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Introduction

The discovery of the quantum nature of light, through the explanations of
black body radiation and the photoelectric effect [1] by Planck and Einstein,
have brought enormous progress in the understanding of the quantum me-
chanical properties of the universe, and it helped to shape the theory of
Quantum Mechanics itself.

The theoretical description of light in the framework of the Second Quan-
tization [2] and advances in the generation, manipulation and measurement
of quantum light has improved to the point that more and more technologi-
cal application are emerging that exploit the quantum properties of electro-
magnetic radiation, promising better performances compared to applications
where classical light is employed.

Two of the most successful areas in this regard are Quantum Metrology [3]
and Quantum Communication [4]. The former is the study of measurements
with the eyes of Quantum Mechanics; exploiting the quantum properties
of the system under observation and of the probe (which can be electro-
magnetic radiation) can produce more information per measurement than
possible with classical resources. The latter is the study of the transmission
of quantum information, codified with the qubit; photons are particularly
well suited in this respect, not only because they travel at the speed of light,
but most importantly because their weak interaction with the environment
and among themselves preserves the delicate quantum information that they
carry along the propagation.

Recently, quantum photonic devices are moving towards the integrated
platform. If this approach will prove successful, the advantage compared
to bulk platforms would reside in the larger production volumes and lower
costs that an industrial platform grants, and to the possibility of integrating
photonic and electronic circuits on the same device.

Challenges remain to be solved, however, before large scale quantum pho-

XV



xvi INTRODUCTION

tonic applications become viable. For instance, current fabrication technolo-
gies do not allow the realization of effectively indistinguishable single-photon
sources, a key requirement for obtaining quantum interference phenomena,
without which the advantage compared to classical platforms is lost. Another
challenge, specifically related to sources of photon pairs based on microring
resonators, is the extraction of the pairs from the strong pump beam used to
generate them. Much of the work described in this thesis has been dedicated
to integrated quantum photonic applications, operating in the near infrared
telecom frequency range, where some of these problems have been addressed.

Nonetheless, bulk optical experiments remain fundamental tools for the
study of the properties of light itself because of the ease of manipulation of
light at more macroscopic scales. Fundamental experimental demonstrations
have been performed with quantum states of light, such as the violation of
local realism [5] and teleportation [6]. The last part of the thesis indeed
regards a fundamental physics experiment where a bulk optical source of
photon pairs has been employed.

Outline

Chapter 1 gives an overview on the basic theoretical concepts of Quantum
Information Theory and illustrates the state of the art of quantum tech-
nologies related to the experimental work described in later chapters. In
particular, common bulk and integrated photonic platforms used for quan-
tum applications are described, with a focus on the generation of quantum
states of light.

Chapter 2 illustrates in more detail the theoretical concepts at the basis
of the experiments described in the following chapters.

Chapter 3 describes how a source of photon pairs is realized by closing on
itself a Silicon microresonator inside an optical fiber loop cavity containing
an amplifier. As detailed in the Chapter, this so-called self-pumping config-
uration, removes the need for an external tunable laser pump, and it was the
first time that entangled pairs of photons were produced from a self-pumped
microresonator. The Chapter describes the setup and the characterization
measurements of the microresonator, of the cavity and of the nonlinear op-
tical processes occurring inside the resonator.

Chapter 4 describes two works performed by the Author in collaboration
with Alberto Politi and his group at the University of Southampton, and it is
based on two different periodic dielectric structures. In order to simplify the



xvii

fabrication process of Silicon Carbide photonic structures, subwavelength
periodic geometries have been exploited to design and realize a complete
photonic platform. The first part of the Chapter describes the design process
of the platform and illustrates the results of the characterization of the first
fabricated devices.

The second part of the Chapter illustrates a novel design of a waveguide
Bragg filter which is to be used to suppress the strong pump field below the
level of generated photon pairs in microring resonators. The design process
for a Silicon Nitride filter is illustrated, and then a comparison between the
theoretical predictions and the experimental characterization of the first test
sample is performed.

Chapter 5 describes a bulk optical experiment that was used to test a
fundamental property of Quantum Mechanics, the collapse of the wavefunc-
tion.

Finally, the conclusions are given in Chapter 6.

Contributions

The contribution of the Author to the works described in this thesis is as
follows.

In Chapter 2, the Author employed the formalism of time and frequency-
dependent ladder operator to theoretically describe the Franson experiment.

Regarding the work on microresonators described in Chapter 3, the Au-
thor designed and built the self-pumped cavity, he realized the experimental
setup apart from the Franson interferometer, he performed all the measure-
ments shown on this thesis and performed modeling and data analysis.

For both the Silicon Nitride and Silicon Carbide projects, described in
Chapter 4, the Author performed the theoretical analysis and numerical sim-
ulation of the structures, he produced the samples’ design and he performed
characterization measurements and data analysis.

Regarding the work on the photon wavefunction’s collapse, described in
Chapter 5, the Author built the parametric source of photon pairs, he realized
the setup of the experiment, and he performed data acquisition and analysis
with contributions by A. Zambianchi and M. Previde Massara.
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Chapter 1

Context: light in quantum
technologies

This chapter illustrates the background on which the work of the Author
is building upon. In this chapter we first give, in Section 1.1, a brief de-
scription of qubits, quantum operations and entanglement. Then, in Section
1.2 we describe various ways in which qubits can be encoded on photonic
states. Section 1.3 describes the technological applications of photons in
quantum technologies: we first give brief overviews of the fields of Quantum
Communication, Quantum Computation and Metrology, followed by an in-
troduction on common integrated platform for photonics and on integrated
devices that are commonly used, such as the waveguide, the microring res-
onator, couplers and photonic crystals; the theoretical description of some
of these components is found in Chapter 2. Finally, Section 1.4 gives a more
detailed overview on integrated applications of quantum photonics focusing
on the generation of quantum states of light.

1.1 The Qubit

While the fundamental unit of classical information is the bit, the fundamen-
tal unit of quantum information is the qubit [7]. At variance with its classical
counterpart, that can only assume values 0 or 1, the qubit is described by
the wavefunction of a two-level quantum system that can be represented by
the following expression

) = a |0) + 8]1) (LL1)

1



2 CHAPTER 1. CONTEXT: LIGHT IN QUANTUM TECHNOLOGIES

Figure 1.1: Any one-qubit state can be represented in polar coordinates on
the surface of the Bloch sphere.

where o and 8 are complex numbers such that |a|? + |3|?> = 1 (normaliza-
tion) and where |0) and |1) are two orthonormal quantum states, in Dirac
notation, that, in the context of quantum information theory, are usually
called the computational basis. The qubit therefore can assume any of an
infinite continuum of states, determined by the complex coefficients « and
and it can be equivalently represented by the complex vector

- (1) = (2) 52 "

Mathematically, all the possible qubits |¢) live in a Hilbert space H
spanned by the computational basis, and restricted by the normalization
requirement. A visual representation of the qubit is the Bloch sphere (Figure
1.1): without loss of generality, we can assume that « is real, since any global
phase is irrelevant in Quantum Mechanics, and we can rewrite the qubit state
as

) = cos(0/2) ]0) + e sin(h/2) [1) (1.1.3)

where 0 and ¢ are angles varying between 0 and 7 and 0 and 27, respectively.
If # and ¢ are taken as polar coordinates, the qubit can be represented as
in Figure 1.1. The basis states |0) and |1) are the poles of the Bloch sphere,
and the state (1.1.3) lives on the surface of such sphere.
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1.1.1 Multipartite states and entanglement

States of multiple qubits can also be defined. By extending the definition
(1.1.1), a two-qubit state will be represented by a superposition between
extended basis states that are given by the tensor product of the basis states
of the individual qubits:

) = =al0,0), 5+ 810, )4 +7[L,0) 45+, 1), 5=

2 ® R

(1.1.4)

+ 8

o O o=
o O = O
— o O O

where |a|? + |B|% + |y|2 + |6]? = 1 is the normalization requirement. If H 4
and Hp are the Hilbert spaces of qubits 1 and 2, the global state will live in
a higher-dimensional Hilbert state

W) € Ha®Hp (1.1.5)

and indexes A and B in equation (1.1.4) indicate in which Hilbert state
the qubit lives. In this case it is not straightforward to give a clear visual
representation analogous to the Bloch sphere.

Take the following state:
_ ! 1 L 1
= ﬁﬂou + | >A)ﬁ(|O>B + 1))

%)
(1.1.6)

1
= 5(’070>A,B +10,1) 45+ 11045 +[1,1)45)

This state is called factorized or separable because it is given by the tensor
product of independent states, which live in different Hilbert spaces. Mea-
suring the state of the first qubit does not reveal information on the other
qubit.

Take, instead, the following state:

) = \}§<|o,o>A,B 1)) (1.1.7)
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This state cannot be obtained as a tensor product of states living in indepen-
dent Hilbert spaces. Upon measurement, if the first qubit is found having
eigenvalue 0 (1), the global wavefunction of the qubit will reduce to 0,0) 4
(11,1) 4 p), meaning that a subsequent measurement of the second qubit on
the same basis will produce the same outcome 0 (1). This state is called
entangled, since measurements on different particles are correlated, implying
that the global state cannot be described in terms of the states of individual
particles alone.

1.1.2 Purity of the quantum state

By using the formalism of the density operator, which will not be illustrated
in a detail manner here, it is possible to distinguish between pure states and
mized states (or miztures).

A state is called pure when we have perfect knowledge of it. In terms of
the density operator, it can be represented with

p =YX (pure state) (1.1.8)

where [¢) is any normalized quantum state.

A mixture, instead, is a state of which we have imperfect knowledge, in
the sense that we may know only that a state is found with probability p,
on one of a series of states |1,). We describe this state with the following
expression

p= an |tn)(1n|  (mixed state) (1.1.9)

and a mixed state cannot be put in the form (1.1.8). In general, there
exist intermediate states between the ideal pure state and the mixture, as
measured by the purity. The purity P of a state is determined by the trace
of the squared density operator

P=Te{p*} =3 (ul P [n) (1.1.10)

where the [1,) states are any orthonormal basis of the complete Hilbert
space, and where P varies between 1 and 1/d for a perfectly pure state and
for a perfect mixture, respectively, where d is the dimension of the Hilbert
space.
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The marginal state of qubit A, which represents the knowledge that we
have on it when we ignore all information on qubit B, is defined in terms of
partial traces of the global density operator:

pa=Trp{p} =D pWnlpltn)g (1.1.11)

Even if the global state is pure, the marginal state may be a mixture, as seen
in the examples below.

Examples

The density matrix associated to the entangled state of eq. (1.1.7) is
1
p = 510,050, 0] + 0, 0X1, 1| + |1, 1)0, 0] + |0, 00, 0]) (1.1.12)

where we dropped the indexes for simplicity of notation. This is not a mixed
state because of the presence of the non-diagonal elements [0,0)1,1| and
|1,1)0,0|, and in fact the purity P of this state is 1. If we take the partial
trace of this expression, we get the marginal density operator associated to
the first particle:

pa=Trp(p) = Y plnlpln)p = %(IOXOI + 1)) (1.1.13)
n=0,1

which is a mizture, so that we either find the qubit in the eigenstate 0
or 1 with 50% probability. This state is qualitatively different from the
superposition of a qubit (1.1.1), because the two parts of the partial density
operator cannot interfere with each other, at variance with two parts of the
pure state (1.1.1). In practice, as information was shared between the two
qubits, ignoring qubit B results in imperfect knowledge on the qubit A.

The partial trace of the density operator associated to the separable state
(1.1.6) corresponds, instead, to a pure state:

pa = I0N0] +10)1] + [1X0] + [1X1]) = 500} + [1)(O] + 1) (1.1.14)

underlining the fact that the two qubits are independent and that information
is not shared between the two qubits.

These concepts are particularly important for the realization of heralded
sources of single photons; as it will be illustrated in detail in Section 2.5, the
complete separability of the generated photon pair state is fundamental.



6 CHAPTER 1. CONTEXT: LIGHT IN QUANTUM TECHNOLOGIES

1.1.3 Quantum logic gates

As classical computations on bits are performed by logic gates, the quan-
tum logic gates are their counterparts that act on qubits [8]. We define as
stngle-qubit quantum gate any unitary operation that performs a rotation of
the qubit on the Bloch sphere. Two examples of single-qubit gates are the
Hadamard gate H, that rotates a basis state to the equator of the Bloch
sphere, and the phase gate P, that applies a phase to the second component
of the qubit (and that corresponds to a rotation around the poles’ axis):

H:\}iG _11> P:(é eﬁ;) (1.1.15)

We can also define quantum gates that operate on multiple qubits (and we
will have two-qubit gates, three-qubit gates, and so on). These gates are neces-
sary to make qubits interact with one another. For instance, the most known
two-qubit gate is the Controlled-NOT (CNOT) gate, the quantum counter-
part of the XOR gate: it operates by performing a state-flip on the second
qubit, called target (t), conditioned on the state of the first qubit, called
control (c), and by using the formalism of eq. (1.1.4) it can be described by
the following matrix

1000
0100

CNOT=|, o o 1 (1.1.16)
0010

The CNOT gate is particularly significant as it is an entangling gate, be-
cause it can produce entanglement between qubits starting from single-qubit
superpositions: if the control qubit is in a superposition state, the resulting
state will be entangled.

1 1
CNOT 5 (10)c + 1)) 100 = 7

A set of universal quantum gates is the one that can bring any n-qubit state

to any other n-qubit state [9], and it always involves at least a two-qubit
gate.

(10,0)., +11,1).,) (1.1.17)

1.1.4 Quantum algorithms

A quantum algorithm is a procedures that applies a sequence of quantum
gates to a prepared input state, and that terminates with the readout of
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the qubits. The quantum algorithms are aimed at solving computational
problems, analogously to classical algorithms, but they exploit quantum su-
perposition and entanglement between qubits to perform the computation.
The importance of quantum algorithms resides in the fact that some prob-
lems can be solved by such algorithms with an advantage, sometimes expo-
nential, with respect to any known classical algorithm. In the early 1990s
the first quantum algorithms that possess such advantage were found, which
immediately sparked great interest in the quantum computation field. The
most famous algorithms are the Deutsch-Jozsa’s [10], the Shor’s [11] and the
Grover’s algorithms [12].

The Deutsch-Jozsa’s algorithm, discovered in 1992, can determine whether
a function is balanced or constant. More precisely, the function produces ei-
ther output 0 or 1 out of a string of N input bits and we are promised that
either all the outputs are equal (constant function) or that they are equally
divided into Os and 1s (balanced function). The function is actually a quan-
tum computer, in the sense that the input and output are strings of qubits
and that a superposition in the input state will produce a superposition in
the output state. It is a deterministic algorithm, in the sense that it always
gives the correct answer at the first execution. Although it is of little use,
the Deutsch-Jozsa algorithm has an exponential advantage compared to any
other classical algorithm that solves the same problem, because it can exploit
quantum superposition to probe all the outcomes at once.

The Deutsch-Jozsa’s algorithm inspired the Shor’s algorithm, discovered
in 1994, which is capable of factorizing numbers with an almost exponential
advantage compared to the fastest classical algorithm known [13].

Given a black box function, the Grover’s algorithm (1996) can find the
one input that produces a given output of the function among all the possible
N inputs, quering it only O(v/N) times on average; any classical algorithm
will employ N/2 queries on average, since the only viable strategy is to
randomly try all the inputs. Hence, the Grover algorithm has a quadratic
advantage compared to classical strategies.

1.2 Photonic Qubits

In principle, qubits can be encoded on any two-level quantum system. When
the quantization of the electromagnetic fields is performed, it is found that
the fields oscillate as quantum harmonic oscillators, whose quantum is called
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photon. While the mathematical description of the quantization of light can
be found in Section 2.2, here we illustrate the most common ways in which
a qubit can be encoded into photons.

1.2.1 Polarization encoding

Polarization encoding employs two orthogonal polarization states of a photon
as the computational basis: common choices are linear horizontal /vertical
polarization states (|H), |V)) or right/left circular states (|4), |—)). The
qubit may be defined in the former case as

V) = a|H) + B|V) (1.2.1)
and in the latter case as

¥) = al+) +81]-) (1.2.2)
One can be obtained from the other, since |+) = (|H) +|V))/V2.

Polarization encoding has significant advantages compared to other plat-
forms. For instance, manipulation of qubits is very easy since any one-qubit
operation can be realized easily using half- and quarter-waveplates, and it
can be performed with high precision and little effort; polarization is also
rather insensitive to the coherence properties of the underlying field. More-
over, polarizing beam splitters allow an easy conversion between polarization
and path encoding.

Polarization encoding is rarely used in other contexts, however. For in-
stance, normal optical fibers tend to randomly rotate polarization states due
to slight birefringence asymmetries, either intrinsically present in the fiber
core or caused by the interaction with the environment, forcing the adop-
tion of feedback systems [14]. Unless frequency-distinguishable photons are
allowed [15], using polarization encoding in integrated circuits is unhandy
because the waveguides’ TE and TM modes generally have to be degener-
ate [16]; this requirement complicates the fabrication process of integrated
devices because a very precise control of the waveguide’s cross-section is
necessary.

Bulk sources of polarization entangled states that exploit Type-II Sponta-
neous Parametric Down-Conversion in nonlinear crystals [17] are often used
to perform proof of principle experiments, as in ref. [18] where entanglement
between up to 12 photons has been observed.
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1.2.2 Path encoding

Path encoding is another common choice for photons and other systems,
where the qubit is defined as a quantum superposition of a single photon
propagating along one (|1)) or another path (]2)):

) = a0) + B[1) (1.2.3)

Path encoding is commonly used in bulk experiments, where it is easily
converted to polarization encoding, as mentioned, and in integrated circuits,
where the qubit travels in pairs or arrays of waveguides [19, 20], in which
case the qubit has higher dimensionality.

One-qubit gates are easily realized. For instance, phase shifters can be
used to apply a phase on the path of a basis state, for example using electro-
optic or thermo-optic modulators in integrated devices, or delay lines in bulk
experiments. The Hadamard gate can be implemented with beam splitters
(or directional couplers in integrated devices), which can make two basis
states interact to produce quantum interference effects. A combination of
phase shifters and beam splitters can realize interferometers, with which re-
configurable circuits can be realized [21].

1.2.3 Time-bin encoding

The basis states of time-bin encoding are represented by photons travelling
in different time slots that are separated by more than the coherence time
of the photons themselves [22]. In particular, the qubit is encoded in the
relative amplitudes and phase of the split wavefunction. So, for instance,
if |E) and |L) represent the photon respectively travelling in an Early and
Late time-bin, the qubit state may be represented with

[) = a|E) + b |L) (1.2.4)

where |a|? 4+ |b|> = 1. Preparation of this state is realized by splitting a
pulse of light with an interferometer whose unbalance equals the time delay
between the bins and is larger than the coherence length of the pulses; the
split pulses are then sent to a nonlinear crystal to produce pairs of photons
by either Parametric Down-Conversion or Four-Wave Mixing. If the pulses
are not too strong, a pair of photons will be generated either by the first or
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by the second pulse (but not both), thus producing the superposition state
(1.2.4), provided that the information on which of the two pulses generated
the photons is erased.

Time-bin encoding is better suited than polarization encoding for optical
fiber applications, since it suffers much more lightly from decoherence effects
[23, 24]. The two states of the time-bin qubit can be made to interfere in an
interferometer whose unbalance is equal to the time delay between the bins;
the interferometer has to keep a high phase stability and it usually requires
stabilization techniques to successfully operate. A drawback of time-bin
encoding is that fast (and lossy) optical switches are required to realize the
a general one-qubit gate: in fact, passive optical elements cannot transform
deterministically one time bin into the other or apply a phase shift to only
one of the two bins.

1.2.4 Other encodings

There exist a wide range of possible encodings, each exploiting various de-
grees of freedom of electromagnetic radiation.

Frequency-bin encoding

Frequency-bin encoding uses the frequency of the photon to encode quan-
tum information. It is a common choice when photons are produced by
Spontaneous Four-Wave Mixing inside microring resonators [25], since the
resonances of the ring represent a natural set of basis states.

The main drawback of frequency-bin encoding is the difficulty to perform
operations involving multiple frequencies, making qubits interact with each
other, because either high-frequency modulation or nonlinear optical opera-
tions have to be performed to do so [26].

Photon-number encoding

Photon-number encoding uses Fock states [2] as the computational basis.
It is common to use only the vacuum state (]0)) and the single excitation
state (|1)), so that the qubit may be encoded as |[¢)) = «|0) + F]1). A
higher number of Fock states can be included in the computational basis,
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but photon-number-resolving detectors have to be employed for measure-
ments, in this case.

Multiple encodings

Applications in which multiple encodings are used at the same time are com-
mon because they allow access to a Hilbert space with higher dimensionality
without increasing the number of quantum resources. For instance, hyper-
entanglement is obtained when two particles are entangled on more than one
degree of freedom [27]. A notable example is ref. [28] where 18 qubits have
been encoded onto six photons by exploiting at the same time the frequency,
polarization and orbital angular momentum degrees of freedom.

1.3 Photonic quantum technologies

The role of photons in quantum technologies is growing. In this section we
make a brief overview of technological areas in which quantum states of light
play an important role: quantum computation, quantum communication and
quantum metrology. Since much of the work described in this thesis is based
on integrated optical structures, we will also give an overview of integrated
photonic technologies, and of some important components that can be used
to generate and manipulate quantum states of light.

A more detailed overview on the state of the art of integrated sources
of light is found in Section 1.4, while the theoretical description of these
components is found in Chapter 2.

1.3.1 Quantum computation

As mentioned, a key requirement to perform quantum computation is the
availability of a complete set of quantum gates. While photonic one-qubit
gates are straightforward to obtain, since they usually involve simple phase
shifts, two-qubit gates are much more difficult to achieve. The CNOT gate,
for instance, has to coherently perform a flip operation on the target qubit
conditioned on the state of the control qubit, which means that the behaviour
of an optical CNOT has to be nonlinear at the single photon level. The inter-
action between light and matter is extremely weak, making the achievement
of single-photon nonlinearities extremely challenging. The extremely weak
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nonlinearity of optical phenomena is the main drawback of the use of pho-
tons for quantum computation, with alternative approaches appearing more
promising at the moment.

Although single-photon nonlinearities are being pursued [29, 30], other
approaches exist to obtain the required nonlinearity. One is the so-called
KLM scheme, from the authors Knill, Laflamme and Milburn of ref. [31].
Based on previous works on teleportation [32, 33|, the required nonlinearities
are introduced by the measurement process, by means of the collapse of the
wavefunction. The main disadvantage of the original KLM scheme is the
intrinsic probabilistic nature of the ports, that is responsible for an exponen-
tial scaling of the resources with the number of qubits required. First bulk
demonstrations of optical quantum gates [34-37] were followed by the first
example of a quantum integrated gate [38], and by reconfigurable circuits
[21, 39, 40].

Important improvements on the scheme tackled the issue of non-deterministic
operations. In 2001 Raussendorf and Briegel [41] proposed a novel scheme for
quantum computation, called one-way quantum computation. The scheme
relies on cluster states [42], highly entangled states of a large number of parti-
cles. Such states are difficult to prepare, but once they are available, quantum
operations can be performed deterministically with simple one-qubit oper-
ations, measurements, and classical feed-forward. While the Raussendorf-
Briegel scheme is in general valid for any kind of quantum system, such
as interacting spin particles, Nielsen [43] extended it to photonic quantum
computation, where the single-qubit operations are performed with linear
optical components. Similar extensions have been performed for supercon-
ducting qubits [44] and quantum dots [45]. Although original proposals of
computation with cluster states was limited to discrete variables, the scheme
was extended to continuous variables, as well, in 2006 [46].

A review on optical quantum computers can be found in ref. [47].

Other platforms are being investigated for the realization of the quantum
computer [48].

Qubits can be encoded in atomic energy levels. For atoms in vacuum,
these levels have very long coherence times, in the order of seconds, and,
since atoms are equal to each other, distinct qubits will naturally be equal
to each other, as well. Atomic ions can be fixed in place through the use
of electric fields, in conjunction with laser cooling [49-51], while neutral
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atoms are fixed in place through the use of optical lattices. Single-qubit and
entangling gates are performed by contact interactions between atoms, or
by supplying electric and magnetic fields at the ions [52, 53| or atoms [54—
56]. The main challenges for this approach are the difficult scalability of the
system regarding the measurement, initialization and interaction between
large numbers of atoms.

Some of the issues affecting vacuum trapped atoms can be addressed by
“trapping” the atoms in solid hosts, where the qubit can be encoded in elec-
tronic levels or electronic/nuclear spins [57]. This is the case for qubits based
on quantum dots, either self-assembled [58-60] or electrostatically defined
[61, 62], and color centers and point-defects such as donor atoms [63, 64] and
vacancy-based defects in Silicon [65-67] and Diamond [68, 69]. Such systems
can be considered artificial atoms because electrons are three-dimensionally
confined, giving rise to discrete energy levels, analogously to the electronic
states of atoms [70]. Generally, the shallow confining potential requires the
system to be cooled at liquid-helium cryogenic temperatures, or lower, in
order to avoid the thermal escape of the electrons. Another disadvantage is
the low coherence time due to nuclear spin interactions [71].

Another important platform for quantum computation is based on su-
perconducting circuits [72]. Although cryogenic temperatures are necessary,
they are realized out of standard electronic components, and they benefit
from decades-long experience in microelectronics manufacture. Manipula-
tion and readout of superconducting qubits can be performed with microwave
fields [73, 74], that can be routed to different qubits with transmission lines,
and the interaction between different qubits can be controlled electronically
[75]. The main limitation of superconducting qubits is their short coherence
times, in the order of few hundred microseconds [76]. One and two-qubit
gates have been demonstrated [77] and chips with up to 53 physical qubits
have been recently realized [78].

1.3.2 Quantum communication

Photons are naturally well suited to achieve the task of transferring a quan-
tum state between distant physical systems: as already mentioned, photons
are very well isolated from decoherence effects, and of course they travel at
the speed of light.

In a scenario known as the Quantum Internet [79], the transfer of qubits
encoded in photons [4, 79, 80] could be used to coherently connect different
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quantum computers in order to merge their computational capability, ex-
ploiting, for instance, already deployed fiber-based telecommunication net-
works. The coupling between a qubit (an atom) and a travelling photon
can be enhanced in an optical cavity to completely transfer the qubit to the
photon and vice versa [81, 82].

Even if the losses in modern telecommunication fibers are very low, in the
order of 0.1 dB/km at 1550 nm, quantum communication protocols have to
face great loss of information when the transfer is attempted in link exceed-
ing few tens of kilometers. This corresponds to an exponential loss of the fi-
delity of the transfer as the length of the link is increased. While losses can be
overcome with amplification and regeneration in classical networks, quantum
states cannot be copied, as the No-Cloning Theorem demonstrates [83, 84].
Thus, strategies to improve the transmission rely on different approaches,
such as quantum distillation [85-87] and quantum repeaters [88-91], which
achieved a polynomial scaling of the fidelity. In all of these schemes, entan-
gled pairs of photons play a crucial role.

In the past few years, remarkable demonstrations of long-range quantum
communication have been performed with the use of a satellite in low Earth
orbit [92-95], establishing records in the distance achieved by quantum com-
munication protocols of up to 7600 km.

Quantum computers, and Shor’s factoring algorithm in particular [11],
threaten to break current cryptographic protocols such as the most com-
monly used RSA scheme [13]. These protocols allow to publicly share cryp-
tographic keys relying on mathematical problems that are difficult to solve
for current classical computers, such as the factorization of big prime num-
bers. In principle, however, enough time and computational power, or the
use of quantum computers, can break such encryption.

In 1984 Bennet and Bassard proposed a cryptographic protocol (BB84
[96]) for public key distribution based on quantum states of light (single pho-
tons) and the no-cloning theorem [83, 84]. The security of the key exchange
is granted not by hard mathematical operations, but by the physical laws
described by Quantum Mechanics itself. As such, this kind of key exchange is
also called Quantum Key Distribution (QKD) and, provided that the prac-
tical implementation of the protocol fulfills appropriate assumptions, it is
impossible to break [97], even with infinite computational power.

While the BB84 protocol relies on single photons, in 1991, another QKD
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protocol (E91 [98]), was proposed that relied on the exchange of entangled
pairs of photons between Alice and Bob and on the violation of the Bell
inequality [99]. Shortly after that, the first experimental proof of principle
realization of QKD implemented BB84 [100].

QKD protocols do not necessarily have to use single photons or entangled
photon states, but Weak Coherent Pulses (WCP) [101] can be used, as well.
WCP can be produced by strongly attenuating laser pulses until the average
number of photons is roughly 0.1; in this case photon-splitting attacks are
possible, but countermeasures involve the use of so-called decoy states [102,
103], that ensure the security of the protocol. The advantage of this approach
resides in the easier implementation and higher rates that a source of laser
pulses allows compared to a source of single photons.

While original QKD proposals based on polarization encoding are ap-
propriate for free-space links, their implementation on optical fiber networks
is more involved [104]; typical implementations [97] exploit phase encoding,
time-bin/time-energy entangled photons and frequency bins.

Regarding technological applications, quantum cryptography is arguably
the most successful field based on quantum states of light. Different com-
mercial QKD systems are already available on the market, and many field
studies have been performed [103, 105-109], including impressive satellite
applications [93, 95].

1.3.3 Quantum metrology

The third field where quantum states of light play an important role is the one
of Quantum Metrology [3], which studies how the precision and resolution
of measurements can be improved with the use of the quantum properties of
the probe and measured object.

The statistical error of classical measurements can be reduced by repeat-
ing the experiment N times and by averaging the outcomes; by the Central
Limit Theorem, the precision of the measurement scales as 1/v/N. This
is known as the Standard Quantum Limit, which represents the maximum
precision that an experiment can achive using only classical resources. If
the quantum nature of the probe and of the measured system is exploited,
the Standard Quantum Limit can be beaten with a quadratic advantage,
potentially achieving the Heisenberg limit, with precision scaling as 1/N.

Many experiments exploit light to perform measurements. In such cases
the use of entangled photons or otherwise quantum states of light can beat
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classical boundaries. For instance, the use of NOON states [110] (states in the
form |¢) = (|N,0) + |0, N))/+/2) in interferometers allows to achieve higher
phase sensitivities: while a coherent state going through a phase shifter
acquires a ¢ phase shift irrespective of the average number of photons it
possesses, an N-photon Fock state acquires an N ¢ shift, thus NOON states
in an interferometer produce interference fringes N times more frequent.
However, these states are degraded very rapidly by losses and are increasingly
difficult to produce as N is scaled up. Other states that provide increased
phases sensitivity are squeezed states of light [111], which are being used,
for example, to improve the sensitivity of gravitational-wave interferometers
[112].

Quantum imaging [113] and quantum lithography [114] are other appli-
cations where quantum optical states are used to beat the standard Rayleigh
diffraction limit.

1.3.4 Integrated photonic platforms

The field of quantum optics benefits greatly from the possibility of realiz-
ing devices in an integrated platform. The high confinement between the
guiding and cladding materials allows to realize optical waveguides whose
cross-section is in the order of few hundred nanometers squared. The con-
sequent reduction of the footprint of each device allows the realization of
hundreds or thousands of devices on the same wafer, reducing the cost of
integrated photonic devices and making the approach more scalable in terms
of production volumes than bulk optics. These are all appealing features for
large scale industrial production, and they benefit both classical and quan-
tum applications.

Common platforms for quantum photonics [115] currently under devel-
opment are Silicon, transparent glasses like Silicon Nitride [116] and Hydex
[117], Diamond [118, 119], Silicon Carbide [120], Lithium Niobate [121, 122],
and III-V semiconductors like AlAs, GaAs, InP and InGaAs.

Among these platforms, Silicon photonics is the one that benefits most
from the decades-long experience in the fabrication of Silicon electronic de-
vices. In particular, a thin film of Silicon, usually 220 or 300 nm thick,
is grown on top of a 2 pum layer of Silicon Oxide in what is known as a
Silicon on Insulator (SOI) wafer. These wafers, normally used to realize
Complementary Metal-Oxide Semiconductor (CMOS) electronics, are read-
ily available for the realization of optical devices, exhibiting extremely low
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impurity levels, large dimensions and very high overall quality. Both optical
and electronic lithography together with chemical etching processes can be
used to remove part of the Silicon layer to realize waveguides, usually in a
CMOS compatible manner. Electronic components can then be realized in
the remaining part of the layer or directly on top of the waveguides, allowing
the realization of hybrid structures [123]

In recent years, various commercial fabrication facilities around the world
began to offer to researchers the possibility of realizing devices using Pho-
tonic Integrated Chip (PIC) fabrication technology [124]. In an approach
called Multi Project Wafer (MPW), many users share the high costs of the
fabrication runs, which are high due to the cost of the masks used in optical
lithography and that are rarely affordable by small research groups [125].
Examples of facilities offering these services are CEA-LETI, IHP and IMEC,
all under the Europractice consortium, the A*STAR Institute of Microelec-
tronics based in Singapore and AIM Photonics in the United States.

Nonetheless, as it will be detailed in the next section, while Silicon has
other important advantages, such as high optical third-order nonlinearities,
in other respects it is not an ideal platform: being centrosymmetric, second-
order nonlinearities are suppressed and high power operations are limited by
nonlinear losses due to its limited bandgap.

For these reasons, other platforms are rapidly gaining ground, most no-
tably Silicon Nitride and Hydex [117]; their larger bandgap implies lower
linear and nonlinear losses [126], allowing higher power applications, which
also compensate for their lower optical nonlinearities.

Besides, the benefit of former experience in fabrication technology is not
limited to Silicon. In fact, due to its high thermal conductivity, Silicon
Carbide is used as a platform for high power electronics [127], as well.

1.3.5 Common integrated optical components

The waveguide is the fundamental component of a photonic platform [16]; it
is composed of a straight region of high-index dielectric region surrounded by
low-index cladding material [16]. The waveguide exploits Total Internal Re-
flection (TIR) to laterally confine light; the degree of confinement depends on
the contrast between the core and cladding refractive indexes. Generally, in
the case of scalable quantum photonic applications, the highest possible con-
trast is desirable because it maximizes the lateral confinement, thus reducing
the total footprint of devices; moreover, at given optical powers travelling
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Figure 1.2: Scheme of common types of waveguides.

in a waveguide, higher confinements correspond to higher optical intensities,
thus increasing the efficiency of optical nonlinear properties, which are at
the core of sources of photons based on Parametric Down-Conversion and
Four-Wave Mixing.

Depending on its lateral dimensions, the waveguide may support one or
more optical modes; the waveguide is called single-moded in the former case
or multi-moded in the latter. The modes may be also classified according to
polarization: when the electric field is mostly polarized in the vertical direc-
tion the mode is called quasi-TM (or simply TM), while it is called quasi-TE
(or simply TFE) when it is mostly polarized in the horizontal direction.

Various kinds of waveguides exist, and the most common are shown in
Figure 1.2. Buried and ridge waveguides have typically a rectangular or
trapezoidal cross-section; while the former is completely surrounded by the
cladding, the latter may be left exposed to air or to a lower-index cladding.
Rib waveguides are the result of a partial etch, and they all share a thin film of
high-index material. Diffused waveguides are fabricated by diffusing a dopant
in the cladding and they typically have very low losses but low contrast as
well. As noticed above, the most interesting for quantum applications are
those which maximize the lateral confinement, such as the ridge, rib and
buried waveguide.

The thickness of a typical Silicon waveguide is usually either 220 or 300
nm, since these are the thicknesses of commonly available SOI wafers. De-
pending on the desired number of supported modes, the lateral dimensions
of the waveguide may then vary: a waveguide supporting a single-TE and
a single-TM mode has roughly 450/500 nm width; a single TE-mode wave-
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guide is usually too narrow to be realized with low enough losses. The cross-
sections of Silicon Nitride, Silicon Carbide, Hydex and other lower contrast
waveguides are generally slightly larger [128], with a consequent scaling of
the overall footprint of integrated devices.

The dispersion of the waveguide modes, i.e. the change of the effective
index of refraction of the waveguide modes as a function of the radiation
wavelength, is an important property to keep into account when applica-
tions with large frequency spans are considered. For instance, the dispersion
has important consequences on the phase matching of nonlinear optical prop-
erties [129]. The waveguide dispersion is determined by the natural material
dispersion of the core and cladding materials and by the waveguide cross-
section. The latter can be used to engineer the waveguide dispersion for
various applications. For instance, optical combs spanning a wide range of
frequencies can be realized by engineering a small anomalous dispersion of
the waveguide [130].

Many common integrated devices are based on waveguides. Directional
couplers, integrated versions of beam splitters, are realized when two wave-
guides are brought close to each other, so that light can jump between them
through evanescent coupling.

Phase modulation of the electromagnetic field is realized with the use of
modulators. Increasing locally the temperature of the sample, an increase
in the refractive index can be induced through the thermo-optic effect, thus
increasing the optical length of the heated section: this may be realized by
passing electrical currents in metal stripes patterned on the top surface of the
sample. Moreover, when y(?) nonlinearities are available, the index change
may be induced with electro-optic modulators [131].

Directional couplers and modulators can then be paired to realize in-
tegrated Mach-Zehnder interferometers, which can be used to modulate
light intensities and to implement optical switches.

Optical nonlinear processes are strongly dependent on the intensity of
electromagnetic radiation travelling inside waveguides. One way the intensity
of the fields can be enhanced is by using resonant structures.

One of the most important devices in integrated nonlinear optics is the
microresonator. It is an optical waveguide closed on itself following a
circular path. Usually it has a circular shape or it is composed of two semi-
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circular sections connected by straight waveguides; it is referred to as the
microring resonator in the former case and as the racetrack resonator in the
latter, because of the obvious similarity with its larger counterpart. Unless
differently specified, what applies to the microring resonator applies also to
the racetrack, so we may use sometimes the term microring as a synonym of
microresonator. Silicon microring resonators used for quantum applications
at telecom wavelengths have radii which vary roughly between 5 and 100 pm
and Q-factors in the order of 10° to 106.

Light is coupled into and out of the resonator by evanescent coupling
with the use of one or more additional waveguides running next to the ring’s
waveguide. Neglecting dispersion, the microring resonator exhibits a series
of resonances equally spaced in frequency, as easily derived in Section 2.8.

The importance of the microresonator resides in the enormous field en-
hancement reached inside these objects by resonant fields, i.e. the ratio of
the field amplitudes found inside the ring resonator and in the input wave-
guide. Such enhancement strengthens the interaction between radiation and
matter, increasing the efficiency of nonlinear optical processes by many or-
ders of magnitude compared to normal optical waveguides [132]. Four-Wave
Mixing, in particular, especially benefits from microring resonators, since
phase matching is automatically achieved when using three equally spaced
resonances as signal, pump and idler frequencies, as seen in more detail in
Paragraph 2.8.2.

The two most common configurations of microring resonators are the All-
Pass and Add-Drop, for which the resonator is coupled to a single waveguide
in the former case, and to two waveguides in the latter. The All-Pass res-
onator removes the resonant frequencies from the coupled waveguide. The
Add-Drop exchanges resonant frequencies between the two coupled wave-
guides and it is particularly interesting for multiplexing applications.

The theoretical description of the microresonator will be given in Section

2.8, while Paragraph 2.8.2 describes in more detail Four-Wave Mixing in mi-
croring resonators.

