2133 MHz
memory and disk storage on Lustre Filesystem; the whole analysis, involv-
ing 1000 permutations, took about 1 hour and 50 minutes on 4 cores. See
Appendix Table A.1 for additional details and further examples.

3.4 mND R package

To make the proposed method available to the scientific community,
mND has been implemented as an R software package with extensive doc-
umentation covering installation, use and reproducible examples. The R
package is free and open source, available online under the GNU License
at URL: https://www.itb.cnr.it/mnd. The use of R should facilitate in-
tegration with other existing bioinformatics tools to further processed the
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results generated by mND (e.g. assessment of the presence of a significant
gene module, functional characterization of gene networks).

To facilitate the usage, the package contains a tutorial with detailed
examples:

vignette (‘mND’)

3.4.1 Imput of mND R package

The following data are required to run the integrative analysis with
mND (Figure 3.3, red boxes):

e A: adjacency matrix of undirected interaction network G;
e X|: score matrix;
Moreover, the analysis requires four parameters:
e a: smothing factor (see paragraph 3.2.1, & = 0.7 by default);
e k: number of top neighbour to consider (k = 3 by default);
e 7: number of permutations of the input matrix;

e cores: number of cores to run analysis in parallel (cores = 1 by de-
fault).

To run the optional gene classification, the following inputs are required:
e H;: high scoring genes names in each layer of Xj;

e topy,: number of genes with the highest neighbourhoods to define the
gene set NV} (see paragraph 3.2.5);

e ay;: significance level on the empirical p-value to define the gene set
N; (see paragraph 3.2.5).

Examples data of adjacency matrix and score matrix are given in the
package that you can load as follow:
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data (A,X0)

The first contains molecular interactions retrieved from STRING [94]; the
second reports gene mutations (1) and gene expression variation (x2) in

breast cancer collected from TCGA.

m_adj_mat ]

\

1!
/ | framework_mND I \

Xo,r; /\
cores | Xo, 7 | [ perm_XO0 ] [ neighbour_index ]
X0_perm ind_adj
e
co(fes [ ND ]
X,

T~
l k,coresl [ mND }

mND_score
k [ signif_assess ] /
/—\ mND_score =
Xo, H;

topy, [ classification ]
ay,

class_res

| L | [ plot_results ]

Figure 3.3: mND R package Blue boxes: function name; Red boxes: function
input; Green boxes: function output; Grey box: analyses that can be easily carried

out through the wrapper function "framework_ mND ”.
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3.4.2 Functions

The mND package provides ten functions (Table 3.1, Figure 3.3 blue
and grey boxes). To calculate the mNDp; score (Equation 3.6), the first
seven function of Table 3.1 should be applied to input data in this order:

W <- normalize_adj_mat (A)

X0_perm <- perm_XO0(X0, r, W)

Xs <- ND(XO_perm, alpha, W, cores)
ind_adj <- neighbour_index (W)

mND_score <- mND(Xs, ind_adj, k, cores)
mND_score <- signif_assess(mND_score)

Most of the analyses can be easily carried out through the wrapper func-
tion “framework_ mND” (Figure 3.3, grey box) that calculates permutations
of Xg, applies network-diffusion on data, computes the mND score and the
relative empirical p-value.

W <- normalize_adj_mat (A)
mND_score <- framework_mND(X0O, W, k, r, cores)

Outputs of function can be used to classify genes in each layer with the
“classification” function:

class_res <- classification(mND_score, X0, Hl, topNl
, alphalN1l)

Furthermore, results could be visualized and saved with the “plot_results”
function that gives in output the following plots:

e genes ranked by mND score and the corresponding p-value;
e gene networks composed of the top n ranking genes;
e gene classification for the top 100 ranking genes across layers.

Lastly, the function “optimize_k” provides the opportunity to optimize
the k value. It calculates the mND score for different k& values (“k_val”),
evaluates which value of k yields connected networks enriched in initial
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scores and generates a plot that shown the trend of wj, values (see para-
graph 3.2.6) among the top ranked genes by mND (“top”) at varying values
of k:

k_val <- seq(1,5,1)
k_results <- optimize_k(Xs, X0, k_val, ind_adj, W,

top)
Function Description
normalize_adj-mat Perform symmetric normalization of A.
perm_X0 Perform r permutations of Xj.

ND Perform network diffusion.

neighbour_index Return indices of neighbours for each gene.

mND Calculate mND score
signif_assess Perform significance assessment.
classification Perform gene classification.
plot_results Return plots with results.

Wrapper function:
Calculate permutations of X,
framework_ mND applies network-diffusion on data,
computes the mND score and
the relative empirical p-value.

optimize_k Perform k optimization.

Table 3.1: List of functions of the R package mIND A: adjacency matrix; r:

number of permutations; Xo: input matrix of scores
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3.5 Performance assessment

Performance of mND with respect to existing methods was evaluated
considering the general problems of locating high scoring genes in network
proximity across multiple layers (paragraph 3.5.2) and recovering known
cancer genes in four cancer types, using two types of omics and a single
type of omics at patient-level (paragraph 3.5.4).

The former is involved in several applications in which multi-omics
datasets are explained relying on the architecture of intracellular circuits,
underlying “hot” gene modules (e.g. disease modules) supported by multiple
layers of information, while the latter has addressed a problem considered
by recent network-based methods for the analysis of multi-omics datasets.
Sensitivity of the mND results to the value of o and k was also evaluated
(paragraph 3.5.3).

Lastly, in the paragraph 3.5.5, it is shown that the application of mND
to rank genes based on mutations and expression changes in breast can-
cer points to relevant pathways underlying the disease, providing a more
complete picture than each individual omics on its own.

3.5.1 Data Source
3.5.1.1 Molecular interactions

Three sources of interactions were considered, abbreviated as STRING
(11 796 genes; 309 850 interactions) [94], GH (13 244; 138 045) [95] and WU
(6 016; 128 150) [96]. Native identifiers were mapped to Entrez Gene [97]
identifiers using the R package “org.Hs.eg.db” [98].

3.5.1.2 Analysis of somatic mutations and gene expression vari-
ations

Somatic mutations (SM) and gene expression (GE) data from matched
tumour-normal samples (blood for SM and solid tissue for GE) were col-
lected from The Cancer Genome Atlas (TCGA) [99] (Figure 3.4) for breast
invasive carcinoma (BC), lung squamous cell carcinoma (LUSC), prostate
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adenocarcinoma (PRAD), and thyroid carcinoma (THCA), using the R
packages TCGAbiolinks [100] and isma [25] (see Appendix B) and consid-
ering the human genome version 38 (hg38).

Mutation Annotation Format files were obtained from 4 pipelines: Muse
[101], Mutect2 [102], SomaticSniper [103], Varscan2 [104]. Only mutation
sites detected by at least two variant callers were considered. Gene mutation
frequencies were calculated as the fraction of subjects in which a gene was
associated with at least one mutation. Gene expression data were obtained
using the TCGA workflow “HTSeq-Counts”. The R package limma [27] was
used to normalize and quantify differential expression in matched tumor-
normal samples, yielding log-fold changes, the corresponding p-values and
FDRs (Bonferroni-Hochberg method).

( Data | Processing of data Obtained data

Integration of Gene
SM ST SMwithisma | |-——— > mutation
L _— package frequency (f)
Filtering
G E ————> Normalization | | ----- > o

P-value

\ — / Limma package

Figure 3.4: Analysis of TCGA data. Somatic Mutations: SM and gene
expression (GE) data from matched tumour-normal samples were collected from
TCGA and processed as reported.

The four cancers datasets were considered in two tasks: the analysis of
two types of omics, mutations and expression changes, and the analysis of
mutation profiles of multiple patients. In the first task, ;1 was defined as
gene mutation frequencies while xo as —logio(FDR). In the second task
each layer x; was represented by mutation profiles of subjects, defined as
the number of mutation sites in each gene. In all analysis, empirical p-
values were calculated on a total of 1 000 permutations (the input matrix
and 999 random permutations of it).

In the joint analysis of mutations and expression changes in BC (para-
graph 3.5.5), the two sets of high scoring genes (Hip, Hs) were defined
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considering, respectively, all genes with at least one mutation (1 238 genes)
and the top 1 200 differentially expressed genes (FDR < 1077).

3.5.2 Finding significant genes that lie in network proximity

To assess the ability of mND in finding high scoring genes in network
proximity across multiple layers, two types of real signal (gene mutation
frequencies and log fold changes) were assigned to gene modules of different
size and modularity, corresponding to real pathways (Figures 3.5,3.6-3.7 A).
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Figure 3.5: Gene modules. Largest connected component of biological path-
ways from KEGG database [105] in GH interactome. The two quantities below
pathway name are modularity (as defined in Clauset et al. [106] and implemented
in R function “modularity”) and size (number of genes).
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Figure 3.6: Initial gene scores assigned to gene modules. Two types of
high and low scores that were randomly assigned to gene modules, derived from
gene mutation frequency across subjects (left) and absolute fold changes between
matched tumor-normal samples (right) from TCGA breast cancer data.

Each gene module was defined as the largest connected component ob-
tained considering the genes associated with a biological pathway (from
KEGG database [105]) and all interactions among them in GH interactome
(Figure 3.5). The highest and lowest values of gene mutation frequencies
(z1) and fold changes (x2) calculated from BC data (see above) were used
to define, respectively, high scoring genes and low scoring genes (Figure
3.6). High scoring values were randomly assigned to genes of each mod-
ule independently for @; and @9, thus to obtain a specific percentage (e.g.
10%) of high scoring genes within the module in each layer. Unused high
scoring values were assigned to genes outside the module and, lastly, low
scoring values were assigned to the remaining genes within and outside the
module.

In each of the resulting configurations, the recall values obtained by
mND were compared to those obtained by other methods:

e the product of ND scores (“NDPROD?”) between the two layers (as in
Ruffalo et al. [59], Chapter 2 paragraph 2.5.2.1): 7, - x;,, where x7,
is the network-constrained value of i-th gene in [-th layer;

e the minimum of ND scores (“NDMIN”) for each gene i between the two
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Figure 3.7: Performance in ranking high scoring genes in network prox-
imity. (A) Example of a gene module with its high scoring genes (H, black) in
each of the two layers and the resulting mND score; only genes belonging to the
module and links occurring among such genes are reported. (B) Recall values for
10 signal permutations for each of the 9 modules (P1, P2, ..., P9), using mND score
and other methods; the number between parentheses after module id is module
size. (C) Recall values, shown separately for high scoring genes and other genes
in each module. (D) Recall values normalized by the highest recall found for each
input configuration at varying number of neighbors (k). (A-D) These results were
obtained using interactome GH.

layers (as in TieDIE [48], Chapter 2 paragraph 2.5.2.1): min(z},z},),
where x;"l is the network-constrained value of i-th gene in [-th layer;
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e the rank product (“RP”) of initial scores: +/7(x;1) - 7r(zi2), where
r(z;;) is the rank of i-th gene in I-th layer.

The recall was defined as the fraction of module genes ranked (by the as-
sessed method) among the top M genes, where M is the module size.

The rank product (RP) was successful in identifying genes with high
scoring values in at least one of the two layers (Figure 3.7 B), but typically
missed other module genes with lower values. NDPROD, a multi-omic ap-
proach described in [59] and corresponding to using only the term g(i) in
Equation 3.4, led to better performance than RP in more than half of the
cases, and equal or even low performance in others, indicating the failure to
identify high scoring genes in favour of genes in network proximity to the
module, but outside of it (Figure 3.7 B). Similarly, NDMIN, the multi-layer
combination strategy underlying TieDIE method [48], yielded recall values
that are higher or lower than RP depending on gene module and signal dis-
tribution. Instead, mND determined the highest recall in almost all cases.
This result underlines the importance of using gene neighbourhoods, i.e.
the term t(7) in Equation 3.4 (Figure 3.7 B). Importantly, the performance
of mND is the result of spotting both high scoring genes (almost all) plus
other module genes with low score, but relevant topological position (Figure
3.7 C).

