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Jew, Gentile, Black Man, White
We all want to help one another, human beings are like that
We want to live by each other’s happiness, not by each other’s misery
We don’t want to hate and despise one another.
And this world has room for everyone, and the good Earth is rich and can provide for
everyone
The way of life can be free and beautiful, but we have lost the way.
...
Let us fight for a new world - a decent world that will give men a chance to work -
that will give youth a future and old age a security.
...
Let us fight to free the world - to do away with national barriers -
to do away with greed, with hate and intolerance.
Let us fight for a world of reason,
a world where science and progress will lead to all men’s happiness.
...
Let us all unite.

Charlie Chaplin, The Great Dictator.
Humanity against Coronavirus Pandemic, 2020.

La musica è come la vita,
si può fare in un solo modo: insieme.

Sono un uomo con una disabilità evidente
in mezzo a tanti uomini con disabilità che non si vedono.

La musica ci insegna la cosa più importante che esista:
ascoltare.

Ezio Bosso
(1971-2020)
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Introduction

The purpose of this thesis is two-fold: to investigate the existence of totally geodesic
subvarieties of the moduli space of principally polarized abelian varieties, Ag, contained
in the Jacobian locus and to study the geometry of certain positive dimensional fibres
of some ramified Prym maps. Totally geodesic subvarieties constitute a useful tool to
study the extrinsic geometry of the Jacobian locus inside Ag and they are involved in
the rather famous Coleman-Oort conjecture. Furthermore, they motivate our interest in
Prym maps. Indeed it turns out that certain positive dimensional fibres represent a good
place to look for totally geodesic subvarieties.

The thesis is thus divided into two parts.
- In Part I we study Galois coverings of curves of positive genus g′ ≥ 1 which yield

infinitely many new examples of Shimura curves in genus g ≤ 4. The result obtained in
this part can be found in [34].

- In Part II we study ramified Prym maps and we give a geometric description of
their positive dimensional fibres. The result obtained in this part can be found in [35].

We introduce them separately.

Let Mg be the moduli space of curves, Ag be the moduli space of principally polar-
ized abelian varieties and let

j : Mg → Ag

be the period map, usually called Torelli map. It sends each smooth projective curve
of genus g, [C] ∈ Mg, to its Jacobian variety, [JC,ΘC ] ∈ Ag, as principally polarized
abelian variety. By Torelli Theorem j is injective.

The Torelli locus Tg is the closure of j(Mg) in Ag. Both Mg and Ag are complex
orbifold and it is well-known ([78]) that the restriction of j to the set of non-hyperelliptic
curves (denoted by M∗

g) is an orbifold immersion.
Recall that Ag has a natural metric. Indeed, it is the quotient of the Siegel space Sg,

which is an irreducible Hermitian symmetric space of non-compact type, by a proper
discontinuous action of Sp(2g,Z). We denote the corresponding metric connection by
∇. Hence Ag is endowed with a locally symmetric metric, the so-called Siegel metric.

v



Introduction

Since for g ≥ 4 the dimension of Mg is strictly smaller than the dimension of Ag, it
makes sense to study the metric properties of Mg (identified with its image through j)
with respect to the Siegel metric.

Very few is known about this topic and here we would like to present some results
in this direction. The rough idea behind this investigation is that the Torelli locus is
expected to be “very curved” inside Ag.

On one hand, there are results concerning the second fundamental form of the
embedding j : M∗

g → Ag giving an upper bound for the possible dimension of a to-
tally geodesic submanifold of Ag contained in the Torelli locus. We are referring to
[21, 22, 37, 40, 41].

On the other hand, one may look at totally geodesic subvarieties of Ag and ask
whether Tg contains some of them. By definition they are images of totally geodesic
submanifold of Sg, i.e. Y ⊂ Sg such that the second fundamental form of the immersion
Y ↪→ Sg

IIY : TY × TY → NSg/Y

(u, v) 7→ (∇uv)
⊥

is identically equal to zero. The expectation is that the Torelli locus should contain few
totally geodesic subvarieties. The analogous statement for a surface in a 3-space is that
the surface should not contain too many lines.

The conjecture is the following:

Conjecture 1. For large genus there does not exist any positive dimensional totally
geodesic subvariety of Ag contained in the Torelli locus.

We point out that this conjecture is a bit stronger than the rather famous Coleman-
Oort’s conjecture on the non-existence of special subvarieties in the Torelli locus for
high genus: a special or Shimura subvariety of Ag is by definition a Hodge locus for the
tautological family of principally polarized abelian varieties on Ag. Hence we can read
Conjecture 1 in terms of the following

Conjecture 2 (Coleman-Oort). For large genus there should not exist positive dimen-
sional Shimura subvarieties Z ⊂ Ag generically contained in Tg, that is Z ⊂ Tg and
Z ∩ j(Mg) 6= ∅.

Shimura varieties are totally geodesic. More precisely, by results of Mumford and
Moonen ([67]), we have the following:

Theorem 1. An algebraic totally geodesic subvariety of Ag is Shimura if and only if it
contains a CM point.

In this way it becomes evident the double nature of Conjecture 2: the notion of CM
point is arithmetic while the condition of being totally geodesic refers to the locally sym-
metric geometry coming from the Siegel space. Important results in this direction are
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Introduction

achieved in [17], [24], [45], [46], [60], [61] and [70] is a very good survey.

There are al least some (to be precise 32) Shimura subvarieties contained in Tg. All
are in low genus (g ≤ 7) and they are constructed as families of Jacobians of Galois
covers of the line (see [23], [70], [69] for abelian groups and [32] for a complete list
including also non abelian cases) and of elliptic curves ( see [36]).

All these examples of families of Galois covers satisfy a sufficient condition that we
briefly explain: take a family of Galois covers C → C ′ = C/G, where the genera g(C) =
g, g(C ′) = g′, the number of ramification points r and the monodromy are fixed. Let Z
denote the closure in Ag of the locus described by [JC] for C varying in the family. Then

dimZ = 3g′ − 3 + r.

The simple numerical condition

N := dim(S2(H0(KC)))
G = dimH0(2KC)

G(= dimZ) (∗)

is sufficient to ensure that Z is Shimura (see [32, 36], resp. Theorem 3.9 and 3.7).
Moonen in [69] proved that when g′ = 0 and the group G is cyclic (∗) is also neces-

sary for Z to be Shimura. Mohajer and Zuo [68] extended this to the case where g′ = 0,
G is abelian and the family is 1-dimensional. In both cases, the authors also showed
that condition (∗) holds only in the known examples. These results are proved using
methods from positive characteristic and it seems to be complicated to generalize them
in case of any G.

A completely different Hodge theoretic argument was given in [21, Prop. 5.2], but
it only works for some of the families of cyclic covers of P1. It is unknown whether (∗)
is necessary in general for a family of covers to yield a Shimura subvariety or whether
other families exist which satisfy (∗).

In [32] the authors gave the complete list of all the families of Galois covers of P1

of genus g ≤ 9 satisfying condition (∗) and hence yielding Shimura subvarieties of Ag

contained in the Torelli locus. They got 30 examples, recovering those already found in
[69].

Later, in [36], other Shimura subvarieties were constructed considering families of
Galois covers of elliptic curves satisfying (∗). Their data are the following:

(1) g = 2, G = Z/2, N = 2. (4) g = 3, G = Z/4, N = 2.

(2) g = 3, G = Z/2, N = 4. (5) g = 3, G = Q8, N = 1.

(3) g = 3, G = Z/3, N = 2. (6) g = 4, G = Z/3, N = 3.

Families (2) and (6) give two new Shimura subvarieties while the remaining yield Shimura
varieties already found by means of Galois coverings of P1.

Furthermore, in the same paper, the authors studied families of Galois covers over
curves of genus g′ > 1. No example was found, but it was shown that when (∗) holds
then g ≤ 6g′ + 1.
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Our first result is the following:

Theorem 2. The only positive dimensional families of Galois covers C → C ′ = C/G with
g′ ≥ 1 and satisfying (∗) are the 6 families found in [36]. In particular all of them have
g′ = 1.

This shows that condition (∗) is very strong when g′ > 0. Of course the moduli image
of some family could be a Shimura subvariety even if (∗) does not hold.

To prove Theorem 2 we first prove that the assumptions imply g′ ≤ 3. This reduces
the problem to the analysis of a finite number of cases. The étale covers are ruled
out using some elementary representation theory. The ramified cases are checked by a
computer program as in [36].

One of the 2 families of coverings over elliptic curves found in [36], precisely family
(6), had been studied by Grushevsky and Möller [44], who got the following remarkable
result: the Prym map for this family has 1-dimensional fibres which are totally geodesic.
As a consequence, they obtained uncountably many totally geodesic curves generically
contained in T4, countably many of which are Shimura.

This phenomenon motivated our study of all the Shimura subvarieties found in [36].
We construct two fibrations. Indeed, let M be the subvariety of Mg which parametrizes
curves [C] occurring in one of the 6 families above, i.e. curves admitting an effective
holomorphic action of G with quotient map f : C → C ′ := C/G. Then for every family
(1)− ...− (6) we consider the following diagram:

M

Aδ
g−g′ Ag′

P ϕ
(1)

where C is sent by P to the Prym variety associated to the map f and by ϕ to JC ′.
We show the following:

Theorem 3. Consider a positive dimensional family of Galois covers C → C ′ = C/G with
g′ ≥ 1 and satisfying (∗) (i.e. one of the 6 families in [36]). Every irreducible component
of a fibre of the Prym map is a totally geodesic subvariety of Ag of dimension g′(g′ + 1)/2.

Theorem 4. Consider a family of Galois covers C → C ′ = C/G with g′ ≥ 1 of dimension
N > 0 and satisfying (∗) (i.e. one of the 6 families in [36]). Every irreducible component
of a fibre of the map ϕ is a totally geodesic subvariety of Ag of codimension 1.

Both Theorems thus guarantee the existence of infinitely many new totally geodesic
subvarieties generically contained in T2, T3 and T4, countably many of which are Shimura.
Indeed we have the following:

Corollary. Families (1), (2), (3), (4), (6) are fibred in totally geodesic curves via their
Prym maps and are fibred in totally geodesic subvarieties of codimension 1 via their
maps ϕ. Therefore they contain infinitely many totally geodesic subvarieties and count-
ably many are Shimura subvarieties. The Prym map of (5) is constant.
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It is remarkable that the proofs of Theorems 3, 4 introduce a new tool which pro-
duces infinitely many new totally geodesic examples at once. A key ingredient is the
decomposition, up to isogeny, of the Jacobians of the curves of the families occurring in
the fibres. This makes possible the comparison between the fibres and certain known
totally geodesic subvarieties of Ag and hence it allows us to conclude.

The group algebra decomposition plays an important role also in the study of several
features of the examples known so far. It is a theory of independent interest which stud-
ies a way to use the action of a finite group G on an abelian variety A to decompose A
as the product of abelian subvarieties up to isogeny. In particular, as in our situation, the
G-action on a smooth projective curve C passes to its Jacobian and it induces a decompo-
sition of JC. Important results in this direction are presented in [58, 15, 14]. Moreover,
in the case of Jacobians, thanks to [82] we know the dimension of the terms of the de-
composition while thanks to [51] we can recognize them as Jacobians of intermediate
quotients.

We use the group algebra decomposition to study families of Jacobians satisfying
condition (∗) with two different perspectives.

On one hand the analysis of the decomposition of the Jacobians JC, for C occurring
in the families yielding the Shimura varieties of [32, 36], gives us all possible inclusions
between the families. In this way, we also check which of these families are contained
in a fibre of the Prym map P or of the map ϕ of one of the 6 families above.

On the other hand it makes evident that most of the examples of [32, 36] turn out
to have a completely decomposable Jacobian. Indeed we show the following:

Proposition 5. For g = 2, 3, 4 there are Shimura varieties whose generic point has a totally
decomposable Jacobian variety. In particular the following decompositions hold:

? In g = 2 we have families:

- (3) = (5) = (28) = (30) which decomposes as E2
1 ;

- (4) = (29) which decomposes as E2
1 ;

- (26) = (1e) which decomposes as E1 × E2.

? In g = 3 we have families:

- (7) = (23) = (34) = (5e) which decomposes as E1 × E2
2 ;

- (22) which decomposes as E2
1 × E2;

- (33) = (35) which decomposes as E3
1 ;

- (31) = (3e) which decomposes as E1 × E2
2 ;

- (32) = (4e) which decomposes as E1 × E2
2 ;

- (27) which decomposes as E1 × E2 × E3.

ix
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? In g = 4 we have families:

- (13) = (24) which decomposes as E1 × E2
2 × E3;

- (25) = (38) which decomposes as E2
1 × E2

2 ;

- (37) which decomposes as E1 × E3
2 .

This Proposition gives a partial answer to a problem formulated by Moonen and Oort
in [70]. There they looked for genus g ≥ 2 such that there exists a positive dimensional
Shimura subvariety Z of Tg with totally decomposable generic point. We remark that
our answer is forced to be partial: first, because we don’t know if there exist Shimura
varieties in g ≥ 7 and second, since the group algebra decomposition is not exhaus-
tive, we don’t know if the families in 5 ≤ g ≤ 7 admit a further (possibly complete)
decomposition.

The Proposition above justifies our following

Question 1. Is there any relation between totally geodesic subvarieties of Tg and loci of
totally decomposable Jacobians?

Unfortunately, we prove that there is no clear relation between the two properties.
Indeed we exhibit the example of a totally geodesic subvariety of T3, precisely family
(9) of [32], which does not have totally decomposable Jacobians. This is shown using
results of [51, 59, 82] and SAGE computations (see [9]). On the other hand, we illustrate
a specific sublocus of T3 whose generic Jacobian is totally decomposable and we prove
that it cannot be totally geodesic.

This concludes Part I.

In Part I of this thesis we construct infinitely many examples of totally geodesic and of
Shimura subvarieties of Ag generically contained in the Torelli locus as fibres of ramified
Prym maps. Moreover, we show that some of the families of Galois covers yielding
Shimura varieties are contained in fibres of ramified Prym maps.

It thus seems natural to look for totally geodesic subvarieties at fibres of the Prym
maps.

This problem is still open but it has motivated our interest in Prym maps and their
fibres, which are examined in Part II. Actually, our work fits in the broader context of the
problems concerning the geometry of Prym varieties and Prym maps and it turns out to
be interesting by its own.

Prym varieties and Prym maps establish a bridge between the geometry of curves and
that of abelian varieties. Indeed, at least in the étale case, they allow studying a bigger
class of principally polarized abelian varieties than that of Jacobians using geometric
objects: the covers. As such, they have been studied for over 100 years.
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Introduction

The Prym map Pg,r assigns to a degree 2 morphism π : D −→ C of a smooth complex
irreducible curve ramified in an even number of points r ≥ 0, a polarized abelian variety
P (π) = P (D,C) of dimension g−1+ r

2 , where g > 0 is the genus of C. The variety P (π)
is called the Prym variety of π and is defined as the connected component of the origin
of the kernel of the norm map Nmπ : JD −→ JC. Hence, denoting by Rg,r the moduli
space of isomorphism classes of the morphisms π, we have maps

Pg,r : Rg,r −→ Aδ
g−1+ r

2
, (2)

to the moduli space of abelian varieties of dimension g− 1 + r
2 with polarization of type

δ := (1, . . . , 1, 2, . . . , 2), with 2 repeated g times if r > 0 and g − 1 times if r = 0.
The case r = 0 is very classical. Indeed, as already said, Prym varieties of unramified

coverings are principally polarized abelian varieties and thus they have been studied for
many many years, initially by Wirtinger [90], Schottky and Jung [84] (among others)
in the second half of the 19th century from an analytic point of view. They were studied
later from an algebraic point of view in the seminal work of Mumford [71] in 1974. We
refer to [29, section 1] for a historical account.

Since Mumford’s work, a lot of information has been obtained about the unramified
(or “classical”) Prym map Pg,0. This theory is strongly related to the study of the Jacobian
locus, Schottky equations and rationality problems among other topics.

By comparing the dimension of the moduli spaces occurring in (2) (for the case
r = 0) we see that dimRg ≥ dimAg−1 for g ≤ 6 (to simplify the notation we refer
to Pg,0,Rg,0 with Pg,Rg). Hence it is natural to check when it is possible to realize a
(general) abelian variety as the Prym variety of a certain cover, i.e. when Pg is domi-
nant. Wirtinger ([90]) gave a positive answer to this question. Furthermore different
approaches of Friedman-Smith ([38]), Kanev ([52]) and Welters ([89]) showed that Pg
is generically injective for g ≥ 7. The tetragonal construction of Donagi ([25]) shows
that it is never injective.

On the other hand, for g ≤ 6, a detailed study of the structure of the fibres was pro-
vided by the works of Verra ([87], for g = 3), Recillas ([83] for g = 4), Donagi ([25] for
g = 5) and Donagi and Smith ([26] for g = 6). All these results have been summarized
under a uniform presentation in the fundamental work of Donagi [25].

Contrary to the unramified case, less was known about the ramified Prym map. In-
deed it has deserved less attention in the literature. Although some specific cases were
considered previously in [5] and in [74], a systematic study of the properties of the
ramified Prym map in full generality started with the work of Marcucci and Pirola [64]
(which was published more than 20 years later than the works concerning étale Prym
maps!). Combining their results with the main theorems of Marcucci-Naranjo in [63]
and Naranjo-Ortega in [75], the generic Torelli theorem is proved for all the cases where
the dimension of the source Rg,r is smaller than the dimension of the target dimAδ

g−1+ r
2
,

i.e. when

3g − 3 + r ≤ 1

2
(g − 1 +

r

2
)(g +

r

2
), (3)
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with the exception of the only equidimensional case, that is when g = 3 and r = 4,
where it was known by [5] and by [74] that the map is dominant of degree 3. Actually,
very recently, a global Torelli Theorem has been announced for all g and r ≥ 6. We are
referring to the work of Ikeda ([49]) for g = 1 and to that of Naranjo-Ortega ([76]) for
all g. It is remarkable to notice that this result says that the situation is very different
from that holds for the étale Prym map.

Our aim is to complete the study of the ramified Prym map Pg,r analysing the geom-
etry of the generic fibre when

dimRg,r > dimAδ
g−1+ r

2
.

Inequality (3) shows that this is only possible in the following six cases:

1 ≤ g ≤ 4 r = 2

1 ≤ g ≤ 2 r = 4.

The case g = 1, r = 4 was considered by Barth in his study of abelian surfaces with
polarization of type (1, 2) (see [6]).

For the remaining cases we have found (except for the case g = 4) direct proce-
dures mainly based on the bigonal construction (see [25]) and the extended trigonal
construction (see [57]).

For the case r = 2, g = 4 we look at the fibre of P̄5 studied by Donagi in [25] and
we intersect it with an appropriate open set in the boundary of R̄5 given by “admissible”
covers with one node (in the sense of Beauville) which are identified with elements of
R4,2 by glueing the two ramification points (and, accordingly, the two branch points).

The strategy of identifying the moduli space Rg,2 with an open set in the boundary
divisor of R̄g and then of studying the étale fibre described by the mentioned work of
Verra, Recillas and Donagi could have been used for all cases r = 2 and 1 ≤ g ≤ 4.
Unfortunately, for some among the four cases (in particular g = 2, r = 2), this procedure
becomes challenging. This is the reason why we decide to tackle our problem with a
different, and more direct, approach.

We prove the following:

Theorem 6. Assume that

(g, r) ∈ {(1, 2), (1, 4), (2, 2), (2, 4), (3, 2), (4, 2)},

then the ramified Prym map Pg,r is dominant. Moreover, the generic fibre can be described
as follows.

a) For a generic elliptic curve E the fibre P−1
1,2 (E) is isomorphic to L1 t . . . t L4, where

each Li is the complement of three points in a projective line.

b) (Barth) Let (A,L) be a generic abelian surface with a polarization of type (1, 2). Then
there is a natural polarization L∗ of type (1, 2) in the dual abelian variety A∗ and the
fibre P−1

1,4 (A) is canonically isomorphic to the linear system |L∗|.
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c) The generic fibre of P2,2 is isomorphic to the complement of 15 lines in a projective
plane.

d) The generic fibre of P2,4 is isomorphic to the complement of 15 points in an elliptic
curve.

e) Let X be a generic quartic plane curve, consider the variety G1
4(X) of the g14 linear

series on X, and denote by i the involution L 7→ ω⊗2
X ⊗ L−1. Then P−1

3,2 (JX) is
isomorphic to the quotient by i of an explicit i-invariant open subset of G1

4(X).

f) Let (V, δ) be a generic element in RC+ and let Γ ⊂ JV be the curve of lines l in V
such that there is a 2-plane Π containing l with Π · V = l + 2r. Then P−1

4,2 (V, δ) is
isomorphic to the irreducible étale double covering of Γ attached to the restriction of
δ to Γ.

To be more precise in the last statement of our Theorem, we need to recall that
Donagi found a birational map

κ : A4 99K RC+,

where RC+ is the moduli space of pairs (V, δ), V being a smooth cubic threefold and δ
an “even” 2-torsion point in the intermediate Jacobian JV (see [25, section 5]).

Finally we describe some examples of irreducible components of fibres of ramified
Prym maps which yield totally geodesic or Shimura subvarieties of Ag.

In particular, the images in M2 and in M3 of R1,2, respectively R1,4, are the biel-
liptic loci and in [36] it is shown that they yield Shimura subvarieties of A2, and A3

respectively (they are the families (1) and (2) above). A straightforward application of
Theorem 3 shows that the irreducible components of the fibres of the Prym maps P1,2,
P1,4 yield totally geodesic curves in A2 and A3, countably many of them are Shimura.

At the end, we give a new explicit example of a totally geodesic curve which is an
irreducible component of a fibre of the Prym map P1,2.

Structure of the Thesis

This thesis consists of two parts: they are interconnected and self-contained too. There-
fore they can be found of independent interest.

The first part is composed of three chapters while the second one by two chapters.
Chapters 2, 3 and 5 contain our original results. The reader will find a specific introduc-
tion at the beginning of each of them.

In the following we briefly describe the contents of each chapter.

In Chapter 1 we present general preliminaries on curves, Jacobians and Torelli mor-
phism. We recall several well-known results, most of them without proofs, on group
actions on Riemann surfaces, Galois covers and associated monodromy map. Then we
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explain Riemann Existence Theorem and how it works in families, i.e. how it is possi-
ble to start from a numerical datum to produce a family of Galois coverings with fixed
genera, number of ramification points and monodromy. Finally, we introduce group
representation theory and the definition of Galois orbits of complex irreducible repre-
sentations to construct rational irreducible representations.

In Chapter 2 we start with a description of symmetric (Riemannian or not) mani-
fold and of its totally geodesic subvarieties. Then we focus on a particular Hermitian
symmetric space, the Siegel space Sg, and we describe a technique used to compare
two different totally geodesic submanifolds of Sg. Later, in the context of the so-called
Coleman-Oort conjecture, we introduce Shimura subvarieties of Ag as totally geodesic
subvarieties with an additional arithmetical property. In particular, we explain condition
(∗) of [32, 36] and how it has been used to produce 30+2 examples of Shimura sub-
varieties of Ag generically contained in the Torelli locus considering Galois covering of
P1 and of elliptic curves. The same condition is used to give a bound on the genus of
curves occurring in families satisfying (∗). By means of this bound, we “complete” the
classification of examples of Shimura subvarieties of Tg obtained from families of Galois
covering satisfying (∗). Finally, we show that the 6 families of [36] admit two fibrations
in totally geodesic subvarieties. In this way, we show the existence of infinitely many
new examples, countably many of which are Shimura.

In Chapter 3 we study group algebra decomposition and we apply this tool to decom-
pose the Jacobians occurring in the families of the Galois covering satisfying condition
(∗) found in [32, 36]. In particular, we show that many among these examples have to-
tally decomposable Jacobians. This motivates our comparison between totally geodesic
subvarieties of Tg and subloci whose general element has completely decomposable Ja-
cobian. Unfortunately, we show that there does not exist a definite relation between the
two properties.

In Chapter 4 we generalize the definition of Jacobian variety considering also sin-
gular curves and we imitate the construction in case of cubic 3-folds. Then we define
Prym varieties and Prym maps associated either to unramified covers or to ramified ones.
Moreover, we recall known results concerning when these maps are generically injective,
injective and dominant. We also study the codifferential of the Prym map in both cases.
It turns out that the study of the generic fibre of the ramified Prym map was still open
and this is the reason why we address this problem. Then we recall the partial compact-
ification R̄g of Rg given by Beauville. Indeed, in [7], the author extended the classical
Prym map to certain “admissible covers” in such a way that the extended Prym map
becomes proper. Finally, we describe polygonal constructions: the bigonal, the trigonal
(also in ramified case) and the tetragonal ones.

In Chapter 5 we focus on the study of the structure of the generic fibre of the ram-
ified Prym map when the dimension of the source is strictly greater than that of the
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target. This is only possible in six cases that are thus addressed. One among them had
been already considered by Barth in [6]. We devote one section for each of them and
for completeness also the case of Barth is recalled. The most involved cases are g = 3,
r = 2 and g = 4, r = 3. By means of the trigonal construction, the case g = 3, r = 2 is
related with tetragonal series on a generic quartic plane curve which does not contain
two divisors of type 2p + 2q. In the case g = 4, r = 2 we need to take care of the
behaviour at the boundary of Donagi’s description of the fibre of P̄5. In particular, we
have to study quadrics containing a nodal canonical curve of genus 5 which we consider
that can be interesting on its own. Finally, we explain the link between the two parts
of this Thesis. Indeed we give some explicit examples of fibres of Prym maps as totally
geodesic subvarieties of Tg.
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CHAPTER 1

Basics I

1.1 Complex tori and abelian varieties

Curve and their Jacobians play a key role in this thesis so we start with a brief recall of
basic results on complex tori.