Coupling of light into and out of a sample may be performed with the
use of Bragg grating couplers [133]: the mode supported by an integrated
waveguide is first adiabatically expanded in the horizontal direction with the
use of tapers, until its width reaches the one of the mode supported by
an optical fiber. Then, light enters a modulated dielectric region, which
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coherently scatters the radiation out of the sample plane at a determined
angle to the normal. At this point light may be coupled to an optical fiber for
delivery purposes. Typical coupling efficiencies of uniform grating couplers
reach about -1 dB, while apodized designs [134, 135] may reach values closer
to unity, at the cost of a reduced coupling bandwidth, and subwavelength
structures [135] may also be used to simplify the fabrication process to a
single etch step [136].

Another common approach to couple light is the use of edge-coupling:
light is brought to one edge of the sample with waveguides, where is then
coupled to fibers placed just outside the lateral surface of the sample. Inverse
tapering of the waveguide [137] and of the fiber tips are used to increase the
mode matching and improve the coupling efficiency. Subwavelength struc-
tures can be used to further expand the waveguide mode and improve the
mode matching with optical fibers [138, 139], reaching efficiencies as high as
90% on a 100 nm bandwidth [140].

Photonic crystals, i.e. periodic dielectric structures, exhibit peculiar
optical properties [141, 142]. One of the most common photonic crystal used
in integrated optics is the photonic crystal slab [143], which is realized by
periodically patterning a thin dielectric film. These objects confine light by
total internal reflection in the vertical direction (indez-guiding), while, at
the same time, the destructive interference arising from the scattering by
the periodic pattern of the slab forbids the in-plane propagation of radiation
for certain frequency intervals, called photonic bandgaps. Photonic bandgaps
may be present for only TE or TM polarizations, or for both polarizations, in
which case they are called complete photonic bandgaps [144]. Photonic crys-
tal slabs have been fabricated in a wide range of platforms [145], including
some of the ones discussed above.

Photonic crystal cavities [146] are obtained when a point defect is intro-
duced in the photonic crystal, for instance by removing one or a small number
of holes from the lattice. When the energy of the mode associated to the
defect lays within the bandgap, it becomes localized because light can propa-
gate in no direction. These bound states exhibit mode volumes smaller than
a cubic wavelength and Q-factors exceeding eleven million [147]. Nonlinear
optical processes are therefore strongly enhanced, as well as the spontaneous
emission rate of emitters embedded in the crystal in correspondence to the
maximum of the modal field intensity, as quantified by the Purcell factor
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[148].

When a whole line of holes is removed from the lattice, a photonic crystal
waveguide is obtained [149]. These waveguides can be engineered to strongly
reduce the group velocity of light; the resulting, so-called slow-light regime
[150, 151], can be used to enhance the interaction between light and matter
[152] and can be used to reduce the dimensions of optical components such
as optical modulators, or to increase spontaneous emission rates of emitters
embedded in the waveguides [153].

Applications of photonic crystal slabs include modulators [154], small
filters [155], sensors [156], low-threshold lasers [157] and bistable systems
[158].

1.4 Integrated sources of quantum light

Important milestones in experimental quantum optics were and are achieved
using bulk sources and setups. Sources of photons for such experiments
are typically realized exploiting Spontaneous Parametric Down-conversion
(SPDC) in nonlinear crystals. Commonly used materials include Beta Bar-
ium Borate (BBO) [159], Potassium Titanyl Phosphate (KTP) [160] and
Potassium Dihydrogen Phosphate (KDP) [161] crystals. For instance, a KDP
crystal was the source of photons in the first demonstration of bunching ef-
fects between identical photons performed by Hong, Ou and Mandel [162].

Regarding pairs of entangled photons, initial experiments relied on elec-
tronic cascades in various atomic species. Grangier, Roger and Aspect used
sources of entangled photons produced by Calcium radiative cascades to
perform the first violations of the Bell inequality [99, 163, 164] and the ex-
perimental verification of the antibunching effect of single-photon Fock states
[165].

In 1995, Kwiat et al. discovered that type-II SPDC in a nonlinear crystal
can be used to realize bright sources of polarization-entangled photon pairs
[17]. This kind of sources immediately replaced previous, less efficient ones,
and became the workhorse for many quantum optics experiments. For in-
stance, entangled photon pairs prepared in a polarization Bell state have been
used to perform the first experimental proof of quantum teleportation [6, 32].
More recently, cascaded BBO crystals have been simultaneously pumped to
realize experiments in which entanglement between up to 12 photons has
been observed [18, 166].



1.4. INTEGRATED SOURCES OF QUANTUM LIGHT 23

Bulk optical experiments suffer from various drawbacks. First, experi-
ments with growing number of photons require larger and larger experimental
setups, that become increasingly more difficult to realize and keep aligned,
occupying large footprints in a laboratory [167]. Secondly, nonlinear opti-
cal processes occurring in bulk materials are very weak due to the small
intrinsic nonlinearities of transparent optical materials and to the lack of
enhancement mechanisms as for integrated devices. Lastly, industrial fab-
rication in large volumes will benefit from an integrated approach, where
hundreds or thousands of devices may be realized on a single wafer.

These reasons motivated the search for integrated optical platforms that
could be used for quantum optical experiments. The higher confinement that
light experiences in integrated waveguides and resonators largely increases
the interaction between light and matter, improving the efficiency of optical
nonlinear phenomena. This makes integrated sources of light orders of mag-
nitude more efficient than their bulk counterparts, or it enables the use of
nonlinearities of materials that would be otherwise very difficult to exploit
in a bulk experimental configuration.

Four-Wave Mixing (FWM), both stimulated and spontaneous, is the
nonlinear phenomena of choice when integrated platforms are considered.
Optical waveguides are typically more dispersive than bulk materials and
nonlinear optical fields are necessarily co-propagating if confinement is to
be preserved. This makes phase matching generally harder to obtain in
integrated platforms, because orientational and geometrical degrees of free-
dom are more difficult to exploit effectively compared to bulk configurations.
Compared to SPDC, FWM involves fields close in frequency, therefore phase
matching is less complicated, since the effect of dispersion is less important
in small frequency spans.

First experiments moving towards an integrated approach were performed
in low-confinement devices such as fibers. Photon pairs were produced in a
Sagnac loop both with single-frequency [168] and double-frequency pump
configurations [169]. In ref. [170] a heralded source of photons was realized
by pumping a photonic crystal waveguide at 1064 nm and producing pairs
around 800 and 1570 nm, achieving heralding rates of 10° Hz. Later on,
experiments were performed in integrated waveguides and resonant devices.
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1.4.1 Silicon

Silicon is an indirect semiconductor with a bandgap of 1.1 eV, thus it is trans-
parent in the near infrared wavelengths, making it well suited for quantum
experiments that use photons that can be sent to large distances through
optical fibers. Indeed, the majority of the sources based on FWM in Silicon
operate around 1550 nm.

The SOI platform benefits from decades-long experience in Silicon fab-
rication technologies, making it a good choice for systems where the inte-
gration between photonic and electronic structures is foreseen [123]. Linear
losses inside integrated waveguides in Silicon can be as low as few dB per
centimeter.

Silicon is centrosymmetric, therefore the x(2) nonlinear coefficient is sup-
pressed; however, the x(® nonlinearity is much higher than in alternative
platforms, such as Silicon Nitride [171], resulting in a typical nonlinear wave-
guide parameter v of 200 W~ m~!.

The most notable drawback of Silicon is the presence of fairly high non-
linear optical losses: while a single 1550 nm photon is too weak to excite an
electron-hole pair in Silicon, two photons have enough energy to do so. This
process is called Two-Photon Absorption (TPA) [171] and it produces direct
optical losses in high intensity fields. Moreover, the free charges created by
TPA induce additional losses by Free-Carrier Absorption (FCA) on all the
fields travelling in the same spatial region of the charges, regardless of their
intensity or frequency.

The main kinds of sources of photons based on Silicon can be divided
into the following categories: sources based on nanowire waveguides, sources
based on resonators (in particular microtoroids and microring resonators),
and hybrid approaches such as Coupled-Resonator Optical Waveguides (CROW)
[172].

Silicon wire waveguides are effective sources of correlated photons that
exploit FWM in millimeter-long devices [173, 174]. The cross-section of
Silicon waveguides is usually chosen to allow guided propagation of a single
TE mode (and one TM mode) and to exploit the same wafers produced for
SOI electronics.

The main advantage of Silicon wire sources, compared to other structures
illustrated below, is the ease of realization, since the device is not sensitive to
fabrication imperfections. Phase matching for FWM in waveguides happens
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on a broad range of wavelengths: on the one hand, this allows waveguides
to posses a higher flexibility in the design of experiments, since there is no
restriction on the frequency of emission of photons, as it happens instead in
resonant structures like microtorids and microrings; on the other hand, se-
lective frequency filtering has to be put in place to obtain indistinguishable
photons, which results in highly reduced pair production rates. The pro-
duction of both time-bin [175, 176] and polarization entanglement [177-179]
have been experimentally demonstrated with nanowire waveguides.

The main disadvantage of waveguide sources is arguably the small effec-
tive nonlinearity achievable in these systems: generally, strong pulsed laser
sources have to be used to pump FWM (although continuous wave pump-
ing has been demonstrated [180]), and waveguides have to be millimeters-
long [175]. Pairs generation rates are limited to around 10° Hz [181]. Al-
though spiral configurations can be used to reduce the footprint of wave-
guides sources, microring resonators or photonic crystal waveguides represent
a better solution in this regard.

Silicon spirals have been used as sources in experiments where the indis-
tinguishabilitly of the generated photon was demonstrated on chip [182].

Increasing the efficiency of FWM, by enhancing the interaction between
the fields and the nonlinearity of Silicon, can overcome the limitations of
waveguides. This can be achieved by spatially and temporally confining the
electromagnetic field in resonant modes, within which each photon dwells
for a very large number of optical cycles. The enhancement of nonlinearities
in resonant structures is determined by the quality factor of the resonances
involved in the nonlinear process and by the optical volume of the mode
[132], and is more formally quantified by the Purcell factor [148].

Microring resonators are realized by closing on itself an optical waveguide,
while light is coupled into and out of the resonator by evanescent coupling
with one or more bus waveguides placed close to the microring. Due to their
small bending radius, the footprint of microrings is therefore orders of mag-
nitude smaller than the one of simple nanowire waveguides. Generally, linear
losses of about 1 dB/cm limit the Q factor of Silicon microring resonators
to about 10°. Compared to other resonant structures like photonic crys-
tal waveguides, one of the great advantages of microring resonators is that
they naturally exhibit a series of approximately equally spaced resonances,
so that phase matching for FWM is automatically satisfied, at least for ad-
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jacent resonances. The mutual spacing of the resonances (the free spectral
range) is influenced by the material and geometric dispersion of the wave-
guides; however, this is usually not an issue until extremely high Q factors
or very distant frequencies are considered. A deeper theoretical description
of the microring resonator, that includes the definition of various important
figures of merit of this device, can be found in Chapter 3.

Silicon microring resonators have been shown to produce enormous en-
hancement of the electromagnetic field [132]. The work of ref. [183] demon-
strated how stimulated FWM could be achieved with extremely low pumping
powers, in the order of milliwatts. Soon after, the emission of correlated pho-
ton paris by spontaneous FWM was demonstrated [180, 184] with generation
rates as high as 107 Hz and Coincidence to Accidental Ratios in the order of
50. More recently, photon pair generation was achieved with pump powers
as low as few microwatts [185].

Silicon microrings are excellent sources of time-energy [186] and time-bin
[187] entangled photons, as well. The fact that these states are preserved
in fiber transmissions compared to polarization entanglement and the lower
power consumption of microrings makes them particularly interesting for
quantum key distribution protocols implemented in optical networks [97].

Heralded single-photon sources require perfect uncorrelation between the
heralding and the heralded photons. An appealing property of the microring
resonator is the possibility to dynamically change the type of correlations
of the generated photon pair by adjusting the pump’s spectral profile [132]:
while a narrow continuous wave pump produces time-energy entangled pho-
tons, a broader pulsed pump can produce factorized photon states without
the need of external frequency filtering. This feature was experimentally
demonstrated in [188], where the photon pair correlations exhibited a lower
bound on the Schmidt number of 1.03 £+ 0.1.

While Silicon microrings possess many appealing properties, they also
possess drawbacks. As mentioned, TPA is the main limitation of Silicon
devices [171], preventing high power operations. This problem can be par-
tially solved with the fabrication of p-i-n junctions alongside the microring
resonator’s waveguide that sweep away the charges as soon as they are pro-
duced [189]; this solution allowed to achieve higher pumping power and pair
emission rates, up to 10® Hz, at the cost of a more complex fabrication pro-
cess. Another disadvantage is the high sensitivity to environmental thermal
fluctuations, due to the high thermo-optic effect of Silicon [190], which forces
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the adoption of thermal stabilization stages and micro-heaters to locally com-
pensate the thermal shift of the refractive index.

Silicon microtoroids, similarly to microring resonators, exploit whisper-
ing gallery modes in thin Silicon disks to enhance the production of photon
pairs. Very high Q factors are possible for these structures and Coincidence
to Accidental Ratios exceed 1000 [191]. Coupling of light usually involves
a tapered fiber suspended in air and brought next to the resonator, a more
complicated approach than using bus waveguides like in microring resonators
systems.

Generation of quantum states of light in Silicon has been achieved also
with the use of CROWs: these systems of coupled resonators, forming ef-
fectively a photonic crystal waveguide, can be tuned to achieve a slow-light
regime, which increases the effective optical nonlinearities. In ref. [192], a
Silicon CROW was used to produce pairs at telecom wavelength by Spon-
taneous FWM with an effective waveguide nonlinear parameter reaching
v ~ 4100 m~*W~!. Using a similar approach, emission of correlated photon
pairs was obtained by coupling a series of photonic crystal cavities in Silicon
[193].

1.4.2 Silicon Nitride and Hydex

The limitation on high power operation given by nonlinear losses in Silicon
motivated the search of other platforms immune from this drawback. In the
past decade important achievements have been obtained in this regard from
devices realized with Silicon Nitride (SiN) and Hydex [117].

Hydex is a form of highly doped silica glass; the doping increases the
index of refraction of the material, hence allowing total internal reflection.
The exact composition of Hydex is proprietary and not disclosed, however it
allows to reduce the detrimental effects of the O-H bonds, the main source
of losses at telecom wavelengths, without the need of thermal annealing,
maintaining the fabrication process CMOS compatible.

These two glasses possess much lower linear and, more importantly, neg-
ligible nonlinear optical losses at telecom wavelengths compared to Silicon,
at the expense of a lower intrinsic nonlinearity and refractive index. These
properties are consequence of the high electronic bandgap of the two ma-
terials; in particular, TPA is suppressed because two telecom photons are
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too weak to promote electrons to the conduction band. The Kerr coefficient
ny for the two materials was measured to be 2.4 - 10719m? /W for SiN [194]
and 1.15-107m2 /W for Hydex [117], which is slightly higher than the one
of Silica, about 2.5 - 1072m2/W, and much lower than the one of Silicon,
about 4.5-107¥m?/W [171]. The lower refractive index compared to Silicon
(2 for SiN and around 1.7 for Hydex) results in a lower transversal confine-
ment of the fields and in larger waveguide cross-sections; the devices’ foot-
print is increased as a consequence of the larger minimum bending radius of
the waveguides. The confinement and nonlinearity effects are quantitatively
taken into account by the waveguide nonlinear parameter -, typically equal
to 2 W lm~! for SiN [195] and to 0.2 W~ 'm~" for Hydex [117]; because x ()
nonlinear phenomena are proportional to v2 [132], the overall efficiency of
nonlinear phenomena of interest in SiN and Hydex, mainly FWM, is orders
of magnitude lower compared to Silicon.

These disadvantages are offset by the absence of nonlinear absorption,
by the possibility to effectively shape the modal dispersion by engineering
the waveguide cross-section [196], and by the extremely low linear losses
achieved in both platforms; losses as low as 7 dB/m in SiN, for instance, re-
cently allowed the realization of 12 million Q-factor microrings [197, 198]. At
the cost of increased pumping powers, that can reach hundreds of milliwatts
[199] or more, extremely wide bandwidth nonlinear classical and quantum
operation can be achieved, as shown for instance in [129], where second and
third harmonic generation were achieved. In particular, by careful design, a
small anomalous dispersion is used to compensate shifts in the resonances
of the microrings induced by strong pumping through the Kerr effect, in a
way that a constant free spectral range can be maintained on extremely large
frequency spans. This in turn allows cascaded FWM to coherently take place
among a large set of resonances, achieving the emission of broad frequency
combs, as it was demonstrated in 2010 for both platforms [199, 200]. Optical
frequency combs [117, 130, 201] have important applications in metrology,
spectroscopy and in fast laser pulse sources, and the possibility of produc-
ing them from a compact integrated platform is considered an important
breakthrough in the field.

In the past few years, the realization of combs have experienced signif-
icant improvement both in SiN [196, 202-204] and Hydex [205, 206]. A
significant recent result was the realization of a battery-powered frequency
comb based on an integrated SiN chip [207], that highlights the impressive
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achievements obtained in this field.

On the wake of the classical results on frequency combs, quantum ex-
periments involving large frequency spans or combs have been performed, as
well [208]. The wide-band capability of Hydex has been exploited to gener-
ate complex quantum states on tens of resonances, comprising both heralded
[209] and entangled photons [25, 26]. Similar results have been obtained in
SiN [210-212].

An interesting pumping solution was adopted for some of the works based
on Hydex [15, 209, 213-215] and SiN [216]: instead of using an external laser
to pump FWM, in what is called a self-pumping configuration, the microring
resonator is closed inside an external fiber cavity that contains an optical am-
plifier. The consequence is that lasing operation will occur automatically in
correspondence with one of the ring resonances; if it happens that the lasing
resonance shifts for some reason, the lasing radiation will follow automati-
cally, without requiring an external feedback loop. These experiments were
the inspiration for the works described in Chapter 3, where instead of Silicon
Nitride and Hydex, Silicon microring resonators were used in a self-pumped
configuration, so we refer the reader there for a more detailed discussion on
this topic.

1.4.3 Color centers in Diamond and Silicon Carbide

Instead of exploiting directly the material optical nonlinearities, typical pho-
ton sources realized with Diamond and Silicon Carbide (SiC) exploit color
centers present inside the material, following a different approach with re-
spect to what has been described so far. Defects in the crystalline structure
of these materials can result in the formation of electronic levels whose en-
ergy falls well inside the electronic bandgap of the materials. Such “deep”
electronic levels are therefore well localized, and they are hardly thermally
ionized, at variance with “shallow” electronic levels produced, for instance,
by donor/acceptor atoms; in the latter case the levels are typically placed
much closer to either the conduction or the valence band, and ionization
requires much lower thermal energies. Qubits can be encoded in the energy
levels of these deep defects, which might show a fine vibrational or spino-
rial structure, and manipulation and measurements are typically performed
using electromagnetic fields, either optical or at microwave and radio fre-
quencies. Otherwise, the defects can be employed as single-photon sources,
relying on radiative transitions between their excited and ground states, with
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applications ranging from quantum computing and quantum communication
to quantum metrology.

Among the many color centers found in Diamond, the two most com-
monly exploited are the negatively charged Nitrogen Vacancy (NV) and the
Silicon Vacancy (SiV) [119]. These defects are formed when a Nitrogen or
Silicon atom replaces a Carbon atom adjacent to a vacancy. The fluorescence
of the NV center is found around 637 nm and its lifetime in bulk Diamond
is roughly 12 ns, making it a bright source of single photons for quantum
communication [217]. One of the main drawbacks of the NV center is the low
fraction of photons emitted into the zero-phonon line at room temperature,
limited to 4%, which forces the adoption of enhancement approaches based
on nanophotonic structures [218-220], as discussed below. The NV center
is also used for magnetometry and sensing applications [221]. The SiV flu-
orescence is found between 730 and 750 nm, the variability caused by the
different local environments the defects may experience, induced by stress
in Diamond. The emission of photons in the zero-phonon line at room tem-
perature occurs with efficiency in the order of 70%, making it more viable
than the NV center as a single photon source at room temperature, and its
lifetime is roughly 1 ns [119].

For these defects, important demonstrations have been performed in re-
cent years, such as of entanglement between defect spins [222] or between the
spin and the emitted photon [223] and of two photon interference [224, 225],
both at room and cryogenic temperatures. Some other impressive achieve-
ments in experimental quantum communications have been obtained with
the use of Diamond color centers [226-228].

Diamond NV and SiV color centers may not be the ideal choice for quan-
tum communication application because of the high losses that the emitted
photons experience in optical fibers. Conversely, in recent years, some de-
fects in SiC are emerging as possible alternatives to Diamond defects because
of their long coherence times and longer emission wavelengths.

Silicon Carbide is a tetrahedral semiconductor composed of Silicon and
Carbon atoms. Because of the many possible stacking combinations, more
than 200 SiC polytypes are known, among which the three more commonly
used for quantum photonic applications are the 3C-SiC, 4H-SiC and 6H-
SiC. The bandgap of SiC, although lower than Diamond, is considerably
larger than Silicon’s, ranging between 2.3 and 3.2 eV, depending on the
polytype considered, while its index of refraction is about 2.6. SiC is non-
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centrosymmetric, and its second-order nonlinearity is high (for instance & ~
32.8 pm/V for 4H-SiC [229] for static fields) and it is comparable to the one of
Lithium Niobate. As well as Diamond, Silicon Carbide is one of the hardest
known materials, and it exhibits high thermal conductivity [230].

One of the appealing properties of SiC is its long time use as platform
for high power electronics [231]; inches-wide, high quality wafers are read-
ily available from fabrication facilities, and doping techniques and electrical
contacts are available.

In recent years, some of the point defects present in SiC, in particular
the Silicon Vacancy (Vg;) [232] and the double vacancy ((VeiVeo)?) [233] in
4H-SiC, are emerging as possible alternatives to point defects in Diamond.
These defects experience long coherence times of several milliseconds [234],
and often operate at room temperature [235, 236].

Moreover, the fluorescence of SiC defects is typically found in the near
infrared (around 1100 nm for the double vacancy VgV and 880 nm for the
Silicon Vacancy Vg; ), making them more suited for quantum communication
and biological applications than Diamond’s defects, because of the lower ab-
sorption that these wavelengths experience in optical networks and biological
materials. The possibility of integrating SiC defects with electronic circuits
was demonstrated in ref. [237].

One of the main limitations for both Diamond and Silicon Carbide is
the limited brightness achievable with these sources, in the order of 10°
photons per second. A few orders of magnitude improvement is necessary
before they can start to compete with other QKD systems based on the
repetition rates of attenuated coherent pulses. The use of nanofabricated
optical structures like photonic crystal cavities can increase the brightness of
these structures through Purcell enhancement of the spontaneous emission
rate, that ultimately limits the defects’ brightness, hence showing a possible
path for achieving the goal. The same mechanism can be used to enhance
radiative transitions, leading to more efficient single-photon emitters.

The first two-dimensional photonic crystal cavity in SiC was demon-
strated in 2011 [238], followed by other works, such as [239]; the Q-factor
of these cavities remains lower than 10%, but it was enough to detect con-
siderable fluorescence enhancements [230]. Microdisk resonators were also
demonstrated, with Q-factors up to 5 - 10* [240, 241].
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1.4.4 Other platforms

There exist a vast number of other integrated platforms that are being inves-
tigated as sources of quantum states of light. An example are x(?) materi-
als, Lithium Niobate in particular, because of their much higher nonlinearity
compared to other x® platforms like Silicon and Silicon Nitride. Generation
of photon pairs in this case is performed, for instance, exploiting Spontaneous
Parametric Down-Conversion in periodically poled waveguides [121, 242].

Another important example is represented by self-assembled InAs/GaAs
(or close semiconductors) Quantum Dots (QD) [243]: a lower-gap semicon-
ductor surrounded by a higher-gap one, under appropriate conditions on the
alignment of the electronic bands of the two materials, can be considered an
effective potential well for electrons and holes; this well thus forms discrete,
localized electronic states, similarly to the already discussed color centers in
Diamond and Silicon Carbide. The shape of the QD and the composition
of the semiconductors can be used to engineer the properties of the QD,
for instance by changing the distribution of the localized electronic levels.
When an electron-hole pair recombines within a quantum dot, an atom-like
radiative transmission can occur, resulting in the emission of a single photon.

Although the energy levels of InAs/GaAs QDs are generally shallow,
hence requiring operation at cryogenic temperatures, the performance of
single-photon emitters based on these QDs is currently very high: the purity
of the single-photon states emitted is above 99%. The main challenge that
prevents QD from achieving large scale applications and that remains to be
solved is to produce a large number of intistinguishable sources of photons. In
fact, QDs grow inhomogeneously, and additional selection or tuning processes
are needed to achieve good quantum interference between photons produced
by different dots.

Nonetheless good results from QD sources include high photon purities
[244], high collection efficiencies [245], also aided by nanostructures [245—
247], coupling between quantum dots and photonic crystal cavities [29] and
the realization of electrically pumped devices [248].

Many other integrated platforms for emission of quantum states of light
exist, and it is not our goal to review them here. To this end, we refer the
reader to the many review articles present in the literature, among which we
cite, for instance, ref. [243].



Chapter 2

Theoretical background

The aim of this chapter is not to give a complete theoretical picture of quan-
tum optics or nonlinear optics; rather, it is an overview of the theoretical
concepts that are used in the remaining part of this thesis. For a more de-
tailed overview of the quantum theory of light we refer the reader to The
Quantum Theory of Light [2] by R. Loudon, while here we illustrate only
the most fundamental steps; for a deeper and more complete treatment on
the theory of coherence of both classical and quantum fields and on quantum
optics in general, we refer the reader to Optical Coherence and Quantum Op-
tics by L. Mandel and E. Wolf [249]. While the above textbooks also cover
optical nonlinearities, we refer to [250] and [251] for a specific treatment. We
assume that the reader is familiar with the theory of Quantum Mechanics
and its formalism, while some reference textbooks on the topic are [252, 253].

Section 2.1 outlines the principle of nonlinear optics, focusing in partic-
ular on two nonlinear optical phenomena, Parametric Down-Conversion and
Four-Wave Mixing, that are of particular importance for the work described
in this thesis.

Section 2.2 gives the basic formalism of Quantum Optics used throughout
this work; we outline the Second Quantization of light and we give brief
descriptions of common categories of light such as chaotic light, coherent
light and the Fock number states. We also make a discussion on the time
and frequency dependence of ladder operators, useful for describing fields
found in the laboratory.

Section 2.3 deals with first- and second-order correlations between beams
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of light.

Section 2.4 uses the formalism of Quantum Optics to describe three im-
portant devices: the Beam Splitter, the Mach-Zehnder interferometer and
the Hanbury Brown and Twiss interferometer, focusing also on the differ-
ence between their classical and quantum descriptions.

Section 2.5 deals with two-photon states of light, where an introduction
to the biphoton wavefunction formalism is performed and more details on the
correlation within a bipartite state are given. The time-energy entanglement
between photons is described, followed by a detailed theoretical description
of the instrument that can be used to prove this kind of entanglement, the
Franson interferometer.

Then, the theory of electromagnetic modes in dielectric waveguides is
given in Section 2.6, while the expansion to periodic one-dimensional dielec-
tric structures is given in Section 2.7.

The linear theory of the microring resonator is given in Section 2.8, to-
gether with the theory of Four-Wave Mixing in this resonant structures.

Finally, the chapter is concluded with Section 2.9, where we describe the
theory of loop lasing cavities, useful in Chapter 3.

From now on, the symbol w is used to refer to angular frequencies, even
if at times only the word “frequency” is used.

2.1 Nonlinear phenomena

Nonlinear optical phenomena are those where the response of a material to
an incident optical field produces fields at different frequencies with respect
to the one of the incident field. Nonlinear optics is treated in detail in a
number of textbooks, of which we cite [250] and [251].

Here we will limit the discussion to the description of Parametric Down-
Conversion (a x(?) phenomenon), and Four-Wave Mixing (a x(®) phenomenon),
because they are the ones at the heart of what is described in Chapters 3
and 5.

2.1.1 Principle of nonlinear optics

The basic principle of nonlinear optics can be understood by considering the
polarization response of a material to an incident electric field.



2.1. NONLINEAR PHENOMENA 35

In a linear material, electric charges are displaced by an incoming field
and they start to oscillate around their equilibrium position harmonically, at
the same frequency of the incoming electric field; as accelerated charges are
sources of the electromagnetic fields, it is understood that these oscillating
charges will produce a response field at the same frequency of the incoming
field. This is the consequence of the harmonic potential in which the charges
live when the displacement from their equilibrium position is small. Accord-
ing to Maxwell’s equation, this linear response is described by the following
equation

PO (r 1) = eoxVE(r, t) (2.1.1)

where the electric polarization field P is proportional to the density of in-
duced dipole moments in the material and where the (L) label underlines
that the response is linear.

When the incoming field becomes comparable with the Coulomb field
produced by the atom nuclei, however, the electrons are displaced to the
point that their potential cannot be considered harmonic anymore. As such,
their oscillation will not occur only at the frequency of the incoming field,
but other frequencies will appear in their motion; hence, the produced field
will posses these new frequencies of the distorted oscillation, as well.

This nonlinear behaviour can be modeled by extending eq. (2.1.1) to

include higher order terms that depend nonlinearly on the incident electric
field.

P=pPY 4 POV — ((\WE+Y?PEE+X®EEE+...) (21.2)

where the higher order susceptibility terms (X(Q), Y3, . .) are, in general,
tensors that depend on the frequencies and orientation of the incoming fields.
While the first-order susceptibility y*) has magnitude in the order of unity,
the higher order terms become important when their value becomes compa-
rable to (I, i.e., when Y E ~ 1, Y® EE ~ 1 and so on. From the previous
argument, we expect this to happen when E ~ E¢ ~ 10'2 V/m, where E¢
is the bounding Coulomb field. Indeed, for most material used in nonlinear
optics we have x(® ~ 10712 m/V and x®) ~ 1072* m?/V.

The higher order susceptibilities are strongly related to the symmetries
of the material they characterize: for instance, even-order susceptibilities
(X(Q), @b, ) have to vanish for centrosymmetric crystals while odd-order
susceptibilities (X(l), X3, xO), ...) have not to.
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Figure 2.1: Example of nonlinear optical processes involving three and
four photons. a) Spontaneous Parametric Down-Conversion b) Spontaneous
Four-Wave Mixing.

Nonlinear optical processes can be viewed as scattering events between
photons, mediated by the nonlinearities of the optical material, that couple
the input and output fields (Figure 2.1).

The energy and momentum of the input and output photons have to be
conserved because, throughout the process, the material does not exchange a
net amount of energy or momentum with the fields (hence, the term paramet-
ric process). The conservation of energy naturally translates to a condition
on the frequencies of the photons involved: the sum of the angular frequen-
cies of the output photons has to equal the sum of the angular frequencies

of the input photons.
Yoown= Y wy (2.1.3)

n=input n=output

The conservation of momentum translates on the requirement that the sum
of the input wavevectors has to equal the sum of the output wavevectors.

> k= > kn (2.1.4)

n=input n=output

This last condition is also known as phase matching and it is essential for
the efficient generation of fields by nonlinear effects. Phase matching is not
straightforward to obtain because, due to the dispersion in optical media, the
wavevectors will not match, generally. For instance, in the case of Second-
Harmonic Generation, a field at angular frequency 2w is produced from two
fields at angular frequency w. While obviously the energy conservation con-
dition is fulfilled (2w = w + w), the momentum conservation requires that

k(2w) = kl(w) + kz(w) (2.1.5)
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Figure 2.2: a) Level scheme of Parametric Down-Conversion. b) Pictorial
frequency-axis representation of Parametric Down-Conversion.

where ki(w) = ko(w) = wn(w)/c and k(2w) = 2wn(2w)/c. Now, assuming
parallel propagation, the phase matching condition requires that n(2w) =
n(w) which is not usually the case. In practice, phase matching is obtained
by carefully choosing the orientation of the nonlinear crystal, when they
are birefringent, and by choosing the direction of propagation of the fields
involved in the nonlinear process.

2.1.2 Parametric Down-Conversion

One important () nonlinear process that is often encountered in nonlinear
optical experiments is Parametric Down-Conversion (PDC). The classical
process involves two input fields, the pump and the signal fields, oscillat-
ing at angular frequencies w, and wy respectively; these two fields interact
in a nonlinear medium to produce a third field, called idler, at a third fre-
quency w; = wp — ws. For obvious reasons, the classical process is also called
Difference-Frequency Generation. If placed on a frequency axis, we see that
ws and w; will lay at symmetric positions with respect to half the pump
frequency w,/2 (Figure 2.2-b):

Ws — Wp/2 = wp/2 — w; (2.1.6)

When described quantumly, the process can be viewed as a pump photon
at frequency wj, being annihilated to produce a pair of photons (signal and
idler) whose frequencies add up to the pump frequency (Figure 2.2-a). When
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the pump spontaneously annihilates, the process is called Spontaneous Para-
metric Down-Conversion (SpPDC); when a photon at angular frequency ws
stimulates the creation of a pair, the process is called Stimulated Parametric
Down-Conversion (StPDC).

If we call &;, al and d;f the creation operators for the field oscillating
at frequencies wp, w, and w;, under phase-matching conditions, the relevant
Hamiltonian that describes PDC is the following

1 1
_ At A L AT A - . "TAA _
Heno = hwy (@yay + 5) + hws (@las + 5) + hwi(@,0; + 5)+ 2.17)

where ¢ is a coefficient that takes into account the efficiency of the process
and it depends on the nonlinear susceptibility (2. The last term of the
equation is responsible for the nonlinear coupling of the three fields and
it can be obtained by applying perturbation theory of quantum mechanics
to the quantized Maxwell’s equations for fields propagating in media. The
complete derivation is out of the scope of this work, however we refer the
reader to Chapter 22 of [249] for further details.

By taking the exponential of eq. (2.1.7), the quantum evolution operator
for the PDC interaction can be obtained:

Uppe = o—ihu(alala,+asaiaf) (2.1.8)
where u is proportional to g and to the interaction time.

When a very strong coherent beam is used to pump the process, the a,
operator can be replaced with a complex number « that takes into account
the phase and amplitude of the beam. This replacement can be performed
because &IT) |}, =~ o |a),, when o > 1. Therefore, the PDC operator takes
the form

Z/A{PDC ~ e—ihu(a&léi-‘ra*&sdi) (219)

When the above operator acts on a signal-idler vacuum and on a coherent
pulse, i.e. without a field stimulating the nonlinear process, the following
series is produced

2
Upnc [a), [0),10); = |a),, (10}, + 7 [1), 11); + % 2)412); +---)  (2.1.10)

where usually v < 1. It is seen that most of the times the signal and idler
fields remain in the vacuum state, while a small number of times a coincident
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Figure 2.3: a) Level scheme of Degenerate Four-Wave Mixing. b) Pictorial
frequency-axis representation of Degenerate Four-Wave Mixing.

pair of photon is produced. If |y| is indeed much smaller than 1, then the
higher order terms can be neglected. This is usually the case when the
nonlinear process is pumped with a continuous-wave laser, but the higher
order terms may not be neglected when a pulsed laser is used or when the
nonlinear process occurs in a confining optical cavity.

2.1.3 Four-Wave Mixing

An example of third-order nonlinear process is Four-Wave Mixing (FWM).
Here, three fields combine together in a nonlinear material to produce a
fourth field at a different frequency. In particular, we will focus on the par-
ticular case in which two of the input fields have the same angular frequency,
which we will call pump frequency w,. The other input field is then called
stgnal, while the produced field is called idler and these two fields oscillate at
angular frequencies ws and w; respectively. When two fields have the same
frequency, StFWM is often called Degenerate Four-Wave Mixing (DFWM).

From the conservation of the energy, eq. (2.1.3), it is straightforward to
notice that the produced signal and idler frequencies will lay symmetrically
with respect to the pump frequency (Figure 2.3-b).

Ws — Wp = Wp — W (2.1.11)
Phase matching analogously becomes

2%k, = k, + k; (2.1.12)
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When described quantumly, the process annihilates two pump photons to
produce a pair of signal and idler photons (Figure 2.3-a). Again, if there
is no stimulating field at ws the process is called Spontaneous Four-Wave
Mixing (SpFWM), while it is called Stimulated Four-Wave Mixing (StFWM)
otherwise.

Analogously to PDC, the relevant quantum operator that describes the
annihilation and creation of photons during FWM is the following

Uppwy = ¢ ((@p)?alal+(a})?asa:) (2.1.13)
where the second power of the pump operator comes from the fact that we
have two degenerate fields, while the v coefficient has the same meaning as u
for PDC, that is, it is dependent on the third-order nonlinear susceptibility
x® and to the interaction time. Again, when the pump field is a strong
coherent beam, the pump operator can be replaced with a complex number
« and the operator will reduce to the same form of the PDC operator

U = e~ (0?8381 (") a50) (2.1.14)
producing a series analogous to eq. (2.1.10) when the operator acts on the
signal and idler vacuum.

2.2 Quantum states of light

2.2.1 Second Quantization

The fundamental concept on which the theory of Quantum Optics is based
is the Second Quantization of light. Here we outline very briefly the stan-
dard quantization procedure that leads to the definition of the photon ladder
operators and notable quantum states of light, such as the photon number
states, that are used throughout the rest of the thesis.

The standard procedure for the Second Quantization of light expresses
the classical electromagnetic fields, as described by Maxwell equations and
through the scalar and vector potentials ¢ and A, in the form of a harmonic
oscillator, which is then assumed to be quantized.
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Classically, electric and magnetic fields EZ and B are governed by Maxwell’s
equations (in vacuum):

V-E=0
V-B=0

_ 0B
VXE=-%

VXBZ/L()&()%

(2.2.1)

where €y and pg are the vacuum electric permittivity and magnetic perme-
ability.

By the properties of vector calculus, the Maxwell equations can be ex-
pressed in terms of the scalar and vector potentials ¢ and A, by exploiting

the following relations
B=VxA
(2.2.2)

E=-V¢- 4

that also hold for any other pair of potentials (¢, A’) related to (¢, A) by
the following gauge transformation:

{A =A'-Vx (2.2.3)

o)
¢ =19+ 5

where x is an arbitrary scalar function of position and time. We exploit this
freedom to choose a vector potential A such that

V-A=0 (Coulomb gauge) (2.2.4)

This choice and relations (2.2.2) allow to rewrite the Maxwell equations
in the following form:

{W) =0 (2.2.5)

~V2A+ 594 =0

where the second one is a wave equation for the vector potential A. As
such, the vector potential oscillates in time and in space sinusoidally, as an
harmonic oscillator. More formally, we consider now a cubic cavity of side
L, with periodic boundary conditions, in which the field A can oscillate.
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In general, the field will be described by a superposition of modes that can
oscillate in the cavity as:

A(’I‘,t) = Zek,)\Ak,)\(r;t) (2.2.6)
kA

where A = 1,2 is the index associated with the polarization of the modes, k
is the wavevector associated with the mode and ey ) is the unit vector that
takes into account the polarization of the field. From the periodic boundary
conditions it follows that

_ 2mmy _ 2mmy _ 2mm,

ko= (kokyks), ko= =70 ky= b, ko= (2.2.7)

where m,, (o = x,y, 2) are integers. Each of the modes A(r,t)g x is inde-
pendent of the others and it separately solves the wave equation. Moreover,
the dependences on space and time can be separated.