Overall, a small number of neighbours (parameter k£ in Equation 3.4)
was sufficient to guarantee the highest performances (Figure 3.7 D), which
were observed around k = 3. A similar trend was observed when finding
significant genes lying in network proximity over 3 layers (Figure 3.8).

To assess whether the results obtained in ranking high scoring genes
lying in network proximity (Figure 3.7) were limited to the interactome in
use (GH), the same analyses were repeated using a different interactome
(STRING). The same patterns were observed in terms of mND perfor-
mance, types of genes found and the relation between performance and k
parameter (Appendix Figure A.1).

This is a significant result, considering the relevant differences between
the two interactomes, and further underlines the wide applicability of mND
in analysing multiple biological evidences spread in complex networks.
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Figure 3.8: Recall values in the analysis of 3 layers. Recall values normal-
ized by the highest recall found for each input configuration at varying number
of neighbors (k). This analysis was carried out like described in Chapter 3.5.2,
but using 3 layers of mutation frequencies, like in a hypothetical analysis of three
cancer subtypes or a hypothetical pan-cancer analysis.

3.5.3 Sensitivity of mND results to parameters « and &

mND depended on two parameters: «, that weights the contribution of
the two addends in Equation 3.1, and k, the maximum number of neigh-
bours that are considered in the calculation of mND score (Equation 3.3-3.4)

Parameter o was set to 0.7, a value that represents a good trade-off
between diffusion rate and computational cost, and determined consistent
results in previous studies [43,47,107,108]. However, the sensitivity of mND
to o was estimated and it was found that varying a by 10% resulted in
highly correlated mND scores and only a few different genes (6-8%) among
the top 100 (Table 3.2 and Figure 3.9).

In the paragraph 3.5.2, mND obtained the highest performance in find-
ing significant genes in network proximity over two or more layers con-
sidering just a few top ranking neighbours (2 < k& < 5). Overall, k = 3
(i.e. at most 3 neighbours) determined the highest performances in such
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a | 06307077
%) | 60 | 0 | 75

Table 3.2: Sensitivity of mND to « Average percentage ((%)) of genes that change
within the top 100 ranked by mND in 90 runs varying o by +10%.

problem. This observation can be explained considering 3 neighbours a
reasonable trade-off to include multiple neighbours without penalizing high
degree genes. However, the sensitivity of mND to the value of k£ was evalu-
ated and it was found that varying k of one unit had only minor effects on
mND scores, which are highly correlated and indeed differ of only a few (~
4-6) genes among the top 100 (Table 3.3 and Figure 3.10).

k 2 3| 4
(%) | 5.8 | 0 | 4

Table 3.3: Sensitivity of mIND to k Average percentage ({(%)) of genes that change
within the top 100 ranked by mND in 90 runs varying k of 1 unit.

An opportunity to further optimize the value of k relies in selecting a
value that yields connected networks enriched in initial scores (paragraph
3.2.6).
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Figure 3.9: Sensitivity of mND to a parameter. Correlation of mND scores
at varying a, reported for all genes (below diagonal) and top 100 genes only (above
diagonal) in four examples (P1-P4) of the analysis described in the paragraph 3.5.2.
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Figure 3.10: Sensitivity of mND to the value of k. Correlation of mND
scores at varying k, reported for all genes (below diagonal) and top 100 genes
only (above diagonal) in four examples (P1-P4) of the analysis described in the
paragraph 3.5.2
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3.5.4 Recovering known cancer genes

The performance of mND was also evaluated in the problem of recov-
ering known cancer genes at low false positive rates (FPRs), by calculation
of the partial area under the ROC curve (pAUC).

The pAUC of mND was compared with those obtained by other network-
based methods, like NDPROD, NDMIN and NetICS [56] (Chapter 2 para-
graph 2.5.2.4), and considering four cancer types (BC, LUSC, PRAD, THCA).

The pAUC accounts for the number of true positives that score higher
than the n-th highest scoring negative, measured for all value from 1 to n:

1 n
PAUC, = —— > TP (3.10)
=1

where TP is the total number of known cancer genes and TP; is the
number of true positives that score higher than the i-th highest scoring
negative [109].

Genes mutations associated with cancer were collected from COSMIC
[110] and previous studies [111,112]. Differentially expressed genes were de-
rived from Bioexpress [113], considering log2-fold change between matched
primary tumor-normal samples greater than or equal to 1 and FDR < 0.05.

Considering mutations and expression changes as input, mND reported
higher pAUC than other methods in all four cancer types considered (Figure
3.11). Furthermore, performance was studied using mutational profiles only
as input and, also in this case, mND reported better performance than
other methods (Appendix Figure A.2) and gene classification underlined the
presence of several linkers with a relevant role in BC (Appendix Figure A.3).
For instance, the deletion of HIC-1, never found mutated in the dataset
under analysis but spotted as linker in 15 subjects, has been demonstrated
to promote BC [114,115]; FYN has been proposed as a prognostic marker
in ER+BC [116] and promotes mesenchymal phenotypes of basal types BC
cells [117].
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Figure 3.11: Performance in recovering known cancer genes. Partial AUC
(pAUCQC) at varying number of top false positive ranking genes (n) in the analysis
of mutations and expression changes in four cancer types. (A-D) These results
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3.5.5 Gene networks enriched in mutations and expression
changes in breast cancer

As a proof of principle, mND was applied to find functionally related
genes on the basis of gene mutation frequency (layer 1, L;) and gene ex-
pression variation (layer 2, Ly) in BC.

o
i
v |
- 2 |
g 2
Te}
.
o | .
e
| T T | T
0 50 100 150 200
n

Figure 3.12: Effect of varying k on the enrichment of the top gene
networks in high initial scores. Trend of wy,; values (see Chapter 3, paragraph
3.2.6) among the top 200 genes found by mND at varying values of k in the analysis
of mutations and gene expression changes in BC.

k = 3 has been observed as a reasonable choice to obtain connected
gene networks enriched in genes with the highest mutation frequencies and
expression variations (see paragraph 3.2.6 and Figure 3.12).

Genes highly ranked by mND (Figure 3.13 A) include those that were
relevant according to initial scores in both layers (Figure 3.13 B, green
rhombuses, e.g. CCNB1, TOP2A), as well as those that were high scoring
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were generated using interactome STRING.
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in one of them (Figure 3.13 B, e.g. EGFR and PIK3CA) and linker genes
(Figure 3.13 B, red circles), which have low initial values, but lie in relevant
network proximity to significantly altered genes. Interestingly, top scoring
linker genes include genes already known to be involved in BC, such as
CDC42 and BRCA1 (Figure 3.13 B-C).

To assess whether genes highly ranked by mND are in significant net-
work proximity, we used network resampling [42]: this computational ap-
proach calculates a network score considering top ranking genes and shows
to which extent such network score is expected if links among genes are
shuffled (keeping the same degree distribution). This procedure confirmed
that genes highly ranked by mND are in significant network proximity (Ap-
pendix Figure A.4): in particular, a dense module of 123 genes was identi-
fied (Figure 3.13 D).

Beyond gene global ranking, mND classified genes in each layer as mem-
bers of a module, linkers, or isolated genes, on the basis of the amount of
signal found in the genes themselves and their neighbours. Complementing
the global ranking with layer-by-layer information on gene positions, such
classification helps clarifying genes role in the context of the alterations de-
tected and suggests possible underlying molecular mechanisms (Figure 3.13
E). For instance, TP53 is classified as “isolated” and clearly emerges as a
gene with primary role in BC, not only because of its mutation, but also
because its functional partners are differentially expressed (it is classified
as linker in gene expression layer). CDC/2 is classified as linker in both
layers: it neither carries a relevant amount of mutations nor is among the
top differentially expressed genes, but its interacting partners are highly en-
riched in both mutations and differential expression. Interestingly, CDC/2
is an important molecule in luminal BC, with prognostic significance [118].
Among genes highlighted as modules, we found PIK3CA (a highly mutated
gene in BC [119]), highly ranked on the basis of mutations; other genes play
a role according to one type of alteration only, like CDCAS8 [120], which
emerged as being involved specifically in terms of differential expression,
being a member of a differential expression module.

Lastly, the genes prioritized by mND were characterized in terms of bi-
ological pathways. Pathways were downloaded from the KEGG database

53



[105]. A total of 331 human pathways with at least 5 genes were consid-
ered. The number of genes prioritized in each pathway by mND, by gene
expression (zg2), ND scores of gene mutation frequencies (x1) and gene ex-
pression (z3), were quantified for different numbers of top ranking genes
(n = 50,100, 150, 250, 300).

For each pathway and value of n, the difference DP(n) between the
number of genes (D) found by mND and the best of the other approaches
was quantified as:

DP(n) = Dunp(n) — max(Dy,(n), Dy (n), Dyg(n)) (3.11)

Interestingly, mND found relatively more genes than each omics considered
independently ((DP) > 0), in pathways like: KEGG ’'Breast Cancer’ and
signal transduction ways known to have a relevant role in BC (Figure 3.14),
"Cell Cycle’ [121], "Hippo signalling pathways’ [122], 'FoxO Signalling path-
ways’ [123], 'p53 Signalling pathways’ [124], 'PI3K-Akt signalling’ [125] and
"Proteasome’ [126].

Therefore, the joint analysis of the two omics led to enrichment in rele-
vant pathways, compared to single omics on its own, a result that underlies
the added value of combining multiple evidences with mND.
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Figure 3.14: Pathways enriched in mutated genes and/or differentially
expressed genes in BC. Number of genes found by mND and single omics
analyses (L3, L3 and Ls) in each pathway at varying number of top ranking genes
considered (horizontal axis, n); Li: mutations; Ly: gene expression variations; the
asterisk distinguishes between gene ranking by original data and the corresponding
network diffusion scores. (A) Disease pathways; (B) Other pathways. (A-B)
Pathways from KEGG database.
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Chapter

Integrative analysis of
genomics, epigenomics and
transcriptomics in autism
spectrum disorders.

Current studies suggest that ASDs may be caused by many genetic
factors and integrative analysis of multiple omics could provide a more
comprehensive view of the disease. This chapter presents an integrative
network-based analysis, based on mND algorithm, of genes reported as
associated with ASDs by studies that involved genomics, epigenomics and
transcriptomics.!

!The contents of this chapter are published in: N. Di Nanni, M. Bersanell
F. Cupaioli, L. Milanesi, A. Mezzelani, E. Mosca. (2019) “Network-based in-
tegrative analysis of genomics, epigenomics and transcriptomics in autism spec-
trum disorders”. International Journal of Molecular Sciences (IJMS), 20:13, 3363.
https://doi.org/10.3390/ijms20133363. License: Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/)
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4.1 The complex molecular basis of ASDs

Autism spectrum disorders (ASDs) are among the most common neu-
rodevelopmental disorders. ASDs are characterized by impaired social in-
teractions, repetitive behavior and restricted interests, and are often in
comorbidities with other conditions such as epilepsy, mental retardation,
inflammation and gastrointestinal disorders. Despite the high heritabil-
ity of ASDs is well established, the exact underlying causes are unknown
in at least 70% of the cases [127]. Large genome-wide association studies
(GWAS), CNV testing and genome sequencing yielded many non-overlapping
genes, a fact that underlines the complex genetic heterogeneity of ASDs
[127] and reflects the architecture of intracellular networks, in which several
possible combinations of genetic variations are likely to lead to a common
pathological phenotype [30,31].

The identification of key molecular pathways that link many ASDs-
causing genes is of prominent importance to develop therapeutic interven-
tions [127]. In this context, network-based and pathway-based analyses
provide functional explanations to non-overlapping genes and narrow the
targets for therapeutic intervention [128]. The rich functional pathway in-
formation emerging from such analyses might unearth common targets that
are amenable to therapy [127].

The application of ND to genes associated with ASDs from genetic data
had led to the identification of gene networks and pathways particularly
enriched in disease genes [108]. Interestingly, several genes predicted as
relevant in such study are now included in the SFARI Gene database [129],
which provides curated information on all known human genes associated
with ASDs.