Definition 1.1. A complex torus T := V/L of dimension g is the quotient of a complex
vector space V of dimension g by a lattice L (i.e. a discrete subgroup of maximal rank
2g) in V . Using the natural quotient map π : V → T we get that T is a compact
(g-dimensional) complex manifold endowed with a group structure.

We can always describe T by using a matrix: take basis e1, ..., eg for V and λ1, ..., λ2g
for L and write λj =

∑
λijei. Then we can define

Π = (λij)

the period matrix of the torus. This matrix gives algebraic obstructions to let T be a
projective variety.

Definition 1.2. An abelian variety is a complex torus which admits a projective embed-
ding into some PN .

Theorem 1.1.1 (Kodaira). T is an abelian variety if and only if it admits a polarization,
i.e. there exists H : V × V → C hermitian form such that:

1. H > 0;

2. ImH(L× L) ⊆ Z

ImH is the first Chern-class of an ample line bundle on T which gives the projec-
tive embedding. Since E := ImH is integer-valued, there exists a basis for L (called
symplectic) such that E has associated matrix of type

E =

(
0 ∆

−∆ 0

)

3



Chapter 1. Basics I

where ∆ is the diagonal matrix ∆ := (d1, ..., dg). ∆ gives the type of the polarization and
if ∆ = (1, ..., 1) then T is a principally polarized abelian variety, from now on denoted by
ppav. Usually the zero-locus of the unique section of the associated ample line bundle is
denoted by Θ.

Riemann bilinear relations provide necessary and sufficient condition, in terms of Π
and E, for T to be an abelian variety. Indeed we have the following (see for instance
[11]):

Theorem 1.1.2. (Riemann Bilinear Relations) A complex torus T is a polarized abelian
variety if and only if there exists a basis for V and a symplectic basis for L such that the
period matrix becomes

Π =
(
∆ Z

)
,

where ∆ is the diagonal-type matrix and Z is symmetric with positive definite imaginary
part.

The set
Sg = {Z ∈M(g,C) : Z = Zt and ImZ > 0}

is known as the Siegel space. By construction it parametrizes the set of polarized abelian
varieties of a given type ∆ with a symplectic basis. The symplectic group Sp(2g,Z) acts
on Sg in the following way:

R · Z =

(
A B
C D

)
· Z = (A+ CZ)(B +DZ)−1.

Clearly we have a surjective quotient morphism:

Sg → Ag := Sg

/
Sp(2g,Z) ,

where we let Ag be the moduli space of ppav of dimension g.

Obviously every 1-dimensional complex torus is an abelian variety and it is easy to
show that there exists a principal polarization. Suppose that X := C/L has lattice L
generated by 1, τ , where τ is such that Im τ > 0. Then taking

E(a1 + τb1, a2 + τb2) = a1b2 − a2b1 ∀ ai, bi ∈ R (1.1)

we get the desired principal polarization. Moreover note that if we consider H1(X,Z) =
〈1, τ〉 then (1.1) gives the (geometric) intersection number of the 1-cycles a1 + τb1, a2 +
τb2.
More generally

Definition 1.3. Let us consider X a compact Riemann surface of genus g ≥ 1. Then its
Jacobian variety is defined as the quotient

JX := H0(X,ωX)
∗
/
H1(X,Z)

4



1.2. Group action on Riemann Surfaces

The variety JX is a ppav. In fact the injection

H1(X,Z) ↪→ H0(X,ωX)
∗

[γ] 7→
(
ω →

∫

γ
ω
)

extends the (geometric) intersection number of the lattice L = H1(X,Z) to the C-vector
space V = H0(X,ωX)

∗. It is easy to see that this induced map determines a canonical
principal polarization on JX.

Therefore, letting Mg be the moduli space of smooth projective curves of genus g,
we can introduce the Torelli map

j : Mg → Ag

[X] 7→ [JX,Θ]

Both Mg and Ag have a natural structure of quasi-projective variety and j is a regular
map. In particular a fundamental result in algebraic geometry asserts the following:

Theorem 1.1.3 (Torelli). The map j is injective.

1.2 Group action on Riemann Surfaces

This section is devoted to fundamental results on actions of group on Riemann surfaces.
All the details are extracted from [66].

Definition 1.4. Let G be a group and consider X a Riemann surface. An action of G on
X is a map G×X → X which sends the pair (g, p) to the point g · p such that:

- (gh) · p = g · (h · p) ∀ p ∈ X and g, h ∈ G;

- e · p = p ∀ p ∈ X, where e is the identity element of the group.

The orbit of a point p is the set G · p := {g · p : g ∈ G}.
The stabilizer a point p is the subgroup Gp := {g ∈ G : g · p = p}. It will be useful

to note that points in the same orbit have conjugate stabilizers. In fact: Gg·p = gGpg
−1.

Moreover |G · p||Gp| = |G|.
The kernel of an action is the subgroup K := {g ∈ G : g · p = p ∀ p ∈ X}. It’s a

normal subgroup of G and the quotient G/K acts on X with trivial kernel and identical
orbits to that of G. Therefore we usually work with trivial kernel, i.e. with effective
actions.

The action is continuous (resp. holomorphic) if the map which sends p to g · p is
continuous (resp. holomorphic).

It is possible to show that if the action is holomorphic and effective then every finite
stabilizer actually it’s a finite cyclic subgroup of G. Furthermore, if G is finite then the
set of points with non-trivial stabilizer is discrete.

The orbit space is the set of orbits. It is described by the quotient map π : X → X/G,
which associates each point to its orbit. Clearly choosing for X/G the quotient topology,
π is continuous. Moreover the following proposition holds:

5
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Proposition 1.2.1. Let us consider an effective and holomorphic action of a finite group G
on a Riemann surface X. Then X/G is a Riemann surface and there exist complex charts
which make π holomorphic. Moreover π has degree equal to the cardinality of the group
and multp(π) = |Gp| for any point p ∈ X.

Remark 1. The construction of the complex structure of X/G can also be done requiring
that the action is properly discontinuous. This means that for each pair of points (p, q) ∈
X there exist neighborhoods Up and Uq such that the set {g ∈ G : (g ·Up) ∩Uq} is finite.
This forces the quotient space to be Hausdorff. Also the set of point with non-trivial
stabilizer is discrete and it is possible to reply an infinite-version of Proposition 1.2.1.
Nevertheless from now on we will deal with finite group.

A map π : X → X/G is called Galois covering with Galois group G. Indeed, out
of its branch locus (and consequently out of its preimage), π is a topological cover
such that for every pair of point x0, x1 ∈ X with π(x0) = π(x1) there exists a covering
transformation g ∈ G such that g ·x0 = x1. When the group is cyclic we refer to π saying
cyclic cover.

Lemma 1.2.2. Let G be a finite group acting holomorphically and effectively on X. Con-
sider the quotient map π : X → X/G. Then for every branch point p ∈ X/G there is an
integer r ≥ 1 such that π

−1
(p) consists of exactly |G|/r points and each of these points has

order r.

Proof. Take a branch point p and let x1, ..., xs be the points of X lying above it. Since
they are in the same orbit, they all have conjugate stabilizers. Thus each stabilizer is of
the same order, call it r. This implies s = |G|/r.

Therefore we have the following formulation of Riemann-Hurwitz’s formula:

Corollary 1.2.2.1. Let G be a finite group which acts holomorphically and effectively on
a Riemann surface X with quotient map π : X → X/G. Suppose that there are k branch
points p1, ..., pk ∈ X/G such that π has order ri at the |G|/ri points above pi. Then:

2g(X)− 2 = |G|(2g(X/G)− 2) +

k∑

i=1

|G|
ri

(ri − 1). (1.2)

This Corollary gives a bound on the order of groups G that can act on a Riemann
surfaces of genus greater or equal than 2. Indeed the following holds:

Theorem 1.2.3 (Hurwitz). LetG be a finite group that acts holomorphically and effectively
on a Riemann surface X such that g(X) ≥ 2. Then:

|G| ≤ 84(g − 1)

6



1.3. Covers and Monodromy

Since the full group of Aut(X) certainly acts holomorphically and effectively on X
Hurwit’s Theorem always implies

|Aut(X)| ≤ 84(g(X)− 1),

i.e. the finiteness of the automorphism group of a Riemann surface of genus g ≥ 2. It’s
known that this is not true in case of genus g = 0 (since we have the Moebius transfor-
mations x 7→ (a+ bx)/(c+ dx)) and in case of elliptic curves (where the automorphism
group is infinite because of the translations). On the other hand the generic curve of
genus g ≥ 3 has no automorphism except for the identity.

1.3 Covers and Monodromy

In this section we introduce the concept of monodromy of a holomorphic map between
Riemann surfaces and we show how it can be used to recover the map itself. Our atten-
tion will be devoted to covering maps.

Let us take V a topological space and fix a base point q. The fundamental group
π1(V, q) acts on the universal cover of V and determines a 1-1 correspondence between
isomorphism classes of connected coverings of V , i.e. maps f : U → V , and conjugacy
classes of subgroups H ⊆ π1(V, q). The degree of the covering is the index of H as a
subgroup of the fundamental group of V .

Now take a loop γ based on q and consider its d-lifted paths γ̃1, ..., γ̃d. Each γ̃i is the
unique lift of γ such that γ̃i(0) = xi, where we denote xi, i = 1, ..., d the preimages in
f

−1
(q). Being γ̃i a lift of γ, its endpoint γ̃i(1) has to be among {xi, i = 1, ..., d}. Put

γ̃i(1) = xj = xσ(i). By construction σ is a permutation of the indices {1, ..., d} and it is
easy to see that it depends only on the homotopy class of γ.

Definition 1.5. The monodromy representation of a covering map f : U → V of finite
degree d is the group homomorphism

ρ : π1(V, q) → Sd

[γ] 7→ σ

where Sd is the symmetric group of the permutations of d elements.

Note that since U is connected the image of the monodromy map is a transitive
subgroup of Sd, i.e. for every pair of indices i, j there exists σ in ρ(π1(V, q)) such that
σ(i) = j.

The process can be reversed: suppose to start with a group homomorphism ρ :
π1(V, q) → Sd, from the fundamental group of a topological space to Sd, which has
transitive image. Consider the subgroup

H := {[γ] ∈ π1(V, q) : ρ([γ])(1) = 1}

7
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then H has index d in Sd and thus it induces a connected covering space f : U → V of
degree d. Of course, this covering has associated monodromy map given by the homo-
morphism ρ with which we start.

Actually, our interest is devoted to holomorphic non-constant map F : X → Y
between compact Riemann surfaces. Call d the degree. Note that because of the rami-
fication, F is not a topological cover. Call B ⊂ Y the finite set of branch points and let
R = F

−1
(B). Therefore the restriction F |XrR : X r R → Y r B is a true topological

cover.
Now apply Definition 1.5 to get the monodromy homomorphism ρ : π1(Y rB, q) →

Sd. Hence, with ρ, we can construct a topological covering Fρ : Uρ → Y r B. It is
possible to show that plugging all holes given by branch points and their preimages, we
get a map Fρ : Xρ → Y between compact Riemann surfaces which has branch points at
most in B. Moreover, removing B from Y and its preimage from Xρ, we get once more
the same monodromy morphism ρ associated to F .

This proves the following

Theorem 1.3.1 (Riemann’s Existence Theorem). Let Y be a compact Riemann surface
and let B be a finite subset of Y . The following 1-1 correspondence holds:





isomorphism classes of
holomorphic maps

F : X → Y
of degree d

whose branch points lie inB





↔





group homomorphisms
ρ : π1(Y rB, q) → Sd
with transitive image
up to conjugacy in Sd





1.3.1 Coverings of P1

Let us specialize Riemann’s Existence Theorem to the case of holomorphic coverings of
the projective line P1. Fix r points t = (t1, ..., tr) in P1 and a base point t0 ∈ Ut =
P1 r {t1, ..., tr}.

The fundamental group of Ut is a free group on r generators which satisfy a single
relation:

π1(Ut, t0) ∼= Γ0,r := 〈[γ1], [γ2], ..., [γr] : [γ1][γ2]...[γr] = 1〉,

where [γi] is the homotopy class of a small loop around ti.
This means that a group homomorphism ρ : π1(Ut, t0) → Sd is determined by the

choice of r permutations σ1, ..., σr such that σ1...σr = 1.
The r-tuple (σ1, ..., σr) is often called generating vector of ρ.

Now we focus on the case of f : X → P1, Galois cover of P1 branched on t. Denote,
as before, Ut = P1 r {t1, ..., tr} and V = f−1(Ut).
Thus f |V : V → Ut is an unramified (hence topological) Galois cover. Let G be its group
of deck transformations. Then there is a surjective homomorphism π1(Ut, t0) � G,

8
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which is well defined up to composition by inner automorphism of G. Since π1(Ut, t0) ∼=
Γ0,r, we automatically get the epimorphism

θ : Γ0,r � G.

Putting mi = ord(θ(γi)), the local monodromy around ti, we obtain the vector m =
(m1, ...,mr). Therefore we can give the following

Definition 1.6. A datum is a triple (m, G, θ), where m = (m1, ...,mr) is an r-tuple of
integers mi ≥ 2, G is a finite group and θ : Γ0,r � G is an epimorphism such that θ(γi)
has order mi for each i.

Thus a Galois cover of P1 branched on r points gives rise, up to some choices, to
a datum. Riemann’s Existence Theorem ensures that the process can be reversed: a
branch locus t and a datum determine (up to isomorphism) a cover of P1.

Formula (1.2) with ri = mi determines the genus of X.

Cyclic covers of P1

Here we would like to study the connection between plane curves and cyclic coverings
of the projective line.

A m-cyclic cover of the projective line is a curve C which admits a degree m mor-
phism to P1 such that the associated Galois group is cyclic.

An irreducible cyclic cover of P1 can be given by a prime ideal

(ym − (x− a1)
d1 · ... · (x− ar)

dr) ⊂ C[x, y].

Note that this ideal defines an affine curve in A2 which possibly has singularities if there
are di > 1. Nevertheless there exists a unique smooth projective curve C birationally
equivalent to this plane curve. Moreover C admits a natural projection which, on the
affine coordinates (x, y), is the map

π : C → P1

(x, y) 7→ x

which is holomorphic. Hence one obtains the cyclic cover of the smooth curve C onto
P1.

Remark 2. The "cyclicity" of these curves comes from the existence of an automorphism
σ: choosing a mth−root of the unity ξ we can define the map σ : C → C which sends
(x, y) 7→ (x, ξy). Notice that π ◦ σ = π.

Lemma 1.3.2. Assume that d1, ..., dr < m. Let C be the (non-singular projective) curve
given by

ym = (x− a1)
d1 · ... · (x− ar)

dr .

9
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Then the Galois group G is Z/mZ and the covering C → P1 is given by the monodromy
map

ρ : π1(P
1 r {a1, ..., ar}, p) → Z/mZ [γi] 7→ di,

where γi are loops running counterclockwise around exactly one ai.
The point ∞ is a branch point and

ρ(γ∞) = −
r∑

i=1

di mod m

iff m doesn’t divide
∑r

i=1 di.
Let mi = ordZ/mZ(di), the associated datum is ((m1, ...,mr),Z/mZ, ρ).

Here we point out that the condition

[γ1][γ2]...[γr] = 1

implies
ρ(γ)ρ(γ2)...ρ(γr) = 1,

i.e.
∑r

i=1 di + d∞ ≡ 0 modm (using the additional group structure of Z/mZ).

Corollary 1.3.2.1. Let G = Z/mZ, d ∈ Z and [d]m the residue class of d in G. Consider
the monodromy description of the local covers given by

ym = (x− a1)
d1 · ... · (x− ar)

dr

and
ym = (x− a1)

[dd1]m · ... · (x− ar)
[ddr]m

as shown Lemma 1.3.2. Since they coincide, we conclude that the two covers are equivalent.

1.3.2 Coverings of curves of genus g′ ≥ 0

The construction in case of g′ = 0 can be generalized considering Galois covering f :
X → Y , where Y is a curve of genus g′ ≥ 0.

Let, as before, t = (t1, ..., tr) be the branch locus of f and Ut = Y r t. Choosing
t0 ∈ Ut we get

π1(Ut, t0) ∼= Γg′,r := 〈α1, β1, ..., αg′ , βg′ , γ1, ..., γr :

r∏

i=

γi

g′∏

i=1

[αi, βi] = 1〉,

where α1, β1, ..., αg′ , βg′ are loops in Ut which intersect only in t0 and determine a ba-
sis for H1(Y,Z), while γ1, ..., γr are constructed as follows: for every i take a path ai
connecting t0 with a point τi in Ut "near" ti, then take a loop bi in Ut based on τi with
winding number one around the branch point ti. The path a−1

i biai is the desired loop γi
(based on t0).
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Now set V = f−1(Ut) and f |V : V → Ut the induced topological Galois covering.
The isomorphism π1(Ut, t0) ∼= Γg′,r produces an epimorphism θ : Γg′,r → G, where G is
the Galois group.

Consequently we can reformulate the following:

Definition 1.7. A datum is a triple (m, G, θ), where m = (m1, ...,mr) is an r-tuple of
integers mi ≥ 2, G is a finite group and θ : Γg′,r � G is an epimorphism such that θ(γi)
has order mi for each i.

Also in this case that the process can be reversed: fixing a curve Y and a branch locus
t, a datum (m, G, θ) gives rise to a Galois covering f : X → Y with Galois group G.

1.3.3 Families of Galois coverings

Here we would like to show that the same process can be reversed also in families,
namely to any datum it is possible to associate a family of Galois coverings of curves of
genus g′. In order to explain how this process works, we need to borrow the formalism
of Teichmüller theory, referring to [2][Chap. XV].

Let us fix a compact oriented topological surface Σ of genus g′ and a ordered finite
subset P = (p1, ..., pr) of points of Σ such that 2g′ − 2 + r > 0.

Definition 1.8. Let (Y,y) be a P -pointed curve, that is y : P → Y is an injective map
and yi = y(pi) are the marked points. A Teichmüller structure on (Y,y) is the datum of
the isotopy class [f ] of an orientation-preserving homeomorphism

f : (Y,y) → (Σ, P ),

where the allowable isotopies are those which map yi to pi for every i and for each
choice of P .

Definition 1.9. Two marked curves with Teichmüller structure (Y,y, [f ]) and (Y ′,y′, [f ′])
are equivalent if there exists a biholomorphism of r-pointed curves

ϕ : (Y,y) → (Y ′,y′)

such that
ϕ(yi) = y′i and [f ] = [f ′ϕ].

The resulting quotient space is called the Teichmüller space Tg′,r of a surface of genus g′

with r > 1 marked points.

Remark 3. The Teichmüller structure rigidifies the r-marked curve (Y,y). This means
that

Aut(Y,y, [f ]) = 1.

Indeed, in genus 0 the number of marked points is at least 3 and hence (Y,y) is already
rigid; in general an automorphism ϕ of a marked surface such that [fϕ] = [ϕ] induces
the identity in integral cohomology. Hence, one can show that ϕ is forced to be the
identity.

11
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It is exactly this "rigidity" that makes Tg′,r a smooth manifold naturally equipped with
a universal family.

Now we will define an important group and we will briefly describe its action on the
Teichmüller space.

Definition 1.10. The mapping class group, also called Teichmüller modular group, is
the group of all isotopy classes of orientation-preserving homeomorphism of (Σ, P ) into
itself. We denote it by Mapg′,r.

The mapping class group acts naturally on Tg′,r in this way:

[γ] · [Y,y, [f ]] = [Y,y, [γ ◦ f ]] (1.3)

Indeed, if γ and δ are isotopic then the marked structures [γ] · [Y,y, [f ]] and [δ] · [Y,y, [f ]]
are equivalent and hence (1.3) is well-defined. It is possible to show that the action is
holomorphic, properly discontinuous (so the stabilizers are finite) and, in general, non
free.

One can consider the quotient map

Tg′,r → Tg′,r/Mapg′,r

which is just the forgetful map (Y,y, [f ]) 7→ (Y,y). It yields the following:

Theorem 1.3.3. The orbit space of the Teichmüller space with respect to the mapping class
group is the moduli space of r-marked genus g′ curves:

Mg′,r = Tg′,r

/
Mapg′,r .

At least set-theoretically the above equality is easy to see. Indeed, if x ∈ Tg′,r and
[γ] ∈ Mapg′,r, then x and [γ] · x map to the same point in Mg′,r. Conversely, if [x] = [x′],
where x = [Y,y, [γ ◦ f ]] and x′ = [Y ′,y′, [f ′]], then (by definition of Teichmüller space)
there exists an isomorphism ϕ : (Y,y) → (Y ′,y′). Therefore x′ = [f ′ϕf−1] ·x shows that
x and x′ are in the same orbit.

Moreover, since the Teichmüller space is topologically a ball and the mapping class
group is a discrete group acting on it via a properly discontinuous action, the moduli
space of curves inherits the structure of topological orbifold:

Definition 1.11. A n-dimensional orbifold is the datum of an Haursdorff topological
space X together with an orbifold atlas, i.e. a collection U = {(Ui, Gi, πi)} of n-
dimensional compatible orbifold charts. An orbifold chart is a 3-tuple (U,G, π) such
that:

◦ U is open in Rn;

◦ G is a finite group of homeomorphisms of U ;

12
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◦ π : U
q−→ U/G

t−→ X is the composition of q quotient map and t which induces a
homeomorphism between U/G and an open set V ⊂ X.

An embedding λ : (Ui, Gi, πi) → (Uj , Gj , πj) between two charts is a smooth embed-
ding λ : Ui → Uj such that πj ◦ λ = πi. Two charts are compatible if there exists a
chart (W,H,ϕ) with ϕ(W ) ⊂ πi(Ui) ∩ πj(Uj) and two embeddings λi,j : (W,H,ϕ) →
(Ui,j , Gi,j , πi,j).

Like a manifold, an orbifold is specified by local conditions; however, instead of be-
ing locally modelled on open subsets of Rn, an orbifold is locally modelled on quotients
of open subsets of Rn. We can think on it as manifolds with isolated singularities. This
allows to work as they were smooth.

Now we are ready to show that Riemann’s Existence Theorem works also in families.
Indeed, let us start with (m, G, θ) a datum. Fix a point [Y,y = (y1, ..., yr), [f ]] in Tg′,r,
i.e. Y is a compact Riemann surface of genus g′, y is an r-tuple of points of Y such that
yi 6= yj for all i 6= j. Moreover, choosing a point p0 ∈ Σr P , we can fix an isomorphism

Γg′,r ∼= π1(Σr P, p0).

Hence, composing with θ, we get an epimorphism

ψ : π1(Y r y, f−1(p0)) ∼= π1(Σr P, p0) ∼= Γg′,r � G.

ψ is the monodromy map associated to a Galois covering Cy → Y branched at the points
yi with local monodromy mi. Riemann-Hurwitz formula allows us to compute the genus
of Cy. Call it g. We can observe two facts:

? The curve Cy comes naturally with an isotopy class of homeomorphism to a fixed
branched cover Υ → Σ, where Υ has the same role of Σ in case of topological
surface of genus g. Thus we obtain a map Tg′,r → Tg.

? There exists a monomorphism of G into the mapping class group Mapg. In fact
G < Aut(Cy) ⊆ Diff+(Cy) � Mapg and if ϕ ∈ Aut(Cy) is such that the induced
ϕ∗ : H1(Cy,Z) → H1(Cy,Z) is the identity, then ϕ = Id (see Remark 3). Notice
that the immersion depends on θ. Hence call the image Gθ.

It turns out that the image of Tg′,r in Tg coincides with T
Gθ
g . Indeed the following holds

(see [16],[42] for a proof):

Theorem 1.3.4. T
Gθ
g is a complex submanifold of Tg of dimension 3g′ − 3 + r and it is

isomorphic to the Teichmüller space Tg′,r.

The isomorphism can be described as follows: if (C, [h]) is a curve with a marking
such that (C, [h]) ∈ T

Gθ
g , then the corresponding point in Tg′,r is [(C/G, b = (b1, ..., br), F )],

where F is the induced marking (see [42]) and b is the branch locus of the projection
map C → C/G.

13
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Remark 4. On T
Gθ
g we have a universal family C → T

Gθ
g of curves with a G-action. It is

just the restriction of the universal family on Tg.

We denote M(m, G, θ) the image of TGθ
g in Mg. It is an irreducible algebraic subva-

riety of the same dimension of TGθ
g

∼= Tg′,r, i.e. 3g′ − 3 + r. As explained in [42, p. 79]

there is an intermediate variety M̃(m, G, θ) such that the projection factors through

T
Gθ
g → M̃(m, G, θ)

ν−→ M(m, G, θ) (1.4)

The variety M̃(m, G, θ) is the normalization of M(m, G, θ) and it parametrizes (as de-
sired) Galois coverings of curves of genus g′ with datum (m, G, θ).

Hurwitz equivalence classes

Different data (m, G, θ) and (m, G, θ′) may give rise to the same subvariety of Mg. This
is related to the choice of the isomorphism π1(Σ r P, p0) ∼= Γg′,r. The change from one
choice to another can be described using an action of a "geometric" mapping class group
which takes into account the differentiable structure of the curve Σ marked in r points.