Without performing the whole derivation, the final solution is expressed
as

Ap(r,t) = Ap e WRTRT 4 Ax | etivnt=ikr (2.2.8)

where wg, = c¢/k is the frequency associated to the wavevector k. From
the previous expression it is possible to derive the electromagnetic fields
associated to each mode (k, \):

E = (A e—iwkt—i-ik:"r — AF e—i—iwkt—ik'r
kAT k(A re " ke ) (2.2.9)
Bk,)\ — Zk:(Ak)\e_wkt—Hk'r . Al*c )\e+zwkt—zk~r)
and of the associated energy
Ek7,\ = 60L3w]2€<Ak,7)\A;;7)\ — AE,\Ak,)\) (2210)

It is left implicit that the polarization of the fields follows the usual rules of
plane-wave propagation.

The canonical Second Quantization is performed when it is assumed that
the vector potential A is actually a quantum operator:

A(r,t) — A(r,t) (2.2.11)
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In particular, each of the modes Ay is an independent harmonic oscillator,
and each of these modes is then quantized. The substitution formally reads

{Ak,A — (h/2e0L3wi ) 2ay (2.2.12)

kA T (h/QGOLSWk)I/%L,A

where ag ) and &L y are the destruction and creation operators of the now
quantum harmonic oscillator associated to the mode (k,\).

These ladder operators are analogous to the operators of the quantum
harmonic oscillator and they share the same properties. The canonical com-
mutation relation is expanded to take into account the independence between
different modes of the cavity:

[ &L/,,\/] = Ok, k' OA N (2.2.13)

and the Fock states for the mode (k, A), that form a complete basis for that
mode, are defined in terms of the ladder operators

Ak M) = /T [Py — 1)

A (2.2.14)
QL,A [ng) = \/m |nex + 1)

More in general, the basis vectors of the field comprising all the modes of
the cavity will be given by the tensor product of the basis vectors associated
to the individual modes

T0key 15 Mhey 25 Mo, 1> Men, 25+ - ) = [Ny 1) Mkey 2) [Mkn 1) [Mep2) -+ (2.2.15)

while the Hamiltonian of the whole system is expressed in terms of the Hamil-
tonians of the single systems

A

. o 1
H = Z/HkQ\ = Z hwp (a};M\ak,,\ + 5) (2.2.16)
B T

The formalism of the quantum harmonic oscillator is a well known topic
of Quantum Mechanics and it will not be further reviewed here. The topic
is covered by a number of textbooks, among which we cite [252, 253].

From now, until stated otherwise, we will focus our attention to a single
mode of the electromagnetic field. We will assume that all the other modes
are in the vacuum state, so that we can simplify the notation: with the
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symbol |n) we will now represent the field of the single mode (k;\;) to be in
the number state n, retrieving the familiar notation of the canonical quantum
harmonic oscillator:

(&L 20" ahn
) = | Oy 1 O] = 20 o) — ) = ()

10)

(2.2.17)
We will refer to states of light described by this kind of wavefunction as
single-mode states.

Other useful operators that can be used to calculate important properties
of quantum states of light are the field operators. They are obtained from
A using the same relations that connect the classical electromagnetic fields
and the vector potential. For a given mode of the cavity we have

n!

E(r,t) = E*(r,t) + E~(r,t) (2.2.18)

where R o '
E+(T, t) —e (hw/260L3)1/2defzwt+1k:-7'fwr/2
E— (T, t) —e (m/2€0L3)1/2d’f6+iwt—ik~r+i7r/2
These two operators are known as the positive frequency and negative fre-
quency field operators. The whole electric field operators will be given by
the usual sum over all the possible modes of the cavity expressed as in the
previous equations.

Analogously, for the magnetic field we have operators with very similar
forms:

(2.2.19)

A A

B(r,t) = BY(r,t) + B~ (r,1) (2.2.20)

with R S '
B+(’I",t) —kxe (h/QeowLii)1/2d671wt+zk-rfm/2

B~ (r,t) = k x e (h/2equwL?)/2afetiwt=—ikrtin/2

As a final consideration, in the case of the quantization in the cube cavity,
the polarization relation between the field is fixed by the fact that the modes
are plane waves; this also sets the relations between the amplitudes of the
magnetic field and of the vector potential operators. As such, it is customary
to consider only the scalar part of the electric field operator, dropping the
pesky square root factor that sets the amplitude of the electric field. Hence,
a convenient expression to which the electric field operator reduces is

(2.2.21)

A ~ ~ 1 . 1 )
E(r,t)=E@,t)" + E(r,t)” = Eae*lf + 5&Te“ﬁ (2.2.22)
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where £ = wt — k - r + m/2 captures the spatial and temporal dependence
of the field operator and where it is intended that the original vectorial field
operator is given by

E(r,t) =2e(hw/2¢ L) 2 E(r,t) (2.2.23)

The quadrature operators X and Y are naturally defined as

gt al
2 (2.2.24)
}A/, _ a —.a
21
and the scalar field operator can be rewritten equivalently as
E(¢) = X cos€ + Vsiné (2.2.25)

2.2.2 Notable states of light

Here we will briefly introduce the formalism used to describe three impor-
tant kinds of light that can be frequently encountered during experiments
of quantum optics: number states, chaotic light, coherent light. Another im-
portant kind of light, with peculiarly quantum properties, is squeezed light,
but it will not be recalled here.

Number states

Number states are those states of light for which the field wavefunction is
exactly equal to a Fock state. In the single-mode formalism introduced at the
end of the previous section, these states are simply described by the simple
expression

) = |n) (2.2.26)

Despite the simple definition, these states possess some peculiar character-
istics that are quite different with respect to the ones of classical fields. In
particular, whenever the number of photons of these states is measured, the
outcome is known precisely

(n) = (n|a|n) = (n|a’aln) =n (2.2.27)

where we introduced the number operator 7 = afa. The measurement is
precise in the sense that there is no variation in the outcomes of repeated
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measurements, since the standard deviation of the measurement is equal to
Z€ro:

(An?) = (n*) — (n)? = (n|An|n) —n®=n? —n?>=0 (2.2.28)

The probability distribution of finding m photons in a number state |n) is
obviously the Kronecker delta:

P(m) = 6,m (2.2.29)

On the other hand, the expectation value of the electric field is equal to
zero for any value of £
(E) =0 (2.2.30)

and its uncertainty is equal to

«AEV>=;(n+;> (2.2.31)

When the field is represented in terms of the quadrature expectation
values (Figure 2.4), number states can be represented as an infinitely thin
circle centered on the origin, regardless of the value of €. In other words, a
perfect knowledge of the field amplitude is paired with a complete lack of
knowledge on the phase of the field.

Coherent states

Coherent states are often considered a good representation of laser radiation.
Indeed, as we will see in the following, their characteristics are very close to
the ones of the coherent light described by classical theory. They also give a
rather insightful picture of the origin of the shot noise in coherent beams of
light.

The coherent state is defined in terms of the Fock number states as

—62WP§:Vth (2.2.32)

where « is a complex number that indicates the amplitude and phase of the
field. Equivalently, the coherent state can be defined as the eigenstate of the
destruction operator a, having eigenvalue «:

ala) = ala) (2.2.33)
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Figure 2.4: Quadrature representation of a number state. There is no uncer-
tainty in the amplitude of the field, but complete uncertainty on its phase.
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The two definitions are equivalent and they can be derived from one another.

The mean number of photons of the coherent state (n) is equal to |a|?,
as it can be easily verified by the direct evaluation of (n) = (a|n|a). At
variance with the number state, the uncertainty in the number of photons
of the coherent state is now grater than zero:

An =/(n) = |of (2.2.34)

As the uncertainty scales sublinearly with the mean number of photons of
the coherent state, it becomes less and less important as |a|? increases. This
concept can be captured by the Signal-to-Noise Ratio (SNR):

SNR - 20 - L (2.2.35)

(n) (n)

And the analogy with the SNR of a classical coherent beam affected by shot
noise is clear

AT 1
SNR=—=—= (2.2.36)
I VI
The probability distribution of finding n photons in the coherent state «
is the Poisson distribution

P(n) =e ™ < (2.2.37)

n!

Another convenient representation of the coherent state is given in terms
of the exponential of the operator a:

o0
o) = el 3

n=0

~ n
(a?‘j) 0) = e =31l o) = e2d™ =" gy (2.2.38)
where the last equality has been obtained thanks to the Baker-Campbell-
Hausdorff relation. The operator that multiplies vacuum in the previous
expression is also called displacement operator, and it is often indicated with
D(a).

With the use of the properties of the displacement operator, not given
here, it is easy to derive a series of properties of the coherent state that
clarify the meaning of the complex number «. In fact, the expectation value
of the scalar field operator is given by

(E) = (a| E(€)|a) = |a|cosE — 0, 0 =arga (2.2.39)
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Figure 2.5: Quadrature representation of a coherent state. The circle repre-
sents the spread of a gaussian wavefunction.

highlighting the role of arg « as the phase of the field.

The uncertainty on the quadrature operators, which gives a measure of
the horizontal and vertical spread of the wavefunction in the quadrature
space, has the same value irrespectively of the value of a:

(AX) = (AX)?) =
(2.2.40)
(AY)? = (AV)?) =

fel Ml N

and it can be represented as a gaussian wavefunction displaced from the
origin by the amount « (as seen pictorially in Figure 2.5). From the picture
it is now evident that the displacement operator does indeed what its name
suggests: it displaces the vacuum field by the complex number «; the vacuum
field is indeed a coherent state, since it is a trivial eigenstate of the destruction
operator with zero eigenvalue: @ |0) = 010).
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Chaotic light

The light of a beam is said to be chaotic when it is given by the super-
position of fields produced by a large number of independent emitters; this
uncoordination is the cause of the peculiar statistical properties of this kind
of light.

The number of photons found in a chaotic light beam follows the geo-
metric distribution:

Pn) = (1+<Zi:)"+1 (2.2.41)

The distribution is the consequence of the Plank law, for which chaotic light
is also called thermal light, that affirms that the probability to exite n photons
in a cavity at temperature 7T is

e—(n+1/2)hw/kgT
- S e (1)) /kpT

P(n) (2.2.42)

where kp is the Boltzmann constant. Consequently, the average number of
photons (n) found in a beam of thermal light is given by

1
hiw

poma iy (2.2.43)
kT

(n) =

While the coherent state is a coherent superposition of photon number
states, chaotic light is, instead, a statistical mixture because the emitters are
incoherent. As such, the state of chaotic light will be given in terms of a
mixture of coherent states [254], or Fock states, as for the density operator

A

P
p= Z P(n)|n)n| (2.2.44)

The uncertainty in the measured photon number is given given by
An? = (n)? 4 (n) (2.2.45)

where the additional (n)? term indicates that the noise of thermal light is
higher than for coherent states.

When the variance of the number of photons for a state is equal to (n),
the state is said to be Poissonian; if it is higher or lower than (n), it is said
to be super-Poissonian or sub-Poissonian, respectively.
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2.2.3 Frequency and time dependence of ladder operators

In this section we will introduce frequency- and time-dependent creation and
destruction operators as they are a useful instrument to describe and under-
stand the behaviour of light in certain situations in which the field cannot be
considered confined in an optical cavity. As we will see in Paragraph 2.5.3,
for instance, the Franson experiment can be understood in terms of these
operators, and the resulting picture will be easier to understand.

In a closed cavity, only a discrete set of modes is able to oscillate (eq.
(2.2.8)) and each of these modes corresponds to a quantum oscillator. The
general state for single-mode light in this scenario is given by a superposition
of states across all the number states associated with the mode.

1) = com )y, (2.2.46)

where k is the discrete label that identifies the mode. When the field propa-
gates in free space the picture is analogous, but now the possible modes form
a continuum. The frequency-dependent ladder operators are the extension of
the ladder operators of the cavity modes to the continuous case. Instead of
having a discrete quantum number k, we will now have a continuous quantum
number w.

For instance, the superposition of single photons on different cavity modes
is translated to the continuous case according to

=Y el 100 — 1) = [pal@dslo)  (2247)

and a'(w) can be considered the operator that creates a photon on a field
mode that is infinitely extended in space (and time) and that oscillates ex-
actly at frequency w. We will indicate this state with |i(w)), the result of
the creation operator af(w) acting on the vacuum:

a, 10) = 1), —  al(w)[0) = [¥(w)) (2.2.48)

The commutation relations naturally extend to the continuum of modes,
as well

ks ah 1= kg —  [a(w),dl ()] = 6(w — o) (2.2.49)
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and from the previous expression it is easily demonstrated that the normal-
ization condition has to be

Wiy =Sleal? =1 — @) = [lu@)Pdo=1  (2250)

n

The time-dependent ladder operator can be approximately defined in
terms of the Fourier transform of a(w), so that the two operators form a
Fourier conjugate pair:

A 1 ~ —iwt A~ _ 1 A wwt
a(t) = m/a(w)e dw, a(w) = m/a(t)e dt (2.2.51)

from which it is easily seen that the field state has the dual description

0 = [ il @ dolo) = [poal @ a0y (@2252)

where
u(t) = \/1277 / p@)e “ du,  p(w) = \/12? / p()etde (2.2.53)

Finally, it is possible to estimate the average number of photons present
in the beam at time ¢ with the use of the mean photon flur operator, defined
as

f(t) =a(t)a(t) (2.2.54)

so that the mean photon flux will be given by its expectation value

F(t) = (/1)) = @' ()a(t)) = ()| (2.2.55)

For a detailed discussion about the time and frequency dependent operators
and about the detection of photons we refer to the theory of optical detection,
discussed again, for instance, in reference [2].

2.3 Field correlations

There are two kinds of correlations that are of interest when performing
optical experiments. Correlations between fields amplitudes, and correlations
between intensities. This section discusses these two kind of correlations both
for the classical and quantum cases.
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2.3.1 First-order correlation function

First-order correlations are the ones that involve field amplitudes. These
correlations give rise to direct interference effects.

In general, we can define a function that measures the degree of first-
order correlation of a field at two different space-time points; the study of
this function can give important information about the behaviour of light
inside devices that exploit interference between fields. This function, called
first-order correlation function is a normalized expression that measures the
extent to which two fields are capable of interfering with each other.

The first-order correlation function for classical fields is defined as

(E"(r1,t1) E(ra, 12))
V(E*(r1,t1) E(r1, 01)) (E* (12, t2) E(12, t2))

where the angled brackets indicate the expectation value of the inner quantity
over a large number of realizations of the same experiment. The brackets
disappear if the fields are deterministic, but here we may deal also with
chaotic light that is described classically with the mathematics of the random
process.

The most general definition of the first-order correlation function includes
the polarization and the direction of propagation of fields, but here we will
assume co-polarized and co-propagating fields for simplicity.

This first definition of the correlation function deals with different fields
in different space-time coordinates, but it is usual to encounter situations
in which the expression can be simplified. For instance, we may deal with
the same field at different space-time points, or with the same field in the
same point but at different time coordinates. In this latter case the g
function only depends on 7, t; and t5 and we say that we are considering the
time-correlations of the field. In writing the simplified first-order correlation
function we now leave implicit the dependence on 7:

(E*(t1)E(t2))
VIE* () E(t)) (E*(t2) E(t2))
If the field is stationary, the correlations will depend only on the time differ-
ence T =ty —t1 and not on the absolute times ¢; and ts; this is the simplest
case and the definition of first-order correlation function reduces to
Ert)E(t+ T
W) = OB+ )
(E*(t)E(1))

g(l)('l“l,tl; T2,t2) = (231)

g(l) (t1, t2) =

(2.3.2)

(2.3.3)
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As it is evident from this last expression, the first-order correlation function is
a normalized measure of how much the field E would constructively interfere
with a delayed copied of itself.

From the mathematical properties of the ensemble average it is possible
to derive the following properties for g(l)(T)

gM0)=1 lim ¢M(r) =0 (2.3.4)

T—00

The definition of the first-order correlation function for quantum fields
is analogous to its classical counterpart, where the expression of the field
amplitudes are replaced with the quantum operators defined in Paragraph
2.2.1.

A

(B (ri, t) EF (rg, ta))
VE= (i, ) EF (1, 1) (B (12, 12) EF (v, 12))

gD (ry s ro,ty) = (2.3.5)

and the simpler version for stationary fields is

W () — (E-()E*(t+7)
g7 (1) = (0B 0) (2.3.6)

Expressing the last expression in terms of ladder operators one gets
Sy (i@t + 7)
(@t (t)a(t))

where the time dependence follows the discussion of Paragraph 2.2.3. The

previous expression has the same properties (2.3.4), similarly to its classical
counerpart.

(2.3.7)

2.3.2 Second-order correlation function

As mentioned, the second-order correlations are those that happen between
field intensities. Some striking consequences of the second-order correlations
are discovered when, for instance, single photon states are sent to the input
of a beam splitter, as will be seen in Paragraph 2.4.3.
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Analogously to the first-order correlation function, a second-order corre-
lation function can be defined, as follows, for classical fields:

(Ex(r1,t1) By (ro, t2) Ey(r2, t2) Eq (11, 1))
(Eg(r1,t) Ea(r1, 01))(Ey (12, t2) Ep (12, £2))

G (ristis e to) = (2.3.8)

where we still assumed co-propagating and co-polarized fields; we also have
now two indexes, a and b, that label which of two field modes are considered
for the correlations. When the two modes are different the function is named
second-order cross-correlation function; when they are the same, we have the
second-order auto-correlation function.

Similarly to the previous paragraph, the expression of 9(2) can be simpli-
fied when we consider the same spacial point r for the two fields and when
we assume stationarity, so that only the time difference 7 = t5 — t1 will be
relevant:

_ (Eg(OEG(t+7)Ep(t + 1) Ea(t))

)
T) = 2.3.9
9007 = T B0 B ) (B D ED) (239
The second-order correlation function can also be given in terms of intensities
(2) (L) Ip(t + 7))
2.3.10
N ADITAGY (2:310)

where the intensity is averaged over the optical cycle. Again, from the prop-
erties of the ensamble average, the following properties hold for the second-
order correlation function

1< g2(0) <
0<g®(r) <g®(©0) T#0

o

(2.3.11)

which, however, hold for classical fields only.

The quantum version of the second-order function is obtained when the
amplitudes are replaced with field operators. We show only the most sim-
ple version of it, where the replacement to be done in eq. (2.3.8) is now
straightforward:

_ B OB 0B (4B ) 2312
| (Bx (B2 O)E; (0 F; (0)

Notice that now the order of the operators is important since, in the case of
the auto-correlation function, the £ and E~ operators do not commute.
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When ladder operators are used instead of the field operators, this other
expression is obtained

(2.3.13)

where a(t) and b(t) are the field destruction operators of modes FE,(t) and
Ey(t) and, again, they commute only if a and b are different modes.

In the case of quantum fields, the ¢(®)(7) function is a measure of the
likelihood that two photons can be detected with a 7 time delay. When
9(2)(0) > 1 we say that the light is bunched because the probability of de-
tecting two photons at small time intervals will be higher than for longer time
intervals. For instance, this is the case of thermal light, for which ¢(2) (0) =2.
On the other hand, if g(®(0) < 1 light is called antibunched, and the prob-
ability of detecting photons at small time intervals will be small. This is
particularly significant, because only quantum states of light can feature an-
tibunching. In particular, ¢(® values smaller than 1 /2 cannot be explained by
classical theories of light. Coherent light is an example for which g(® (1) = 1,
and therefore the probability of detecting a second photon is not dependent
on the time elapsed from the previous detection.

2.4 Devices

Here we will describe three important components used in optical experi-
ments, the beam splitter, the Mach-Zehnder interferometer and the Hanbury
Brown and Twiss interferometer. We will also focus on the importance of
the g™V and ¢ functions in the description of these devices.

2.4.1 The beam splitter

The beam splitter is a device that couples two input light modes and two
output light modes (Figure 2.6). In general, the power incident on the first
input mode of the beam splitter, as the name of the device suggests, is split
between the two output modes, and the same is true for the other input. If
we assume that no losses are present, the input-output relations of the the
beam splitter can be described by 2 X 2 matrix, U, that has to be unitary
as imposed by the conservation of the energy.
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Figure 2.6: The beam splitter.

The classical description of the beam splitter involves the field amplitudes
at the input and output of the device and is summarized by the following

equation
Es\ Ei\ (T R\ /[(E:
(F)-e(2)-(e 7)(E) e

where R, R/, T and 7' are complex numbers. The beam splitter matrix U
has to be unitary, so its coefficients must fulfill the following equations:

T =Te", R =ReP

R =Re™, T =Tée" (342)
where R and T are real, and where
R+T?=1
N (2.4.3)
R*T"+R'T*=0

When R =T = 1/4/2 the beam splitter is said to be balanced or, equiv-
alently, that it is a 50:50 beam splitter, because the power at either of the
input modes is split equally between the output modes. The relations (2.4.3)
do not impose a unique choice of the phases «, 5, v and §, but an infinite
set of matrices can describe a balanced beam splitter; among these matrices
two common choices are

1 /1 1 1 (1 4
Ups = ﬁ (1 _1) Uns = ﬁ (Z 1) (2.4.4)
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Unless otherwise specified, we will use the second matrix when modeling the
balanced beam splitter.

When the beam splitter is described quantum mechanically, the same
above matrices relate the ladder operators for the input and output fields
rather then the field amplitudes, as in

ot K o
as\ (T R ap\ aq
)= (e 7) () = () (249

where R and T still have to fulfill the unitarity conditions (2.4.3). Replacing
the ladder operators with the field operators leads to the following equivalent
result:

{E3(§) =TFE (£ 4 a) + REy (€ + B) (2.4.6)

E4(€) = RE1(£+7) + TEx (€ +9)

While the equations for the classical and quantum description of the beam
splitter look formally very similar, the overall picture is quite different, as it
will be detailed later, in Section 2.4.3. Before discussing these differences,
we will first give the formal description of the Mach-Zehnder interferometer.

2.4.2 The Mach-Zehnder interferometer

The Mach-Zehnder interferometer is schematized in Figure 2.7. As it can be
seen there, the two input modes interact at a first beam splitter, they travel
two paths that are in general of different lengths and then they interact again
at a second beam splitter.

The unitary matrix Uy,,; describing the evolution of the fields between the
input and output ports for the Mach-Zehnder interferometer is the following

7-2 RQ €i¢1 0 7-1 Rl
Z/{mzi == ubS,Q ups ubs,l = <R2 7-2> ( 0 €i¢2> (Rl 7-1> B

4 . , , (2.4.7)
_ (ew%m +ENTIT, €2 TiRy + ewlan)

ENTIRy + €M RiTy € R1Ry + €T T

where for simplicity we chose @ = § and § = ~ for the individual beam
splitter matrices, and where U is a unitary matrix that describes the phase
shifts acquired by the fields as they propagate between the two beam split-
ters, so that ¢1 = kz1 = wt1 and ¢ = kzo = witsy, where £ and ty are the
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Figure 2.7: The Mach-Zehnder inteferometer.

times it takes the field to travel the two paths. Depending on the values
of 71, R1, T2 and Ry the maximum visibility of the Mach-Zehnder can vary
between zero and one. As it is seen in the description, the two beam splitters
can be different, in general, however if we assume equal and balanced beam
splitters instead, the Mach-Zehnder unitary matrix reduces to

1 [ eldr _ pid2 i(eid)l + ei¢2)
Unzi = 9 (i(@wl + €i¢2) el®2 _ cid1 (2.4.8)

Just like the beam splitter, the classical and quantum descriptions of the
interferometer have the same unitary matrices, but in the first case the input
and output field amplitudes are related, while in the second case the ladder
operators are related instead.

Es\ | Ea as\ [aa
enlt) Boly) oo

Experimentally, a quantity of interest is the intensity of the fields at the
output of the interferometer. In particular, by taking the squared absolute
value of the elements of the U,,; unitary matrix, one can determine the
ratios between the input and output intensities of the device. If we assume
no field at the second input port (i.e. E2 = 0 and E; = F) and we assume to
have a stationary field at the first port, we can easily arrive to the following
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equation that relates the input and output intensity:

I3 = (; — %cos(@ — ¢2))Il

L1 (2.4.10)
Iy = ( + - cos(¢1 — ¢2))I1
2 2
that holds for deterministic sinusoidal fields. When chaotic light is sent into
the device, a description in terms of the expectation values of the field is
more appropriate, and one arrives to
* 1 * * *
(Ei()Es(t)) = 7 (B" () E(t)) + (B (t2) E(t2)) + 2 Re(E™(11) E(t2)))
(2.4.11)
It is easily seen that the first two factors between parentheses are given by
the field traveling in the two interferometer’s paths while the last term, that
involves the product of the input field at two different time instants, is the one
producing the fringes at the output of the interferometer. With little further
manipulation of the expression, one can recognize the first-order correlation
function in the last term of the previous equation. If we assume stationary
fields we have
(Is) _ (Ei()Es()) 1

1
o = e — 2 T ared (2.4.12)

It is now apparent that the role of the first-order correlation function g(l)
is to give a normalized description of the direct interference effects that are
present in the interferometer. In general, whenever interference arises from
two fields, a first-order correlation function can be used to describe such
interference. In particular, the modulus | g(l)] of the function corresponds to
the maximum visibility of the fringes that will be obtained between fields at
the space-time points indicated in the function.

These considerations about the first-order correlation function apply to
both the classical and quantum descriptions of the Mach-Zehnder interfer-
ometer, after performing the usual substitution of the classical amplitudes
with the quantum operators.

2.4.3 The Hanbury Brown and Twiss interferometer

Let us go back now to the description of the behaviour of the beam splitter.
While the Mach-Zehnder interferometer provided an example of the use of the
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Figure 2.8: The Hanbury-Brown and Twiss inteferometer.

g function, the beam splitter provides interesting insight on the meaning
of g@.

Consider a single input mode (“in”) entering a beam splitter and its two
output modes (“T” and “R”), as detailed in Figure 2.8. Consider also two
detectors at the outputs of the beam splitter; classically, the detectors would
produce currents (i and ig) proportional to the intensity of the inpinging
classical fields (I and Ir); quantumly they would produce electrical pulses
when a photon is absorbed, a process that is proportional to the mean photon
flux f(t) = (a'(t)a(t)). When the two signals produced by the detectors are
multiplied together with a mixer, the signal obtained will be proportional
to the product of Iz and Iy, which is reminiscent of the numerator of the
second-order correlation function, as in eq. (2.3.10). This scheme is known
as the Hanbury Brown and Twiss interferometer [255], and indeed it can be
used to measure the second-order autocorrelation of an input field.

Indeed, from equations (2.3.13) and (2.4.5), it can be demonstrated that,
when the beam splitter is balanced, the cross-correlation function at the

(2)

output of the beam splitter g, .(7) is equal to the auto-correlation function

of the input field gi(i)in(T) = gg)T(T)
Let us consider a single photon at the input of the balanced beam splitter,
so that [¢), = A;rn |0); the input-output relations described above imply that

input state will be equal to the following output state

[Bowe = 5k + 881100 = Z=(11)r -+ 1)) (2.413)
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The quantum superposition of the output states implies that the photon will
be detected either at detector T or at detector R; the coincident detection
of two photons at the two detectors is not a possibility. This anti-correlation
of the photon state is reflected by the value of the second-order correlation
function that is equal to zero at zero time delay.

g?0)=0 (single photon) (2.4.14)

and we see that the field of a single photon is perfectly antibunched at zero-
time delay.

This is in contrast with the classical result, where the input field is split
equally on the two output paths and the detectors will produce equal cur-
rents proportional to half the input intensity. The classical result can be
described with the quantum formalism assuming that a coherent state of
complex amplitude « is present at the input of the beam splitter:

¥)i = la) = Din() |0) (2.4.15)

From the properties of the displacement operator it is possible to demonstrate
that at the output of the beam splitter, the output state is factorized:

A

Din(a) = D(B)rD(7)r (2.4.16)

so that
V) ous = P(B)TP(V)R[0) = |B)r V)R (2.4.17)

where f = Ta and v = Ra. The second-order correlation function of a
coherent state is then found equal to 1 when the beam splitter is balanced.

g2y =1 (coherent state) (2.4.18)

This same prediction would be made if a classical continuous-wave field was
used instead of the quantum coherent state.

More in general, the ¢ function depends on 7 (i.e. on the path lengths
between the beam splitter and the detectors). In the case of a single photon,
the ¢? function approaches 1 in the limit of large positive and negative
delay and it features a dip with minimum at zero time delay. The width of
the dip is determined by the coherence time of the field arriving at the input
of the detectors.
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When Fock states other than |1) are sent at the input of the beam splitter,
¢®(0) remains smaller than one, but it will increase following

g?0)=1- 1 (2.4.19)
n
Therefore, in this case, the value at zero time-delay of the second-order
wavefunction can be taken as a measure of the fidelity of the photon at the
input of the interferometer with the single photon Fock state |1).
In essence, the importance of the Hanbury Brown and Twiss interferom-
eter resides in its ability to measure the bunching properties of light.

2.5 Bipartite states

When the formalism of Quantum Mechanics was expanded to take into ac-
count the collective behaviour of more than one particle, its predictions were
considered wild and surprising. In particular, as the Einstein-Podolsky-
Rosen paradox [256] highlights, two distant particles can feature correlations
that cannot be predicted classically.

This section introduces a formalism to describe the time and frequency
correlations of two photon pair states in terms of continuous-mode opera-
tors introduced in Paragraph 2.2.3. Then, the time-energy entanglement is
introduced and discussed, followed by the description of the Franson inter-
ferometer, an instrument that can be used to test whether two photons are
time-energy entangled.

2.5.1 The biphoton wavefunction

Building on the formalism that described the frequency and time depen-
dences of ladder operators, here we introduce the quantum description of a
photon-pair state, whose correlations have no equivalent classical analogue.
In this section we will only describe the formalism for photons traveling in
distinct modes, as this is the case encountered in the following chapters of
the thesis.

The definition of the two-photon wavepacket is the following:

10, 1) = B, [0) = /OO /OO Blw,w)al (@) (W) dwde! |0)  (25.1)



64 CHAPTER 2. THEORETICAL BACKGROUND

where af(w) and bf(w) are the (commuting) creation operators that gener-
ate a field at frequency w on two different modes labeled a and b, while the
so-called biphoton creation operator P;rb creates the biphoton state. The
complex function S(w,w’) is the biphoto;z wavefunction, and it can be inter-
preted as the function that describes which are the frequency components of
the biphoton state. Given the basis modes a and b, the biphoton wavefunc-
tion keeps track of all the information needed to describe the state and the
correlations between the two photons. The wavepacket has to be normalized,
from which it follows that the biphoton wavefunction has to be normalized,

as well:
/ / (w, ) dwdw’ =1 (2.5.2)

and the relation is analogous to eq. (2.2.50).

The biphoton wavepacket can also be defined in terms of time coordinates
as

10, 1) //ﬁtt (b1 (¢') dt dt’ |0) (2.5.3)

where af(t) and b'(t) are the commuting creation operators that generate a
field at time ¢, and where §(t,t’) is still normalized, according to

/ / Bt t)*dtdt' =1 (2.5.4)

Just like for the creation operators themselves, the Fourier transform can
be used to obtain with a good approximation the time representation of the
biphoton wavefunction from its frequency representation and vice versa. In
particular, we may write

=5 / / B(w,w)e @) quy d’ (2.5.5)
™

so that

10, 1) //ﬁtt ()b (¢') dt dt’ |0) (2.5.6)

From the properties of continuous-mode operators, in particular the com-
mutation relation [a(t), af (/)] = 6(t—t'), it is also possible to derive the mean
photon fluxes for the single a or b modes in terms of the marginal density of



2.5. BIPARTITE STATES 65

the biphoton wavefunction:

ult) = @' (0a(e) = [I8E.0Fde

o (2.5.7)

5t) = B 0b(e) = [18¢ 0 ar

The use of these expression is particularly useful when one derives an

expression for the second-order correlation function in the case of two-photon

states. In fact, the cross-correlation function between the fields ¢ and b
becomes equal to

— ’ﬁ(tla t2) |2
fa(t1) fo(t2)
Instead, the autocorrelation functions for either beam a or b produces a zero

output irrespective of the values of ¢ and t9, as expected for a state that is
defined to have exactly one photon for each of the beams:

9 (t1, 1) (2.5.8)

92t 1) = gy (t1,12) = 0 (2.5.9)

The squared absolute value of the biphoton wavefunction is a quantity of
particular experimental significance, and it is called Joint Spectral Density
(JSD)

J(w,w') = |8(w,w)? (2.5.10)

The JSD is easier to measure with respect to the biphoton wavefunction. In
fact, in order to obtain the true biphoton wavefunction, the experiment has
to be able to distinguish the phase of the photons under analysis, while the
measurement of the JSD only involves intensities or, equivalently, photon
rates. In fact, it can be considered the extension to the two-photon state of
egs. (2.2.54) and (2.2.55) because

J(w,w') = (@' (w1)a(wr)b (w2)b(ws)) (2.5.11)

This can be exemplified when one considers what happens when the
biphoton wavepacket is filtered before detection. Suppose that Ry is the rate
at which photon pair states are produced. When the photons a and b are
sent to ideal single photon detectors the coincidence rate will be Ry. Now,
suppose that two filters centered at w; and we and with dw resolution are
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placed before the single photon detectors that collect photons a and b. The
total photon rate R; that reaches the detectors, given by

w1+0w/2  pwa+dw/2
/ J(w,w") dw dw' (2.5.12)

Ry 50 (w1, w2) = Ro/
wi—0w/2 Jwr—dw/2

will be smaller than the original one. However, if the resolution dw of the
experiment is much better than the fine details of the biphoton wavefunction,
the photon rate Ry s, (wi,w2) will approximately give the intensity of the
biphoton wavefunction at the point (wy,ws):

Rl,&u (wla WQ)
(6w)? Ro

The issue with this approach is that to have high enough resolutions, the
frequency filtering has to be highly selective, and this reduces dramatically
the pair rates that are detected past the filtering stage. The acquisition
times to obtain a complete JSD become rapidly unfeasible as the resolution
is increased.

A workaround to easily obtain the (complete) biphoton wavefunction ex-
ists when the photon pair is produced by a nonlinear parametric process, such
as in the case of Spontaneous Parametric Down-Conversion or Spontaneous
Four-Wave Mixing, for which the biphoton wavefunction for the spontaneous
nonlinear process is obtained in terms of the efficiency of the corresponding
stimulated nonlinear process. This approach, called Stimulated Emission
Tomography, is described in more detail in reference [257].

J(wy,we) ~ (2.5.13)

2.5.2 Time-energy entanglement

The biphoton wavefunction plays a key role in describing the correlations
present between the two photons of the pair, as evident, for instance, in
equation (2.5.8).

Indeed, the shape of the biphoton wavefunction determines whether or
not two photons are considered entangled. In particular, in this section we
will give the definition of time-energy entanglement and we will give the
definition of Schmidt number, a figure of merit typically used to quantify
the degree of entanglement that exists between two photons.

Time-energy entanglement can be considered the extension to the con-
tinuous domain of time-bin entanglement [23], already discussed in Section
1.2, where a superposition of well-separated time bins is replaced with a
superposition of a continuum of time modes.
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Time-energy entanglement

Time-energy entanglement occurs when two photons have a well-determined
value of their total energy, but an undetermined value of the individual
energies. If this is the case, the measurement of the energy of one photon
implies perfect knowledge of the energy of the other photon. The ideal time-
energy entangled state is described by the following expression

oo ~

) = / F(w)al (wo + w)b (wo — w) dw [0) (2.5.14)
—0o0

where [*° |f(w)|?dw = 1. Equivalently, the state can be expressed more

explicitly in terms of the biphoton wavefunction as

o0 [e.e]
W= [ e =)o — (1 +w2) @l (1) () der diz 0)
—00 J =0
(2.5.15)
More in general, the value of the total energy hwios will possess a given
degree of uncertainty so that the delta function of the previous equation will
be replaced by a function with a non-infinitesimal domain, as in the following
example

Blwi,wa) = S — exp (— (e Fen - 2w0)2) exp (—(WQ — wl)Q)
’ V2mo o_ 4% 402

(2.5.16)
where we assume that the uncertainty on the total energy o is much smaller
than the uncertainty on the photons’ individual energies o_. When looking
at the representation of this state, as in Figure 2.9, it is now evident that
there are strong correlations between the frequencies of the photons: if one
of the photons is found to have energy w,, then the other will be found in a
small range of frequencies Aw around 2wy — wy.

As the name suggests, time-energy entanglement possesses time-correlations

as well as energy correlations. This is seen by taking the Fourier transform,
eq. (2.5.5), of the biphoton wavefunction (2.5.16), that produces the follow-

ing expression:

B(t1,t2) = F{B(w1,w2)} =

1
S exp ( iwo(t1 + t2)

(i +t2)*  (ta— t1)2>
272 272

(2.5.17)
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Figure 2.9: Frequency representation of a time-energy entangled biphoton
state. The picture shows the real part of eq. (2.5.16), with wo =2, 04 = 1/2
and o_ = 3.

where 74 = 2/0y. This wavefunction is depicted in Figure 2.10. Small
uncertainty in frequencies become large uncertainties in time and vice versa
and the times of arrival of the two photons are strongly correlated: although
the arrival time of the single photon is not perfectly determined, the second
photon always arrives within a short time interval around the detection time
of the first one.

Time-energy entanglement is lost when the knowledge of the frequency
of one photon does not convey any information on the other photon. This is
the case when the biphoton wavefunction can be factorized into the product
of functions for the two different modes

Bwi,w2) = Ya(wi) 1p(w2) (2.5.18)

For example, eq. (2.5.16) becomes factorisable when the uncertainties o
and o_ become equal.

An example of such a factorized state is depicted in Figure 2.11. No
frequency correlations are present between the two photons. Regarding the
time dependent wavefunction, the Fourier transform of the factorized state
is the product of the Fourier transforms of the individual ~; functions and
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Figure 2.10: Time representation of a time-energy entangled biphoton state.
The picture shows the real part of eq. (2.5.17), with wy = 2, 7+ = 4 and
T =2/3.

hence no time-correlations are present, either (Figure 2.12).

B(t1,t2) = va(t1) W (t2), vi(t) = % /%(wi)e_w dw (2.5.19)

Schmidt decomposition

Although an infinite number of frequency (or time) modes are involved in
the energy-time entangled state, the degree of entanglement is limited. Here
we introduce a way to quantify the degree of entanglement of such state: the
Schmidt number.

It is well known that the degree of purity of a quantum mixture can be
obtained in terms of the coefficients of the expansion of the density operator
p over a basis of pure states {|1,),|}. If

p= an |n ) ¥nl (2.5.20)

the purity of the mixture is defined as the trace of the squared density op-
erator:

P=Tep> = (¥ul p°|tn) = Y _ i (2.5.21)

n
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Figure 2.11: Frequency representation of a factorized biphoton state. The
picture shows the real part of eq. (2.5.16), with wy = 2, o, = /2 and

o_=+/2.