In addition to genetics, several reports have suggested a role for epi-
genetic mechanisms in ASDs etiology [130, 131]. Recent studies have also
demonstrated the utility of integrating gene expression with mutation data
for the prioritization of genes disrupted by potentially pathogenic muta-
tions [132,133]. More generally, the integrative analysis of multiple omics
has emerged as an approach that can be crucial to unravel the mechanism
of this complex disease [5, 8].
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While the analysis of epigenomics and transcriptomics from brain-derived
samples can provide important insights into potential mechanisms of dis-
ease etiology, there are relevant limitations with these types of studies (e.g.
quality of autopsy-derived tissue, sample size, influence of life experience
and cause of death) [131]. These barriers have been overcome by analysing
blood samples and recent blood-based works have shown the usefulness of
this alternative approach to gather insights into ASDs [131,134-136].

Considering all these aspects, an integrative network-based analysis was
performed using results emerged from several studies on ASDs, based on ge-
nomics, epigenomics and transcriptomics (Figure 4.1). Firstly, following the
hypothesis of the omnigenic model [31], genetic data were analyzed to intro-
duce a graduated scale of gene relevance in relation to core genes for ASDs.
Subsequently, omics data were integrated using mND algorithm (Chapter
3, paragraph 3.2) and a gene network significantly enriched in genes sup-
ported by one or more of the considered evidence (genomics, epigenomics
and transcriptomics) was proposed. The gene network involved genes that
participate in several pathways relevant to ASDs, which were distinguished
by type (or types) of alteration from which they are affected. Collectively,
the network-based meta-analysis provided a prioritization of the large num-
ber of genes proposed to be associated with ASDs, based on genes’ relevance
within the intracellular circuits, the strength of the supporting evidences
of association with ASDs and the number of different molecular alterations
affecting genes.

4.2 Data sources

The following paragraphs describe the source of data used in the anal-
ysis: molecular interactions and genes associated with ASDs on the basis
of genomics, epigenomics and transcriptomics.

For each omics data, the genes were divided into two groups: those sup-
ported by strong evidence (“-MAJOR” group) and the others (“-MINOR”).
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Figure 4.1: Overview of the integrative network-based analysis.

4.2.1 Molecular interactions

Molecular interactions were collected from STRING database [94], for a
total of 12 739 genes and 355 171 links with high confidence (score > 700).
In case multiple proteins mapped to the same gene identifier, only the pair of
gene identifiers with the highest STRING confidence score was considered.

4.2.2 Genomics data

Genes associated with ASDs on the basis of genomics evidences were
collected from SFARI Gene database [129], two recent large studies [137,
138] and a series of previous studies summarized in [108], for a total of 1
133 genes (Table 4.1).

The SFARI Gene scoring system classifies genes on the basis of the
strength of the supporting evidences as: “syndromic” (S), “high confidence”
(1), “strong candidate” (2), “suggestive evidence” (3), “minimal evidence”
(4), “hypothesized but untested” (5) and “Evidence does not support a role”
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(6).

Genes classified as S, 1, 2, 3, 1S, 2S, 3S and 4S were assigned to the
GENOMICS-MAJOR evidence group (334 genes).

Genes belonging to the GENOMICS-MINOR (799 genes) group were
collected from: Mosca et al. [108], in which genes associated with SNPs,
mutations and CNV emerging from several large studies are reported; the
meta-analysis study of GWAS of over 16 000 individuals with ASDs [137];
and the whole-exome sequencing study of rare coding variation in 3 871
autism cases and 9 937 ancestry-matched or parental controls [138]. Native
gene identifiers were converted to Entrez Gene [97] identifiers and only genes
occurring in STRING network were considered in network-based analyses.

4.2.3 Epigenomics

Genes associated with ASDs at epigenomics level were collected from a

previous study [131], in which the authors performed a case-control meta-
analysis of blood DNA methylation among two large case-control studies of
autism (796 ASDs cases and 868 controls) using METAL software [139] on
the probes that were present in both studies.
All genes found by their meta-analysis with p < 1072 were assigned to
EPIGENOMICS-MAJOR group while the genes with 1073 < p < 5-1073
were assigned to EPIGENOMICS-MINOR (Table 4.1). Native gene identi-
fiers were converted to Entrez Gene [97] identifiers and only genes occurring
in STRING network were considered in network-based analyses.

4.2.4 Transcriptomics

Genes associated with ASDs at transcriptomics level were collected from
the four studies [134,140-142] reported in [143], in which the original au-
thors generated blood-based gene expression profiles from microarray exper-
iments with sample sizes greater than 40 and provided list of differentially
expressed genes.

Following the approach by Saeliw et al. [143], genes reported as differentially
expressed in at least two studies were assigned to the TRANSCRIPTOMICS-
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Number of genes

Type of evidence Description Subjects Initial Selected
¥ 3 EE3 3
G SFARI [129] _
Network Diffusion-Based Prioritization of 404 | 1087 | 334 | 799
G Autism Risk Genes Identifies Significantly -

Connected Gene Modules [108]

Meta-analysis of GWAS of over 16,000

G individuals with autism spectrum disorder [137] 15 954
Synaptic, transcriptional and chromatin
G genes disrupted in autism [138] 13 808
E Case-control meta-analysis of blood DNA 1654 416 | 1444 | 272 | 955

methylation and autism spectrum disorder [131]

Gene expression profiling differentiates
T autism case-controls and phenotypic variants 116

of autism spectrum disorders [140] 330 | 3045 | 256 | 2131

Blood gene expression signatures distinguish

autism spectrum disorders from controls [134] 285

Disrupted functional networks in autism
T underlie early brain mal-development 147
and provide accurate classification [141]

Gene expression in blood of children

with autism spectrum disorder [142] a7

Table 4.1: Datasets considered in this study. Selected: number of genes for which
at least a high confidence interaction with any other gene is catalogued in STRING database.
G: genomics; E: epigenomics; T: transcriptomics. **MAJOR evidence; *MINOR evidence

MAJOR group while the other differentially expressed genes were assigned
to the TRANSCRIPTOMICS-MINOR group (Table 4.1). Native gene iden-
tifiers were converted to Entrez Gene [97] identifiers and only genes occur-
ring in STRING network were considered in network-based analyses.

4.3 Genomics analysis

Recently, the “omnigenic model” was proposed to explain the inheritance
of complex diseases [31]. In this model, the genes whose genetic damage
will tend to have the strongest effects on disease risk are considered CORE
genes, while those genes that have a minor impact on disease risk are des-
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ignated as PERIPHERAL. The number of PERIPHERAL genes may be
large, as consequence of the multiple ways in which these genes may inter-
act with CORE throughout cell regulatory networks.

Importantly, such classification may be on a graduated scale rather than
simply binary [31].
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Figure 4.2: Genes in network proximity to the CORE genes of ASDs.
(A) Diffusion score (Xs) normalized by its empirical p-value (horizontal axis) and
number of interactions (]I, vertical axis); only genes with are shown. (B) Con-
nected components of “CORE+13" network. (A-B) Blue points: 13 genes of
“CORE+13"; pink points: CORE genes; yellow points: significant genes outside
“CORE+13” genes; red border of points: genes supported at transcriptomic and/or
epigenetic levels

In this context, ND provides an opportunity to define quantitatively the
degree of peripherality of all genes in relation to the CORE genes, exploring
all possible network paths among genes in intracellular networks.
ND was applied on the human interactome defined by the high confidence
functional and biophysical interactions catalogued in STRING and con-
sidering as CORE genes, those classified in SFARI as “syndromic”, “high

bRIN14 RS

confidence”, “strong candidate”, “suggestive evidence” and “syndromic min-
imal evidence”, for a total of 334 genes; as PERIPHERAL genes, the other
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799 genes proposed to have a role in ASDs.

Several genes were found with a significant network proximity to CORE
genes (Figure 4.2 A). By a topological point of view, among these genes both
hubs (genes that establish many interactions, such as UBC, DYNC1H]1,
EP300) and genes with a lower number of connections (e.g. CHD2, NUDCDZ2,
SETD5) were found, nevertheless important for the information flow within
the network (Figure 4.2 A).

Interestingly, 13 genes obtained scores comparable to those of CORE
genes (Figure 4.2). These results indicate that these 13 genes closely inter-
act with the CORE genes and, in almost all cases, the number of interac-
tions that these genes establish with the CORE genes is significant (Table
4.2). From now on, the set of CORE genes and the 13 genes closely re-
lated to the CORE genes will be called as “CORE+13". In the CORE+13
gene network, the 13 genes act as linkers between groups of CORE genes
not directly connected with each other; for instance, WDRS37 (WD repeat
domain 37) links PACS! (phosphofurin acidic cluster sorting protein 1)
and PACS2 (phosphofurin acidic cluster sorting protein 2). The resulting
largest connected component involves 204 genes, while the remaining 143
genes are mostly isolated or form very small modules of 2 or 3 genes.

It has been checked whether any of these 13 genes, currently not in-
cluded in the highest categories of SFARI, is nevertheless classified in other
categories corresponding to a lower degree of evidence or has been reported
in other network-based analyses of ASDs data [144-147]. Six genes were
found belong to the categories designated as “minimal evidence” or “hy-
pothesized but untested”, and eight genes were proposed as part of gene
networks associated with ASDs (Table 4.2), providing further evidences in
favor of these genes.

The association with ASDs for 12 of the 13 genes is supported at ge-
nomic level (Table 4.2). In addition, HCN4 (hyperpolarization activated
cyclic nucleotide gated potassium channel 4) was found with epigenetic
modifications in the study of Andrews et al. [131], while PRKCA (protein
kinase C alpha) was found both epigenetically modified [131] and differ-
entially expressed [141]. WDRS37 does not have supporting evidences at
genomic level, but was found differentially expressed [140].
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Symbol Description 1] |Ic| | |CORE]| p E | T | SFARI score | Other modules
Hyperpolarization
activated cyclic _3 %
HCNY nucleotide gated 4 2 334 3.91-10 0
potassium channel 4
DLGAP2 DLG assaciated 21 | 8 334 | 310-107° 0o 4 [144-146)
protein 2
Hyperpolarization
activated cyclic
HCN2 nucleotide gated 4 1 334 1.01-107! 0 0 - -
potassium and
sodium channel 2
UBC Ubiquitin C 1168 | 43 334 1.41-1072 0] o0 - 147]
NLGN2 Neuroligin 2 28 8 334 4.04-1077 0|0 4 [144]
WDR37 WD repeat 2 | 2 334 | 685107 0] *
domain 37
MTMRz | Myotubularinrelated | gy 334 | 1.47-107 oo - -
protein 2
Erythrocyte membrane
EPB41L1 protein band 34 9 334 1.55-1077 0] 0 - [145]
4.1 like 1
Gamma-aminobutyric
GABRAS5 acid type A 17 | 4 334 8.43-1074 0o 5 [145]
receptor alphab
subunit
STX1A Syntaxin 1A 78 | 10 334 3.47-10° 00 1 [145,147]
Erythrocyte membrane y ) 5 o )
EPB41 protein band 4.1 16 6 334 4.14-10 0 - [147]
Calcium voltage-gated
CACNAIF channel subunit 37 6 334 3.63-107* 0 0 4 [145]
alphal F
y Protein kinase . _2 * )
PRKCA 197 11 334 1.48-10 * 4 -
C alpha

Table 4.2: The 13 genes that closely
of ASDs. |[I|: number of interactors; |Ic|: number of interactors that are CORE genes; p:

interact with the CORE genes

hypergeometric probability of observing |Ic| in a hypergeometric experiment; G: genomics; E:

epigenomics; T: transcriptomics; **MAJOR; *MINOR; 0: no evidence; SFARI score: “minimal

evidence” (4), “hypothesized but untested” (5); Other modules: reference of gene-networks studies

of ASDs in which the gene is mentioned. The total number of genes considered is equal to the

interactome size: 12 739 genes.