Definition 1.12. The (geometric) mapping class group is the quotient between orientation-
preserving diffeomorphisms of Σr {p1, ..., pr} and the ones isotopic to the identity:

Mapg′,[r] = Diff+(Σr {p1, ..., pr})
/
Diff0(Σr {p1, ..., pr}) .

Hence we can formulate the following:

Definition 1.13. The orbits of the action of the group Mapg′,[r]×Aut(G) (Hurwitz’s
moves) are called Hurwitz equivalence classes.

To simplify the analysis, let us focus in case of g′ = 0 and we refer to [12].

Theorem 1.3.5. The mapping class group Map0,[r] is isomorphic to the Braid group

Br := 〈σ1, ...., σr : σiσj = σjσi for |i− j| ≥ 2, σi+1σiσi+1 = σiσi+1σi〉.

This allows us to describe explicitly Hurwitz’s moves. Indeed, there exists a mor-
phism ϕ : Br → Γ0,r defined as

ϕ(σi)(γi) = γi+1, ϕ(σi)(γi+1) = γ−1
i+1γiγi+1,

ϕ(σi)(γj) = γj for j 6= i, i+ 1.

Therefore we get an action of Br on the set of data in this way :

σ · (m, G, θ) := (σ(m), G, θ ◦ ϕ(σ−1)),

where σ(m) is the permutation of m induced by σ. Moreover Aut(G) acts by

α · (m, G, θ) := (m, G, α ◦ θ).

Considering both actions, we obtain the aforementioned Hurwitz equivalence classes:
data in the same class give rise to the same subvariety M(m, G, θ) of Mg.
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1.4 Groups Representation

This section is devoted to the introduction of some basic notions in representation theory.
Everything and much more can be found in [85].

Let G be a finite group and V a K−vector space (usually the field will be Q,R or C).

Definition 1.14. A representation of G on V is a group homomorphism

ρ : G→ GL(V ).

The degree of ρ is the dimension of the vector space V .

Let ρ : G → GL(V ) and τ : G → GL(W ) be two representations of G on K−vector
spaces V and W .

A linear map f : V → W is said G-equivariant if f(ρ(g)v) = τ(g)f(v) for all g ∈ G
and v ∈ V . The set of such maps is denoted HomG(V,W ).

The representations ρ and τ are isomorphic if there exists f ∈ HomG(V,W ) which is
also a isomorphism of vector spaces.

Definition 1.15. Let us consider a subspace W ⊂ V . W is G-invariant if

ρ(g)W ⊂W ∀g ∈ G.

A representation ρ : G → GL(V ) is irreducible if there are no G-invariant subspaces
except for W = {0} or W = V .

We remark that every representation on a 1-dimensional vector space is automati-
cally irreducible. Moreover it is possible to show that every representation can be de-
composed as a (non-unique) direct sum of irreducible representations.

Lemma 1.4.1 (Schur’s Lemma). Let ρ : G → GL(V ) and τ : G → GL(W ) be two
irreducible representations of G on K−vector spaces V and W . Let f ∈ HomG(V,W ).
Then:

- f = 0 or f is an isomorphism;

- If K = C and ρ = τ then f = λ Id. Thus EndG(V ) = C.

Definition 1.16. Let ρ : G → GL(V ) be a representation of G on K−vector space V .
The character of the representation ρ is the map

χ : G→ K

g 7→ Tr(ρ(g)),

where Trρ(g)) is the trace of the linear map ρ(g) : V → V

Note that the character depends only on the isomorphism class of a representation.

15
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Proposition 1.4.2. Let ρ : G → GL(V ) and τ : G → GL(W ) be two irreducible represen-
tations of G on C-vector spaces V and W with characters χρ, χτ . Then:

∗ χρ(e) = dimV , where e is the identity element of the group;

∗ χρ(g) = χρ(hgh
−1
) for any g, h ∈ G. This implies that χ is constant on the conjugacy

classes of G;

∗ χρ(g
−1) = χρ(g);

∗ The representation ρ⊕ τ : G→ GL(V ⊕W ) has character χρ + χτ ;

∗ The representation ρ⊗ τ : G→ GL(V ⊗W ) has character χρ · χτ ;

It is possible to define a Hermitian scalar product (·, ·) on the space of C-valued
functions. In particular:

Proposition 1.4.3. Consider ρ : G→ GL(V ) and τ : G→ GL(W ) two representations of
G on V and W with characters χρ, χτ . Then

(χρ, χτ ) :=
1

|G|
∑

g∈G

χρ(g)χτ (g)

is a well-defined Hermitian scalar product on the space of characters.

The strength of this scalar product lies in the following:

Theorem 1.4.4. The irreducible characters of a group G are orthonormal with respect to
this scalar product. In fact, taking ρ : G → GL(V ) and τ : G → GL(W ) two complex
irreducible representations then:

(χρ, χτ ) = dimHomG(V,W ) =

{
1 if ρ ∼= τ

0 if ρ � τ

Therefore the characters of irreducible representations are linearly independent.
Hence we can state this fundamental result:

Theorem 1.4.5. The irreducible characters of a finite group G form an orthonormal basis
for the complex vector space of the class functions α : G→ C, i.e. maps which are constant
on conjugacy classes.

Moreover, the number of the irreducible representations of G (up to isomorphism) is
equal to the number of conjugacy classes of G.

The above results reduce the study of representations to that of their characters. A
easy consequence is the following:
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Lemma 1.4.6. Let χ1, ..., χs be the irreducible characters of a finite group G and let ρi :
G→ GL(Vi) be the corresponding complex irreducible representations. Then every complex
representation ρ : G→ GL(V ) decomposes into irreducible representations as:

V ∼= V n1
1 ⊕ V n2

2 ⊕ ...⊕ V ns
s with ni = (χρ, χi).

Moreover
(χρ, χρ) = n21 + n22 + ...+ n2s

Remark 5. This is the canonical decomposition we usually have in mind. In this sense one
can say that there is uniqueness of the decomposition of a representation into irreducible
representations.

Corollary 1.4.6.1. If χ is the character of a representation on V , then (χ, χ) is a positive
integer and (χ, χ) = 1 if and only if V is irreducible.

Proof. Indeed if
∑
n2i = 1, where ni = dimVi is the dimension of the ith-irreducible

complex representation, then all ni are equal to zero except for one among them which
is equal to 1. Hence V is irreducible.

Corollary 1.4.6.2. Every character χρ admits a decomposition of type:

χρ =
∑

i=1,....,s

niχi,

where χ1, ..., χs are the irreducible characters G.

Corollary 1.4.6.3. If G is an abelian group then dimVi = 1, ∀i.

Proof. Indeed, let
ρR : G→ C(G)

be the so-called regular representation defined on the group algebra C(G) as ρR(g)eh =
egh. Therefore (χR, χr) = |G| and if ni = dimVi then

∑
n2i = |G|. This implies ni = 1 ∀i.

In the following we will focus on our case of interest: let C be a compact Riemann
surface of genus g ≥ 2 and G a finite subgroup of Aut(C) that acts on C. Being ψ :
G→ Aut(C) the group action, we can define the representation of G associated to ψ via
pull-back of holomorphic 1-forms in the following way:

ϕ : G→ GL(H0(C, ωC))

g 7→ [ω 7→ ψ(g−1)∗ω].

Calling χϕ the associated character, we would like to study a decomposition as in Corol-
lary 1.4.6.2. Chevalley-Weil formula provides a way to compute integers ni. We will
refer to [18], [30], [31, Section 2] and [73].
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Let us denote by π : C → C/G the quotient map and suppose that an element g ∈ G
fixes a point p ∈ C. Let m be the order of g. Then the differential (dg)p acts on TpC by
multiplication by an mth root of unity which we will call ζm(p). Indeed, the action can
be linearised in a neighborhood of p using a local coordinate z, centred on p, in order to
have that g acts as z 7→ ζm(p)z.

Denote ζm = e
2πi
m , I(m) := {ν ∈ Z : 1 ≤ ν ≤ m and gcd(ν,m) = 1} and Fixν(g) :=

{p ∈ C : g · p = p and ζm(p) = ζ−νm }. Moreover let 〈xi〉 be the non trivial stabilizers of
order mi at the branch point t′is of π. Then we have the following (see [30, Theorem
V.2.9])

Theorem 1.4.7 (Eichler trace formula). Let g be an automorphism of order m > 1 acting
on C. Then:

χϕ(g) = Tr(ϕ(g)) = 1 +
∑

p∈Fix(g)

ζm(p)

1− ζm(p)
,

where Fix(g) is the set of fixed points of g.

Collecting terms with equal exponent we can restate the Eichler’s formula in the
following way:

Corollary 1.4.7.1. Keeping the same notation as before, we have the following:

χϕ(g) = 1 + |CG(g)|
∑

ν∈I(m)

(
∑

1≥i≥r,
m|mi,

g∼x
miν/m
i

1

mi

)
ζνm

1− ζνm
,

where CG(g) denotes the centralizer of g in G and ∼ the equivalence relation given by
conjugation in G.

A very important consequence of the Eichler trace formula is the Chevalley-Weil for-
mula. As said before, it gives the multiplicity of the given irreducible representation of
G on H0(C, ωC), i.e. the integral coefficients ni.

Theorem 1.4.8 (Chevalley-Weil formula, [18]). Consider a Galois cover π : C → C ′

with Galois group G and r branched points. Call ϕ a representation on H0(C, ωC). Let
m=(m1, ...,mr) be the monodromy and ρ1, ..., ρs irreducible representations of G of degree
dj with j = 1, ..., s. Moreover denote by Ei,α the number of eigenvalues of ρj(xi) equal to
ζαmi

. Then the following holds:

(χϕ, χj) = dj(g(C
′)− 1) +

r∑

i=1

mi−1∑

α=0

α · Ei,α
mi

+ (χϕ, χtriv), (1.5)

where χtriv is the trivial character.
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1.4.1 Galois action on irreducible complex characters

Let us consider a finite groupG and let ρi : G→ GL(Vi), i = 1, ..., r be the corresponding
complex irreducible representations with characters χ1, ..., χr. As G is finite, each g ∈ G
has finite order and the same occurs for ρi(g). Therefore the eigenvalues of ρi(g) are
roots of unity and χi(g) is an element of the cyclotomic field Q(ξN ). Here we denote
with N the cardinality of the group G and with ξN a primitive N−root of the unity.

Q(ξN ) is a Galois extension of Q with Galois group GalN :=
(
Z /NZ

)∗.

Definition 1.17. The character field of ρj is

Kj := Q(χj(g))g∈G.

It is the field obtained extending the rational numbers by the values of the character χj .

As Kj is Galois over Q, we have kj := [Kj : Q] = |Gal(KJ/Q)|. This Galois group
acts on the set of irreducible complex characters of G. For σ ∈ Gal(KJ/Q) we define

σ(χj) : G→ Kj , σ(χj)(g) := (χj(g))
σ.

Call
{V σ

j , σ ∈ Gal(KJ/Q)}
the Galois orbit of Vj .

Remark 6. Using character theory it is possible to show that σ(χj) is the character of an
irreducible complex representation of the same dimension of Vj .

Definition 1.18. The Schur index of Vj is the smallest positive integer sVj such that there
exists a field extension LVj of Kj of degree sVj over which Vj can be defined.

One can show that sVj divides the dimension of Vj . Therefore, in case of abelian
groups, Schur indices of irreducible complex representations are always equal to 1. It is
possible to show that the same occurs considering Dihedral groups Dn.

Theorem 1.4.9. LetG be a finite group and consider {V1, ..., Vr} a set constructed by taking
one representative from each Galois orbit of all the complex irreducible representations of
G. Then for each rational irreducible representation U of G there exist one Vj satisfying:

U ⊗Q C ∼=
sj⊕

i=1

⊕

σ∈Gal(KJ/Q)

V σ
j , (1.6)

where sj denotes the Schur index of Vj . Conversely for every Vj in a Galois orbit, the rhs of
(1.6) is the complexification of a rational irreducible representation of G.
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CHAPTER 2

Infinitely many Shimura Curves in Genus g ≤ 4

In this chapter, we discuss the existence of infinitely many new examples of Shimura
subvarieties contained in the Torelli locus which arise studying the fibres (or, better,
their irreducible components) of two fibrations appropriately introduced. Sometimes
we will refer to Shimura subvarieties as “special” subvarieties. This is done according to
the literature.

We will work in this setting: Mg is the moduli space of smooth projective curves of
genus g, Ag is the moduli space of principally polarized abelian varieties of dimension g
and j : Mg → Ag is the Torelli map. Its image T 0

g := j(Mg) is known as the Jacobian
locus. We will look at its closure in Ag and we will denote it by Tg.

Our goal is to study the geometric properties of this locus with respect to the symmet-
ric structure that Ag inherits from the Siegel space (of which Ag is the quotient through
the action of the group Sp(2g,Z)). One expects the Torelli locus to be "very curved" with
respect to this locally symmetric ambient space.

This is the leitmotiv which led to the formulation of:

Conjecture 2.1 (Coleman-Oort). For large g there are no Shimura subvarieties of posi-
tive dimension generically contained in Tg.

A subvariety Z ⊆ Ag is generically contained in Tg if

Z ⊆ Tg and Z ∩ T 0
g 6= ∅.

Furthermore, a subvariety Z ⊆ Ag is special if it is a totally geodesic subvariety with
an extra arithmetic condition that we will explain later.

All the examples of totally geodesic subvarieties known so far are in genus g ≤ 7 and
they are constructed in this way: consider a family of Galois covers f : C → C ′, where
the genera g, g′, the number of ramification points and the monodromy are fixed. Let
this family be parametrized by M (as described in Section 1.3.3) and let Z be the closure
of j(M) in Ag. Then the numerical condition

dim(Sym2H0(ωC))
G = dimH0(ω⊗2

C )G = dimZ (∗)
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is sufficient to make Z a special subvarieties of Ag generically contained in Tg.

Here we show that condition (∗) is very strong when g′ > 0, indeed we show that
there are only 6 families of Galois covers of elliptic curves which satisfy (∗) and hence
which yield Shimura subvarieties. For g′ > 1 no examples can exist.

Having these examples in mind, we prove a theorem which allows us to pass from
local isogenies (defined between Jacobians of two different subloci of Sg) to a global
isogeny (under some assumption that we will explain). Then we apply this tool to study
the fibres of two morphisms defined on M and we show that there exist global isogenies
with certain totally geodesic subvarieties of Ag. This yields infinitely many new exam-
ples of totally geodesic subvarieties of Ag, countably many of which are Shimura.

The chapter is organized as follows.
In Section 2.1 we give some preliminaries on symmetric spaces and we introduce the

concept of totally geodesic subvarieties and we explain why their existence is expected
in an ambient space which has a symmetric structure.

In Section 2.2 we focus on a particular symmetric domain, the Siegel space, which we
describe accordingly. Moreover, we explain a technique which compares two different
totally geodesic submanifolds of two Siegel spaces.

In Section 2.3 we introduce Shimura subvarieties with their geometric and arithmetic
properties, in particular we deal with Shimura varieties of PEL type. Then we show
how the condition (∗) implies that a family of Galois covers yields a special subvariety
following [32] and [36]. In particular, we give the complete list of Galois covers of
elliptic curves satisfying the condition as presented in [36]. Moreover, we prove that
(∗) gives a bound on the genus g′ of curves which occur in families of coverings which
satisfy (∗). Finally, we use the six families of [36] to show that they admit two fibrations
in totally geodesic subvarieties. Therefore we get infinitely many new examples.

In Section 2.4 we describe the inclusions among families of [32] and of [36]. In or-
der to do so we describe several features of these families and we show that sometimes
they occur as fibres of the two fibrations previously introduced.

2.1 Symmetric Spaces

The definition of a general (i.e. not necessarily Riemannian) symmetric space is obtained
from the definition of Riemannian symmetric space by dropping the request that the
connection is compatible with a Riemannian metric.

In the following, we will consider a differentiable manifold M with an affine connec-
tion ∇, i.e. a linear connection on TM . As Riemannian geometry, with the aid of ∇ one
can define geodesics, exponential maps, completeness and curvature.

A diffeomorphism f : M → M is an affine transformation if it preserves the connec-
tion [53, vol. I, p. 225]. A non-trivial theorem proves that the group Aff(M) of all affine
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transformations of M is a Lie group acting smoothly and transitively on M (see e. g.
[53, vol. I, p. 229]).

Definition 2.1. (M,∇) is a symmetric space if

∗ ∇ is symmetric i.e. the torsion tensor T satisfies T (∇) = 0;

∗ M is connected;

∗ M is complete with respect to ∇;

∗ for each point x ∈ M there is a symmetry at x, i.e. an affine transformation
sx :M →M such that sx(x) = x and (dsx)x = − IdTxM .

A Riemannian Manifold (M, 〈 , 〉) is locally symmetric if for every point x ∈ M
the symmetry sx is defined on a geodesic ball centred on x. As in the Riemannian case,
there is a local version of the last condition of Definition 2.1 for a differentiable manifold
(M,∇). It corresponds to require ∇R = 0, where we denote with R the curvature tensor.

Simple consequences are collected, without proof, in the following:

Proposition 2.1.1. Take (M,∇) a symmetric space.

~ If γ is a geodesic with γ(0) = x, then sx(γ(t)) = γ(−t).

~ ∀ x, y ∈M there exists a symmetry σ :M →M such that σ(x) = y.

~ If M is homogeneous1 and there exists a symmetry at one point then M is symmetric.

The Definition (2.1), together with the above Proposition, tells us that for every point
x in a symmetric space there exists a symmetry sx which "flips" geodesic starting in x.

Remark 7. Note that is always possible to define the required sx on a normal ball as
sp(exp(tv)) = exp(−tv). In a symmetric space the condition is stronger since sx is
required to be a symmetry for every x.

Assume that (M,∇) is a symmetric space and letG := Aff0(M) denote the connected
component of the identity. Therefore G is the identity component of a Lie group whose
action on M is transitive. Thus also its action is transitive on M . This implies the
following:

Proposition 2.1.2. Take a point x ∈ M and H := Gx, its stabilizer. Then the map
G/H →M , which sends gH to g ·p, is a diffeomorphism. Therefore a symmetric space may
be written as a homogeneous space G/H.

1A smooth manifold M endowed with a transitive, smooth action by a Lie group G is called homogeneous
space.
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Now fix a point x ∈M and define an involutive automorphism of G as:

σ : G→ G

g 7→ sx ◦ g ◦ sx
If we set Gσ = {g ∈ G : σ(g) = g} and we let Gσ0 be its component of the identity, then

Gσ0 ⊆ H ⊆ Gσ.

σ is usually called Cartan involution.

Conversely, assume that (G,H, σ) is a symmetric triple, i.e. G is a connected Lie
group, σ is an involutive automorphism of G and H is a closed subgroup lying between
Gσ and its component of the identity. The following holds:

Proposition 2.1.3. M := G/H is a reductive homogeneous space. It admits the so-
called canonical connection ∇ which has T = 0 and ∇R = 0. Moreover, it is the unique
connection on G/H which remains invariant by the symmetries of M .

For a proof see [53, vol. II, ch. X].

Every symmetric space gives rise to a symmetric triple of the Lie algebra (g, h, σ),
where g, h are the Lie algebras of G and H, respectively, and σ is the automorphism of g
induced by the homonymous on G.
Since σ is involutive its eigenvalues are +1 and -1 and h is the eigenspace of 1. Then if
m := {X ∈ g : dσ(X) = −X} we get

g = h⊕m

This is called the canonical decomposition of (g, h, σ) .
It is possible to show the existence of an isomorphism:

m ∼= ToM, X 7→ d

dt

∣∣∣∣
t=0

exp(tX) · o. (2.1)

2.1.1 Totally geodesic subvarieties

Suppose to start with (M,∇), a manifold with an affine connection and consider M ′ ⊂
M a submanifold with the induced connection ∇′. This gives us the following exact
sequence of tangent bundles:

0 → TM ′ → TM |M ′

π−→ N → 0,

where N := TM |M ′ /TM ′ is the normal bundle.
The second fundamental form is defined as:

II : TM ′ × TM ′ → N

(X,Y ) 7→ π(∇XY ).
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Remark 8. If ∇ is symmetric, and this will be the case in our following analysis, then
II ∈ Γ(Sym2T ∗M ′ ⊗N). Therefore its dual map will be defined as:

II∗ = ρ : N∗ → Sym2T ∗M ′.

Definition 2.2. A submanifold M ′ of M is totally geodesic if every geodesic in M ′, with
respect to ∇′, remains a geodesic in M , with respect to ∇.

Proposition 2.1.4. The following are equivalent:

1. (M ′,∇′) is totally geodesic in (M,∇);

2. II ≡ 0.

Proof. Clearly 2. ⇒ 1. To prove that 1. ⇒ 2. we need to show that II(X,Y ) = 0 for
every X,Y ∈ Γ(TM ′). Take p in M ′ and choose local coordinates (x1, ..., xm) in a
neighborhood V of the point such that U = {x ∈ M : xm′+1(x) = ... = xm(x) = 0}
together with (x1, ..., xm′) gives a local chart for p ∈ M ′. Using these coordinates we
have:

X =
m′∑

i=1

xi
∂

∂xi
Y =

m′∑

i=1

yi
∂

∂xi
.

Therefore:

∇XY =
m′∑

i=1

xi∇ ∂
∂xi

( m′∑

j=1

yj
∂

∂xj

)
=

m′∑

i,j=1

xiyj∇ ∂
∂xi

∂

∂xj
+

m′∑

i,j=1

xi
∂yj

∂xj

∂

∂xj
=

=
m′∑

i,j=1

xiyj
( m∑

k=1

Γkij
∂

∂xk

)
+

m′∑

i,j=1

xi
∂yj

∂xj

∂

∂xj

where Γkij are the Christoffel-symbols of ∇. Using the assumptions we conclude, i.e. we
prove that Γkij = 0 for 1 ≤ i, j ≤ m′ and m′ + 1 ≤ k ≤ m. In fact, if γ : I → M ′, in local
coordinates t 7→ (x1(t), ..., xm′(t)), is a geodesic for ∇′, it satisfies

∂2xk

∂t2
+

m′∑

i,j=1

Γkij
∂xi

∂t

∂xj

∂t
= 0 ∀ k = 1, ...,m′. (2.2)

Condition 1. says that the curve t 7→ (x1(t), ..., xm′(t), 0, ..., 0) automatically satisfies
(2.2) for k = 1, ...,m. Therefore we get what expected.

Note that condition 2. tells us that ∇′ is just the restriction of ∇ applied to fields in
Γ(TM ′).

In case of a symmetric space we have the following important
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Proposition 2.1.5. Let us take a Riemannian symmetric space (M,∇) and consider a
submanifold M ′ such that sx(M ′) = M ′ for every x ∈ M . Then M ′ is a totally geodesic
submanifold of M and it is itself symmetric.

Proof. We would like to show that II ≡ 0. By definition sx preserves the connection
and, since on the tangent space it is equal to −Id, it preserves TxM ′ and the orthogonal
component too. Thus it preserves II. Using the fact that an odd-order sx-invariant
tensor is identically equal to 0 we conclude. By restriction sx|M ′ we get its properties as
symmetric space.

Remark 9. This Proposition tells us that we should expect the existence of a lot of totally
geodesic subvarieties contained in Riemannian symmetric spaces. A very enlightening
example is given thinking on Euclidean spaces where totally geodesic submanifolds are
affine subspaces.

In a symmetric space M = G/H totally geodesic submanifolds are related to sub-
spaces of the Lie algebra g of G. Let’s try to clarify this characterization.

Definition 2.3. Let (G,H, σ) be a symmetric triple. A subtriple is a triple (G′, H ′, σ′)
with G′ a connected Lie subgroup of G invariant by σ, H ′ = G′ ∩H and σ′ := σ|G′ .

A subtriple is automatically a symmetric triple: the symmetry sx of M at a point x of
M ′ restricts to a symmetry of M ′.

Theorem 2.1.6. Let (G,H, σ) be a symmetric triple and let (G′, H ′, σ′) be a subtriple.
Then:

1> the inclusion G′ ⊂ G induces a natural embedding

G′/H ′ ∼=M ′ := G′ · o ⊂M = G/H

and M ′ is a totally geodesic submanifold of M . Moreover the canonical connection of
M restricts to the canonical connection of M ′;

2> Conversely set o := [H] in M = G/H and let M ′ ⊂ M be a complete and connected
totally geodesic submanifold of M . Set G′′ = {g ∈ G : g(M ′) = M ′}. Then G′′ is a
Lie subgroup of G. Let G′ denote the identity component of G′′. Then G′ is invariant
by σ, so (G′, H ′ := H ∩G′, σ′ := σ|G′) is a subtriple and M ′ = G′/H ′;

3> If M ′ ⊂ M is a totally geodesic submanifold through o, then via (2.1) we have
ToM

′ ∼= m′ for a Lie triple system m′, i.e. for a vector subspace m′ ⊂ m satisfying
[[m′,m′],m′] ⊂ m′.

See [53, vol. II, p. 234-237] for a proof.
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2.2. Siegel Space

2.2 Siegel Space

This section is devoted to the definition of the Siegel space and to the description of
some of its properties.

Set V := R2g and define

C(V ) := {J ∈ EndV : J2 = − IdV }. (2.3)

This set is invariant by the adjoint action of GL(V ) on EndV .
Let VJ denote the complex vector space with underlying real space V and complex

multiplication defined by i · v := Jv, with J ∈ C(V ). As usual, extending J for C-
linearity, we get an endomorphism J : VJ → VJ with eigenvalues ±i. Then we have the
well-known decomposition

VJ = V 1,0
J ⊕ V 0,1

J .