Figure 2.12: Time representation of a factorized biphoton state. The picture
shows the real part of eq. (2.5.17), with wg =2, 7, = v/2 and 7_ = /2.
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Figure 2.13: Example of Schmidt decomposition. The modes on the right are
all factorized. The biphoton wavefunction on the left has Schmidt number
S =3.08.

and the purity does not depend on the chosen basis for the expansion since
the trace operation is invariant under unitary transformations. A similar
procedure can be exploited to define the degree of entanglement of a biphoton
wavepacket, that is based on the Schmidt decomposition of the biphoton
wavefunction [258, 259].

Let us consider a biphoton wavefunction of two frequencies [3(wi,ws).
It is always possible to decompose such a function into a superposition of
factorisable functions of variables w; and way:

Blwi,we) = chun(wl)yn(a)g) (2.5.22)

where the two sets {u,} and {v,} are orthonormal bases of the a and b
modes’ Hilbert spaces and where |¢,|? is the probability to find a photon in
the n-th factorized state. An example of such decomposition is pictured in
Figure 2.13.

The bases can be found in term of the biphoton wavefunction itself as
they are the solutions of the following integral equations:

[ Kl do’ = c2u(w)

(2.5.23)
/Kg(w,w')u(w’) dw' = Cv(w)

where the eigenvalues c% are a discrete set and K7 and Ko are obtained from

Blwi, wa):
Kio,w!) = [ Blu,wn)" (o, n) dion

(2.5.24)
K (w,w') :/5(w1,wl)/5*(w1,w/) duw
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If the original 8 function is factorisable, then it is always possible to find
a single pair of functions (u(wi),v(w2)) that factorizes 8. In this case the
decomposition is trivial and we have a single coefficient of the expansion
different from zero:

B(wi,ws) = p(wr)v(ws) (2.5.25)

If the biphoton wavefunction is not factorisable, a higher number of coeffi-
cients of the expansion will be different from zero. The Schmidt number is

defined according to
1

YonCh
If a single mode is present in the expansion, S takes the smallest possible
value of 1; as the weight of the higher modes of the decomposition increases,
the denominator of S will become smaller and the Schmidt number will
increase.

We also report another measure of the degree of entanglement that is
often used, the entropy of entanglement:

E=-> crlogy(cl) (2.5.27)

S = (2.5.26)

The same decomposition procedure can be performed for the time-dependent
biphoton wavefunction 3(t1,t2); the time and frequency biphoton wavefunc-
tions are Fourier transform of each other, and it can be demonstrated that
the coefficients of the expansions are the same for the two functions:

Blwi,wa) = ch,un(wl)yn(wg) > [(t1,t2) = chun(tl)yn(tg) (2.5.28)

n

where pi,(w) and g, (t) are Fourier transforms of each other, as well as v, (w)
and v, (t).

Purity of marginal biphoton states

Many quantum experiments require that quantum interference phenomena
between different photons, such as the Hong Ou Mandel effect [162], are
perfectly visible. This implies that the photons produced by different sources
have to be mutually indistinguishable.

Heralded single photon sources operate by emitting pairs of photons and
by detecting one of the two photons to herald the presence of the other
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one. In order to produce indistinguishable photons, however, no correlation
has to be present in the biphoton state before the heralding measurement is
performed. In fact, as described with the formalism of the density operator,
the state resulting from the detection measurement is equal to the marginal
state of the global density operator. If the initial biphoton state is correlated,
the resulting marginal state will be mixed. Using the Schmidt decomposition,
the discussion on the purity of multipartite states of Section 1.1 can be
expanded to the continuous variables case discussed here.

From the definition of the biphoton wavefunction (2.5.1) and from the
Schmidt decomposition of the biphoton wavefunction (2.5.22), we may write

=" cnlptn)|vn) (2.5.29)
where
ln) = / fon(@)at (@) dw [0),  |vm) = [ vm(@)bf (@) dw|0)  (2.5.30)

Then, the density operator associated to |¢) is given by

p= 10Nl = 3 cherm hn) V) bt (Vi (2.5.31)

n,m

The marginal states p4 and pp are given in terms of the partial traces of
the density operator p. Since {|uy)} and {|v,)} are orthonormal bases of the
individual photons’ Hilbert spaces, we may write

pa =T (9 = 3 ] (3 e o) ) el () 1) = Sl

l m,n
(2.5.32)
and analogously

pp = Tra{p} = leal* [vn)val (2.5.33)

The two marginal states p4 and pp are therefore mixtures unless only a single
coefficient ¢, is different from zero, that is, only if the original biphoton
wavefunction is factorized.

If two such mixtures are made to interfere at a beam splitter, the visi-
bility of the resulting Hong Ou Mandel dip is reduced, since photons on one
given frequency mode from the first source may interfere with photons on a
different frequency mode from the second source.
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Mach-Zehnder A Mach-Zehnder B

Figure 2.14: The Franson interferometer. The two photons emerging from a
source of time-energy entangled photon pars are sent individually to different
Mach-Zehnders interferometers. The Mach-Zehnders are unbalanced and as
the lengths of the arms are changed, the biphoton state exhibits nonlocal
behaviour.

2.5.3 The Franson interferometer

Time-energy entanglement was first proposed by Franson in ref. [260]. There,
he also proposed an instrument capable of detecting the nonlocal properties
of time-energy entangled states, and he demonstrated that these states can-
not be described with hidden-variables theories, violating an appropriate Bell
inequality.

The Franson interferometer, depicted in Figure 2.14, is composed of two
Mach-Zehnder interferometers through which each of the photons of the pair
travels. If the coherence length of the individual photons is much shorter than
the unbalance of the interferometer, they will not experience interference at
the output beam splitter, and a superposition state of the photon travelling
at different times will be produced, analogously to the time-bin qubit state
described in Section 1.1; the superposition is actually coherent as long as the
coherence of the global wavefunction is longer than the interferometers.

When coincidence measurements are performed on the photons that trav-
elled through the interferometer, three outcomes are possible, represented by
three equally spaced coincidence peaks as a function of the relative delay:
the central peak corresponds to the cases in which the photons both travel
through the short or long path of their respective interferometer, while the
lateral ones correspond to the cases in which the photons take different paths.
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Since the absolute time of emission of the pair is unknown, the two cases cor-
responding to the central peak are indistinguishable and they exhibit nonlo-
cal quantum interference effects, which depend on the sum of the phases of
the distant interferometers.

This scenario is analogous to EPR experiments [99, 256], where the time-
bin degree of freedom takes the place of polarization and where the phases
of the interferometers take the role of the angles of the polarizers used to
analyze the nonlocal state. As such, the modulated central peak produces a
nonlocal interference fringe analogous to the Bell fringe of EPR experiments,
violating any local hidden-variable theory.

In the original proposal by Franson, time-energy entangled photons are
produced by an atomic cascade. The two photons are emitted by the subse-
quent decay of an electron from an excited level to an intermediate metastable
level, and then to the ground state. The lifetime of the metastable level is
assumed to be much shorter than the lifetime of the excited level. As a
consequence, although the emission time of both the photons has large un-
certainty, comparable to the lifetime of the excited level, the second photon
will be emitted within a short time interval of the first, ensuring a strong
positive correlation on the emission time of the two photons of the pair. By
the same token, the energy uncertainty of the metastable level will be much
larger than the one of the ground and excited states: the total energy of the
pair will be well defined, while the individual energies of the photons will be
uncertain and anti-correlated. These features are at the core of time-energy
entanglement, as was discussed in the previous Paragraph 2.5.2.

Analogous correlations are produced, for instance, when the photon pair
is emitted by Spontaneous Four-Wave Mixing from microring resonators
pumped with a continuous wave laser: the total energy is well defined by
the total energy of the two annihilated pump photons, while the individual
energies of the signal and idler photons are uncertain due to the width of the
ring resonances.

In this section we will use the formalism of ladder operators introduced
in the previous sections of the chapter to describe the behaviour of a pair
of time-energy entangled photon pairs as it travels through the Franson in-
terferometer. We will first describe the evolution of the ladder operators
through the interferometers, followed by the description of the evolution of
the full biphoton wavepacket. Then we will discuss how the biphoton wave-
function is analyzed in terms of relative time of arrival of the photons, and
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finally we will consider the nonlocal interference effects and the requirements
for their observation.

Evolution of creation operators

Consider the scheme of the Franson interferometer shown in Figure 2.14. A
pair of unbalanced Mach-Zehnder interferometers (MZI) is used to analyze
the biphoton state produced by a source of time-energy entangled photons.
Each of the photons of the source, that we will label with a and b, is sent
individually to the two interferometers. The MZIs, labeled A and B, are
unbalanced and we call S, L4, Sp and Lp the short and long paths of MZI
A and B respectively.

As it was shown in the previous section, the two photon state can be
described in terms of the biphoton wavefunction 3(t1,¢2) and, in the case of
time-energy entanglement, the wavefunction is wider in the t; 4t direction
than in the ty — t; direction; assuming eq (2.5.17) as the expression for the
time-energy entangled photons, we impose 7 > 7_.

The effect of each MZI can be modeled, irrespectively of the shape of
B(t1,t2), by considering the evolution of the creation operators af(t) and
bT(t). Once we know the new form of these operators past the interferometers,
it will be possibile to understand how the biphoton state is evolved.

Consider MZI A. The lengths of the short and long arms are L4 and S4
and we assume that both the beam splitters have R4 and T4 coefficients.
We first apply the unitary transformations of each component of the Mach-
Zehnder to af. The beam splitter is modeled by equation (2.4.5) and we
get

Uns ad! () = Tadk(t) + Raal () (2.5.34)

where indexes S and L indicate the short and long paths of the interferometer
respectively. Then, we consider the propagation along the two arms

N N S
Uprop(SA)aL(t) = af(t +ts.4),  Lsa =
LC (2.5.35)
Uprop(La)aly(t) = al(t +tp,4), tra= TA
and finally we have the effect of the second beam splitter:
Unsal (t +ts1) = Tadl(t +ts1) + Raah(t +t
by (E+ E1) (04 t5) + Radi(t + t5,) (2.5.36)

1
Unsdl (£ + tr,1) = Tad}(t +tL1) + Radh(t + ts1)
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where indexes 1 and 2 indicate the two output ports of the MZI. The effect
of the whole MZI is obtained combining the previous expressions:

UMZLA(SA, LA)dT(t) = 7;%&];(75 + t57A) + Ri&; (t+ tL’A) +

; T (2.5.37)
+RaTaah(t +tsa) + RaTadal(t +tr a)
Of course, MZI A has no effect on bf(¢):
Unizr,a(Sa, La)bT () = b (t) (2.5.38)

The second MZI has an analogous effect on bf(t) as MZI A has on af(t):

Unzt,B(SB, Lp)bf(t) = T];B;(t +tsB) + Rngg(t +tr,B)+

ot ot (2.5.39)
+RpTrby(t +tsp) + ReTrb)(t +tL B)

and again
Unizi 3(Sp, L)l (t) = a' (1) (2.5.40)

where indexes 3 and 4 indicate the output ports of MZI B, while tg g = Sp/c
and t;, p = Lp/c.
Evolution of biphoton state

We can combine equations (2.5.37) to (2.5.40), to describe what happens
to the complete biphoton wavepacket. The output state |1oy4) is obtained
by applying the unitaries to the input state |¢i,) produced by the source of
entangled photons:

[Yout) = Uniz1,a(Sa, La)Unzi B(SB, LB) |in) (2.5.41)

with
|%in) ://B(tbtz)&t(?ﬁl)y(tz)dtl dtz |0) (2.5.42)

Due to the cross-products, we get a fairly long expression:

[Yout) = //5(t1,t2)(p1T,3 + plTA + pzT,:J, + p§,4) dty, dtz |0)
= [1,3) + [1,4) + |2,3) + [1h2.4)

(2.5.43)
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where the four p;fj operators represent the terms involving ports ¢ and j:

151T,3 = TATRal(t + ts,A)bL(t + ts,p) + RARBAL(t + tr A)bL(t +t1.5) +

+ TAR%al(t + ts.)bi(t +trB) + RATAAL (t +tr 4)b5(t + ts.B)
(2.5.44)

Pl = TATERpal(t +ts.a)bl(t + tsp) + RATeReal (t +tr,a)bL(t +tr5)+

+ ﬁTBRBCﬂ(t + t57A)IA)Z(t + tL,B) + RiTBRBdJ{ (t + tL,A)IA)Z(t + t57B)
(2.5.45)

Pl = TaARATRaS(t + ts A)Bi(t + ts,p) + TARARGaL(t + t a)bL(t + o p)+

+ TARARR L (t + tga)b(t + tr B) + TARATRAL(t + tr A)bh(t + ts.B)
(2.5.46)

P}, = TARATERpak(t + ts,)bh(t + ts 5) + TARATERpab(t + tr, )bk (t +tr,5)+

+ TaARATBRBG (t + g, A)bT (t + 1t B) + TaARATBRBGO (t + 1t A)b]L (t +tig B)
(2.5.47)

Let us consider only the first one of these expressions, eq. (2.5.44), i.e., let
us look at light exiting from ports 1 and 3; the behaviour for the other com-
binations of ports is analogous. First of all, we can simplify the expression
by assuming that all beam splitters are balanced (7 = 1/v/2, R = i/V/2).

- 1,. . . .
Ply = @i+ ts b3t +tsp) +ai(tH i b3+ ep)+ o

—aj(t+tsa)bh(t+trp) —al(t +tr.)bL(t +tsp))

and then, performing changes of variables inside the integral [ [ 5(¢1, t2)13173dt1, dta
we can rewrite [¢); 3) as

1
|1 3) = 1//(5@1 —tsa,ta —tsp)+ B(t1 —tsa,ta —tr )+

A (1 Vit
—B(t1 —tr,ate —tsp) — B(t1 — tr,a,ta — tr, B))aj (t1)bl(t2) dtrdts |0)
(2.5.49)
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Figure 2.15: Effect of two interferometers on a biphoton wavefunction. The
darker region represent the biphoton of time-energy entangled photons at
the input of the interferometer, while the lighter regions represent the output
wavefunction.

so that we can define a new biphoton wavefunction

1
B1,3(t1,t2) = Z(B(tl —ts A, ta —tsp) + B(t1 —tsa,to —tr )+
— B(t1 —tpa,ta —tsp) — B(t1 —tr A, ta — tr.B))

= %(55,5(751, t2) + Bs,n(t1,t2) — Br,s(t1, t2) — Brr(t1,t2))
(2.5.50)

The effect of eq. (2.5.49) is schematized in Figure 2.15: the original 5 wave-
function is split into four parts and it is translated in the (¢1,t2) space by
time intervals equal to the travelling time of the photons in the arms of the
interferometer.
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Figure 2.16: Coincidence rate as a function of time delay between detectors
1 and 3 if the biphoton function depicted in Figure 2.15 is produced by the
Franson interferometer.

Delay measurements

In real experiments it is often the case that the absolute time of emission of
the photon pair is unknown. In such cases it is possible to measure, instead,
the relative time of arrival of photons a and b by looking, for instance, at the
reaction times of detectors SPD 1 and 3 of Figure 2.14. Therefore, effectively,
the experiment will detect the rate of coincidences R, as a function of to —¢1.
Similarly to eq. (2.5.7), such rate is proportional to the marginal state of the
biphoton wavefunction along the t; + to direction. If we define 7 = to — 1
and to = (t1 + t2)/2 we have

P 2

R.(1T) = Ro /‘,B(to — %,to + 5) dtg (2.5.51)

where Ry is the rate of emission of pairs by the source.

The result of such a measurement for the biphoton state depicted in
Figure 2.15 is presented in Figure 2.16, where it is assumed that the four
parts of the biphoton wavefunction have a gaussian envelope and that their
overlap is negligible.
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Nonlocal effects

So far we did not see any nonlocal effect because we assumed that the overlap
between the different parts of the biphoton wavefunction is negligible. We
now assume that the unbalance of the two interferometers is the same but
for a small quantity for each of them, so that we can define the unbalance
times as
AtAZtA7L—tA,S=At+5tA, 0tg < Aty
Atp =t —tps = At +0tp, otp < Atp

We assume that the total time it takes light to travel in the interferometer
is much larger than the width of the biphoton wavefunction in the t; + ¢
direction (i.e. 74 > t; 1, with ¢ = A, B); at the same time we assume that
the width of the wavefunction along to — ¢1 is much smaller than the unbal-
ance time of the interferometers (i.e. 7 < At;). These two requirements
are equivalent to imposing that the coherence length of the single photons
is much smaller than the unbalance (L; — S;) and that the coherence length
of the whole wavepacket is much larger than the dimension of each inter-
ferometer (L;). When parametric processes are the sources of the biphoton
wavepacket, the last requirement corresponds to the coherence length of the
pump beam being much longer than the length of the MZIs.

Under these assumptions the biphoton wavefunction (i3 is better de-
scribed by Figure 2.17: there is now an almost complete overlap between
Bs,s and Br . We can now write

Bs,s(t1,t2) = B(t1,t2)

Bs,L(t1,t2) = B(t1,ta — At — dtp)

Br,s(t1,t2) = B(t1 — At — dta,ta)

Br.r(ti,t2) = Bty — At — 5t a,ta — At — 6tp)
where we implicitly assumed, without loss of generality, that tg 4 =ts 5 = 0.

The key point to understand the Franson interferometer follows by realizing
that, approximately, the following relation holds

ﬁL,L(tla tg) ~ B_iwAte_iw(étA“";tB)IBS’S(tl, tg) (2554)

(2.5.52)

(2.5.53)

In fact, after replacing iwdt /g with ¢4/p we have

[ih1,3) = i(WS,LHWL,SHewm//ﬁ(tl’h)(Hei(d)ﬁ%))d*(tl)wt?)) 0)
(2.5.55)
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Figure 2.17: Effect of a Franson interferometer on a biphoton wavefunction.
The darker region represent the biphoton of time-energy entangled photons
at the input of the interferometer, while the lighter regions represent the
output wavefunction.
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and we see that the central part of the wavepacket is a superposition of two
B functions that depend on the configuration of both the interferometers (i.e.
®A + ¢p). In particular, we have that

|B1,3(t1, t2)]* = %6(|55,L(t1,t2)|2 +1BL.s(t1, t2)?) +

¢A+¢B)
2

) (2.5.56)
+ Elﬁs,s(t1,t2)l2czos2 (

When considering the coincidence rates as a function of time delay R(7),
we see from egs. (2.5.51) and (2.5.56) that the experimental setup will see
three equally spaced peaks: the central one corresponds to wavefunctions S, S
and L, L; the two lateral ones correspond to S, L and L,S. The intensity of
the central peak R, will vary cosinusoidally with ¢4 4+ ¢p between zero and
four times the intensity of the lateral peak, forming an interference fringe
described by
da+ <Z5B)

Re(¢pa+ ¢B) = %RO cos” ( >

(2.5.57)
The two extremes of this oscillations are shown in Figure 2.18.

Since eq. (2.5.57) has the same form of the fringe obtained for Bell-type
experiments that involve polarization entanglement, it cannot be explained
with local hidden-variable theories, in agreement with the Bell theorem [99].
In particular, the Bell inequality is violated when the visibility of the fringe
exceeds 1/y/2 ~ 0.707.

As a final comment, one can notice that when the ¢4 + ¢p is such that
the central peak vanishes, whenever the a photon takes the long path, the b
photon takes the short path and vice versa, a clear signature of entanglement.

2.6 Dielectric waveguides

Here we give an overview of the modal theory of light travelling in dielectric
wire waveguides. In particular, we consider how the discrete spectrum of
modes of a lossless dielectric waveguide results from an eigenvalue problem,
and how the symmetry of the structure gives rise to mode classification.

In Section 2.7, the theory is further expanded to describe one-dimensional
periodic structures.
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Figure 2.18: Coincidence rate as a function of time delay between detectors
1 and 3 if the biphoton function depicted in Figure 2.17 is produced by the
Franson interferometer. a) Constructive interference between (g ¢ and Sz, ..
b) Destructive interference between fSg g and Sz, 1.
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2.6.1 Confinement and eigenmodes

The (relative) dielectric function e(r) of a generic linear lossless dielectric
medium is real in all space. Under this assumption, and from the linearity of
Maxwell’s equations, the generic space and time dependent electromagnetic
fields can be replaced with fields oscillating at a single frequency w

E(r,t) E(T)eﬂ""t
D) _, D(r)e:m (2.6.1)
B(r,t) B(r)e !
H(r,t) H(r)e ™t

In this picture, D and H are the displacement and magnetizing fields, in-
troduced to take into account the effect of propagation of light in a dielectric
medium. The generic solution to the Maxwell problem will be given by a
linear superposition of modes at different frequencies, hence Maxwell’s equa-
tions are transformed as well

V. -B(r,t)=0 V-H(r)=0

V.-D(r,t)=0 V. (e(r)E(r))=0

V x E(r,t) 4+ 28 — T )V X E—iwpoH(r) = 0

V x B(r,t) — 6D8(:’t) =0 V x H(r) + iwepe(r)E(r) =0

(2.6.2)

The solutions to Maxwell’s equations can be found by restating them as

an eigenvalue problem for the electric or the magnetic fields. In particular,

a common eigenvalue equation usually employed to describe uniform and
periodic dielectric structures is the following;:

1 w\?
—_— H =(—| H 2.6.
V x (dr)vX ™) = (%) #0) (2.6.3)
This equation can be restated in terms of the (hermitian) operator

1

6=V x (e(r)

v x (.)> (2.6.4)

so that the new form is

OH (r) — (“>2H(7~) (2.6.5)
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This equation, together with
V-H(r)=0, V-:(e(r)E(r))=0 (2.6.6)

is sufficient to determine the solutions to Maxwell’s equation for a given
linear, transparent dielectric structure, in terms of a set of eigenstates { H;}
and eigenvelues {w?/c?}, albeit usually numerical calculations have to be
performed to obtain their explicit expression. The eigenproblem can be
put in different forms, but the one given here is often used as the basis of
simulations because of reasons of numerical stability that are out of the scope
of the present work.

This formulation of electromagnetism is very similar to Quantum Me-
chanics [252, 253]. The Schrodinger equation plays the role of eq. (2.6.5),
while wavefunctions 1 and the energies F are the associated eigenstates and
eigenvalues. The analogy is best summarized by the following equations:

(:)H(r):<oCJ>2H(T) o B - Bo) (2.6.7)

(H(r),w?/c) & (%(r),E)

As such, the eigenproblem formulation of electromagnetism shares many of
the properties found in Quantum Mechanics, such as the normalization of
the fields, commutators and so on.

When a homogeneous medium is considered, for which the dielectric func-
tion is constant in space €(r) = €, the solutions of eq. (2.6.5) are simple plane
waves:

Hy,(r) = Hye*" (2.6.8)

where the polarization of the field Hy is orthogonal to the propagation di-
rection k from eq (2.6.6), and where k labels the eigenstate and it is related
to the eigenvalue by k(w) = €2w/c. The inverse expression

clk|
Ve

is also called dispersion relation. The vector k is particularly important be-
cause it is a conserved quantity of the field solutions, i.e., when the complete

w(k) = (2.6.9)
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solution H (r,t) evolves in time, its wavevector k does not change. This
is the direct consequence of the translational symmetry that the homoge-
neous medium has; it can be understood in terms of the Noether’s theorem,
so that k is the conserved quantity associated to the commutation relation
[T4,0] = 0, where T} is the translation operator that shifts functions of the
space coordinate r by the vector d, as in

TyH(r) = H(r — d) (2.6.10)

Consider now a dielectric structure that is not uniform, but translation-
ally invariant in only one direction, say z. The dielectric function associated
to this structure will be invariant under changes of the z coordinate

e(r) =e(z,y) (2.6.11)

Compared to the homogeneous medium case, here the translational sym-
metry is found only along z, hence only the z component of k (k.) will be
conserved in this case. The other components of k are not conserved quan-
tities anymore, because of the lack of symmetry in the associated directions.
As such, from now on we will replace k, with k to simplify notation. The
general form of the solutions to this problem is

Hy, (1) = by, y)e™ (2.6.12)

the function hy, ,(z,y) being determined by the specific shape of the dielectric
function €(x,y). In this case, an additional label n is necessary to classify the
modes because, in general, an infinite number of different solutions are found
for each value of k. Typically, for each k all the modes are classified in terms
of increasing energy, and the collection of the angular frequencies of all the
modes associated with a particular label n is called the n-th photonic band of
the dielectric structure, and it is indicated with wy, (k). The collection of all
the bands w, (k) associated to a dielectric structure is called band structure,
and it can be used to determine most of the properties of light propagating
in the structure.

Two classes of modes can be identified in this situation: they are the
guided modes and radiative modes, that differ in the fact that in the former
case most of the energy is found on or around the high-¢ regions of the
structure, while in the latter the energy is radiated away. The radiative
modes form a continuum, so that n is a continuous variable in this case, and
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they are found at energies above the ones of the so-called light-line, which is
identified by the relation

kc

(2.6.13)
where € is assumed to be the dielectric constant of the surrounding material.
The guided modes form instead a discrete set, and they are found below the
light-line; the discrete nature of guided modes is a direct consequence of the
transversal confinement given by the waveguide.

Guided modes can be classified according to polarization. It is common
to encounter waveguides whose cross-section is rectangular. In that case we
can find a first series of modes, called quasi- Transverse-FElectric (quasi-TE or
simply TE), for which the electric field is mainly polarized in the horizontal
direction and the magnetic field in the vertical direction. The other series
exhibits the electric and magnetic fields mainly polarized in the vertical
and horizontal direction respectively, and they are called quasi- Transverse-
Magnetic (quasi-TM or TM). The names Transverse-Electric/Magnetic are
derived from the modes supported by a dielectric infinite slab, where indeed
the polarization of the electric and magnetic fields are transverse with respect
to the propagation direction.

In general, whenever a particular symmetry is present in the system, the
Noether’s theorem assures that the solutions of the eigenproblem can be fur-
ther classified. When the waveguide cross-section is rectangular, the system
is symmetric in the horizontal and vertical directions, hence two additional
indexes can be used to classify the modes sustained by the waveguide de-
pending on the horizontal and vertical symmetry that they exhibit. So, for
instance the fundamental TE mode will be classified with TEqg, while higher
modes are TEy;, TEqg, TE1; and so on. A similar classification holds for
TM modes.

2.7 One-dimensional periodic structures

The theory of light propagation in confining and periodic structures is well
known and found in a number of textbooks (such as [16] and [142]). Here
we will review those concepts useful to understand the experimental work
described in the following chapters.
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2.7.1 Theory

Given the analogy between the Schrédinger equation and the eigenproblem
formulation of Maxwell equations, it is not surprising that periodic dielec-
tric structures share many of the properties of systems of quantum particles
described by periodic potentials, such as atomic crystals. Here we briefly
review these features for the specific case of one-dimensional photonic crys-
tals, i.e. dielectric structures described by a dielectric function periodic in
one direction.

Consider a dielectric function periodic along the z direction. If a is the
periodicity of the structure, the dielectric function will fulfill the following
condition

’f’ma,ge(x,y, z) =€e(x,y,z+ma) =€(z,y,2) (2.7.1)
where Tmag is the translation operator with d = maZ and m is an inte-
ger number. The unit cell is the region of the structure that, periodically
repeated in space, gives rise to the periodic dielectric structure. For a one-
dimensional photonic crystal periodic along z, the unit cell is any region of
the structure found between two planes orthogonal to z and spaced by a.

Due to the symmetry of the system, it has to be that 6 and Tmaé com-
mute. o

[0, Thmaz] =0 (2.7.2)
Plane waves propagating along z are still eigenvectors of this “discrete” trans-
lation operator, with the difference that now multiple eigenstates have the
same eigenvalue, and are therefore degenerate. In fact, replacing again k,
with &,

Tmaéei(k—kn%)z _ ei(k-}—n%r)(z—ma) _ e—ik(ma)ei(k-i-n%r)z Vn (2'7.3)

Without getting into the details, it is understood that the final solutions will
be given in terms of a linear superposition of all these degenerate modes

im, 27
U (2,Y,2) = Y Chnla,y)e™ e (2.7.4)
m

where it is evident that uy,, has the same periodicity of the dielectric function
and that the expansion itself depends on the transverse coordinates x and y.
The magnetic field is given by

Hk,n = eik'zukm('r) (2.7.5)
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and is therefore expressed in terms of a plane wave propagating along z, mod-
ulated by a periodic function that takes into account the periodicity of the
underlying structure itself. This result is known as the Bloch theorem, while
u is known as the Bloch function. As for the uniform structure described
in the previous paragraph, the eigenvalues associated with each eigenstate,
wn(k), and the Bloch function depend ultimately on the particular form of
the dielectric function €(r), and they are usually evaluated numerically.

We can make some additional remarks regarding eq. (2.7.5). First,
any fields with wavevectors k + m2n/a and k are physically identical; in
particular, from eq. (2.7.4) it is easy to see that the Bloch function wuy
does not change, as well as the eigenvalue w, (k). This implies that for a
one-dimensional photonic crystal, the band structure found in any interval
(k,k 4 27 /a) will be periodically repeated in the whole k-space. Therefore,
by convention, only the interval (—m/a,7/a) is taken into account, and it is
called First Brillouin Zone. Moreover, as it can be seen by replacing k with
—k in eqgs. (2.7.4) and (2.7.5), flipping the sign of k corresponds to obtaining
the same field travelling in the opposite direction (or backward in time).

Figure 2.19 shows a periodic dielectric structure and its associated band
structure in the first Brillouin zone. There exist frequency ranges, called pho-
tonic bandgaps, in which no photonic TE or TM state exists. These regions
are particularly important because they represent energies at which light
cannot propagate. Such feature is used, for instance, to realize very selective
filters, as it will be seen in Section 4.2. In particular, in Paragraph 2.7.2
we will estimate the energy and width of the photonic bandgap of the most
simple one-dimensional photonic crystal, the multilayer. Although complete
photonic bandgaps may exist, i.e., regions where both TE and TM light can-
not propagate, it is more common to encounter dielectric structures where
the bandgap is either TE or TM, such as the case of the device illustrated
in Figure 2.19.

Because of the scale invariance of Maxwell’s equations, it is usually conve-
nient to plot the photonic band structure in terms of adimensional frequency
(wa/2mc) and wavevector (ka/2).

The definition of group velocity for a photonic state in a photonic crystal
is defined in terms of the derivative of the photonic bands:

on(k) = d“gék)ﬁ (2.7.6)
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Figure 2.19: Photonic band structure on the first Brillouin zone of the dielec-
tric structure depicted. Labels E and M correspond to TE and TM modes as
defined in the main text. The shaded regions on the right are the photonic
bandgaps. Figure reproduced from ref. [142].

The expression can be derived from the expressions of energy density and of
the Poynting vector. Due to symmetry reasons, similarly to electronic crys-
tals, the group velocity of light vanishes at the edges of the Brillouin zone,
where the photonic bands flatten out.

The region of the photonic band structure found below the bandgap is
sometimes called the subwavelength region [135]. Light in the modes found in
this region, in fact, have wavelengths comparable or larger than the periodic-
ity of the photonic crystal; in particular, in the limit of very low energy, the
wavelength becomes so large that the dielectric medium can be considered
effectively uniform along the propagation (which is the reason why the dis-
persion of the first photonic band becomes linear near k = 0). If this concept
is applied to the example periodic structure of Figure 2.19, the result is an
approximation of a uniform dielectric waveguide, whose effective core index
of refraction is given by the particular arrangement of the subwavelength
structures.

It might seem surprising that light can be guided by such complex struc-
tures, considering that it has to encounter countless dielectric interfaces along
the propagation. In fact, when light encounters obstacles with dimensions
comparable to its wavelength it usually scatters away. However, as the exis-
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tence of the first photonic band demonstrates, this is not the case when the
structures are periodic, because unscattered light propagation is a lossless
solution of the eigenproblem (2.6.5). Ideally, as long as the periodicity is
preserved, light will propagate without scattering losses. Equivalently, one
can consider the absence of scattering as the result of perfect destructive
interference from all the single scattering events caused by the interfaces.

This scenario is similar to the propagation of light in a common crystal:
diffraction of light occurs only at those frequencies for which the wavelength
is comparable with the crystal lattice spacing, i.e. in the X-rays, while
scattering is completely absent for longer optical wavelengths. The counter-
intuitive part is realizing that scattering does not occur even just below the
bandgap, where the wavelength is indeed comparable to the lattice spacing.

While the fabrication of subwavelength structures is clearly more difficult
than the one of standard uniform waveguides, the advantage resides in the
additional design degrees of freedom that they allow. For instance, changing
the radius of the holes of the structure shown in Figure 2.19 allows to change
the effective index of refraction of propagating light while maintaining the
same waveguide cross-section.

Further discussion on this topic is found in Section 4.1 of Chapter 4, where
the design process for suspended subwavelength waveguides is illustrated.

2.7.2 The multilayer

The multilayer is a dielectric structure comprising a series of infinite lay-
ers with changing refractive index and, sometimes, thickness. When the
repetition is periodic, the multilayer becomes the simplest example of one-
dimensional photonic crystal. In particular, here we assume that the unit cell
is composed of two layers with thicknesses d; and dy (so that the total period
is a = dy +ds) and with refractive indexes n; and ng, as illustrated in Figure
2.20. Although it is possible to describe light propagating in every direction,
here we are only interested in the propagation normal to the interfaces, since
this is the useful scenario for the remaining part of the chapter. Moreover,
we will not perform the complete mathematical derivations, already detailed
elsewhere [16, 142], but we will only report the relevant results.

The band structure of a generic multilayer is shown in Figure 2.21. The
structure is not very different from the ones shown previously, apart from
the fact that the TE and TM photonic bands are degenerate due to the
cylindrical symmetry of the system.
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Figure 2.20: Schematic representation of a section of a multilayer. The
simplest multilayer is a periodic repetition of infinite dielectric layers with
alternating thickness and index of refraction.

0.61
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ka/2rt

Figure 2.21: Band structure of a multilayer with layer thicknesses d; = 1 um
and dy = 2 pm (a = 3 pm) and with refractive indexes n; = 2 and ng = 3.
The gray bands are the photonic bandgaps.
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The size Aw and position wye of the photonic bandgaps are particularly
interesting properties. The general dispersion relation for the multilayer can
be obtained using the transfer matrix method [16], and it is given by the
following equation:

1
cos(ka) = cos(hady) cos(hads) — 5 (ZQ + Zl) sin(kidy) sin(kads)  (2.7.7)
1 2

where k5 = wny/y/c. The dispersion relation is not analytical, and the
bandgap properties cannot be determined exactly for any choice of layers;
however, specific formulas can be derived for special cases.

For instance, when the two layers have similar refractive indexes, or when
the thickness of one of the layers is very small, the bandgap size is approxi-
mately described by the following equation

% Le-a sin(wdya) (2.7.8)

Whg € s

where €,/ = \/Myj3 and € = (e1 + €2)/2. This situation corresponds to a
small perturbation introduced to a uniform dielectric medium.

Another important special case is the Quarter- Wave Stack (QWS). Given
fixed refractive indexes n; and no, the QWS is the structure that maximizes
the bandgap centered at a given angular frequency wyg. In particular, say
Whg = 2mc/ g is the frequency where we want the bandgap to appear: choos-
ing the individual layers to have thickness equal to a quarter wavelength

Ao Ao

d = =
! 4n1 ’ 2 4712

(2.7.9)
assures that the bandgap will be found around wye and that the size is the
maximum possible given the indexes n; and ny. In particular, the bandgap
size can be derived from eq. (2.7.7)

A 4 —
2% _ 2 aresin (n2 n1> (2.7.10)
Whg s ng + N1

while the bandgap position is derived directly from (2.7.9)

11
Wh m<+) (2.7.11)

2a\ny  ne



2.7. ONE-DIMENSIONAL PERIODIC STRUCTURES 95

0

g 10} Ny =2.00

< Ny = 2.01

‘a =20 dy=193.75nm |

g dp =192.79 nm

g —30¢ 1200 periods | ]

L S T A
~30 1540 1550 1560 1570

Wavelength [nm]

Figure 2.22: Transmission of a quarter-wave stack whose parameters are
specified in the inset of the picture. The continuous and dashed vertical
gray lines represent the width of the stop-band of an infinite multilayer (4.92
nm) and the 3-dB bandwidth (1.75 nm) respectively.

More in general, in the case of the QWS, a bandgap opens in correspondence
of odd multiples of wy,g.

Another property of interest of the multilayer is the transmission func-
tion. In the case of the infinite stack, the multilayer is perfectly transparent
for all the frequencies outside the bandgaps, while it acts as a perfect mirror
for the frequencies within. Real devices, however, have a limited number of
periods N. The transmission can be calculated employing the same transfer
matrix approaches used to derive eq. (2.7.7); Figure 2.22 shows the trans-
mission of a low contrast, 1200 periods QWS.

We define the 3-dB bandwidth (Awsgp) as the range of angular frequen-
cies where the attenuation is within 3 dB from the maximum attenuation
at the center of the stop-band; this figure of merit is often more meaningful
than the complete stop-band of the multilayer. It can be demonstrated that,
when plotted in logarithmic scale, the bottom of the transmission curve has
a parabolic shape, which is independent on the number of periods N, when
N is large. Thus, the ratio between the 3-dB bandwidth and the size of the
bandgap turns out to be constant, roughly equal to

Awsgp ~ 35.58% Awpg (2.7.12)

When using the multilayer as an attenuator, we are often interested in
the number of periods required to achieve the level of attenuation we require.
Again, for a QWS, using the transfer matrix method at the bandgap center,
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it is possible to calculate without approximations the minimum transmission
T as a function of the number of periods N:

1
Ty = ~af1- 20
N cosh? (log(72)N) < n

2N
A") (2.7.13)
where the approximation holds for large N and small contrast An/n, where
An = ny — ny and where n = (n; + n2)/2 is the average index of the
multilayer.

Notice that the size of the stop-band (either the complete bandgap or
the 3-dB bandwidth) does not depend on the number of periods. Instead,
manipulating eq. (2.7.10), we can obtain an expression for the contrast
required to obtain a given stop-band:

an _ 25in<7rAw> (2.7.14)
n

2.8 Microring resonators

A microring resonator has a simple description: it is a dielectric waveguide
closed on itself.

Light can be brought into and out of the resonator by means of other
waveguides that pass roughly within one wavelength from the resonator.
Optical power is then transferred from the waveguides to the resonator or
vice versa through evanescent waves, in a manner analogous to a directional
coupler.

Once radiation is coupled in the resonator, it travels around and, due
to interference, only those frequencies for which an integer number of wave-
length fits inside the resonator length will be sustained by the resonator. The
field of such frequencies, however, will be enhanced compared to the one trav-
elling in the external waveguide, and in general they will experience higher
optical nonlinearities, the very reason why these devices are interesting for
nonlinear optics applications.

The microring resonator sustains a discrete spectrum of resonances. When
dispersion is negligible, as it is usually the case for limited frequency spans,
these resonances are equally spaced, which is another advantage of this device
when it is exploited to enhance Four-Wave Mixing, as discussed in Paragraph
2.8.2.
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Figure 2.23: Scheme of the All-Pass microring resonator. Light is coupled
from a bus straight waveguide to the microring resonator at the point of
minimum distance. The coupling region is described as a beam splitter.