Collectively, it has been observed that a significant number of “CORE~+13”

genes emerged as associated with ASDs at epigenomics level (p = 2.63-107%,
hypergeometic test; Table 4.3) and at transcriptomics level (p = 1.22-1073;
hypergeometic test; Table 4.3). The observation that different types of al-
terations refer to the same genes further stresses the role of these genes in
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A B |A] IB| U] [ANB| | (ANB|) | P(x>|ANB|)
CORE+13 | CORE+13(E) | 347 | 1227 | 12739 54 3.27 2.63-107 1
CORE+13 | CORE+13(T) | 347 | 2387 | 12739 88 6.37 1.22-1073

G E 1133 | 1227 | 12739 146 109 1.09-10° 1

G T 1133 | 2387 | 12739 235 212 3.95-1072

E T 1227 | 2387 | 12739 243 230 1.66 - 1071

G** E** 334 [ 272 | 12739 15 7.13 5.47-1073
G** T** 334 | 256 | 12739 15 6.71 3.12-1073
E** T** 272 | 256 | 12739 5 5.47 6.42-107 1

Table 4.3: Overlaps among the lists of genes associated with ASDs.
G: genomic; E: epigenomics; T: transcriptomics; **MAJOR; *MINOR; CORE+13(E) and
CORE+13(T) indicate genes belonging to the “CORE+13” set and which are supported by
E and T respectively.

ASDs. These results are in line with those of previous studies that sug-
gest a potential role of genetic factors in contributing to DNA methylation
differences in ASDs [131]. Moreover, blood-derived epigenetic changes ob-
served in genes whose sequence variations are associated with ASDs are
more likely to have a common function across tissues, compared to those
not related to genetic changes [136].

As for the 13 predicted genes (Table 4.2) that closely interact with
the CORE genes of ASDs, they mainly belong to different neuronal path-
ways and are especially involved in synaptic function and plasticity that, if
impaired, could actively contribute to the pathogenesis of ASDs and/or to
their comorbidities. Genes encoding for ion channel were found among these
genes, and the role of various ion channel gene defects (channelopathies)
is known in the pathogenesis of ASDs. For instance, HCN2 and HCN/
belong to hyperpolarization-activated cyclic nucleotide-gated (HCN) chan-
nels family, encoding for non-selective voltage-gated cation channels, and
they are strongly expressed in the brain. These channels establish the slow
native pacemaker currents contributing to membrane resting potentials, in-
put resistance, dendritic integration, synaptic transmission and neuronal
excitability. Interestingly, it seems that SHANKS3, strongly linked to ASDs,
works in organization of HCN-channels [148] and that its expression neg-
atively influences those of HCN2 [149], so variations in SHANKS3 gene
are reflected in pacemaker current abnormalities. In addition, variants in
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HCN1, another member of the HCN family, were detected in patients with
epileptic encephalopathy and clinical features of Dravet syndrome, intellec-
tual disability, and autistic features [150].

Some of the predicted genes, such as FPB41 and EPB/1L1, take part
in cytoskeleton and synaptic structures. FPB/1 is the founding member
of the large family of proteins that associate with membrane proteins and
cytoskeleton and in neurons is involved in protein-protein interactions at
synaptic level. It interacts with NRXN1 and NRXN2, as well as NLGNT1,
-2, -3 and -4X. These proteins act at presynaptic and post synaptic level
and causative variations in NRXN1 and -2 [151,152] and NLGN2 (also
in CORE+13 genes), -3 and -4X [153,154] have already been described
in ASDs. Furthermore, EPB41L1 (highly expressed in the brain) and the
ionotropic glutamate receptor GRIA1, were listed in the 13 predicted and
in CORE genes, respectively, interact thus contributing to glutamate neu-
rotransmission. An alteration of glutamate neurotransmission was found
in ASDs. Interestingly, EPB41L1 is associated with mental retardation,
deafness autosomal dominant 11 and dutosomal dominant Non-syndromic
intellectual disability.

Then again, DLGAP2 is a member of the postsynaptic density proteins
(as SHANKS3), probably involved in molecular organization of synapses
and signalling in neuronal cells, with implications in synaptogenesis and
plasticity. In particular, DLGAP2 could be an adapter protein linking
the ion channel to the sub-synaptic cytoskeleton. Animal models demon-
strated that DLGAPZ2 has key role in social behaviors and synaptic func-
tions [155]. Case studies also report rare DLGAP2 duplications in ASDs
[156-158]. Then again, DLGAP2 gene has an important paralog, DL-
GAP1, already associated with ASDs. DLGAP1 proteins interact with
other ASDs-associated proteins such as DLG1, DLG4, SHANK1, SHANK?2
and SHANKS3 [144]. Moreover, the analysis of rare copy number variants
in ASDs found numerous de novo and inherited events in many novel ASDs
genes including DLGAP2 [146].

Among the 13 predicted genes, syntaxin-1A (STX1A) is also involved in
synaptic signaling. This gene encodes for part of complex of proteins me-
diating fusion of synaptic vesicles with the presynaptic plasma membrane.
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A dysregulation of STX1A expression [159-161] has been reported in high
functioning autism and Asperger Syndrome. A significant association be-
tween three STX1A SNPs and Asperger syndrome was recently described.
These SNPs could alter transcription factor binding sites both directly and
through other variants in linkage disequilibrium [162].

The list of predicted genes includes GABRAS. It transcribes for the
subunit 5 of GABA receptor alpha whose reduced expression and reduced
protein level have been described in autism [163], and SNPs of this gene
are biomarkers of symptoms and developmental deficit in Han Chinese with
autism [164]. The inclusion of this gene in the CORE list strengthens the ev-
idences of imbalance between excitatory and inhibitory neurotransmission
in ASDs and abnormalities in glutamate and GABA signaling as possible
causative pathological mechanisms of ASDs.

Few of these predicted genes encode for proteins involved non-neuronal
specific signalling pathways, which are also important for ASDs: PRKCA,
WDRS87 and UBC. PRKCA regulates many signalling pathways such as
cell proliferation, apoptosis, differentiation, tumorigenesis, angiogenesis,
platelet function and inflammation. A meta-analysis performed on de novo
mutation data of 10,927 individuals with neurodevelopmental disorders
found an excess of missense variants in PRKCA gene [165]. The WDR37
gene encodes a member of a protein family that is involved in many cellu-
lar processes such as cell cycle progression, signal transduction, apoptosis,
and gene regulation. WDR37 is a nuclear protein ubiquitous expressed
and particularly abundant in cerebellum and whole brain. There are no
direct evidences for ASDs development and WDR37 - however recently, it
has been demonstrated that WDR47 shares functional characteristics with
PAFAH1BI1, which causes lissencephaly. PAFAH1B1 also constitutes a key
protein-network interaction node with high-risk ASDs genes expressed in
the synapse that can impact synaptogenesis and social behaviour [166].

The analysis confirms the importance of X-linked gene in the aetiopatho-
genesis of ASDs. Mutations of CACNAIF (located at Xpl11.23), mainly
cause X-linked eye disorders. Since the role of various ion channel gene
defects (channelopathies) in the pathogenesis of ASDs is becoming evi-
dent, the deep resequencing of these functional genomic regions has been
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performed. These studies revealed potentially causative rare variants con-
tributing to ASDs in CACNAI1F. Then again, CACNA1D, an important
paralog of CACNA 1F, displayed de novo missense variants in ASDs probands
from the Simons Simplex Collection [167]. Moreover, being the gene X-
linked, could contribute to the sex bias of ASDs.

4.4 Multi-omics Analysis

We assessed the significance of the overalps among the lists of genes
associated with ASDs by genomics, epigenomics, and trascriptomics evi-
dences. We observed significant overalps between the list of genes from
genomics and those supported by epigenomics or transcriptomics (Table
4.3). The intersection among the three gene lists consists of 40 genes, 34
of which are included in the considered interactome (shortly “SHARED”)
(Figure 4.3).

A . B o

== Core genes

Figure 4.3: Overlaps among genes associated with ASDs by genomics,
epigenomics and transcriptomics. G: genomics; E: epigenomics; T: transcrip-
tomics. **MAJOR

Out of the SHARED genes, 26 do not interact directly with any other
SHARED gene, while 8 genes form three connected components composed
of: TRAPPC6B, DYNC1H1, TRAPPC9 and CSNK1D; GNAS and PRKCA,;
EP400 and TRRAP (Figure 4.4).
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Figure 4.4: Interactions among the SHARED genes. Only 8 of the 34
SHARED genes interact directly with at least another SHARED gene.

In order to find modules of functionally related genes supported by one
or more types of evidences (“layers” from now on), mND algorithm (para-
graph 3.2) was used to obtain the final integrative score that summarizes
the relevance of each gene in relation to its location in the interactome and
its network proximity to other genes associated with ASDs in one or more
layers (genomics, epigenomics and transcriptomics).

Therefore, the genes-by-layer input matrix Xy = [x1, T2, x3] was de-
fined, where each element x;; was set to: 1 if the gene ¢ was member of
a ““MAJOR” group in layer j (paragraphes 4.2.2 - 4.2.4); 0.5 if the gene
i was member of a ““MINOR” group in layer j (paragraphes 4.2.2-4.2.4);
and 0 if the gene was i was not associated with ASDs in layer j. ND was
applied to X using the genome-wide interactome represented by the sym-
metric normalized adjacency matrix W (Equation 3.1) and « parameter
was set to 0.7, after that the mND score was calculated with the parameter
k set equal to 3 (see paragraph 3.5.2); therefore, for each gene ¢, the top 3
direct neighbours of ¢ with the highest diffusion scores in each layer were
considered. Statistical significance of gene scores was assessed by empirical
p values, calculated using 1000 permutations of the input matrix Xj.

At the top of the resulting genome-wide ranking, genes with significant
scores (Figure 4.5 A) were found.
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Figure 4.5: Integrative multi-omics analysis. (A) Global network diffusion
scores (horizontal axis) and number of interactions (vertical axis) of the top rank-
ing genes; the vertical dashed line separates the top 275 genes belonging to the
INT-MODULE (higher scores, on the right) from the other genes (lower scores,
on the left). (B) Network of the top 275 genes (INT-MODULE). Green circles:
SHARED genes; blue circles: genes included in SFARI categories 4 and 5; red
circle: LRRCY6.

To assess whether these highly ranked genes formed significantly con-
nected gene modules, network resampling [42] was applied. We found a
multi-omics integrative gene module (INT-MODULE) involving a total of
275 genes (Figure 4.6) strongly supported by genomics, epigenomics and
transcriptomics.

The largest connected component (266 genes) of INT-MODULE con-
nects 22 SHARED genes, which do not establish direct interactions with
each other if considered in isolation (Figure 4.5 B).

The INT-MODULE was compared with gene networks proposed by
other studies on ASDs different in terms of input data and analysis ap-
proach [144-147]. 157 genes occurred in at least one of such networks and
a total of the 144 INT-MODULE genes belong to the highest scoring SFARI
categories. Furthermore, ten other genes of the network are currently clas-
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Figure 4.6: Network resampling on the genes top ranked by the multi-
omics analysis. Logarithm of p-value (y-axis) calculated for each rank of the
gene list (x-axis) ordered by decreasing values of the global diffusion score.

sified in SFARI as “minimal evidence” and “hypothesized but untested”
(Table 4.4, Figure 4.7) and are also supported by epigenomics and/or tran-
scriptomics; and 7 of these 10 genes were reported by other network-based
analyses (Table 4.4). The INT-MODULE also includes LRRC46 (leucine
rich repeat containing 46), the only gene of the module that does not occur
in any of the input gene lists (Figure 4.5, 4.7).

To functionally characterize the INT-MODULE, we partitioned its largest
connected component (266 genes) in topological clusters and assessed both
the enrichment of each cluster in terms of molecular pathways and the types
of evidences associated with each cluster.

Topological community identification was performed using methods based
on different rationales such as modularity /energy function optimization,
edge removal, label propagation, leading eigenvector and random walks.
Modularity was quantified using Newman definition [169], with functions
implemented in igraph R package [170]. Several community detection strate-
gies were explored and the highest modularity was found with a partition
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Figure 4.7: Interactors of some genes belonging to the INT-MODULE.