Remark 10. C(V ) is a complex manifold: indeed the map J 7→ V 0,1
J is a diffeomorphism

of C(V ) onto the set Ω := {W ∈ G(g, VC) : W ∩W = {0}}, which is an open subset
of the Grassmannian in the analytic topology. It is not Zariski open (already in case
g = 1), since its complement is not analytic. Hence C(V ) is a complex manifold not
quasi-projective.

Let J, J ′ be points of C(V ). Fix bases {ei} and {e′i} of VJ and VJ ′ respectively. Thus

VJ = 〈e1, . . . , eg, Je1, . . . , Jeg〉

and the same holds for
VJ ′ = 〈e′1, . . . , e′g, J ′e′1, . . . , J

′e′g〉.
Hence there is a unique map a ∈ GL(V ) such that

a(ei) = e′i and a(Jei) = J ′e′i.

It follows that aJ = J ′a, i.e. Ad a(J) = J ′. This shows that the action of GL(V ) on
EndV is transitive. Therefore:

C(V ) ∼= GL(V )
/
GL(VJ)

2

Thus C(V ) is a manifold with two connected components. The connected component
containing J is the orbit GL+(V ) · J ∼= GL+(V )/GL(VJ).

Fix J ∈ C(V ) and consider the automorphism

σJ : GL(V ) → GL(V ), σJ(a) := Ad J(a) = −JaJ.

Since J2 = − IdV , σJ is involutive and GL(VJ) is its fixed point set. This proves the
following:

2Here we are using the following GL(V )J = {a ∈ GL(V ) : aJ = Ja} = GL(VJ)

27



Chapter 2. Infinitely many Shimura Curves in Genus g ≤ 4

Proposition 2.2.1. The connected component of C(V ) containing J is the symmetric space
associated with the symmetric triple (GL+(V ),GL(VJ), σJ)

Remark 11. It is possible to replace GL+(V ) with SL(V ) and (consequently) GL(VJ)
with the stabilizer of J in SL(V ), that is SL(V )∩GL(VJ). Since SL(V ) is simple, Theorem
3.4 of [53, vol. II, p. 232] implies that this space admits a symmetric pseudo-Riemannian
metric. Moreover, since the induced stabilizer is non-compact, this symmetric space is
not Riemannian.

In the following we will often refer to C(V ) as a symmetric space, even tough this is
has been showed to be true only for its connected components.

Now we are ready for the introduction of the main character of this section: the
Siegel space.

Definition 2.4. A real 2g−dimensional symplectic vector space is the datum of a vector
space V (of dimension 2g) together with a symplectic form ω ∈ Λ2V ∗, i.e. a map
ω : V × V → R which is bilinear, alternating and non-degenerate.

Lemma 2.2.2. Let (V, ω) a symplectic vector space and let J ∈ C(V ). The following are
equivalent:

1. J∗ω = ω, that is ω(Jx, Jy) = ω(x, y) ∀x, y ∈ V ;

2. ω(Jx, y) + ω(x, Jy) = 0 ∀x, y ∈ V ;

3. gJ := ω(·, J ·) is symmetric.

Definition 2.5. The Siegel space associated to the symplectic pair (V, ω) is:

S(V, ω) := {J ∈ C(V ) : J∗ω = ω, gJ is positive definite}.

Remark 12. It is possible to show that there exists a basis for V (known as symplectic
basis ) V = 〈e1, ..., eg, eg+1, ..., e2g〉 such that

ω(ei, ej+g) = δij , ω(ei, ej) = ω(ei+g, eg+j) = 0, 1 ≤ i, j ≤ g.

This basis is very useful to show that S(V, ω) 6= ∅. Indeed if we define:

{
Jei = eg+i

Jeg+i = −ei

we immediately obtain J ∈ S(V, ω) 6= ∅.

Proposition 2.2.3. The Siegel space S(V, ω) is a totally geodesic submanifold of C(V ). It
is itself a symmetric space and in fact a Riemannian one.
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Proof. Fix J ∈ S(V, ω). Then Sp(V, ω) := {L ∈ GL(V ) : L∗ω = ω} is invariant by σJ ,
since σJ = Ad J and J ∈ Sp(V, ω). Set

G′ := Sp(V, ω), H ′ := G′ ∩GL(VJ) and σ′J := σJ |G′ .

Then (G′, H ′, σ′J) is a subtriple of (GL+(V ),GL(VJ)∩GL+(V ), σJ). Hence, by Theorem
2.1.6, S(V, ω) = G′/H ′ is totally geodesic submanifold and also a symmetric space itself.

Now consider on VJ the Hermitian product

HJ(x, y) := gJ(x, y)− iω(x, y).

Then H ′ is the unitary group U(VJ , HJ). Since this is a compact group the symmetric
space S(V, ω) is Riemannian, see [48, p. 209].

2.2.1 Families of Isogenous Abelian Varieties

Set Λ := Z2g. As usual if F ⊂ C is a field we set ΛF := Λ ⊗Z F . Therefore V = ΛR and
T := V/Λ is a real torus of dimension 2g. Since the tangent bundle to T is trivial, any
J ∈ C(V ) yields a complex structure on T . We denote TJ the complex torus obtained in
this way.

Any complex torus of dimension g is isomorphic to TJ for some J . In this sense C(V )
is a parameter space for g-dimensional complex tori.

General theory on complex tori guarantees that if f : TJ → TJ ′ is an isomorphism,
then f lifts to an isomorphism

a : V
∼=−→ V such that a(Λ) = Λ and Ad a(J) = J ′.

Hence:

Proposition 2.2.4. TJ and TJ ′ are isomorphic if and only if there is a ∈ GL(Λ) such that
Ad a(J) = J ′.

More generally let us consider an isogeny f : TJ → TJ ′ , i.e. a surjective morphism
with finite kernel. Then f lifts to a linear map a : V → V of maximal rank, hence
invertible, such that J ′a = aJ (i.e. f is holomorphic) and a(Λ) ⊂ Λ. It follows that
a ∈ GL(ΛQ).

Conversely, given a ∈ GL(ΛQ) such that J ′a = aJ , multiplying a by an appropriate
positive integer m, we get a linear map m · a : V → V such that m · a(Λ) ⊂ Λ. This
induces a surjective holomorphic morphism f : TJ → TJ ′ , which is an isogeny. Therefore
we can say that:

Proposition 2.2.5. TJ is isogenous to TJ ′ if and only if there is a ∈ GL(ΛQ) such that
Ad a(J) = J ′.

Let us consider analytic subset of C(V ). We have the following:
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Lemma 2.2.6. Let Z1, Z2 ⊂ C(V ) be irreducible analytic subsets. Let Ω be a non-empty
open subset of Z1. Assume that for any J1 ∈ Ω there is some J2 ∈ Z2 such that TJ1 is
isogenous to TJ2 . Then there is a ∈ GL(ΛQ) such that Ad a(Z1) ⊂ Z2.

Proof. Given a ∈ GL(ΛQ), let Γa ⊂ C(V )× C(V ) denote the graph of Ad a:

Γa = {(J, J ′) ∈ C(V )× C(V ) : J ′ = Ad a(J)}.

If πj : C(V )× C(V ) → C(V ) denotes the projection on the j-th factor, the assumption is
equivalent to saying that

Ω ⊂
⋃

a∈GL(ΛQ)

π1(Γa ∩ π−1
2 (Z2)).

Indeed, if J1 ∈ Ω, there is J2 ∈ Z2 such that TJ1 and TJ2 are isogenous, i.e. there is
a ∈ GL(ΛQ) such that (J1, J2) ∈ Γa.

For each a ∈ GL(ΛQ) the intersection Γa ∩ π−1
2 (Z2) is an analytic subset, so we can

find a sequence {Ka,i}i∈N of compact subsets of C(V )× C(V ) such that

Γa ∩ π−1
2 (Z2) =

∞⋃

i=1

Ka,i.

Then

Ω =
⋃

a,i

Ω ∩ π1(Ka,i).

Since Ka,i is compact, the set Ω ∩ π1(Ka,i) is closed in Ω. As i and a vary in countable
sets, Baire theorem [13, p. 57] implies that there are i and a such that π1(Ka,i) contains
an open subset U of Ω. The set U is clearly open also in Z1 and satisfies U ⊂ π1(Γa ∩
π−1
2 (Z2)). This means that if J ∈ U , there is J ′ ∈ Z2 such that (J, J ′) ∈ Γa. In other

words Ad a(J) ∈ Z2 for any J ∈ U .
Hence, setting f = Ad a : C(V ) → C(V ), we have f(U) ⊂ Z2. Therefore f−1(Z2) ∩ Z1 is
an analytic subset of Z1, which contains the open subset U ⊂ Z1. By the Identity Lemma
[43, p. 167] this implies that f−1(Z2) ∩ Z1 = Z1 i.e. f(Z1) ⊂ Z2.

Now we reformulate the previous Lemma at the level of the Siegel space S(V, ω).

Proposition 2.2.7. Let ω1, ω2 be symplectic forms on V . Assume that Z1 is an irreducible
analytic subset of S(V, ω1) and that Z2 is a totally geodesic submanifold of S(V, ω2). Let
Ω be a non-empty open subset of Z1 with the property that for any J1 ∈ Ω there is some
J2 ∈ Z2 such that TJ1 is isogenous to TJ2 . Assume moreover that dimZ1 = dimZ2.
Then there is a ∈ GL(ΛQ) such that Ad a(Z1) = Z2. Moreover Z1 is a totally geodesic
submanifold of S(V, ω1).
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Proof. By Lemma 2.2.6 there is a ∈ GL(ΛQ) such that Ad a(Z1) ⊂ Z2.
Since Z2 is irreducible, any proper analytic subset of Z2 is nowhere dense in Z2, see

e.g. [43, p. 168]. Since dimZ1 = dimZ2 = n we conclude that Ad a(Z1) = Z2. This
proves the first assertion.

By assumption Z2 is totally geodesic in S(V, ω2) and Proposition 2.2.3 asserts the
same for S(V, ω2) in C(V ). Thus Z2 is totally geodesic in C(V )3. Since, by assumption,
Z1 ⊂ S(V, ω1) and Ad a is an affine transformation of C(V ), we obtain that Z1 is in fact
a totally geodesic submanifold of S(V, ω1), as desired.

The following definition goes back to Moonen [67].

Definition 2.6. Let ω be a polarization of type D and denote by π : S(V, ω) → AD
g the

canonical projection. A totally geodesic subvariety of AD
g is a closed algebraic subvariety

W ⊂ AD
g , such that W = π(Z) for some totally geodesic submanifold Z ⊂ S(V, ω).

We wish to prove an analogue of Proposition 2.2.7 for subvarieties of Ag instead of
Sg. A difficulty in passing from Sg to Ag comes from the fact that the map π : Sg → AD

g

is of infinite degree and ramified.
The strategy is to factor π as an unramified covering of infinite degree followed by a

finite map. This “descends” Proposition 2.2.7 to Ag.

Lemma 2.2.8. Let X,Y, Z be reduced complex analytic spaces. Let p : X → Y be an
unramified covering and let q : Y → Z be a finite Galois covering. If Z ′ ⊂ Z is an
irreducible analytic subset andX ′ is an irreducible component of (qp)−1(Z ′), then qp(X ′) =
Z ′.

Proof. Let {Yi} be the irreducible components of q−1(Z ′). We claim that q(Yi) = Z ′ for
each i. Since q is a finite map each q(Yi) is an analytic subset of Z ′. Obviously

Z ′ = qq−1(Z ′) = ∪iq(Yi).

By Baire’s theorem there is some i0 such that q(Yi0) has non-empty interior, therefore
Z ′ = q(Yi0). Since q : Y → Z is a Galois cover with finite Galois group G, it follows that
q−1(Z ′) = G · Yi0 , so we have

Yi = g · Yi0 ∀ i and for some g ∈ G ⇒ q(Yi) = q(Yi0) = Z ′.

This proves the claim.
Now fix a point x of X ′ that does not lie in any other irreducible component of

(qp)−1(Z ′). Since p(X ′) ⊂ q−1(Z ′) and X ′ is irreducible, p(X ′) is contained in a unique
irreducible component Y ′ of q−1(Z ′). By the above q(Y ′) = Z ′. To conclude it is enough
to show that p(X ′) = Y ′.

3Indeed suppose (M, g) a Riemannian manifold with M ′ ⊂ M a totally geodesic submanifold. If M ′′ is
a submanifold of M ′, then M ′′ is totally geodesic in M if and only if it is totally geodesic in M ′.

31



Chapter 2. Infinitely many Shimura Curves in Genus g ≤ 4

Set y := p(x) ∈ Y ′. Let u : Ỹ ′ → Y ′ be the universal cover. Fix ỹ ∈ u−1(y). By the
lifting theorem there is a holomorphic map f̃ : (Ỹ ′, ỹ) −→ (X,x) such that pf̃ = f := iu,
where i : Y ′ → Y denotes the inclusion. Since Y ′ is irreducible, also Ỹ ′ is irreducible,
hence f̃(Ỹ ′) is contained in a unique irreducible component, which is necessarily X ′

(because f̃(ỹ) = x). So f̃(Ỹ ′) ⊂ X ′. It follows that Y ′ = iu(Ỹ ′) = f(Ỹ ′) = pf̃(Ỹ ′) ⊂
p(X ′).

On the other hand we have p(X ′) ⊂ Y ′ by construction. Hence p(X ′) = Y ′, as
desired.

Proposition 2.2.9. Let ω be a symplectic form of type D. Denote by π : S(V, ω) → AD
g the

canonical projection. If W ⊂ AD
g is an irreducible analytic subset, then for any irreducible

component Z of π−1(W ) we have π(Z) =W .

Proof. The polarization ω is a non-degenerate alternating form ω : Λ2(Λ) → Z of type
D = (d1, ..., dg), where d1|d2|...|dg. Let n be a natural number such that (dg, n) = 1.

Consider a symplectic level n structure, i.e. a symplectic isomorphism of the set of
n-torsion points A[n] of A = V/Λ with (Z/nZ)2g. Denote by ΓD(n) the subgroup of the
automorphisms of the pair (Λ, ω) which induces the trivial action on Λ/nΛ. If n is large
enough with respect to the polarisation D, then the quotient

S(V, ω)
/
ΓD(n) =: AD,(n)

g

is smooth and the map p : S(V, ω) → AD,(n)
g is a topological covering (cf. e.g. [39]).

Thus π factors through the topological covering p : S(V, ω) → AD,(n)
g and a finite Galois

covering q : AD,(n)
g → AD

g . The result follows from Lemma 2.2.8.

Theorem 2.2.10. Let D1 and D2 be types of g-dimensional abelian varieties. Let W1 ⊂
AD1
g and W2 ⊂ AD2

g be irreducible analytic subsets. Assume that there is a non-empty
subset U of W1 such that

(1) U is open in the complex topology,

(2) any [A1] ∈ U is isogenous to some [A2] ∈W2.

Then dimW1 ≤ dimW2.
Moreover if dimW1 = dimW2 and W2 is a totally geodesic subvariety, then W1 also is

totally geodesic.

Proof. Denote by πi : S(V, ωi) → ADi
g the canonical projections.

Let Zi be an irreducible component of π−1
i (Wi). By Proposition 2.2.9 πi(Zi) = Wi.

Set Ω := Z1∩π−1
1 (U). Clearly for any J1 ∈ Ω there is some J2 ∈ Z2 such that TJ1 and TJ2

are isogenous. By Lemma 2.2.6 there is a ∈ GL(ΛQ) such that Ad a(Z1) ⊂ Z2. Hence

dimW1 = dimZ1 ≤ dimZ2 = dimW2.
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By Definition 2.6 we can assume that Z2 ⊂ S(V, ω2) is a totally geodesic submanifold.
Proposition 2.2.7 implies that Z1 is totally geodesic, hence the second assertion.

2.3 Special Subvarieties of Ag

In this section we discuss the notion of special subvarieties or Shimura subvarieties of Ag.
Since the abstract formalism of Shimura subvarieties is rather cumbersome, we will give
a brief introduction functional to our purposes. Then, concretely, we will work with
equivalent definitions which make the machinery easier to be understood. In particu-
lar we will focus on the geometric characterization of Shimura subvarieties as totally
geodesic subvarieties of Ag admitting a complex multiplication point. Moreover we will
deal with a particular class of Shimura subvarieties, PEL Shimura subvarieties, that we
will describe accordingly.

Special subvarieties are the Hodge loci of certain natural variations of Hodge struc-
tures. In the following we will give some sketch about this approach, mainly referring
to very good surveys [70] and [40].

Let us start taking J ∈ S(V, ω) and denoting with AJ the complex torus obtained
as V/Λ (where Λ ∼= Z2g is such that ΛR = V ). AJ is a complex torus with complex
structure J and polarization ω.

Definition 2.7. A rational Hodge Structure of weight k is the datum of:

1. A finite dimensional Q−vector space H;

2. A decomposition of HC =
⊕

p+q=kH
p,q such that Hq,p = Hp,q.

An equivalent definition is obtained by replacing the direct sum decomposition of
H by the Hodge filtration, a finite decreasing filtration of H by complex subspaces F pH
such that:

∀p, q : p+ q = k, F pH ∩ F qH = 0 and F pH ⊕ F qH = H.

In this case

Hp,q = F pH ∩ F qH and F pH =
⊕

i≥p

H i,k−i.

Definition 2.8. A variation of Hodge structure (VHS) of weight k on a complex manifold
X consists of a locally constant sheaf H together with a decreasing Hodge filtration F p

on H = H⊗OX , subject to the following two conditions:

1. The filtration induces a Hodge structure of weight k on each stalk Hx of the sheaf
H;

2. (Griffiths transversality) The natural connection on H maps F p into F p−1 ⊗ Ω1
X .
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Once the lattice Λ ⊂ V has been fixed there is a natural (and tautological) variation
of Hodge structure on S(V, ω): take the constant lattice Λ and for J ∈ S(V, ω) consider
the Hodge structure of weight 1 (Λ, V 1,0

j ). This variation of Hodge structure descends to
an (orbifold) variation of Hodge structure of Ag whose fibre over Aj is H1,0(AJ).

Definition 2.9. A special subvarieties or Shimura subvarieties of Ag is a Hodge locus of
the natural variation of Hodge structure described above.

The zero dimensional special subvarieties are called CM-points: they correspond to
abelian varieties endowed with a very rich endomorphism algebra. Indeed, we have the
following:

Definition 2.10. A ∈ Ag is a complex multiplication point if A = A1 × ...×An satisfies

EndQ(A) := End(A)⊗Q ⊃ K1 × ...×Kn,

with
Ki ⊂ EndQ(Ai) such that [Ki : Q] ≥ 2gi, where gi = dim(Ai).

In case A simple abelian variety, this is the same to ask that EndQ(A) is a quadratic
extension of a totally real field. For instance, in case g = 1, abelian varieties whose
lattices are Z[i

√
n], with n ∈ N, are CM-points.

We have the following result (see [70] for details):

Proposition 2.3.1. Special subvarieties of Ag contain a subset of CM points which is dense
for the Zariski topology.

This arithmetic tool is particularly useful for our purposes: it makes possible the
geometric characterization of Shimura varieties that we will use. Indeed, it is proved in
[67] that:

Theorem 2.3.2 (Moonen). An algebraic totally geodesic subvariety of Ag is special if and
only if it is totally geodesic and contains a CM point.

From now on we will refer to this Theorem as our definition of Shimura subvarieties,
i.e. totally geodesic subvarieties of Ag with an extra arithmetic condition.

2.3.1 Special Subvarieties of Ag Generically Contained in Tg
In this section we focus on Shimura subvarieties of Ag which are generically contained
in the Jacobian locus. We will shortly explain what we are looking for.

Let us recall from Chapter 1 that the Torelli map j : Mg → Ag associates to the
point [C] ∈ Mg the moduli point of its Jacobian variety JC together with the principal
polarization induced from the intersection form. Set T 0

g := j(Mg) and call it the open
Torelli locus (sometimes also referred as Jacobian locus). The closure of T 0

g in Ag is the
Torelli locus and it is denoted by Tg.

Working over C, both Mg and Ag can be provided with the structure of complex
analytic orbifolds. We have the following:
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Theorem 2.3.3 (Oort-Steenbrink, [78]). The restriction of j to the set of non-hyperelliptic
curves is an (orbifold) immersion.

Moreover we recall that Sg is an irreducible Hermitian symmetric space and hence
it induces a locally symmetric geometry on Ag. In particular, if M∗

g denotes the com-
plement of the hyperelliptic locus, it becomes natural to study the extrinsic geometry of
j(M∗

g) as suborbifold of the Riemannian orbifold Ag.
This study is still largely open. The rough idea behind these results is that j(M∗

g)
should be “very curved” inside Ag. In other words the geometry of the Torelli locus is
expected to be “complicated”. A way to explain this is the study of totally geodesic sub-
varieties: while Ag has a lot of totally geodesic submanifold (since it is a local symmetric
domain), we cannot think the same for j(M∗

g). The analogous statement for a surface
in a 3-space is that the surface shouldn’t contain too many lines.

This is the geometrical interpretation of:

Conjecture 2.2 (Oort, [77]). For large g (in any case g ≥ 8), there does not exist a
special subvariety Z ⊂ Ag with dim(Z) ≥ 1 and such that Z ⊆ Tg and Z ∩ Tg is non-
empty (this corresponds to ask Z “generically contained” in Tg).

The arithmetical side of this conjecture refers to

Conjecture 2.3 (Coleman, [20]). For large g there are only finitely many non-singular
projective curves C, up to isomorphism, of genus g and such that the Jacobian JC is a
CM abelian variety.

We remark that the assumption g ≥ 8 is due to the existence of counterexamples in
case g ≤ 7.

In this thesis we will address special subvarieties of Tg which are of PEL type. The
name is due to the fact that PEL special subvarieties have a modular interpretation in
terms of abelian varieties with a Polarization, given Endomorphisms and a Level struc-
ture.

We define PEL subvarieties as follows (see [70, section 3.9] ):

Definition 2.11. Fix a point J0 in S(V, ω) and set

D := EndQ(AJ0) := {f ∈ EndQ(ΛQ) : J0f = fJ0}.

The PEL-type special subvariety Z(D) is defined as the image in Ag of the connected
component of the set {J ∈ Sg : D ⊆ EndQ(AJ)} that contains J0.

The rest of this section is devoted to the description of results of Frediani, Ghigi,
Penegini and Porru in [32], [36]. There the authors study a sufficient condition for a
family of Galois covers to yield a Shimura subvariety of Ag of PEL type. We start from
some preliminary Lemmas.

Lemma 2.3.4. Let G ⊆ Sp(Λ,Q) be a finite subgroup and denote by SG
g the set of fixed

points in Sg. Then SG
g is a complex connected submanifold of Sg.
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Set DG := {f ∈ EndQ(ΛQ) : Jf = fJ, ∀ J ∈ SG
g }. Then:

Lemma 2.3.5. If J ∈ SG
g then DG ⊆ EndQ(AJ) and the equality holds for J in a dense

subset of SG
g .

Lemma 2.3.6. The image of SG
g in Ag coincides with the PEL subvariety Z(DG). Moreover

if J ∈ SG
g , then dimSG

g = dimZ(DG) = dim(Sym2ΛR)
G, where ΛR

∼= V is endowed with
the complex structure J .

Finally, we have:

Theorem 2.3.7 ([32] §3.9, [36] §3.7). Fix a datum ∆ = (m, G, θ) and put M∆ :=
M((m, G, θ)). Moreover denote by

Z∆ := j(M∆)

the image in Ag through Torelli morphism. Thus Z∆ is an algebraic subvariety of Ag of
dimension 3g′ − 3 + r. Assume moreover that:

N := dim(Sym2H0(C, ωC))
G = 3g′ − 3 + r, (∗)

where [C] represents the isomorphism class of a curve C of genus g which admits an effective
holomorphic action of G. Denoting with C → C ′ := C/G the quotient map (C ′ has genus
g′), then Z∆ is a special subvariety of PEL type of Ag that is generically contained in the
Torelli locus.

Proof. Firstly notice that the equivalence class of the representation of G on H0(C, ωC)
does not change for [C] varying in M∆. Hence N is well-defined and only depends on
∆.

Let C → T
G
g be the universal family as in Remark 4. For every point t ∈ T

G
g , G

acts holomorphically on Ct, so it maps injectively into Sp(Λ, Q), where Λ = H1(Ct,Z)
and Q is the intersection form. Denote by G′ the image of G in Sp(Λ, Q). It does
not depend on t since it is purely topological. Recall that Sg parametrizes complex

structures on the real torus ΛR /Λ = H1(Ct,R)
/
H1(Ct,Z) which are compatible with

the polarization Q. The period map associates to the curve Ct the complex structure Jt
on ΛR obtained from the splitting H1(Ct,C) = H1,0(Ct)⊕H0,1(Ct) and the isomorphism
H1(Ct,R)⊗C = H1(Ct,C). The complex structure Jt is invariant by G′, since the group
G acts holomorphically on Ct. This shows that Jt ∈ SG

g , so the Jacobian j(Ct) lies in
Z(DG′). This shows that Z∆ ⊆ Z(DG′). Since Z(DG′) is irreducible (see e.g. Lemma
(2.3.4)), to conclude the proof it is enough to check that they have the same dimension.
The dimension of Z∆ is 3g′ − 3 + r, since it is the image through an injective morphism
of an algebraic subvariety of Mg′ of dimension 3g′ − 3+ r. By Lemma 2.3.6, if J ∈ SG′

g ,
then dimZ(DG′) = dimSG′

g = dim(Sym2ΛR)
G′

. If J corresponds to the Jacobian of a
curve C in the family, then (Sym2ΛR)

G′

is isomorphic to the dual of (Sym2H0(C, ωC))
G.