In this section the transmission function of the All-Pass ring is derived
from a simple circuital model of the microring. Then the transmission func-
tion for the Add-Drop is illustrated and the two are discussed in their main
points. We will report the definitions and derivations of various impor-
tant figures of merit useful to characterize microrings for nonlinear photonic
applications. Lastly, we illustrate how both Stimulated and Spontaneous
Four-Wave Mixing occur in microresonators.

2.8.1 Linear theory

Consider Figure 2.23. We assume that a straight optical waveguide is placed
close to a circular microring resonator, of length L; the waveguide is guiding
a field of amplitude Fj, and we assume that no exchange of energy occurs
between the waveguide and the ring but at the point of minimum distance:
this region, that will be referred to as the point coupler, effectively acts as a
beam splitter, so that a fraction k2 of the power carried by the input field
is transferred from the waveguide to the ring, while the other fraction is
transmitted forward. This is known as the All-Pass microring configuration.
We assume that the point coupler is lossless, while we will assume that some
losses are present in the microring resonator.

Given these assumptions we can describe the relations between the fields
at the different points marked in Figure 2.23 and from there we can derive
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the transmission Foy/Ei, of the system.
First, we assume that the unitary matrix that describes the point coupler

has the following form:
t ik
Upc = (Z t) (2.8.1)

K

where t and & are real and where, to preserve unitariety, t*> + k> = 1. The
relations between the field amplitudes at the input and output of the point

coupler are then
Ei . t 1K Egut

The relation between the amplitudes F; and FEs is found taking into
account the propagation along the ring:

By = ae*Wl gy (2.8.3)

where a is a real constant smaller than 1 that takes into account the losses
experienced by the field travelling in the resonator and k(w) is the wavevector
of the light mode travelling in the ring at angular frequency w.

Putting together equations (2.8.2) and (2.8.3) it is easy to derive the
formula that relates the input and output field amplitudes

t— aeik(w)L

Eout / Ein = m

(2.8.4)
and by taking the absolute square value of the previous equation we ob-
tain the power transmission T(w) = |Eout/Fim|? of the All-Pass microring
resonator: 2 2 ot L
T(w) = + a® — 2at cos (k(w)L)
1 4 a?t? — 2at cos (k(w)L)
Figure 2.24 shows a plot of the previous equation. The transmission
function is composed of a series of dips, spaced 27 radians from each other.
The width of the dips is determined by the amount of losses experienced by
light travelling in the microring, either through intrinsic propagation losses
or through the coupling point. When the losses are small, the dips are well
separated and they can be approximated with a Lorentzian function. By
small losses it is meant that the energy lost per roundtrip is much smaller
compared to the energy stored in the ring, a situation formalized by

(2.8.5)

l-ax1, K2 < 1 (2.8.6)
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Figure 2.24: Transmission function of an All-Pass microring resonator. The
microring resonances are equally spaced in phase.

The minimum value of the transmission, Ty, is obtained when the ar-
gument of the cosine function is a multiple of 27:

(t—a)’

T . - 7
min = gt)2

(2.8.7)
In general, T, is not equal to zero unless ¢ equals a or, in other words, when
the light coupled in the resonator equals the losses along the resonator itself;
this is known as the critical coupling condition or, equivalently, it is said that
the ring is critically coupled. In critical coupling the light at the resonance
frequency that is transmitted past the point coupler undergoes perfect de-
structive interference with the light outcoupled from the ring itself, and the
device reaches the maximum filtering power.

The Add-Drop configuration is obtained when two waveguides are coupled
to the microring resonator. A representation of an Add-Drop microring is
shown in Figure 2.25: two point-coupling sections are now present in the
ring, and the coupling can in general be different for the two waveguides. The
scheme shows equally spaced coupling points, but the distance may vary, as
well. The four input/output ports of the Add-Drop ring are conventionally
named “In”, “Through”, “Add” and “Drop” because, while non-resonant
wavelengths are routed directly from In to Through (and from add Add to
Drop), resonant wavelengths are instead “dropped” from the input waveguide
to the Drop port and are “added” from the Add port to the Through port.

The transmission function of the Add-Drop ring between ports In and
Through has the same shape of the All-Pass ring (Figure 2.24) because the
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Figure 2.25: Scheme of the Add-Drop microring resonator. The ring is cou-
pled to waveguides in two different points, which are modeled with beam
splitters, possibly different.

other coupling point behaves as an effective additional channel for losses.
Indeed, the explicit expression Tj is obtained by replacing at’ to a in egs.
(2.8.4) and (2.8.5).

t— at/eik(w)L

Ethrough/EiH = W

(2.8.8)

2+ a?t”? — 2att’ cos (k(w)L)
1+ a2t2t2 — 2att’ cos (k(w)L)

Ti1(w) (2.8.9)

As such, the critical coupling condition requires that the coupling of a
waveguide to the ring is equal to the total effective losses seen from that
waveguide, which comprise both the ring intrinsic losses of the ring and the
outcoupling losses to the second waveguide (t = at’). Consequently, the
transmissions from In to Through and from Add to Drop can both be in
critical coupling only if the ring intrinsic losses are negligible compared to
the coupling losses. In such case, the transmission function from In to Drop
will be simply given by T1.p(w) =1 — Tr.7(w).

In general, the transmission of the device from In to Drop is represented
by a comb of positive resonances, as seen in Figure 2.26, whose peaks reach
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Figure 2.26: Transmission from the In (Add) port to the Drop (Through)
port of an Add-Drop microring resonator.

unity only if the add-drop microring is critically coupled.

Naturally, the transmission function of a ring can be obtained experimen-
tally by measuring the transmission of radiation incoming at the input port
of the system to the output port. In the following, from equations (2.8.5)
and (2.8.9), we will derive the expression of some of the important figures of
merit that characterize the microring resonator. These figures can be mea-
sured experimentally, and their expressions that we are about to derive can
be used to estimate those physical parameters of the ring that determine its
performance as a nonlinear optical component.

Free Spectral Range (FSR)

The Free Spectral Range is the spectral distance between two adjacent reso-
nances and it can be derived by calculating the distance between two minima
of expression (2.8.5). We will derive the expression of the FSR with respect
to the wavelength A or to the frequency w.

Assuming that the dispersion k(w) is linear with the frequency, an as-
sumption that is approximately true for a small range of frequencies, we see
that the transmission function is composed, in general, by a series of equally
spaced dips, that correspond to the resonances of the resonator.

More in general, k(w) can be expanded in Taylor series around a central
frequency wy in terms of the phase and group indexes of light at angular
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frequency wy:

) (10— o) = Lnfan) + L)

then, if wgy corresponds to the frequency of one resonance, the distance Aw
between two adjacent resonances can be found imposing that one more wave-
length fits within the microring circumference L at the new frequency, wq,
that is, that the difference between k(wy)L and k(wp)L equals 27:

ng(wo)L = %ng(wo)L (2.8.11)

k(w) ~ k(wo) + ng(wo)  (2.8.10)

(w1 — wo)

21 = (k(w1) — k(wo))L = .

Then the frequency Free Spectral Range (FSR,, = Aw) is given by

27c
FSR, = — 2.8.12
v ngL ( )
When FSR,, is much smaller than the absolute frequency w, as is often the
case, we can obtain the same expression in terms of wavelength by assuming
AN = Aw/w:
/\2
FSR), = — 2.8.13
A ngL ( )
The FSR has a dependence on the frequency/wavelength through ng, and
the expression for the Add-Drop ring has the same.

Quality factor (Q)

Another important figure of merit is the Quality factor (Q), or Q-factor, a
measure of the amount of losses that light experiences when travelling inside
the microring. More formally, the Q-factor of a resonant cavity is defined
as 27 times the ratio between the total energy stored inside the resonator
and the fraction of that energy that is lost in the next optical cycle. It can
be shown that the Q-factor is also equal to the ratio between the frequency
(wavelength) of a resonance and its FWHM bandwidth dw (6)):

w A

E

Let us first assume that the microring resonator is not connected to the
outside world through waveguides. In this case, if radiation is travelling
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inside the ring, it will be dissipated only through the intrinsic losses of the
resonator itself. The quality factor will then be a representation of the intrin-
sic losses of the resonator, and it is therefore called intrinsic quality factor
(Qo). It is easy to derive an expression for Qo from the first definition: we
assume that the energy stored inside the cavity will decay in time with a
certain time constant 7 that is linked to the losses: E(t) = Egexp(—t/7).
After an optical period dt has passed we will have

ot
Elost = E() — E(5t) >~ E()? (2.8.15)

While 0t = 27 /w, we can link 7 to a by defining the power attenuation
coefficient, a:

a? = e ol = ¢7Tue/7 (2.8.16)

where T} is the roundtrip time of the field travelling in the microring, equal

to ngL/c. From the previous equations it is then straightforward to obtain

Qy = o = 2T (2.8.17)

ca Ao

By extension, the point coupler can be regarded as an additional channel
of losses: when the losses are small, we have that the intrinsic roundtrip
energy losses are approximately equal to L, so that we can rewrite Qg as

2mngL
= 2.8.18
Qo Aal) ( )
and by analogy we can define the coupling quality factor Q. as:
2mngL
= 2.8.19
QC )\I{Q ( )

In practice we are modeling the point coupler as if it was introducing x2/L
losses per unit length. Finally, Qg and ). will contribute to the global quality

factor Q:
1 1\' 2rngL/X
Q= ( + ) == 2.8.20
Q() Qc (FL2 + aL) ( )
so that the Q-factor is equal to 27 times the ratio between the optical length
expressed in unit wavelengths and the total losses per roundtrip. The ex-
pression for QQ in terms of angular frequency is easily derived:

wL/vg

@= (k% +alL)

(2.8.21)
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If more than one waveguide is coupled to the ring, the expression is
trivially extended to

wL/vg
(> k2 + L)
where ¢ labels each coupled waveguide.

As the name suggests, the Full Width at Half Mazimum (FWHM) is the
width of a resonance taken at half the depth of the dip. Sometimes the
expression Full Width at Half Dip is used instead.

From the definition (2.8.14) and final expressions (2.8.20) and (2.8.21)
that we obtained for the Q-factor, it is straightforward to derive an expres-
sions for the FWHM:

Q= (2.8.22)

2
FWHM, = 6\ =

K +al 2.8.23
27mgL( +al) ( )

and v
FWHM,, = dw = fg(K +al) (2.8.24)

where K indicates ), k;. These expression could be equivalently derived
from equation (2.8.5), by performing the Taylor expansion around a mini-
mum of the transmission 7', under the low loss approximation, and by finding
the values of k(w)L for which T'(w) = Tin + (1/2)(1 — Tinin)-

Field enhancement F

Another important quantity of interest is the Field enhancement (F(k)),
defined as the ratio between the amplitudes of the fields inside and at the
input of the ring (that is, F'(k) = |E1/Ein]).

K
Fk)=|—— 2.8.25
) = | (2.8.25)
The maximum field enhancement (F) is found on resonance
K
= 2.8.26
1—at ( )

The field enhancement is a key property of resonator structures, as nonlinear
optical processes are strongly dependent on this factor, as it will be evident
in Paragraph 2.8.2. Usually, one refers to the maximum field enhancement
when the expression “field enhancement” is used. When the ring is critically
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coupled (¢ = a), a convenient expression of the field enhancement can be
obtained )
K
= =— 2.8.27
1-t & ( )
and then, from eq. (2.8.21) it is possible to express F' in terms of the quality
factor of the ring and of its geometrical parameters:

204,Q
wlL

F= (2.8.28)
where critical coupling implies that x? + aL ~ 2x2. This last expression
is valid for critically coupled Add-Drop rings, as well, as it can be seen by
repeating the derivation replacing a with at’ and assuming ¢t ~ ¢’ and a = 1
for critical coupling.

The field enhancement can easily reach high values. A critically coupled
Silicon ring (ng = 4), 10 pum in radius and with a modest Q-factor of 20’000
at 1550 nm exhibits a field enhancement F' ~ 16.

Finesse F

The Finesse (F) of a microring is defined as the ratio between the FSR and

the FWHM.
FSR

FWHM
The Finesse is trivially derived from the definition and it has a simple ex-
pression related to losses and coupling:
2w
F__="
K+ alL
When the ring is in critical coupling the Finesse is a direct experimental
measurement of the squared field enhancement of the resonator, since the
expressions differ only by a m factor:
T
F=— =nF? (2.8.31)

K2

F:

(2.8.29)

(2.8.30)

2.8.2 Stimulated and Spontaneous Four-Wave Mixing in mi-
croring resonators

The extremely high field enhancement achievable by microring resonators
makes nonlinear optical processes enormously more efficient than in nor-
mal waveguides. Here we briefly discuss how Four-Wave Mixing (FWM)
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occurs in microring resonators. We first model Stimulated Four-Wave Mix-
ing (StFWM) in waveguides and in microrings, doing a comparison in the
efficiencies of these two devices, followed by the description of Spontaneous
Four-Wave Mixing (SpFWM) in microresonators.

Stimulated Four-Wave Mixing

Suppose that a strong pump beam, with complex amplitude A, is travel-
ling in a waveguide together with weak signal and idler beams of complex
amplitude Ay and A;, so that |Asl, |A;| < |Ap|; we assume negligible loss ex-
perienced by the pump, either through attenuation or by nonlinear transfer
of energy to the other beams, so that the amplitude of the pump remains
much larger than the others (undepleted pump approximation). Under these
assumptions, and assuming energy conservation and phase matching, eqs.
(2.1.11) and (2.1.12), the evolution of the three field amplitudes is given by
the following coupled differential equations, as described in ref. [261]

. (6%
Ap = (lﬁp - %)AP
Ay = (ifs — %)AS +yA2A; (2.8.32)
Ai = (iBi — %)Ai +yAZA

where ), 8 and 3; are the field propagation constants and «,,, o and «;
are the power attenuation coefficients; the nonlinear coupling coefficient ~ is

given by
TNow

= i (2.8.33)

where ng is the Kerr coefficient of the medium, Aeg is the effective area of
the mode travelling in the waveguide and w is the frequency of the beams.

When considering StFWM in microring resonators, the field enhance-
ment properties of the microresonator force the use of frequencies within the
resonances of the ring, as the other frequencies exhibit field enhancements
lesser than 1. Under this condition, the conservation of the energy forces
the choice of signal and idler resonances that are symmetrically placed with
respect to the pump resonance. Luckily, when dispersion is negligible, these
resonances also satisfy the phase matching condition as it can be understood,
for instance, by the derivation of the FSR above, where we have seen that
the phase difference between adjacent resonances is always equal to 2.
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By applying the previous expressions to the point coupler model of the
ring resonator, and assuming that no idler field is initially present, it is
possible to derive the following expression for the idler power produced inside
the microring resonator

Pi(St) = (yL) |Fp(kp)|4|F8(kS)|2|Fi(ki)|2 PIJQPS (2.8.34)

where P, and P are the pump and signal powers at the input of the ring

and Pi(St) is the generated idler power at the output of the ring. As it is seen,
the generated idler power is strongly dependent on the field enhancement
at the three involved frequencies and it scales quadratically with the pump
power. In order to maximize the efficiency of the nonlinear process, it is
natural to choose the central frequencies of three equally spaced resonances
of the microresonator. Assuming that the field enhancement is the same for
the three resonances, we get

P = (yL)? |F|® P2P, (2.8.35)

Assuming critical coupling, equation (2.8.34) can be restated by using
eq. (2.8.28):

4 M2
(st) 2 2Ug QstQi 2
P = (L) <L) PR P, P (2.8.36)

while assuming equal resonances and close frequencies

(st) 2 [204Q ! 2
P = (yL) i Py P (2.8.37)
It is seen that StFWM scales in terms of the intrinsic parameters of micro-
resonators as Pi(St) oc Q*/L?; if the effective mode area from eq. (2.8.33) is
used to define an effective mode volume for the resonator (i.e. V = LA.g),
then the scaling goes as Pi(St) ox QY/V2.

Spontaneous Four-Wave Mixing

Here we review the quantum treatment of Spontaneous Four-Wave Mixing,
that can be found in more detail in ref. [132].

The quantum mechanical behaviour of the ring-waveguide system can
be understood in terms of the separated ring and waveguide Hamiltonians
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which interact through a coupling Hamiltonian that models the effect of the
point coupler.
The waveguide Hamiltonian is the following

. By [ Azl (2)iu(2) +
= Z ;hvufdz<awj‘z(z) Pu(z) — h.c.) (2:8.:38)

n [5)

where z is the propagation coordinate along the waveguide, equal to 0 at the
coupling point, where u labels the particular waveguide mode at frequency
wy and having group velocity v, while @L(z) represents the waveguide field
operator. The Hamiltonian also takes into account the dispersion of the
waveguide.

The ring Hamiltonian is given by the following expression:

HY =" houbiby — > Sy uauabli 0l byus by (2.8.39)
w

1,402,143 ,44

The BL and Bu are the ladder operators for the ring mode at frequency w,,.
The term on the left is hence the usual harmonic term for the electromagnetic
field, eq. (2.2.16), while the second term represents the nonlinear interac-
tions occurring among the fields in the ring; the coefficient S, ., 5,4 takes
into account the nonlinearity of the medium and the energy and momentum
conservation conditions on the fields at frequencies wy,, through w,,. When
13 = 14 We recognize a term similar to the degenerate FWM operator of eq.
(2.1.13).

Finally, the coupling term is given by
HP =2k [eublhu(0) + h.c] (2.8.40)
I
where ¢, is the ring-waveguide coupling constant, while the whole Hamilto-
nian is the sum of previous equations
H=H"E + HR - fP (2.8.41)

The actual process of SpFWM is modelled by applying the above Hamil-
tonians to the input state; such state assumes that the pump field is in a
strong coherent beam and that all the other fields are in the vacuum state
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(signal and idler included). The resulting generated state, neglecting the
residual pump, will have the following form

Bt _exp
[Wout) = ¥75i 7 i o) (2.8.42)

where © = s and p = ¢ are the labels for the signal and idler field modes,
¢ is a complex number proportional to the mean number of pump photons,
and where

PJr —//5 (ws, w;) ((,us)bT(wl)dwsalcuZ (2.8.43)

is the biphoton creation operator, as defined in eq. (2.5.1), so that pjl |0) =
|15,1;); the form of the biphoton wavefunction S(ws,w;) depends on the
spectral properties of the pump and of the ring resonances, and on phase
matching and energy conservation condition. When the pump beam is suf-
ficiently weak, so that |£| < 1, the generated state is approximately equal
to

[Yout) = 10) + & |15, 1;) (2.8.44)

so that the term [£|? can be interpreted as the probability of producing a
pair of photons.

The above expressions are sufficient to derive an equation analogous to
eq. (2.8.37) for spontaneous FWM in microring resonators. Assuming equal
and close resonances,

s hw
P = POV = (yL)* |F|° 7P} =

20,0 hwv
— L2 g 9P2
(7)(wL> oL P

(2.8.45)

Apart from a reduced dependence on the field enhancement F', the main
difference with the equations for StFWM is the power term Pyac = fuwv,/2L.
While the classical description of FWM prevents the signal and idler fields
from being generated out of a single pump beam, the quantum description
of SpFWM allows this process, which can be viewed as the result of vacuum
fluctuations actually stimulating FWM. Under this interpretation, the term
Py.c is the power of such vacuum fluctuations and it replaces the Ps term of
eq. (2.8.37). Because this term does not depend on the Q-factor of the ring,

the scaling of StSFWM is now PZ-(Sp) o @Q3/V?2. Summarizing:

p Q@ pen @

o 1 o 5 (2.8.46)
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Pump influence on photon pair correlations

Intuitively, the changing spectral correlation of fields emitted by Four-Wave
Mixing described in ref. [132] can be understood as follows.

Figure 2.27-a represents a microring resonator being pumped by a con-
tinuous wave laser at the center of the pumping resonance: the pump field
has a very narrow frequency spectrum compared to the pump resonance,
hence it is represented in the figure by a green arrow. Consider now the
signal resonance: if a continuous-wave field is present slightly detuned from
the center of the resonance (blue arrow in the figure), the conservation of
the energy requires that the associated idler field will also be detuned from
the center of the idler resonance, as well (red arrow), by the same amount
and towards the opposite side. There is a strong correlation between the
idler and signal frequencies because their Four-Wave Mixing interaction is
mediated by a pump field with very narrow frequency spread: for each sig-
nal frequency, there is only a very narrow span of idler frequencies that will
fulfill the conservation of the energy with the pump field. This results in a
strongly correlated Joint Spectral Density, as pictured in Figure 2.27-b.

By the same token, if the pump field has a broad frequency spectrum
(green curve in Figure 2.27-c), a single signal frequency will be able to achieve
energy conservation with a broad span of idler frequencies: for instance, the
particular signal frequency identified by the blue arrow in Figure 2.27-c will
be able to interact with the idler frequencies i; or i through the pumping
frequencies p; or po, respectively; the interaction of the signal field with the
whole collection of pump frequencies (green curve) will result in a broad
idler spectrum (blue curve). This discussion is applicable also to the case of
a signal frequency detuned from the center of the resonance, or, symmetri-
cally, to the case of the idler field. In the end, under approproate pumping
conditions, there is no correlation between the signal and idler fields, and the
resulting Joint Spectral Density will be factorisable, as depicted in Figure
2.27-d.

2.9 Rigrod model of lasing cavities
A useful model that describes the radiation produced by a loop laser cavity

is the Rigrod model [262], that has been used to theoretically describe the
behaviour of the fiber loop cavities described in Chapter 3. Here the Rigrod
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Figure 2.27: Schematic representation of the effect of the pumping scheme
on the Joint Spectral Density (JSD) of photon pairs emitted by microring
resonators. A spectrally narrow pump field (a) results in a correlated JSD
(b); A broad pump field (c¢) results in an uncorrelated JSD (d).
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Figure 2.28: Rigrod model of the fiber lasing cavity. a) Representation of
a gain medium. b) Symbolic representation of an amplifier. ¢) Symbolic
representation of the lasing cavity.

model is derived and briefly discussed.

We first start by giving a model of an amplifying medium; then we will
obtain the complete Rigrod model by closing the medium in a cavity.

Consider a medium capable of light amplification, of total length L (Fig-
ure 2.28-a). We assume that the medium is a four-level system, that it is
pumped with a constant current and that it experiences gain saturation; we
assume that its saturation power is P.

To model amplification, we consider what happens in each infinitesimal
slice dz of the medium, where we have that the power at the input of the
slice P(z) will be amplified according to

dP(z)
dz

~ 1+ P(2)/Ps

=a(z)P(z), a(z) (2.9.1)

where g is the unsaturated gain of the medium when P(z) is much smaller
than P,. Rearranging the terms of the previous equation we realize that it
can be integrated

1 1
(P + Ps)dP = apdz (2.9.2)

and if we call P; and P, the power at the input and the output of the medium

we have
/P2 L 1>dP ¥ od 2.9.3
s :/ apdz 9.
P (P Ps 0 0 ( )
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so that P P p
m—24+-2_"1_p 2.9.4
n 2 + 2 oo (2.9.4)

we then define the small signal gain, g9 = Lag, and the total gain of the
medium, G =e9 = P,/ P).

Now we close the medium in a cavity (2.28-c). We suppose that the cavity
has transmission Tyt between the output of the amplifier and the input of
the amplifier. It follows that, when the cavity is in a stationary state, the
gain G has to be equal to the inverse of Tiu:

lnG-i-G_1

P1 = go (295)

S

and therefore

G T;
Py =GPy = Ty, Poe——(go — g) = P,—2

G_1 51_7%(90 - 9) (2-9-6)

Finally, in general, the power will be extracted from the cavity through an
output coupler. We assume that T, is the total transmission between the
output of the amplifier and the point at which the power is measured; we
then arrive to our final formula:

Pout = TocPsli(gO -9) (2.9.7)

If we assume that the gain of the medium is directly proportional to the
current supplied to it, that is

go = kI, (2.9.8)

then almost no power is emitted below the threshold current, Iij,, while
the power will increase linearly for currents above Iy; the threshold current,
obtained by imposing the condition gy = g depends on the total transmission
Tiot, while the slope of the curve, also called slope efficiency, depends on both
Tiot and Ps. In general, the gain of the medium will depend nonlinearly on
the supplied current and some saturation effects may be present.
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Chapter 3

Correlated photon pair
emission from self-pumped
Silicon microresonators

The importance of the microresonator, as discussed in Section 2.8, resides in
the enormous field enhancement that these objects are capable to achieve.
Such enhancement increases the interaction between radiation and matter,
allowing them to reach performances that would be extremely difficult to
achieve in similar non-resonant structures. The practical result is that the
efficiency of optical nonlinear processes like Parametric Down-Conversion
and Four-Wave Mixing will be orders of magnitude higher inside microres-
onators compared to normal optical waveguides, when the same input power
is used.

Four-Wave Mixing, in particular, is the main nonlinear process that is
used to generate photon pair states in microring resonators. A strong laser
pump is coupled to one of the ring resonances and signal-idler photon pairs
are produced in adjacent resonances. However, the resonances of the ring
can shift due to, for instance, thermal ambient fluctuations that drive the
thermo-optic effect. Thus, if the pump is not kept continuously in resonance
the efficiency of Four-Wave Mixing may be reduced. External tunable laser
sources can be employed for this purpose, but they are usually expensive and
sometimes an active feedback system has to be put in place; these drawbacks
make micorings less appealing for industrial applications.

A solution that allows a ring to be pumped without an external tunable

115
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Figure 3.1: Basic scheme of the self-pumping configuration.

laser is obtained when the resonator, in the add-drop configuration, is closed
on itself in a loop cavity that contains an optical amplifier [213], as illustrated
in Figure 3.1. The transmission between the Input and Drop ports of a
ring in the Add-Drop configuration is allowed only for the discrete sets of
frequencies corresponding to the ring resonances. Since the ring acts as a
frequency selective element, the gain of the amplifier is modulated by the
ring and lasing activity will occur automatically on one or more of these
resonant frequencies. Simple additional filtering can be used to obtain lasing
on a single ring resonance.

This configuration, called self-pumping configuration, has several advan-
tages: an external tunable source is no longer necessary, because the amplifier
produces lasing radiation on a ring resonance automatically, and it may be
electrically pumped; moreover, was the ring resonance to shift for any rea-
son, the lasing radiation would follow. For instance, the system will be more
resilient to thermal noise fluctuations, especially for high-Q resonators; as
the optical power coupled to the ring is increased, the thermo-optic effect
redshifts the resonances of the ring, but also in this case the pump would
automatically follow.

This chapter describes how the emission of correlated photon pairs by
a Silicon racetrack microresonator can be performed with the use of a self-
pumping configuration. Section 3.1 describes how the self-pumped cavity
has been realized and characterized and how the correlations between the
generated photons could be controlled changing the current supplied to the
amplifier. Section 3.2 describes how the cavity was modified to produce
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highly correlated pairs of time-energy entangled photons. The chapter is
concluded by Section 3.3, that gives the perspectives of these projects, sug-
gesting how this research line could proceed in the future towards a higher
degree of integration.

3.1 Multi-mode cavity

Here we present the proofs of principle of a source of heralded single photons
and a source of entangled photon pairs, working around the standard 1550
nm telecom wavelength, and based on a self-pumped Silicon on Insulator
(SOI) Add-Drop racetrack microresonator with a Q-factor roughly equal to
20°000. The racetrack was closed in a fiber loop cavity and was electrically
pumped by an optical amplifier. Throughout this chapter we will also refer
to the microresonator using the terms “microring” or “ring”, while we will
always refer to the fiber loop cavity when using the term “cavity”.

The work was based on previous works from Morandotti’s group. [213-
215] and it is the continuation of a project started by M. Previde Massara
et al. [263].

3.1.1 Setup and linear characterization

Consider the experimental setup shown in Figure 3.2. An SOI racetrack
microresonator, 69.4 pym in radius and in the Add-Drop configuration, is op-
tically connected to the external environment through waveguides that route
the light to grating couplers. The maximum transmission of the couplers at
1550 nm was 35%.

The light outcoupled from the Drop port of the ring is routed externally
through polarization maintaining (PM) fiber components to the Input port
of the same ring, thus forming a closed loop cavity. In particular, coupling
to the sample is performed using an array of PM fibers.

The external cavity contains an electrically pumped optical amplifier
(Thorlabs BOA-1004P), that provides the optical gain necessary to reach
lasing operation. The isolator was needed to prevent lasing on the standing-
wave modes of the external cavity that were formed between the input and
output grating couplers, and to ensure that radiation travelled counter-
clockwise only.

The two identical Band-Pass Filters (BPF), 10 nm in bandwidth, select
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Figure 3.2: Experimental setup of the multi-mode self-pumped cavity. BS:
Beam Splitter; PD: Photodiode; F.P.: Fabri-Perot filter; SSPD: Supercon-
ducting Single-Photon Detector; BPF: Band-Pass Filter; BW: Bandwidth;

CWDM

1530 nm

Filtering stage

CWDM: Coarse Wavelength Division Multiplexer
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the ring resonance used for pumping. The BPF at the input of the sample
also rejects the Amplified Spontaneous Emission (ASE) emitted from the
amplifier before it reaches the ring: the ASE is orders of magnitude brighter
than the spontaneously generated photons in the ring and it would mask
the dim signals. The other BPF, on the other hand, also suppresses the
spontaneously generated photons that are coupled back in the cavity before
they reach the amplifier, where they would induce Stimulated FWM and
subsequently destroy the Spontaneous FWM signals in the ring.

The 99:1 Beam Splitter (BS) included in the cavity extracts a small frac-
tion of the traveling radiation for monitoring purposes: half of the extracted
radiation is measured by a power meter to monitor the power level of the
cavity, while the other half is sent to a photodiode preceded by a scanning
fiber Fabri-Perot filter (FP) (Micron Optics FFP-TF2, 240 pm FSR, 1 pm
bandwidth), that allowed us to monitor the spectral shape of the lasing line.

The signals generated in the ring were extracted from the Through port
and routed to either power meters, photodiodes or Superconducting Single-
Photon Detectors (SSPD), as detailed in the following paragraphs.

The Coarse Wavelength Division Multiplexer (CWDM) along this output
line served two purposes: to spatially separate the signal and idler frequen-
cies, and to partially suppress the pump. The CWDM separates incoming
light into 10 nm channels and the rejection between adjacent channels is in
excess of 30 dB. Still the rejection was not sufficient to completely suppress
the pump radiation below the signal and idler power level, so further filtering
was performed by additional BPFs.

Finally, when needed, a 90:10 BS is inserted in the cavity to route the
radiation from an external tunable laser to the ring to measure transmission
or to perform measurements of Stimulated FWM.

The total length of the cavity was estimated to be equal to 16.2 m, and
its group index was assumed to be equal to the phase index of Silica (1.44).
Hence, the FSR between the longitudinal modes of the cavity was estimated
to be 103 fm (12.8 MHz).

Linear characterization

The transmission measurements of the ring resonances chosen for the gen-
eration of photon pairs are reported in Figure 3.3. Following the standard
nomenclature for Four Wave Mixing, the three resonances were labeled pump
(Ap = 1547.6 nm), signal (A\s = 1530.4 nm) and idler (\; = 1565.9 nm). The



120 CHAPTER 3. CORR. PH. PAIR EMISS. F. S.-P. SI. MICROR.

Signal Pump Idler
=
S,
c
K]
3
£
[72]
C
o
|_
1 1 0 1 1 0 1 1 0
1530.5 1530.8 1547.4 1547.7 1564.7  1565.2
A [nm] A [nm] A [nm]

Figure 3.3: Measured transmission and Lorentzian fit of the three micro-
resonator resonances chosen to produce photon pairs by Four-Wave Mixing.
The resonances’ Q-factors are equal to 21’900, 22’100 and 14’900 respectively.

redmost resonance had a slightly larger width, and a slight splitting can be
recognized, suggesting that a defect is present in the ring. The resolution of
the measurement was 5 pm, and from the Lorentzian fit of the resonances
the value of the Q-factor was extracted: the three resonances had 22’100,
21’900, and 14’900 Q-factors, respectively. The three resonances are two
FSRs apart, and the FSR of the ring was measured to be 8.6 nm; the group
index of the ring waveguide was estimated to be 4.32. The minimum trans-
mission of all the resonances reaches values close to zero at the frequencies
of interest, hence the ring is close to be critically coupled.

From this measurement the coupling efficiency of the grating couplers was
obtained: 35% loss per pass (-4.5 dB), and it was estimated that the ring
attenuated the pump by 15 dB at the Through port of the ring. Moreover,
we estimated that the power measured at the power meter was 565 times
smaller than the power at the Input port of the ring.

Lasing characterization

The lasing activity of the cavity was modeled using the Rigrod model, de-
scribed in Section 2.9; eq. (2.9.7) is reported here, where the output power
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of the cavity is related to the amplifier current (I):

Ttot

Pout = TOCPS?%

(90(1) — 9) (3.1.1)

First of all, the small signal gain go(/) was measured using two indepen-
dent techniques. First, the amplifier is kept in an open configuration and a
small signal P, is sent at its input. Then, the output power P,y is recorded
as a function of the current I supplied to the amplifier, after the ASE is
filtered out by a BPF centered on the signal wavelength. By taking the ratio
between the output and input signals, the gain G is obtained, and as long
as Pyyt is kept much lower than the saturation power P; of the amplifier, an
estimation of gg is obtained by taking the logarithm of G:

In our case, three different input powers (24.2 uW, 55.1 uW and 101.5 uW)
were used to measure g(I) = log G(I) and the result is reported in Figure
3.4.

The second measurement technique, instead, extracts the value of gg from
the threshold current of the lasing cavity. At threshold, in fact, the value of
the gain of the amplifier g, is exactly equal to the small signal gain gg, as it is
evident when we impose a zero output of the cavity in eq. (3.1.1); moreover,
the gain of the amplifier is linked to the cavity roundtrip transmission by the
stationarity condition: G' = Tjo¢. Hence, it is evident that by knowing the
value of the roundtrip transmission Ti,¢ and the associated threshold current
Iy, the value of go(1lyy) is obtained.

First, the total transmission Tiy; from the output to the input of the
amplifier using a tunable laser was measured to be T, = 8.95% (-10.5 dB)
and it was mainly due to losses introduced by the sample’s grating couplers
(-4.5 dB each) and by the BPFs (—0.5 dB each). Additional losses were
introduced using a variable attenuator, that was characterized in advance,
placed along the closed cavity. Then, the threshold current was obtained
by measuring the output power of the cavity as a function of the amplifier
current, and by taking a linear fit of the first points above threshold, as
shown in Figure 3.5.

The values of gy obtained with this second method are reported as the
red curve (triangles) of Figure 3.4; the curves from the two methods agree
very well.

go(I) ~ log (G(I)) = log ( Pout(I) < Ps (3.1.2)
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Figure 3.4: Measurement of the small signal gain of the optical amplifier
inserted in the cavity. The first three curves have been obtained from an
input-output small signal gain measurement, while the last one (red tri-

angles), has been obtained by closing the amplifier inside the cavity and
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Figure 3.5: Output power of the fiber loop cavity as a function of the am-
plifier current. With increasing additional losses introduced in the loop,
as labeled in the plot, the threshold current increases. The values for the
threshold current used in the Rigrod model have been extracted from the
linear fits shown (orange lines).
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Figure 3.6: Output power of the fiber loop cavity as a function of the am-
plifier current. The orange line is the expected output as predicted by the
Rigrod model of the cavity. Deviation from the expected behaviour occurs
for currents in excess of 100 mA.

Finally, the lasing curve of the cavity was taken and compared to the
expected output predicted by the Rigrod model. Figure 3.6 reports the
experimental data (blue dots) and the lasing model (orange curve).

The agreement between theory and experiment is very good for currents
above threshold up to roughly 100 mA. When the current is increased, how-
ever, the output of the cavity is inferior with respect to the expected one
and saturation occurs.

Thermo-Optic Effect and Two-Photon Absorption

In order to investigate the saturation effect, a systematic analysis of the
behaviour of the cavity line and the ring resonance as a function of the cavity
power was performed. A tunable laser, connected to the cavity through a
90:10 BS, as detailed in Figure 3.2, was used to measure the transmission of
the signal resonance while the cavity was closed and lasing. The transmission
measurement, as a function of the optical power at the input of the ring, is
reported in Figure 3.7. The resonance is redshifted as the input power is
increased; moreover, the Q-factor of the ring is decreased, as well as the
visibility of the resonance. This behaviour is consistent with a thermally
induced increase of the ring’s mode effective index (Thermo-Optic Effect)
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Figure 3.7: Idler resonance transmission as a function of coupled pump
power. The thermo-optic effect redshifts the resonance, while Two-Photon
Absorption decreases the Q-factor of the ring by inducing Free-Carrier Ab-
sorption. The legend refers to the optical power at the input of the microring.

and by an increase of the losses caused by Free-Carrier Absorption induced
by Two-Photon Absorption (TPA), that also progressively drive the ring out
of the critical coupling condition.

At the same time, the spectral shape of the cavity line was monitored
by a photodiode preceded by a tunable FP and connected to the 99:1 BS at
the output of the sample; the oscilloscope traces taken from the photodiode
are shown in Figure 3.8. The curves have been corrected for the distortion
induced by the nonlinear response of the piezoelectric actuators used to tune
the FP. At low powers, the lasing line is narrower and aligned with the
wavelength of the cold ring (a relative misalignment of 4 pm is attributed
to the use of independent techniques to measure the ring resonance and the
laser lines); at higher powers the curves are redshifted and broadened to a
large extent.

Figure 3.9 compares the redshift of the lasing lines and of the ring
resonance: at every given power, the lasing lines of the cavity have been
blueshifted back by the same amount that the ring resonance is redshifted;
this way, if the redshift of the lasing lines was equal to the one of the ring,
in the plot they would all align back at the wavelength of the cold ring reso-
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power, more in detail.
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Figure 3.9: When the lasing lines of Figure 3.8 are blueshifted by the redshift
of the ring resonance shown in Figure 3.7, they align together on the center of
the ring resonance. The black dashed line is the outline of the cold microring
pump resonance, centered at 1547.57 nm, as obtained from the fit of the
resonance transmission measurement.

nance. Indeed, this happens for most of the lines at lower power, proving that
lasing occurs in correspondence with the center of the ring resonance, where
the roundtrip transmission of the cavity is maximum. This is significant of
the capability that the loop cavity has in following the ring resonance as it
shifts. Only few high-power lines experience a further redshift compared to
the ring resonance.

The analysis of the lasing line behavior explains well the saturation effect
seen in the lasing curve of the cavity. Figure 3.7 shows that the Q-factor
of the ring resonance starts to degrade when the power at the input of the
ring exceeds roughly 1.3 mW, that corresponds to the power at which the
saturation of the lasing line starts to occur, as well. Therefore, in this regime
losses are higher than what has been assumed for the Rigrod model and the
lasing line sits below the one predicted.

On the other hand, the broadening of the lasing spectrum is not com-
pletely understood. We tentatively attribute the cause to the combination
of gain saturation effects occurring in the amplifier and to the onset of TPA
in the microring resonator.
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3.1.2 Nonlinear characterization

The nonlinear properties of the ring have been characterized, as well. In
particular, the Stimulated Four-Wave Mixing (StFWM) and Spontaneous
Four-Wave Mixing (SpFWM) nonlinear processes have been characterized.