Only the interactors that are member of the INT-MODULE are shown, while other
interactors are not reported. See main text.

of 12 clusters (Figure 4.8, Figure 4.9).

Pathway analysis was carried out using gene-pathway associations from
Biosystems [171] and MSigDB Canonical Pathways [172]. Each pathway
was assessed for over-representation of genes from each cluster using the
hypergeometric test (R functions “phyper” and “dhyper”). Nominal p val-
ues were corrected for multiple testing using Bonferroni-Hochberg method
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Symbol Description #Im | G | E | T | SFARI score | Other modules

BAIAP2 BAIl-associated protein 2 4 R 0 |5 [145,168]

CACNA1B calcium voltage-gated 7 o l*|o |4 (145, 168]
channel subunit alphalB o

CREBBP CREB binding protein 43 0|0 ** 15 [144,145,147)

HOXB1 homeobox Bl 12 o[ * | * |5 [144]

INPP1 inositol polyphosphate-1 1 o | %o 4 [144,145]

-phosphatase
ITPRI inositol 1,4,5-trisphosphate 1 x | x | g |4 [145,168]

receptor type 1

potassium large conductance
KCNMA1 calcium-activated channel, 1 0 | * |0 |4 [147]
subfamily M, alpha member 1

RASSF5 Ras association domain 0 0 | x| owx

family member 5

RNA binding

RBMSA motif protein 8A

10 0 | ** | * 5 -

SH3KBP1 SH?}—Qomam k14nase 12 %
binding protein 1

Table 4.4: INT-MODULE genes SFARI. G: genomics; E: epigenomics; T: tran-
scriptomics. *MAJOR; *MINOR. Im: number of interactors within the INT-MODULE; SFARI
score: “minimal evidence” (4), “hypothesized but untested” (5). Other modules: reference of

gene-networks studies that also associated the gene to ASDs

(R function “p.adjust”), obtaining ¢ values.

The enrichment of each cluster in terms of a type A of evidence (e.g. ge-
nomics) was quantified as the ratio between the fraction of genes supported
by A in the cluster and the fraction of genes supported by A in the INT-
MODULE.

Therefore, the largest connected component of the network was parti-
tioned in 12 subgroups or topological sub-modules (Figure 4.9).

The two largest clusters are composed of 61 (cluster #8) and 53 (cluster
#3) genes, and are characterised by a similar proportion of supporting evi-
dences (Figure 4.9 B). These two central clusters contain genes that are part
of the same pathways, such as Wnt signalling pathway (#8: ¢ = 1.83-1072;
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Figure 4.8: Modularity of different partitions of the INT-MODULE.
Modularity and number of clusters obtained partitioning the INT-MODULE by
means of 8 community detection algorithms.

#3: ¢ = 1.79-107°) and IL-7 Signal Transduction (#8: ¢ = 4.54-1072; #3:
q = 6.02-107%), but are also marked by specific pathways. In particular,
among the pathways specifically enriched in cluster #8 and #3, Chromatin
organization (¢ = 1.27 - 10727) and Signaling by VEGF (¢ = 5.41 - 10723)
were found respectively. Cluster #7 (41 genes) is the most enriched in
differentially expressed genes and significantly associated with pathways
involved in cell cycle processes. Cluster #5 is mainly enriched in genes asso-
ciated with epigenetic and transcriptional changes, and marked by mRNA
splicing (¢ = 1.92 - 10712). Cluster #6 is particularly enriched in genes
with epigenetic changes and associated with Extracellular matrix organi-
zation (¢ = 6.10 - 107%). Cluster #2 (9 genes) is supported at genomics
and epigenomics levels and enriched in genes of Calcium signalling path-
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Figure 4.9: Functional characterization of the INT-MODULE. (A) Topo-
logical clusters; #1-12: Clusters of the largest connected component; #13,14: Two
clusters of three and two genes, respectively; #15: The remaining four genes. (B)
Enrichment (vertical axis) of each cluster in terms of genes supported by genomics
(G), epigenomics (E), and transcriptomics (T): A value of 1 indicates the same
proportion within the cluster and in the whole INT-MODULE.

way (¢ = 4.88-10712). Lastly, clusters #11 and #4 are composed of genes
associated with ASDs mainly at genetic level, which, respectively, control
GABAergic synapse (#4: ¢ = 3.90 - 107%) and encode for Cell adhesion
molecules (#11: ¢ = 1.58 - 107°) active in the neuronal system.

This analysis suggests a different role of the sub-modules by function
and by association with one or more types of alterations. For example, clus-
ter #3, equally supported by all three types of evidence, includes genes that
belong to inflammatory mediator regulation of transient receptor potential
(TRP) channels. Inflammation and immune system dysfunctions are in co-
morbidity with ASDs, and TRP canonical channel 6 (TRPC6) is emerging
as a functional element for the control of calcium currents in immune-
committed cells and target tissues, influencing leukocytes tasks. Interest-
ingly, the TRPC6 is also involved in neuronal development and variants
in TRPC6 gene (within CORE gene) were found in patients with ASDs.
Moreover, MeCP2, a transcriptional regulator whose mutations cause Rett
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syndrome, was found abundant in TRPC6 promoter region resulting a tran-
scriptional regulator of this gene [173] TRPC6, in turn, activate neuronal
pathways including BDNF, CAMKIV, Akt and CREB, also involved in
ASDs [174].

It is possible to conclude that the integrative analysis of the large num-
ber of genes reported by the studies on ASDs allowed the prioritization of
a series of genes interconnected by functional relations and associated with
one or more types of molecular alteration, which might unearth common
targets that are amenable to therapy [127].
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Chapter

Integrative analysis of
somatic mutations in breast
cancer initiating cells.

Cancer is a heterogeneous and complex disease, characterized by ge-
netic and phenotypic differences within each individual tumor (intratumor
heterogeneity) and among patients (intertumor heterogeneity). Recently,
network-based analyses have been successfully applied in cancer research,
allowing to highlight conserved patterns (gene networks and pathways)
among the heterogeneous molecular alterations that play an essential role
in tumorigenesis and tumor progression. This chapter presents an integra-
tive network-based analysis, based on mND algorithm, of mutation profiles
observed in breast cancer initiating cells derived from the primary tumors
of 11 subjects, which led to the identification of gene networks enriched in
mutations, containing potentially valuable targets for breast cancer treat-
ment.!

!Some contents of this chapter are part of a manuscript in preparation by the fol-
lowing authors (in alphabetical order): V. Angeloni, V. Appierto, M.G. Daidone, C. De
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5.1 Network-based analysis to explain the genetic
heterogeneity of breast cancer initiating cells.

Understanding the complexity of cancer is an ongoing challenge due to
the genetic heterogeneity both between and within tumours that could have
a negative impact on the response to anticancer therapies and the clinical
outcomes [175-177]. Moreover, there is emerging evidence that an addi-
tional source of heterogeneity comes from a small population of tumor cells
displaying self-renewal and tumor initiation power, also known as tumor-
initiating cells, that played a key role in the tumorigenic, growth and spread
of the tumor [176-183]. Efforts are required to identify cancer-relevant
genes and related pathways from somatic mutation profiles that are excep-
tionally sparse [184]. Indeed, analysis of data generated from The Cancer
Genome Atlas [99] and the International Cancer Genome Consortium [185]
have shown that only a few well-studied driver genes are frequently mu-
tated among subjects (f > 10%), in contrast to a “long-tail” of many genes
mutated that are found mutated at low frequency (f < 5%) [44,186].

In this context, the INTEROMICS BCIC-IMA project planned an inte-
grative mutational analysis of patient-derived breast cancer initiating cells
(BCICs) to disentangle tumor genetic complexity and identify actionable
targets for precision medicine. In particular, primary tumors (PTs), PTs-
derived BCICs and control samples (blood) from 11 subjects underwent
whole-exome sequencing (WES) (Figure 5.1 A).

Considering all these aspects, mND algorithm was applied to identify
the networks and pathways enriched in mutations in BCIC. Firstly, WES
data were processed with a specific in-house bioinformatics pipeline based
on multiple mutation callers (Figure 5.1 B). Subsequently, all mutation sites
obtained by five variant callers were integrated and analyzed by “isma”, an
R package developed by us [23] within this research activity. Lastly, mu-
tation profiles observed in BCICs were integrated using mND algorithm

Marco, N. Di Nanni, L. Milanesi, E. Mosca; “Integrative mutational analysis of patient-
derived breast cancer initiating cells to disentangle tumor genetic complexity and identify
actionable targets for precision medicine.”
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as described in Chapter 3 (Figure 5.1 C). The integrative analysis iden-
tified gene networks significantly enriched in BCICs genes and significant
pathways (Figure 5.1 D) that could be targeted by drugs (Figure 5.1 E).
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Figure 5.1: Overview of integrative analysis of somatic mutations in
breast cancer initiating cells. (A) BCICs were isolated from PTs as non-
adherent mammospheres and propagated at early in vitro passages, WES was
performed; (B) WES data were processed with a specific in-house bioinformatics
pipeline; (C) mutation profiles were integrated by mND; (D) Functional charac-
terization of gene networks enriched in mutations; (E) Identification of actionable
targets.

5.2 Mutation profiles of BCICs

5.2.1 Whole exome sequencing

Primary BC tumors were collected from BC consented patients that
underwent surgical resection at Fondazione IRCCS Istituto Nazionale dei
Tumori 2. In particular, fresh frozen primary breast tumors character-

2All patients participating in the study signed an informed consent according to the
Declaration of Helsinki. The study was approved by the Ethical Review Board of Fon-
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ized with respect to the intrinsic molecular subtypes with corresponding
aliquots of non-tumoral specimens (e.g., buffy coats) were collected from
11 patients (Figure 5.1 A). BCICs were isolated from primary tumors as
non-adherent mammospheres and propagated at early in vitro passages
(from p3 to pl0). WES was performed by the DNA sequencing services
of Fasteris (Swiss) and Genomix4Life s.r.] (Salerno, Italy), using the Illu-
mina technology and Agilent SureSelect XT kit on paired BCICs, PTs and
normal samples (blood-derived buffy coats).

5.2.2 Sequencing data analysis and variant detection

WES data were processed with a specific in-house bioinformatics pipeline
based on multiple mutation callers (Figure 5.2), which consisted of mainly
six phases: pre-processing of raw data, alignment of paired-end reads, post-
processing analysis, variant calling, variant annotation and filtering.

In particular, sequencing files were quality controlled with FastQC, then
paired-end reads were aligned to hgl9 human genome [187] using BWA-
mem tool [188]. Alignment files require postprocessing steps (e.g. sorting
of the reads according their genomic location, marking of removing du-
plicate reads, indexing of the bam file, local realignment of reads around
candidate indels [189]) that were processed by two tools developed at the
Broad Institute: Picard [190] and GATK [191].

Since it has been shown that calling mutations using different pipelines
results in a low consensus [192-196], somatic mutation call from WES data
were detected using five bioinformatics pipelines for matched tumor-normal
samples: GATK Mutect version 1 and 2 [102], Varscan2 [104], Somatic-
Sniper [103] and Muse [101]. The considered variant callers are based on dif-
ferent models: Mutect version 1, Muse and SomaticSniper detect only single
nucleotide variations, while Mutect version 2 and Varscan2 call both single
nucleotide variations (SNPs) and insertions/deletions (INDELs). There-
fore, all mutation site obtained by the variant callers were integrated by
“isma”, an R package developed by us [25] (see Appendix B), that allows to

dazione IRCCS Istituto Nazionale dei Tumori of Milan.
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Figure 5.2: Bioinformatics pipeline The pipeline involving mainly six steps:
pre-processing of raw data, alignment, post-processing, variant discovery, annota-
tion and filtering of variants.

integrate and analyze the information obtained by multiple variant callers.
After integration, mutation sites were annotated by the Variant Ensembl
Predictor tool [197], which besides the gene annotation provides the conse-
quence of variants on the protein sequence.