Thus dimZ(DG′) = N and (∗) yields the result.
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Condition (∗) was first introduced by Moonen in [69]. There he proved that when
g′ = 0 and the group G is cyclic (∗) is also a necessary for Z∆ to be Shimura. To show
this, Moonen used deep results in positive characteristic which turned out to be difficult
to be generalized in case of G non abelian.

A completely different approach was used in [21]. There the authors studied the
second fundamental form of the embedding j : M∗

g → Ag and they showed that:

Proposition 2.3.8 ([21], §5.4). If there are no nonzero quadrics in I2(ωC), which are
invariant under the action of the group G, then Z∆ is totally geodesic.

Note that Theorem 2.3.7 agrees and strengthens the Proposition above. Indeed con-
dition (∗) requires that the multiplication map

m : (Sym2H0(C, ωC))
G → H0(C, ω⊗2

C )G

is an isomorphism. This corresponds to require

kerm = ∅,

that is there are no nonzero G-invariant quadrics.
The same authors (loc. cit.) show that when the group G is cyclic of order d, then

for fixed d there exists only a finite number of families which can be totally geodesic.

Remark 13. In [68] Mohajer and Zuo proved that (∗) is also a necessary condition in
case of G abelian, g′ = 0 and r = 4. It is still unknown whether (∗) is necessary in
general for a family of covers to yield a Shimura subvariety or whether other families
exist which satisfy (∗).

Frediani, Ghigi, Penegini and Porru applied condition (∗) to do a systematic search of
special subvarieties of PEL-type Z(m, G, θ) obtained as Galois cover of the projective line
(see [32]) and then also of elliptic curves (see [36]). Using MAGMA, a computer algebra
program, they determined all possible families of curves parametrized by Z(m, G, θ) with
genus g ≤ 9 and they computed the number N above. Checking which families satisfy
the condition (∗) they get the following results:

Theorem 2.3.9 ([32], §1.6). For g ≤ 9 there are exactly 40 data (m, G, θ) with g′ = 0
such that N = r− 3. For these 40 data the image Z(m, G, θ) yield a Shimura subvariety of
Ag generically contained in the Torelli locus. All these data occur in g ≤ 7.

Notice that among these data there are 20 cyclic data already known in the literature
and collected in [69] and 7 abelian but non-cyclic data presented in [70]. As seen in
1.3.3, it can happen that different data give rise to the same subvarieties of Ag. Indeed
Theorem 1.9 of [32] asserts that there are only 30 examples of Shimura subvarieties of
Ag obtained as Galois covering of P1.

Later, considering Galois coverings of elliptic curves, they got:
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Theorem 2.3.10 ([36], §1.1). For all g ≥ 2 and g′ = 1 there are exactly 6 positive
dimensional families Z(m, G, θ) which satisfy condition (∗), i.e.

N = r = dimZ∆.

2 of them yield new Shimura subvarieties All of them occur in g ≤ 4.

The 6 families are the following:

(1e) g = 2, G = Z/2Z, N = r = 2.

(2e) g = 3, G = Z/2Z, N = r = 4.

(3e) g = 3, G = Z/3Z, N = r = 2.

(4e) g = 3, G = Z/4Z, N = r = 2.

(5e) g = 3, G = Q8, N = r = 1.

(6e) g = 4, G = Z/3Z, N = r = 3.

Only (2e) and (6e) yield new Shimura subvarieties generically contained in Tg while the
others yield Shimura subvarieties which have already been obtained as families of Galois
coverings of P1. In fact in [36] it was shown that:

• (1e)gives the same subvariety as (26) of Table 2 in [32] (this was already found in
[70]).

• (3e) gives the same subvariety as (31) of Table 2 in [32].

• (4e) gives the same subvariety as (32) of Table 2 in [32].

• (5e) gives the same subvariety as (34) = (23) = (7) of Table 2 in [32] (see also
Table 1 in [32] to see that these families are the same).

• Apart from (1e), none of these families is contained in the hyperelliptic locus.

It is important to notice that family (6e) had been already studied by Pirola [81] to
disprove a conjecture of Xiao. This family is also studied in [44] by Grushevsky and
Möller: there they proved that it is fibred in totally geodesic curves. We will come back
to this fact since one of the central theorem of this thesis concerns a generalization of
this result: we will show that the phenomenon described in [44] actually occurs for all
the six families of [36].
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2.3.2 Bounds on the Genus

In this section, we deal with the natural question of Shimura varieties obtained from
families of coverings of higher genus curves. Here we describe the result obtained in
[34] where we concluded the classification showing that there exist no more examples
of Shimura subvarieties obtained as Galois coverings of curves of genus g′ > 1 which
satisfy condition (∗). The problem was addressed for the first time in [36]. There the
authors considered coverings of curves of genus g′ ≥ 1. As already mentioned in the
previous section they found six examples of families of coverings of elliptic curves which
yield Shimura subvarieties. They considered also cases of g′ > 1. No examples were
found and they showed that:

Theorem 2.3.11 ([36], §4.11). If g′ ≥ 1 and we have a positive dimensional family of
Galois coverings f : C → C ′ with g = g(C) and g′ = g(C ′) which satisfies condition (∗),
then

g ≤ 6g′ + 1 (2.4)

Notice that this theorem asserts that for g ≥ 8 (resp. 14) there do not exist positive
dimensional families of Galois coverings with g′ = 1 (resp. 2) which satisfy (∗). More-
over condition (2.4), together with computations done in MAGMA, excluded the existence
of any other family satisfying (∗) in case of g′ = 1 or g′ = 2.

The Theorem above gives a first bound for the genera g, g′ of curves which possibly
occur in families of Galois coverings which yield Shimura subvarieties. In the following
we focus on the case where g′ ≥ 1 and we complete the analysis.

Let us recall some notation: fix a datum ∆ and a point of M̃∆, i.e. the isomorphism
class of a curve C of genus g, which admits an effective holomorphic action of G. Denote
by C ′ := C/G the quotient, which has genus g′ and by f : C → C ′ the quotient map.
Since by assumption g′ ≥ 1, we can consider the norm map induced between Jacobian
varieties

Nm : JC → JC ′

and the Prym variety4

P (f) := (kerNm)0.

Call δ the type of the polarization obtained by restricting the theta divisor of JC to P (f)
and denote by Aδ

g−g′ the moduli space of abelian varieties of dimension g − g′ with a
polarisation of type δ.

Proposition 2.3.12. G is a group of automorphisms of P (f) as a polarized abelian variety.

Proof. Indeed, f and Nm are G-invariant. Hence P (f), which lies in the kernel of Nm,
is G-invariant. Furthermore the polarization is preserved.

4Prym varieties and Prym maps are the main characters of the second part of this thesis. For more details
see Section 4.2.
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Denote by
P∆ ⊂ A

δ
g−g′

the Shimura variety parametrizing abelian varieties with an action of G of the same type
as P (f). This variety is constructed as in [32, §3] and, roughly speaking, it can be seen
as the image in Aδ

g−g′ of (Sδ
g−g′)

G. Next consider the Prym map:

P : M̃∆ → P∆

[C] 7→ [P (f),Θ|P (f)]

If g′ = 0, then P is just the Torelli morphism composed with ν in (1.4), so we are
just in the setting of Theorem 2.3.7, which in fact asserts that under condition (∗) we
have j(M∆) = P∆. Instead, when g′ ≥ 1, the Prym map gives rise to some additional
geometry. We take advantage of it to obtain our new bound on genera g, g′ of curves
which yield Shimura subvarieties. Indeed, we prove the following:

Theorem 2.3.13. Consider a datum ∆ = (m, G, θ) with g′ ≥ 1, 3g′+r > 3 (i.e. dimM∆ >
0) and which satisfies condition (∗). Then:

� P is dominant;

� g′ ≤ 3.

Proof. Both M̃∆ and P∆ are complex orbifolds and P is an orbifold map. We wish to
show that P : M̃∆ → P∆ is generically submersive.

Fix a point x = [C] ∈ M̃∆, denote by f : C → C ′ := C/G the covering and set
(A,Θ) = P (f), so that P(x) = [A,Θ]. We get that

TxM̃∆ = H1(C, TC)
G and TP(x)P∆ = (Sym2H0(A,Ω1

A)
∗)G (2.5)

are the orbifold tangent spaces of M̃∆ (resp. P∆) at x (resp. P(x)). Furthermore we
observe that

H0(ωC) = H0(ωC)
G ⊕H0(ωC)

− (2.6)

where H0(ωC)
G ∼= H0(C ′, ωC′) and H0(ωC)

− ∼= H0(A,Ω1
A) denotes the sum of the

non-trivial isotypic components as a representation of G.
Taking the dual tangent spaces of (2.5) we have:

T ∗
x M̃∆

∼= H0(C, ω⊗2
C )G and T ∗

P(x)P∆
∼=
(
Sym2H0(C, ωC)

−
)G
. (2.7)

So the codifferential (i.e. the dual of the differential) of P at x is a map

dP∗
x : (Sym2H0(ωC)

−)G → H0(C, ω⊗2
C )G.

This map is just the restriction of the multiplication map

m : Sym2H0(ωC) → H0(C, ω⊗2
C ). (2.8)
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Denote by HEg ⊂ Mg the hyperelliptic locus. Assume first that M∆ is not contained
in HEg and that x 6∈ HEg. Then the multiplication map (2.8) is surjective by Noether
theorem. Moreover Schur’s lemma implies:

m((Sym2H0(ωC))
G) = H0(C, ω⊗2

C )G.

Hence condition (∗) implies that

m|(Sym2H0(ωC))G : (Sym2H0(ωC))
G −→ H0(C, ω⊗2

C )G (2.9)

is in fact an isomorphism. But (Sym2H0(ωC)
−)G ⊂ (Sym2H0(ωC))

G, so we conclude
that dP∗

x is injective. Hence dPx is surjective. This shows that P is submersive at x.
Assume now that M∆ ⊂ HEg and denote by σ : C → C the hyperelliptic involution.

Then m maps Sym2H0(ωC) onto H0(C, ω⊗2
C )〈σ〉. Indeed σ acts as multiplication by −1

on H0(C, ωC) and thus

m : Sym2H0(ωC) = (Sym2H0(ωC))
〈σ〉

� H0(C, ω⊗2
C )〈σ〉.

Now, if σ ∈ G, then H0(C, ω⊗2
C )G ⊂ H0(C, ω⊗2

C )〈σ〉. Just as before Schur lemma shows
that (2.9) is onto and (∗) yields that (2.9) is an isomorphism. It follows that P is
submersive at x.

If, instead, σ 6∈ G, denote by G̃ the subgroup of Aut(C) generated by G and σ. Argu-
ing as above we conclude that the multiplication map (Sym2H0(ωC))

G̃ → H0(C, ω⊗2
C )G̃

is surjective. Since M∆ ⊂ HEg, by definition of σ we have

(Sym2H0(ωC))
G = (Sym2H0(ωC))

G̃ and H0(ω⊗2
C )G = H0(ω⊗2

C )G̃.

Therefore also in this case the multiplication map (2.9) is surjective. By (∗) it is an
isomorphism and thus dPx is surjective.

We have proved that in case M∆ ⊂ HEg, P is submersive on M̃∆ in the orbifold
sense, while in case M∆ is not contained in HEg, P is submersive on ν−1(M∆ rHEg).
At any case P is generically submersive (in the orbifold sense) hence it is dominant.

From (2.6) we get

(Sym2H0(ωC))
G ∼= Sym2H0(ωC′)⊕ (Sym2H0(ωC)

−)G. (2.10)

Since the multiplication map (2.9) at a generic point is an isomorphism, its restriction to
Sym2H0(ωC′) is injective. Moreover it maps Sym2H0(ωC′) to H0(ω⊗2

C′ ) which is included
in H0(ω⊗2

C )G. Hence
dim(Sym2H0(ωC′)) ≤ dimH0(ω⊗2

C′ ),

which yields g′ ≤ 3.

This Theorem reduces the problem of the existence of families of curves which give
rise to new Shimura subvarieties to the analysis of a finite number of cases. The ramified
cases are checked using MAGMA. The étale case are ruled out by the following:
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Lemma 2.3.14. There do not exist positive dimensional families of étale coverings f : C →
C ′ = C/G with g′ = g(C ′) ≥ 2 satisfying condition (∗).

Proof. Assume that a family of étale coverings is given satisfying (∗) and g′ ≥ 2. Then
dim(Sym2H0(ωC))

G = dimH0(ω⊗2
C )G = 3g′ − 3 since r = 0. We have

H0(ωC) ∼= H0(ωC′)⊕ V − with V − =
⊕

χ∈I

νχVχ.

Here I is the set of non-trivial irreducible characters of G. Therefore

(Sym2H0(ωC))
G ∼= Sym2H0(ωC′)⊕ (Sym2(V −))G

and thus
3g′ − 3 = dim(Sym2H0(ωC))

G =

dimSym2H0(ωC′) + dim(Sym2(V −))G ≥

dimSym2H0(ωC′) =
g′(g′ + 1)

2
= 3g′ − 3.

The last equality follows since g′ = 2, 3. Hence (Sym2(V −))G = 0.
By Chevalley-Weil formula (1.5) we have νχ = (dimVχ)(g

′ − 1) > 0, for all non-
trivial irreducible character χ. So for any χ ∈ I we have (Sym2Vχ)

G = 0 and for any
χ, χ′ ∈ I, we have (Vχ ⊗ Vχ′)G = 0 if χ 6= χ′. If there is a non-trivial 1-dimensional
representation Vχ, this is impossible. In fact let χ′ be the character of V ∗

χ . If χ 6= χ′, then
(Vχ⊗Vχ′)G 6= 0. If χ = χ′, then 0 6= (Vχ⊗Vχ)G ∼= (Sym2(Vχ))

G, since Λ2Vχ = 0 because
dimVχ = 1.

By Theorem (2.3.13) we know that g′ ≤ 3 and from of [36, Thm. 1.2] that g ≤ 6g′+1.
Denote by d := |G|. If g′ = 2, we have d = g − 1 ≤ 6g′ = 12 by Riemann-Hurwitz, while
in case g′ = 3, we have g − 1 = 2d, hence d = g−1

2 ≤ 3g′ = 9. So at any case d ≤ 12 and
all groups with |G| ≤ 12 admit non-trivial 1-dimensional irreducible representations.
This gives a contradiction and thus it concludes the proof.

The classification of families of Galois coverings which satisfy condition (∗) and yield
Shimura subvarieties is thus concluded. We resume our result in the following:

Theorem 2.3.15. The only positive dimensional families of Galois coverings f : C → C ′ =
C/G with g′ = g(C ′) ≥ 1 and g = g(C) which satisfy condition (∗) have g′ = 1 and they
are the 6 families found in [36].

Proof. From Theorem (2.3.13) we know that g′ ≤ 3. From Theorem 1.2 of [36] we know
that g ≤ 6g′ + 1. From Lemma 2.3.14 we know that the covering has to be ramified and
by computer calculations as in [36] we find exactly the 6 families of [36] with g′ = 1.
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2.3.3 Infinitely Many New Examples

This is the very central part of this chapter. Here we show the strength of Theorem
2.2.10. In [34] we assert that it provides a very useful tool which exploits condition (∗)
to construct infinitely many new examples of totally geodesic subvarieties contained in
Tg, with g ≤ 4.

Actually, a similar result is presented in case of genus 4 by Grushevsky and Möller in
[44]. In this paper, in fact, the authors study family (6e) and they show that its Prym
map is a fibration in curves, which are totally geodesic. As consequence, they obtain
uncountably many totally geodesic curves generically contained in T4, countably many
of which are Shimura.

The goal of this section is to prove that this phenomenon occurs for every families
(1e)-(6e) and not only for family (6e). Indeed, the following holds:

Theorem 2.3.16. Consider a datum ∆ = (m, G, θ) with g′ ≥ 1, 3g′+r > 3 (i.e. dimM∆ >
0), and which satisfies condition (∗). Then for every y ∈ ImP and for every irreducible
component F of P−1(y), the closure W := j(F ) is a totally geodesic subvariety of Ag of

dimension
g′(g′ + 1)

2
.

Proof. We start by proving the dimension statement. First we compute the dimension of
generic fibres of P.

By (∗) dimM∆ = dim(Sym2H0(ωC))
G. Fix x such that P is submersive at x. Set

y = P(x). Then, using (2.10) we get

dimx P−1(y) = dim M̃∆ − dimP∆ =

dim(Sym2H0(ωC))
G − dim(Sym2H0(ωC)

−)G =

dimSym2H0(ωC′) =
g′(g′ + 1)

2
≥ 1.

(2.11)

Hence the generic fibre of P has dimension
g′(g′ + 1)

2
. Therefore

dimW = dimF ≥ g′(g′ + 1)

2
.

If y = [A,Θ] ∈ ImP, denote by W ′ ⊂ AD
g the closure of the variety parametrizing

abelian varieties isomorphic to products A× j(C ′), where [C ′] ∈ Mg′ (with D denoting
the appropriate product polarization). Observe that W is an irreducible analytic subset
of Ag and W ′ is an irreducible analytic subset of AD

g . Clearly the generic point of W is
isogenous to some point of W ′.

By Theorem 2.3.13 g′ ≤ 3, so W ′ parametrizes abelian varieties of the form A × B
with [B] ∈ Ag′ . HenceW ′ is a totally geodesic subvariety of AD

g of dimension g′(g′+1)/2.
Indeed, e.g. in [33, Proposition 5.6], it is shown that

- Ag−k ×Ak is totally geodesic in Ag;
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- fixing A0 ∈ Ak and taking the map h : Ag−k → Ak which sends A 7→ A × A0,
the preimage h−1(Z) of a totally geodesic subvariety Z ⊂ Ag is totally geodesic in
Ag−k.

This shows that Ag−k totally geodesic in Ag and thus, in our case, that W ′ is totally
geodesic in AD

g .
Theorem 2.2.10 implies that dimW ≤ dimW ′, so dimW = g′(g′ + 1)/2. This proves

the dimension statement.
Now, we apply the second part of Theorem 2.2.10, we conclude that W is totally

geodesic.

Remark 14. Since we know that the data satisfying the assumptions of the Theorem
have g′ = 1, the fibres are 1-dimensional. Thus the Theorem above shows that having
at least a family which satisfy the assumptions then there exist infinitely many new ex-
amples of totally geodesic curves contained in T2 and in T3. Our proof recovers those
already found in [44].

Inspired by Theorem (2.3.16), the second part of this section is devoted to the study
of a second fibration for our families of curves: we will show that, again, Theorem 2.2.10
lets the fibres yield new totally geodesic subvarieties of Ag contained in Tg.

Fixing a datum ∆ = (m, G, θ) with g′ ≥ 1, 3g′ + r > 3, we consider the map

ϕ : M̃∆ → Ag′ (2.12)

which associates to [C → C ′] the Jacobian [JC ′]. We prove the following:

Theorem 2.3.17. Consider a datum ∆ with g′ ≥ 1, 3g′ + r > 3 (i.e. dimM∆ > 0),
and which satisfies condition (∗). Then for every y ∈ j(Mg′) and for every irreducible
component Y of ϕ−1(y), the closure X := j(Y ) is a totally geodesic subvariety of Ag of

dimension d := N − g′(g′ + 1)

2
.

Proof. In the proof of Theorem 2.3.13 we have shown that if (∗) holds, for the generic
point x = [C → C ′] ∈ M̃∆ the multiplication map

m : (Sym2H0(ωC))
G → H0(ω⊗2

C )G (2.13)

is an isomorphism. Since we can decompose

(Sym2H0(ωC))
G ∼= Sym2H0(ωC′)⊕ (Sym2H0(ωC)

−)G, (2.14)

the isomorphism (2.13) implies that the restriction of m to Sym2H0(ωC′) is injective. As
this is the codifferential of ϕ at x, we have proved that

dϕx : H1(TC)
G → Sym2H0(ωC′)∗
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is surjective. Hence for the generic fibre we have:

dimϕ−1(y) = N − g′(g′ + 1)

2
,

so

dim(X) = dim(Y ) ≥ N − g′(g′ + 1)

2
.

Let y = [J(C ′),Θ] ∈ j(Mg′), denote byX ′ ⊂ AD
g the closure of the variety parametriz-

ing abelian varieties isomorphic to products j(C ′)×B, where B ∈ P∆ (with D denoting
the appropriate product polarization). As already observed P∆ is a Shimura subvariety
of Aδg−g′ . Therefore X ′ is a totally geodesic subvariety of AD

g and its dimension equals
dimP∆.

As noted in (2.7), T ∗
P(x)P∆

∼=
(
Sym2H0(C, ωC)

−
)G

. By (2.13) and (2.14) we get:

dimP∆ = dim
(
Sym2H0(ωC)

)G − dimSym2H0(ωC′) = N − g′(g′ + 1)

2
.

Since the generic point of X is isogenous to some point of X ′, Theorem 2.2.10 guaran-
tees dimX ≤ dimX ′. Therefore

dimX = N − g′(g′ + 1)

2
.

This proves the dimension statement.
Now we can apply the second part of Theorem 2.2.10 to conclude that X is totally

geodesic.

Remark 15. Since we know that the data satisfying the assumptions of the Theorem
have g′ = 1, we have in fact d = N − 1 = r− 1. This means that, having at least a family
which satisfy the assumptions, the Theorem above shows the existence of infinitely many
totally geodesic subvarieties of dimension 1,2 and 3 which are generically contained in
T2, T3, T4.

Remark 16. Theorems 2.3.16 and 2.3.17 deal with fibres of P and ϕ. One can apply
Theorem 2.2.10 also to Z := j(M∆) as a whole. In this case, remembering Proposition
2.2.7, one gets an isomorphism a ∈ GL(ΛQ) that maps a lifting to Siegel space of Z to an
appropriate lifting of A1 × P∆. (By the way note that this proves again that Z is totally
geodesic.)

Both Z and A1 × P∆ have a product structure: A1 × P∆ has the natural projections
πi on the factors, while Z has the maps ϕ and P. It is natural to ask whether this
a ∈ GL(ΛQ) can be chosen in such a way that π1 ◦ a = ϕ and π2 ◦ a = P. This means
that (at the level of Siegel space!) a(y) = (ϕ(y),P(y)). It seems unlikely that such a
map can be gotten by methods similar to those of Theorem 2.2.10. Since we are dealing
with only 6 families an explicit analysis could in principle answer this question. Yet this
is probably non-trivial.

45



Chapter 2. Infinitely many Shimura Curves in Genus g ≤ 4

Finally, in light of Theorem 2.3.10, we know that there are only 6 families which
satisfy condition (∗) with g′ ≥ 1. Therefore, applying Theorems 2.3.16 and 2.3.17 we
can announce the following:

Corollary 2.3.17.1. Families (1e), (2e), (3e), (4e), (6e) are fibred in totally geodesic
curves via their Prym maps and are fibred in totally geodesic subvarieties of codimension
1 via the map ϕ. Therefore they contain infinitely many totally geodesic subvarieties and
countably many Shimura subvarieties.

The Prym map of family (5e) is constant, its image is the square of the elliptic curve
y2 = x3 − x, i.e. the elliptic curve with lattice Z+ iZ.

Proof. This follows immediately from Theorems 2.3.16 and 2.3.17. Since all these fami-
lies yield Shimura subvarieties of Ag, they contain countably many CM points, hence the
fibres of the two maps P and ϕ passing through these points are Shimura subvarieties.

Since family (5e) is one dimensional, it is itself a fibre of its Prym map P, which
therefore is constant. The computation of this constant abelian surface is given in the
following section in the proof of Proposition 2.4.2.

2.4 Explicit Analysis of the Fibrations

In the last part of this chapter we analyse several features of the examples listed in [32]
and [36]. In particular we will focus on the two fibrations P and ϕ introduced in the
previous paragraph.

We describe all the possible inclusions among the families of Galois covers of P1 or
of elliptic curves yielding Shimura subvarieties of Ag known so far. We show that some
of them occur as irreducible components of fibres of the Prym map or are contained in
fibres of the map ϕ of one of the 6 families in [36]. In this way, we detect some of the
infinitely many totally geodesic subvarieties of Tg found in Theorems 2.3.16 and 2.3.17
as fibres of P and of ϕ of the families of [36].

We will devote a subsection to every genus. All of them start with a diagram where
we collect all the possible inclusions between the families of Galois covering which yield
Shimura varieties recorded in [32] and [36]. In the diagrams they are labelled using
the same notation of [32] with a marked letter e in case of families of [36]. The arrows
denote the inclusions and the dimension of the families grows from the bottom to the
top of the diagrams.

We will analyse the different families of [32] one at a time. For their description we
refer to section 1.3.1. We will give a presentation of the Galois group G and an explicit
description of the monodromy map

θ : Γ0,r → G,

where Γ0,r = 〈[γ1], [γ2], ..., [γr] : γ1γ2...γr = 1〉. We set xi = θ(γi), i = 1, ..., r and
m = (m1, . . . ,mr), where mi = o(xi). For simplicity we will just write x = (x1, ..., xr)
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to describe the monodromy. We will also use the notation of MAGMA for the irreducible
representations of the group G.