In order to verify that Four-Wave Mixing (FWM) is the main nonlinear
process that happens inside the microring resonator, we verified that the
scaling of the power of the signals generated nonlinearly was the one ex-
pected. As described by egs. (2.8.36) and (2.8.45) in Paragraph 2.8.2, the
expected scaling for StFWM is quadratic with the pump power and linear
with the stimulating signal power, while the expected scaling for SpFWM is
quadratic with the pump.

The measurement of StFWM was performed by connecting to the cavity
a tunable laser that sent the stimulating signal through the 90:10 BS at the
input of the sample. The output signals were collected from the Through
port of the ring, they were sent to the CWDM for spatial demultiplexing and
filtering and they were acquired by a power meter.

Figures 3.10-a and 3.10-b show how the idler signal scales with the pump
and with the signal. In both cases the scaling is in agreement with egs.
(2.8.36) and (2.8.45), but a saturation effect is present at higher powers.

3.1.3 Emission of photon pairs and time correlation

In the case of continuous wave pumping, the photon pairs produced in a mi-
croring are expected to be emitted simultaneously, within about the dwelling
time of the light circulating in the microring. The correlations were analyzed
by sending the signal and idler photons at the output of the frequency filter-
ing stage to two Superconducting Single-Photon Detectors (SSPD A and B
in Figure 3.2); the detectors (Photon Spot) are helium cooled to 0.7 K by a
closed-cycle helium cryostat, they had 75% and 80% efficiency, respectively,
and they exhibited a time jitter of 37 ps. The electrical pulses emitted by the
detectors are sent via coaxial cables to time-tagging electronics (PicoQuand
HydraHarp 400) and the obtained acquisition log was analyzed at a later
time.

Figure 3.11 shows the rate of coincident events between SSPDs A and B as
a function of relative delay, for two particular ring pumping powers. A clear
peak is observed, having about 120 ps FWHM, highlighting the coincident
emission of the pairs; indeed, from the dwelling time of the photons within
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Figure 3.11: Coincidence histograms for two ring input pump powers (la-
beled). The data are the result of one minute acquisition time; time bins
(67) are 35 ps wide in both cases. The red and blue curves are the fits of the
data, as detailed in the text.

the ring (16 ps) and from the detectors’ response (37 ps), the system would
be unable to resolve emission events closer than 57 ps in time, which is on
the same order of magnitude of the observed value, and much lower than the
mean interval between singles’ detections, as reported below. For different
input pump powers similar peaks were observed.

All the peaks were fitted with the weighted sum of a Lorentzian and a
Gaussian curve (p and 1 — p weights respectively). In particular, if Ly (7)
and G4, (1) are the two normalized functions, centered at zero time delay,
where dr indicates their FWHM, the fitting function hg,(7) was defined as

hir (1) = B+ A(p Lar (1 — 10) 4+ (1 — p) Gar (T — 70)) (3.1.3)

where 79 indicates the position of the peak. Figure 3.11 shows an example
of data fitting performed with the curve defined above.

The total coincidence rates were obtained from the area under the fitting
curve (A), after the subtraction of the background (B), which was obtained
from the same fit. In particular, the coincidence rate R is obtained from

A
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Figure 3.12: Left scale: coincidence rate (R) as function of the ring input
power. The scaling is quadratic, as expected by the theory of Spontaneous
Four-Wave Mixing in microring resonators. The dashed line represents per-
fect quadratic scaling. Right scale: Coincidence to Accidental Ratio ex-
tracted from the fit of the coincidence peaks; the definition used is given in
the text.

where T is the acquisition time (60 s) and §7 is the time bin of the his-
togram (35 ps). The scaling of the coincidence rate is shown in Figure 3.12.
The quadratic slope still confirms the absence of other parasitic fluorescence
effects.

From the total transmission losses between the microring resonator and
the SSPDs we could estimate the pair generation rate inside the microring.
The losses between the Through port of the ring (past the grating coupler)
and the input of the SSPDs were directly measured to be —4.39 dB and —5.76
dB for the signal and idler wavelengths respectively; taking into account
additional —3 dB outcoupling losses between the ring and the bus waveguide
(for each beam), —4.5 dB for the grating couplers transmissions (for each
beam) and the efficiency of the SSPDs, the losses for the coincidence signal
totaled —27.5 dB. Hence, from the maximum coincidence rate measured
(6650 coincidences per second at 1.695 mW ring input power) we estimated
a maximum internal generation rate of 3.69 MHz.

Figure 3.12 also shows the Coincidence to Accidental Ratio (CAR) for
each of the acquisitions; the CAR was defined as the ratio between the
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Figure 3.13: Top: FWHM of the coincidence peaks (dr) as obtained from
the fit of the data. Bottom: relative weight of the Gaussian (p = 0) and
Lorentzian (p = 1) for the best fit curves, as detailed in the text.

total coincidence rate under the FWHM of the peak and the background
coincidences over the same interval. At low powers the CAR is high, while
at higher powers the CAR is degraded indicating that multiple emission of
pairs is reducing the quality of the generated quantum state.

Figure 3.13 shows the variations of the parameters of the peak as ex-
tracted from the fits. The width of the peak is slightly decreased as the
pump power increases, in agreement with an increasing resonance width at
higher power, and the overall shape is close to a pure gaussian.

Frequency correlations

As detailed previously in Paragraph 2.8.2, when the bandwidth of the pump-
ing field is comparable to the linewidth of the microring’s resonance, the
biphoton wavefunction produced by SpFWM becomes less correlated; in this
instance, the figure of merit for the degree of correlation is the Schmidt num-
ber (K), discussed in Paragraph 2.5.2.

Indeed, as outlined in the previous paragraphs, the bandwidth of the
cavity lasing line is much broader than for the ideal continuous wave laser,
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thus a weakly-correlated photon pair state is expected to be produced.

The degree of frequency correlation for the photons produced by the cav-
ity has been investigated experimentally with the use of Stimulated Emission
Tomography (SET) [257] for different cavity powers, and then compared with
numerical simulations. As explained in more detail in ref. [257], the spec-
tral correlations between signal and idler fields obtained by stimulated FWM
are the same of spontaneously generated signal and idler photon pairs. The
stimulated process, however, is orders of magnitude brighter than the spon-
taneous counterpart, and measurement times can be reduced accordingly.

The setup used to perform the SET measurement is illustrated in Figure
3.14. As previously, the signal field was produced by the tunable laser source
coupled to the ring through the 90:10 BS, while the FWM output fields were
analyzed by a tunable FP filter and single photon detectors. The tunable FP,
preceded by an isolator, was put at the output of the Through port of the
microring, before the CWDM, so that all the pump, signal and idler fields
could be spectrally filtered before being separated at the demultiplexer and
sent to three SSPDs. Appropriate attenuation of the fields ensured that the
SPDs would not be blinded by the strong classical fields.

The measurement proceeded by stepping the tunable laser across the
signal resonance of the ring with 1 pm steps, while a function generator
was continuously applying voltage ramps to control the FP and scan the
produced output field. The pulses produced by the SSPDs were sent to time-
tagging electronics, and the log was subsequently analyzed at the end of the
acquisition phase. In order to correctly assign the pulses to the correct pixel
of the image, both the laser and the function generator sent electronic marker
signals to the time-tagging electronics for synchronization, with nanosecond
resolution.

Figure 3.15 (a, b and c¢) shows the Joint Spectral Density (JSD) of the
biphoton wavefunction retrieved from the SET measurement. The resolution
of the vertical axis is given by the 1 pm laser steps, while the horizontal
resolution is given by the 1 pm FWHM of the FP. The total acquisition
time for each of the images shown was 240 seconds. Originally the pictures
were distorted because of the hysteresis present in the response of the FP to
the applied voltage. These distortions were compensated by correcting the
lowest-power picture to show an antidiagonal JSD, and then applying the
same correction to the pictures at higher powers.

At alater time, the pump beam outcoupled from the 99:1 BS was scanned
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with the same FP filter and sent to a photodiode, so that the pump spectral
shape that produced the JSD images was available, as well. In principle, as
originally intended, the Through-port pump signal could have been used at
the same time of the signal and idler fields, however the pump field at the
Through port of the Add-Drop ring, being a residual field, was more unstable
than at the pump at the Drop port.

This measurement was the one that actually produced Figure 3.8 and,
together with the measurements of the thermo-optic shift shown in Figure
3.7 (including the relative redshift of the pump field and resonance, and the
decreasing quality factor of the ring), it was used to numerically simulate
the expected JSD at a given ring pump power.

The experimental data and theoretical predictions agree very well at lower
pump powers, while the experimental JSD is broader than expected at higher
powers. In particular, broader pump spectral shapes are expected to produce
rounder JSD figures, and this is indeed the case for our experiment. The
Schmidt number associated to the various theoretical JSDs varied between
4.07 at lower powers and 1.92 at higher powers.

Further investigation is necessary to understand the origin of the dis-
crepancy between the theory predictions and experimental data. As before,
we tentatively attribute the cause to an interplay of different phenomena:
saturation effects in the optical amplifier at higher cavity powers which seem
to be responsible for the broadening of the pump radiation; moreover, the
fact that the redshift of the cavity radiation is even stronger than the red-
shift of the ring resonance itself at high power (Figure 3.9) suggests that the
thermo-optic effect might play an important role in the broadening of the
JSD at higher powers, as well.

Second-order correlations

The last figure of merit assessed was the degree of second-order correlation of
the photon state, which is obtained from the ¢(?) (1) autocorrelation function
of the heralded beam, as discussed in Section 2.3. Experimentally, as pictured
in Figure 3.2, the ¢(®(7) function was obtained from a Hanbury Brown and
Twiss (HBT) interferometer connected to the idler arm and to SSPDs B and
C, while the signal arm was being heralded by SSPD A.

For two different cavity power levels (0.847 mW and 1.695 mW at the ring
input) the field produced by the cavity during one hour acquisition windows
was analyzed and the results are reported in Figure 3.16. A clear dip is ob-
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Figure 3.16: Autocorrelation function of the heralded idler beam for two
different ring input powers (legend). Acquisition time was one hour. The
error bars represent uncertainty due to Poissonian statistic. The zero of the
delay was set at the center of the dip and the shift was consistent with the
difference in path length between the beam splitter and the single photon
detectors.

served in the heralded coincidences between SSPDs B and C, demonstrating
antibunching for the photon state at the input of the HBT interferometer.
At both powers the minimum of the ¢(? (7) function is well below 0.5, con-
firming the quantum nature of the field produced in the ring.

A series of shorter acquisitions (10 minutes each) has been taken, as
well, to observe the variation of the minimum value of the autocorrelation
function as the power in the cavity is increased. The results of the analysis is
reported in Figure 3.17. Although antibunching is present for all the powers
investigated, the minimum of ¢(® rises above 0.5 at the highest pumping
powers, and the purity of the state is reduced. The lowest value of ¢(2) we
obtained was (15 #+ 7.5) - 1073 for 0.565 mW power at the ring input.

3.2 Single-mode cavity

As far as we have seen in the characterization described in Section 3.1, the
bandwidth of the cavity laser radiation was much larger than the one for the
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Figure 3.17: Minimum value of the autocorrelation function of the heralded
idler field. Each point was obtained after 10 minutes acquisition. Below the
value of 0.5 the nature of the field is considered quantum and not explainable
by semi-classical theories of light.

ideal continuous-wave laser.

However, during the characterization process of the cavity, it was fairly
common to see for brief moments the spectrum of the pump becoming as
narrow as the resolution of the scanning Fabri-Perot filter allowed to resolve
(smaller than 1 pm), suggesting that the cavity was lasing on a single longi-
tudinal mode. If that was actually the case, then it was reasonable to assume
that the ring was producing highly entangled photon pairs, since now the
spectrum of the pump was much narrower than the ring resonance.

These brief “jumps” were the inspiration for the work described in this
section. Here we describe how we managed to stabilize the cavity to work on
a single longitudinal mode for longer time spans; the improved stability of
the cavity, in turn, allowed us to indeed demonstrate the emission of time-
energy entangled photons by violation of the Bell inequality using a Franson
interferometer [260].

Since we used the same microring and since the cavity is essentially iden-
tical but for a tunable Fabri-Perot filter inserted along the loop, here I will
report only the relevant measurements and differences compared to the cav-
ity described in the previous section.
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3.2.1 Setup and linear characterization

The updated setup for the single-mode cavity is reported in Figure 3.18.
The microring used for the cavity was the same described in Section 3.1;
the configuration of the cavity is essentially identical to the one already
described, but with two main differences: the loop now contains a tunable
Fabri-Perot filter (FP), that has 240 pm FSR and 1 pm linewidth; moreover,
since the FP was not polarization maintaining, a polarization controller was
inserted before the filter in order to maximize the roundtrip transmission and
to lower the threshold current of the cavity. The second difference was the
replacement of the tunable FP filter on the measuring arm at the output of
the 99:1 BS with another FP filter with smaller FSR (10 pm) and linewidth
(0.1 pm). The Franson interferometer shown in the setup was not connected
but for the measurement of entanglement, which is described later on.

The insertion of the FP filter inside the cavity provided the system with
a device that sharply selected the frequency of operation. Only a few modes
of the cavity, roughly 16.2 m long, are present within the FWHM of the FP
line at any given time, since the FSR of the cavity was measured to be 94 fm,
as shown later on. In order to obtain lasing on a single longitudinal mode
for times long enough to take the measurements presented in the following
paragraphs, we had to take particular care in attaching all the fibers to the
optical table and the whole setup had to be covered with a box to prevent
air currents from disturbing the cavity. Moreover, as many components as
possible were polarization maintaining.

Although it allowed to achieve single-mode operation, the introduction
of the FP filter prevented the lasing radiation to automatically follow the
ring resonance as it shifted. Every time the amplifier current was modified,
the position of the FP line had to be manually adjusted and aligned on the
center of the microring resonance to optimize the output power produced by
the lasing cavity. In general, a fine manual adjustment of the FP filter is
needed to make the cavity operate on a single longitudinal mode.

Lasing characterization

The lasing curve of the single-mode cavity is reported in Figure 3.19. The
behaviour is still similar to the one of the multi-mode cavity, but, due to the
FP filter transmission not exceeding 25%, the threshold current was higher
(101.2 mA) and the slope efficiency (16.36 nW/mA) was smaller. Each of
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Figure 3.18: Experimental setup of the single-mode cavity. BS: Beam Split-
ter; PD: Photodiode; F.P.: Fabri-Perot filter; SSPD: Superconducting Single-
Photon Detector; BPF: Band-Pass Filter; PC: Polarization Controller; BW:
Bandwidth; CWDM: Coarse Wavelength Division Multiplexer.
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Figure 3.19: Lasing curve of the single-mode cavity. Each point has been
recorded after tuning the intra-cavity Fabri-Perot filter to achieve single-
mode operation. The threshold current (101.2 mA) and the slope efficiency
(16.36 nW/mA) were extracted from the linear fit shown in the plot.

the points of the curve was taken after a fine tuning of the intra-cavity FP
filter. While the cavity was stable for many minutes for the lower points,
the stability for the highest point of the curve did not exceed few seconds of
operation.

In order to estimate the bandwidth of the cavity radiation, we performed
a heterodyne measurement by beating the cavity line with the line of a tun-
able laser (Santec TSL-710), used as local oscillator, locked to an ultrastable
reference laser (Orbits Lightwave Ethernal). The two fields have been sent
to balanced photodetectors, and the spectrum analyzer used to analyze the
RF signal (Tektronix MDO-3034, custom) had 3 GHz bandwidth.

Figure 3.20-a shows the spectrum of the acquired heterodyne signal. A
sharp peak is visible, whose width is estimated to be smaller than 300 kHz.
This value is much smaller than the FSR of the fiber loop cavity, and no other
peaks are present in its vicinity, proving that the operation of the cavity is
indeed single moded. From the width of the peak we can set a lower bound
on the coherence length of the cavity radiation of 300 m.

As the time-stability of the cavity was not perfect, by perturbing the
system slightly or by detuning the FP line from the center of the microring
resonance it was possible, at times, to induce the cavity to work in a multi-
mode regime. Figure 3.20-b shows the heterodyne spectrum of the cavity
working in such regime, where a comb of few equally spaced peaks is visible.
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Figure 3.20: Heterodyne measurements of the cavity radiation. a) Single-
mode regime of the laser cavity (133 kHz resolution). b) Multi-mode regime
of the laser cavity (133 kHz resolution): the FSR between the modes is 11.86
MHz.

The FSR of this comb (11.86 MHz / 94 fm) corresponds to a 17.4 m long fiber
cavity and it is consistent with the actual length of the cavity (16.2 m) and
expected FSR (12.8 MHZ / 103 fm); the width of the comb spanned roughly
1 pm, as shown in the figure, which is comparable with the bandwidth of the
intra-cavity FP filter.

3.2.2 Nonlinear characterization and emission of photon pairs

As well as for the multi-mode cavity, a characterization of the power scaling
of FWM has been performed for the single-mode cavity. The top panel of
Figure 3.21 shows the acquisition performed by a spectrometer followed by a
linear CCD camera of the line produced by SpFWM on the signal resonance
of the ring; the signal is acquired after the filtering stage shown in Figure
3.18, past the output of the CWDM’s 1530 nm channel and past the BPF
(while the Franson interferometer was not connected). The graph shows that
all the other FWM lines have been suppressed, and that the pump beam has
been completely rejected. A similar peak was observed in correspondence
with the idler resonance’s wavelength when the other output port of the
filtering stage was connected to the spectrometer.

The bottom panel of Figure 3.21 shows that the power scaling of SpFWM
is quadratic, as expected. The data for this figure has been obtained by
subtracting the luminescence background visible within the pass band of the
BPF and by taking the total of the subtracted counts.
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Figure 3.21: Spontaneous Four-Wave Mixing produced by the single-mode
fiber loop cavity. Top: Spontaneous Four-Wave mixing field produced at
the signal microring resonance, measured past the 1530 nm channel of the
CWDM and BPF. The pump is completely rejected. The dashed lines rep-
resent the transmission window of the BPF. Bottom: power scaling of the
signal field. The dashed line represents a prefect quadratic scaling; the verti-
cal scale has been adjusted so that the data points represent the actual rate
of signal photons incident at the input port of the spectrometer.
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The time correlations of the spontaneously generated fields have been
characterized using the same experimental and numerical techniques as de-
scribed for the multi-mode cavity, in the previous section: the signal and
idler fields have been sent to different SSPDs, the generated electrical pulses
have been analyzed with time-tagging electronics, and the time logs have
been numerically analyzed afterwards.

The left panel of Figure 3.22 shows one histogram of the coincidences
detected as a function of the time delay between the two fields, where a clear
peak is visible. The peak has been fitted with the same function described
in the previous section and exhibited 108 ps FWHM for all the ring input
powers investigated, and it was mostly gaussian in shape. The right panel of
Figure 3.22 shows the scaling of the area under the fitted curve, background
subtracted (left scale) and the CAR for the same peaks (right scale); again,
the scaling is quadratic, as predicted by theoretical models of SpFWM in
microring resonators, and the CAR is decreased at higher ring input powers.

3.2.3 Entanglement verification

The verification of entanglement has been performed by sending the photon
pairs through a Franson interferometer. The details of the Franson measure-
ment have been described in Paragraph 2.5.3 of Chapter 2, while here we
will recall the most important points of that discussion.

In a Franson experiment, the photons of a signal-idler pair are sent to
different unbalanced interferometers, and they are independently detected by
SSPDs. Assuming to know the time at which the pair has been emitted, four
different situations are observed, depending on whether each of the photon
has taken the long (L) or short (S) path of its interferometer.

In general, however, the emission time of the photon pair is unknown,
so if the two MZIs have identical unbalance, cases S;S; and L;L; are indis-
tinguishable, where s and ¢ label the signal and idler photon. When the
photons are time-energy entangled and they fulfill appropriate coherence re-
quirements, the indistinguishability leads to nonlocal quantum interference
effects on the global biphoton wavefunction.

In particular, when the relative arrival times between the signal and idler
photons are analyzed, three coincidence peaks are observed. The central peak
corresponds to the indistinguishable cases and it is customary to choose the
time reference of the two axes so that the central peak has zero time delay;
the lateral peaks then correspond to the signal photon arriving earlier than
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Figure 3.22: Time correlations between the signal and idler fields produced
by Spontaneous Four-Wave Mixing by the single-mode cavity. a) Coincidence
histogram as a function of the time delay between signal and idler field for
0.86 mW optical pump power at the ring input port. The time bin used for
the analysis was 16 ps and the error bars represent Poissonian uncertainty
on the bin counts. b) Left scale: power scaling of the intensity of the peak
at different input powers; right scale: Coincidence to Accidental Ratio of the
peak for the same input powers.
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the idler beam on this reference frame (S;L;), or vice versa (LsS;). Obviously,
the distance between the three peaks will correspond to the unbalance time
of the two MZIs; it is clear that in order to distinguish the central peak from
the lateral ones the time width of the peaks has to be much shorter than
the delay due to the unbalance of the MZIs; this requires that the coherence
length of the single photons has to be much shorter than the unbalance of
the MZIs.

The intensity of the central peak will change depending on the global
status of the MZIs; the total coincidence rate R, of the central peak, in fact,
depends on the sum of the phases of the two interferometers, that we will
call ¢5 and ¢;, following the relation

1
R. = R00052<

=3 A+¢s+¢i>

: (3.2.1)

where Ry is the original coincidence rate of the pairs when the photons
are not traveling through MZIs and A is a phase factor that depends, for
instance, on the total path between the pair source and the interferometers.

Having two different MZIs is a necessary condition if one wants to violate
the Bell inequality by closing the nonlocality loop, out of the scope of this
experiment. Therefore, we chose to use a single MZI instead, for simplicity;
the two photons are still propagating independently and the phase delay they
will acquire in the interferometer will be approximately the same

where ¢ is the phase introduced by the single MZI. The central peak coinci-
dence rate will then be dependent on ¢:

1 A
m:4%a§<2+@ (3.2.3)

Moreover, the use of a single MZI ensures that the two photons will ex-
perience the same unbalance apart from a negligible difference due to the
dispersion of the fibers used in the interferometer.

The setup used to perform the Franson experiment is the one illustrated
above (Figure 3.18). The MZI used in our experiment was realized with
polarization maintaining fiber components. The phase shifter arm was 2 m
longer than the short arm, corresponding to an additional delay of 9.67 ns
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assuming 1.45 as the group velocity of optical fibers. The MZI was stabi-
lized by a counterpropagating laser beam produced by a laser diode locked
to a stable reference laser (Orbits Lightwave Ethernal), similarly to the het-
erodyne measurement described above; the system allowed to set the phase
shift induced by the phase shifter with a precision much better than 1 degree.
The splitting ratio of the BSs varied with wavelength. They were balanced
at 1550 nm, but they exhibited different ratios at the signal and idler wave-
lengths. In particular, BS 1 was 56:44 at the signal wavelength and 43:57 at
the idler wavelength, while BS 2 was 58:42 and 40:60 at the two wavelengths,
respectively.

The photon pairs generated in the ring were collected from the Through
port of the sample and they were routed to one input port of the MZI. After
traveling through the interferometer, they were collected by one of the two
output ports and sent to SSPDs; the filtering of the pump and the separation
of the two frequencies was performed past the interferometer.

The reaction times of SSPDs have been recorded for eighty different phase
settings of the interferometer; the measurement was performed in 160 s and
the time acquisition window for each setting was 1.7 s long. The results of
the measurement are illustrated in Figure 3.23. The top panels show the
coincidence histogram for four different settings of the phase of the interfer-
ometer. The three peaks are clearly visible and spaced apart by the expected
time delay, and it is clearly seen that the central peak intensity changes in
the different configurations. The different height of the lateral peaks is due
to the unbalance of the BSs at the signal and idler wavelengths.

Each of the points of the lower panel (left scale) represents the total co-
incidences under the FWHM of the central peak of the histograms described
above, and the expected sinusoidal fringe is clearly visible in the plot. The
visibility of the fringe, 93.9% + 0.9%, was extracted from the sinusoidal fit
of the experimental points, and it violated the Bell inequality boundary [99]
(70.7%) by 26 standard deviations.

While the vertical error bars represent poissonian noise, the horizontal
error bars are due to the small frequency shift that the cavity pump radiation
experiences within time scales comparable with the total acquisition time of
the fringe. The estimation was performed by scanning multiple times the
MZI as the pump beam emitted by the cavity was travelling through it. The
series of fringes obtained is reported in the top panel of Figure 3.24; the
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Figure 3.23: Results of the measurement performed with the Franson inter-
ferometer. a) to d) Coincidence histograms for four different phase settings
(labeled) of the Franson interferometer. The acquisition window is 1.7 s and
the time bin is 16 ps. e) Left scale: Total coincidence counts under the
FWHM of the central peak (not background subtracted); the dashed line
is a sinusoidal fit of the data. Right scale: signal and idler single counts

over the same acquisition windows.

Black arrows indicate the data points

corresponding to the histograms shown in figures a) to d).
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Figure 3.24: Top) Sixteen repeated acquisitions of of the residual pump
signal emitted from the Through port of the sample; all the lines have been
acquired in 160 s. Bottom). Phase of the sinusoidal function used to fit the
curves of the top panel; a drift occurred in time.

curves were fitted with the following function

t(f) = B+ Asin (27T(ff) + ¢> (3.2.4)
0

where fy is the period of the fringe and ¢ is the phase term used to take

into account the drift of the individual fringe. The horizontal error bars of

Figure 3.23 were estimated in turn from the size of the ensemble of phases

obtained from such fits, shown in the bottom panel of Figure 3.24.

Panel e) of Figure 3.23 (right scale) also shows the singles’ rates of the
signal and idler fields that were extracted from the analysis of the same
experimental data that produced the coincidence fringe. These data show
that the fluctuations between different acquisitions of the fields produced by
the cavity were small, and that no mode-jumps happened throughout the
whole duration of the experiment; this was confirmed also by inspecting the
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spectrum of the cavity laser line measured at the output of the 99:1 BS, that
was kept under direct visual observation on a monitor screen throughout the
acquisition.

Ideally, the small sinusoidal modulation of the signal and idler rates
should be absent, and it was due to a difference in the transmissions of
the long and short arms at the signal and idler wavelengths; the coherence
length of the photons (~ 15 mm) was too short to be responsible for this
effect. In any case, it is interesting to notice from this data set that, as
expected, the modulation of the correlated events has half the periodicity
of the modulations of the uncorrelated events, in accordance with equation
(3.2.3).

3.3 Perspectives

The works on the single- and multi-mode cavities described in Sections 3.1
and 3.2 represent, respectively, the first demonstration of emission of photon
pairs by SpFWM and of entangled photon pairs by a self-pumped Silicon
microresonator. These are proof of principle experiments where a laser cavity
has been realized using bulk components and where only Four-Wave Mixing
has been realized inside an integrated device.

Table 3.1 reports a sammary of the performance of various sources of
photon pairs based on microresonators reported so far. The work described
in this Chapter compares well with the state of the art. In particular, the
visibility of the Franson fringe is comparable with the other ones reported,
and we notice that the Coincidence to Accidental Ratios exhibit very high
values, especially if related to the pump powers employed; this is due to the
high performance of the superconducting single-photon detectors used.

Apart from an obvious reduction in the required footprint, the realiza-
tion of a completely integrated self-pumped device capable of emitting time-
energy entangled photons would represent a big improvement for various
reasons. In fact, the small Free Spectral Range of the fiber loop cavity pre-
vented the achievement of single-mode operation without the addition of a
Fabri-Perot filter inside the cavity: this not only increased the complexity
of the setup, but also removed the advantage of the self-pumping config-
uration, since the tuning of the Fabri-Perot had to be adjusted whenever
the current supplied to the amplifier changed. Complete integration would
reduce considerably the optical length of the cavity, increasing accordingly
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Work Platf. r / L [um] Q P, mW] R [Hz] CAR %
. 0.2 2-10° 220 -
. _ . 5
[180]  Si 5 7.9-10 50 75 106 16 ]
[184]  Si - 43 1-100 04 3-10° 30 -
0.019  8.27-105 602 -
. _ . 4
[189]  Si 73 3.75-10 18 193.10° 37 ]
[264] Si 15 - 4-10% 0.3 1-10°  >50 -
[265] Si - 1325 8.1-10% 0.1 1.4-10* 180 -
[187] Si 7 - 2-10* 041 2.1-107 350 -
0.005 165 37 -
. _ . 4
[123] Si 22 3.1-10 0.32 3.105 35 ]
20 - 2.5-10°  0.008  5.7-10* 22 -
[123] Si 20 - 9.5-10*  0.008  4.7-10° 60 -
0 - 9.4-10* 0079  83-10* 65 -
[209] Hydex 135 -  1.375-10° 30 3-10° 12 -
0.25 4-10° 132 94.8% + 3.8%
[186] Si 10 - 1.5-10*  1.00 48-10° 64 91.8% +1.9%
1.5 1.4-10° 45 89.3% + 2.6%
[266]  Si - 1325 1.3-10°  3.16 n/a 80 92.0% + 1.3%
[267] Si 60 - 4-10* 0.5 2-10° n/a  99.2% 4 2.3%
[210] SiN 60 - 1.1-106 2.4 n/a 52 92.0% + 13%
[211] SIN 350 @ - 2-105  n/a n/a n/a  93.0% + 13%
0.146 6.2-10" 423
[212] SIN 25 - 1-10%  0.046  4.8-10% 2200 82.7% +0.2%
0.023 1.2-10% 3780
1.70 3.7-10° 17 -
. . 4
MM.osi - 649 22100 ga8 142.10° 1069 -
1.5 2.9-106 185 -
SM.  Si - 649 2-10*  0.65 n/a n/a  93.9% + 0.9%
0.24 8.4-10* 1781 -

Table 3.1: Performance of various sources of photon pairs based on micro-
resonators. The first, middle and last sections refer respectively to sources
of photon pairs, sources of pairs where Franson experiments have been per-
formed and to the work described in this Chapter. r: ring radius, QQ: quality
factor, P,: pump power, R: pair generation rate, CAR: Coincidence to Ac-
cidental Ratio, V: Franson fringe visibility, M.M.: Multi-mode cavity, S.M.:
Single-Mode cavity.
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the Free Spectral Range between adjacent modes. It is then reasonable to
assume that single mode operation would be reached with the microring as
the only frequency selective element of the cavity.

Moreover, an integrated design would reduce the overall roundtrip losses
experienced by the cavity field, since they are currently determined mostly
by the grating couplers losses. The threshold current would be reduced,
lowering the electrical power consumption of the device, and the birefringence
naturally present in integrated waveguides would lift the need for polarization
control.

Additional challenges would have to be solved, however. First of all,
being an indirect semiconductor, Silicon cannot be used as a gain medium
for lasing, therefore more involved integration processes would have to be
used to achieve lasing operation. For instance, III-V gain media can be
integrated on top of Silicon waveguides to provide optical gain at telecom
wavelengths [268, 269).

Moreover, the two Band-Pass Filters rejecting the Amplified Spontaneous
Emission produced by the amplifier and the photon pairs coupled back into
the cavity will still be required in an integrated version of the cavity. Highly
filtering devices such as integrated distributed Bragg reflectors could be used
to implement the filtering of the residual pump on the output port of the
resonator, but they would not be useful to reject the ASE and the cavity-
coupled signal-idler photons, since circulators would have to be added to
redirect the reflected pump radiation into the cavity.

Assuming these challenges are solved, a straightforward application of
such a device would be an extremely compact, cheap and low-power source
of time-energy entangled photon pairs, that could be used to implement
quantum communication protocols for long distance key distribution, as dis-
cussed already in Chapter 1.
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Chapter 4

Periodic structures in
high-bandgap materials

Periodic dielectric structures are of paramount importance in the fields of
classical and quantum photonics. The combination of the countless reflec-
tion and refraction events that light undergoes when it encounters dielectric
interfaces can produce interesting phenomena, such as the emergence of a
photonic bandgap. These phenomena are best described by the theory of
photonic crystals, as already discussed in Section 2.7.

The two experimental works described in this chapter are based on peri-
odic dielectric structures, where the optical properties emerging from their
periodicity are key features of their design. The works are the result of
the collaboration between the University of Pavia and the group of Alberto
Politi, the Quantum nanoPhotonic Lab, at the University of Southampton.
The Author visited the Politi’s group between April and December 2018.

Section 4.1 describes the design of a photonic platform based on Sili-
con Carbide suspended subwavelength waveguides for operation at 1550 nm.
Suspending waveguides in air is needed when a higher contrast between the
guiding dielectric material and the cladding is required, or when, for some
reason, the cladding material is deleterious for light propagation.

In the case of the work described here, a Silicon Carbide film is grown on
Silicon, which makes impossible to exploit total internal reflection to guide
light; in fact, Silicon has a higher index of refraction than Silicon Carbide.
Moreover, the use of subwavelength structures simplifies the fabrication pro-
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cess by allowing the use of a single Silicon Carbide etching step to define all
the geometries of the photonic platform. In Section 4.1, the description of
the photonic platform and of its design process is followed by the description
of the fabrication and characterization of the first Silicon Carbide devices
used to test the platform.

Integrated filters capable of attenuating radiation selectively by more
than 100 dB in a waveguide are a key requirement for the realization of in-
tegrated sources of photon pairs based on Four-Wave Mixing in microring
resonators. Section 4.2 introduces a novel design for a high-attenuation inte-
grated Bragg filter, where the periodic modulation is introduced by external
dielectric structures rather than by direct modulation of either the refractive
index of the waveguide or of its width, as performed normally. Finally, the
first transmission measurements of a Silicon Nitride test sample are reported.

The performance of the preliminary test samples described in this chapter
cannot be considered successful. Nonetheless, we believe that these results
are a proof of principle of the ideas illustrated in this chapter and that great
improvements can be obtained with further experimental investigation.

4.1 Silicon Carbide suspended subwavelength wave-
guides

Silicon Carbide (SiC) is a promising material for quantum optics applica-
tions, due to the presence of a broad range of color centers active in the near
infrared. As detailed in Chapter 1, these color centers can be used as sources
of single photons or as systems where to encode qubits. The realization of a
scalable photonic platform capable of exploiting these features is thus highly
desirable, but the required fabrication of optical nanostructures in thin SiC
films remains challenging.

For instance, the heteroepitaxial growth of 3C-SiC can be performed on
Silicon, which however is a higher index material, preventing the use of Total
Internal Reflection (TIR); moreover, even if Silicon is removed afterwards,
the crystalline mismatch between the two materials implies that SiC close to
the interface is rich of defects and it is therefore of poor optical quality, with
losses in the order of 30 dB/cm. This problem can be solved in principle by
employing wafer bonding techniques [270]: the top surface of SiC is bonded
to another lower index wafer, while, after Silicon is removed, the remaining
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Figure 4.1: Schematic representation of the fabrication of Silicon Carbide
(SiC) suspended waveguides. a) A thin film of SiC is grown on a Silicon
Substrate and covered with resist for e-beam patterning. b) A chemical etch
defines the lateral geometry of the waveguide, leaving a thin film of SiC. ¢)
A second e-beam patterning and etch cycle opens holes to the substrate. d)
Under-etching of the substrate completes the process.

low quality interface can be thinned down by etching. This leaves a high-
quality thin film of SiC on a substrate with a lower index of refraction for
further processing, at the cost of a more complicated fabrication.

The heteroepitaxial growth of 4H-SiC provides higher quality thin films,
but exploits Smart-cut processes [271], which increase losses due to the re-
quired implantation of dopants.

Another approach relies on the suspension of thin films in air by under-
etching part of the Silicon substrate underneath SiC. This approach, illus-
trated schematically in Figure 4.1, requires that holes are etched in the SiC
to access the underlying substrate, after which a second under-etch step re-
moves the substrate. While a single etch step in SiC is sufficient to realize
photonic crystal cavities [120, 238], since they are naturally connected to
the rest of the SiC layer, ridge waveguides cannot be suspended in this way.
Rib waveguides can be realized, but two SiC etching processes are necessary
instead: the first step, by partially etching the SiC layer, defines the lateral
structures and leaves a very thin film for connecting the waveguide to the
rest of the layer; the second etch step opens the holes to access the substrate
[272].

The approach described in this section allows the realization of suspended
waveguides with a single etch step, by exploiting subwavelength structures,
and it is based on previous works realized in Silicon [273, 274] and Germa-
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suspending arms
(2 um x 150 nm)

Figure 4.2: Schematic representation of the Silicon Carbide suspended sub-
wavelength waveguides. The structure is periodic along the propagation
direction (z), with a periodicity much smaller than the wavelength of light
(300 nm). Light is guided along the central rod (red arrow), which is sus-
pended in air and connected by lateral arms to the rest of the Silicon Carbide
layer.

nium [275].

Although frequencies closer to the fluorescence of SiC color centers would
be more interesting, the choice of 1550 nm as the working wavelength was mo-
tivated by the consequent relaxation on fabrication requirements that longer
wavelengths allow. Naturally, provided that the fabrication is good enough
to address smaller geometrical features, the scale invariance of Maxwell’s
equations implies that this design can be applied to shorter wavelengths by
scaling down all the dimensions listed in the following paragraphs.

4.1.1 Waveguide

The geometrical structure of the suspended waveguide is shown in Figure
4.2, while the relevant dimensions are listed in Table 4.1. Light travels along
the central SiC rod, suspended in air with the use of a periodic array of
lateral arms that connects the rod to the rest of the SiC layer.

The waveguide is essentially a one-dimensional photonic crystal, whose
band structure, calculated with the MIT Photonics Bands [276] software
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Dimension Length [nm)]
Periodicity (a) 300
Film thickness (h) 300
Waveguide width (W) 650
Arm length (Lg) 150
Hole length (Ly,) 150
Arm/hole width (W,/W},) 2000

Table 4.1: Proposed dimensions for a single TE-TM subwavelength SiC wave-
guide. We assume a value of 2.6 for the index of refraction of SiC.

suite, is illustrated in Figure 4.3. The SiC film (h) is 300 nm thick, while
the periodicity of the structure (a), equal to 300 nm, was chosen to put the
photonic bandgap of TE-like modes well above the energy of 1550 nm radi-
ation, ensuring that the structure is effectively subwavelength. The goal in
the choice of the dimensions of the structures, as illustrated in the following,
was to allow the maximum possible confinement of light while keeping the
structure single-TE /single-TM.

Light is confined in the vertical direction by Total Internal Reflection
(TIR). Under strong subwavelength conditions, the lateral arms act as an
effective homogeneous medium, whose bulk effective index of refraction n.
is intermediate between the one of air and SiC, as illustrated in Figure 4.4.
Therefore, effectively, light is confined in the lateral direction by TIR, as
well.

Estimation of the effective index

The refractive index of this effective medium has been estimated by consid-
ering an air-SiC multilayer, with layer thicknesses equal to the ones of the
holes and of the arms. Let us label the length of the arms and of the holes
with L, and Ly, so that a = L, + L. Using the notation introduced for the
multilayer in Paragraph 2.7.2; the layers 1 and 2 have thicknesses di = L,
and dy = Ly, and refractive indexes n; = ngic = 2.6 and ny = 1 (air).
Making use of the dispersion relation of the multilayer, eq. (2.7.7), one can
calculate the effective index of the Bloch mode travelling in the structure
(n = ck/w). Figure 4.5 shows the effective index of light travelling in the
multilayer as a function of the filling factor fwy = Lq/a and with constant
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Figure 4.3: Calculated band structure of the suspended subwavelength wave-
guide proposed in this section. Continuous lines have been obtained with the
MPB software suite. Dots are obtained from eigensolver simulations of the
cross-section of the waveguide under the homogeneous medium approxima-
tion, as described in the main text.
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effective
homogeneous medium

Figure 4.4: The blue region represent the homogeneous medium approxima-
tion of the lateral arms used to calculate the light confinement on the central
waveguide. Red arrow indicate light propagation; orange arrows indicate To-
tal Internal Reflection (TIR)

periodicity a = 300 nm.