Lastly, we applied filtering strategies to reduce the number of mutation
sites likely to be false positives. In particular, the following criteria was
applied:

e minimum number of reads supporting variant call in PTs/BCICs sam-
ples: 10;
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e minimum number of reads supporting variant call in normal samples:

10;

e minimum number of reads supporting alternative allele in PTs/BCICs
samples: 3;

e variant allele frequency in normal samples less than 0.01;

e the 12 most severe consequences as estimated by Ensembl [198] (Fig-
ure 5.3, red boxes), that is those with “HIGH” and “MODERATE”
impact (with the exception of “regulatory_region_ablation” , classified
as “MODERATE” but ranked 30-th [198] out of 35 in decreasing order
of severity).
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Figure 5.3: Ensembl Variation - Variant consequences The diagram shows
the location of each display term relative to the transcript structure [198]. The
red boxes indicate the selected consequences type calls as filtering criteria.
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5.3 Integration of somatic mutations detected by
multiple variant callers with “isma”

Since recent studies have recommended to analyze the same Next Gener-
ation Sequencing data using multiple callers, the lists of mutations encoded
in Variant Call Format (VCF) [199] generated by five variant callers (Mutect
version 1 and 2 [102], Varscan2 [104], Muse [101] and SomaticSniper [103])
were integrated by the isma R package [25].

To integrate VCF files, the configuration file (Appendiz B, paragraph
B.2) was generated with the following fields:

e the file name and path of files;
e mutation caller identifier (muse, mutect1, mutect2, somsnip, varscan2);

e subject identifier from which both normal and tumor samples derive
from (e.g. 1_PT, 1. BCIC);

e a variable that defines groups of samples (BCIC, PT);

e tumor sample name reported in the VCF file (e.g. “TUMOR”, ID of
tumor sample),

e normal sample name reported in the VCF file (e.g. “NORMAL”, ID
of normal sample).

The function “pre_process” read the input VCF files reported in the
configuration file and generated a single list of mutations sites, in which
variants were merged from different callers, experimental evidences from
different VCF files were harmonized, unique site identifiers were generated
and some new fields were added (e.g. the total number of reads supporting
a site in each sample, variant allele frequency, INDEL size and mutation
type). The isma package was also used to quantify the consensus among
variant callers, investigate the possible presence of outliers and common
patterns, integrate information of sites and genes already catalogued by
TCGA studies. In particular, the function site_analysis was used to obtain
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the statistics at sites level, like the overlap among subjects and callers,
the detection of outlier subjects and tools, the number of sites detected by
each tool and the occurrence of mutation sites across callers and subject,
calculating a consensus measure among callers in each subject.

The overall consensus plot (Figure 5.4 A) reported that mutect2 found
the highest number of sites, the 70% of which was not reported by other
callers; furthermore, the site co-occurrence matrices (Figure 5.4 B) under-
lined how mutect2 detected up to 4 times more mutation sites than other
tools, while somatic sniper shared the majority of its calls with other tools.
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Figure 5.4: Consensus among somatic mutation callers. (A) Overall con-
sensus among pipelines; (B) Site co-occurrence plot: site co-occurrence among
mutation callers (below diagonal) and corresponding similarity between callers
(Jaccard index, above diagonal).

The detailed consensus plot per subject showed the total amount of sites,
consensus on sites for each subject and subject recognized as outlier accord-
ing to site number (defined by the inter-quartile range, Tukey’s fences), im-
balance in site number across tools, imbalance in consensus among tool and
tool consensus score (Equation B.1). The plot indicated the absence of hy-
permutated subjects (Figure 5.5 A) and that the amount of mutation sites
varied from patient to patient. Several subjects displayed an imbalance of
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calls among the pipelines (Figure 5.5 B) and a few tools were recognized
as outlier in four subjects (9-BCIC, 10_BCIC, 11_BCIC, 8_PT). Further-
more, there were subjects with a relevant (e.g. 5_BCIC, 5_PT) or poor (e.g.
7_BCIC, 8_BCIC) consensus among tools (Figure 5.5 C), summarized by
CS score (5.5 D).
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Figure 5.5: Detailed consensus plot. (A) Number of mutation sites; (B)
Fraction of sites called by different pipelines; (C) Tool Consensus across subjects:
(D) Consensus score (CS). (A-D) Asterisks indicate outliers.

87



Lastly, the function gene_analysis was used to perform analysis at gene
level, providing information like gene mutation frequency across subjects
and its dispersion estimated considering multiple callers. Gene co-occurence
among subjects underlined similarity between mutation profiles (Figure 5.6
A), for example 6_PT shares more mutated genes with 2_PT subject than
7_PT; the variability of such co-occurrences due to the use of different callers
is quantified as the coefficient of variation (above diagonal). The analysis of
gene mutation frequency (f, defined as the fraction of subjects with at least
one mutations) highlighted genes with a more or less variable frequency (f)
and dispersion across callers (Figure 5.6 B), for example the genes in the
red box shown a particularly higher variation of f across tools (higher than
0.20).
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Figure 5.6: Co-occurrence of mutation genes across subjects and gene
mutation frequency variability. (A) Total number of mutated genes (diago-
nal), mutation co-occurence across subjctes (below diagonal) and corresponding
coefficients of variations across pipelines (above diagonal). Asterisks indicate a
coefficients of variations greater than 1. (B) Standard deviation (stdev) of gene
mutation frequency (f) across pipelines, red box indicates genes with a variation
of f greater than 0.20.
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5.4 Networks enriched in mutation detected in

BCICs

Since BCICs plays an important role in development and progression of
breast cancer [181,182,200,201], we focused on genes whose mutations were
detected only in BCICs samples or in both in BCICs and their paired bulk
PTs with an allelic frequency in BCICs 2-fold greater than bulks (“BCICs-
ENRICHED” from here on). Therefore, to find gene modules of function-
ally related genes supported by one or more samples, we applied mND
algorithmn (Chapter 3, paragraph 3.2) to BCICs mutation profiles of the
11 subjects.

Molecular interactions were collected from the database assembled by
Ghiassian et al. [95], for a total of 13 244 genes and 138 045 links. A genes-
by-subjects input matrix Xo = [®1, 9, ...,x11] was defined, where each
element x;; was set to 1 if the gene 7 was member of “BCICs-ENRICHED”
group in the subject j or otherwise to 0. ND was applied to X using the
genome-wide interactome represented by the symmetric normalized adja-
cency matrix W (Equation 3.1) and « parameter was set to 0.7. mND
score was calculated with the parameter k set equal to 3 (see paragraph
3.5.2) and statistical significance of gene scores was assessed by empirical
p-values, calculated using 1000 permutations of the input matrix Xj.

At the top of the resulting genome-wide ranking, a series of genes with
significant scores (Figure 5.7 A) were found. In particular, we found 559
genes with 0.01 < p < 0.05 and 181 genes with p > 0.01. From a topological
point of view, mND prioritized both hubs (Figure 5.7 A, red box) and genes
with a lower number of connections (Figure 5.7 A, blue box). In addition,
genes prioritized by mND were mutated both in more than one sample and
in none of them (Figure 5.7 B).

To assess the presence of a significant gene module, the gene list was
analyzed with network resampling [42] and a dense integrative module of
189 genes (BCICs-MODULE) was identified (Figures 5.7 C-D). These genes
form a largest connected component of 180 elements, while among the re-
maining genes, six are isolated and other three form a very small module.
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Figure 5.7: Integrative analysis of BCICs mutation profiles. (A) Global
network diffusion scores (horizontal axis) and number of interactions (vertical axis)
of the top ranking genes; (B) Global network diffusion score (vertical axis) and
number of samples supported the gene (horizontal axis) of the top ranking genes;
(C) Network resampling on the genes top ranked by the BCICs mutation profiles
analysis; (D) Network of the top 189 genes (BCICs-MODULE). (A-B) Dashed
line separates the top 189 genes belonging to the BCICs-MODULE; (A-B, D)
Yellow circles: genes of BCICs-MODULE and mutated in at least one sample;
Green circles: genes not mutated.

Interestingly, BCICs-MODULE includes several genes not mutated in
any of BCICs samples, mutated in only one sample as well as genes mutated
in more than one sample (Figure 5.7, green circles).
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To functionally characterize the BCICs-MODULE, the largest connected
component was partitioned in topological clusters and an over-representation
analysiswas carried out to assess the enrichment of each cluster in terms of
molecular pathways, using the hypergeometric test, gene-pathway associ-
ations from KEGG database [105], and Bonferroni-Hochberg correction of
nominal p-values.

Topological community identification was performed using methods based
on different rationales such as modularity/energy function optimization,
edge removal, label propagation, leading eigenvector and random walks.
Modularity was quantified using Newman definition [169], with functions
implemented in igraph R package [170]. As in Chapter /, several commu-
nity detection strategies were explored and the highest modularity (Q) was
found with a partition of 10 clusters (@) = 0.5) (Table 5.1, Figure 5.8). In
particular, we found the three largest clusters composed of 43 (cluster #8),
37 (cluster #9) and 36 (cluster # 5) genes (Figure 5.8).

Algorithm Modularity | n
fastgreedy 0.463 9
labprop 0.199 5
walktrap 0.434 22
eigen 0.431 8
multilev 0.503 10
infomap 0.489 19
spinglass 0.503 13
edge_betweenness 0.434 34
louvain 0.503 10

Table 5.1: Modularity of different partitions of the BCICs-MODULE.
Modularity and number of clusters (n) obtained partitioning the BCICs-MODULE by means of
9 community detection algorithms.

We observed significant pathways (¢ < 0.01) in six of the ten clus-
ters (Table 5.2). Cluster #8 is enriched in genes that are part of the Fo-
cal adhesion pathway (¢ < 107%), whose role in maintaining mammary
cancer stem/progenitor cell population have been recently identified, play-
ing a prominent role in breast cancer initiation, progression and relapse
[202-204]. Cluster #9 (37 genes) contains member of Hippo signalling path-
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Figure 5.8: Functional characterization of the BCICs-MODULE. Topo-
logical clusters; #1-10: Clusters of the largest connected component; #11: Cluster
of three genes; #12: The remaining six genes.

way (¢ < 10™%), whose key components have been demonstrated to regulate
breast tumor growth, metastasis, and drug resistance [205-207]. Cluster #5
(36 genes) is composed of genes associated with notch signaling pathway
(¢ < 1072), which is vital to tumorigenicity of CSC and is one of the most
intensively studied putative therapeutic targets in CSC [208-211]. Inter-
estingly, genes of cluster #8 and cluster #5 are targeted by known drugs
approved for breast cancer treatment [212-214] (Table 5.2): chemotherapy
and targeted /biological therapies.
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e s Druggable
Cluster ID | #genes | Pathway ID Description q pathway
2 15 hsa03040 Spliceosome 1.49-10712 -
4 7 hsa04o70 | Dhosphatidylinositol g 59 )10 -
signaling system

5 36 hsa04330 Notch signaling 1.5-107% yes
pathway

7 5 hsa04710 Circadian rhythm 9.06-107° -

8 43 hsa04510 Focal adhesion 2.15-1077 yes

9 37 hsa04390 Hippo signaling 7.11-107° -
pathway

Table 5.2: Significant pathways in BCICs-MODULE. Pathway ID: KEGG
Identifier; Description: refers to the pathway name; ¢: adjusted p-values (Bonferroni-Hochberg
method); Druggable pathways: “yes” if the pathway contains genes that are druggable according
to the list “gene-drugs” generated by DGIdb database [215] (filters: “Anti-neoplastics” and “FDA-

approved”) and if the drugs have been approved for breast cancer treatment [212-214]; “”
otherwise.

In conclusion, the integrative analysis allowed the definition of gene
networks enriched in mutations supported by one or more samples and the
identification of meaningful pathways that could help in the development
of new potential therapeutic strategies for cancer treatment that target
specifically the BCICs component of the tumor bulk.
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Chapter

Conclusion

The availability of multiple omics data from the same biological sys-
tem allows gaining insights into molecular events associated with human
diseases, but, at the same time, it poses challenges in data analysis and in-
terpretation. Network-based methods for the analysis of multi-omics lever-
age the complex web of macromolecular interactions occurring within cells
to extract significant patterns of molecular alterations involving molecu-
lar systems. However, existing network-based approaches typically address
specific combinations of omics and are limited in terms of the number of
layers that can be jointly analysed.

