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Chapter 1

Introduction

The first step of introducing Data Science as a new field was done back in 1962, when

John Tukey argued that it was fulfilling the requirements of defining a science [149].

The new research field has been looked at as the “Future of Data Analysis”. Ever

since, the interest in developing the newly introduced field, at the time, has emerged.

During the years, many related terms have been presented and different definitions

have been established. To name a few: datalogy, datamatics and datamaton [116, 117],

exploratory data analysis [148], data analytics [39] and data mining [49]. In particular,

the term “Data Science”, has been introduced in 1974 by Peter Naur [120], and

defined as “the science of dealing with data, once they have been established, while

the relation of data to what they represent is delegated to other fields and sciences”.

A more detailed explanation of Data Science evolution is provided in section 2.1.1.

From a more recent perspective, Data Science is perceived as an art [72], a

fourth research methodology [41] and a fourth approach to scientific discovery [38]

“in addition to experimentation, modeling, and computation”. Accordingly, it is

safe to say that Data Science can be defined based on the way it is perceived [23].

At its simplest, it is “the science of data”. From a deeper perspective, it is “a new

trans-disciplinary field that builds on and synthesizes a number of relevant disciplines

and bodies of knowledge, such as statistics, informatics, computing, communication,

management and sociology, to study data and its domain employing data science

5



6 CHAPTER 1. INTRODUCTION

thinking,” as proposed by Cao in [23].

Although the evolution of Data Science goes back to almost 57 years ago, the

continuous innovations and technological advancements contributed in an on-going

interest in Data Science in the current times. Particularly, living in a data-intensive

environment, a natural consequence to such innovations, not only led to creating a

new scientific agenda in the present research communities, but also founding data-

driven start-ups, introducing a new data-driven economy and traditional business

transformation, and establishing a new job market [23].

Generally speaking, Data Science can be applied to any given domain. For

instance, Advertising, Aerospace and Astronomy, Bioinformatics, Consulting Services,

Healthcare, Recommender Systems, Security, E-commerce, Banking, etc. [23]. It is

without a doubt that the application of Data Science to any of the aforementioned

domains is important. However, a domain of a particular interest is Economy and

Finance, particularly, Financial Technology (FinTech).

Similar to Data Science, FinTech, as a field, is not new and its evolution goes

way back to more than 150 years ago according to Arner et al. [7], that started from

the introduction of the telegraph in 1838, followed by the successful laying of the

first transatlantic cable in 1866, thus, making the first step towards constructing a

fundamental infrastructure for financial globalization at the time. A more detailed

explanation of FinTech evolution is provided in section 2.2.1.

As the name implies, FinTech is composed of two main fields, namely, technology

and finance. Consequently, the continuous technological advancements have a direct

effect on the way financial services are perceived and provided. Specifically, looking at

financial services, from a Data Science perspective, FinTech holds many potentials for

addressing possible related challenges through analyzing financial, and non-financial

related data, that may lead to insightful information that can be exploited for

improving such services or even create new ones.

Financial Data Science is a term proposed by Giudici [62] that describes the

implementation of Data Science on technologically enabled financial innovations
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that are often driven by Data Science. Accordingly, possible applications include

algorithmic trading, identification of trends and forecasting, peer-to-peer lending,

robot advisers and cryptoassets-related analysis and regulation [23, 63].

More particularly, when Bitcoin, the most famous cryptocurrency, was introduced

in 2008 [115], it has caught the attention of many researchers, given its potentials

in offering low-cost, decentralized transfer of value anytime and anywhere in the

world [63]. Consequently, implementing Data Science specifically on Bitcoin opens

many opportunities for perceiving this newly presented non-traditional asset, through

analyzing related pricing data to understand its respective market that has massively

grown in popularity, prices and volatility [63].

Accordingly, the general objective of this work is to present applied Data Science

approaches in FinTech by proposing innovative models that aim at studying and

exploring Bitcoin price dynamics from descriptive and predictive perspectives. More

specific objectives are presented in section 1.1 and the thesis structure is defined in

section 1.2.

1.1 Thesis Objectives

The overall objective of this work is presenting applied Data Science approaches

in FinTech by proposing novel descriptive and predictive models for Bitcoin price

dynamics. Accordingly, to construct the specific objectives of this work, three different

areas are considered, namely, Data Science, FinTech and Data Science for FinTech,

as presented in sections 2.1, 2.2 and 2.3, respectively.

The objectives of this work fall within the three aforementioned fields. Taking

the field of Data Science into account, the first objective of this thesis is to develop

domain-specific models and algorithms that aim at learning, mining and discovering

hidden knowledge in related data, that are not available in the body of knowledge.

Within the field of FinTech, the second objective of this thesis is to address the

emergence of cryptocurrencies, a genuine financial innovation [134], specifically,

Bitcoin by providing empirical evidences and developing related theories. Finally,



8 CHAPTER 1. INTRODUCTION

considering Data Science for FinTech, the third and final objective of this thesis

is to propose innovative descriptive and predictive models aiming at studying two

specific research areas, namely, Bitcoin price dynamics and Bitcoin price prediction.

Specifically, within the research area of Bitcoin price dynamics, the objectives of

this work are summarized as follows:

1. acquiring empirical evidences on whether Bitcoin prices from different exchange

markets are strongly connected as in an integrated and efficient market;

2. exploring whether such interactions are affected by exogenous prices of classical

assets;

3. shedding more light on the non-conclusive properties of Bitcoin that have been

found previously in the literature;

4. modeling such dependencies through the dynamics of their latent causes,

attributed to time switches between different market regimes.

Moreover, within the research of Bitcoin price prediction, the objective of this

work is to develop an innovative and efficient predictive model that addresses intra-

daily prices and achieves more accurate prediction results than those found in the

literature.

To address the objectives within Bitcoin price dynamics, two innovative models

are proposed, namely, a Network VAR Model and a Hidden Markov Model, explained

in detail in sections 3.1 and 3.2, respectively. Additionally, a Hybrid Hidden Markov

Model and Genetic Algorithm-Optimized Long Short Term Memory Network model

is proposed in 3.3 that tackles the objective within the research area of Bitcoin price

prediction.
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1.2 Thesis Structure

The structure of the thesis is organized as follows:

• Chapter 2 follows a thorough literature review, considering three different

fields, namely, Data Science in section 2.1, FinTech in 2.2 and Data Science

for FinTech 2.3. A focus on Data Science evolution is presented in section 2.1.1

along with its challenges and opportunities in section 2.1.2. Similarly, the

evolution of FinTech is introduced in section 2.2.1 followed by its drivers,

challenges and opportunities in section 2.2.2. Finally, Data Science for FinTech

encompasses the related researches in Bitcoin Price Dynamics as explained

in section 2.3.1, as well as those available for Bitcoin Price Prediction as

demonstrated in section 2.3.2.

• In Chapter 3, the proposed models for achieving the aforementioned objectives

are introduced in detail. Specifically, section 3.1 explains the Network VAR

model, followed by section 3.2 that describes the proposed Hidden Markov

Model, adopted for daily Bitcoin prices modeling in section 3.2.1, as well as

for intra-daily Bitcoin prices in section 3.2.2. Finally, section 3.3 introduces

the theory behind Genetic Algorithms in section 3.3.1 and Long Short Term

Memory networks in section 3.3.2, and proposes the Hybrid Hidden Markov

Model and a Genetic Algorithm-Optimized LSTM Network in 3.3.3.

• Based on the proposed models, Chapter 4 demonstrates the implementation

process of the three models, from the process of data collection up to presenting

the related descriptive and predictive results. The implementation of the

Network VAR model is presented in 4.1, followed by the implementation of

the Hidden Markov Model in section 4.2 and finally the implementation of

the Hybrid Hidden Markov Model and Genetic Algorithm-Optimized LSTM

Network in 4.3.

• Chapter 5 concludes the thesis by summarizing its contributions and present-
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ing respective future work.

• Finally, Chapter 6 lists the submissions and publications carried out through

the past three years, including abstracts and full papers in sections 6.1 and 6.2,

respectively.



Chapter 2

Literature Review

Following a thorough literature review, this chapter summarizes the evolution of

Data Science and Financial Technology (FinTech) as documented in the body of

knowledge, followed by challenges and opportunities in these fields, as well as related

researches and possible applications, aiming at positioning the contributions of this

thesis within the already-existing researches, from both a general and a specific

perspective.

Accordingly, sections 2.1 and 2.2 present the evolution of Data Science and

FinTech along with possible challenges and opportunities, respectively, while sec-

tion 2.3 illustrates the related researches for Data Science approaches in FinTech,

highlighting the main contributions of this research area in the literature.

2.1 Data Science Overview

To begin with, this section addresses the available literature in Data Science starting

from its evolution as explained in section 2.1.1 up to the possible challenges and

opportunities, that naturally follow such an evolution, in section 2.1.2.

2.1.1 The Evolution of Data Science

“For a long time I have thought I was a statistician, interested in inferences from

the particular to the general. But as I have watched mathematical statistics evolve, I

11
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have had a cause to wonder and doubt.” John Tukey, 1962.

In 1962, John Tukey [149], argued in his article “The Future of Data Analysis”

that his perception of being a statistician, whose main interest is inferences, has

changed due to the evolution of mathematical statistics at the time. He stated that

his interests were more centered around data analysis; starting from planning the

ways for gathering data, up to developing analysis procedures and interpretation

techniques of the results of such procedures.

According to Tukey, data analysis is a field that consists of inferential techniques,

incisive procedures and allocation, but in a larger and a more varied manner, where

important statistical contributions are to be discovered to influence the practice of

data analysis in the future, thus, seeking novelty in data analysis. He argued that

such novelties can be achieved by seeking new questions to be asked, tackling old

problems in a more realistic framework, establishing useful properties of observations

and finding and evading lying constraints.

Having illustrated that, the confusion in positioning the fields of statistics and

data analysis was evident at the time. To tackle this, Tukey listed three tests to define

a science, namely, “1. intellectual content, 2. organization into an understandable

form and, 3. reliance upon the test of experience as the ultimate standard of validity.”

Accordingly, data analysis passes the previously mentioned tests, making it a science.

As for the contribution of statistics in the data analysis field, Tukey argued that

it is subjective to statisticians and to the standards they follow; whether pure

mathematics or the actual analysis of data. Consequently, the perception of the

future of data analysis, at the time, depended on the willingness of statisticians to

take a step forward to deal with the “rocky road” of real problems rather than the

“smooth road” of unrealistic assumptions and arbitrary criteria for creating “a great

science to all fields of science and technology.”

At this point, the term “Data Science” as a whole have not been discussed yet.

Few years after, Peter Naur and his colleagues introduced innovative terms in [116]

and [117], that were used in their local environment, and presented them for general
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adoption. The terms introduced were:

1. datalogy: the science of the nature and use of data;

2. datamatics: the part of datalogy which deals with the processing of data by

automatic means;

3. datamaton: an automatic device for processing data.

Naur argued that the use of such terms would contribute in gaining clarity as they

implicitly include important aspects in data representation.

Introducing these terms has been the first step for Naur to establish the computing

field as an academic subject [119] in Denmark. Moreover, Naur suggested that the

term “datalogy” should be used as a replacement to computer science. Indeed, in 1969,

Copenhagen University adopted the term and computer science has been practiced

under the name of “datalogy, the study of data and data processes” at the time,

and developed its own forms under the name of the “Copenhagen Tradition” [144].

Later on, Naur presented these works in his textbook “Concise Survey of Computer

Methods” in 1974 [118] which, according to [23], the term “Data Science” has been

first officially mentioned and defined.

In the summary of Naur’s book [120], the definition starts with “data: a repre-

sentation of facts or ideas in a formalized manner capable of being communicated or

manipulated by some processes.”, followed by “data science: the science of dealing

with data, once they have been established, while the relation of data to what they

represent is delegated to other fields and sciences”. Moreover, Naur stated that the

use of data science lies in the application of data processes in building models that

tackle realistic problems to create new, yet unknown, data that can directly help

humans in decision-making related matters. Indeed, this conforms the future of data

analysis that was perceived by Tukey back in 1962.

In 1977, Tukey wrote the “Exploratory Data Analysis” book [148] under the

principle of “It is important to understand what you CAN DO before you learn to

measure how WELL you seem to have DONE it.” Tukey focused on introducing
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exploratory data analysis, not to show its use, but to expose several techniques for

analyzing data effectively by exploiting simple arithmetic and easy-to-draw pictures.

He argued that confirmatory and exploratory data analysis should work side by side,

given that confirmatory data analysis has been always looked at as “mere descriptive

statistics”, regardless of the benefits it may have provided. Thus, Tukey emphasized

the importance of exploring the data by discovering beyond whatever descriptive

appearances that have been found, to provide new insights.

Evidently, early definitions for data science and the related terms that were

introduced to define the discipline, do not fully convey the current understanding of

the corresponding research domain. However, in the same year at which Tukey intro-

duced “Exploratory Data Analysis”, a step forward was taken by The International

Statistical Institute (ISI) [83] where a new section was founded under the name of

the International Association for Statistical Computing (IASC) [82], whose mission

is to “convert data into information and knowledge”, through statistical computing;

statistics in the communication and computer age.

The emerging interest in data analysis and its endless capabilities, at the time,

resulted in introducing new related terms on a continuous basis. In 1987, the terms

“Descriptive and Prescriptive Models” were introduced in [141] to depict “Knowledge

Engineers’” interest in inferences and decision-making by describing the actual

behavior versus the optimal strategies to adjust with a complex problem, respectively,

for the development of knowledge bases. Not only new terms and definitions emerged,

but also new communities. In 1989, the first workshop on Knowledge Discovery in

Databases (KDD) took place [88], aiming at addressing the growth of databases and

the need to create a corresponding knowledge base, using the available techniques

provided by different fields, namely, expert systems, machine learning, intelligent

databases, knowledge acquisition and statistics. This workshop was the first step to

many coming KDD conferences [89]. Ever since, the research attractions on such

fields became even more emerging, leading to the use of new terms such as “data

analytics” [39] and “data mining” [49].
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In addition to KDD, several well-known conferences were established, such as

International Conference on Machine Learning (ICML) and Neural Information

Processing Symposium (NIPS). Moreover, a dedicated conference on data science

under the name of IEEE International Conference on Data Science and Advanced An-

alytics (DSAA) [43]. Consequently, it is evident that the continuous interest in these

multidisciplinary fields has contributed in making data science the fastest growing

and most popular computing, statistics, and interdisciplinary communities [23].

Fig. 2.1 summarizes the evolution of data science over time by listing representa-

tive researches, communities and research groups.

1960's 1970's 1980's 1990's 2000's 2010's

Tukey,	The	Future	of	D
ata	A
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N
aur,	D
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Figure 2.1: History of Data Science - Inspired from [23].

2.1.2 Data Science Challenges and Opportunities

Given the fact that data science is a new multidisciplinary field that has been built

over already existing disciplines, it is difficult to address its related challenges and

opportunities from a general point of view. For instance, many published researches

that tackle challenges and opportunities of data science, considering one discipline

at a time e.g. statistics [78, 77, 54, 158], data mining [50, 25, 19, 26], machine

learning [102, 161], etc., can be found, however, few researches tackle the subject of

data science as a whole [22].

To address this, Cao developed in [20, 22, 21, 23] a research map that cap-
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tures the main challenges and research directions of data science as an emerging

interdisciplinary field. Fig. 2.2 illustrates Cao’s proposed research map of data

science.
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Figure 2.2: Cao’s Research Map of Data Science [21].

As Cao was developing the research map of data science, illustrated in fig. 2.2, he

introduced the term “X-Generations” which depicts the new generations of complex-

ities, intelligences and opportunities, and includes X-Complexities, X-Intelligence,

X-Opportunities, X-Analytics and X-Informatics [23].

In a previous research [22], Cao argued that a data science problem is a complex

system that has to address multiple complexities that have not been well-addressed or

even addressed at all. Thus, X-Complexities refer to “diverse, widespread complexities

that may be embedded in data, behavior, domain, societal aspects, organizational

matters, environment, human involvement, network, and learning and decision-
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making”. Thus, Cao argues that addressing such complexities using data science is

an essential objective of data science, as it has outstanding potentials in exploring

the embedded X-Intelligences, within these complexities, that consists of “data

intelligence, behavior intelligence, domain intelligence, human intelligence, network

intelligence, organizational intelligence, and environmental intelligence”. A natural

consequence of addressing X-Complexities and X-Intelligences is introducing X-

Opportunities that can be specified in terms of X-Analytics which “refers to various

opportunities discoverable by applying and conducting analytics on domain-particular

data,” and X-Informatics which “refers to the creation and application of informatics

for specific domain problems” [23].

With that said, challenges and opportunities as proposed by Cao in [20, 22, 21, 23],

can be summarized as follows:

• Data/business understanding challenges: identifying, specifying, represent-

ing, and quantifying X-Complexities and X-Intelligences, leading to effective

methodologies and technologies.

• Mathematical and statistical foundations challenges: exploring whether, how

and why already existing theoretical foundations are lacking the ability needed

to deal with X-Complexities and X-Intelligences.

• X-Analytics and data/knowledge engineering challenges: developing domain-

specific analytic theories, tools and systems that are not yet available in the

body of knowledge, which involves:

– Behavior and event processing: developing behavioral models that capture

the evolution of behaviors and events of individuals and groups in the

physical world.