At higher values of fyg, light is more confined into the high-index layers
of the multilayer, effectively lowering the bandgap energy, and preventing
propagation at 1550 nm, as highlighted by the missing values of the effective
index. At lower values of fy,, the lower index of refraction increases the
contrast with the core waveguide index (ngjc), but the arms become thinner,
weakening the structure. To ensure the sufficient mechanical stability of the
structure, the minimum dimensions of the arms have been chosen to be above
the one of similar works performed in SOI platforms, where they employed
100 nm thick arms [273]. Hence, as a compromise between confinement and
minimum dimensions of the arms, we chose fws = 0.5 (corresponding to
L, = L, = 150 nm), resulting in an effective index n, = 2.144.

Waveguide width

While the behaviour of light in the waveguide can be predicted from its
band structure, the effective index approach allows the use of quick standard
numerical techniques, such as the simulation of the waveguide modes by
eigensolvers. Figure 4.6 shows the modes supported by our structure at
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Figure 4.5: Effective index of the arm region under the effective homogeneous
medium approximation.

1550 nm when the lateral arms are replaced by the homogeneous medium
with n, = 2.144, as calculated with Lumerical MODE.

Using this kind of simulations, in order to maximize the confinement of
the fundamental TE mode, the waveguide width Wy, has been increased
until the second TE mode became just loosely bound at 1550 nm. In a real
device this second TE mode is likely to experience extremely high losses,
since a very small amount of disorder would be sufficient to couple it to
radiative modes and because the delocalization of the mode makes it more
sensitive to the roughness on the surfaces of the lateral arms; at the same
time, disorder and roughness would be less detrimental to the fundamental
TE mode because of the higher confinement achieved.

The validity of the effective medium approach is underlined by Figure
4.3: the effective index of the eigenmodes compares well with the photonic
bands calculated with MPB. In particular, at 1550 nm, the eigensolvers and
the photonic bands predict n = 1.967 and n = 1.907, respectively, for the
effective index of the fundamental TE mode.

Arms width

The lateral arm section is 2 um wide per side and, again, it is the result
of a compromise. In fact, the width is short enough to ensure the sufficient
mechanical strength of the structure, while it is large enough to suppress



4.1. SI.C. SUSP. SUBWAVELENGTH WAVEGUIDE. 161

1 TEOO TMOO
o 500 nm 500 nm

Figure 4.6: Modes sustained by the suspended waveguide at 1550 nm, as
calculated by an eigensolver (Lumerical MODE) under the homogeneous
medium approximation on the lateral arms. The TEg; mode is very loosely
bound.
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the coupling between the fundamental TE mode of the waveguide and the
slab modes of the remaining SiC layer. The coupling is estimated using
the effective index approach and Coupled-Mode Theory [16]: the coupling
coefficient between two identical SiC waveguides, 650 nm wide and 300 nm
thick and spaced by 2 pm of effective homogeneous material, results to be
15 m~!, compared to the modal wavevector of the fundamental TE mode,
k=1.27-10m™".

Limitations

The main limitation of subwavelength waveguides is the loss introduced by
surface roughness [277, 278] and by perturbation in the periodicity of the
structure. Compared to standard ridge and rib waveguides, the lateral arms
make the structure more complex and they make light travel through a much
higher number of interfaces, increasing the detrimental effect of roughness.
Perturbations in the periodicity of subwavelength structures, on the other
hand, increase scattering losses: as explained in Section 2.7, lossless propa-
gation relies on the destructive interference among the scattering events of
all the periodically spaced subwavelength structures. Indeed, the work of ref.
[279], where the effect of disorder in structures similar to the one considered
here has been numerically studied, suggests that losses remain at a reason-
able level if the jitter in the placement of the lateral arms does not exceed
about 5 nm. In general the effect of surface roughness can be mitigated by
maximizing the confinement of the fundamental mode, while the effect of
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disorder is lowered by choosing a working point far below the bandgap, as
we have done here.

4.1.2 Other structures

Additional components are required in order to obtain a complete photonic
platform. Most important functions are the coupling of light between the
platform and the outside world, and the modulation of light propagating in
the medium.

In the following part of this paragraph we will first describe how bends,
directional couplers and microresonators can be realized with this platform,
followed by the proposed design for a uniform grating coupler and by the
estimation of the performance of an electro-optic modulator that exploits
the strong @ nonlinearity of SiC.

Bends and directional couplers

The first extension to the platform comes by the introduction of bends, whose
design is straightforward. Of course, the spacing between the periods have to
remain as close as possible to the one chosen for the straight waveguide. For
our platform, the minimum bending radius is chosen from the eigensolver
simulation of the bent waveguide using the effective medium approach: a
radius of 10 pm introduces a loss of around 20 dB/cm.

The design becomes more complicated when two waveguides are brought
close together to realize, for instance, a directional coupler. In that case
the lateral arm sections of the two waveguides will overlap and care has to
be taken to ensure that the arms connect properly, especially around bent
sections. Figure 4.7 shows some example designs of directional couplers,
where the orange rectangles represent the holes to be etched in SiC. These
designs can also be used to realize microresonators by closing one of the
waveguides on itself, either in a ring or in a racetrack configuration.

Figure 4.7-a shows the easiest way a directional coupler can be realized;
the straight part of this design might be removed, leaving two circular sec-
tions. A pulley-type coupler is shown in Figure 4.7-b, which can be used,
for example, to obtain a strong coupling between a bus waveguide and a mi-
croring resonator realized by closing the inner bend waveguide. Figure 4.7-c
shows that the design of directional couplers based on bent and straight
waveguides is possible, although more complicated. Particular care has to
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be taken in connecting the arms along the parabolic boundary between the
straight and circular waveguides. Since there is no possibility to keep the
exact same periodicity for both the straight and bent waveguide at small
radii, the design is valid only at larger radii.

The correct behaviour of all these structures have been simulated with
3D-FDTD techniques, both using the complete description of the arms and
under the homogeneous medium approximation.

Electro-optic modulators

A fundamental function necessary for scalable photonic platforms is the mod-
ulator, with which more complex devices like integrated Mach-Zehnder in-
terferometers can be realized. Here we give an estimate of the performance
of an electro-optic modulator that exploits the high x(? nonlinearity of SiC.

The modulator may be realized with metal pads placed at the sides of a
waveguide. A voltage difference applied to the pads will produce an electric
field across the waveguide; the electro-optic effect [250], in turn, will induce

a change in the refractive index of the material ngic = /1 + x1) according
to

n(E) = \/1 W £ 2y E ~ ngio + YD E (4.1.1)

Given the width of the arms at the sides of the waveguide (2 pm per
side), we model the electro-optic modulator as a 6 pm spaced parallel-plate
capacitor [131]. Then, the standard voltage-length figure of merit is obtained
after requiring a m phase shift:

AonsicW

LV = QX(2)

(4.1.2)
where L, is the total length of the modulator, V; is the applied voltage and
W is the distance between the plates.

The ngz)z coefficient of 4H-SiC, equal to 32.8 pm/V, is particularly use-
ful since the TE polarization would be the most affected by a transverse-
polarized modulating field. The figure of merit of a modulator exploiting

this coeflicient would be
L.V:~369 V- cm (4.1.3)

which is not far from the state of the art of Lithium Niobate modulators
[280].
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Figure 4.7: Schematic representation of subwavelength geometries for di-
rectional couplers (DC). Orange rectangles represent holes to be etched in
the SiC film. Blue lines help identify different regions. a) DC based on
parallel waveguides. b) DC based on concentric bends (pulley coupler). c)
Straight-bent waveguide DC.
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Figure 4.8: a) Schematic representation of a uniform grating coupler. b) A
grating coupler can be modeled as an array of scattering points in correspon-
dence to the interfaces of the original coupler.

This is the estimate for a modulator realized along waveguides. Making
use of resonating structures, like microring resonators, can improve the per-
formance of electro-optic modulators and reduce dramatically the footprint
of such devices [281].

4.1.3 Grating coupler

Unless generation, manipulation and detection of light is performed on the
same device, coupling of light with the external environment is another fun-
damental function to be implemented in a photonic platform. Subwavelength
structures can be used to realize grating couplers, and various designs have
been proposed and realized in the past [136, 282, 283], involving both uniform
couplers and more complex, apodized designs.

Similarly to the waveguide, the subwavelength structures are used to
implement an effective homogeneous medium, whose index of refraction can
be controlled by geometric design. The advantages of using subwavelength
designs is the same as for waveguides: only a single etch step is required to
define the final geometry, and the index of refraction can change in different
parts of the sample.

One way standard uniform grating couplers are realized is by alternating
periodically, along the propagation direction, layers with different refractive
indexes, as shown in Figure 4.8-a, so that the light impinging at a certain
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Eigensolver surface

FDTD simulation region

Figure 4.9: Schematic representation of a subwavelength grating coupler.
The low index grooves of traditional uniform gratings are replaced with a se-
ries of subwavelength holes implementing an effective lower refractive index.

angle is scattered horizontally into the guiding slab, and vice versa. Figure
4.9 shows how subwavelength structures can be used to realize a uniform
grating coupler: the lower index material (which we will call “groove”) of
the standard grating is replaced by a an array of holes, with transverse
periodicity ag, T smaller than the wavelength of light. The effective index of
the groove is controlled by setting the ratio between the void and filled parts
of the grating.

The design parameters of the proposed uniform grating coupler are shown
in Table 4.2, while in the following we report the design process that deter-
mined them, following closely ref. [282].

Theoretical model

The simplest model of a grating coupler is the one reported in Figure 4.8-b.
The light travelling horizontally in the slab undergoes a series of scattering
events upon the encounter of the dielectric interfaces between the high and
low-index materials. This scenario can be modeled by an array of isotropic
antennas, corresponding to the interfaces, whose phase relationship is set by
the phase acquired by light that travels in the slab. In particular, the phase
delay between two adjacent antennas d¢; ;11 will be determined by vacuum
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Film thickness (h) 300 nm
Longitudinal period (agr,1,) 1230 nm *
Longit. filling factor (fer1,) 32.4% *

Number of periods 13

Transverse period (ag T) 300 nm
Transv. filling factor (ferT) 50%
Transverse length (Wy,) 12 pm
Maximum transmission: 41.8% (-3.8 dB)
1 dB bandwidth: 75 nm

Table 4.2: Proposed dimensions and properties for a TE SiC subwavelength
grating coupler operating around 1550 nm. The index of SiC is assumed to
be 2.6. The values marked with * are obtained by numerical optimization.

wavelength of light, g, and by the optical length between the two points:

0iiv1 = izni,i+1ALi,i+1 (4.1.4)
where n; ;41 is the effective index of the light mode travelling in the slab
between interfaces ¢ and 7 + 1, and where AL; ;11 is the distance between
the two interfaces.

Along these lines, a uniform grating coupler optimized for coupling radi-
ation coming at an angle « to the normal can be designed by choosing the
lengths of the high and low index regions (ls and 1) so that the antennas
produce constructive interference in the direction identified by «. The result
is summarized by the following equations
Ao

Ao
Iy = 4.1.5
2(ny — nesina)’ ° 2(ng — nesina) ( )

l =

where n, is the index of refraction of the surrounding material and where n;
and no are the low and high effective indexes of light travelling in the slab.

Estimation of the effective index

In the case of the SiC subwavelength grating coupler, n. = 1 (air), and
ng = 1.967 is the effective index of the fundamental TE mode of light trav-
elling in a 300 nm thick SiC slab. Similarly, ny is the effective index of the
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Figure 4.10: Effective index of the groove region of the subwavelength grating
coupler.

fundamental TE mode of a slab made of the effective homogeneous material.
The subwavelength arms of the grating grooves are longitudinally oriented
with respect to the propagation direction of light in the slab, hence modeling
cannot be performed with the multilayer approach described earlier.

After choosing 300 nm as the transverse periodicity of the subwavelength
groove (agr,T), its effective index was estimated using an eigensolver: n; was
identified with the effective index of the fundamental TE mode supported
by the structure identified by the green surface shown in Figure 4.9; periodic
boundary conditions were used in the horizontal transverse direction. Figure
4.10 shows the effective index of the mode as a function of the horizontal
filling factor fe 1 of the subwavelength groove: as expected, at fo1 = 0
the effective index equals the one of air (1), while at fg T = 1 it reduces to
the one of the SiC slab (n2). Notice that due to the continuity conditions
of the electromagnetic fields at the interface, at a given filling factor the
effective index is much lower for the groove than for the waveguide lateral
arms (Figure 4.5). Minimum feature size requirements led to the choice of
fer,r = 0.5 and a corresponding n; = 1.11.

Using these values as effective indexes in egs. (4.1.5), the predicted length
of the high and low index regions of the uniform grating couplers are [} =
798.3 nm and [y = 424.0 nm, with a periodicity of ag.1, = I + lo = 1222.3
nm and longitudinal filling factor fg 1, = 34.7%.
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Figure 4.11: Simulated transmission of the proposed grating couper.

Numerical simulation and optimization

The dimensions of the grating coupler reported in Table 4.2 are actually the
result of optimization algorithms and FDTD simulations: a single longitu-
dinal line (dashed box in Figure 4.9) was simulated in a three-dimensional
manner, using periodic boundary conditions in the transverse dimensions,
setting /7 and [y as free parameters and initialized with the values obtained
above. The results of the simulations are very close to the results expected
from the theoretical modeling of the grating coupler we just described.

Figure 4.11 shows the simulated coupling efficiency of the grating coupler
as a function of wavelength. The maximum coupling efficiency at 1550 nm,
Nmax = 41.8%, is close to the maximum of 0.5 achievable with a vertically
symmetric design, while the 1-dB bandwidth reaches 75 nm. Achieving a
higher maximum efficiency, at the cost of a smaller bandwidth, is likely
possible with the use of apodized designs.

The total width and length of the grating coupler were chosen to max-
imize the coupling efficiency with the gaussian mode of a standard telecom
optical fiber.

4.1.4 Slow-light

Being one-dimensional photonic crystals, the SiC suspended waveguides de-
scribed here can be adapted for slow-light operation [150]. As described in
Section 2.7, the photonic band structure close to the edge of the Brillouin
zone becomes gradually flat and, according to eq. (2.7.6), the group index
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diverges.

Higher group indexes of light increase the interaction between radiation
and matter. The length of electro-optical modulators, for instance, is re-
duced linearly with the increase of the group index and the emission of
radiation from embedded dipoles into guided waveguide modes occurs at a
higher efficiency and speed. The latter effects are particularly important for
the realization of deterministic sources of single photons, since any losses de-
crease their quality by introducing randomness and because faster emission
corresponds to higher repetition rates. The Purcell Factor (PF) [148] is a
measure of the enhancement of the spontaneous emission rate that a dipole
experiences when it is embedded into various nanostructures. For instance,
as described in ref. [153], the PF can be defined for travelling modal fields
in photonic crystal waveguides as

3rcta
PF=——— 4.1.6
Vewn3vg ( )
where c is the speed of light, n is the refractive index of the host medium,
vy is the group velocity of light at the position of the dipole, and where Vg
is an effective mode volume defined in terms of the modal field as

1
max (e(r)]e(r)|?)

Vet = (4.1.7)

where ¢(r) is the dielectric function defining the waveguide structure, e(r)
is the modal field associated to it, and 7 is allowed to vary over the whole
unit cell.

Our platform can achieve slow-light operation naturally by increasing the
periodicity of the waveguides. In fact, as seen for instance for the multilayer,
according to eq. (2.7.11), increasing the periodicity lowers the bandgap,
moving it closer to the working energy, so that the working point lives on a
flatter region of the fundamental TE mode dispersion.

Figure 4.12 shows the change in the group velocity as a function of an
increased periodicity a’ of the system, when all the other geometric param-
eters are kept equal (in particular, the longitudinal filling factor fye is kept
equal to 0.5). Using the MPB software suite [276], the plot was obtained by
calculation of the group velocity of the fundamental TE mode of the wave-
guides at 1550 nm at increasing values of a’. The modal fields obtained from
the same simulations were also employed to calculate the PF from equation
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Figure 4.12: Red (dots and line): group velocity of the suspended waveguide
as a function of the increased periodicity a’; blue (dots): enhancement of
the Purcell factor of the suspended waveguide as a function of the increased
periodicity a’. The dashed line represents the enhancement of the group
index alone, i.e. ng(a')/ng(a).

(4.1.6) as a function of a’. Figure 4.12 also reports the enhancement of the
PF, i.e. PF(d’)/PF(a), with @ = 300 nm. The enhancement is mostly de-
termined by the decrease of the group velocity v, (dashed line), since the
change in the effective mode volume Vg is almost completely compensated
by the increase of a at the numerator of eq. (4.1.6).

Mode-matching is important to reduce unwanted reflections at the transi-
tion between normal and slow-light regimes [150]. In our platform the cross-
sections of the modal fields of normal and slow-light waveguides is mostly
the same, hence the transition region is easily realized by a simple adia-
batic change in the periodicity of the waveguide. The absence of unwanted
reflections in this case was confirmed by 3D-FDTD simulations.

4.1.5 Experimental realization

Two 3C-SiC samples have been fabricated and measured in order to test the
platform and, in particular, to determine the optical losses of light travelling
in the suspended waveguides.

The general sample design comprises a series of devices containing mi-
croring resonators similar to the one schematically pictured in Figure 4.13:
once a microring resonator is known to be either in the overcoupling or un-
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Figure 4.13: Schematic representation of the fabricated samples and mea-
surement setup. Dashed lines represent suspended waveguides.

dercoupling regime, a transmission measurement is sufficient to determine
the attenuation coefficient of light travelling inside the ring. In particu-
lar, from eqgs. (2.8.5) and (2.8.20), the value of the resonance Q-factor and
minimum transmission can be used to determine the attenuation coefficient
«. This is a particularly convenient measurement of the intrinsic waveguide
losses, since it does not depend on the total waveguide length nor on the cou-
pling efficiency to the sample, that might be difficult to properly estimate
experimentally due to possible misalignments. The microrings are coupled
to U-shaped bus waveguides which bring light from and to grating couplers
spaced by 250 um, for coupling to standard fiber arrays.

Figure 4.13 also schematically represents the setup used to perform trans-
mission measurements: radiation from a tunable infrared laser source (San-
tec TSL-510) is launched inside the sample and the outcoupled radiation is
measured with a power meter.

Two samples were fabricated using a lithographic procedure similar to the
one reported in ref. [272]. Scanning Electron Microscope (SEM) images of
the first fabrication iteration, shown in Figure 4.14, highlighted the presence
of detrimental fabrication defects, most likely determined by the use of 100
nm arms in the design and by a strong over-etch of the SiC film. It was not
possible to measure any transmitted radiation through this first sample.

The second sample fabrication resulted in a 260 nm thick SiC layer,
hence two sets of devices were designed where the nominal width of the
waveguide was increased from 650 nm to 750 and 800 nm. Moreover, in
order to compensate for over-etching, a preemptive offset was introduced in
the design of the etching geometries. The radius of the microring was chosen
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to be 80 pm in order to have a negligible contribution from bending losses.

The gaps at the coupling point between the bus and ring waveguides were
chosen to allow measurements assuming a large uncertainty in the intrinsic
losses of SiC. In particular, considering 750 nm wide waveguides, a gap of
350 nm would result in a critically coupled ring with propagation losses equal
to 25.5 dB/cm, while a gap of 800 nm would result in critical coupling with
0.675 dB/cm losses. By the same token, with 800 nm wide waveguides,
critical coupling occurs with 39.1 dB/cm losses for a 350 nm gap and with
0.686 dB/cm losses for a 800 nm gap.

The SEM images of the newly fabricated sample (Figure 4.15) show that
the waveguides were free from the macroscopic defects affecting the first iter-
ation. Transmission measurements of the second sample, however, revealed
very high propagation losses. The total overall transmission of the sample
was very low, in the order of 10~%; moreover, only rings with the smallest
gaps exhibited discernible resonances in the transmission measurements, as
seen for instance in Figure 4.16. Values of the measured Q-factors of the
visible resonances, which assume the under-coupling condition, ranged be-
tween roughly 5000 and 7000, resulting in propagation losses in excess of 100
dB/cm.

The very high losses, as explained at the beginning of this section, are
attributed mainly to the very low quality of the lower surface of the 3C-SiC
thin film, which is originally grown heteroepitaxially on Silicon, with crys-
talline mismatch; nonetheless, the role of disorder and surface roughness may
also play an important role. In any case, the measured losses are consistent
with the ones of previous suspended SiC waveguides realized with a simi-
lar fabrication process, where losses around 30 dB/cm were obtained [272,
284], and could be lowered only when large cross-section waveguides were
employed [272].

4.2 Silicon Nitride integrated Bragg filters based
on external geometries

As described in Chapter 3, Four-Wave Mixing in microring resonators can
be used to produce quantum states of light in the form of signal-idler pho-
ton pairs emitted from resonances adjacent to the pump one. The process
relies on strong coherent pump beams, with powers in the order of 1-1073
W; on the other hand, the pair generation rate obtained with Silicon mi-
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Figure 4.14: Scanning electron microscope images of the first fabricated
sample, exhibiting defects. Top-left) Coupling region between a microring
and a straight waveguide. Top-right) straight waveguide: the width of the
waveguide and the thickness of the arms was smaller than expected. Bottom-
left) Defects caused by stitching. Bottom-right) A Y-splitter: most of the
arms are missing or broken.
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Figure 4.15: Scanning electron microscope images of the second fabricated
sample. Top-left) Microring-waveguide coupling region. Top-right) Detail of
microring coupling region. Bottom-left) Grating coupler: the longitudinal
arms are absent. Bottom-right) Gap between bus waveguide and microring.
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Figure 4.16: Transmission measurement (50 pm resolution) of a Silicon Car-
bide microring based on 800 nm wide waveguides and with 250 nm gap. Inset
(10 pm resolution): a Q-factor of 5400 was extracted from the the Lorentzian
fit shown by the blue line.

crorings, for instance, does not exceed 10® pairs/s, even when using charge
sweeping techniques [189], so that the actual generated power is in the order
of 10 - 10712 W. The ideal critically coupled microring resonator completely
suppresses the pump beam in continuous-wave operation; real attenuations,
however, are in the order of 30 dB or less. This is due, for instance, to the
residual transmission of a real ring, never perfectly critically coupled, or by
the spectrum of the laser source being broad, especially for pulsed opera-
tion. Hence, in the best case scenario, the strength of the pump beam is
five orders of magnitude larger than the generated fields, and usually it is
far stronger. This implies that selective attenuations of 100 dB or more have
to be performed on the pump radiation [264, 285]; in addition, signal and
idler frequencies typically lie few nanometers apart from the pump frequency,
requiring a strongly selective filter.

While usually this can be achieved fairly easily outside the sample using
bulk optical components (such as diffraction gratings and dielectric filters),
the realization of a scalable photonic platform requires an integrated ap-
proach. Promising paths are based on integrated Bragg filters [264], cascaded
Mach-Zehnder interferometers [285] or coupled ring resonators (Coupled-
Resonator Optical Waveguide, CROW) [286].
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Figure 4.17: Scheme of the pillar-based integrated Bragg filter. The surfaces
A and B identify the cross-sections where eigensolver simulations have been
performed.

The present section concerns the study and preliminary realization of
a novel integrated Bragg filter for attenuating 1600 nm radiation, where
the periodic modulation of the effective index of refraction travelling in a
waveguide is not performed by modulating the width or the refractive index
of the waveguide itself, as usually done, but by the presence of external
geometric structures that interact with the lateral tails of the traveling mode.
Since integrated Bragg gratings have to be millimeters to centimeters long in
order to achieve the required attenuations, losses play an important role on
the device performance; this kind of geometry allows to maintain a constant
cross-section of the central waveguide, reducing the contribution of surface
roughness and disorder introduced by standard geometry/index modulations.

4.2.1 Design

The scheme of the proposed geometry of the integrated Bragg filter is shown
in Figure 4.17.

Two approaches have been followed to determine the appropriate dimen-
sions of the structure. The first relied on modeling the effect of the external
pillars as a perturbation of the fundamental mode of the central waveguide,
and approximating the structure with a multilayer; the second approach re-
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lied on the calculation of the band structure of the Bragg filter, treated as a
one-dimensional photonic crystal. Although the former approach is easier to
use to determine the properties of the fundamental stop-band, the latter is
necessary to obtain insight on additional features absent in standard filters
based on the modulation of the waveguide cross-section, such as possible
couplings between the fundamental and higher order modes.

The behaviour of light traveling in the structure can be approximated
with a multilayer. The low index layer, ni, corresponds to the effective
index of light travelling in the original central waveguide (surface A of Figure
4.17); the high index, ng, corresponds to the effective index of light travelling
in a system composed of three waveguides (surface B of Figure 4.17): the
central one is equal to the previous case, while the two lateral waveguides
are obtained by extending the transverse cross-section of the pillars along the
propagation direction. The thickness [; and Iy of the layers are respectively
equal to the distance between adjacent pillars along the propagation direction
(z), and to the length of the pillars.

The values of the individual effective indexes (and thus the index contrast
An/n, where An = |ny — n1| and n = (n1 + ng)/2) will be influenced by
the transverse dimensions of the structures; the lengths I; and ls of the
two different sections will be determined in turn from the indexes n; and
ng so that they are both quarter-wave layers. As discussed in Section 2.7,
the quarter-wave stack is the multilayer that maximizes the width of the
photonic bandgap for a given index contrast, hence introducing the strongest
attenuation in the middle of the bandgap. Usually the difference between the
indexes will be small, so that with a very good approximation n; ~ ng ~n
and [ ~ Iy ~ A\/(4n). The two indexes can be easily obtained, using an
eigensolver, from the effective index of the fundamental TE mode supported
by the cross-sections A and B of Figure 4.17. Once the indexes are known, all
the properties of the stop-band can be easily calculated using the equations
of the multilayer outlined in the previous section. This simple approach,
however, fails to take into account effects related to higher order modes, as
we are about to discuss.

Ideally, as shown in eq. (2.7.13), the largest possible contrast would be
preferable to maximize the attenuation within the bandgap and to minimize
the length of the filter. Using the present geometry, this can be accomplished
by either bringing the pillars closer to the central waveguide, or by increas-
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ing the width of the pillars themselves. In the former case, the minimum
gap between the waveguide and the pillars is set by the resolution of the
lithographic process that is used to fabricate the device, usually above 100
nm for optical lithography. In the latter case, the additional light confine-
ment given by the increased width of the pillars would bring higher-order
TE and TM modes closer in energy to the fundamental TE mode. This is a
particularly important issue: disorder, surface roughness and the periodicity
of the structure itself may couple the fundamental TE mode to these other
modes, inducing a significant transfer of energy, especially in millimeter-long
devices.

In order to correctly take into account the effect of higher order modes,
an approach based on perturbation theory [16] can be employed. In general,
the dielectric function associated with the Bragg filter is given by a term
that is uniform along the propagation direction, and a term that takes into
account the periodicity of the structure:

e(z,y,2) = e(z,y) + Ae(z,y, 2) (4.2.1)

When the second term represents a small perturbation, the first term can be
used to calculate the set of eigenmodes of the uniform structure; then, the
second term may perturbatively induce coupling between the co-propagating
or counter-propagating eigenmodes of the uniform structure, as described in
detail in ref. [16] and as we will briefly describe here.

Consider the pillar structure. If e = |/Ncore and €1 = /Nclaq are the
dielectric constants associated to the high and low refractive indexes of the
structure materials, we have that

e(r,y) =€ (7,y) €A
e(x,y) = % (z,y) € B (4.2.2)

e(x,y) = €1 otherwise

where A and B are the regions highlighted in Figure 4.18, while Ae(x,y, 2)
will be different from zero only in region B, and alternating between +(ey —
€1)/2 = £Ae€/2 depending on whether the point (x,y, z) falls within a pillar
or in the region between adjacent pillars.

Regarding the uniform part, the TE eigenmodes are schematically repre-
sented in Figure 4.18; the TM eigenmodes will have a similar intensity profile
and slightly different dispersions. Assuming l; = lo, the function Ae(x,y, 2)
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Figure 4.18: Top: scheme of the uniform structure used to calculate the
eigenmodes of the Bragg filter; the background has refractive index n¢jaq =
1.44, region A and B have refractive indexes ng = ncore = 2 and ng = 1.743,
as described in the text. The first three supported modes are schematically
represented below, with red and blue representing positive and negative hor-
izontal electric field component.

is modulated with a square wave, and it can be expanded in Fourier series:

o0

Ae(z,y,2) = Z enf(z,y) sin<(2m - 1)2;2') (4.2.3)
m=1

where ¢, = 1/(2m — 1). Without getting into the mathematical details,
which involve overlap integrals between the different modes, the first spatial
harmonic (m = 1) of the dielectric function may couple modes that differ
by the wavenumber K = 27/a, where a is the periodicity of the structure.
Analogously, higher spatial harmonics couple modes differing by 3K, 5K,
and so on; these higher contributions are typically negligible both because
the amplitude coefficients ¢, decrease rapidly with m, and because, for the
structure considered here, the eigenmodes’ wavenumbers actually differ by
about K, as seen shortly.

Figure 4.19 shows schematically the dispersion of the first three TE eigen-
modes of the Bragg waveguide propagating both in the forward and backward
direction. The thick blue arrow represents the strongest coupling contribu-
tion from the periodicity of the Bragg, responsible for the opening of the
main filter stop-band: the forward propagating fundamental TE mode, with
wavenumber k = 7/a for a quarter-wave stack, is coupled to its backward
propagating counterpart, as expected from a Bragg filter (indeed, K is ex-
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Figure 4.19: Schematic representation of the TE band structure associated
to the uniform part of the Bragg grating. Blue arrows represent possible
couplings introduced by the dielectric periodicity which may open photonic
bandgaps; dashing indicate the the coupling is forbidden by symmetry.

actly equal to the difference between k and —k).

At higher energies, however, additional couplings are possible. In partic-
ular, since at the input of the filter light is propagating in the fundamental
mode, we are interested in the coupling processes that transfer energy to
other modes. Such processes are highlighted by the other arrows in Figure
4.19. When these processes happen, the main consequence is the appearance
of additional stop-bands at shorter wavelengths (higher frequencies), whose
width is proportional to the coupling strength. Notice, however, that the
symmetry of the modes plays an important role: the coupling strength be-
tween TE and TM modes and between TE modes with different even/odd
symmetry will be equal to zero, because of the overlap integrals mentioned
before will vanish, forbidding the process. Coupling processes mediated by
higher spacial harmonics (3K, 5K, and so on), not shown in the figure, occur
at much higher frequencies than the ones we are interested in here.

At the end of the day, in our case, the only additional coupling process of
concern is the one that couples the fundamental TE mode to the backward
propagating third, even, TE mode (indicated by the other continuous blue
arrow) because it may be responsible for the appearance of a second stop-
band close to the fundamental one. Indeed, although not meant to be used
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as a filter, the structure fabricated and characterized in ref. [287], similar
to the one considered in this section, exhibits an additional stop-band at
shorter wavelengths.

Figure 4.20 shows some example band structures of some Bragg filters
designed here. The photonic bandgap, at the right edge of the Brillouin
zone, is small and below the resolution of the plot; the crossing between the
fundamental and second TE mode occurs at wavelengths shorter than the
fundamental wavelength by more than 50 nm, and it is suppressed because
of the modes’ different symmetry (notice that the anticrossing seen in the
central and right plots is only apparent, and given by the low horizontal
resolution of the simulations). The anticrossing of interest, the one between
the fundamental and third TE mode, does not happen below the light-line
for the waveguides shown in Figure 4.20, and it is always more than 100 nm
away even for the most confining fabricated waveguides. Therefore, should
the filter be used in conjunction with typical microring resonators, addi-
tional stop-bands would be far enough not to interfere with signal and idler
photons generated by Four-Wave Mixing, since their frequencies usually lay
closer to the pump one; the stop-bands might represent a more serious issue
for applications involving wider frequency spans, such as optical frequency
combs.

An additional, very similar structure was studied, as well: instead of plac-
ing isolated pillars at the side of the central waveguide, the pillars may be all
connected together, forming a dielectric comb-like structure, as illustrated in
Figure 4.21. This second filter may be more robust against adhesion prob-
lems affecting individual pillars and it works similarly to the one described
above; on the other hand, it is slightly more confining and additional stop-
bands may be brought closer to the fundamental one.

4.2.2 Experimental realization

While the filter described here can be realized in any standard photonic
platform, the considerations made in the previous paragraph have been ap-
plied to design Silicon Nitride (SiN) devices, because of the possibility of
fabricating and characterizing a test sample. This sample has been fabri-
cated without the use of an annealing process to reduce losses due to OH
imputites; this was the reason to target attenuation of 1600 nm radiation
instead of the more usual 1550 nm wavelength.

Tables 4.3 and 4.4 give the design parameters of some of the Bragg filters
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Figure 4.20: Simulated band structures of three different pillar-based Bragg
filters. Red: TE bands; Blue: TM bands. The anticrossing between the
fundamental mode and the second TE mode is an artifact given by the
low resolution of the simulation, as it is forbidden by the symmetry of the
two modes. The real anticrossing of interest would be the one between the
fundamntal and third TE modes, but it is above the light-line. Dashed lines
represent the energy of 1550, 1600 and 1650 nm radiation.

Figure 4.21: Scheme of the comb-based integrated Bragg filter.
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Device WG. width [nm] a [nm] gap [nm] Periods Stop-band [pm]

A22 1000 500.96 300 2100 3130
A32 1100 496.73 300 2500 2650
B7 950 503.60 300 2400 2800
B19 1050 498.62 350 4800 1370

Table 4.3: Design parameters of filters whose measurement are reported in
Figures 4.23 and 4.24. A and B refer to comb-like filters and pillar-based
filters. The number of periods targets 50 dB attenuation. Group A devices
have 150 nm wide comb rods and 200 nm wide extrusions (total comb width
equal to 350 nm)The pillar width of group B devices is 400 nm.

Device WG. width [nm] a [nm] mod. width [nm] Periods Stop-band [pm]
C2 800 512.50 30 1900 3400
C3 800 512.50 50 1100 6100

Table 4.4: Parameters of width-modulation filters whose measurement are
reported in Figure 4.25. The number of periods targets 50 dB attenuation.

that have been fabricated. Groups A, B and C refer to comb-like filters, pillar
filters and traditional width-modulation filters, respectively. The parameters
of all the fabricated devices are found in Appendix A.

Various waveguide widths have been taken into account due to the dif-
ferent degree of confinement they provided. Although the geometries of the
actual sample were defined with electron beam lithography, the minimum
feature size, set often by the minimum gap between the central waveguide
and the pillars, was kept above the limits for optical lithography. The ta-
bles include also the estimation of the photonic bandgap, while the 3 dB
stop-band, defined as the range of wavelengths for which the total atten-
uation is within 3 dB from the maximum attenuation at the center of the
stop-band, is always equal to 35.58% of the photonic bandgap. In order to
reduce the footprint of each device, the filters included in the sample tar-
geted a moderate 50 dB attenuation: a large number of devices was preferred
to higher attenuations in order to simplify measurements and to sample a
larger parameter space with this first fabricated sample. Traditional filters
based on modulation of the waveguide cross-section were fabricated, as well,
for comparison.

Figure 4.22 shows the schematic representation of one of the fabricated
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Tunable laser source

1500-1630 nm I

Figure 4.22: Schematic representation of the fabricated devices and mea-
surement setup. The S-shaped waveguides are used to eliminate higher-order
modes, as described in the main text.

devices and the setup used to perform transmission measurements. Light is
coupled with uniform grating couplers, while tapers adiabatically transform
the grating mode to the one of the waveguides. As the waveguides composing
the Bragg filters were often multi-moded, high order modes were filtered by
the S-shaped waveguides sections: both the tight bends and the narrow width
of the waveguides (800 nm) ensure the guided propagation of the fundamental
TE mode only. The fabrication steps can be found in ref. [288].

Preliminary transmission measurements were performed with an experi-
mental setup very similar to the one described in Section 4.1. Representative
examples of transmission measurements are shown in Figures 4.23, 4.24 and
4.25. While the filter stop-band is clearly discernible in all the measurements,
the real behaviour of the filter differs from the expected one. The stop-band
appears at shorter wavelengths than expected (we targeted 1600 nm), and
it typically has maximum attenuation lower than 40 dB. The black lines
overlaid on the experimental data represent the expected complete and 3-dB
stop-bands: although the stop-band size corresponds roughly to the one ex-
pected, the transmission curve does not posses the clear shape expected from
theory, as in Figure 2.22 of Paragraph 2.7.2. Finally, the power transmitted
at frequencies outside the stop-bands is roughly one thousand times lower
than the power at the input of the sample (not shown in the transmission
plots), which, however, did not seem to depend on the length of the mea-
sured device. No additional stop-band was observed at shorter wavelengths
in the whole tunability range of the laser source (1500-1630 nm).

All-Pass microring resonators have been included in the sample, as well,
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Figure 4.23: Representative transmission measurements of comb-like filters.
The black vertical lines represent the expected full stop-band and 3-dB band-
width of the nominal design. The 0 dB level corresponds to the maximum
measured transmission to highlight the effect of the filter.
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Figure 4.24: Representative transmission measurements of pillar-based fil-
ters. The black vertical lines represent the expected full stop-band and 3-dB
bandwidth of the nominal design. The 0 dB level corresponds to the maxi-
mum measured transmission to highlight the effect of the filter.
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Figure 4.25: Representative transmission measurements of width-modulation
filters. The black vertical lines represent the expected full stop-band and 3-
dB bandwidth of the nominal design. The 0 dB level corresponds to the
maximum measured transmission to highlight the effect of the filter.

and connected to grating couplers with a U-shaped waveguide, similarly to
the scheme used for the suspended waveguides (Figure 4.13), but with the
addition of the same S-shaped filters used for the Bragg filter devices. Al-
though the overall transmission through the sample was equally low for the
rings and for the Bragg filter devices, the resonances at 1540 nm were close to
critical coupling and exhibited Q-factors of 40’000, corresponding to an at-
tenuation coefficient @ = 0.93 dB/cm. These measurements imply that losses
are not caused by normal waveguides; it is also unlikely that the Bragg filters
themselves caused the issue, because the overall transmission of ring devices
was low and similar to filter devices, despite the absence of the Bragg filters
themselves.

While measurements of the thickness of SiN showed that the layer was
thinner than expected, which could explain the shift of the stop-band at
shorter wavelengths, no SEM images of the filters are available at the time
of writing, so it is difficult to understand what caused the issues in the trans-
mission. The high losses might be explained by the smaller-than-expected
cross-section of the S-shaped filters: high bending losses might be the result
of the lower confinement of the waveguides. Moreover, disorder in the pillar
size or misplacement due to adhesion problems might be responsible for the
distorted stop-band transmission dip and to the overall lower attenuation of
the filter.