Notice that for simplicity we will omit the parameters of the families, i.e. we will
refer to curves C without any subscript.

2.4.1 Genus g = 2

In genus 2 we have the following diagram: in the lowest line we have the 1-dimensional
families, family (1e) = (26) has dimension 2, while family (2) has dimension 3 and it is
M2. It is trivial that all our families are contained in (2). Indeed:

(2)

(1e) = (26)

(3) = (5) = (28) = (30) (4) = (29)

Notice that the bielliptic locus in genus 2 (i.e. family (1e)) has codimension 1 in M2 and
it is totally geodesic in A2. This only happens in genus 2. In fact in [32] it is shown that
if g ≥ 3 and Y ⊂ Mg is an irreducible divisor, then there is no proper totally geodesic
subvariety of Ag containing j(Y ).

Proposition 2.4.1. In genus 2 families (3)=(5)=(28)=(30) and (4) = (29) are not
contained in any fibre of P, nor in any fibre of ϕ of the family (1e).

Proof. We show that both the curves in family (30) and the ones in family (29) have
Jacobians that are isogenous to the self product of an elliptic curve. Thus none of these
two families is fibre of the Prym map of (1e), nor of the map ϕ of (1e).

Let us start from (3) = (5) = (28) = (30).

G = D6 = 〈x, y : x6 = y2 = 1, y−1xy = x5〉,
x = (x3, x2y, x3y, x4) m = (2, 2, 2, 3).

MAGMA gives us H0(C, ωC) = V6, being V6 a 2-dimensional C-irreducible representation
for G. This implies that dim(Sym2H0(C, ωC))

G = 1. Thus condition (∗) effectively holds
(since the family has dimension 1).
The group algebra decomposition for the curves C in the family decomposes the Jaco-
bian JC up to isogeny5. In this case it gives JC ∼ B2

6 , where B6 is 1-dimensional. Since

5For details on abelian varieties, group action and their induced decomposition see Section 3.1 and
references therein.
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Chapter 2. Infinitely many Shimura Curves in Genus g ≤ 4

the family is non-constant this immediately implies that B6 varies in family, hence the
thesis. In order to check that (30) ⊂ (1e) let us consider the subgroup H = 〈y〉 and let
us look at the diagram:

C

C/H

P1

ψ

f

(2.15)

We get that f has only two critical points of order 2 in ψ−1(z2) and no more in ψ−1(zi)
with i = 1, 3, 4. Here z1, ..., z4 are the critical values of ψ. This implies that E := C/H is
an elliptic curve (using Riemann-Hurwitz formula) and, in particular, the desired inclu-
sion (30)⊂(1e).

(4) = (29)

G = D4 = 〈x, y : x4 = y2 = 1, y−1xy = x3〉,
x = (x3y, x2, y, x3) m = (2, 2, 2, 4) H0(C, ωC) = V5.

The representation V5 has dimension 2 and dim(Sym2H0(C, ωC))
G = 1, hence (∗) is

verified. The group algebra decomposition gives JC ∼ B2
5 . Therefore, as above, it is

impossible for (29) to lie in a fibre of maps P, ϕ of family (1e).
As before it is sufficient to consider the subgroup H = 〈y〉 and to study a diagram similar
to (2.15) to obtain that C/H is a curve of genus 1. Indeed, in this case f : C → C/H
has two critical points of order 2 in ψ−1(z3). This guarantees the inclusion (29) ⊂ (1e).

Remark 17. As seen in the proof of this Proposition, the study of the families is done
looking at diagrams as the one in (2.15): intermediate quotients are the tools which
check the inclusions and the compatibility of the monodromies of the families.

From now on we will omit all the pictures since they are very similar.

2.4.2 Genus g = 3

In genus 3 we have the following diagram. In the lowest line we have the 1-dimensional
families, in the second one the 2-dimensional ones. Family (27) has dimension 3 while
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family (2e), the bielliptic locus in genus 3, has dimension 4.

(2e)

(27)

(6) (8) (31) = (3e) (32) = (4e)

(9) (22) (33) = (35) (7) = (23) = (34) = (5e)

Proposition 2.4.2.

i) Family (34) is a fibre of the Prym map of the bielliptic locus (2e) and also a fibre of
the Prym map of (4e).

ii) Families (9) and (22) are both contained in fibres of the map ϕ of (2e) and are not
contained in any fibre of the map P of (2e).

iii) Family (33) =(35) is not contained in any fibre of ϕ nor in any fibre of P of (2e),(3e)
or (4e).

iv) Families (31) = (3e) and (32) = (4e) are not contained in fibres of the map ϕ of
(2e).

v) Family (27) is not contained in a fibre of the map ϕ of (2e).

Proof. We begin from (5e) = (7) = (23) = (34)

G = Z/4× Z/2o Z/2 = 〈g1, g2, g3 : g21 = g22 = g43 = 1,

g2g3 = g3g2, g
−1
1 g2g1 = g2g

2
3, g

−1
1 g3g1 = g3〉,

m = (2, 2, 2, 4), x = (g1, g1g2g
3
3, g2g

2
3, g

3
3).

Using the notation of MAGMA, we can decompose H0(C, ωC) ∼= V6 ⊕ V10, where Vi are
irreducible C-representations of G such that dim(V6) = 1 and dimV10 = 2. Moreover
(Sym2H0(C, ωC))

G ∼= Sym2V6, which has dimension 1, hence condition (∗) holds.
The group algebra decomposition gives us a decomposition of the Jacobian JC up to
isogeny: JC ∼ B6 ×B2

10. Both the Bi’s have dimension 1.
Choose H = 〈g23〉 and consider the map f : C → C/H. Call z1, ..., z4 the critical values of
the map ψ : C → C/G. One immediately verifies that there are only four critical points
of index two for f , all placed in the fibre ψ−1(z4). Applying Riemann-Hurwitz formula,
we obtain g(C/H) = 1. Notice that this gives us the inclusion of (34) in (2e).
Denote by E := C/H, we get B6 ∼ E, and H0(E,ωE) = H0(C, ωC)

H = V6. Hence the
curve E moves, and the Prym variety P (C,E) ∼ B2

10. Thus the Prym variety P (C,E)
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Chapter 2. Infinitely many Shimura Curves in Genus g ≤ 4

doesn’t move, hence family (34) is a fibre of the Prym map of the family (2e).
Now we consider the normal subgroup Q8 = 〈g23, g2g3, g1g3, g1g2g23〉 which is isomorphic
to the quaternion group. The degree 8 map C → C/Q8 has a single branch point and
the quotient C/Q8 has genus 1. So (34)= (5e).
Now we show that this family is also a fibre of the Prym map of family (4e). In fact,
consider the subgroup H ′ = 〈g1g3〉 of order 4, which contains H, and the map f ′ :
C → C/H ′. One can check that f ′ has four critical points of order two and two critical
values. Therefore C/H ′ has genus 1. This provides the inclusion (34)⊂(4e). Moreover
H0(C, ωC)

H′

= V6, so the curve E′ = C/H ′ moves and it is isogenous to E = C/H while
P (C,E′) is fixed and it is isogenous to P (C,E). Hence (34) is also a fibre of the Prym
map of (4e).
Finally one can see that B10 is obtained as the quotient C/〈g1〉. It is the elliptic curve
with j-invariant equal to 1728 and that has Legendre equation: y2 = x(x2 − 1). To check
this, consider the commutative diagram

C/〈g1〉 = B10

C C/〈g1, g23〉 = P1

C/〈g1, g3〉 = P1

C/G = P1

ε

ψ

γ

α

ϕ
h

π

Assume that the critical values zi of ψ are (as usual) [λ, 0,∞, 1]. Then we can suppose
that the map π : C/〈g1, g3〉 ∼= P1 → C/G ∼= P1 is z 7→ z2. Hence the critical val-
ues of ϕ are [µ,−µ, 1,−1], where µ2 = λ, with induced monodromy (g1, g1g

2
3, g3, g3).

We can assume that h(z) = z2+c
z2−c

, where c = 1+µ
µ−1 , so the critical values of α are

[1+µµ−1 ,−
1+µ
µ−1 , 1,−1,∞, 0] with monodromy (g1, g1, g1g

2
3, g1g

2
3, g

2
3, g

2
3). So finally we see

that the critical values of the double cover ε : B10 = C/〈g1〉 → C/〈g1, g23〉 ∼= P1 are
1,−1,∞, 0, thus B10 has equation y2 = x(x2 − 1).

(33)=(35).

G = S4 with g1 = (12), g2 = (123), g3 = (13)(24) and g4 = (14)(23).

x = (g1g
2
2, g3g4, g1, g

2
2g4) m = (2, 2, 2, 3).

Moreover H0(C, ωC) ∼= V4 (V4 is an irreducible representation of dimension 3) and so
(Sym2H0(C, ωC))

G ∼= (Sym2V4)
G.

Considering the group algebra decomposition of the Jacobians of these curves we obtain
JC ∼ B3

4 , where B4 is an elliptic curve. Since (35) is a 1-dimensional family, B4 has to
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move. Hence (35) is not a fibre of the Prym map of (2e) nor of (3e), (4e). For the same
reason it is not contained in a fibre of the map ϕ of (2e), (3e), (4e). Let us describe the
inclusions.
Consider the subgroup H2 = 〈g3〉, isomorphic to Z/2, and take the quotient map f2 :
C → C/H2. f2 has four critical points of order 2 in ψ−1(z2). Riemann-Hurwitz formula
gives g(C/H2) = 1. This shows the inclusion (35) ⊂ (2e).
Take now the subgroup H3 = 〈g2〉, which has order 3, and consider the quotient map
f3 : C → C/H3. We have two critical points for f3 in ψ−1(z4) of multiplicity equal to 3.
Hence C/H3 has genus 1. This shows the inclusion (35) ⊂ (3e).
Finally, considering H4 = 〈g1g4〉 ∼= Z/4 we get (35) ⊂ (4e). Indeed the quotient map
f4 : C → C/H4 has four critical points of order 2 in ψ−1(z2). Hence f4 has two critical
values, as desired by (4e).
This concludes the analysis of the inclusions. We observe that H0(C, ωC)

Hi is a 1-
dimensional subspaces of V4 for i = 2, 3, 4. This implies the following isogenies: C/H2 ∼
C/H3 ∼ C/H4 ∼ B4.

(22)

G = Z/2× Z/4 with g1 = (0, 1), g2 = (1, 0) and g3 = (0, 2).

x = (g3, g2g3, g1g2, g1g3) m = (2, 2, 4, 4).

We have H0(C, ωC) ∼= V3⊕V7⊕V8 and (Sym2H0(C, ωC))
G ∼= V3⊗V7. The group algebra

decomposition gives JC ∼ B3 × B8, with dim(B3) = 2 and dim(B8) = 1. Consider the
subgroup H = 〈g2g3〉. One easily checks that the quotient curve E = C/H has genus
one, with (H0(C, ωC))

H = V8. Therefore E is isogenous to B8 and it remains fixed. This
proves that family (22) is contained in a fibre of the map ϕ of (2e). Hence this fibre has
an irreducible component whose image in A3 is a Shimura subvariety of dimension 3.
We add some details on this family which show that the jacobians of this family are
decomposable as products of elliptic curves. Take another subgroup ofG: H ′ = 〈g2〉. The
quotient map C → C/H ′ is étale so, applying Riemann-Hurwitz, we have g(C/H ′) = 2.
As dim(V H′

3 ) = 1 = sV3 , where sV3 is the Schur index of V3, and since dim(V H′

8 )=0
we apply Jiménez’ criterion (see Lemma 3.1.4) and we obtain B3 ∼ JC ′, where we set
C ′ := C/H ′.
Consider now the degree 4 map C ′ → C ′/〈g1〉 ∼= P1, where 〈g1〉 ∼= G/H ′ ∼= Z/4. One
easily sees that the family C ′ → C ′/〈g1〉 coincides with the family (4) = (29). Indeed,
H0(C ′, ωC′) = V3 ⊕ V7 and thus (Sym2H0(C ′, ωC′))〈g1〉 = V3 ⊗ V7, that is it has N = 1.
The multiplication map

m : (Sym2H0(C ′, ωC′))〈g1〉 → H0(C ′, ω⊗2
C′ )

〈g1〉

sends the generator v3 of V3 (resp. v7 of V7) to v3 · v7 and thus it is an isomor-
phism. This shows that family C ′ → C ′/〈g1〉 is Shimura with induced monodromy
x̄ = (g3, g3, g1, g1g3), i.e. it is family (4) = (29).
As already seen, the group algebra decomposition of the Jacobians for (29) is JC ′ ∼ F 2,
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where F is an elliptic curve. Thus we conclude JC ∼ E × F 2. Since family (29) is
non-constant F moves and thus (22) is not contained in a fibre of the Prym map of (2e).

(9)

G := Z/6 = 〈g1, g2 : g21 = g32 = 1〉,
x = (g1, g

2
2, g

2
2, g1g

2
2), m = (2, 3, 3, 6),

H0(C, ωC) ∼= V4 ⊕ V5 ⊕ V6 (Sym2H0(C, ωC))
G ∼= V4 ⊗ V6.

Let C be a curve in the family and denote as usual the quotient map by ψ : C → C/G.
Now take the subgroup H := 〈g1〉. The corresponding quotient map C → C/H has
three critical points, of index 2, in ψ−1(z1) and a single one, of the same type, in
ψ−1(z4). By Riemann-Hurwitz formula we see that E := C/H is an elliptic curve with
H0(E,ωE) = V5. Firstly we get (9)⊂(2e). Moreover observe that E does not move.
The group algebra decomposition gives JC ∼ B4 ×B5. The term B5 is isogenous to the
elliptic curve E, that is fixed, while B4 ∼ P (C,E) has dimension 2 and it moves. This
shows that family (9) is contained in a fibre of the map ϕ of (2e). Hence this fibre of ϕ has
an irreducible component which gives rise to a Shimura subvariety of A3 of dimension 3.

Now we analyse the families of dimension 2 (N = 2).

(31)

G = S3 = 〈g1, g2 : g21 = g32 = 1, g−1
1 g2g1 = g22〉,

x = (g1g
2
2, g1g2, g1, g1g

2
2, g

2
2), m = (2, 2, 2, 2, 3).

We have H0(C, ωC) = V2 ⊕ V3, where V2 has dimension 1, V3 has dimension 2, and
(Sym2H0(C, ωC))

G = Sym2V2 ⊕ (Sym2V3)
G. The group algebra decomposition gives

JC ∼ B2 ×B2
3 , where both terms have dimension 1.

Denote as usual by ψ : C → C/G ∼= P1 the quotient map, consider the subgroup
H = 〈g2〉 and the map α : C → C/H. We have two critical points of index 3 in ψ−1(z5),
hence E := C/〈g2〉 has genus 1 and one can show that H0(E,ωE) = V2. Thus B2 ∼ E
and we also have shown that (31) ⊂ (3e). Actually, since both have dimension 2, they
induce the same family.
Finally one can easily see that C/〈g1〉 has genus 1 and B3 ∼ J(C/〈g1〉). The quotient
map C → C/〈g1〉 has four critical values and so (31) ⊂ (2e).
Notice that both B2 and B3 move, so (31) is not contained in a fibre of the map ϕ. Due
to dimension reason (31) cannot be contained in a fibre of the Prym map of families
(2e), (3e), (4e). The same will occur for other families analysed in the following para-
graphs.

(32)

G = D4 = 〈x, y : x4 = y2 = 1, y−1xy = x3〉,
x = (x3y, y, x2, y, xy), m = (2, 2, 2, 2, 2).
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Moreover H0(C, ωC) ∼= V4 ⊕ V5, where V4 has dimension 1, V5 has dimension 2 and
(Sym2H0(C, ωC))

G ∼= Sym2V4 ⊕ (Sym2V5)
G. The group algebra decomposition yields

JC ∼ B4 ×B2
5 .

Take the subgroup H = 〈x〉 and consider the quotient map α : C → C/H. We get
four critical points in ψ−1(z3) of index 2, hence g(C/H) = 1. This shows the inclusion
(32) ⊂ (4e). Dimension reasons give the equality.
Consider the subgroup H ′ = 〈x2〉 of H. We can factor the degree four map α into two
maps of degree 2. The map α′ : C → C/H ′ has four critical points of index 2 in ψ−1(z3),
hence C/H ′ has genus 1. We remark that it is isogenous to C/H. Indeed, we have
H1,0(C/H) = H1,0(C/H ′) ∼= V4, therefore C/H ∼ C/H ′ ∼ B4. The map α′ shows the
inclusion (32) ⊂ (2e).
Consider the subgroup K = 〈y〉. One immediately checks that C/K has genus 1 and
H1,0(C/K) ⊆ V5, hence B5 ∼ C/K. Both B4 and B5 move, hence (32) is not contained
in a fibre of the map ϕ.

Before going on with the analysis, we would like to observe that the 2-dimensional
families (6) and (8) do not admit a 2:1 map on an elliptic curve. Hence they are not
contained in (2e). The group algebra decomposition does not decompose their Jacobian.
Notice that family (8) is hyperelliptic.

Let us now describe the only family of dimension N = 3.

(27)

G = Z/2× Z/2 = 〈g1, g2 : g21 = g22 = 1〉,
x = (g2, g1g2, g1, g1g2, g1, g2), m = (2, 2, 2, 2, 2, 2),

H0(C, ωC) ∼= V2 ⊕ V3 ⊕ V4.

Every Vi has dimension 1 and moreover (Sym2H0(C, ωC))
G ∼= Sym2V2 ⊕ Sym2V3 ⊕

Sym2V4.
The Jacobian decomposes up to isogeny as JC ∼ B2 × B3 × B4, where Bi’s are three
different elliptic curves.
One easily checks that B2 ∼ C/H, B3 ∼ C/H ′ and finally B4 ∼ C/H ′′, where H = 〈g2〉,
H ′ = 〈g1〉 and H ′′ = 〈g1g2〉. Both three quotient maps have degree 2 and they have four
critical points of order 2: the first ramifies over ψ−1(z1) and over ψ−1(z6), the second
over ψ−1(z3) and ψ−1(z5), the third on ψ−1(z2) and ψ−1(z4) (as usual z1, ..., z6 are the
critical values of ψ : C → P1). This gives the inclusion (27) ⊂ (2e). All the three elliptic
curves move, so (27) is not a fibre of the map ϕ.

This ends up the discussion of inclusions in genus 3.
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Chapter 2. Infinitely many Shimura Curves in Genus g ≤ 4

2.4.3 Genus g = 4

In genus 4 we have the following diagram of inclusions.

(10) (6e)

(14)

(11) (13) = (24) (25) = (38) (12) (37) (36)

Families in the lowest line are one-dimensional, (14) has dimension 2, while (10) and
(6e) have dimension 3.

Proposition 2.4.3. Family (12) is contained in a fibre of the Prym map of (6e), while
family (25) = (38) is contained in a fibre of the map ϕ of (6e). Family (37) is not contained
in any fibre of the Prym map nor of the map ϕ of (6e).

Proof. Let us start by considering family (12)

G = Z/6 = 〈g1g2 : g21 = g32 = 1〉,
x = (g1, g1g2, g1g2, g1g2), m = (2, 6, 6, 6),

H0(C, ωC) ∼= V2 ⊕ V3 ⊕ 2V6, (Sym2H0(C, ωC))
G ∼= Sym2V2.

The group algebra decomposition gives JC ∼ B2 × B3 × B6, where the first two terms
have dimension 1 while the third one has dimension equal to 2. Consider the subgroup
H := 〈g2〉 ∼= Z/3. Call z1, z2, z3, z4 the branch points for the map ψ : C → C/G and
consider the quotient map f : C → C/H. There are three critical points for f , of order
3, one for every the preimage ψ−1(zi), i = 2, 3, 4. Applying Riemann-Hurwitz formula
we get that the genus of E := C/H is one and we the inclusion (12)⊂(6e). Moreover,
since H0(C, ωC)

H = V2, we get B2 ∼ E.
Consider H ′ := 〈g1〉 ∼= Z/2. Each critical point for ψ is also critical of order two for
the quotient map C → C/H ′. Riemann-Hurwitz formula implies that C/H ′ is an elliptic
curve. We have H0(C/H ′, ωC/H′) = V3 and thus B3 ∼ C/H ′.
Notice that the terms B3 and B6 don’t move and their product is isogenous to the Prym
variety P (C,E). Thus, as already observed in [44], (12) is contained in a fibre of the
Prym map of (6e).
On the other hand since E moves, family (12) cannot be contained in a fibre of the map
ϕ of (6e).

(25) = (38)

G = Z/3× S3 with g1 = ([0]3, (12)), g2 = ([1]3, (1)) and g3 = ([0]3, (123)).

x = (g1g
2
3, g1g3, g2g3, g

2
2), m = (2, 2, 3, 3).
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We know that H0(C, ωC) ∼= V3⊕V4⊕V8 and that (Sym2H0(C, ωC))
G ∼= V3⊗V4. The first

two Vi’s have dimension 1 while V8 has dimension equal to 2. The Jacobian decomposes
as JC ∼ B3 ×B2

8 , the first term is 2-dimensional while the second is 1-dimensional.
Set H := 〈g2g3〉 ∼= Z/3 and consider the quotient map f : C → C/H. We get three
critical points of f of order 3 all contained in ψ−1(z3). Hence g(C/H) = 1 and we also
see the inclusion (38) ⊂ (6e). Moreover H fixes a 1-dimensional subspace of V8, thus
we get C/H ∼ B8. Note that this term of the decomposition doesn’t move. This implies
that family (38) is contained in a fibre of ϕ of (6e). Thus this fibre determines a Shimura
subvariety of A4 of dimension 2.
Now take the quotient for H ′ = 〈g3〉 ∼= Z/3. The correspondent quotient map is étale.
Therefore we obtain g(C/H ′) = 2. Due to the fact that dim(V H′

3 )=1=sV3 and that
dim(V H′

8 )=0, there exists an isogeny between J(C/H ′) and B3 (see [51, Lemma 1]).
Since H ′ is normal in G we can now look at the map C/H ′ → P1. This is a Galois
covering with Galois group G/H ′ ∼= Z/6 and m = (2, 2, 3, 3). Actually we have only
one 1-dimensional family with this datum and it corresponds to family (5) of [32]. As
already explained in the proof of Proposition (2.4.1) the group algebra decomposition
on the Jacobian of this family gives us B3 ∼ J(C/H ′) ∼ E2, where E is an elliptic curve.
Since E moves (otherwise both family (38) and (5) would be constant), family (38) is
not contained in a fibre of the Prym map of (6e).
Finally let us check the inclusion in family (14). Suppose to consider the quotient
K = 〈g1, g2〉 ∼= Z/6. The quotient C/K has genus 0. Indeed the quotient map C → C/K
has 5 critical values: the first two have three ramification points of order 2 while the last
three have two ramification points of order 3. This gives an induced monodromy of type
m = (2, 2, 3, 3, 3), i.e. that of family (14) (as we will explain at the end of this proof).

(37)

G = A4 with g1 = (123), g2 = (12)(34) and g3 = (13)(24).

x = (g3, g1g3, g1, g1g2g3), m = (2, 3, 3, 3).

Moreover we have H0(C, ωC) ∼= V2 ⊕ V4, where V2 has dimension 1, V4 has dimension
equal to 3 and (Sym2H0(C, ωC))

G ∼= (Sym2V4)
G. The Jacobian decomposes completely

as JC ∼ B2 ×B3
4 .

Take the quotient ψ : C → C/G with branch points denoted by zi, i = 1, 2, 3, 4 and
consider the subgroup generated by 〈g1〉. It is a cyclic group of order 3. Studying the
map C → C/〈g1〉 := E we get three critical points, of order 3, respectively in the fibres
ψ(zi)

−1, i = 2, 3, 4. This implies g(E) = 1 and also the inclusion in the family (6e).
Moreover 〈g1〉 fixes a 1-dimensional subspace of V4. Thus H0(E,ωE) = (V4)

〈g1〉 and so
E ∼ B4. Note that E moves.
If we consider the subgroup H := 〈g2, g3〉 and its associated quotient map f : C → C/H,
all the critical points in the fibre of z1 are critical points of order 2 for f . Thanks to
Riemann-Hurwitz formula we see that the curve F := C/H is elliptic. Since Fix(H)=V2
we obtain F ∼ B2. Although this curve remains constant for the family, we have that
P (C,E) ∼ B2×B2

4 , hence it moves. Thus (37) is neither contained in a fibre of the Prym
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Chapter 2. Infinitely many Shimura Curves in Genus g ≤ 4

map of (6e) nor in a fibre of the map ϕ of (6e).

For sake of completeness let us check what occurs for the other families which yield
Shimura varieties in genus 4.

Families (11) and (36) admit (respectively) an action of Z/5 (and Q8). They both
don’t have a map of degree 3 on an elliptic curve. Hence they are not contained in (6e).
Notice, moreover, that the group algebra doesn’t decompose their Jacobian.