– Data storage and management systems: designing management systems

that are able to deal with large amounts of data in real time.

– Data quality enhancement: improving existing data quality issues, such

as noise, uncertainty and missing values.
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– Data modeling, learning and mining: modeling, learning and mining data

embedded in X-Complexities and X-Intelligences.

– Data analytics, learning and discovery: analyzing, learning and discovering

hidden knowledge in domain-specific data by introducing innovative

models and algorithms.

– Simulation and experimental design: simulating complexities, intelligences

and processes in data and designing experiments to explore respective

impacts.

– High performance processing and analytics: processing and analyzing

online, large scale, real time, internet and cloud-based data.

– Analytics and computing architecture and infrastructure: facilitating

previous challenges by providing new effective computing architecture

and infrastructure.

– Networking, communication and interoperation: supporting networking,

communication and interoperation in distributed data science teams

during solving data science problems.

• Quality and social issues challenges: dealing with social issues such as privacy,

security, and trust, as well as enabling related data science tasks.

• Data value, impact and utility challenges: identifying and evaluating the value,

impact and utility of domain-specific data.

• Data-to-decision and action-taking challenges: developing decision support

systems, along with theories, to enable data-driven decision-making.

Having illustrated that, the main contributions of this thesis are within “X-

Analytics and Data/Knowledge Engineering”, specifically, “Data Modeling, Learning

and Mining” and “Deep Analytics, Learning and Discovery”. A more detailed lit-

erature review on the chosen domain and its related challenges can be found in

section 2.2.
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2.2 The Rise of Financial Technology

This section provides a thorough overview on FinTech and its evolution as explained

in section 2.2.1, and discusses its relevant drivers, challenges and opportunities in

section 2.2.2.

2.2.1 The Evolution of FinTech

“FinTech, the word which originates from the marriage of ‘finance’ and ‘technology’.”

Zavolokina et al., 2017.

It is without a doubt that the FinTech industry is rapidly growing. In 2018,

it was represented with a $111.8 billion in investments globally [95]. Obviously,

such growth and development did not happen overnight. In 2015, American Banker,

an award-winning daily trade newspaper [1], re-published an article [2], that was

originally published in 1993, to shed light upon the first time the term “FinTech”

was ever used. Accordingly, it is safe to say that the origin of the term goes back to

the early 1990’s, when Citicorp, a predecessor to the current Citigroup [31], initiated

a banking research project called “FinTech” as the original name of the Financial

Services Technologies Consortium [3]. Notwithstanding, the relationship between

finance and technology goes way back and the rise of FinTech is only a natural

consequence of the growth of these two disciplines over the years, together with

other drivers to be explained in section 2.2.2.

To explain the evolution of FinTech, Douglas W. Arner, Jànos Barberis and Ross

P. Buckley published three detailed papers [7, 9, 8] that explore FinTech and its

evolution for a time period of almost 150 years. In [7, 9], the authors classified the

evolution of FinTech to three (and a half) main eras, considering both developed and

developing countries, namely, FinTech 1.0, FinTech 2.0, FinTech 3.0 and FinTech

3.5 to describe the evolution in the Asia-Pacific (APAC) region and Africa.

The authors argue that the development of FinTech followed a bottom-up

approach, starting from FinTech 1.0 which took place from 1866 up to 1967. Despite

the fact that finance was indeed interconnected with technology at the time, the
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Financial Services Industry (FSI) was still an analogue industry [7]. To name a

few, written records demonstrating financial transactions mark the earliest forms of

Information Technology (IT), money as a technology evidencing transferable value,

introduction of the Abacus (counting frame), financing and insuring goods and

ships within the context of trade, and the development of double-entry accounting.

Additionally, post-World War II, rapid developments took place and the first era of

FinTech ended with the implementation of a global telex network that served as an

infrastructure to the following era [9].

Introducing calculators and Automated Teller Machines (ATM) announced the

commencement of FinTech 2.0. In this era, that took place from 1967 to 2008, not

only was the FSI globalized but also digitalized [7]. On the one hand, numerous

developments were achieved in different financial areas such as payments, securi-

ties and consumer areas. Additionally, many institutions were established such as

Inter-Computer Bureau in the UK, US Clearing House Interbank Payments System

(CHIPS), Fedwire and the Society of Worldwide Interbank Financial Telecommuni-

cations (SWIFT), evidencing the dominance of regulated financial firms that exploit

information technologies to provide financial products and services. On the other

hand, some financial crises took place which also contributed in the evolution of

FinTech. For instance, the collapse of Herstatt Bank in Germany in 1974 as it failed

to deliver US dollars to banks in New York due to time zone differences triggered

the attention of regulators to set new guidelines to handle such risks that can be

a natural consequence of the adoption of new payment systems. Similarly, Black

Monday took place in 1987 when the stock markets around the world crashed due

to, possibly, program trading where securities are bought and sold automatically

according to pre-set price levels, which proves that at the time, the world was indeed

connected through technology [9].

In 2008, one of the major financial crises took place, namely, the Global Financial

Crisis (GFC) that started with bursting of the US housing bubble [59]. Unlike

FinTech 1.0 where financial firms were dominating the FSI, new non-financial actors
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found an opportunity in implementing new technologies to financial services and

become a part of the FSI providers [7], leading to the start of FinTech 3.0 in the

developed countries up to present (2017), the year in which [8] was published. A

shaken image of banks, damaged bank profitability and competitiveness, risen bank

costs and unemployment are a few consequences of the GFC. Accordingly, new

innovations started emerging to address such consequences. The authors in [8] argue

that FinTech 3.0 would not have been founded had the GFC happened before 2008.

This is due to the fact that the financial innovations of 2008 highly rely on smart

phones and Application Programming Interface (API). To name but a few, Peer-to-

Peer (P2P) lending, crowdfunding, algorithmic trading, etc. The importance of this

era lies in the inclusion of non-financial actors in providing financial services to the

public, as well as, the speed of development and innovations. Since 2008, FinTech

has been evolving, in both developed and developing countries, due to varying causes.

Consequently, the authors in [7, 9, 8] introduced FinTech 3.5 for the APAC region

and Africa. For instance, underdeveloped banking and the spread of smart phones

were the main two drivers for adopting FinTech in Africa [8]. As for the APAC

region, the drivers can be summarized by disbelief in government-owned banking

systems due to corruption, less IT spending by traditional banks, high usage of smart

phones and limited branch network distribution [9]. Moreover, the authors of [7, 9]

extended their work and introduced FinTech 4.0 in [8], starting from 2018 to future.

The main characteristic of this era is the integration of digital identity, Internet of

Things (IoT), Machine-to-Machine (M2M) payments, data-intensive innovations,

and decentralized infrastructures to the FSI.

Fig. 2.3 illustrates the four eras of FinTech as suggested by the authors in [7, 9, 8],

by listing a number of important events and characteristics within each era.

Having illustrated that, Thomas Puschmann elaborated on the classification of

FinTech evolution suggested by Arner et al. in [7, 9] and argued that the evolution of

FinTech can be categorized in three different areas that include five phases described

as follows [129]:
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Written	records	evidencing	financial
transactions.
Technology	of	money	for	transferable
value.
Early	technologies	for	calculation;	the
Abacus	(counting	frame).
Financing	and	insuring	ships	and
goods	in	the	context	of	trade.
Double-entry	accounting.
Launch	of	calculators	and	ATM's.

FinTech	1.0	(1866-1967)
Foundation	of	Inter-Computer	Bureau	in
the	UK;
US	Clearing	House	Interbank	Payments
System	(CHIPS).
From	telegraphic	to	electronic	systems.
Foundation	of	Society	Worldwide	Inter-
bank	Financial	Telecommunication.	
Collapse	of	Herstatt	Bank.
Increased	use	of	IT	in	internal
operations.
Introduction	of	online	banking	in	the
US.
Michael	Bloombering	designed	in-house
computer	systems.

FinTech	2.0	(1967-2008)

Stimulation	of	FinTech	post	GFC.
Public	perception	of	banks
deteriorated.	
8.7	million	Americans	lost	their	jobs.
Highly	educated	new	generations
with	a	difficult	job	market.
Increased	regulations	and	compliance
obligations.
Rise	of	new	technological	players.
Limiting	capacities	of	banks	to
compete.
Issuance	of	Jump	Start	Our
Businesses	Start-ups	(JOBS)	act.
Emerging	of	new	FinTech	start-ups.

FinTech	3.0	(2008-2017)

Young	digitally	savvy	population	with
mobile	technologies.
Fast	growing	middle	class.
Inefficient	financial	market.
Shortage	of	physical	banking
infrastructure.
Behavioral	willingness	in	favor	of
convenience	over	trust.
Unstopped	market	opportunities.
Less	strict	data	protection.
Very	large	number	of	engineering	and
technology	graduates.

FinTech	3.5	(2008-2017)

Integration	of	digital	identity.
Integration	of	Big	Data.
Integration	of	Artificial	Intelligence.
Integration	of	Internet	of	Things.
Integration	of	Machine-to-Machine
payments.
Data-intensive	innovations.
Decentralized	infrastructures.

FinTech	4.0	(2018-Future)

Introduction	of	online	banking	in	the
UK.
Dropping	online	banking	in	the	US.
Bloomberg	terminals	were	in	increasing
usage	among	financial	institutions.
Black	Monday.
Emergence	of	Internet.
Collapse	of	Long-Term	Management
Capital.
Eight	banks	in	the	US	had	at	least	1
million	customers	online.
First	direct	banks	without	physical
branches	in	the	UK.

Figure 2.3: Evolution of FinTech.

1. Internal digitization: which includes the first three phases and focuses on the

digitization of internal processes. The first phase took place until the 1960’s

and the goal of FinTech was to gain efficiency in support processes, while

the second phase took place from 1960 to 1980 where the main focus was on

back-office process. Finally, the third phase took place from 1980 to 2010 where

the integration of IT was fully implemented in internal systems, unlike the first

and second phases where the integration was non-existent or only partially

existent, respectively.

2. Provider-oriented digitization: which contains the fourth phase that took (and

will take) place from 2010 to 2020. The main focus is to integrate providers

through outsourcing in different areas such as IT, payment systems, investments,

etc. and thus, an external integration of financial services providers.

3. Customer-oriented digitization: which contains the fifth and final phase as

suggested by Puschmann, where it will take place starting from 2020. The

main focus will be centered around customers to create new ecosystems by the
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integration of external non-financial services providers.

Lastly, it is important to note that the term “FinTech” can be viewed either as

the integration of IT and finance to provide financial services efficiently or as the

companies, firms or start-ups that provide such financial services [160]. These two

views are used interchangeably in the literature.

2.2.2 FinTech Drivers, Challenges and Opportunities

Having illustrated the evolution of FinTech, it is now evident that finance and

technology were, and still are, interconnected since almost 150 years ago, where the

development of one discipline directly reflects on the other. However, it was also

noted that this was not the only factor that drove the emergence and evolution of

FinTech, where crises that occurred throughout the years played a major role as well,

especially in the developed countries post GFC. Accordingly, this section focuses

on the drivers of FinTech, possible challenges and opportunities, as well as research

gaps and directions.

As previously explained, the interconnection between finance and technology

is not novel, while the hype and emerging interest are, especially in the current

times. As Arner et al. argues in [7, 9, 8], FinTech 3.0, from 2008 to present (2017)

in [8], was crucially different than FinTech 1.0 and FinTech 2.0. for several reasons;

the occurrence of GFC, the rapid developments in IT, and the diverse identities of

financial services providers.

Indeed, Zavolokina et al. [160] confirmed the diverse identities of primary actors

who would influence the evolution of FinTech. Their study shows that IT companies

were dominant at the beginning of 1987-1989 and the end of 2001-2002. While

financial institutions made an appearance in 1990 and 1998. Moreover, retailers were

present in 1988, 1999 and 2001. Additionally, the presence of financial institutions

peaked in 2004-2005 and 2007-2008. Moreover, the authors argued that in the period

between 2010-2015, the diversity of identities has been constantly increasing where

accelerators and consulting companies have become involved in FinTech at the time.
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Within the same period of time, the presence of accelerators and consulting firms

decreased, while the presence of financial institutions stabilized, and the presence

of IT companies and start-ups significantly increased. The authors also confirmed

the effect or financial crises on FinTech, illustrating the impact of the burst of the

Dot-Com bubble [42] on diversifying the identities of financial services providers,

which resulted in a shift from IT companies to financial institutions due to public’s

lack of trust. Finally, they illustrated the impact of GFC on increasing the diversities

of financial services providers even more, as well as creating innovative topics in the

context of FinTech.

Similarly, John Schindler [134] studied the drivers of FinTech to answer two

questions, namely, “why FinTech is happening now?” and “why FinTech is getting

much more attention than traditional innovation does?”. Accordingly, the author

explained the supply and demand framework and reflected it on possible drivers

of FinTech to address the first question and introduced the concept of depth of

financial innovation to address the second one. Consequently, from a supply point of

view, the drivers of FinTech are; the use of technology which enables firms to provide

innovative products and services, the significant increase of regulatory burdens

contributed in creating innovative alternatives and macroeconomic conditions, which

resulted in pressuring financial institutions to increase profits and cut costs. From a

demand point of view, the increasing use of smart phones created new opportunities

to fill new demands for new services and products to “match the mobile lifestyle”,

as well as demographics, specifically, millennials, created a new demand for such

services. Additionally, Schindler pointed out the importance of the depth level of

financial innovation, where a deeper innovation directly indicates a more profound

innovation, thus, the ability to build further innovations over it. He then explained

that there are three levels of financial innovation depth summarized as follows:

• Surface innovations: indicate innovations that do not change the fundamental

nature of a financial service or product. Most of financial innovations fall in

this level, such as online banking.
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• Genuine innovations: indicate innovations that change the fundamental nature

of a financial service or product, thus, creating new financial services and

products. A small number of financial innovations fall in this level, such as

P2P lending and cryptocurrencies.

• Foundational innovations: indicate significant innovations to the infrastructures

and other foundations of the financial system. A rare number of financial

innovations fall in this level, such as Distributed Ledger Technology (DLT)

and the Blockchain.

Thus, it is evident that the potentials these innovations have are transforming, and

will still transform, the financial system, explaining the hype around FinTech.

Furthermore, more recent researches were published agreeing with the previously

mentioned drivers of FinTech, adding increasing levels of distrust towards financial

institution, falling barriers to enter the digital disruption, attractive profit pools and

increased awareness of regulators [127, 10].

Considering the numerous drivers of FinTech, it is still a challenging environment.

As the name implies, the importance of having a digitally savvy talent is a must.

However, the lack of talent in the current market is indeed one of the challenges

faced in FinTech [10] where the authors argue that, even with the availability of

such talents, employers will face a significant competition to hire them. Additionally,

according to [145], 71% of millennials would rather go to their dentists than deal

with bankers. Even though that the long history of disappointments in financial

institutions faced by the public, specifically millennials, is indeed considered as a

driver to FinTech, customers are still skeptic toward FinTech start-ups, even those

that are regulated [10]. Likewise, regardless of the fact that the increased awareness

of regulators towards FinTech is indeed an important driver [127], the regulatory

burdens are still high [10].

Thus, taking FinTech drivers and challenges under consideration, many opportu-

nities can be created in the research community to tackle such issues and overcome
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them. Recently, the editorial board of “The Review of Financial Studies” journal [147]

provided possible research directions in FinTech [70], summarized as follows:

• Balancing theory and empirical work: the emergence of big data and data

science provided the important potentials needed to analyze massive amounts

of structured, semi-structured and unstructured data in different domains,

giving researchers the opportunity to develop descriptive and predictive models

through empirical studies. Likewise, developing the theories behind such de-

scriptions and/or predictions is just as important and gives researchers possible

grounds and explanations to think about and reflect on.

• International dimensions: while explaining the evolution of FinTech in sec-

tion 2.2.1, Arner et. al [7, 9, 8] argued that the evolution of FinTech differs in

developing countries and introduced FinTech 3.5. Indeed, the authors in [70]

confirmed and argued that, given that the FSI is among the most developed

industries in the US, fewer opportunities for innovation are available. Thus,

international collaboration with developing countries create an opportunity

for researchers in finance.

• Interdisciplinary collaborations: the interdisciplinary nature of FinTech clearly

indicates the need to have knowledge in both finance and technology. Ac-

cordingly, collaborations between researchers in finance and computer science

complement the missing knowledge in either discipline.

• Links to existing research: the authors argue that many of the considered

issues in FinTech are previously tackled by many researchers. Accordingly, it

is important to build new researches over already-existing ones rather than

reinventing the wheel.

• Loss of trust in the current system: as previously mentioned, the increasing

distrust in financial institutions triggered the evolution of FinTech [7, 9, 8,

160, 134, 127, 10]. For instance, Bitcoin was introduced as a decentralized P2P
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payment system [115] and was intended to take away the power from central

banks [70, 55]. Accordingly, the authors argue that there is still a possibility

to create a mutually beneficial situation and integrate new technological

innovations without completely giving up on traditional financial institutions,

which creates important opportunities for the research community.

• Rightsizing regulations: two important research questions are suggested by

the authors within this area, namely, “how to regulate new FinTech entities

relative to financial institutions?” and “whether the new forms of financing

introduced by FinTech pose the same need for regulation as the traditional

ones”. Indeed, finding an appropriate trade-off in regulations for both FinTech

start-ups and traditional financial institutions is a must, without undermining

the importance of either one.