In conclusion, further experimental tests are required in order to better



188 CHAPTER 4. PER. STRUCTURES IN HIGH-B.G. MATERIALS

characterize the Bragg filters described in this section and to proceed to a
new iteration of the devices; however, the fact that the width of the stop-
band is comparable to the expected one makes this approach promising for
realizing high-attenuation Bragg filters based on external structures.



Chapter 5

Collapse speed of a
delocalized photon state

According to Quantum Mechanics [252, 253, 289], the evolution of a particle
state, represented by a wavefunction [¢), is determined by two principles.

The first is represented by the Schrodinger equation. A closed system
will produce a deterministic evolution of the wavefunction [¢), according to
0 ’gim =H[pt) —  [|0t) = e F/Mi ) (Shrodinger equation)

(5.0.1)
Moreover, the linearity of the Shrédinger equation implies that a complex
linear superposition of solutions will be another solution for the evolution of
the system.

The second principle is the reduction postulate: when a measurement is
performed on the wavefunction, the quantum state will “collapse” at random
on one of the eigenstates [1)), of the observable that describes the measure-
ment; the probability of each outcome, p,, is determined by the expansion
of the state on the set of eigenstates before the measurement.

ih

[y) = ch 1), — [¥),, pn=lca|* (reduction postulate) (5.0.2)

According to Quantum Mechanics, the reduction happens immediately after
the end of the measurement process.

During the 5ft Solvay’s Conference in 1927 [289, 290], Einstein was con-
cerned with the case of a particle experiencing diffraction at a pin hole and

189
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subsequently being detected, say, at two points on a screen placed after the
pin-hole. While conservation of the energy implies that the particle can be
detected at only one of the points, the concerning case for Einstein was when
the possible detection events were space-like separated. In fact, there is no
possibility of sub-luminal coordination between them, in this case. Quantum
theory gives an answer to this dilemma with the statistical interpretation of
the detection process, i.e. the reduction postulate. Still, if one assumes that
the wavefunction has a physical meaning (realism), some doubt might per-
sist on whether or not some sort of collapse process might be involved in the
measurement, and whether or not this process takes a finite time.

As discussed in more detail in Section 1.3, photons have been used in
the past to test various properties of Quantum Mechanics [291], such as the
speed of the collapse. For instance, entangled pairs of photons have been
used extensively to test the nonlocality of Quantum Mechanics through vio-
lations of Bell’s inequalities [99], from the seminal works of S. Freedman et
al. [5] and A. Aspect et al. [163, 164], to more recent results where almost all
the loopholes have been closed [226, 292], or where large distances of up to
144 km have been used [293]. A lower bound of 10* ¢ has also been put on the
speed of nonlocal Bell correlations [294], as well. In all these experiments,
however, two separate particles have been used to test the speed of the col-
lapse of internal degrees of freedom, such as the polarization of the photons.
Instead, no experiment investigated the collapse of a single delocalized par-
ticle. This scenario is different with respect to experiments based on EPR
pairs, where the wavefunction associated to the individual particles’ position
is in a factorized state: the separation of a single particle’s wavefunction in
space, through quantum superposition, might require coordination between
its distant parts, possibly inducing a delay in the collapse upon detection,
while localized separated particles might be detected “in place”, with no
influence on the collapse.

To this purpose, for instance, a photon can be put in a superposition state
at a Beam Splitter (BS) and the two resulting parts of its wavefunction can
be sent to separated single-photon detectors. Indeed, this chapter describes
an experiment aimed at testing whether or not the collapse time of a spa-
tially separated single-photon state takes a time. The absence of coincident
detection events for this scenario (antibunching) has been already confirmed
[165, 295], also with setups that include space-like separated detectors [296].
In all these and other single-particle experiments, however, the measurement



5.1. CONCEPTUAL SCHEME 191

of the time at which the detection events were taking place was not precisely
recorded.

Section 5.1 gives the formalism used to describe the spatial separation of
light states and the detection process, while Section 5.2 describes the setup,
the results of the experiment, and it is concluded with a discussion on the
lower bound put on the speed of the collapse for single photon states.

This chapter is based on ref. [297], published with the contribution of the
Author.

5.1 Conceptual scheme

As we have seen in Sections 2.2 and 2.4, the kind of light that interacts with
a Beam Splitter (BS) has important consequences on the outcomes of the
process.

In particular, as we have seen in Paragraph 2.4.3 for the Hanbury Brown
and Twiss interferometer, a single-photon Fock state |1) is put into a super-
position output state, as in eq. (2.4.13), while a coherent state |a) is left
in a factorized state, as in eq. (2.4.17). The results discussed there can be
summarized here with the following equations

V)i =11 — UBS 1) =T |)r+R[1)y
W) =loy  —  Ussla) = [B)g Mg

where |T|? and |R|? indicate the transmittance and reflectance of the BS,
R and T being complex numbers, where T and R label the transmitted and
reflected output beams and where |3) and |y)g are coherent states such
that

(5.1.1)

B=Ta, ~=TRa«a (5.1.2)

Thermal light can also be described in terms of a mixture of coherent
states [254], as described by the following density matrix

2
_ o]

. 1 lod”
p:/ﬂ<n>e ™ |a)a| d*o (5.1.3)

where (n) is the mean photon number, given by eq. (2.2.43). Consequently,

the output of the BS for chaotic light will be given by a mixture of factorized
coherent states.
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Consider now a Single-Photon Detector (SPD) placed along the trans-
mitted arm past the BS, which is now taken to be balanced (T = 1/v/2,
R = i/v/2). According to the theory of light detection [2, 249], when a
single photon impinges on an ideal SPD, it is absorbed (destroyed) and its
energy is transferred to the detector which reacts producing a classical elec-
trical pulse. The process may be described by the following evolution

1)p|Do) — |D4) (5.1.4)

where | D) and |D ) represent the states of the “ready” and “reacted” SPD,
and where we assume that the photon wavefunction is annihilated upon
detection. When a photon is found on the reflected arm, instead, nothing
happens:

Vg lDo) —  [1glDo) (5.1.5)

According to the reduction postulate, in the case of the superposition
state either of the two outcomes happens with probability given by the co-
efficients of the expansion, as in

1

Uss |1) | Do) = \@(|1>T+i\1>R) | Do) {|D+>v pr=1/2

1) 1Do), pr=1/2
(5.1.6)
Notice that in this case the process is non-local, as the photon is delocalized
in the two output arms of the beam splitter, and when the detector reacts
the distant part of the wavefunction is annihilated.
When we consider factorized coherent states on the BS output arms, the
outcome of the detection is given by the following evolution

Uss |a) |Do) = |B)y [7)g |Do)  —

{ 0} [V)g [Do) po = e 18P (5.1.7)
_ 2
|1+>T |’Y>R |D0> — |’Y>R |D+> , D1+ = 1—e 161

where the two outcomes are distinguished because the coherent state is a
superposition of Fock states, as described in eq. (2.2.32), and where |17)
indicate the at least one photon state. The important point to notice here
is that the process is local, since detection affects only the transmitted part
of the wavefunction, while it leaves unaffected the reflected part, at variance
with the single photon case discussed above.
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Figure 5.1: Conceptual scheme of the time of flight experiment. The time of
flight of a single photon through a beam splitter (a) can be compared to the
time of flight of a single photon through a compensation plate (b), or with
coherent pulses through the same components (c) and (d). PD: PhotoDiode,
SPD: Single-Photon Detector.

If we assume that the collapse time is influenced by the delocalization
of the photon state, then the delay would be observable only if superposition
states are used, while it would not be observed by time-of-flight experiments
performed with pulses produced by coherent sources (such as LIDAR systems
[298]) or thermal sources (such as LEDs or distant astronomical sources
[299)).

The possible delay can then be measured using two approaches. The time
of flight of a single photon detected by the SPD after it travelled through a
BS (Fig. 5.1-a) can be compared to the one of the same photon travelling
through a Compensation Plate (CP) (Fig. 5.1-b): the CP is required when
dispersion or misalignments introduced by the BS are not negligible. Alter-
natively, the time of flight of single photons can be compared with the one
of coherent pulses travelling through the BS (Fig. 5.1-c¢) and the CP (Fig.
5.1-d).
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Figure 5.2: Scheme of a source of heralded single photons based on Para-
metric Down-Conversion in a Beta-Barium Borate (BBO) crystal.

5.2 Experiment

The ideal choice for implementing the measurement described above is to
use a source of heralded single photons. In fact, as discussed in Section 2.1,
sources based on Spontaneous Parametric Down-Conversion (SPDC) [17]
emit coincident pairs of photons, so that the detection of one of the two,
the herald photon, can be used to keep track of the time of emission of the
other, the heralded photon. In our case, the electrical pulse produced by
the SPD detecting the herald photon will set the start time of the time-of-
flight experiment, as pictured in Figure 5.2. According to the assumptions
made above, the collapse process associated to the herald photon detection,
being local, would not influence the other photon’s collapse; moreover, as an
additional precaution, the setup can be designed so that the detection of the
herald photon occurs before the heralded photon reaches the BS/CP stage.

5.2.1 Setup

The setup used to perform the experiment is illustrated in Figure 5.3. The
SPDC source was based on a Beta-Barium Borate (BBO) crystal whose cross-
section was 5 x 5 mm?. Photon pairs are produced by Type-II SPDC [17],
meaning that the polarization of the down-converted photons is orthogonal
with respect to the polarization of the pump. The crystal was cut in order
to generate downconverted photons at 810 nm on a cone with half-opening
angle of 3 degrees when pumped with 405 nm radiation.

The crystal actually comprised two 0.5 mm thick slabs in a sandwich
configuration [300]: the fast-axis of the second slab is rotated 90 degrees
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Figure 5.3: Experimental setup of the time of flight experiment. An SPDC
source of photon pairs is used to both set the reference time for the experi-
ment by heralding of the idler photon, and to produce a single photon state
(signal). L varies between 2 and 20 m. BBO: Beta-Barium Borate, BPF:
Band-Pass Filter, BS: Beam Splitter, CP: Compensation Plate, M: Mirror,
SPD: Single-Photon Detector.
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Figure 5.4: Signal and idler spectra collected after filtering by Band-Pass
Filters in a 120 s acquisition by a Nitrogen-cooled CCD. The spikes in the
plot are a well known artifact caused by cosmic rays exciting the CCD sensor
elements.

with respect to the one of the first slab along the propagation axis. This
configuration can be used to produce pairs of polarization-entangled photons
when the pump polarization is oriented at 45 degrees to both fast axes. Here,
however, we were not interested in polarization entanglement, therefore we
pumped the crystal with vertical polarization, effectively using only one of
the two slabs. The effective thickness of the BBO crystal was then 0.5 mm.

A blue laser diode (Sanyo DL-LS5017) produced 65 mW of pumping
radiation at 405 nm; in order to focus the pump and to improve its spacial
profile, a system composed of two lenses and a pin-hole was used. A 10 nm
wide Band-Pass Filter (BPF) was placed in front of the BBO crystal in order
to remove the amplified spontaneous emission emitted by the source. The
mirror My was used to steer the pump beam on the center of the nonlinear
crystal.

The emitted photons are generated around the doubled pump wave-
length. Two opposite sections of the emission cone are directed to two col-
lection stages by mirrors My and Mgs; before being focused on multi-mode
fibers with core diameter of 60 pum, the photons are spectrally shaped by
additional BPFs, as shown in Figure 5.4, to maximize the Coincidence to
Accidental Ratio of the coincidences detected.

While the photon labeled idler is sent directly to SPD A for heralding, the
signal photon is routed towards the BS/CP stage: the photons are outcoupled
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from the fibers and collimated so that they can travel through either a Beam
Splitter or a Compensation Plate. The Beam Splitter (Thorlabs BSW29R)
is made with a 25 by 36 mm UV fused Silica glass plate with a metal coating
that provides the 50:50 splitting ratio. The Compensation Plate (Thorlabs
BCP44R) is made with the same glass plate, but it is anti-reflection coated
around 810 nm. Past the BS/CP, the photons are collimated again into
optical fibers at the transmission and reflection ports of the stage.

Fibers with lengths ranging between 2 and 20 m were connected between
the transmission port of the BS/CP stage and SPD B. The fiber connected
to the reflection port is 20 m long, and it was left open on its far end during
the experiment, in order to preserve the photon superposition and avoid
its early collapse due to the possible absorption of the reflected part of the
wavefunction. The two fibers past the BS/CP stage were laid down at a 90
degree angle.

The electrical pulses emitted by SPD A and B are sent to time-tagging
electronics (Picoquant HydraHarp-400) with coaxial cables. The connections
were characterized before the experiment to ensure that dispersion or other
effects would not introduce unwanted effects on the time-of-flight measure-
ment. The left panel of Figure 5.5 shows that no appreciable difference is
noticeable between the oscilloscope traces of the electrical pulses as they
travelled through coaxial cables of increasing lengths. Moreover, the right
panel of Figure 5.5 shows that the relative delay between signal and idler
photons is only slightly affected by the length of the coaxial cables at the pi-
cosecond scale; notice, in any case, that the length of the coaxial connections
remained unchanged in the final experiment, and that only relative times are
of interest.

The Single Photon Detectors (ID Quantique id100-MMF50-STD) A and
B had 10% and 5% detection efficiency at 810 nm respectively, and exhibited
time jitters of 35 ps, which determined the time resolution of our experiment.

The time-tagging electronics produced a log file containing the reaction
times of the detectors throughout the experiment. After completing the
acquisition phase, the log was analyzed to determine the time correlation
between the detected events.

Comparisons with coherent pulses were performed with the use of an
additional laser source: a pulsed supercontinuum laser was spectrally filtered
to emit radiation around 810 nm and its beam was directed through the BBO
crystal with the flip-flop mirror My. The beam was focused on the same spot
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Figure 5.5: Left: Oscilloscope waveforms of the pulses generated by the
Single Photon Detectors as they travel through increasingly longer coaxial
cables. Right: Coincidence peak with varied length of the coaxial cables.

on the crystal where the SPDC pump was focused, and its divergence was
chosen larger than the SPDC cone, so that the pulses travelled along the
same path as the down-converted single photons. Thus, SPD A was still
used as the time reference for the experiment.

5.2.2 Results and discussion

The coincidence histograms acquired for various configurations of the setup
are shown in Figures 5.6 and 5.7. In particular, Figure 5.6 shows the coin-
cidence histograms for all the four scenarios pictured in Figure 5.1, when a
20 m fiber is connected to the transmission port of the BS/CP stage, which
corresponds to the maximum distance investigated. Both top and bottom
panels show the histograms for both the coherent pulses (background) and
single photon states (foreground), while they refer respectively to the BS
and CP setup configurations. Figure 5.7 shows similar histograms where
coherent pulses and single photons have been compared with the use of the
BS only, for fiber lengths varying between 2 and 12 m. All the acquisitions
were taken in 200 s.

No appreciable difference in the time of flight between photons and co-
herent states can be observed in any of the histograms within the resolution
of the experiment. By fitting the coincidence peaks, a precise value of the dif-
ference in the reaction times between SPD A and B could be obtained. The
difference between the mutual delay between the single photon and coherent
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Figure 5.6: Coincidence counts in 200 s as a function of the difference between
the reaction times of SPDC A and B when a 20 m fiber was connected to the
BS/CP stage. For both panels the histogram for single photon states (left
scale) is superimposed on the histogram for coherent pulses (right scale). a)
Setup in the Beam Splitter configuration. b) Setup in the Compensation
Plate configuration.
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Figure 5.7: Coincidence counts in 200 s for various fiber lengths. The setup
was always in the Beam Splitter configuration. For all panels the histogram
for single photon states (left scale) is superimposed on the histogram for
coherent pulses (right scale). a) 2 m fiber. b) 5 m fiber. ¢) 7 m fiber. d) 12
m fiber.
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Figure 5.8: Change in the difference between the reaction times of SPD A
and B as single photon states are replaced with coherent pulses and when
the setup is in the Beam Splitter configuration. Values and error bars are
determined from the position and FWHM of the coincidence histograms
shown in Figures 5.6 and 5.7.

pulse cases is shown in Figure 5.8, where the error bars were determined
from the FWHM of the coincidence peaks.

The experimental data leaves no doubt that the spatial collapse of the
single photon state, if present, takes a time much shorter than the resolution
of the experimental setup. If a delay is actually present, it cannot take
more than 7" = 60 ps. Given the maximum spread reached by the photon
wavefunction during the experiment, equal to S = v/2-20 m = 28.4 m, we can
therefore put a lower bound to the speed of the collapse of ¢ = S/T ~ 1550c,
about 6 times lower than the bound found in reference [294] for EPR pairs.

This boundary is about one order of magnitude smaller than the one
reported for EPR pairs in ref. [294]; nonetheless, here we tested the collapse
of a single delocalized particle, while previous tests were performed with
entangled states of particle pairs.
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Chapter 6

Conclusions and future
perspectives

Silicon photonics is an interesting platform for the realization of quantum
optical application because of the decades-long experience in its fabrication:
facilities are now readily producing photonic devices comprising a large num-
ber of components with a high degree of reliability. However, since Silicon
is an indirect bandgap semiconductor, direct radiative transitions have very
low efficiency, thus preventing the realization of a sources of light based on
this material.

The work described in Chapter 3 represents a way in which this drawback
can be overcome, showing that Silicon microresonators can be self-pumped,
without the use of an external laser source, to emit pairs of photons by Spon-
taneous Four-Wave Mixing [213]. In particular, we showed that a racetrack
microresonator, with Q-factor equal to roughly 20’000 and operating around
the 1550 nm telecom wavelength, can be used to emit pairs of photons by
Spontaneous Four-Wave Mixing in two cavity configurations, differing by the
presence of a tunable Fabri-Perot filter placed along the loop, with conse-
quently different frequency correlations in the emitted photon pairs.

For the first configuration, labeled multi-mode cavity, we showed that
the resonator could emit photon pairs with internal generation rates of up to
3.69 MHz and with varying degrees of correlations. We first performed the
linear characterization of the resonator transmission, followed by the analy-
sis of the lasing action of the fiber loop cavity containing the resonator and
an optical amplifier. The lasing model, based on measured properties of the
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cavity, highlighted that at ring input powers in excess of 1 mW the measured
output power was lower than expected. A measurement of the shift of the
resonances due to the thermo-optic effect was compared to the redshift of
the lasing radiation: at lower powers the lasing radiation followed the ring
resonance automatically, as expected from the self-pumping configuration,
while an additional redshift of the laser was found at higher powers; more-
over, the spectrum of the lasing radiation, strongly multi-moded, widened at
increasing power, becoming comparable to the width of the racetrack reso-
nance. These measurements suggest that gain saturation phenomena occur
in the gain medium of the optical amplifier included in the cavity, degrading
the overall performance of the device.

The nonlinear characterization of the cavity confirmed the presence of
saturation effects at higher powers. In particular, Stimulated Four-Wave
Mixing measurements exhibited the expected power scaling behaviours only
at lower resonator input pump powers. Time correlation measurements were
also performed to characterize the emission of pairs by Spontaneous Four-
Wave Mixing: the coincidence peak had roughly 120 ps FWHM and the
scaling was quadratic, as expected, until it reached saturation at higher
pump powers.

Through the use of Stimulated Emission Tomography [257], we investi-
gated the degree of frequency correlation present between the emitted signal
and idler photons, which changed at increasing pump powers. In particular,
the measured Joint Spectral Densities were compared to numerical simula-
tions, showing the expected behaviour only at lower powers; from numerical
simulations we saw that the Schmidt number K, the figure of merit that
quantifies the degree of correlation between the photons, decreased from
4.07 to 1.92 at increasing powers.

The subsequent measurement of the ¢(®)(7) autocorrelation function of
the heralded idler field indicates that the state is the one of a single photon
at low power (with minimum measured ¢(®(0) = 15+ 7.5 - 10~3), while at
higher powers it rises above 0.5, the threshold under which a state can be
considered quantum.

Regarding the single-mode cavity configuration, the linear and nonlinear
characterization produced similar results compared to the multi-mode cavity
configuration. The main difference, however, was the lasing action occurring
on a single longitudinal mode of the cavity: compared to the multi-mode
cavity, the pump spectrum was much narrower, with an optical bandwidth
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smaller than 300 kHz, as determined by heterodyne measurements, corre-
sponding to coherence lengths in excess of 300 m. Thus, the photon pairs
produced were expected to be strongly time-energy entangled, and a Franson-
type experiment [260] was performed to confirm this. The fringe produced
by quantum interference exhibited 93.9 4+ 0.9% visibility, corresponding to
the violation of the Bell inequality by 26 standard deviations.

These works represent proofs of principle that Silicon based devices can
emit pairs of photons with a self-pumping configuration. A much more inter-
esting scenario would be the realization of analogous sources in a completely
integrated fashion. Time-energy entanglement, in fact, is an interesting re-
source for the implementation of QKD protocols on optical fiber networks,
since it is intrinsically more reliant against environmental fluctuations than,
for instance, polarization entanglement [79]. A small integrated device pro-
ducing time-energy entangled photon pairs without the need for an external
laser source would represent an ideal source to implement these protocols,
which would also bring various advantages with it. For instance, the much
smaller lenght of the lasing cavity would increase the Free Spectral Range
between its modes, likely allowing to remove the need to add a selective filter
to force single-mode operation, besides the microring itself. Moreover, the
total round-trip losses of the cavity will be reduced because of the absence
of lossy coupling stages to the outside of the sample, reducing the threshold
current of lasing operation and power requirements with it.

On the other hand, additional challenges will have to be overcome. So
far, no active medium operating at telecom wavelength has been realized
using Silicon alone, therefore complex integration of III-V gain media, for
example, has to be employed, making the fabrication process overall more
complex. Filtering of deleterious amplified spontaneous emission produced
by the active medium and of the photons emitted by the ring will become
more cumbersome, since bulk filters would not be available anymore; then,
approaches employing add-drop microring resonators or high-attenuation in-
tegrated Bragg filters will become likely necessary, although no filter with
the required performance has yet been demonstrated.

Chapter 4 was dedicated to the description of the work of the Author
performed at the University of Southampton.

Silicon Carbide (SiC), and in particular its 3C-SiC and 4H-SiC polytypes,
is a semiconductor material that is recently gaining attention because of its
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numerous color centers emitting in the near infrared. These color centers,
that exhibit excellent coherence properties, can be used as single-photon
emitters or as systems on which qubits can be encoded. The fabrication of
Silicon Carbide is, however, difficult and some challenges have to be over-
come.

Section 4.1 illustrated a proposed scalable photonic platform for Silicon
Carbide, based on suspended subwavelength waveguides [135], for operation
around 1550 nm. The use of subwavelength structures simplifies the fabri-
cation process, allowing the definition of geometries with a single etch step.

Regarding light propagation, subwavelength structures can be approxi-
mated as an effective homogeneous medium, whose index of refraction can be
controlled by the specific geometry employed to realize the structures them-
selves. First, we illustrated the straight waveguide. In order to calculate
their supported modes, the effective index of the suspending lateral arms,
modeled as a homogeneous medium, has been calculated from a multilayer
approach. Under this approximation, the modes profiles and dispersion were
then numerically calculated with an eigensolver and compared with the pho-
tonic band structure of the waveguide treated as a one-dimensional photonic
crystal, where a good agreement was found between the two approaches.
Given the high y(? nonlinearity of Silicon Carbide, an estimation of the per-
formance of a simple electro-optical modulator was performed, obtaining a
figure of merit VL, =36.9 V- cm.

Other simple structures were then illustrated, such as bends and direc-
tional couplers, followed by the description of the design process that led to
the geometries for a uniform subwavelength grating coupler. From FDTD
simulations of the coupler we expect -3.8 dB maximum transmission at 1550
nm and a 1-dB bandwidth of 75 nm.

The platform proposed here is well suited for the realization of slow light
applications: the periodicity of the structure can be increased to reduce the
group velocity of light, obtaining a consequent increase in the theoretical
Purcell Factor experienced by color centers embedded in the waveguide by
at least a factor of 3.

Two samples were realized in 3C-SiC. While the first sample exhibited
fabrication defects and no transmitted radiation could be detected, the im-
proved design of the second sample eliminated the issue. Nonetheless, the
transmission measurements of 80 pum microring resonators based on sub-
wavelength structures revealed very high propagation losses, in excess of 100
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dB/cmy; in fact, the Q-factor of these microrings, found in the under-coupling
condition, ranged between 5000 and 7000. The high attenuation losses were
attributed to the low quality of the fabrication, since the lower interface of
the Silicon Carbide film is likely dense of defects due to the mismatched het-
eroepitaxial growth on the Silicon substrate; the effect of disorder or surface
roughness, however, is not yet excluded.

The main goal to improve the performance of the device is clearly the re-
duction of attenuation losses. Despite the introduction of additional guided
modes, an immediate approach towards this end is the use of waveguides with
larger cross-sections: the field will be less localized close to the lossy lower
interface of the Silicon Carbide layer; moreover, the interaction with the lat-
eral boundaries of the waveguide will be reduced, both lowering scattering
losses due to surface roughness and those due to disorder on the periodicity
of the subwavelength structure. Another approach involves the reduction of
intrinsic material losses, either by improving the fabrication technique of 3C-
SiC, or by realizing the device on a different polytype, such as 4H-SiC, for
which fabrication process resulting in lower losses are already demonstrated.

One challenge in realizing a completely integrated source of photon pairs
by Spontaneous Four-Wave Mixing in microring resoators is the separation
of the strong residual pump beam from the weak stream of signal-idler pairs.
Selective attenuations in the order of 100 dB are required and various ap-
proaches exist, based on Coupled Ring Optical Waveguides (CROW) [286],
cascaded Mach-Zehnder interferometers [285] and waveguide Bragg grating
filters [264].

To this end, in Section 4.2 we presented a novel design for a waveguide
Bragg grating filter for which the required periodic modulation of the di-
electric structure is performed with the use of structures external to the
waveguide itself. Two designs have been proposed: one based on isolated
pillars placed at the sides of the waveguide, and one based on a similar lay-
out, but where the pillars are all connected together to form a comb-shaped
structure. The external structures interact with the tails of the mode prop-
agating in the central waveguide, whose cross-section remains unchanged
along the whole device. The advantage of this approach should be lower
propagation losses compared to filters based on waveguide-modulation: the
uniform central waveguide, in fact, should have a lower amount of roughness
and disorder, reducing the coupling to radiative modes.



208 CHAPTER 6. CONCLUSIONS AND FUTURE PERSPECTIVES

The proposed designs for Bragg gratings was based on Silicon Nitride
and targeted 1600 nm as the stop-band wavelength. First, in order to derive
the geometric dimensions of the Bragg filter required to obtain a given stop-
band, the system was modeled as a multilayer. The equivalent indexes for
the layers were obtained in terms of the effective indexes of the natural
waveguide’s fundamental TE mode, and of the fundamental mode of the
filter cross-section containing the pillars. Thus, the index contrast of the
multilayer An/n, the fundamental quantity that determines the width of the
stop-band, can be controlled by changing the confinement effect of the pillars,
either increasing their size or by bringing them closer to the waveguide.

Then, the full photonic band structure of the filter has been calculated
in order to confirm the absence, close to the fundamental stop-band, of ad-
ditional photonic stop-bands due to the coupling between the fundamental
and higher order TE modes supported by the full structure of the filter.

A preliminary test sample has been fabricated, containing both filter de-
signs and traditional filters based on the modulation of the waveguide width,
targeting moderate attenuations of 50 dB. The transmission measurements
of filters based on both the novel and the traditional design showed that the
stop-bands were less deep than expected, with maximum attenuations rang-
ing between 10 and 40 dB, and were found around 1540 nm rather than 1600
nm; the stop-bands, on the other hand, had roughly the expected width,
demonstrating the validity of the new design.

Further experimental iterations, performed after a more thorough investi-
gation of the cause of these issues, are expected to produce better performing
devices. The analysis of SEM images of the fabricated samples, for instance,
may give clues on the cause of the lower attenuation, which, at the moment,
is tentatively attributed to disorder in the placement of the lateral pillars.
Once this is performed, a more controlled investigation on the properties of
filters could be performed.

While integrated optics may possess significant advantages compared to
bulk devices in terms of cost and production volumes, the latter approach
is still a powerful tool to perform experiments that investigate fundamental
aspects of physics.

The experimental work described in Chapter 5 regarded the study of
one counterintuitive phenomenon described by Quantum Mechanics, the col-
lapse of the wavefunction upon measurement. In particular, we investigated
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whether the collapse of a single delocalized photon state, which Quantum
Mechanics postulates to be instantaneous, takes a time. Similarly to other
experiments performed on entangled pairs of particles [105, 294], no delay
in the collapse time was observed within the resolution of the experiment,
which allowed us to put a lower bound to the collapse speed of 1550 times
the speed of light. This was the first time that a single delocalized particle
state was investigated.

In the chapter we described the realization and characterization of a
heralded source of single photons based on Spontaneous Parametric Down-
Conversion. The source is based on a BBO crystal, pumped with a 405 nm
laser diode, and emitting pairs of photons at 810 nm. One of the photons
is detected by a first Single-Photon Detector, setting the reference for time-
of-flight experiments of the second photon: in order to compare the time of
collapse of delocalized and localized states, the second photon is sent first to
either a Beam Splitter, which creates a spatial superposition state, or to a
Compensation Plate, which leaves the spatial distribution unaffected, before
being detected by a distant second detector. Moreover, these scenarios were
compared to similar ones, where coherent pulses of light were travelling along
the same paths of the down-converted photons, the difference being that a
coherent state remains in a separable state upon travelling through the Beam
Splitter, thus remaining in a localized state.

In the future, the experiment could be improved by increasing the dis-
tance over which the collapse is investigated. For instance, inter-city optical
fiber links may be employed to scale the experiments to the hundreds of
kilometers scale. Alternatively, similarly to works on entangled photon pairs
[105], long-distance free-space optical channels could be employed with the
aid of telescopes.

Summarizing, there were two main motivations at the heart of the ex-
perimental works described in this thesis.

First of all, what has been described in Chapters 3 and 4 aimed at devel-
oping and improving integrated photonic devices in the context of generation
of quantum states of light. In particular, the ultimate goal of the work of
Chapter 3 is the realization of an electrically pumped, fully integrated source
of photon pairs based on Spontaneous Four-Wave Mixing in microresonators
and operating at telecom wavelengths; some challenges have to be overcome,
however, such as the strong on-chip filtering required to suppress the pump
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below the signal-idler photons, which was the aim of the work on Silicon
Nitride Bragg filters. The work on suspended waveguides aims at realizing
a complete photonic platform that can exploit the color centers of Silicon
Carbide for quantum applications.

The study of one fundamental aspect of Quantum Mechanics was the sec-
ond motivation of the thesis, behind the work described in Chapter 5, where
quantum states of light, pairs produced by Parametric Down-Conversion,
have been employed to probe the time of collapse of the wavefunction.



Appendix A

Design parameters of Silicon
Nitride Bragg filters

Here we report the design parameters of all the Silicon Nitride bragg filters
discussed in Chapter 4. The simulations that led to these parameters as-
sumed that the index of Silicon Nitride and of the Silicon Oxide cladding
equal to 2 and 1.44, respectively. The thickness of all the devices is 300 nm.
The 3-dB bandwidth equals 35.58% of the expected stop-band.

Devices labeled with the letter A are comb-like pillar Bragg filters and
they have 150 nm wide comb rods and 200 nm wide extrusions (total comb
width equal to 350 nm). Devices labeled with B are external pillars Bragg
filters; the width of the pillars is always equal to 400 nm. Devices labeled
with C are traditional waveguide modulation filters.

The symbols found on the following tables have these meaning
w: waveguide width
g: waveguide-pillar gap
m: waveguide corss-section modulation width
a: periodicity
N: number of periods
A\: expected bandwidth
exp. att.: expected attenuation.
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Table A.1: Comb-like Bragg filters parameters (1/2).

Device w [nm] a [nm] g nm] N AN [pm] exp. att. [dB]

Al 800 51247 350 2100 n/a > 50
A2 800  512.47 400 2100 3140 50
A3 800 51247 450 2800 2350 20
A4 800 51247 500 3700 1760 50
A5 800 51247 550 3700 1320 < 50
A6 850  509.41 325 1900 n/a > 50
AT 850  509.41 375 1900 3550 50
A8 850  509.41 425 2400 2780 20
A9 850  509.41 475 3000 2200 50
A10 850  509.41 525 3000 n/a < 50
All 900  506.25 300 2200 4000 > 50
A12 900  506.25 350 2200 2960 50
A13 900  506.25 400 3000 2190 50
Al4 900  506.25 450 4000 1620 50
Al5 900  506.25 500 4000 1200 < 50
Al6 950  503.60 275 2800 n/a > 50
A17 950  503.60 325 2800 2380 50
A18 950  503.60 375 4100 1600 20
A19 950  503.60 425 6200 1060 50

A20 950  503.60 475 6200 n/a <30




Table A.2: Comb-like Bragg filters parameters (2/2).
Device w [nm| a [nm] ¢ [nm] N  AX[pm] exp. att. [dB]

A21 1000 500.96 250 2100 n/a > 50
A22 1000 500.96 300 2100 3130 50
A23 1000  500.96 350 2700 2410 50
A24 1000  500.96 400 3500 1860 50
A25 1000 500.96 450 3500 1430 < 50
A26 1050 498.62 225 2500 n/a > 50
A27 1050 498.62 375 2500 2580 50
A28 1050 498.62 325 3700 1760 20
A29 1050 498.62 375 5500 1190 50
A30 1050 498.62 425 5500 n/a < 50
A3l 1100  496.73 250 1900 3530 20
A32 1100  496.73 300 2500 2650 50
A33 1100 496.73 350 3200 2060 20
A34 1200  493.01 200 2000 3250 50
A35 1200 493.01 250 5900 2280 50
A36 1200  493.01 300 4100 1590 50
A37 1300  490.20 150 2000 3220 50
A38 1300 490.20 200 3300 1970 20
A39 1300  490.20 250 5600 1180 50
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Table A.3: Pillar Bragg filters parameters (1/2). *) For these devices, the
number of periods N was chosen higher than the one required for 50 dB
attenuation, by mistake.

Device w [nm] a [nm] ¢ [nm] N  AX[pm]| exp. att. [dB]
B1 900  506.25 250 2200 n/a > 50
B2 900  506.25 350 2200 3010 20
B3 900  506.25 400 3000 2190 50
B4 900  506.25 450 4000 1590 20
B5 900  506.25 500 4000 1160 < 50
B6 950  503.60 250 2400 n/a > 50
B7 950  503.60 300 2400 2800 20
B8 950  503.60 350 3500 1890 50
B9 950  503.60 400 5200 1270 50
B10 950  503.60 450 5200 n/a < 50
B11 1000  500.96 250 2100 n/a* > 50*
B12 1000  500.96 300 2100 n/a* > 50%*
B13 1000 500.96 350 2700 n/a* > 50*
B14 1000  500.96 400 3500 n/a* > 50%*
B15 1000  500.96 450 3500 n/a* > 50*
B16 1050 498.62 200 2200 n/a > 50
B17 1050  498.62 250 2200 2940 50
B18 1050 498.62 300 3200 2040 50
B19 1050  498.62 350 4800 1370 50
B20 1050 498.62 400 4800 n/a < 50




Table A.4: Pillar Bragg filters parameters (2/2).

Device w [nm| a [nm] ¢ [nm] N  AX[pm] exp. att. [dB]
B21 1100 496.73 250 1900 n/a > 50
B22 1100  496.73 300 1900 3450 50
B23 1100  496.73 350 2200 2990 50
B24 1100  496.73 400 3000 2420 50
B25 1100  496.73 450 3000 1960 < 50
B26 1150 494.86 200 2200 n/a > 50
B27 1150 494.86 250 2200 3030 50
B28 1150 494.86 300 2800 2330 20
B29 1150 494.86 350 3600 1810 50
B30 1150 494.86 400 3600 1470 < 50
B31 1200 493.01 200 2200 3060 20
B32 1200 493.01 250 3100 1790 50
B33 1200 493.01 300 4200 1060 20
B34 1300  490.20 150 2200 2950 50
B35 1300 490.20 200 3700 1790 50
B36 1300  490.20 250 6200 1060 50
B37 1400 487.76 150 2100 3100 50
B38 1400 487.76 200 3000 2170 20
B39 1400 487.76 250 4200 1550 50
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Table A.5: Waveguide modulation Bragg filters parameters.

Device w [nm] a [nm] m [nm] N AN [pm] exp. att. [dB]

C1 800  512.50 15 3800 1710 50
C2 800  512.50 30 1900 3400 50
C3 800  512.50 50 1100 6100 50
C4 900  506.20 15 4500 1460 50
Ch 900  506.20 30 2000 3300 50
C6 900  506.20 50 1200 5360 50
c7 1000  500.10 15 5200 1270 50
C8 1000 500.10 30 2500 2600 50
C9 1000  500.10 50 1400 4770 50
C10 1100 496.70 15 5600 2850 50
C11 1100 496.70 30 2500 1300 50
C12 1100  496.70 50 1700 900 50
C13 1200  493.00 30 4100 1590 50
C14 1200  493.00 50 2300 2870 50
C15 1200  493.00 100 1100 5810 50
C16 1300 490.20 30 4200 1570 50
C17 1300  490.20 50 2600 2530 50
C18 1300 490.20 100 1200 5080 50
C19 1400  487.80 30 5300 1240 50
C20 1400  487.80 50 2900 2290 50

C21 1400  487.80 100 1600 4180 50




List of Acronyms

ASE Amplified Spontaneous Emission
BPF Band-Pass Filter

CAR Coincidence to Accidental Ratio
CMOS Complementary Metal-Oxide Semiconductor
CROW  Coupled-Resonator Optical Waveguide
CWDM Coarse Wavelength Division Multiplexer
DFWM Degenerate Four-Wave Mixing

EPR Einstein Podolsky Rosen

FCA Free-Carrier Absorption

FDTD  Finite-Difference Time-Domain

FP Fabri-Perot

FSR Free Spectral Range

FWHD Full Width at Half Dip

FWHM Full Width at Half Maximum

FWM Four-Wave Mixing

HBT Hanbury Brown and Twiss

HOM Hong Ou Mandel

JSD Joint Spectral Density

MPW  Multi-Project Wafer

MZI Mach-Zehnder Interferometer

NV Nitrogen Vacancy
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PDC
PF
PIC
QD
QKD
QWS
SEM
SiC
SiN
Siv
SNR
SOI
SPD
SPDC
SpFWM
SSPD
StFWM
TE
TIR
T™
TPA
WCP

LIST OF ACRONYMS

Parametric Down-Conversion
Purcell Factor

Photonic Integrated Chip
Quantum Dot

Quantum Key Distribution
Quarter-Wave Stack

Scanning Electron Microscope
Silicon Carbide

Silicon Nitride

Silicon Vacancy

Signal to Noise Ratio

Silicon on Insulator
Single-Photon Detector
Spontaneous Parametric Down-Conversion
Spontaneous Four-Wave Mixing
Superconducting Single-Photon Detector
Stimulated Four-Wave Mixing
Transverse-Electric

Total Internal Reflection
Transverse-Magnetic
Two-Photon Absorption

Weak Coherent Pulse
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