Family (13) = (24) is described as follows: G = Z/6 × Z/2, the generators for
the monodromy are ((3, 1), (0, 1), (2, 0), (1, 0)), H0(C, ωC) ∼= V6 ⊕ V7 ⊕ V8 ⊕ V11, all 1-
dimensional, and (Sym2H0(C, ωC))

G = V7 ⊗ V11. Its Jacobian decomposes as JC ∼
B6 × B7 × B8: B6 and B8 have dimension 1 while B7 has dimension 2. Indeed, E6 :=
C/〈(3, 1)〉 has genus 1 and B6 ∼ JE6, E8 := C/〈(0, 1)〉 has genus 1 and B6 ∼ JE8 and,
finally, C ′ := C/〈(3, 0)〉 has genus 2 and B7 ∼ JC ′. Since G is abelian the subgroup
〈(3, 0)〉 is normal and hence we can consider the family of degree 6 maps C ′ → P1. It
corresponds to the Shimura curve (5). In fact, H0(C, ωC))

〈(3,0)〉 = V7 ⊕ V11 and an easy
calculus shows that the induced N is equal to 1. Since (5) is the unique Shimura family
which has the same datum of C ′ → P1 we conclude.
Notice that JC decomposes completely. It is not included in (6e) since it does not admit
a map 3:1 on an elliptic curve.
The quotient given by subgroup 〈(1, 1)〉 gives the inclusion in (14). Indeed the map C →
C/〈(1, 1)〉 ∼= P1 has 5 critical values with induced monodromy ((3, 1), (3, 1), (2, 0), (2, 0),
(2, 0)), i.e. the one desired by (14).

Indeed, family (14) has data: G = Z/6, x = ([3]6, [3]6, [2]6, [2]6, [2]6), H0(C, ωC) =
V4⊕V5⊕2V6 and Jacobian decomposed as JC ∼ B5×B4. The first term is 1-dimensional
and the second has dimension 3. Considering the subgroup 〈[3]6〉 we get C → E, where
E := C/〈[3]6〉 is in fact an elliptic curve. Moreover, since H0(E,ωE) = V5, we have
E ∼ B5. On the other hand the quotient by 〈[4]6〉 gives a 3:1 map to P1 with induced
monodromy of type m = (3, 3, 3, 3, 3, 3). This determines the inclusion in family (10).

Family (10) is a 3-dimensional family of curves which have an action of Z/3 with
monodromy m = (3, 3, 3, 3, 3, 3). It is different from (6e) because it doesn’t admit a 3:1
map on elliptic curves. The Jacobians of the curves of this family aren’t decomposed by
the group algebra.
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CHAPTER 3

Totally Decomposable vs Totally Geodesic

The main character of this Chapter is a comparison between two interesting types of
subvarieties of Ag: subloci of totally decomposable abelian varieties and totally geodesic
subvarieties. Here an abelian variety is said completely decomposable if it is isogenous
to the product of elliptic curves.

Starting from Poincaré’s Reducibility Theorem, many authors have investigated on
possible decompositions of abelian varieties as a product of abelian subvarieties. How-
ever most authors were mainly interested in elliptic factors of Jacobian varieties. In
[58], Lange and Recillas provide a technical tool (nowadays know as the group algebra
decomposition) to decompose abelian varieties using group actions of finite groups. The
Chilean school of mathematics gave great contributions in this direction founding way
to better characterize this decomposition. In particular, in case of Jacobian varieties:
thanks to [82] we know the dimensions of the pieces, thanks to [59] we know the in-
duced polarization, thanks to [51] we can recognize terms as Jacobians of intermediate
quotients.

Moreover, since the paper of Ekedahl and Serre [27], there has been a big amount
of work on completely decomposable abelian varieties, looking for genus in which there
exists, or there cannot exist, a curve with totally decomposable Jacobian.

Our interest in this particular subclass of Jacobian varieties starts from the fact that
many examples of Shimura subvarieties of Tg among those obtained as Galois cover-
ings of P1 and of elliptic curves in [32] and in [36], turned out to have a completely
decomposable Jacobian variety. Hence the leitmotiv of this Chapter is the following:

Question 3.1. How is it possible to compare subloci of Ag of totally decomposable
abelian varieties and totally geodesic subvarieties?

The Chapter is organized as follows.
In Section 3.1, which is the first half of the Chapter, we recall how the group algebra

decomposition works. Letting G be a finite group acting on an abelian variety A, we
describe how Q[G], the Q-algebra associated to G, decomposes in simple algebras Qi

and how this decomposition goes down to A, obtaining the so-called isotypical decom-
position. Then we explain how it is possible to use minimal left ideals to decompose Qi
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further. In this way we can improve the isotypical decomposition to obtain the group
algebra decomposition.

In case of Jacobian varieties, we cite Theorems concerning the terms which appear
in this decomposition trying to explain how they can be interpreted as Jacobians of
intermediate quotients. Moreover we report a criterion which establishes, in case of
abelian surfaces, when the group algebra decomposition is satisfactory, i.e. when the
terms of the decomposition cannot be broken again.

Finally, we focus on the case of totally decomposable abelian varieties. We address
this particular type of abelian varieties addressing a question formulated by Moonen and
Oort in [70]. There the authors ask about a possible decomposition of Jacobians occur-
ring in the Shimura varieties there constructed (we remind that the same are recollected
and enlarged in [32]). Indeed we show that a remarkable number of the examples pre-
sented in [32] and in [36] actually carry curves with totally decomposable Jacobian.

In Section 3.2 we analyse this question and we compare the two properties: being
a totally geodesic subvariety and being a locus of totally decomposable Jacobians. By
means of concrete examples we show that, unfortunately, there does not exist a link
between them. Indeed we describe in detail a family of genus 3 curves with completely
decomposable Jacobians which cannot be totally geodesic and then another family of
genus 3 curves which yields a Shimura curve in A3 and we show that their Jacobians
decompose as the product of a fixed elliptic curve and an abelian surface which does not
admit any sub elliptic curve.

3.1 Group Algebra Decomposition

In this section we describe how to use the action of a finite group G on an abelian va-
riety A to decompose A up to isogeny. In particular we will focus on the Jacobian case
A = JX, where X is a smooth projective curve with a G-action. For this section we refer
to the seminal work of Lange-Recillas [58] and to [15], [82].

Let us take an abelian variety A with a finite group G which acts on it. The action
induces an algebra homomorphism:

% : Q[G] → EndQ(A)∑
xgeg 7→

∑
xgθg,

where Q[G] denotes the group algebra of G over Q and θg is the endomorphism of A
which sends a 7→ g · a.

In order to obtain proper abelian subvarieties of A it it necessary to choose suitable
elements α of Q[G] and to look at the corresponding Im %(α). For this reason we recall
that Q[G] is a semi-simple Q-algebra and thus it admits a unique decomposition

Q[G] = Q1 × ...×Qr
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3.1. Group Algebra Decomposition

in simple Q-algebras. Hence we immediately get a decomposition of the unit element
as:

1 = e1 + ...+ er.

The elements e1, ..., er form a set of orthogonal idempotents of Q[G]. Since they are
uniquely determined, they well-define

A1 × ...×Ar, (3.1)

with Ai = Im(ei). The product (3.1) is called isotypical decomposition of A, it is unique
up to permutation of the terms and the addition map induces an isogeny with A. The
terms Ai are called isotypical components.

There is a way to compute the idempotents in terms of the representations of the
group G. Indeed, letting V1, ..., Vs be the C-irreducible representations of G with char-
acters χ1, .., χs, it is possible to define projectors

pj :=
degχj
|G|

∑

g∈G

χj(g) · g ∈ C[G]

and to show that

ej = pj1 + ...+ pjkj ,

where Vj1 , ..., Vjkj are the irreducible representations of G which are Galois-conjugate
to Vj . Notice that this proves that the components Ai correspond one to one to the
irreducible Q-representations W1, ...,Wr of G (for details see [58], pp. 137-139).

It is also known that the simple algebras Qi can be decomposed into a product of
minimal left ideals (all isomorphic) and hence a further decomposition of A is deter-
mined. Indeed, the following holds:

Proposition 3.1.1. Let G be a finite group acting on an abelian variety A. Let W1, ...,Wr

denote the irreducible Q-representations of G and ni :=
dVi
sVi

with dVi is the degree of a

complex irreducible representation Vi associated to Wi and sVi is its Schur index. Then
there are abelian subvarieties B1, ..., Br of A and an isogeny

A ∼ Bn1
1 × ...×Bnr

r . (3.2)

This is called the group algebra decomposition of A. Further informations relating the
terms can be obtained taking into account the geometric properties of the action.

Remark 18. Some of the varieties Bi’s may be of dimension zero for some particular
actions. For instance, in the case of A being the Jacobian of a Riemann surface X with
G action, the variety B1 corresponding to the trivial representation W1 may be taken as
the Jacobian of the Riemann surface X/G, whose genus may be equal to zero.
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In [82] the author focuses on the Jacobian case A = JX and she studies a technique
to evaluate the dimension of each Bi using an explicit generating vector for the action of
G on X. Indeed, let G be a group acting on X, π : X → X/G the quotient map branched
on r points and (m, G, θ) the corresponding datum. Following [82], we call geometric
signature the tuple (g′, [m1, Cl], ..., [mr, Cr]): g′ is the genus of the quotient X/G and Ci
is the conjugacy class of θ(γi), i.e. the conjugacy class of the non trivial stabilizer around
the ith branch point.

Theorem 3.1.2 (Rojas, [82]). Let G be a finite group acting on a Riemann surface X
with geometric signature as above. Then the dimension of any subvariety Bi associated to
a non-trivial irreducible Q-representation Wi is given by

dimBi = li(dVi(g
′ − 1)) +

1

2

r∑

j=1

(dVi − dim Fixθ(γj)Vi),

where Vi is a C-irreducible representation associated to Wi and li is the degree of the exten-
sion [LVi : Q].

Intermediate coverings play a key role in identifying elements of the decomposition.
We begin with the following:

Proposition 3.1.3 (Carocca-Rodríguez, [15]). Given a Galois cover with corresponding
group algebra decomposition

A ∼ Bn1
1 × ...×Bnr

r .

If H is a subgroup of G and X → X/H := XH is the corresponding quotient map, then the
group algebra decomposition of JXH is given as

JXH ∼ B
nH
1

1 × ...×BnH
r

r , with nHi =
dHVi
sVi

where dHVi denotes the dimension of the vector subspace V H
i of Vi.

This Proposition provides a criterion to identify if a factor in (3.2) is isogenous to the
Jacobian of a quotient of X. This is shown in

Lemma 3.1.4 (Jiménez, [51]). If H < G is such that dimC V
H
i = sVi and dimC V

H
j = 0

for all j, j 6= i, such that dimC Vj 6= 0, then

Bi ∼ JXH .

It is still an open question whether terms Bi’s in the group algebra decomposition
are simple or not. Results in this direction are obtained, for instance, in [3], [4]. There
the authors relate abelian subvarieties of an abelian varieties A with elements α in the
rational Néron-Severi group NSQ(A) := (Pic(A)/Pic0(A)) ⊗ Q. In particular they give
numerical characterization for non-simplicity. Here we recall (without proof) the follow-
ing:
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Proposition 3.1.5 (§4.4, [4]). Let (A,L) be a polarized abelian surface of type (1, d) with

period matrix Π =

(
1 0 τ1 τ2
0 d τ3 τ4

)
. Then A admits a sub elliptic curve if and only if there

exists a vector (a1, ..., a6) ∈ Q6 satisfying:





−d = da2 + a5

0 = (τ1τ3 − τ22 )a1 − da3τ1 + da2τ2 − a5τ2 + a4τ3 + da6

0 = a3a4 − a2a5 + a1a6.

(3.3)

This Proposition, applied to explicit examples (see [4, Section 5]) shows that there
are cases where the terms Bi’s in the group algebra decomposition admit a further de-
composition.

3.1.1 Totally decomposable abelian varieties

Starting from the work of Ekedahl and Serre [27] where the authors find curves up to
genus 1297 with totally decomposable Jacobian varieties, there has been much interest
in curves with this property. Several authors address this problem developing different
techniques but, since the publication of Ekedahl and Serre’s list of genera admitting a
curve with totally decomposable Jacobian, not many new examples have been found.
An important progress is obtained in [80], where the authors used a new approach
involving group algebra decomposition of intermediate coverings to get new examples
in new genera.

In this section we deal with totally decomposable abelian variety from a different
point of view. Indeed, our interest is inspired by the following question asked by Moonen
and Oort:

Question 3.2 (§6.7, [70]). For which g ≥ 2 does there exist a positive dimensional
Shimura subvariety Z generically contained in Tg and such that the abelian variety cor-
responding with the geometric generic point of Z is isogenous to a product of elliptic
curves?

As already explained in the previous Chapter, we know only sufficient criteria which
yield special subvarieties. Therefore our answer is forced to be partial. It is resumed in
the following:

Proposition 3.1.6. For g = 2, 3, 4 there are Shimura varieties whose generic point has
a totally decomposable Jacobian variety. They are obtained in [32] and [36] as families
of Galois covering of P1 or of elliptic curves and they satisfy condition (∗) (for details see
Chapter 2, Section 2.3.1). In particular, using the same notation of [32] and [36], the
following holds.

? In g = 2 we have families:

- (3) = (5) = (28) = (30) which decomposes as E2
1 ;
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- (4) = (29) which decomposes as E2
1 ;

- (26) = (1e) which decomposes as E1 × E2.

? In g = 3 we have families:

- (7) = (23) = (34) = (5e) which decomposes as E1 × E2
2 ;

- (22) which decomposes as E2
1 × E2;

- (33) = (35) which decomposes as E3
1 ;

- (31) = (3e) which decomposes as E1 × E2
2 ;

- (32) = (4e) which decomposes as E1 × E2
2 ;

- (27) which decomposes as E1 × E2 × E3.

? In g = 4 we have families:

- (13) = (24) which decomposes as E1 × E2
2 × E3;

- (25) = (38) which decomposes as E2
1 × E2

2 ;

- (37) which decomposes as E1 × E3
2 .

Proof. The proof of this list is contained in the analysis of the families given in Section
4 of the previous Chapter. The totally decomposability is obtained using the group
algebra decomposition and Lemma 3.1.4. Indeed, this Lemma gives a way to recognize
terms in the decomposition as Jacobians of intermediate quotients. In cases of families
(22), (13) = (24) and (25) = (38) respectively the 2-dimensional term given by the
group algebra decomposition is shown to be the Jacobian of families (4), (3) and (5)
respectively. Since these ones are totally decomposable we conclude.

We remark that for the remaining Shimura varieties of [32] and [36] the group
algebra decomposition does not give interesting information and thus we will not list
them here. In particular, since the decomposition furnished by the group algebra is not
exhaustive, we cannot answer to Question (3.2) in case of g ≥ 5.

3.2 The Comparison

Motivated by what is collected in Proposition (3.1.6), this section is devoted to the
following:

Question 3.3. Is there any relation between totally geodesic subvarieties and loci of
totally decomposable abelian varieties of Ag?

Indeed, we show in Proposition (3.1.6) that, al least in low genus, the group algebra
decomposition, applied to the Jacobians of the curves which occur in Galois coverings
satisfying (∗), gives us very frequently totally decomposable abelian varieties.
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Completely decomposable Jacobian varieties play a key role in the study of Shimura
subvarieties of Ag presented in [61]. In this paper the authors focus on specific coun-
terexamples to the Coleman-Oort’s conjecture. In particular, they treat the case of
Shimura curves which parametrize g-dimensional principally polarized abelian varieties
that are isogenous to a g-fold self-product of some elliptic curve. They prove the follow-
ing:

Theorem 3.2.1 (Lu-Zuo). For g > 11, there does not exist a Shimura curve generically
contained in Tg which parametrizes principally polarized abelian varieties of dimension g
isogenous to a g-fold self-product of some elliptic curve.

Notice that this Theorem gives an answer to Question (3.2) in the 1-dimensional
case. By sake of completeness, we quickly recall that the same Theorem partially answers
to what asked by Ekedahl and Serre regarding the existence of high genus curves with
completely decomposable Jacobian. Indeed, it has the following:

Corollary 3.2.1.1. For each fixed integer g greater than 11, there exist, up to isomorphism,
at most finitely many smooth projective curves of genus g whose Jacobians are isogenous to
g-fold self-product of a single elliptic curve with bounded isogenous degrees.

Justified by these applications, the goal of the remaining part of this Chapter is to
address Question (3.3). We will analyse the two implications separately, devoting a
section to each of them. Unfortunately, the answer is negative.

3.2.1 Totally decomposable ; totally geodesic

Let us start considering a 1-dimensional family of curves with totally decomposable
Jacobian varieties. Using the same notation of Section 1.3.3, we let G be a finite group
acting on genus g curves with datum (m, G, θ). Therefore we denote by M(m, G, θ) the
variety in Mg which parametrizes Galois coverings C → C/G with datum ∆ = (m, G, θ)
and by Z the corresponding family of Jacobians in Ag. Here, by means of a concrete
example, we show that the total decomposability of the Jacobian varieties JC, does not
guarantee Z to be totally geodesic in Tg.

For simplicity we will focus on the case of Jacobians decomposable as

JC ∼ Ek1 × El2, k, l ∈ N (3.4)

with E1 not isogenous to E2. Obviously our argument can be used in case of JC ∼
E1 × E2 × ....× En, with n ∈ N.

Remark 19. The assumption E1 not isogenous to E2 is necessary. Indeed in case of
decomposition of type JC ∼ Ek we could apply Theorem (2.2.10) to get a global isogeny
between Z and A1 × ...×A1︸ ︷︷ ︸

k times

which is already known to be totally geodesic in Ak.

We start with two technical facts:
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Lemma 3.2.2. Let (M, 〈, 〉), (M ′, <,>) be two Riemannian manifolds and h : M → M ′

be a map. Then the graph of h, denoted by Γh, is a totally geodesic submanifold of M ×M ′

iff for every geodesic γ of M then h(γ) is a geodesic of M ′.

Proof. First we consider the ⇐) implication. Let us take (x, y) ∈ Γh and (u, v) ∈ T(x,y)Γh,
i.e. v = (dh)xu with (dh)x : TxM → TyM

′ and u ∈ TxM . The Existence and Uniqueness
Theorem for geodesic guarantees that there exist ε > 0 and a geodesic γu : (−ε, ε) →M
such that:

γu(0) = x and γ̇u(0) = u.

For the same reason there exists a geodesic γv passing through y at time 0 with tangent
vector v. By uniqueness of the geodesic we have

γv = h ◦ γu,

since h ◦ γu has the same initial data of γv. This shows that the geodesic (γu, γv) con-
tained in M ×M ′ is actually contained in Γh. Therefore Γh is a totally geodesic subman-
ifold of M ×M ′.

In order to prove ⇒) we suppose Γh is totally geodesic in M ×M ′. As before let us
take (x, y) ∈ Γh and (u, v) ∈ T(x,y)Γh, i.e. y = h(x), v = (dh)xu with (dh)x : TxM →
TyM

′ and u ∈ TxM . Moreover let (γu, γv) be the geodesics in M ×M ′ such that

γu(0) = x
γ̇u(0) = u

and
γv(0) = y
γ̇v(0) = v.

The assumptions (u, v) ∈ T(x,y)Γh and Γh totally geodesic in M ×M ′ force (γu, γv) to be
contained in Γh. Therefore we have γv = h ◦ γu. This shows that h sends geodesics to
geodesics and hence we conclude.

Remark 20. We apply this Lemma letting the Siegel space play the role of M,M ′ and
considering the lifts of subvarieties of type Z at the level of Sg. Indeed, as explained in
Chapter 2, the Siegel space is a Riemannian symmetric space (see for instance Proposi-
tion (2.2.3)). Therefore we remark that there exists a geodesic through any two fixed
points of S1. The same holds also in case of S1 ×S1.

Lemma 3.2.3. Let Z be a irreducible 1-dimensional totally geodesic submanifold of S1×S1

such that π1(Z) = S1, where π1 is the projection on the first factor. Then

π−1
1 (∗) ∩ Z = {p},

i.e. the preimage of a generic point ∗ in S1 is a singleton.

Proof. Suppose by contradiction that {p, q} ⊂ π−1
1 (∗) ∩ Z. Then there would exist a

geodesic γ in π−1
1 (∗) = ∗ × S1

∼= S1 connecting the two points. The assumption of Z

totally geodesic in S1×S1, together with the fact that S1 is totally geodesic in S1×S1,
implies

γ ⊆ Z, hence γ ⊆ Z ∩ π−1
1 (∗).
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Therefore Z ∩ π−1
1 (∗) is not discrete and thus, by the irreducibility of Z, Z ⊆ π−1

1 (∗).
This gives a contradiction since π1(Z) = S1.

These two Lemmas have the following consequence:

Proposition 3.2.4. Let Z be a irreducible 1-dimensional totally geodesic submanifold of
S1 ×S1 such that π1(Z) = S1. Then:

1. Z is the graph of a function h : S1 → S1;

2. For every geodesic γ of S1, the image h(γ) is still a geodesic.

The goal now is to give a concrete example of a 1-dimensional family of curves in
M3 such that the corresponding Z has Jacobians of type (3.4). We will show that such
a Z cannot be totally geodesic in T3.

Using, as usual, the notation of MAGMA, the data are the following:

G = D6 = 〈x, y : x6 = y2 = 1, yxy = x−1〉, (F)

x = (y, x3, x4y, x), m = (2, 2, 2, 6),

H0(C, ωC) ∼= V4 ⊕ V6,

where Vi are irreducible representations of G such that dim(V4) = 1 and dimV6 = 2. An
easy calculus shows

(Sym2H0(C, ωC))
G ∼= Sym2V4 ⊕ (Sym2V6)

G.

Since dim(Sym2V6)
G = 1, we get N = dim(Sym2H0(C, ωC))

G = 2. The family is 1-
dimensional because it is ramified over four points (which we can fix as {z1 = 1, z2 =
λ, z3 = 0, z4 = ∞}). Therefore condition (∗) does not hold. The group algebra decom-
position for all the curves C in the family gives us

JC ∼ B4 ×B2
6 ,

where both the Bi’s have dimension one. As desired, this family has totally decompos-
able Jacobian varieties.

Let us take the subgroup H := 〈x3y, x4〉, isomorphic to S3, and considering the
quotient map f : C → C/H we get only two critical points of order 3 in ϕ−1(z4).
Applying Riemann-Hurwitz we get that E := C/H is an elliptic curve. Moreover, since
H0(E,ωE) = H0(C, ωC))

H = V4 we get that B4 ∼ E (see Lemma 3.1.4).
The map E → P1 inherits a point of order 2 over all zi’s. Thus we get the equation

of E as the plane cubic
Eλ : y2 = x(x− 1)(x− λ). (3.5)

Notice that, as expected, it moves: indeed it depends on λ, the parameter of the family.
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In order to study B6, we consider the following diagram:

C F

P1

P1

ψ

f ′

π

(3.6)

The map f ′ is the quotient map which correspond to the subgroup H ′ := 〈x3, y〉 ∼=
Z/2× Z/2. It has:

- two critical points on ψ−1(z1) with stabilizer 〈y〉. Call q1 their image through f ′ in
P1 and x1 that of the other points of ψ−1(z1).

- Six critical points on ψ−1(z2) with stabilizer 〈x3〉. Call q2, q3, q4 their image through
f ′.

- Two critical points on ψ−1(z3) with stabilizer 〈y〉. Call q5 their image through ϕ′

and x2 that of the other points of ψ−1(z1).

- Two critical points on ψ−1(z4) with stabilizer 〈x3〉. Call q6 their image in P1.

This means that the order 3 map π : P1 → P1 has a critical point of order 2 in the fibres
π−1(z1) and π−1(z3); moreover it has a critical point of order 3 in π−1(z4). If we fix
x2 = 0, q5 = 1, q6 = ∞ we obtain

π(z) = −27

4
z3 +

27

4
z2.

This implies that q1 = −1
3 and that

(z − q2)(z − q3)(z − q4) = −27

4
z3 +

27

4
z2 − λ.

Now consider the subgroup H ′′ := 〈y〉 and the quotient map f ′′ : C → C/H ′′. Since
f ′ has six critical values in q1, ..., q6, we get that f ′′ has only two critical points of order
2 in the preimage f ′−1(q1). This means that F := C/H ′′ is an elliptic curve. As above
since H0(F, ωF ) = H0(C, ωC))

H′ ⊂ V6 we get the isogeny F ∼ B6. Studying the map
F → P1 we obtain

Fλ : y2 = (z − q2)(z − q3)(z − q4) = −27

4
z3 +

27

4
z2 − λ. (3.7)

Notice that, again, the equation depends on the parameter so it moves in family.

Proposition 3.2.5. The curves Eλ and Fλ are not isogenous.
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Proof. It is quite easy to see that the two curves cannot be isogenous. The idea is to
study how the j-invariants j(Eλ), j(Fλ) degenerate moving λ to limit values. Since E is
presented in Legendre form, we have that (see e. g. [47, p. 317]):

j1(λ) := j(Eλ) = 28
(λ2 − λ+ 1)3

λ2(λ− 1)2
. (3.8)

On the other hand, using the linear change of variables x = az + 1
3 , where a satisfies

a3 = −16
27 , we put the equation (3.7) in the standard form

y2 = 4x3 − g2x− g3 with g2 = −9

4
a and g3 = λ− 1

2
.

This implies that

j2(λ) := j(Fλ) =
16 · 27
λ(1− λ)

.

Comparing the j-invariants at limiting conditions, we see that

j1(λ) ∞λ→∞ while j2(λ) 0.
λ→∞ (3.9)

Since they have a different behaviour for λ near ∞ we conclude.

Thus we conclude with the following:

Theorem 3.2.6. The totally decomposable family (F) is not totally geodesic in A3.

Proof. By above description we know that for every covering C → C/G of family (F)
the Jacobian decomposes as:

JCλ ∼ Eλ × F 2
λ .

Set C∗∗ := Cr {0, 1} and consider the following diagram (we refer to [54, Chapter 5]):

S1

C∗∗ = S1
/
Γ2

S1

/
SL(2,Z) = C,

u
π

j

.