• A new market equilibrium: the authors argue that there are two possible

options for traditional financial institutions; either they will be completely

replaced with new FinTech firms, or they will adopt FinTech and become more

advanced digitally. Accordingly, studying the effect of either option is a high

priority research topic that can be tackled by developing new theories and

conducting empirical studies.

• Welfare matters: according to [150], 1.7 billion of the population is still un-

banked either by a traditional financial institution or a mobile money provider.

Therefore, the authors argue that there is a greater mission for FinTech rather

than the evolution of the financial sector, that is the overall welfare of its

consumers. Thus, the research community is encouraged to consider such

issues and propose appropriate solutions accompanied by relevant theories and

empirical studies.

Having illustrated the evolution of FinTech in section 2.2.1 and its related drivers,

challenges and opportunities, it should be noted that the chosen domain, to conduct

applied data science approaches on, is FinTech. From a general point of view, the
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main contributions of this thesis fall within developing innovative descriptive and

predictive models that address the emergence of cryptocurrencies, a genuine financial

innovation [134], specifically, Bitcoin. A more detailed relative literature review is

presented in section 2.3.

2.3 Data Science for Fin-Tech

“..if we don’t innovate successfully, we’re toast.” Ian Narev, CEO of Commonwealth

Bank, 2016.

In the previous sections 2.1 and 2.2, the evolutions of data science and FinTech,

along with their respective challenges and opportunities, have been investigated.

Thus, it is now apparent that these two interdisciplinary fields intersect in providing

unprecedented opportunities and potentials to address domain-related issues that

could not have been tackled before.

One of the previously mentioned challenges of FinTech, in section 2.2.2, is

exploiting available data through the development of descriptive and predictive

models, as a result of the emergence of data science, to gain insights and contribute

in evolving current related theories. Indeed, in [23] Cao argues that data science

has a major role in FinTech by analyzing related financial data to address potential

problems and possible risks. To name a few, data science approaches can be applied

in portfolio management optimization, price movements analyses, market trends

identification and forecasting, Bitcoin and cryptocurrency analyses, fraud detection,

market movement predictions, etc., in order to improve financial services. Similarly,

Giudici in [62] introduced the concept of financial data science and described it as

“the application of data science on the technologically enabled financial innovations

(FinTech)”. Indeed, according to a recent survey [56], data-oriented applications are

considered crucial to the development of FinTech and meeting the new demands of

the FSI.

On a similar note, Giudici argues in [63] that FinTech solutions are mainly driven

by three technologies, namely, 1. Big Data Analytics with possible applications in
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P2P lending, 2. Artificial Intelligence (AI) with possible applications in robo-advisory

and 3. Blockchain technologies with possible applications in cryptoassets; confirming,

on one hand, the importance of data science in FinTech for creating such solutions

that are affecting the nature of the financial industry, and on the other hand, the

potentials of the Blockchain technology that would also contribute in the evolution

of FinTech and the future of the FSI.

In [104], the Blockchain is simply defined as “a technology to handle blocks in a

chain”, where each block is digitally signed with a hash value that links these blocks

together forming the “chain”. Although the concept of the Blockchain is not new [104]

and its development is based on earlier technologies [110, 111], it has only gained its

popularity when Bitcoin was introduced back in 2008 [115]. Within such a concept,

the Blockchain acts as a DLT that records and verifies Bitcoin transactions while

providing anonymity, security, immutability and a mutual trust between peers, given

its nature in recording such transactions in a tamper-proof manner. Consequently,

the research interest in the Blockchain as a DLT and in Bitcoin has been rapidly

emerging in different domains, mainly technology, followed by economy, finance

and accounting as the research developed [80]. Moreover, a particular interest in

Bitcoin price characteristics has been emerging. Possible reasons may include, to

name a few, the overall view of Bitcoin as an investment rather than a currency [162],

the nature of Bitcoin’s underlying infrastructure that can contribute in enabling

illegal businesses [53, 133], a solution to the lack of trust in traditional financial

institutions [133] and the growing use of cryptocurrency, specifically, Bitcoin the

market’s leader, resulting in a rise in trading volume as well as volatility [35].

Thus, generally, the objective of this thesis is to implement data science ap-

proaches within the FinTech domain, focusing on Blockchain technologies and its

main application, i.e., cryptocurrencies. In particular, Bitcoin (BTC), the very first

example of utilizing the Blockchain [104]. More specifically, to understand Bitcoin

price dynamics through the development of descriptive and predictive data-driven

models and providing empirical evidences. Accordingly, a thorough literature review
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is provided in sections 2.3.1 and 2.3.2, considering main researches on Bitcoin price

dynamics through descriptive models and Bitcoin price prediction through predictive

models, respectively.

2.3.1 Bitcoin Price Dynamics

As a result to a thorough systematic literature review on cryptocurrencies as financial

assets [35], it has been reported that price dynamics is one of the most popular

research areas in this field, together with market efficiency and cryptocurrency

structure. Specifically, the research on Bitcoin, including its price characteristics,

has risen from 5 to 485 papers over the period of 2011 to 2016, corresponding to

the rise of Bitcoin prices within the same period [80]. Accordingly, following this

emerging stream of research, this section explores researches concerning the study of

cryptocurrency market prices, specifically, Bitcoin price dynamics, either from an

endogenous or exogenous point of view.

From a theoretical viewpoint, Dwyer [44] examined the economics and financial

properties of cryptocurrencies and argued that, the existence of a quantity limit

along with the use of P2P networks, can create an economic equilibrium in which

cryptocurrencies, including Bitcoin, have a positive value.

Trying to understand price dynamics from an empirical perspective, Bouoiyour

et al. [16] applied a technique called empirical mode decomposition to assess Bitcoin

prices formation, and argued that, although Bitcoin is considered as a speculative

asset, it is extremely driven by long-term fundamentals. However, Corbet et al. [36]

conducted multivariate statistical approach and studied the relationships between

three cryptocurrencies; Bitcoin, Litecoin and Ripple, and their links to traditional

financial assets, using a variance decomposition approach, and showed that the stud-

ied cryptocurrencies are strongly interconnected with each other by demonstrating

similar patterns in returns and volatility while being relatively isolated from other

financial assets such as gold, S&P 500 index, the CBOE Volatility Index (VIX) and

GSCI. They also found that the volatility of cryptoassets is substantially higher
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than that of traditional assets, thus, showing a diversification benefit. Dyhrberg [45],

Bouri et al. [17], reported similar conclusions, confirming the isolation of cryptoassets

from traditional assets, pointing that such isolation emerges in the short-run rather

than in the long-run, making the diversification benefit not conclusive. As a further

support, a more recent paper by Ciaian et al. [30] applied autoregressive distributed

lag models to daily data of Bitcoin and other sixteen cryptocurrencies and reported

that they are interdependent but still independent from exogenous factors. They

also found that such interdependent relationships are stronger in the short-run

rather than in the long-run, consistently with the findings of [16]. Reporting similar

conclusions, the authors in [46, 93, 139] with the sole difference of linking Bitcoin

prices with S&P 500, in a weak manner.

Further arguments in favour of the endogenous nature of price dynamics have

been provided by Blau [14], who studied the dynamics of Bitcoin prices using the

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models and

found that price volatility does not depend on speculative trading. Moreover, Polasik

et al. [126] provided a regression analysis of the investment characteristics of Bitcoin

and reported that Bitcoin returns are mainly driven by endogenous causes, such

as sentiments on cryptocurrencies, or the total number of transactions. Finally,

Viglione [153] found a positive relationship in a cross-country correlation between

the level of technology and Bitcoin prices.

Understanding price interconnectedness is important, not only to describe the

relationships between different asset prices, but also to understand whether prices in

different markets quickly react to each other. In other words, whether cryptoasset

markets are efficient. Brandvold et al. [18] was the first to address this matter by

studying the price discovery process in Bitcoin markets. Using data from seven

exchanges, over the period of April 2013 to February 2014, the authors found that

Mt. Gox exchange market (bankrupting shortly after the sample period) and BTC-e

exchange market were the price setters at the time. Pagnottoni et al. [121] extended

the work in [18] and noted the increased role of Chinese exchanges. On a similar
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line of work, Urquhart [151] analyzed Bitcoin price return data from August 2010 to

July 2016 to address the same issue, however, the efficient market hypothesis could

not be confirmed. Consequently, Nadarajah et al. [114] revealed that an odd integer

power transformation of Bitcoin price returns can be concluded as “weakly efficient”,

and thus, the evidence on Bitcoin market efficiency is not conclusive.

Having illustrated that, and within this specific stream of research, the specific

contributions of this thesis are two-fold; further acquiring empirical evidences on

whether Bitcoin prices from different exchange markets are strongly connected as in

an integrated and efficient market, and whether such interactions are affected by

exogenous prices of classical assets. Thus, shedding more light on the non-conclusive

properties of Bitcoin that have been found previously in the literature. Accordingly,

an innovative, mostly descriptive, Network Vector Autoregressive (VAR) model has

been developed to address these issues and the results have been published in [65].

This work will be explained in details in section 4.1.

While the developed model in the first contribution of this thesis, namely the

Network VAR model, models the dependencies between the observed markets only,

a further contribution is considered by modeling the same dependencies through

the dynamics of their latent causes, attributed to time switches between different

market regimes. To this aim, a Hidden Markov Model (HMM) is developed and the

results have been submitted [64]. Similarly, this work will be explained in details in

section 4.2.

2.3.2 Bitcoin Price Prediction

Market prediction in cryptocurrency is another popular research area given the

challenges that need further considerations from the research community [40]. Within

this section, a number of the most recent relative researches are discussed, specifically

focusing on the proposed predictive model, frequency of the data used, related

features and, finally, the predictive power of such models. Accordingly, the considered

researches are classified, based on the data frequency used, into daily and intra-daily
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predictions, and discussed as follows.

Daily Bitcoin Price Prediction

Autoregressive Integrated Moving Average model (ARIMA) and Long Short-Term

Memory network (LSTM) are observed to be two of the widely used models to

predict Bitcoin prices.

For instance, Roy et al. proposed few statistical models to predict Bitcoin prices

for the next 10 days, namely, Autoregressive (AR), Moving Average (MA) and

ARIMA in [132]. They extracted daily Bitcoin prices from July 2013 to August,

specifically, open, high, low, close prices (OHLC) along with volume and market

capitalization. Accordingly, they reported that ARIMA achieved the highest accuracy

of 90% while MA achieved the lowest accuracy of 87%. The same set of features has

been extracted in [112] to predict the highest price of the day for a collection of 15

cryptocurrencies. However, only the high price has been fitted to ARIMA and all

other features have been excluded. Accordingly, the authors reported an average

accuracy of 86.4% for 95% of the considered cryptocurrencies with an average of

97.8% for Bitcoin. The authors argue that increasing the number of observations

would contribute in achieving higher accuracy rates using ARIMA.

Similarly, Azari investigated the efficiency of ARIMA in predicting Bitcoin daily

closing prices in [12]. Accordingly, he argued that fitting ARIMA with a 3-year

long dataset of Bitcoin closing prices yields in a large Mean Squared Error (MSE)

due to high volatility rates over such a long period. However, dividing the dataset,

where each subset has its own unique trends, can help in decreasing the MSE of the

predictions.

With reference to LSTM networks, the authors in [142], gathered a dataset

consisting of market-related, sentiment-related, Blockchain-related features, along

with stock market indices to understand the possible variables that play a role in pre-

dicting Bitcoin prices by fitting such features into LSTM network. The authors argue

that, regardless the fact that Bitcoin prices are hard to predict, the aforementioned
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features are indeed crucial.

Moreover, Wu et al. [157] introduced a hybrid model of LSTM, paired with

Autoregressive(2) to predict daily Bitcoin prices, using Autocorrelation Function

(ACF) and Partial Autocorrelation Function (PACF). The proposed method achieved

a Root Mean Squared Error (RMSE) of 247.33, compared to a conventional LSTM,

which achieved an RMSE of 256.41. Exploiting sentiment-related features, the authors

in [91] proposed a hybrid model that consists of sentiment analysis techniques, Natural

Language Processing (NLP) and LSTM to predict the direction of Bitcoin price

changes and achieved an accuracy of 67.6%.

Highlighting the efficiency of LSTM networks in [81], Support Vector Machine

(SVM), Linear Regression, Neural Networks (NN), LSTM and rolling LSTM net-

works have been implemented using 17 different features that are related to macro-

economics, global exchange rates and Blockchain information. Accordingly, an RMSE

of 59.04 and a Mean Absolute Percentage Error (MAPE) of 0.044 have been reported

for rolling LSTM model, which outperforms the aforementioned considered models.

On a similar line of work, McNally et al. [109] compared the performance of LSTM,

Recurrent Neural Network (RNN) and ARIMA models in predicting the direction of

Bitcoin price changes, confirming the efficiency of LSTM which achieved a prediction

accuracy of 52.78%, thus, outperforming Bayesian-optimized RNN and ARIMA,

which achieved an accuracy rate of 50.25% and 50.05%, respectively. Likewise, a bet-

ter performance for LSTM was reported in [98] compared to Generalized Regression

Neural Networks (GRNN), with an RMSE of 2.75 × 103 compared to 8.80 × 103,

respectively, for predicting Bitcoin prices.

Continuing on this line, a number of researches conducted a comparison between

the two popular models in Bitcoin prices prediction, namely ARIMA and LSTM.

Karakoyun et al. [86] reported a MAPE of 11.86% for ARIMA, which significantly

decreased to 1.4% when fitting the same dataset into LSTM networks. Similarly,

Press [128] showed the efficiency of a novel modified LSTM compared to ARIMA,

when using them in building a scalable online platform to predict a real-time stream
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of daily Bitcoin prices.

Further models have been considered for Bitcoin prices predictions. To name a

few, Munim et al. [113] proposed Neural Network Autoregression (NNAR) models to

predict next-day Bitcoin prices, achieving an RMSE of 0.069. Moreover, the authors

in [143] proposed 𝛼-Sutte Indicator that achieved the lowest MSE compared to

both ARIMA and NNAR. Other models include Bayesian Neural Network (BNN)

as in [85], Random Forest (RF) [71], Neuro Fuzzy techniques [11], Logistic and

Linear Regression [99, 4], Time-Delay Neural Networks (TDNN) [74], Averaged

One-Dependence Estimators [90], Support Vector Classifier (SVC) and Gradient

Boosting Regressor (GBR) [154], VAR [106] and, finally, Binomial Generalized Linear

Models (GLM) [105].

Intra-daily Bitcoin Price Prediction

It is evident that the frequency of the data is an important factor to be considered

while choosing the appropriate model for Bitcoin prices prediction. As previously

mentioned, Binomial GLM was used to predict daily Bitcoin prices in [105], along

with SVM and RF, achieving an accuracy of 0.9879, 0.2716 and 0.9498, respectively.

However, when the same models are used for intra-day data, the accuracy rates

decreased significantly. Specifically, for Binomial GLM which achieved, when fitted

to 10-second data an accuracy of 0.085, and an accuracy of 0.539 when fitted to

10-minute data.

Nevertheless, LSTM networks are still dominating the considered models while

predicting Bitcoin intra-daily prices. Cerda et al. [27] proposed the use of LSTM

networks to predict intra-daily prices using 5-minute Bitcoin prices from July 2018

to December 2018, along with sentiment-related features extracted from crypto-

influencers posts from Twitter, achieving and RMSE of 10.87. Within the same

stream of work, the authors in [138] investigated the abilities Google trends and

Telegram messaging platform have in predicting cryptocurrencies prices. To address

this, they used LSTM to fit hourly data of Bitcoin and Ethereum prices using pricing-
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related features, Google trends features, and sentiment-related features extracted

from Telegram. Accordingly, for Bitcoin, using pricing-related features, namely, price

and trading volumes, LSTM achieved an accuracy of 0.62. Extending the model

using Google trends slightly increased the accuracy up to 0.64. However, extending

the model using Telegram features, increased the accuracy significantly up to 0.76.

Finally, implementing the LSTM model with all the features combined achieved

an accuracy of 0.63. Moreover, the authors in [100] extended LSTM networks by

utilizing Word2Vec models to predict Bitcoin price fluctuations hourly. The proposed

hybrid model achieved a predictive accuracy of 54.5% analyzing Reddit posts from

crypto-communities, 12 hours in the future.

Comparing the predictive performance of LSTM in predicting intra-daily Bitcoin

prices, Phaladisailoed et al. [124] used 1-minute data from January 2012 to January

2018 to implement several models, namely, Theil-Sen Regression, Huber Regression,

LSTM, and Gated Recurrent Unit (GRU) in order to discover the most efficient

model to predict Bitcoin prices. Results showed the power of GRU by achieving

the lowest MSE of 0.00002 among the previously mentioned models. Despite that,

comparing LSTM to Gradient Boosting (GB) as in [96], for predicting cryptocurrency

prices using 10-minute data, indicated a performance improvement when using LSTM

instead of GB.

Further models have been considered to predict intra-daily prices as well. For

instance, VAR model was implemented in [136] using 5-minute data from September

2014 to August 2018. Moreover, Multi-Linear Regression as in [84], Generative Tem-

poral Mixture model as in [75, 76], RNN [94], Bayesian Regression [135], Random

Sampling Method as proposed in [137], and, finally, Linear and Logistic Regres-

sion [73].