The aim of this work consisted in the design and in the development of
a network-based method that enables the integration of multi-omics data.
Specifically, a new algorithm, named mND, relying on the mathematical
machinery of network diffusion, was developed. mND assesses the relevance
of a gene considering its own importance within each layer, its network
proximity of the gene and its first neighbours to other relevant genes; the
importance of a gene is represented by the combination of its mND score
and its statistical significance assessed by the dataset permutations. In
addition, the developed framework allows a layer-specific gene classification
to suggest and clarify the genes role in relation to the datasets studied.
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Beyond the novel ways of using diffusion score for gene ranking and gene
classification, the methodology proposed in this research activity introduces
an important advance in the class of multi-omics methods: mND can be
applied to any disease for which omics data and molecular network infor-
mation are available, overcoming limitations in terms of layer number and
data types. The results generated by mND can be further processed with
other existing tools, for example to characterize the top ranking genes us-
ing current annotations (e.g. pathways) or network theory (e.g. centrality
measures).

To support the choice of the proposed method, performance of mND has
been evaluated under different scenarios: considering the general problems
of locating high scoring genes in network proximity across multiple layers
and recovering known cancer genes in four cancer types. In both prob-
lems, mND reported better performances than existing methods. The first
analysis was repeated using two different interactomes and similar results
were obtained. Collectively, these results support the usefulness of mND
for global ranking of genes considering multiple evidences.

Moreover, mND was applied in three different integrative problems:
integration of 2-omics dataset collected from TCGA for breast invasive
carcinoma; integration of $-omics dataset collected in studies on ASDs; in-
tegration of a single type of omics considering a series of subjects’ molecular
profiles observed in breast cancer initiating cells.

In the first problem (2-omics), the integrative analysis with mND of
mutations and differential expression data - two types of omics with relevant
differences for data analysis in terms of distribution and sparsity - allowed
to spot meaningful pathways underlying the disease and genes that are
important in both layers or in one layer only, as well as genes with marginal
signal but relevant topological role. In principle, if this is not the case, a
simple solution could be to weight each layer in relation to the research
questions under investigation, adding an appropriate coefficient in the two
sums of Equation 3.4.

In the second problem (&-omics), the integrative analysis of genomics,
epigenomics and transcriptomics data highlighted a series of genes asso-
ciated with one or more types of molecular alteration and identified key
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molecular pathways that could provide a more comprehensive view of the
disease.

In the last problem (single type of omics), the integration of subjects’

mutation profiles led to the identification of gene networks enriched in mu-
tation and molecular pathways containing potentially valuable targets for
breast cancer treatment.
These results further stressed the utility and ability of mND in the in-
tegrative analysis of different types of molecular data. A future working
direction regards the application of mND to find active gene networks from
single-cell data.

The developed method is currently applied to analyze multi-omics data
in projects where our institution is involved: “Single-cell analysis of lympho-
cytes that infiltrate autoimmunity sites: dissecting immunological mecha-
nisms of rheumatoid arthritis” (LYRA-2015-0010) supported by Fondazione
Regionale per la Ricerca Biomedica (Regione Lombardia); “Genome, Envi-
ronment, Microbiome & Metabolome in Autism: an integrated multi-omics
systems biology approach to identify biomarkers for personalized treatment
and primary prevention of Autism Spectr” supported by European Union’s
Horizon 2020 research and innovation programme; “An integrated approach
to predict disease activity in the early phases of multiple sclerosis” sup-
ported by Fondazione Regionale per la Ricerca Biomedica (Regione Lom-
bardia) and “Integration of clinical and multi-omics multiple sclerosis data
into a predictive algorithm of disease activity to accelerate personalized
medicine” supported by Italian Ministry of Health.

At present, mND applies to an interactome with a fixed topology and
without edge directions. In future work, it would be interesting to explore
the sensitivity of mND in relation to low confidence interactions. This
analysis could be performed by evaluating the ability of the method to
prioritize disease-genes against perturbations of the network (e.g. adding
or removing interactions). Moreover, the generalization of mND pipeline
to include layers with different topologies, as well as the inclusion of edge
directions, are interesting opportunities for future developments. However,
the latter information is currently lacking for most PPIs and would imply
a significant reduction of coverage in terms of the genes studied. As all
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network-based methods, the performance of mND is bounded by the reli-
ability of current models that describe intracellular circuits. As the data
about macromolecular interactions will become more and more available
and reliable, network-based analyses will be less affected by the lack of a
reference human interactome.

In this context, the impact of tools like mND in molecular biology will
presumably increase.
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Appendix

Appendix A

A.1 Tables

ND mND Total
#P | Cores | L | Interactome #V #E [hh:mm:ss] | [hh:mm:ss] | [hh:mm:ss]

BC-T1 1000 4 2 WU 6016 128 150 0:33:39 0:06:11 0:39:50
LUSC-T1 | 1000 4 2 WU 6016 128 150 0:33:49 0:06:18 0:40:07
THCA-T1 | 1000 4 2 WU 6016 | 128 150 0:19:57 0:06:18 0:26:15
PRAD-T1 | 1000 4 2 WU 6016 128 150 0:32:53 0:05:56 0:38:49
BC-T1 1000 4 2 STRING 11 796 | 309 850 1:35:05 0:13:35 1:48:40
BC-T2 1000 4 35 WU 6016 128 150 2:27:34 1:36:31 4:04:05
LUSC-T2 | 1000 4 23 WU 6016 128 150 2:45:38 1:02:34 3:48:12
THCA-T2 | 1000 4 17 WU 6016 128 150 1:45:34 0:45:42 2:31:16
PRAD-T2 | 1000 4 27 WU 6016 128150 1:48:30 1:13:49 3:02:19

Table A.1: Runtimes Total run times are split in “ND”, the time required up to and
including network diffusion, and “mND”, the following part of the pipeline. “-T'1” refers to the

analysis of mutations and expression change, “-T2” refers to the analysis of mutation profiles of

multiple patients; #P: number of permutations; L: number of layers; #V: number of genes; #E:

number of interactions.
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A.2 Figures
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Figure A.1: Performance in ranking high scoring genes in network prox-
imity in STRING. (A) Example of a gene module with its high scoring genes (H,
black) in each of the two layers and the resulting mND score; only genes belonging
to the module and links occurring among such genes are reported. (B) Recall
values for 10 signal permutations for each of the 9 modules (P1, P2, ..., P9), using
mND score and other methods; the number between parentheses after module id is
module size. (C) Recall values, shown separately for high scoring genes and other
genes in each module. (D) Recall values normalized by the highest recall found for
each input configuration at varying number of neighbors (k). (A-D) These results
were obtained using interactome STRING.

102



A Lusc
3 g
o o |-O- NDMIN
w |72 NDPROD
-<3- netiCS
3 2 44 mo
° 2
= B
8
= 3
=
8 g
S =
- )
< o
(=]
T T T T T T T
o 50 100 150 200 250 300 300
=)
3
c THCA D PRAD
2 o |-o- nDMIN
o S 4--0- NDPROD
< |- netlCs
o _—-h— mhND
S
L=
=
(=]
S
s
=
o
- S
o <]
< -
,"’o’
g Jo-- @ g
= T T T T T T o
50 100 150 200 250 300 50 100 150 200 250 300

Figure A.2: Performance in recovering known cancer genes. Partial AUC
(pAUC) at varying number of top false positive ranking genes (n) in integration
of mutation profiles of subjects. The reference gene set was composed of both mu-
tated genes and differentially expressed genes. (A-D) These results were generated
using interactome WU.
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Figure A.4: Network resampling on breast cancer data from TCGA.
Logarithm of p-value (y-axis) calculated for each rank of a gene list (x-axis) ordered
by decreasing values of mNDp.
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Appendix

Appendix B

Recent comparative studies have brought to our attention how somatic
mutation detection from next-generation sequencing data is still an open
issue in bioinformatics, because different pipelines result in a low consen-
sus. In this context, it is suggested to integrate results from multiple calling
tools, but this operation is not trivial and the burden of merging, compar-
ing, filtering and explaining the results demands appropriate software.

We developed isma (integrative somatic mutation analysis), an R pack-
age for the integrative analysis of somatic mutations detected by multi-
ple pipelines for matched tumor-normal samples. The package provides a
series of functions to quantify the consensus, estimate the variability, un-
derline outliers, integrate evidences from publicly available mutation cat-
alogues and filter sites. In this chapter, we illustrate the capabilities of
isma analysing breast cancer somatic mutations generated by The Cancer
Genome Atlas (TCGA) using four pipelines.

!The contents of this chapter are published in: N. Di Nanni, M. Moscatelli, M.
Gnocchi, L. Milanesi, E. Mosca E. (2019) “isma: an R package for the integrative
analysis of mutations detected by multiple pipelines”. BMC Bioinformatics, 20:107.
https://doi.org/10.1186/s12859-019-2701-0. License: Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/).
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The package is available for non-commercial users at the URL:
https://www.itb.cnr.it /isma.

B.1 isma: an R package for the integrative anal-
ysis of mutations detected by multiple pipelines

The identification of somatic mutations from Next Generation sequenc-
ing (NGS) data is a challenging task. Several studies compared the sin-
gle nucleotide variations (SNVs) [192-194] and insertions/deletions (IN-
DELSs) [195,196] detected by different computational tools and underlined
relevant discrepancies. Therefore, it is recommended to analyse the same
NGS data using multiple callers, like Mutect [102], SomaticSniper [103] and
Varscan [104], which generate lists of mutations encoded in Variant Call
Format (VCF) [199]. This way of facing conflicting predictions demands
appropriate tools that harmonize different outputs and enable comparative
analyses [195]. Indeed, for instance, mutation callers encode the same in-
formation in multiple ways (Table B.1) and generate outputs with relevant
qualitative (e.g. germline/somatic/loss-of-heterozygousity, SNVs/INDELSs)
and quantitative (number of site found) differences. More generally if, in
principle, the use of multiple callers is expected to reduce false positive find-
ings, in practice, the resulting large and heterogeneous lists of mutation
sites increase the complexity of the subsequent interpretations. Existing
tools like myVCF [216], NGS-pipe [217], VariantTools [218], vcfR [219] and
VCFTools [199], implement functions and pipelines to work with VCF files,
but do not specifically address the problem of integrating and comparing
the results of different mutation callers. A few tools exist to address this
problem: Cake [220] (a bioinformatics pipeline implemented in perl) offers
the opportunity to run multiple callers and apply customizable filtering
steps to obtain a final unique list of single nucleotide variations (SNVs);
BAYSIC [221] (implemented in perl) provides a bayesian method for com-
bining SNVs from different variant calling programs. Here, we describe
isma (integrative somatic mutation analysis), an R package that provides
functions for the joint analysis of VCF files generated by somatic mutation
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callers from NGS data (Figure B.1). Differently from existing tools, beyond
site integration and filtering, isma provides functions for a more in-depth
analysis of mutation sites occurrence across subjects and tools, considering
both SNVs and INDELs. The results generated by isma underline common
patterns (e.g. recurrent calls, tool consensus in each subject), specificities
(e.g. outlier samples, pipeline specific sites, genes enriched in calls from a
single pipeline), as well as sites already catalogued by other studies (e.g.
The Cancer Genome Atlas (TCGA) [99]), so as to design and apply filtering
strategies to screen more reliable sites.