Consequently, the third contribution of this thesis within Bitcoin price prediction

aims at developing an innovative and efficient predictive model that addresses intra-

daily prices and achieves more accurate prediction results than those found in the

literature. Specifically, by extending the previously proposed HMM, as mentioned
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in 2.3.1, and proposing a hybrid model for Bitcoin prices prediction using HMM

and LSTM networks. The results have been published in [5] and will be explained in

detail in section 4.3.

Finally, to conclude this chapter, a summary of the considered papers in this

section is provided in tables 2.1 and 2.2, for daily and intra-daily Bitcoin prices

prediction, respectively.

Table 2.1: Summary of Reviewed Papers in Cryptocurrency Daily Prices Prediction.

Paper Features Considered Model Used Evaluation Metric Predictive Power

[132]

OHLC,

Volumes,

Market Capital

ARIMA Accuracy 90.31%

[112]
OHLC,

Market Capital
ARIMA Accuracy 86.42%

[12] Closing Price ARIMA MSE 16000

[142]

Stock Indices,

Sentiments,

Blockchain

LSTM MAE N.A.

[157]
ACF,

PACF
AR-LSTM RMSE 247.33

[91]

Popularity,

Subjectivity,

S&P500,

Crypto Prices

NLP-LSTM Accuracy 67.6%

[81] Blockchain Rolling LSTM RMSE 59.04

continued on next page
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Table 2.1 – continued from previous page

Paper Features Considered Model Used Evaluation Metric Predictive Power

[109]

OHLC,

Blockchain,

Moving Avg.

LSTM Accuracy 52.78%

[98] Crypto Prices LSTM RMSE 2570

[86] Crypto Prices LSTM MAPE 1.40%

[128] Crypto Prices LSTM N.A. N.A.

[113] Crypto Prices ARIMA RMSE 0.042

[143] Crypto Prices 𝛼-sutte MSE 121362.34

[85]

Blockchain,

Macroeconomic,

Exchange Rates

Bayesian Neu-

ral Network

RMSE 0.0244

[71]
OHLC,

Volumes
Random Forest RMSE 193

[11] Crypto Prices Neuro Fuzzy RMSE 0.0376

[99]
Crypto Prices,

N-gram
Logistic Re-

gression

Accuracy 61.9%

[4]

Sentiments,

Google Trends,

Tweets

Linear Regres-

sion

N.A. N.A.

continued on next page
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Table 2.1 – continued from previous page

Paper Features Considered Model Used Evaluation Metric Predictive Power

[74]
OHLC,

Volumes
TDNN MSE 42 × 10-6

[90]

Sentiments,

Prices,

Transactions

Averaged

One-Dependence

Estimators

Accuracy 79.57%

[69] Crypto Prices SVM Accuracy 62.31%

[106]

Crypto Prices,

Google Trends,

Volatility,

S&P500,

Volumes,

Social Media

VAR N.A. N.A.

[105]
Network,

Market
Binomial GLM Accuracy 98%
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Table 2.2: Summary of Reviewed Papers in Cryptocurrency Intra-daily Prices
Prediction.

Paper Data Freq. Features Considered Model Used Evalua-
tion

Metric

Predictive
Power

[105] 10-minute Network,
Market Random Forest Accuracy 57%

[27] 5-minute
Opening Price,
Closing Prices,
Sentiments

LSTM N.A. N.A.

[138] Hourly
Crypto Prices,
Sentiments,
Telegram

LSTM Accuracy 63%

[100] Hourly Market,
Social Media Word2Vec-LSTM Accuracy 54.5%

[124] 1-minute OHLC,
Volumes LSTM MSE 2 × 10-5

[96] 10-minute OHLC,
Volumes LSTM F1 Score 0.63-0.68

[136] 5-minute
Volumes,
Volatility,
Tweets

VAR N.A. N.A.

[84] 1-minute Crypto Prices,
Tweets Multi-Linear

Regression
R2 Score 44%

[75, 76] Hourly

Spread,
Ask/Bid Volumes,
Depth,
Slope

Generative
Temporal
Mixture

RMSE 0.025

[94] Tick Crypto Prices RNN N.A. N.A.

[135] 1-second Crypto Prices,
Order Book Bayesian

Regression
N.A. N.A.

[137] 1-minute OHLC Random
Sampling
Method

Accuracy 47%

[73] Every
Transac-

tion

Crypto Prices,
Transactions Linear

Regression
MSE 1.94



Chapter 3

Methodology

Prior to presenting the results achieved within the contributions of this thesis,

a thorough explanation of the proposed models, from a theoretical perspective,

is provided in this chapter. Consequently, section 3.1 demonstrates the proposed

Network VAR model for understanding Bitcoin price dynamics from an endogenous

as well as exogenous points of view. Section 3.2 presents the adopted Hidden Markov

Model (HMM) for understanding how Bitcoin prices switch between different regimes,

going from “bull” to “stable” and “bear” behaviors. Finally, section 3.3 illustrates

the proposed hybrid model for predicting Bitcoin prices using HMM and Genetic

Algorithm (GA) optimized LSTM networks.

3.1 Network VAR Models

Let 𝑦𝑖
𝑡 be the price of Bitcoin in a specific exchange market 𝑖 (𝑖 = 1, . . . , 𝐼), at time

𝑡 (𝑡 = 1, . . . , 𝑇 ). We assume that 𝑦𝑖
𝑡 is a function of:

1. an autoregressive component, that expresses the dependency on the past prices

of the same exchange 𝑦𝑖
𝑡−1;

2. a cross-sectional component, that expresses the contemporaneous dependency

on the prices of other exchanges 𝑦𝑗
𝑡 and

3. a stochastic residual.

41
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Formally, for each price 𝑖 and time 𝑡 we assume that the following holds:

𝑦𝑖
𝑡 =

𝑝0∑︁
𝑝=1

𝛼𝑖
𝑝𝑦𝑖

𝑡−𝑝 +
∑︁
𝑗 ̸=𝑖

𝛽𝑖𝑗𝑦𝑗
𝑡 + 𝜖𝑖

𝑡, (3.1)

where 𝑝 is a time lag (with a maximum lag 𝑝0 < 𝑡), 𝛼𝑖
𝑝 and 𝛽𝑖𝑗 are unknown

coefficients to be estimated from the considered data, and 𝜖𝑖
𝑡 are standard Gaussian

residuals, which are independent across time and exchanges.

Equation 3.1 models Bitcoin price dynamics as a structural VAR, in which

the price in each exchange market depends on its 𝑝 past values, through the id-

iosyncratic autoregressive component
∑︀𝑝0

𝑝=1 𝛼𝑖
𝑝𝑦𝑖

𝑡−𝑝 and, in addition, it depends on

the contemporary values of the other markets, through the systemic component∑︀
𝑗 ̸=𝑖 𝛽𝑖𝑗𝑦𝑗

𝑡 .

The previous model can be expressed in a more compact matrix form, as follows:

𝑌𝑡 =
𝑝0∑︁

𝑝=1
𝐴𝑝𝑌𝑡−𝑝 + 𝐵0𝑌𝑡 + 𝐸𝑡, (3.2)

where 𝑌𝑡 is an 𝐼-dimensional vector containing the prices of all exchanges at time

𝑡, 𝑌𝑡−𝑝 is the same vector, lagged at time 𝑡 − 𝑝, 𝐴𝑝 is a 𝑝 × 𝐼 matrix that contains

the autoregressive coefficients, 𝐵0 is a 𝐼 × 𝐼 symmetric matrix with null diagonal

elements containing the contemporaneous coefficients and, finally, 𝐸𝑡 is a vector of

standard Gaussian residuals independent across time.

For estimation purposes, the model in 3.2 can be transformed in a reduced form,

thus becoming:

𝑌𝑡 = Γ1𝑌𝑡−1 + ... + Γ𝑝𝑌𝑡−𝑝 + 𝑈𝑡, (3.3)

with
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ1 = (I − 𝐵0)−1𝐴1,

...

Γ𝑝 = (I − 𝐵0)−1𝐴𝑝,

𝑈𝑡 = (I − 𝐵0)−1𝐸𝑡.

(3.4)

The previous formulation allows the estimation of the vectors of modified autore-

gressive coefficients Γ1, ..., Γ𝑝, using time series data on Bitcoin prices contained in

the stacked vector {𝑌1, . . . , 𝑌𝑡, . . . , 𝑌𝑇 }.

However, we are not interested in estimating Γ𝑝, but in separately estimating

its components {𝐴1, ..., 𝐴𝑝} and 𝐵0, disentangling the autoregressive part from the

contemporaneous one. In this sense, once 𝐵0 is obtained, {𝐴1, ..., 𝐴𝑝} can be derived

from 3.4.

To estimate 𝐵0, note that (I− 𝐵0)𝑈𝑡 = 𝐸𝑡, so that 𝑈𝑡 = 𝐵0𝑈𝑡 + 𝐸𝑡. This implies

that, for each exchange 𝑖;

𝑈 𝑖
𝑡 =

∑︁
𝑗 ̸=𝑖

𝛽𝑖𝑗𝑈 𝑗
𝑡 + 𝜖𝑖

𝑡, (3.5)

meaning that the off-diagonal elements of 𝐵0 can be obtained by regressing each

modified residual, derived from the application of 3.3, on those of the other exchanges.

Note that the regression model in 3.5 is based on the transformation derived

in equation 3.4, which makes the modified residuals correlated. The direction of

such correlation is, however, unknown. In the application of 3.5 it is thus not clear

which price residual assumes the form of a response variable, and which one is of an

explanatory regressor.

A simple solution to this problem would be to estimate all possible regressions,

that is, to regress each of Bitcoin prices on all the others. However, this procedure

would be, besides illogical, computationally inefficient. To solve this issue, we ap-

proximate each pair of regression coefficients 𝛽𝑖𝑗 and 𝛽𝑗𝑖 is proposed, representing

two opposite causality directions, with their partial correlation coefficient, which is
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undirected, but univocally determined by them.

Formally, let Σ = 𝐶𝑜𝑟𝑟(𝑈) be the correlation matrix between the modified

residuals, and let Σ−1 be its inverse, with elements 𝜎𝑖𝑗 . The partial correlation

coefficient 𝜌𝑖𝑗|𝑆 between the residuals 𝑈 𝑖 and 𝑈 𝑗 , conditional on the remaining

residuals (𝑈 𝑠, 𝑠 = 1, . . . , 𝑆), where 𝑆 = 𝐼 ∖ {𝑖, 𝑗}, can be obtained by:

𝜌𝑖𝑗|𝑆 = −𝜎𝑖𝑗

√
𝜎𝑖𝑖𝜎𝑗𝑗

. (3.6)

It can be shown that:

|𝜌𝑖𝑗|𝑆 | =
√︁

𝛽𝑖𝑗 · 𝛽𝑗𝑖, (3.7)

which means that the absolute value of the partial correlation coefficient between

𝑈 𝑖 and 𝑈 𝑗 , given all the other residuals, can be obtained as the geometric average

between the coefficients 𝛽𝑖𝑗 and 𝛽𝑗𝑖 defined by equation 3.5 setting, respectively, 𝑖

rather than 𝑗 as response variables. Equation 3.7 justifies the replacement of 𝛽𝑖𝑗 and

𝛽𝑗𝑖 with their corresponding partial correlation coefficient 𝜌𝑖𝑗|𝑆 .

From an economic viewpoint, the partial correlation coefficient expresses how

the Bitcoin price of an exchange 𝑖 is affected by the contemporaneous price of other

exchanges, or of classical assets, 𝑗 ̸= 𝑖, keeping other prices fixed. An important ad-

vantage that derives from the employment of partial correlations lies in the possibility

of employing correlation network models based on the conditional independence

relationships described by partial correlations.

More precisely, let us assume that the vectors 𝑈𝑡 are independently distributed,

according to a multivariate normal distribution 𝒩𝐼 (0, Σ), where Σ represents the

correlation matrix, that is assumed to be non-singular.

A correlation network model can be represented by an undirected graph 𝐺 such

that 𝐺 = (𝑉, 𝐸), with a set of nodes 𝑉 = {1, . . . , 𝐼}, and an edge set 𝐸 = 𝑉 × 𝑉

that describes the connections between the nodes. 𝐺 can be represented by a binary

adjacency matrix 𝐸 with elements 𝑒𝑖𝑗 , each of them providing the information of
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whether a pair of vertices in 𝐺 is, symmetrically, linked between each other (𝑒𝑖𝑗 = 1)

or not (𝑒𝑖𝑗 = 0). If the nodes 𝑉 of 𝐺 are put in correspondence with the random

variables 𝑈1, . . . , 𝑈𝐼 , the edge set 𝐸 induces conditional independence on 𝑈 via the

so-called Markov properties [101].

Let Σ−1 be the inverse of Σ, whose elements can be indicated as {𝜎𝑖𝑗}. Whit-

taker [156] proved that the following equivalence holds:

𝜌𝑖𝑗|𝑆 = 0 ⇐⇒ 𝑈𝑖 ⊥ 𝑈𝑗 |𝑈𝑉 ∖{𝑖,𝑗} ⇐⇒ 𝑒𝑖𝑗 = 0

where the symbol ⊥ indicates conditional independence.

From a graph-theoretic viewpoint, the previous equivalence means that a link

between two exchange prices is present if, and only if, the corresponding partial

correlation coefficient is significantly different from zero. From a financial viewpoint,

the previous equivalence implies that, if the partial correlation between two measures

is equal to zero, the corresponding price residuals are conditionally independent and,

therefore, the corresponding exchanges do not directly impact each other. Lastly,

from a statistical viewpoint, it is also possible to test the null hypothesis that two

exchanges are conditionally independent, testing whether the corresponding partial

correlation coefficient is equal to zero, by means of the statistical test described by

Whittaker [156] or by Giudici [61].

Summing up, a full correlation network model among Bitcoin exchange prices

can be estimated on the basis of the pairwise partial correlation coefficients between

the modified residuals.

The implementation of the proposed model is illustrated, in detail, in section 4.1.

3.2 Hidden Markov Models

Hidden Markov Models are generative probabilistic models in which a sequence of

observations 𝑌 is generated by a sequence of internal hidden states 𝑆 [60].

A discrete hidden Markov model assumes that each observation 𝑌𝑡, for (𝑡 =
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1, . . . , 𝑇 ) is generated by a stochastic process whose state 𝑆 is a discrete random

variable, hidden to the observer. The probability of observing 𝑌𝑡 at any given time

𝑡 can be described by a statistical distribution, conditional on 𝑆𝑡, usually known

up to a parameter 𝜃. It also assumes that the time transition between subsequent

states, (𝑆1, . . . , 𝑆𝑇 ) follows a Markov chain, typically of first order.

More formally, the previous assumptions mean that the joint distribution of

the observed time series 𝑌1:𝑇 , and of the corresponding hidden states 𝑆1:𝑇 , can be

factorized as:

𝑃 (𝑌1:𝑇 , 𝑆1:𝑇 ) =
𝑇∏︁

𝑡=1
𝑃 (𝑌𝑡|𝑆𝑡)𝑃 (𝑆𝑡|𝑆𝑡−1) (3.8)

in which 𝑃 (𝑆1|𝑆0) = 𝑃 (𝑆1) is the unconditional distribution of the initial state.

To further specify the probability distribution in 3.8, the following components

need to be defined:

1. the conditional distribution 𝑃 (𝑌𝑡|𝑆𝑡), that links the observed variables with

the hidden states;

2. the state transition matrix which defines the conditional probabilities 𝑃 (𝑆𝑡|𝑆𝑡−1)

and

3. the probability distribution for the initial state 𝑃 (𝑆1).

Hidden Markov models are usually assumed to be time invariant, which implies that

the conditional distributions and the state transition matrices do not depend on 𝑡.

To simplify, an HMM is defined by 𝐴, 𝐵 and 𝜋, and implicitly, by the number of

observations 𝑁 , as well as the number of hidden states 𝑀 . In the model, 𝐴 repre-

sents the state transition probability 𝑀 × 𝑀 matrix, 𝐵 represents the observation

probability 𝑀 × 𝑁 matrix, and 𝜋 is the initial state distribution. Thus, an HMM

can be defined as:

𝜆 = (𝐴, 𝐵, 𝜋) (3.9)
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HMM are used to solve three fundamental problems [140], that can be summarized

as follows:

• Problem 1: given the model 𝜆 = (𝐴, 𝐵, 𝜋), and a sequence of observations 𝑌 ,

determine the likelihood of the observed data to the given model;

• Problem 2: given the model 𝜆 = (𝐴, 𝐵, 𝜋), and a sequence of observations

𝑌 , determine the optimal sequence of hidden states underlying the Markov

process;

• Problem 3: given a sequence of observations 𝑌 , estimate the model’s parameters

𝐴, 𝐵 and 𝜋.

Accordingly, the purpose of adopting HMM is estimating its respective parameters

(Problem 3), given a sequence of observations 𝑌 , followed by calculating the likelihood

of the data (Problem 1), and finally, determining the optimal sequence of the hidden

states (Problem 2).

The proposed HMM is adopted twice, mainly for descriptive modeling: using daily

and intra-daily Bitcoin prices as illustrated in sections 3.2.1 and 3.2.2, respectively,

along with their respective implementations in sections 4.2 and 4.3.

3.2.1 Hidden Markov Models for Daily Bitcoin Prices

Within the context of daily Bitcoin prices, only endogenous factors are taken into

consideration, namely, daily Bitcoin closing prices in different exchange markets.

Exogenous factors have been excluded since they do not affect or weakly affect the

dynamics of Bitcoin prices as indicated by the obtained results from the implementa-

tion of the Network VAR model. The results are explained in detail in section 4.1.2.

Accordingly, given a sequence of observations 𝑌 where each observation 𝑌𝑡 is a vector

of market prices 𝑌 𝑖
𝑡 , (𝑖 = 1, . . . , 𝐼; 𝑡 = 1, . . . , 𝑇 ), one for each of the 𝐼 considered

Bitcoin exchanges. We assume that at any given time point 𝑡, the vector 𝑌𝑡 follows

an HMM, specified by the joint probability distribution:
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𝑃 (𝑆𝑖
1:𝑇 , 𝑌 𝑖

1:𝑇 ) = 𝑃 (𝑆𝑖
1)𝑃 (𝑌 𝑖

1 |𝑆𝑖
1)

𝑇∏︁
𝑡=2

𝑃 (𝑆𝑖
𝑡 |𝑆𝑖

𝑡−1)𝑃 (𝑆𝑖
𝑡 |𝑌 𝑖

𝑡 ) (3.10)

Moreover, given the multivariate nature of 𝑌𝑡, it is also assumed that each

conditional distribution 𝑃 (𝑌𝑡|𝑆𝑡) is a multivariate Gaussian, with a mean vector

and an unknown variance-covariance matrix Σ, which will be estimated using the

available data, along with the transition matrix of the hidden states. The initial

state will be instead considered as a given constant value.

To apply the proposed model on the available data, several computational, widely

known, algorithms are needed in order to solve the previously mentioned problems,

as well as to compare and test different structures while modeling. Consequently,

the first and second problems, namely, determining the likelihood of the data and

the optimal sequence of hidden states, can be computed by using Viterbi and the

Forward-Backward algorithms, while estimating the model’s parameters can be done

by using an iterative Baum-Welch Expectation-Maximization algorithm (EM) [107],

assuming a predefined number of hidden states 𝑀 .

Alternatively, to compare different model structures, such as models with a vary-

ing number of hidden states, or models with different variance-covariance matrices,

a new algorithm needs to be considered. To achieve this aim, the likelihood ratio

tests as proposed in [69] are adopted, which enable comparing a diagonal covariance

matrix model with a full covariance matrix model, given a different number of hidden

states.

3.2.2 Hidden Markov Models for Intra-daily Bitcoin Prices

In the context of adopting HMM using intra-daily Bitcoin prices, the same approach

described in section 3.2.1 is followed. However, unlike the previous case where the

analysis is conducted on daily closing prices, the data considered here are 2-minute

ask and bid Bitcoin prices, aiming at exploring the descriptive behavior of the mid-

market price within one exchange market. A more detailed explanation is illustrated

in section 4.3.
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Let 𝑦𝑖
𝑡 be the best price of each side 𝑖, where 𝑖 = {𝑎𝑠𝑘, 𝑏𝑖𝑑} at time 𝑡, where

𝑡 = (1, 2, . . . , 𝑇 ). We assume that the vectors 𝑌 𝑖 are independent among each other,

and each following a Markov process, specified by the joint probability distribution,

independently across 𝑖:

𝑃 (𝑆𝑖
1:𝑇 , 𝑌 𝑖

1:𝑇 ) = 𝑃 (𝑆𝑖
1)𝑃 (𝑌 𝑖

1 |𝑆𝑖
1)

𝑇∏︁
𝑡=2

𝑃 (𝑆𝑖
𝑡 |𝑆𝑖

𝑡−1)𝑃 (𝑆𝑖
𝑡 |𝑌 𝑖

𝑡 ) (3.11)

Similarly, we assume that each distribution 𝑃 (𝑌𝑡|𝑆𝑡) is a multivariate Gaussian.

3.3 Genetic Algorithm Optimized LSTM Networks

For the purpose of predicting Bitcoin mid-market price, we propose a hybrid of

Hidden Markov Models and Long Short Term Memory networks optimized with

Genetic Algorithms to fine-tune the network’s parameters. Accordingly, section 3.3.1

showcases an overview on Genetic Algorithms while section 3.3.2 introduces Long

Short Term Memory networks. Finally, section 3.3.3 illustrates the proposed model

in detail.

3.3.1 Genetic Algorithms

Genetic Algorithms (GAs) are a type of optimization algorithms that are used to

find the optimal solution(s) to a target problem [24], by mimicking the biological

processes of evolution and natural selection. As GA are inspired from biological

processes, terminologies such as chromosomes, populations, crossover and mutations

are also adopted. Each potential solution to the optimization problem is represented

by a chromosome, expressed in the form of binary strings [122]. Accordingly, GA start

with initializing a population; where a chromosome is randomly selected for “fitness”

evaluation. The fitness of a chromosome is calculated in accordance with a predefined

fitness function; the target function to be optimized. Thus, the performance of each

chromosome is evaluated and only chromosomes with excellent performance are

selected for reproduction.
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Figure 3.1: Basic Structure of Genetic Algorithms - adopted from [122].

Following the basic structure of GA as illustrated in fig. 3.1, once chromosomes

are selected, new chromosomes are created from the selected ones during the crossover

process. While in the mutation process, individual bits in the new chromosomes are

randomly manipulated, by being swapped or turned off, to introduce diversity in

chromosomes. Selection, crossover and mutations are repeated until a termination

criterion is satisfied and the superior chromosomes with high performance are

generated.

The motivation behind using GA is that they are powerful and more efficient

than random search and exhaustive search algorithms [92] for optimization purposes.

Moreover, GA do not require any information other than a solution representation and

a fitness function with accordance to a given problem. This makes their applicability

suitable for general problems, and especially appealing for our specific problem; that

is optimizing the LSTM network parameters.
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Figure 3.2: LSTM Cell Structure - adopted from [103].

3.3.2 Long Short Term Memory Networks

Long Short Term Memory networks are a special kind of Recurrent Neural Networks

that were first introduced in 1997 [79]. They are specifically designed to overcome

common problems in Recurrent Neural Networks, i.e., vanishing gradients, exploding

gradients, and long-term dependencies, as they are able to remember information

for more than 1000-time steps [29].

Fig. 3.2 illustrates the structure of an LSTM cell. The cell of an LSTM network

has mainly three gates; input gate, forget gate and output gate. Using these gates,

LSTM has the ability to remove or add information to the cell state. Each gate

is composed of a sigmoid layer and a point-wise multiplication operation, which

outputs a number between 0 and 1 that indicates how much information should be

passed or thrown away [95].

LSTM starts by deciding which information is going to be deleted from the

cell state 𝐶t-1, also known as the memory, by considering the last output from the

previous LSTM cell ℎt-1, and the next input at current time 𝑥t through the sigmoid

function of the forget gate 𝑓 t, which in turn, outputs a number between 0 and 1 for

each value on the cell state to either completely get rid of or keep, respectively. This

process is defined by:
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𝑓𝑡 = 𝜎(𝑊𝑓 · [ℎt-1, 𝑥𝑡] + 𝑏𝑓 ) (3.12)

where 𝑊𝑓 represents the weights of the forget gate neurons and 𝑏𝑓 represents the

biases of the forget gate.

The next step is to define the information that is going to be added to the cell

state by the input gate 𝑖t, where a 𝑡𝑎𝑛ℎ layer generates new candidates 𝐶𝑡 to be

added to the cell state using the input gate, represented by:

𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎt-1, 𝑥𝑡] + 𝑏𝑖) (3.13)

where 𝑊𝑖 represents the weights of the input gate neurons and 𝑏𝑓 represents the

biases of the input gate, and the new candidates 𝐶𝑡 are defined by equation 3.14

along with their respective weights and biases as follows:

𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 · [ℎt-1, 𝑥𝑡] + 𝑏𝐶) (3.14)

Followed by updating the cell state from 𝐶t-1 to 𝐶t, taking into account the

information that was thrown away previously by the forget gate and adding the new

candidates that were decided by the input gate through:

𝐶𝑡 = 𝑓𝑡 * 𝐶t-1 + 𝑖𝑡 * 𝐶𝑡 (3.15)

Finally, the output gate 𝑂t decides which information is going to be output,

from the cell state, through the sigmoid layer as follows:

𝑂𝑡 = 𝜎(𝑊𝑜 · [ℎt-1, 𝑥𝑡] + 𝑏𝑜) (3.16)

Once that is decided, the 𝑡𝑎𝑛ℎ function of the output layer transforms the cell

state values between −1 and 1, which are then multiplied by the resulting 𝑂t in

equation 3.16 to assure considering only the previously decided pieces of information,

yielding the final output of the current LSTM cell ℎt, illustrated as follows:
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ℎ𝑡 = 𝑂𝑡 * 𝑡𝑎𝑛ℎ(𝐶𝑡) (3.17)

3.3.3 Hybrid HMM and GA-Optimized LSTM Networks

With reference to Hidden Markov Models as explained in section 3.2.2, along with

the Genetic Algorithms in section 3.3.1 and Long Short Term Memory networks in

section 3.3.3, an innovative hybrid model is proposed and illustrated in fig 3.3.
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Figure 3.3: The Hybrid HMM and GA-Optimized LSTM Networks Model for
Bitcoin Price Prediction.
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The proposed model is composed of four main phases as follows:

• Data Collection: as illustrated in fig. 3.3, this phase contains two databases;

raw data, which is represented by raw Bitcoin-related data and features data,

which is represented by a combination between the previously mentioned raw

data and further extracted related features from the following phases.

• Features Extraction: within this phase, raw data are processed and used to

calculate a number of Bitcoin related features, that are believed to be beneficial

to the prediction process in the following phases.

• Data Modeling: the proposed model is composed of two modeling approaches;

descriptive through HMM and predictive through GA-optimized LSTM. As

illustrated, the descriptive modeling follows the previously explained approach,

in section 3.2.2, to create a new feature called “state” to better describe Bitcoin

prices through insightful, yet hidden information that cannot be directly

observed. Consequently, the “state” feature is then added to the features data,

which in turn is considered in predictive modeling along with other related

features contained in the database. Moreover, GA are exploited to fine-tune

the LSTM network parameters, which is then used to predict Bitcoin prices.

• Performance Evaluation: once the predictions are generated following the

proposed model, the performance is evaluated through several metrics, namely,

Mean Squared Error, Root Mean Squared Error and Mean Absolute Error.

The selected performance metrics are calculated as follows:

1. Mean Squared Error (MSE):

𝑀𝑆𝐸 = 1
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑇∑︁
𝑡

(𝑚𝑚𝑝(𝑡) − 𝑚𝑚𝑝(𝑡))2 (3.18)

2. Root Mean Squared Error (RMSE):

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑇∑︁
𝑡

(𝑚𝑚𝑝(𝑡) − 𝑚𝑚𝑝(𝑡))2 (3.19)
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3. Mean Absolute Error (MAE):

𝑀𝐴𝐸 = 1
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑇∑︁
𝑡

|𝑚𝑚𝑝(𝑡) − 𝑚𝑚𝑝(𝑡)| (3.20)

where 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 is the size of the sample considered and 𝑚𝑚𝑝 is the mid-market

price of Bitcoin as well as the target variable to be predicted as explained in

detail in section 4.3.2.

A more detailed explanation of the proposed model and its implementations is

provided in section 4.3.





Chapter 4

Implementation

In this chapter, a detailed explanation of the contributions’ implementation is

provided, following the previously proposed models explained in Chapter 3.

This chapter is divided in three sections. Section 4.1 introduces the first con-

tribution of this thesis within the research area of Bitcoin price dynamics, aiming

at modeling the dependencies and interactions of Bitcoin prices within different

exchange markets and possible relationships to classical assets, using a Network VAR

model. Within the same area, section 4.2 tackles similar issues, from a different view-

point, aiming at modeling such dependencies through the dynamics of their latent

causes, attributed to time switches between different market regimes through Hidden

Markov Models. Finally, section 4.3 proposes an innovative hybrid model for Bitcoin

price prediction, using Hidden Markov Models and Genetic Algorithm-optimized

LSTM networks.

4.1 A Network VAR Approach

For the purpose of modeling and explaining the evolution of Bitcoin prices, a novel

Network Vector Autoregressive model is proposed. Specifically, this work extends

previous researches by Brandvold et al. [18] and Corbet et al. [36] to acquire further

empirical evidences on the non-conclusive properties of Bitcoin prices, namely,

whether Bitcoin prices from different exchange markets are interconnected, and

57
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whether such interactions are affected by exogenous prices of traditional assets.

Simply put, the objective of this work is to answer two research questions:

1. Is Bitcoin still an investment diversifier?

2. Are Bitcoin exchange markets efficiently integrated?

To address these questions, the proposed approach is based on a VAR model

with an extension based on network models. The proposed model is believed to

improve the performance of pure VAR models, given that network models introduce

a contemporaneous contagion component, that can be exploited to describe the

contagion effect between Bitcoin prices. Although the proposed model is mainly

descriptive, it has been also extended to predict Bitcoin prices using the information

contained in the multivariate interdependencies among Bitcoin exchange prices from

one hand, and between Bitcoin prices and traditional assets prices from the other

hand. This work has been published in [65]. 1

Starting to explain the implementation approach, section 4.1.1 introduces the

collected data, followed by section 4.1.2 which illustrates the empirical application of

the proposed model along with the obtained descriptive results. Finally, section 4.1.3

shows the predictive results of the proposed model.

4.1.1 Data Collection

Given the purpose of this work, and without loss of generality, the chosen cryptocur-

rency to be addressed is Bitcoin due to its importance and popularity. Specifically,

daily closing prices (USD) are considered.

As discussed, the first objective of this work is to assess whether Bitcoin prices

in different exchange markets are correlated, thus, presenting endogenous price

variations. Accordingly, a set of representative exchanges have been chosen whose

price data is made available for a sufficiently long period of time. In particular,

eight exchange markets of different geographic locations have been considered,
1It has been also cited in [35], [159], [155], [123], [67], [34], [52], [108], [28], [13], [87], [97],

[152], [68], [6], [66], [51], [125] and [146].
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representing 60% of the total daily volume trades. Table 4.1 demonstrates the

considered exchanges along with their respective market shares, retrieved at the

time (beginning of 2018) [48]. Bitcoin closing daily price data have been collected

from each of these exchanges for a period of time from May 18th, 2016 to April 30th,

2018.

Table 4.1: Considered Exchange Markets by Daily Trading Volume.

Exchange Market Market Share

Bitfinex 42%
Bitstamp 5%
Bittrex 0.5%
Coinbase 6%
Gemini 2%
HitBTC 3%
ItBit 1%
Kraken 0.5%

Moreover, in order to understand whether Bitcoin price variations can be ex-

plained by exogenous factors, daily data of the most important classical assets have

been collected within the same period of time. Particularly considering Gold, Oil,

S&P500 along with two exchange rates: USD/Yuan and USD/EUR. Similarly, closing

daily prices have been considered. The collected data were obtained from Coinbase

Pro API [32], previously known as GDAX, as well as from Bloomberg Terminal [15].

Unlike classical markets, cryptocurrency exchange markets are open 24 hours a

day, 7 days a week. Taking this into account, the prices of classical assets during

markets closure, are replaced with the last closing price at closing time. Accordingly,

the prepared dataset is composed of 13 variables and 713 data points.

Having illustrated that, fig. 4.1 shows the evolution of Bitcoin prices within the

considered period of time. Accordingly, the well-known rise of Bitcoin prices in 2017

is evident, where prices have increased from a minimum of $430 to a maximum

of $20,000, followed by a high volatility in 2018. Slight differences between prices

within different exchanges are noted, as the lines are not perfectly aligned. To better

understand that, table 4.2 presents several summary statistics based on the collected
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dataset.
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Figure 4.1: Time Series Plot of Bitcoin Prices for the Considered Period of Time.

Table 4.2: Summary Statistics for Closing Prices for the Considered Markets.

Market Mean Standard Deviation Minimum Maximum

Bitfinex 3899.5 4274.64 435.61 19187.12
Bitstamp 3899.04 4286.02 439.62 19187.78
Bittrex 3893.83 4269.86 421.11 19261.10
Coinbase 3919.05 4318.98 438.38 19650.01
Gemini 3910.38 4306.36 437.57 19475.90
HitBTC 3916.19 4297.17 436.36 19095.30
ItBit 3907.13 4300.32 438.61 19357.97
Kraken 3890.18 4272.55 433.50 19356.91
Gold 1275.57 52.34 1128.42 1366.38
Oil 48.67 3.16 39.51 54.45
S&P500 2414.78 212.308 2000.54 2872.87
USDEUR 0.88 0.04 0.80 0.96
USDYuan 6.67 0.19 6.26 6.96

Table 4.2 confirms the slight differences in Bitcoin prices for the considered

exchanges. The mean and standard deviations are somewhat different, so are the

maximum value statistics. Compared to classical assets, namely, Gold and Oil,

Bitcoin volatility is about 80 times and 1400 times higher, respectively. Similarly,

compared to S&P500, Bitcoin volatility is about 20 times higher. Moreover, it is

evident that the considered exchange rates are much less volatile than Bitcoin prices.
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This is in accordance with the results available in [36].

4.1.2 Descriptive Results

Once the data have been collected and finalized, the model proposed in section 3.1

was implemented using the R programming language [131]. Accordingly, this section

presents the descriptive empirical findings based on the implementation of a network

VAR model on the prepared dataset.