Mutect
vin2

Varscan
v2

Somatic
Sniper

B,

Strelka | v/

i /
isma

« Unified mutation list

« Consensus analysis

« Variability analysis

* Outlier detection

« Co-occurrence analysis
« Site annotation

« Site filtering

* Integration of TCGA data

Figure B.1: Overview of isma. Integrative analysis of somatic mutations
detected by multiple pipelines.
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. . . . . Allelic depth
Variant type | Mutation inheritance Model Implementation Fiolds Values
Mutect [102] SNV Somatic Bayesian Java AD 2 comma
separated numbers
Mutect (v2) [102] | SNV, INDELs Somatic Bayesian Java AD 2 comma
separated numbers
S . . Bayesian . 2 comma
Muse [101] SNV Somatic Markov C/C++ AD separated numbers
Germline, 4 comma
SomaticSniper [103] SNV somatic, Bayesian C BCOUNT . §
LOH separated numbers
Strelka [222] SNV, INDELs Somatic Bayesian Perl AU:CU:GU:TU 4 comma
N separated numbers
Germline, Fisher’s exact
Varscan (v2) [104] SNV, INDELs somatic, S Java AD and RD 2 numbers
LOH statistics

Table B.1: Pipelines for somatic mutation call from matched tumor-
normal samples. (*) The way in which the allelic depth (number of reads supporting an

allele) is encoded in VCF files is reported as an example of heterogeneity among pipeline outputs.
B.2 Implementation

The software isma is implemented in R. The package takes in input
mutation sites encoded in VCF files or tab-delimited text files. isma extracts
mutation site information from the output of multiple mutation callers by
means of specific parsers and integrates sites into a unique data structure:

mut_sites <- pre_process (‘‘config.txt’’)

Most of the analyses can be easily carried out through a few wrapper
functions, like “site_analysis” and “gene_analysis” for site- and gene-level
analyses respectively. Nevertheless, many routines are available as part of
the user interface to carry out custom analyses (Table B.2).

Gene-level analyses require mutation site annotation, for which isma
relies on the R package VariantAnnotation [110] or, alternatively, on user-
provided files. Computationally demanding analyses (e.g. the comparison
among all-pairs of hundreds of subjects) are implemented in parallel, using
the support provided by the R package parallel.

The package isma contains a tutorial available as R vignettes:

vignette(‘isma’)
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Function name Description

pre_process Read and integrate input files; generate unique identifiers

Perform site-level analyses, calling get_sites_statistics,

site_analysis .
site-analysis overlap_Tools, overlap_Subjects

Perform gene-level analyses, calling get_sites_statistics,

Cne_ane 1 JiQ N )
gene-analysis overlap_Tools, overlap_Subjects, gene_mutation

site_annotation Perform site annotation
integrete_TCGA Integrate mutation evidence from TCGA
consensus_Tools Calculate the consensus among tools
get_sites_statistics® Calculate the co-occurrence of mutation sites/genes across callers and subjects
overlap_Subjects* Calculate subject-by-subject site/gene co-occurrence matrix
overlap_Tools* Calculate tool-by-tool site/gene co-occurrence matrix

Calculate the variation of site/genes

Y : 11 ik
ese-allsubj amount and show the results for each tool

Calculates the variation of site/genes amount,
ese_tool_subj* considering separately
each tool and returns the results for each subject

Calculates the variation of site amount, considering separately

ese-subj-tool each subject and returns the results for each caller

calculate_dist_to_exon Calculate the site distance from the nearest exons

Calculate the gene-by-subject mutation matrix

gene_mutation .
© and the gene mutation frequency vectors

filtering_sites Filter sites

Table B.2: isma user interface. The asterisk (*) indicates functions that work both

at site- and gene-level.

B.3 Results

In this section, isma will be described considering breast cancer (BC)
mutations from TCGA, collected using the function “get_TCGA _sites”. In
particular, we considered mutation profiles of 975 subjects detected by four
variant callers: Mutect2, Varscan2, Muse and SomaticSniper.

mut_sites <- get_TCGA_sites (tools = c(‘muse’,"
mutect2’,‘varscanQ’,‘somaticsniper’), n_subjects
= 975)
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Note that these sites were already filtered by TCGA and are therefore
less noisy than the corresponding initial variant caller outputs that would
constitute the input of isma in a typical use scenario. Nevertheless, the
exploratory analyses made possible by isma underlined interesting patterns
even among such filtered calls from TCGA. The analyses presented below
can be easily run by means of “site_analysis and “gene_analysis” wrapper
functions and include quantification of site/gene occurrence across callers
and subject, consensus among tools, detection of outlier subjects and tools,
variation of detected sites at different cut-offs on alignment results (e.g.
read depth) and integration of information from TCGA.

B.3.1 Site occurrence across callers and subjects

The co-occurrence of sites across tools and subjects is quantified by
“get_sites_statistics”. This operation allows the user to quantify the fraction
of tool-specific calls, the distribution of the sites across tools in each subject
and tool consensus on sites. These results are used to detect and mark
outlier features (subjects and tools), defined by the inter-quartile range
(Tukey’s fences) (Table B.3). The amount of shared sites between each
pair of callers and subjects is calculated and organized, respectively, in
callers-by-callers and subjects-by-subjects site co-occurrence matrices by
the functions “overlap_Tools” and “overlap_Subjects”. Site co-occurrence
matrices are used to summarize consensus and dispersion. Caller consensus
relative to a subject is quantified by means of the consensus score (CS),
defined as the sum of ratios between the amount of co-occurring sites (off-
diagonal elements of the tools-by-tools site co-occurrence matrix) and tool-
specific calls (diagonal elements) normalized by the total number of possible
tool pairs:

1
>of (M D ki ﬂfu)

P(n,2)

CS = (B.1)

where n is the number of tools, z; ; are the sites shared between tools i
and j, and P(n,2) is the number of permutations of tools in pairs.
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Subjects | Hypermutated Imbala.nce in the number | Imbalance in consensus | Tool consensus
of sites across tools among tools scores(CS)
A0JC NO YES YES YES
A1G6 NO YES YES YES
Al1L1 NO YES NO YES
A0UO YES YES YES YES

Table B.3: Outlier subjects report. Examples of subjects recognized as outliers
according to site number, imbalance in site number across tools, imbalance in consensus among

tools and tool consensus score.

The results of these analyses are summarized into consensus plots, co-
occurrence matrices plot and a series of text files, like the summary table
of outlier subjects. The overall consensus plot (Fig. B.2) reports the total
number of sites found by each tool and the fraction of calls shared among
tools. Note how mutect2 found the highest number of sites, the 50% of
which was not reported by other callers (Fig. B.2). The consensus plot per
subject shows the total number of unique sites, the fraction of sites found by
each tool, the distribution of the consensus across subjects and the CS (Fig.
B.3). Note the presence of a few hypermutated subjects (i.e. A1XQ, AOUO,
AO8H, A1J5, AINC and A25A) (Fig. B.3 A). Several subjects display an
imbalance of calls among the pipelines (Fig. B.3 B). Further, there are
subjects with a relevant (e.g. A1J5 and AOXR) or poor (e.g. AIKO and
A0JC) proportion of sites supported by more than one caller (Fig. B.3 C).
Lastly, note how CS underlines, by means of a unique score, subjects with
issues in tool consensus, including imbalances in site number or consensus
among tools (Fig. B.3 D and Table B.3).

Site co-occurrence between callers revealed that mutect2 detected up to
3 times more sites than other tools, while muse and varscan shared approx-
imately the 60% of their sites (Fig. B.4 A). The mutation co-occurrence in
each pair of subjects underlines similarities between mutation profiles; this
information is completed with an estimation of the variability (coefficient
of variation) of such co-occurrences due to the use of different callers (Fig.
B.4 B). The package provides the possibility of calculating, for every gene,
the fraction of subjects with at least one mutation, i.e. the gene mutation
frequency across subjects (f), and its dispersion across callers. The cor-
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Figure B.2: Global consensus plot. Overall consensus among pipelines; results
obtained on BC mutations detected by TCGA in 975 subjects.

responding plot, obtained on BC TCGA sites, underlined the presence of
some genes, including known BC genes as GATA3 and CDH1, with a par-
ticularly higher variation of f (Fig. B.4 C): indeed, mutect2 and varscan2
detected much more sites than other callers in GATA3 and CDH1 (Fig. B.4
D).

B.3.2 Called sites and sequencing results

The variation of caller output at different cut-offs on site-level quantities
(e.g. minimum number of reads, allele frequency) is informative of caller
performance and samples (subjects) specificities. This analysis can be done
by the function:

esel <- ese_allsubj(mut_sites$sites,type =‘Site’)
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Figure B.3: Detailed consensus plot. (A) Number of mutation sites. (B)
Fraction of sites called by different pipelines. (C) Tool Consensus across subjects.
(D) Consensus score (CS). (A-D) Asterisks indicate outliers. Results shown only
for 50 subjects (out of 975), selected to include different types of outliers as well
as samples without abnormal behaviours.

The pipelines used to call mutations in TCGA BC data show a different

115



A

mutect2

208

.
pemse ey
IR ARSs

B

somaticsniper 1492 1615

1473

muse

Bz
SR

2
PO m
LU L]

B D

varscan2 2628 1544

»rrm

mutect2 —
muse —f

T
£ H
= Q S G OO OO S O IR
2 g R
® >
£
5
3
C o D B varscan 2
© GATA3 o B mutect2
(S 8 7 O muse
= O somaticsniper
_ o -
CDHI °
g | TP53 s 8
: o § g
3 . g
=l — L] 1) |
s *H
o L .
S ey T 8 A
S Cody, e -
m Rl 3
" PCDHGB1 B
(=3
S o o J | |
T T T T
0.0 0.1 0.2 0.3 GATA3  CDH1 TP53  PCDHGB1

Gene Mutation Frequency

Figure B.4: Site co-occurrence plots and gene mutation frequency vari-
ability. (A) Total number of sites (diagonal), site co-occurrence among mutation
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dex, above diagonal). (B) Total number of mutated genes (diagonal), mutation
co-occurrence across subjects (below diagonal) and corresponding coefficients of
variations (CVs) across pipelines (above diagonal). Asterisks indicate CVs greater
than 1; grey colour indicates no mutation co-occurrence between two subjects.
(C) Standard deviation of gene mutation frequency across pipelines; red: genes
associated with BC [110-112]. (D) Number of subjects with mutations detected
by each tool. (A-B) Results obtained on BC mutations from 50 subjects; (C-D)
Results obtained on all 975 subjects.

behaviour, especially at low tumor variant allele frequency (VAF). In fact,
in this range, mutect2 calls more sites than other tools, SomaticSniper
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Figure B.5: Number of called sites at various filtering criteria. Number of
mutation sites at varying tumor VAF for (A) the whole dataset (975 subjects) and
(B) in single subjects. (C) Number of sites at varying number of reads supporting
the alternative allele in four subjects. (A-C) Results obtained on BC mutations
detected by TCGA.

detects almost half of mutect2 sites, while muse and varscan2 show similar
trend and are halfway between mutect2 and SomaticSniper (Fig. B.5 A).
This global pattern is particularly relevant in some subjects (Fig. B.5 B-C).
B.3.3 Collecting data from the TCGA

The function “integrate_TCGA” uses the R package TCGAbiolinks [100]
to collected data from the TCGA. These data are used to support the
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mutation sites under analysis with the possible evidence of availability of
the same sites among those already catalogued at TCGA, which would be
an additional evidence of site reliability.

B.3 Conclusion

The R package isma provides functions for the integrative analysis of
mutation sites detected by multiple pipelines. It quantifies the consen-
sus between somatic mutation call pipelines, estimates pipeline variability
and biological variability, and underlines outlier features (subject/tools)
that may require further investigation. Indeed, an outlier subject may re-
flect a biological phenomenon (e.g. due to tumor genetic heterogeneity)
and/or an experimental problem (e.g. poor biological sample, sequencing
performance). The application of isma on BC mutations from TCGA un-
derlined relevant variations among pipelines across subjects, with extreme
cases characterized by a very poor consensus. Relevant imbalances among
pipelines were also spotted at gene level, which implies a significant variabil-
ity in the estimation of gene mutation frequency according to the pipeline
used. In general, mutect2 reported a higher number of sites at low VAF in
comparison to other callers.

In conclusion, the knowledge emerging from the analyses made possible
by isma is useful to screen more reliable mutation sites, carry out com-
parative analysis among pipelines and, lastly, may suggest novel biological
insights.
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