Starting from fig 4.2, the correlation between the closing prices for the considered

markets is calculated and illustrated in the form of a heatmap. Positive correlations

are represented in shades of blue while negative correlations are represented in shades

of red, where darker colors depict higher correlations in absolute values.

On one hand, fig. 4.2 shows that the correlations between different exchanges

are quite high, revealing that markets are highly correlated and synchronized, thus,

resulting in a strong endogenous source of price variations. On the other hand, the

correlations between Bitcoin prices and real assets, namely, Gold and Oil, are low.

Such results are in line with the results presented in [36], considering Bitcoin as

a potential diversification asset. Moreover, the figure shows positive correlations

with S&P500 as well. However, unlike the results reported in [36], the correlation is

negative with the considered exchange rates.

Prior to coming to a conclusion based on the reported results, it is believed that

correlation should be “netted” from spurious effects. Indeed, it is well-known that

pairwise correlation may be inflated by correlations that may arise from a common

relationship with a third variable. To tackle this, partial correlations solve such

issues by calculating the correlation between the residuals from a Linear Regression

model of each of the two variables with all the remaining ones, thus, measuring the

“net” or “additional” correlation.

Consequently, fig. 4.3 presents a heatmap illustrating all pairwise partial correla-

tions between the closing prices for the considered markets. Additionally, for the

sake of a clear interpretation, insignificant correlations whose p-value is greater than



62 CHAPTER 4. IMPLEMENTATION

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

bt
c_

Bitfi
ne

x

bt
c_

Bits
ta

m
p

bt
c_

Bittr
ex

bt
c_

Coin
ba

se

bt
c_

Gem
ini

bt
c_

HitB
TC

bt
c_

ItB
it

bt
c_

Kra
ke

n

Gold

Oil

SP50
0

USDEUR

btc_Bitstamp

btc_Bittrex

btc_Coinbase

btc_Gemini

btc_HitBTC

btc_ItBit

btc_Kraken

Gold

Oil

SP500

USDEUR

USDYuan

Figure 4.2: Correlation Matrix between Closing Prices for the Considered Markets.

0.05 are marked with a cross.

Looking at fig. 4.3, many correlations are deemed to be insignificant at the 5%

level. In particular, considering the top of the heatmap, most of the correlations

of the large exchange markets are indeed significant, namely, Bitfinex, Bitstamp

and Coinbase. On the contrary, insignificant correlations are noted for the smallest

exchanges, namely, Bittrex, ItBit and Kraken. Such results indicate that large markets

are the most important endogenous driver of prices, confirming the economic intuition

that larger trading volumes make the price, in accordance with [18].

Regarding the exogenous causes of Bitcoin price variations, Oil is noted to
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Figure 4.3: Partial Correlation Matrix between Closing Prices for the Considered
Markets.

have insignificant partial correlation with Bitcoin prices, while Gold is significantly

correlated with Bitcoin prices from only two exchanges out of the eight considered,

and of a very low magnitude. This, indeed, confirms the presence of a very low

correlation between Bitcoin prices and real asset prices. As for the partial correlation

between Bitcoin prices and financial assets, fig. 4.3 shows that the partial correlation

is either insignificant or very weak, with a noticeable exception for HitBTC exchange

market.

Therefore, once the correlations are netted from spurious effects, their nature of

being potential diversifiers with respect to classical assets is confirmed, in accordance
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with the finding of [36], with the exception of specific exchange markets, such as

HitBTC, which may be presumably affected by the behavior of local traders.

In addition to its ability in clarifying “actual” correlations, partial correlation is

able to help in describing the multivariate patterns of possible relationships between

the considered prices, by means of a graphical network model [156, 101]. Such a

model can be obtained by associating each asset price with a node in a graph,

followed by drawing a link between two nodes, if and only if, the corresponding

partial correlation is significantly different from zero. Accordingly, fig. 4.4 illustrates

the graphical network model based on the considered data.
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Figure 4.4: Graphical Correlation Network Model between Closing Prices for the
Considered Markets.

Fig. 4.4 graphically confirms the previous discussed findings. In particular, it

shows that Bitcoin prices and other classical assets prices form two rather distinct

clusters of connections, which are highly interconnected inside. Moreover, the high

centrality of the larger exchange markets, i.e., Bitfinex and Bitstamp, confirms their

nature of driving Bitcoin prices in other exchanges as price setters. Additionally, a
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link between the two clusters is noted through HitBTC exchange market, which is

affected by both classical and other Bitcoin markets. The found behavior of HitBTC

may be due to the peculiar nature of investors, evidently acting simultaneously on

both markets.

4.1.3 Predictive Results

Although the proposed model is mainly descriptive, it is further extended to predict

Bitcoin daily closing prices, leveraging both endogenous and exogenous sources of

correlations.

With respect to the previously calculated partial correlations, the 𝐵0 matrix

can be derived, along with the autoregressive parameters 𝐴1, . . . , 𝐴𝑝. Thus, the

time dependent price of each asset 𝑖 can be disentangled by separately estimating

the autoregressive idiosyncratic component and the contemporaneous component,

according to equation 3.2. Accordingly, table 4.3 shows the results of such an

estimation.

Table 4.3: Comparison between the Estimation Components of Prices Obtained
with the Proposed Model.

Market Contemporaneous Component Autoregressive Component

Bitfinex 452.31 0.74
Bitstamp 450.35 0.19
Bittrex 452.15 0.69
Coinbase 453.55 0.68
Gemini 450.01 0.20
HitBTC 451.98 0.37
ItBit 451.01 0.19
Kraken 451.02 0.28
Gold 97.51 0.99
Oil 4.03 0.95
S&P500 197.26 0.97
USDEUR 0.06 0.96
USDYuan 0.51 0.99

Looking at table 4.3, it is noted that the autoregressive components prevails only

for the considered exchange rates, much more stable variables and less connected
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with other prices, compared to other assets. In all other cases, and in particular,

for Bitcoin prices, the multivariate contemporaneous component prevails by far.

Meaning that, most prices are driven by correlations with contemporaneous prices,

rather than by their past behavior. Thus, the interconnectedness nature between

different exchange markets can be necessary to estimate Bitcoin prices correctly.

In order to understand whether the proposed network VAR model is able to

well-predict Bitcoin prices, the predictive performance needs to be assessed. Particu-

larly, to understand and evaluate whether the introduction of the contemporaneous

component improves the predictive accuracy compared to a pure autoregressive

model.

Bearing that in mind, the proposed model is implemented using the prepared

dataset, apart from the last fifty days, about 10% of the overall data. Accordingly,

Bitcoin prices are predicted for the excluded days, with one day ahead rolling pre-

dictions, and then compared to the actual prices. Similarly, the obtained predictions

are compared to another set of predictions obtained by the implementation of a

pure autoregressive model, excluding the contemporaneous effect. In both cases, to

make the model more realistic and useful in practice, the contemporaneous prices

at time 𝑡 have been replaced with those at 𝑡 − 1. Finally, to evaluate the predictive

performance, RMSE of the predictions with respect to the actual values, is calculated

for both models, as reported in table 4.4.

Table 4.4 reports the RMSE for the proposed model, a full structural VAR

with a contemporaneous component compared to a pure autoregressive component.

Accordingly, the RMSE for Bitcoin price predictions for the exchange markets, under

the proposed model, average at about 11% of the mean prices, about 100 times

higher than the corresponding values of Oil prices, about 50 times higher for S&P500

and USDYuan, and finally, about 20 times higher for Gold and USDEUR. The

reported results are, indeed, in accordance with the economic intuition that it is

more difficult to predict more volatile assets.

Comparing the reported RMSEs in table 4.4, it is suggested that less central, more
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Table 4.4: Comparison between the RMSE of a Full Structural VAR Model and a
Pure Autoregressive Model.

Market Full Structural VAR Pure Autoregressive

Bitfinex 267.37 293.49
Bitstamp 379.71 397.25
Bittrex 290.84 305.51
Coinbase 550.10 579.98
Gemini 792.22 786.58
HitBTC 288.63 342.50
ItBit 331.62 455.45
Kraken 718.51 676.35
Gold 6.74 7.19
Oil 0.55 0.58
S&P500 5.90 6.35
USDEUR 0.002 0.003
USDYuan 0.02 0.02

remote exchanges as illustrated in fig. 4.4, such as Gemini, Kraken and Coinbase, are

the most difficult to predict. The reason behind this condition is that such exchanges

are less connected to observed market prices and, presumably, more dependent on

external perturbations related to changes in the regulatory environment, or simply,

to changes in sentiment between cryptocurrency investors. Indeed, the minimum

prediction errors are found in HitBTC, a highly connected market to many nodes,

and in Bitfinex, the leading trading exchange and the strongest price setter.

Generally, table 4.4 shows that the proposed model outperforms a pure autore-

gressive model, thus, justifying its additional complexity with an increase in its

predictive power. Of course, with the exception of the least two central exchanges:

Gemini and Kraken. This further suggests that the proposed model better-predicts

Bitcoin prices for exchange markets that are more interconnected to one another,

and/or to classical markets.

4.2 A Hidden Markov Model for Regime Changes

Following the same line of research, this work aims at modeling and explaining

the evolution of Bitcoin prices using Hidden Markov Models. However, while the
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previously implemented model, in section 4.1, focuses on modeling the dependencies

between the observed exchange markets directly, the implemented model in this

section addresses the same dependencies through the dynamics of their latent causes,

attributed to time switches between different market regimes, going from “bull” to

“stable” and “bear”.

Alternatively stated, taking into account the multivariate nature of cryptocur-

rency prices, a Hidden Markov Model is proposed to explain the time evolution of

Bitcoin prices, through the evolution of hidden unobserved states, which can be

referred to a different equilibrium of the cryptocurrency economy, in accordance

with [44]. Doing so, the observed dependencies between prices from different exchange

markets, found in section 4.1, may be fully explained. This will be the case when

Bitcoin prices from different exchanges become independent (described by a diagonal

covariance matrix), conditionally on the latent state, rather than still interdependent

(described by a full covariance matrix). This work has been submitted for publishing

in [64].

Accordingly, this section addresses the implementation of the proposed model in

section 3.2, specifically in 3.2.1. The contributions of this work are two-fold: providing

a further understanding of Bitcoin price dynamics from an econometric point of view

and implementing an easy-to-use likelihood ratio test [69] for comparing differently

implemented Hidden Markov Models. Similarly, although the proposed model is

mainly descriptive, it has been extended to predict Bitcoin prices, given the available

data, to assess its performance from a predictive point of view.

Having illustrated that, section 4.2.1 presents the collected data, section 4.2.2

explains the obtained descriptive results, and finally, section 4.2.3 evaluates the

predictive performance of the proposed model.

4.2.1 Data Collection

Given the purpose of this work, and without loss of generality, the chosen cryp-

tocurrency to be addressed is Bitcoin. Specifically, daily closing prices (USD) are
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considered.

Accordingly, to better understand the endogenous variations in Bitcoin prices

within different exchange markets, seven representative exchanges have been cho-

sen. Namely, Bitfinex, Bitstamp, Bittrex, Coinbase, Gemini, ItBit and Kraken,

representing 40% of the total daily volume trades, illustrated in table 4.5.

Table 4.5: Considered Exchange Markets by Daily Trading Volume.

Exchange Market Market Share

Bitfinex 13%
Bitstamp 1%
Bittrex 1%
Coinbase 13%
Gemini 0.31%
ItBit 1%
Kraken 10%

Accordingly, table 4.5 demonstrates the considered exchanges along with their

respective market shares, retrieved on November 21st, 2018 from [47]. For each

exchange market, Bitcoin closing daily prices data have been collected for a period

of time from December 12th, 2015 to October 25th, 2018. The collected data were

obtained from CryptoCompare API [37] by implementing a Python script. Thus,

the prepared dataset is composed of 7 variables and 1029 data points.

With that said, fig. 4.5 illustrates the evolution of Bitcoin prices within the

considered period of time.

As previously explained in 4.1.1, it is obvious that Bitcoin prices in different

exchange markets are highly correlated, but not perfectly aligned. Moreover, at a first

glance, fig. 4.5 shows that the considered prices went through different equilibrium

states: prices were almost “stable” at the start of the considered period of time,

when the well-known rise took place in 2017. This stability then was followed by a

fluctuation in prices in 2018, a period of high volatility.

Table 4.6 confirms the divergence of Bitcoin prices within the different exchanges

considered. Not only in volatility and the maximum value statistics, but also in their

means, on the contrary of the economic law “one asset, one price”.
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Figure 4.5: Time Series Plot of Bitcoin Prices for the Considered Period of Time.

Table 4.6: Summary Statistics for Closing Prices for the Considered Markets.

Market Mean Standard Deviation Minimum Maximum

Bitfinex 3857.53 4025.72 367.01 19210.00
Bitstamp 3859.71 4035.09 367.64 19187.78
Bittrex 3853.65 4023.48 365.00 19261.10
Coinbase 3871.30 4059.16 367.00 19650.00
Gemini 3866.98 4050.82 368.70 19499.99
ItBit 3863.09 4045.71 360.40 19357.97
Kraken 3859.56 4031.61 368.00 19356.90

Thus, this work is based on the hypothesis that these variations in Bitcoin

prices can be explained by the endogenous relationships between different exchange

markets, which are in turn explained by different latent states of the cryptocurrency

economy.
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4.2.2 Descriptive Results

Given the prepared dataset, the model proposed in section 3.2, specifically in 3.2.1,

is implemented using Python programming language [130]. For the implementation

of the proposed model, three alternative types of hidden structures are considered,

characterized by two, three and four hidden states and conventionally labeled with

(0, 1, 2, 3). Moreover, two different types of variance-covariance matrices are taken

into account: a full matrix and a more parsimonious diagonal matrix. Thus, producing

a total of 3 × 2 alternative models. Unless otherwise stated, the presented results

are related to a three-states model, implemented twice: with a full and a diagonal

variance-covariance matrix.

Having illustrated that, fig. 4.6 demonstrates the distribution of Bitcoin prices

within the three hidden states, estimated with a full covariance matrix.
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Figure 4.6: Bitcoin Prices from Bitstamp Exchange Market Plotted per Hidden
State with a Full Covariance Matrix.
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For a clearer understanding, fig. 4.7 presents the time evolution of the three

estimated hidden states of Bitcoin prices, considering a full covariance matrix. pink

data points correspond to Bitcoin prices with ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒0, overlapped and, thus,

creating the white line. Moreover, light purple data points correspond to Bitcoin

prices with ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒1 and dark purple data points correspond to Bitcoin prices

with ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒2.
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Figure 4.7: Time Series Plot of Bitcoin Prices from Bitstamp Exchange Market
Clustered by Hidden States with a Full Covariance Matrix.
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Accordingly, it is noted that ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒0 is concentrated in the initial time

period, when Bitcoin was relatively new and rarely increasing in price, while

ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒1 and ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒2 alternate, between lower and higher prices, in the

more recent time period. Moreover, taking a closer look at the first 450 data points,

depicting mainly ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒0, few data points are marked with ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒1 and

ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒2, as illustrated in fig. 4.8.
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Figure 4.8: First 450 Bitcoin Prices from Bitstamp Exchange Market Clustered by
Hidden States with a Full Covariance Matrix.
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Figure 4.9: Bitcoin Prices from Bitstamp Exchange Market Plotted per Hidden
State with a Diagonal Covariance Matrix.

Pointing out that a full covariance matrix involves a model specification that

may be too complex to fit the data in a good way, a more parsimonious model,

characterized by a diagonal covariance matrix is considered. Such a model implies

that Bitcoin prices of any exchange market, conditionally on the hidden state, are

independent from prices related to other exchange markets, at any time point. Simply

put, this model assumes that the dynamics of Bitcoin prices is fully explained by the

dynamics of the hidden states, whereas the variations in price coming from different

exchanges are insignificant.

Similarly, fig. 4.9 demonstrates the distribution of Bitcoin prices within the three

hidden states, estimated with a full diagonal matrix, while fig. 4.10 presents the time

evolution of the three estimated hidden states, considering a diagonal covariance

matrix.
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Figure 4.10: Time Series Plot of Bitcoin Prices from Bitstamp Exchange Market
Clustered by Hidden States with a Diagonal Covariance Matrix.

From fig. 4.10, it is noted that ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒0 is still concentrated in the initial

time period. However, differently from what happens with the full covariance matrix,

ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒1 seems to be mostly concentrated in the second period of time, a period

in which Bitcoin prices were steadily rising, while ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒2 is spreading but

mainly concentrated in the latest period of time. Moreover, neither of ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒1

nor ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒2 are present in the initial period of time, illustrated in fig. 4.11.

Comparing the previously illustrated figures, it seems that a model with a

diagonal covariance matrix, conditionally on three hidden states, provides a better

description of “regime switches” implied by the data. To confirm this result, from

a more statistical point of view, the likelihood ratio test statistics are computed

and tested as in [69], to compare a full covariance matrix model with a diagonal

covariance matrix model, given a predefined number of hidden states.
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Figure 4.11: First 450 Bitcoin Prices from Bitstamp Exchange Market Clustered
by Hidden States with a Diagonal Covariance Matrix.

Given the implemented models within this work, likelihood ratio test statistics

are computed given 2, 3 and 4 hidden states. Accordingly, table 4.7 reports the

likelihood ratio test for the two considered covariance structures, namely, full and

diagonal. It clearly shows that a more parsimonious matrix model is always preferred

compared to a full covariance matrix model, for any given number of hidden states.

Table 4.7: Likelihood Ratio Test - Full vs Diagonal Covariance Matrix.

Number of States Likelihood Ratio p-value

2 51493.81844 3.12𝑒 − 51
3 56931.07517 2.34𝑒 − 54
4 50226.37607 7.12𝑒 − 49

These results strongly support the hypothesis of this work, i.e., that market price

and correlation dynamics are fully explained by the dynamics of the unobserved,
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latent states. Furthermore, to assess which state configuration is more supported by

the available data, the likelihood ratio test is computed for a diagonal covariance

matrix model, given a different number of hidden states, as reported in table 4.8.

Table 4.8: Likelihood Ratio Test - Diagonal Covariance Matrix.

Number of States Likelihood Ratio p-value

3 vs 2 154.38165 4.87𝑒 − 30
3 vs 4 8440.61863 1.13𝑒 − 41

From table 4.8, it is noted that the model constructed with three hidden states

has a likelihood that is significantly higher than that of a simpler model with two

states, and than that of a more complex model with four states. Thus, the model

which receives the highest empirical likelihood from the observed data, and should

therefore be selected, is the model constructed with a diagonal covariance matrix

and three hidden states.

From an economic viewpoint, this implies that the relatively young history of

Bitcoin prices can be explained using three alternative states, namely, “bull”, “stable”

and “bear” markets.

4.2.3 Predictive Results

While the proposed model is mainly descriptive, it is further extended to predict

Bitcoin daily closing prices in order to evaluate its predictive performance, given the

prepared dataset.

Accordingly, the proposed model is implemented using 80% of the data, excluding

the remaining 20% to further use it as a test dataset, employing one day ahead

rolling predictions with the actual prices. Consequently, table 4.9 reports the RMSE

of the predictions of two models: a three hidden states model with a full covariance

matrix and a three hidden states model with a diagonal covariance matrix.

At a first glance, table 4.9 shows that the overall predictive performance of the

proposed model is similar for the considered exchange markets. However, a deeper

look shows that differences emerge for different exchanges.
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Table 4.9: Comparison between the RMSE of a 3-State HMM with a Full Covariance
Matrix and a 3-State HMM with a Diagonal Covariance Matrix.

Market 3-State Full HMM 3-State Diagonal HMM

Bitfinex 4034.640 1738.244
Bitstamp 4026.765 1741.533
Bittrex 4143.270 1739.667
Coinbase 3999.867 1738.681
Gemini 4009.074 1738.767
itBit 3950.937 1737.396
Kraken 4039.409 1736.894

The results suggest that the trading volume per exchange market, expressed in

market share and previously reported in table 4.5, may affect the prediction process

using the proposed model. On one hand, considering a full covariance matrix, Bitcoin

prices coming from Bittrex are the most difficult to predict, presumably due to the

fact that it has a lower market share of 1%, while prices coming from Coinbase are

predicted more accurately given its higher market share of 13% at the time. On the

other hand, while considering a diagonal covariance matrix, the suggestion is more

consistent. The highest RMSE was reported for Bitstamp, given its lower market

share of 1%, and the most accurate predictions were reported for Kraken exchange

market with a market share of 10%.

Furthermore, and as expected, the RMSEs of all the exchanges using a diagonal

covariance matrix are always lower than those obtained with a full covariance matrix.

Accordingly, a diagonal variance-covariance structure is preferable, in line with the

results obtained using the likelihood ratio test statistics.

Lastly, in order to compare the predictive performance of the model, given a

different number of hidden states, the same approach is followed to implement

a 2-state full HMM, a 2-state diagonal HMM, a 4-state full HMM and a 4-state

diagonal HMM. Accordingly, the results show that the predictive performance for

the 4-state diagonal HMM is significantly higher compared to the 4-state full HMM.

However, the 2-state full HMM slightly outperforms the 2-state diagonal HMM.

This is consistent with the fact that a model with only two hidden states is very
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parsimonious and, therefore, the need to have a full covariance matrix emerges, as

the number of hidden states is too low to explain the price dynamics.

4.3 A Hybrid HMM and GA-Optimized LSTM Net-

works

While the previously proposed and implemented models were mainly descriptive,

following the research area of Bitcoin price dynamics and aiming at modeling

such prices and understanding their evolution from different points of view, the

implemented model in this section is mainly predictive and falling within the research

area of Bitcoin price prediction. The main objective of this work is to develop an

innovative and effective model that is able to predict Bitcoin prices, while achieving

more accurate prediction results than those available in the literature.

Given the purpose of this work, a hybrid Hidden Markov Model and Genetic

Algorithm-optimized LSTM Networks is proposed in section 3.3. Particularly, the

proposed model addresses Bitcoin prices from both a descriptive point of view, by

extending Hidden Markov Models as previously explained in 3.2.2, and a predictive

point of view through Genetic Algorithm-optimized LSTM Networks. This work has

been published in [5].

Consequently, this section presents the implementation of the proposed model.

Following the four phases of the proposed models illustrated in fig. 3.3, section 4.3.1

introduces the collected data corresponding to the first phase, Data Collection.

Followed by section 4.3.2 explaining the extracted features that are believed to be

beneficial to the prediction process corresponding to the second phase, Features

Extraction. Furthermore, sections 4.3.3 and 4.3.4 illustrate both the descriptive and

predictive modeling and results, respectively, corresponding to the third phase, Data

Modeling. Finally, the fourth and last phase, Performance Evaluation, is presented

along the predictive results in section 4.3.4.
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4.3.1 Data Collection

To prepare the dataset, Bitcoin data has been collected from Coinbase exchange

market, one of the biggest platforms with a trading volume of 63 million USD per

daily trading [33]. Coinbase Pro Public API [32], previously named GDAX, was

used to collect real-time updates. Accordingly, all the available public data has been

collected since January 2018. However, for the scope of this work, the analysis will be

carried out on a subset of the period, namely, from August 20th, 2018 to September

20th, 2018 with a data frequency of 2 minutes, in USD.

Although all the available public data have been collected, and given the purpose

of this work, the main focus for preparing the dataset is collecting:

• Market Orders Data: requests to buy or sell a specified amount of an assets,

Bitcoin, at the best possible price, which includes ask/bid price and ask/bid

amount.

• Market Trades Data: which includes buy/sell price and buy/sell amount. The

𝑖th sample includes the price 𝑝𝑖 and the amount of the traded asset, also known

as volume, 𝑣𝑖. A trade occurs when two orders at the opposite side, buy and

sell, match. Moreover, a trade can be either a perfect fill, meaning that both

the price and the volume coincide, or a partial fill, meaning that only the

prices are matching.

4.3.2 Features Extraction

The raw data that have been collected provides valuable information about Bitcoin

orders and trades within the considered market. However, a further step is needed

to extract information that cannot be directly revealed by modeling such data alone.

Thus, the raw collected data is further investigated, and several features have been

extracted that are believed to be beneficial to the prediction process.

The set of extracted features is divided into two categories: Orders and Trades

and Technical Indicators, which are explained as follows.
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Orders and Trades Features

Orders and Trades are features that were calculated based on the raw data. Let’s

define the best ask price (𝑝*
ask), i.e., the highest price that a buyer is willing to pay

for a Bitcoin bid order, and the best bid price (𝑝*
bid), the lowest price that a seller

is willing to accept for a Bitcoin ask order. Consequently, the set of the extracted

features, within this category, can be described as follows:

• Mid-Market Price (𝑚𝑚𝑝): indicates the average market price and can be

calculated as follows:

𝑚𝑚𝑝 = 𝑝*
bid + 𝑝*

ask
2 (4.1)

This feature represents the target variable to be predicted, where 𝑚𝑚𝑝 at

time 𝑡 represents an accurate estimate of the true price of Bitcoin at that time

instant. Fig. 4.12 illustrates the Bitcoin Mid-Market Price for the considered

time period.
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Figure 4.12: Bitcoin Mid-Market Price in the Time Period from August 20th, 2018
to September 20th, 2018.

• Market Spread (𝑚𝑠𝑝𝑟𝑒𝑎𝑑): indicates the difference between the best ask price

and the best bid price, and can be calculated by:
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𝑚𝑠𝑝𝑟𝑒𝑎𝑑 = 𝑝*
ask − 𝑝*

bid (4.2)

Smaller values of 𝑚𝑠𝑝𝑟𝑒𝑎𝑑 indicate a lower volatility, which result in an

insignificant movement of the price.

• Ask/Bid Depth (𝐷{𝑎𝑠𝑘,𝑏𝑖𝑑}(𝑡)): indicate the number of available orders per ask

side (𝐷𝑎𝑠𝑘(𝑡)) and bid side (𝐷𝑏𝑖𝑑(𝑡)), respectively, at time 𝑡 2. Ask/Bid depth

represents the liquidity of the market. A market is said to be deep when it

is able to fulfill larger buy and sell orders before an order moves the price of

Bitcoin. Fig. 4.13 shows the ask/bid depth for the considered time interval.

08/19/2018 00:00 08/26/2018 00:00 09/02/2018 00:00 09/09/2018 00:00 09/16/2018 00:00
Date

10000

12000

14000

16000

18000

Nu
m

be
r o

f O
rd

er
s

Ask Depth
Bid Depth

Figure 4.13: Ask/Bid Depth in the Considered Time Frame.

• Ask/Bid Volume (𝑣𝑜𝑙𝑢𝑚𝑒{𝑎𝑠𝑘,𝑏𝑖𝑑}): indicate the total volume of ask and bid

orders. Given a sample data, the ask/bid volume can be computed by:

𝑣𝑜𝑙𝑢𝑚𝑒𝑎𝑠𝑘 =
−𝐷𝑏𝑖𝑑∑︁
𝑖=−0

𝑣𝑖 (4.3)

𝑣𝑜𝑙𝑢𝑚𝑒𝑏𝑖𝑑 =
𝐷𝑎𝑠𝑘∑︁
𝑖=0

𝑣𝑖 (4.4)

2The reference to time 𝑡 will be dropped when not necessary.
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• Weighted Ask/Bid Volume (𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑣𝑜𝑙𝑢𝑚𝑒{𝑎𝑠𝑘,𝑏𝑖𝑑}): indicate the weighted

volume of ask and bid orders to better capture the relevance of orders to the

movement of the price, and is calculated by:

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑣𝑜𝑙𝑢𝑚𝑒𝑎𝑠𝑘 =
−𝐷𝑏𝑖𝑑∑︁
𝑖=−0

𝑣𝑖.
1

𝑚𝑚𝑝 − 𝑝𝑖
(4.5)

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑣𝑜𝑙𝑢𝑚𝑒𝑏𝑖𝑑 =
𝐷𝑎𝑠𝑘∑︁
𝑖=0

𝑣𝑖.
1

𝑝𝑖 − 𝑚𝑚𝑝
(4.6)

• Depth Chart Quantization: generally, depth charts are bin charts that hold

information about the cumulative supply and demand of an asset, at different

prices. Thus, valuable information is encapsulated inside such charts that may

not be tackled by the previously extracted features. A depth chart is composed

of a horizontal axis that depicts Bitcoin prices 𝑝𝑐(𝑖) and a vertical axis that

depicts the corresponding tradable amount of Bitcoin 𝑣𝑐(𝑝) at a specific price

𝑝, for both sides, namely, ask and bid. The quantization of the depth chart

depends on which side of the chart is considered. For the ask side of the chart,

the depth is quantized by collecting the tradable amounts of Bitcoin that are

at or below a specific price and taking their sum. As for the bid side, the depth

is quantized by collecting the tradable amounts of Bitcoin that are at or above

a specific price and taking their sum. Prices and volumes in each chart are

distinguished with the notations 𝑝𝑐{𝑎𝑠𝑘,𝑏𝑖𝑑}(𝑖) and 𝑣𝑐{𝑎𝑠𝑘,𝑏𝑖𝑑}(𝑝), respectively.

To represent the quantization of the depth chart, a number of bins equal to

𝑁𝑏𝑖𝑛𝑠 for each chart is considered. Thus, the width of the bins in each chart

can be calculated by:

𝑤𝑎𝑠𝑘 = 𝑝𝑐(𝐷𝑎𝑠𝑘) − 𝑝*
ask

𝑁𝑏𝑖𝑛𝑠
(4.7)

𝑤𝑏𝑖𝑑 = 𝑝*
bid − 𝑝𝑐(−𝐷𝑏𝑖𝑑)

𝑁𝑏𝑖𝑛𝑠
(4.8)
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Thus:

𝑏𝑖𝑛𝑎𝑠𝑘(𝑖) = 1
𝑤𝑎𝑠𝑘

𝑝*
ask+𝑖·𝑤𝑎𝑠𝑘∑︁

𝑝=𝑝*
ask+(𝑖−1)·𝑤𝑎𝑠𝑘

𝑣𝑐𝑎𝑠𝑘(𝑝) (4.9)

𝑏𝑖𝑛𝑏𝑖𝑑(𝑖) = 1
𝑤𝑏𝑖𝑑

𝑝*
bid−𝑖·𝑤𝑏𝑖𝑑∑︁

𝑝=𝑝*
bid−(𝑖−1)·𝑤𝑏𝑖𝑑

𝑣𝑐𝑏𝑖𝑑(𝑝) (4.10)

As a trade-off between resolution and dimensionality, 𝑁𝑏𝑖𝑛𝑠 was set to 10.

Fig. 4.14 shows the relevant quantities used for the definition of the chart and

for the quantization of the bins.

bid
chart

ask
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amount

price= =

Figure 4.14: Ask/Bid Depth Chart Showing Relevant Quantities.

• Sell/Buy Count (𝑐𝑜𝑢𝑛𝑡{𝑠𝑒𝑙𝑙,𝑏𝑢𝑦}): generally, a trade is always considered to be

aggressive. Meaning that a specific trade would affect the movement of the

price. Accordingly, and as the name implies, these features indicate the number

of trades that have been generated by an aggressive sell or buy.

• Sell/Buy Traded Volume (𝑡𝑟𝑎𝑑𝑒𝑑_𝑣𝑜𝑙𝑢𝑚𝑒{𝑠𝑒𝑙𝑙,𝑏𝑢𝑦}): given that the traded

amount has an effect on liquidity, thus, the price movement, these features

indicate the amount of Bitcoin that has been transacted due to an aggressive

sell or buy.

Table 4.10 illustrates a number of selected features in terms of descriptive

statistics in the considered time period, from August 20th, 2018 to September 20th,
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2018.

Table 4.10: Summary Statistics for Selected Features. Values are Rounded to Two
Decimal Places.

Feature Name Minimum Maximum Mean Standard Deviation

Ask Depth 9993.00 16000.00 13019.42 1527.40
Bid Depth 12951.00 18906.00 16249.11 1289.03
Ask Weighted Volume 3.14 33807.82 2853.07 3820.77
Bid Weighted Volume 21.60 36863.72 2263.84 2936.62
Sell Traded Volume 0.00 927.03 5.20 17.44
Buy Traded Volume 0.00 787.97 5.20 19.03
Market Spread 0.01 94.97 0.06 0.79
Mid-Market Price 6136.25 7402.01 6639.98 335.49

Technical Indicators

Technical indicators can be identified as mathematical calculations, computed based

on historical data of an asset, to predict the price movement. Accordingly, the

following technical indicators were considered, and computed based on 𝑚𝑚𝑝:

• Simple Moving Average (𝑠𝑚𝑎): it indicates the arithmetic moving average

of the price of an asset, that can be calculated in a specific time period. It

is normally used to smooth out price fluctuations. Taking into account the

frequency of the collected data, two 𝑠𝑚𝑎’s were calculated, namely, 𝑠𝑚𝑎6 and

𝑠𝑚𝑎16, indicating the moving averages of 𝑚𝑚𝑝 at time periods 6 (every 12

minutes) and 16 (every 32 minuted), respectively. Given 𝑛, the time period

considered, 𝑠𝑚𝑎 can be calculated by:

𝑠𝑚𝑎 = 𝑚𝑚𝑝1 + 𝑚𝑚𝑝2 + ... + 𝑚𝑚𝑝𝑛

𝑛
(4.11)

• Exponential Moving Average (𝑒𝑚𝑎): it indicates the exponential weighted

moving average of the price of an asset, by placing exponentially decreasing

weights to the prices. Such weights represent higher weights to most recent

prices, in the sense that recent prices have a higher significance in predicting
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future ones. Given 𝑛, the time period considered, 𝑒𝑚𝑎 can be calculated as

follows:

𝑒𝑚𝑎𝑡 = 𝛼[𝑚𝑚𝑝1 + (1 − 𝛼)𝑚𝑚𝑝2 + ... + (1 − 𝛼)𝑛−1𝑚𝑚𝑝𝑛] (4.12)

where 𝛼 represents the degree of weighting decrease at each point. Similarly,

taking into account the frequency of the collected data, 𝑒𝑚𝑎, 𝑒𝑚𝑎12 and 𝑒𝑚𝑎26

were calculated, indicating the exponential moving average at time periods 1

(every 2 minutes), 12 (every 24 minutes) and 26 (every 52 minutes), respectively.

• Moving Average Convergence Divergence (𝑚𝑎𝑐𝑑): indicates the relationship

between the previously calculated 𝑒𝑚𝑎’s, where it can be calculated simply

by finding the difference between 𝑒𝑚𝑎26 and 𝑒𝑚𝑎12. This indicator helps in

understanding bearish (prices expected to fall) and bullish (prices expected to

rise) movements.

• Bollinger Bands (𝑏𝑎𝑛𝑑{𝑢𝑝𝑝𝑒𝑟,𝑙𝑜𝑤𝑒𝑟}): Bollinger Bands are lines that are asso-

ciated with two standard deviations (𝑠𝑑) plotted away from the 𝑠𝑚𝑎 of the

price of an asset. Usually, almost 90% of the original prices are contained

within these bands. Thus, breakouts that fall either under or above these bands

indicate a major event that may have affected the price movement. Bollinger

Bands are typically calculated by:

𝑏𝑎𝑛𝑑𝑢𝑝𝑝𝑒𝑟 = 𝑠𝑚𝑎21 + (𝑠𝑑20 * 2) (4.13)

𝑏𝑎𝑛𝑑𝑙𝑜𝑤𝑒𝑟 = 𝑠𝑚𝑎21 − (𝑠𝑑20 * 2) (4.14)

• Momentum (𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚): it indicates the speed at which a price is changing.

It is simply computed by subtracting 1 from the target variable 𝑚𝑚𝑝.

Fig. 4.15 shows some of the previously mentioned technical indicators for the

last 500 data points, from September 19th, 2018 at 07:22:00 a.m. to September 20th,
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Figure 4.15: Mid-Market Price Technical Indicators.

2018 at 12:00:00 a.m.

4.3.3 Descriptive Results

To better describe the movement of the prices and assess their evolution over time,

the target variable 𝑚𝑚𝑝 is further explored by modeling the two variables used to

compute it, namely, best ask price (𝑝0) and best bid price (𝑝−0). For this purpose,

HMM are implemented following the approach previously explained in section 3.2.2,

through which a new feature is created by clustering the prices, with respect to a

predefined number of hidden states.

Consequently, to construct the descriptive model, Problem 3, as explained in

section 3.2, is addressed using Baum-Welch algorithm, and given 𝑌 𝑖, the maximum

likelihood estimates of the HMM parameters were computed using the Expectation

Maximization algorithm, assuming a predefined number of hidden states 𝑀 .

Now that the HMM parameters are estimated, the likelihood of 𝑌 𝑖 can be

calculated using the Forward Backward algorithm, followed by predicting the optimal

sequence of the hidden states, which represents a new feature (𝑠𝑡𝑎𝑡𝑒) added to the
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set of extracted features that were previously defined.

Given the nature of the data, the predefined number of hidden states is set to 2,

which in fact, proved to have the highest likelihood compared to other presumed

number of hidden states. Table 4.11 shows the means and variances of the prices

per each of the hidden states. Moreover, fig. 4.16 illustrates the set of prices plotted

with respect to the hidden state assigned by the proposed HMM, using a diagonal

variance-covariance matrix.

Table 4.11: Descriptive Statistics of Hidden States. Values are Rounded to Three
Decimal Places.

Hidden Best Ask Price Best Bid Price
State Mean Variance Mean Variance

0 6395.035 9595.902 6394.976 9598.216
1 6985.890 53543.020 6985.834 53547.423
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Figure 4.16: Prices Plotted per Hidden State.

Specifically, fig. 4.17 illustrates thes first 4500 data points of best ask price,

clustered by the hidden states.
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Figure 4.17: Best Ask Price Clustered by HMM States.

4.3.4 Predictive Results

Prior to presenting the predictive results based on the implementation of the proposed

model, two more steps are taken into account: the optimization of several parameters

of LSTM using the Genetic Algorithms and preparing the optimized LSTM for

training the final prepared dataset.

Genetic Algorithms for LSTM Optimization

Following the methodology explained in section 3.3.1 and adopting the implemen-

tations of [57, 58], a number of LSTM parameters is optimized before training the

proposed model with the final set of features.

To do so, the process starts with the initialization of the population by defining

the parameters to be optimized and, thus, creating a number of LSTM networks

corresponding to the combinations of the defined parameters.

Having done that, the prepared dataset is split into a training dataset and a

testing dataset. Given the different combinations defined for the LSTM, the training

process starts using the training dataset, followed by a performance evaluation using

the testing dataset. The evaluation is done given a fitness function corresponding
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to the loss function defined in the LSTM, in this case 𝑀𝑆𝐸. Accordingly, the

different LSTM networks are ranked with respect to the fitness function defined,

and a percentage of the population from the highly ranked LSTM networks is kept,

a few percentage from the non-highly ranked ones is kept as well and, finally, a

percentage of the population is randomly dropped, completing a generation. Based

on the identified number of generations, the algorithm iterates over these steps, and

the LSTM with the lowest 𝑀𝑆𝐸 is selected.

Accordingly, the considered optimized parameters include: number of epochs

(100), batch size (10), number of layers (3), number of neurons (100), dropout rate

(0.2), optimizer (𝑎𝑑𝑎𝑚), loss 𝑀𝑆𝐸 and evaluation metrics 𝑀𝐴𝐸.

Predictive Modeling with LSTM

Before training the optimized LSTM with the final prepared set of features, a final

step is needed: the introduction of the log returns (𝑙𝑜𝑔_𝑟𝑒𝑡𝑢𝑟𝑛𝑠). Given the nature

of the collected data, as well as the target variable, the log returns of the target

variable 𝑚𝑚𝑝 are computed by:

𝑙𝑜𝑔_𝑟𝑒𝑡𝑢𝑟𝑛𝐻(𝑡) = 𝑙𝑜𝑔

(︂
𝑚𝑚𝑝(𝑡)

𝑚𝑚𝑝(𝑡 − 𝐻)

)︂
(4.15)

where 𝐻 is the prediction horizon, which defines how far ahead the model predicts

in the future.

Accordingly, the final set of features is composed of 22, 321 data points and 52

features. 70% of the data has been used for training the LSTM network (15610 data

points), 20% has been used for validation (4683 data points), while the final 10%

(2008 data points) has been used for testing as an out of sample dataset. Additionally,

dropout blocks were used between the hidden layers to avoid over-fitting, paired

with an early stopping mechanism.

Fig. 4.18 shows a comparison between the actual prices and 1-step ahead predic-

tions where 𝐻 = 1. As illustrated, the predictions of the proposed model are close to

the actual ones and the movement of the prices is somewhat consistent. Moreover,
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Figure 4.18: Results for 1-Step Ahead Prices Prediction.

to compare the performance of the proposed model to more traditional time-series

forecasting models, an ARIMA model has been implemented and using the final set

of features for training and predicting based on an out of sample dataset. Similarly, a

Genetic Algorithm-optimized conventional LSTM has been implemented to evaluate

the importance of the proposed model.

Accordingly, table 4.12 shows the performance of the three implemented models.

As illustrated, the proposed model decreased the error rate significantly compared to

ARIMA and the conventional LSTM, which proves the impact of HMM on enhancing

the performance of a conventional LSTM. Additionally, in order to provide an

unbiased sense of models’ performance, these measurements are computed based on

an out of sample (test) dataset that was not used to neither train nor fine-tune the

proposed model.

Table 4.12: Performance Evaluation for Implemented Models. Values are rounded
to three decimal places.

Model Name MSE RMSE MAE

ARIMA 20153.722 141.964 112.060
LSTM 49.089 7.006 2.652
HMM-LSTM 33.888 5.821 2.510

As a further step, the performance of the proposed model is tested for multi-step
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prediction where 𝐻 = 2. The results are illustrated in fig. 4.19. As expected, the

performance was affected where 𝑀𝑆𝐸 increased to 63.574. The rise is due to the

iterative structure of LSTM where the prediction of one layer is passed to the

next, thus, the error is accumulated to a larger number after two time steps ahead

compared to only one step. However, looking back at the predicted results compared

to the actual ones in fig. 4.19, it is safe to say that the predictions are realistic even

with a relatively higher error rate.

22220 22240 22260 22280 22300 22320
6370

6380

6390

6400

6410

6420

6430

6440

6450

US
D

Actual Prices
Predicted Prices

Figure 4.19: Results for 2-Step Ahead Prices Prediction.



Chapter 5

Conclusions

Living in a data-intensive environment is a natural consequence of the continuous

innovations and technological advancements. The availability of such data created

countless opportunities for the research community in addressing possible domain-

specific challenges following the Data Science approach, aiming at learning, modeling,

and mining complex domain-related data, focusing on discovering the knowledge

hidden inside.

Theoretically speaking, Data Science approaches are applicable to any given

domain. A domain that is particularly interesting is the Financial Technology, or

what is currently known as FinTech, reflecting the “marriage” of technology and

finance. Applying Data Science to such a domain contributes in the possibility of

improving already-existing financial services as well as creating new ones. Within

this field, a genuine financial innovation is represented by cryptocurrencies.

The first cryptocurrency, the most popular, and widely used, i.e., Bitcoin, has

caught the eye of many researchers due its decentralized structure and low-cost

transfer of value anytime and anywhere in the world. Consequently, implementing

Data Science on Bitcoin-related data, opens many opportunities for perceiving such

a newly presented, non-traditional asset, through analyzing related pricing data to

understand its respective market that has massively grown in popularity, prices and

volatility. Therefore, the overall objective of this work is to present applied Data

93
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Science approaches in FinTech, focusing on proposing innovative descriptive and

predictive models for studying and exploring Bitcoin Price Dynamics and Bitcoin

Price Prediction.

A first step for addressing this objective, is conducting a thorough literature

review in the domains of Data Science, FinTech and Data Science for FinTech as

presented in Chapter 2. Given that neither Data Science nor FinTech are novel,

the evolution of each domain is discussed, along with their respective challenges

and opportunities. Thus, the overall objective can be further considered to address

the challenges in the previously mentioned domains. Firstly, the objective within

the field of Data Science is represented by developing domain-specific innovative

models and algorithms that aims at modeling, learning and mining related data and

discovering insightful information. Secondly, taking the FinTech domain into account,

the objective is to address the emergence of Bitcoin by providing empirical evidences

and developing related theories. Lastly, the third objective within Data Science

for FinTech is to propose innovative descriptive and predictive models aiming at

studying the research areas of Bitcoin Price Dynamics and Bitcoin Price Prediction.

From a finer perspective, in Chapter 3 two different models were proposed

addressing the research area of Bitcoin Price Dynamics, along with their respective

implementations in Chapter 4.

The first proposed model is a Network VAR model that explains the dynamics

of Bitcoin prices, based on a correlation network VAR process that models the inter-

connections between Bitcoin prices from different exchange markets and classical

assets prices. The methodological contribution lies in the introduction of partial cor-

relations and correlations networks into VAR models. In turn, this allows to describe

the correlation patterns between Bitcoin prices to disentangle the autoregressive

component of prices from its contemporaneous part, explained by the co-movement

with other market prices. Although the proposed model is mainly descriptive, the

introduction of VAR correlation networks enables the development of a predictive

model, which leverages the information contained in the correlation patterns.
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The empirical findings show that Bitcoin prices from different exchange markets

are highly interrelated, as in an efficiently integrated market, with prices from larger

and/or more connected exchange markets driving other prices. The results also

confirm that Bitcoin prices are typically unrelated with classical market prices,

thus, further supporting the diversification benefit property of cryptocurrencies.

Additionally, the proposed model is able to predict Bitcoin prices with an error

that can be approximated to about 11% of the average price. However, this error

varies considerably among different exchange markets; prices from central Bitcoin

exchange markets are easier to predict. For almost all markets, the inclusion of a

contemporaneous component in the predictive model leads to a higher predictive

accuracy than that obtained with a simpler, pure autoregressive model.

Further research directions within this area, given the proposed Network VAR

model, may include, collecting more data on traded volumes and possibly the elec-

tronic identities of the traders, to investigate the reasons behind “local” behaviors of

different exchanges. From a methodological perspective, it may be worth considering

extending correlation network models to be time-dependent, although this requires

getting data with a higher frequency.

The second proposed model is a Hidden Markov Model that explains the observed

time dynamics of Bitcoin prices from different exchange markets, by means of the

latent time dynamics of a predefined number of latent states, to model regime

switches between different price vectors, going from “bull” to “stable” and “bear”

times. The contributions of this work are two-fold: providing a further understanding

of Bitcoin price dynamics from an econometric point of view and implementing

an easy-to-use likelihood ratio test for comparing differently implemented Hidden

Markov Models. Accordingly, three alternative types of hidden structure has been

considered, using two, three, and four predefined number of hidden states, along

with two different variance-covariance matrices; a full variance-covariance matrix

and a more parsimonious diagonal variance-covariance matrix, thus, a total of 3 × 2

alternative models have been implemented.
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A first look at the collected data showed a divergence of Bitcoin prices from

different exchange markets, opposing the economic law of “one asset, one price”. The

hypothesis constructed is that such differences can be explained by the endogenous

relationships between exchange markets prices, which are in turn explained by

different latent states of the cryptoasset economy.

Although several models were implemented, the empirical findings are mainly

based on a 3-state model that has been built twice using a full and a diagonal

variance-covariance matrix, as it proved to have the highest likelihood compared to

those models implemented using two and four hidden states. Accordingly, considering

a 3-state model implemented using a full variance-covariance matrix, the results

show that one hidden state is concentrated in the initial considered time period

where Bitcoin prices were relatively new and barely increasing, while the other two

hidden states alternate between lower and higher prices in more recent times.

Given that a full variance-covariance matrix may be too complex to fit the data

well, a 3-state diagonal variance-covariance matrix model has been implemented.

Such a model implies that Bitcoin prices from any exchange market is independent

on the price of other markets, conditionally on the hidden states, at any time point.

Simply put, this suggests that the dynamics of Bitcoin prices from different exchange

markets is fully explained by the dynamics of the hidden states rather than the

differences in prices between different exchanges. Indeed, the empirical findings show

that the first hidden states in concentrated in the initial time period, the second

hidden state is mostly concentrated in a period of time where Bitcoin prices were

steadily increasing, while the third hidden state is mostly concentrated in the last

period.

As a consequence of the above-mentioned results, it is safe to say that a 3-state

model with a diagonal variance-covariance matrix provides a better modeling for

regime switches implied by the data. To confirm this conclusion, the likelihood ratio

testing statistics is adopted. With a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 of 2.34𝑒 − 54, it is shown that a

more parsimonious 3-states diagonal matrix model is better. Moreover, the test has
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been implemented assuming two and four hidden states, showing that the use of a

diagonal variance-covariance matrix is always preferred. On the other hand, the same

test has been implemented, assuming a diagonal variance-covariance matrix and a

different number of predefined hidden states. Accordingly, it is also proved that a

3-state model has a likelihood that is significantly higher than that of a 2-state and

4-state model. Thus, implying that Bitcoin prices, given the young history, can be

explained by using three alternative states of “bear”, “stable” and “bull” markets.

Finally, the proposed model, although mainly descriptive, has been extended to

predict Bitcoin prices, showing a good predictive performance when implemented on

an out-of-sample dataset. Given the considered exchange markets, the predictive

power of a 3-state diagonal model is always higher than a 3-state full model, in line

with the likelihood ratio test.

Further research directions within the same area, given the proposed Hidden

Markov Model may include:

• extending the comparison to any number of exchange markets and any number

of hidden states, thanks to the employed likelihood ration test statistics;

• extending the analysis to include different cryptocurrencies;

• implementing the model using intra-daily data.

The third, and final, proposed model in the research area of Bitcoin Price

Prediction was investigated after conducting a thorough literature review. The main

research challenge was the need to provide an innovative model that predicts Bitcoin

prices accurately, by introducing new features that are not usually considered in

the literature. Accordingly, an innovative hybrid model is proposed using Hidden

Markov Models and Genetic Algorithm-optimized LSTM networks. The details of

the proposed model are explained in Chapter 3 along with the implementation in

Chapter 4.

The essence of the proposed model falls, from one hand, in its ability to address

Bitcoin prices from a descriptive point of view by implementing Hidden Markov
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Models and creating a new feature based on encapsulated hidden information that

cannot be directly seen nor extracted, and on implementing Genetic Algorithms on

LSTM network to fine-tune its parameters, from the other hand.

Composed of four phases, the proposed model starts from Data Collection, where

a raw dataset is created based on raw Bitcoin-related collected data, which is meant

to be exploited in the following phases. Followed by a Feature Extraction phase, the

raw data are used and new features, which are beneficial to the prediction process,

are extracted and saved in a features’ dataset. The third phase is Data Modeling,

which can be divided into descriptive modeling using Hidden Markov Model and

predictive modeling using Genetic Algorithm-optimized LSTM network. The fourth

and final phase is the performance evaluation including three metrics, namely, Mean

Squared Error, Root Mean Squared Error and Mean Absolute Error, calculated

based on an out-of-sample dataset that has not been used neither to train the model

nor to fine-tune the LSTM network.

To compare the performance of the proposed model to other models, a more

traditional ARIMA model has been implemented, as well as a conventional Genetic

Algorithm-optimized LSTM. With an 𝑀𝑆𝐸 of 33.888, an 𝑅𝑀𝑆𝐸 of 5.821 and

an 𝑀𝐴𝐸 of 2.510, the proposed model achieved the lowest errors among all of

the implemented models, which proves the effectiveness of the proposed model in

predicting Bitcoin prices.

Further research directions, given the proposed model, within the research area of

Bitcoin price prediction, may include; extending the proposed model by considering

additional features that can be extracted from the Blockchain to provide information

about the internal details of Bitcoin transactions and adapting the model to study

the dynamics of different cryptocurrencies.
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