The map u is the universal cover S1 → S1
/
Γ2 , where Γ2 is the subgroup of SL(2,Z)

acting on S1 through automorphisms τ 7→ aτ + b

cτ + d
, with

(
a b
c d

)
∈ SL(2,Z) and

(
a b
c d

)
≡
(
1 0
0 1

)
mod 2.

The map j is defined as in (3.8):

j(λ) = 28
(λ2 − λ+ 1)3

λ2(λ− 1)2
,
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i.e. the j-invariant for the curve Eλ : y2 = x(x−1)(x−λ). Finally π is the quotient map
described in Section 1.1.

Let us identify the diagonal of S1×S1 with S1 and assume, by contradiction, that our
family yields a totally geodesic submanifold Z ⊂ S1 ×S1. Proposition 3.2.4 guarantees
that there exists

h : S1 → S1 s.t. Z = Γh.

Let λn ∈ B be a sequence such that λn
n→∞−−−→ ∞ and take τn ∈ S1 such that u(τn) = λn.

Then we have
π ◦ h(τn) = j1(u(h(τn))) = j2(λn)

while
π(τn) = j1(λn).

In fact, considering the map

S1 → A3

τ 7→ [Eu(τ) × Eu(h(τ)) × Eu(h(τ))],

if u(τ) = λ then we get

[Fλ] = [Eu(h(τ))] as element in A1.

Therefore we obtain
j2(λn) = j1(u(h(τn))),

with Eλ (and resp. Fλ) as in (3.5) (and resp. (3.7)).
But this is impossible since (3.9) tells us that j2(λn) converges while j1(λn) diverges.

Hence τn diverges and the same occurs for h(τn) and for j1(u(h(τn))).

3.2.2 Totally geodesic ; totally decomposable

In this section, we show that the assumption on Z to be totally geodesic, actually also
Shimura since we will deal with a family M(m, G, θ) satisfying condition (∗), doesn’t
guarantee JC to be totally decomposable.

We will address this problem working on a concrete example of a Shimura subvariety
of A3 (family (9) of [32]) and showing that it doesn’t carry completely decomposable
Jacobians. We refer to the routine developed by Behn, Rodríguez and Rojas in [9]. It
works in SAGE and its code is available at

http://geometry.uchile.cl.

In the following we paste the outputs of the program and we explain their meanings
step by step.

In [1]: G=SmallGroup(6,2)
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In [2]: V=find_generator_representatives(G,[2,3,3,6])

len V

Out[2]: 1

In [3]: V[0]

Out[3]: [(1,4)(2,5)(3,6), (1,3,5)(2,4,6), (1,3,5)(2,4,6), (1,6,5,4,3,2)]

These commands give to SAGE the data of family (9): the group (Z/6), the order of the
stabilizers ([2,3,3,6]) and the generating vector V for the action.

In [4]: X=CW(G, V[0])

N=SerreFormula(G,X)

N

Out[4]: 1

Here the program evaluates N=N = dim(Sym2H0(C, ωC))
G using [32, §2.4]. Notice

that family (9) satisfies condition (∗), as expected.

In [5]: P=Poly(G,V[0])

P.symplectic_group_generators()

Out[5]:[

[ 0 -1 0 0 1 -1] [ 0 0 0 0 1 0] [ 0 0 0 0 1 0]

[-1 0 0 -1 0 1] [-1 0 -1 1 -2 1] [-1 0 -1 1 -2 1]

[ 0 0 -1 1 -1 0] [ 1 0 0 0 1 -1] [ 1 0 0 0 1 -1]

[ 0 0 0 0 -1 0] [ 0 -1 0 -1 1 -1] [ 0 -1 0 -1 1 -1]

[ 0 0 0 -1 0 0] [-1 0 0 0 -1 0] [-1 0 0 0 -1 0]

[ 0 0 0 0 0 -1], [ 0 0 1 0 1 -1], [ 0 0 1 0 1 -1],

[ 0 0 0 -1 0 0]

[ 0 1 1 1 -1 0]

[ 0 -1 0 -1 1 0]

[ 1 0 0 0 1 0]

[ 0 1 0 1 -1 1]

[ 0 0 -1 0 -1 1]

]

As explained in Section 1.1, the group Sp(2g,Z) acts on the Siegel space Sg with quo-
tient space Ag. The action of the group G on the curves of the family (9), hence on their
Jacobians, induces a symplectic representation ρ : G → Sp(2g,Z). Here the program
gives the symplectic representation for the set of generators of the action.

In [6]: I=P.moebius_invariant_ideal()

I.dimension()
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Out[6]: 1

Using the symplectic representation of G, here the program gives the dimension of the
space of invariant Riemann matrices under the action of G. Notice that it agrees with N .

In [7]: decomposing_curves(P, furthe=False)

Out[7]: [

[ 0 1 1 -1 0 1] [ 0 1/2 0]

[ 0 1 0 0 1 0] [ 0 1/2 1/2]

[ 1 0 0 1 -1 -1] [ 1 0 -1/2]

[ 0 0 0 1 -1 -1] [ 0 0 -1/2]

[ 0 0 0 1 1 1] [ 0 0 1/2]

[ 0 0 1 0 0 0], [ 0 0 0], [[1, 2], [2]], [1, 1]

]

Here it gives the terms of the group algebra decomposition for the Jacobians of the
family and it provides the induced polarizations. As already described in the analysis of
families of genus 3 given in Section 2.4.2, here we see that JC ∼ S × E, where S is an
abelian surface of polarization of type (1 2) and E is an elliptic curve.

In [8]: A=decomposed_action(P)

A

Out[8]: [[

[-1 0 0 0] [ 0 2 1 0] [ 0 2 1 0] [ 0 -2 -1 0]

[ 0 -1 0 0] [-1 -1 0 -1] [-1 -1 0 -1] [ 1 1 0 1]

[ 0 0 -1 0] [ 1 0 -1 2] [ 1 0 -1 2] [-1 0 1 -2]

[ 0 0 0 -1], [ 0 -1 -1 0], [ 0 -1 -1 0], [ 0 1 1 0]

],

[

[-1 0] [ 0 2] [ 0 2] [ 0 -2]

[ 0 -1], [-1 -1], [-1 -1], [ 1 1]

]]

Here the action of each element of the generating vector found above is decomposed in
blocks matrices where each block acts on the corresponding term of the group algebra
decomposition of JC.

The goal now is to use the induced action on the surface S and to use criteria ex-
plained in the first half of this chapter to try to decompose it further.

In [9]: i=moebius_invariant(A[0],polarization=[1 2])

i

Out[9]: [

Ideal (0, x0ˆ2 - 1/2*x1ˆ2 + x0 + 2*x1 - 1,
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-x0*x1 + 1/2*x1*x2 + 2*x0 - x2,

-x0ˆ2 + 1/2*x1ˆ2 - x0 - 2*x1 + 1,

-x1ˆ2 + 1/2*x2ˆ2 + 4*x1 + x2 - 2,

x0*x1 - 1/2*x1*x2 - 2*x0 + x2,

x1ˆ2 - 1/2*x2ˆ2 - 4*x1 - x2 + 2)

of Multivariate Polynomial Ring in x0, x1, x2

over Rational Field,

[x0 x1]

[x1 x2]

]

With this function the program returns all the matrices with coefficient in the given
polynomial ring R whose images in R/i are invariant under the action of the symplectic
matrices collected in A[0]. This means that here the program is providing the period
matrices of the abelian surfaces S of the family.

In [10]: A.<x0,x1,x2>=AffineSpace(QQ,3)

In [11]: V=A.subscheme([x0ˆ2 - 1/2*x1ˆ2 + x0 + 2*x1 - 1, -x0*x1

+ 1/2*x1*x2 + 2*x0 - x2, -x0ˆ2 + 1/2*x1ˆ2 - x0 - 2*x1 + 1,

-x1ˆ2 + 1/2*x2ˆ2 + 4*x1 + x2 - 2, x0*x1 - 1/2*x1*x2 - 2*x0

+ x2, x1ˆ2 - 1/2*x2ˆ2 - 4*x1 - x2 + 2]);

V

Out[11]: Closed subscheme of Affine Space of dimension 3

over Rational Field defined by:

-x0*x1 + 1/2*x1*x2 + 2*x0 - x2,

x0ˆ2 - 1/2*x1ˆ2 + x0 + 2*x1 - 1,

-x1ˆ2 + 1/2*x2ˆ2 + 4*x1 + x2 - 2

In [12]: V.irreducible_components()

Out[12]: Closed subscheme of Affine Space of dimension 3

over Rational Field defined by:

x1 - 2,

2*x0 + x2 + 2,

x2ˆ2 + 2*x2 + 4,

Closed subscheme of Affine Space of dimension 3

over Rational Field defined by:

2*x0 - x2,

2*x1ˆ2 - x2ˆ2 - 8*x1 - 2*x2 + 4

The first component is 0-dimensional and hence it is not considered. The second one
is of dimension 1 and thus it agrees with the fact that the surfaces S depend on the
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parameter of the family (as we already know from the analysis in Section 2.4.2). Indeed
it can be summarized in:

In [13]:x0,x1,x2=var(’x0,x1,x2’)

solve([2*x0 - x2==0, 2*x1ˆ2 - x2ˆ2 - 8*x1 - 2*x2 + 4==0], x0,x1,x2)

Out[13]:[

[x0 == r1, x1 == sqrt(2*r1ˆ2 + 2*r1 + 2) + 2, x2 == 2*r1],

[x0 == r2, x1 == -sqrt(2*r2ˆ2 + 2*r2 + 2) + 2, x2 == 2*r2]

]

This shows that our surfaces are described by the following 1-parameter period matrices:

(
1 0 t 2±

√
2t2 + 2t+ 2

0 2 2±
√
2t2 + 2t+ 2 2t

)
.

We have the following:

Theorem 3.2.7. The Shimura family (9) is not completely decomposable.

Proof. It only remains to show that the surfaces St which occur in the group algebra de-
composition of the Jacobians JCt of the curves of the family are not further decompos-
able. Notice that we put the subscript t to remind that the term S of the decomposition
varies in families.

We can apply Proposition 3.1.5 and look for a vector (a1, ..., a6) ∈ Q6 which satisfies:





2a2 + a5 + 2 = 0

(−2t∓ 4ς − 6)a1 − 2ta3 + 2(2± ς)a2 − (2± ς)a5 + 2ta4 + 2a6 = 0

a3a4 − a2a5 + a1a6 = 0,

where ς(t) =
√
2t2 + 2t+ 2.

The second equation can be reformulated as:

ς(−4a1 + 2a2 − a5) + t(−2a1 − 2a3 + 2a4) + (−6a1 + 4a2 − 2a5 + 2a6) = 0.

Notice that if τ2 = 2− ς the situation is the same.
To make the system satisfied for every value of t we need to impose the following

conditions 



2a2 + a5 + 2 = 0

−4a1 + 2a2 − a5 = 0

a1 + a3 − a4 = 0

3a1 − 2a2 + a5 − a6 = 0

a3a4 − a2a5 + a1a6 = 0,

Therefore we ask to SAGE:
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In[14]: a1,a2,a3,a4,a5,a6=var(’a1,a2,a3,a4,a5,a6’)

solve([a5+2*a2+2==0,-4*a1+2*a2-a5==0,a1+a3-a4==0,

3*a1-2*a2+a5-a6==0,a3*a4-a2*a5+a1*a6==0],a1,a2,a3,a4,a5,a6)

Out[14]:[

[a1 == r1, a2 == r1 - 1/2, a3 == -1/2*r1 + 1/2*sqrt(-3*r1ˆ2 + 2),

a4 == 1/2*r1 + 1/2*sqrt(-3*r1ˆ2 + 2), a5 == -2*r1 - 1, a6 == -r1],

[a1 == r2, a2 == r2 - 1/2, a3 == -1/2*r2 - 1/2*sqrt(-3*r2ˆ2 + 2),

a4 == 1/2*r2 - 1/2*sqrt(-3*r2ˆ2 + 2), a5 == -2*r2 - 1, a6 == -r2],

[a1 == 0, a2 == (-1/2), a3 == 1/2*sqrt(2), a4 == 1/2*sqrt(2),

a5 == -1, a6 == 0],

[a1 == 0, a2 == (-1/2), a3 == -1/2*sqrt(2), a4 == -1/2*sqrt(2),

a5 == -1, a6 == 0]

]

Since Proposition 3.1.5 requires a vector (a1, ..., a6) ∈ Q6 we need r1 ∈ Q (resp. r1 ∈ Q)
such that √

−3r12 + 2 ∈ Q, resp.
√
−3r22 + 2 ∈ Q,

i.e. a rational point (x, y) which satisfies:

3x2 + y2 = 2.

This is the negative answer:

In [15]: C=Conic([3,1,-2])

Out[15]: Projective Conic Curve over Rational Field defined by

3*xˆ2 + yˆ2 - 2*zˆ2

In [16]: C.has_rational_point()

Out[16]: False

Hence we conclude.
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CHAPTER 4

Basics II

4.1 Abelian Varieties and Jacobians

As we saw in Section 1.1, to any smooth algebraic curve X of genus g we can asso-
ciate a principally polarized abelian variety, its Jacobian variety. Here we generalize this
construction showing how this works in case of X singular and how an analogous as-
sociation is possible in case of cubic 3-folds, i.e. hypersurfaces of degree 3 in complex
projective 4-space. Finally, we recall some results on dual abelian varieties and dual
polarizations.

4.1.1 Generalized Jacobians

Let us take a connected curve X with only ordinary double points as singularities. Let
ν : Xν → X denote the normalization map and let Xν = ∪Xi be the irreducible compo-
nents decomposition. We put

δ = #{Xi} and γ = #Sing(X).

We have the following exact sequence

0 → OX → ν∗OXν →
⊕

p∈ Sing(X)

Cp → 0,

which yields the following exact sequence in cohomology:

0 → H0(X,OX) → H0(Xν ,OXν ) → Cγ → H1(X,OX) → H1(Xν ,OXν ) → 0.

It then follows the following formula for the (arithmetic) genus of X:

pa(X) =

δ∑

i=1

gi + γ − δ + 1,

where gi = h1(Xi,OXi) is the (geometric) genus of the i-th component of the normalized
curve Xν .
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Let us now consider the sheaf of regular, non-vanishing function O∗
X of X. A coho-

mology sequence as above gives us:

0 → (C∗)γ−δ+1 → Pic(X)
ν∗−→ Pic(Xν) → 0, (4.1)

where we identified Pic(X) = H1(X,O∗
X) (resp. Pic(Xν) = H1(Xν ,O∗

Xν ) ) and ν∗ is
the pull-back of line bundles.

Remark 21. Serre duality theorem (see for instance Hartshorne [47]) says that there
exist on X a dualizing sheaf ωX . Letting ni, i = 1, ..., γ be the nodes of X and pi, qi the
two branches of ni in Xν , then the following formula holds

ν∗ωX = ωXν (
∑

(pi + qi)).

Definition 4.1. The generalized Jacobian of a nodal curve X is the semi-abelian variety
(i.e. a commutative group variety which is an extension of an abelian variety by a torus)
JX still identified with the moduli space, Pic0(X), of line bundles of degree 0 in each
component. Thus it is defined by the exact sequence (4.1) taking the degree 0 part, that
is:

0 → (C∗)γ−δ+1 → JX
ν∗−→ JXν =

δ∏

i=1

JXi → 0. (4.2)

4.1.2 Intermediate Jacobians and Fano variety

In [19], Clemens and Griffiths consider an auxiliary variety of a smooth cubic threefold
V which is known as the intermediate Jacobian JV . It is a principally polarised abelian
variety which plays a role similar to that of the Jacobian to study divisors on curves.

We begin by recalling that in case of a smooth curve X we have:

JX ∼= H1,0(X)/H1(X,Z) ∼= Pic0(X).

Notice that the complex torus which appears in the equation above can be always ob-
tained also in case of X smooth n-dimensional Kähler manifold, using properties coming
from Hodge theory. Indeed, the decomposition

H1(X,C) = H1,0(X)⊕H0,1(X) and H1,0(X) = H0,1(X)

and the projection
H1(X,R) ⊂ H1(X,C) → H0,1(X)

makes H1(X,Z) ⊂ H1(X,R) a lattice in the complex vector space H0,1(X). Thus, by
construction, Pic0(X) is a complex torus.

Similarly, in case of odd cohomology of higher degree, we have the decomposition

H2k−1(X,C) = F kH2k−1(X)⊕ F kH2k−1(X)
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and the projection

H2k−1(X,R) → H2k−1(X,C)/F kH2k−1(X).

Notice that we are just using Hodge filtration in higher degree as introduced in Section
2.3. Moreover we have

rkH2k−1(X,Z) = dim H2k−1(X,R).

The image
Lk := Im(H2k−1(X,Z) → H2k−1(X,C)/F kH2k−1(X))

is a lattice of maximal rank in the complex vector space

Vk := H2k−1(X,C)/F kH2k−1(X).

It is natural to give the following

Definition 4.2. The k-th intermediate Jacobian is the quotient

JkX := Vk
/
Lk .

Therefore the intermediate Jacobian of a smooth 3-fold V is

JV := H1,2(V ) +H0,3(V )
/
H3(V,Z) .

In case of V cubic 3-fold we have h0,3(V ) = 0. Moreover Clemens and Griffiths ([19])
prove the existence of a non-degenerate Hermitian form for complex vector spaceH1,2(V ).
Thus JV is a 5-dimensional principally polarized abelian variety. We remark that a
Torelli-type Theorem holds also in case of principally polarized intermediate Jacobians
of cubic 3-folds.

Finally we give the following

Definition 4.3. The Fano variety of lines F (V ) is the variety which parametrises the lines
contained in a smooth n-dimensional cubic hypersurface V ⊂ Pn+1.

It is possible to show that it is a smooth manifold of dimension 2(n− 2).

Conic Bundles

Here we give a brief recall of Mumford’s theory on conic bundles, referring to the Ap-
pendix to [19]. His theory gives also a proof that if V is a non-singular cubic 3-fold then
JV is not the Jacobian of a curve.

Let V be a non-singular cubic hypersurface in P4. Let l ⊂ V be a line in V and let

πl : P
4 → P2
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be a projection centred along l. Hence, letting Ṽ := BllV be the blow-up of V along l, it
is induced a morphism (still denote with the same letter)

πl : Ṽ → P2.

By construction, the fibres of πl over a generic point p ∈ P2 are given by conic curves on
V which are coplanar with l.

Definition 4.4. What described above is a conic bundle.

The discriminant locus of πl is a quintic plane curve Q ⊂ P2, this means that the
fibres are non-singular conics except along Q where the fibre degenerates to the sum of
two lines. For p ∈ Q

π−1
l (p) = r + s,

where r, s are lines coplanar with l.

Theorem 4.1.1 (Mumford). There exists an isomorphism

JV ∼= P (Q̃,Q), 1

where Q̃ is the double cover of Q given by the two components in π−1
l (p), p ∈ Q. In other

words, Q̃ parametrizes the lines l′ ⊂ V meeting l in one point. Furthermore Q̃ is smooth
and Q̃→ Q unramified for generic l and admissible in any case.

We conclude this Section with the following

Remark 22. Let Π be a plane of P4 meeting V in 3 lines l, l′, l′′. The construction above
gives us 3 plane quintics Q,Q′, Q′′ with respectively double covers Q̃, Q̃′, Q̃′′. The lines
l′, l′′ are sent by πl to the same point p ∈ Q and they determine a tetragonal map

f : Q→ P1,

given by OQ(−p). Similarly for Q′, Q′′. It is possible to show that

(Q̃,Q, f), (Q̃′, Q′, f ′), (Q̃′′, Q′′, f ′′),

are tetragonally related (for details on tetragonal construction see Section 4.4.3).

4.1.3 Dual abelian varieties

Here we recall some properties of abelian varieties and their dual varieties referring to
[10], [11] and [72].

1Prym varieties associated to étale double coverings are defined in Section 4.2.
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Let (A,L) be a polarized abelian variety of type (d1, ..., dg) and consider the polar-
ization map

λL : A→ A∗

a 7→ τ∗aL⊗ L−1,

where τa is the translation by a in A and A∗ = Pic0(A) is the dual abelian variety. It is
remarkable to notice that λL is an isogeny. Indeed we have the following results:

Theorem 4.1.2. Let L be an ample line bundle and M ∈ Pic0(A). Then for some a ∈ A

M ' τ∗aL⊗ L−1

i.e. the map λL is surjective.

Theorem 4.1.3. If L is a polarization of type (d1, ..., dg) with di|di+1 for all i = 1, ..., g,
then

K(L) = Ker(λL) ' (Z/d1Z × ...× Z/dgZ)
2.

Therefore deg(λL) = (d1 · ... · dg)2.
Here we list, without proof, some known facts concerning maps among Picard groups.

We refer to [72].

Proposition 4.1.4. The map λL is a homomorphism of groups for every line bundle L.

We will call morphism of abelian varieties a morphism of the underlying algebraic
varieties which is also a morphism of groups.

Proposition 4.1.5. If f : A → B is a morphism of abelian varieties, the induced map
among Picard groups Pic(B) → Pic(A) maps Pic0(B) → Pic0(A). Therefore we get a
morphism f∗ : B∗ → A∗.

Proposition 4.1.6. If f : A → B is an isogeny of complex tori then the dual map f∗ :
B∗ → A∗ is also an isogeny and its kernel is isomorphic to Hom(ker(f),C). In particular
deg(f) = deg(f∗).

To conclude this section we recall the following result concerning the duality con-
struction of Birkenhake and Lange: denote by A(d1,...dg)

g the coarse moduli space parametriz-
ing isomorphism classes of g-dimensional polarized abelian varieties of type (d1, ...dg).
Then the following holds:

Theorem 4.1.7 ([10], Theorem 3.1). There is a canonical isomorphism of coarse moduli
spaces

A(d1,...dg)
g → A

(
d1dg
dg

,
d1dg
dg−1

,...,
d1dg
d1

)

g (4.3)

(A,L) 7→ (A∗, L∗)

sending a polarized abelian variety to its polarized dual abelian variety.
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Here L∗ is the polarization on the dual abelian variety A∗ which satisfies

λL∗ ◦ λL = (dg)A and λL ◦ λL∗ = (dg)A∗ ,

where (dg)A : A → A, (dg)A∗ : A∗ → A∗ are the multiplications by dg. Notice that the
dual polarization L∗ satisfies (L∗)∗ = L.

4.2 Prym varieties and Prym maps

The Torelli’s map gives an injective way to associate to any smooth curve of genus g
a principally polarized abelian variety (its Jacobian). Mumford in [71] shows that an
analogous association can be done sending any étale double covering of a smooth pro-
jective curve of genus g to an element of Ag−1, called the Prym variety of the covering.
One advantage of the construction is that it allows one to apply the theory of curves to
the study of a wider class of abelian varieties than Jacobians. Indeed the Jacobian locus
in Ag−1 is contained inside the boundary of the Prym locus P̄g, i.e. the closure in Ag−1

of the locus of Prym varieties associated to étale double coverings. Since such varieties
play the role of the main character of the second part of this Thesis, here we recall some
constructions and definitions which concern them referring to [1], [26], [29] and [71].

4.2.1 The étale case

Let C be a smooth curve of genus g and let η ∈ Pic0(C)rOC be a line bundle together
with a isomorphism η2 ∼= OC (a 2-torsion point in JC). Then one can construct an
unramified double cover

π : C̃ → C

where
C̃ := Spec(OC ⊗ η) with g(C̃) = 2g − 1.

Conversely, every étale double covers of C arises in this way. This means that these
coverings are parametrized by the moduli space:

Rg := {(C, η) : C ∈ Mg, η ∈ Pic0(C)rOC , η
⊗2 = OC} /∼= .

Remark 23. By construction we have

π∗(OC̃) = OC ⊕ η−1 = OC ⊕ η,

since η⊗2 = OC . Therefore, by projection formula, for every line bundle L ∈ Pic(C) we
have

H0(C̃, π∗L) = H0(C, π∗π
∗L) = H0(C,L)⊕H0(C,L⊗ η).

The covering map induces a norm map

Nm : Picr(C̃) → Picr(C)

OC̃(
∑

ripi) 7→ OC(
∑

riπ(pi)).
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among degree r-line bundles. In particular, in case of degree 0, it is defined as a map
between the Jacobians:

Nm : JC̃ → JC.

Definition 4.5. The Prym variety of the covering π : C̃ → C is

P (π) = P (C, η) := Nm−1(0)0,

i.e. it is the connected component of the kernel of the Norm map containing the origin.

The Prym variety associated to π is a (g−1)-dimensional abelian variety which carries
a principal polarization. This is shown by Mumford in the following

Theorem 4.2.1 ([71]). Let ωC ∈ Pic2g−2(C) be the canonical line bundle of C and let
Nm : Pic2g−2(C̃) → Pic2g−2(C) be the Norm map at the level of (2g − 2)-degree line
bundles. Then:

i) Nm−1(ωC) = Nm−1(ωC)
even t Nm−1(ωC)

odd, i.e. it is the disjoint union of two two
translates of the same abelian variety, P (π), distinguished as

Nm−1(ωC)
even = {L ∈ Nm−1(ωC) : h

0(L) ≡ 0 mod 2}

and
Nm−1(ωC)

odd = {L ∈ Nm−1(ωC) : h
0(L) ≡ 1 mod 2}.

ii) Denoting with ΘC̃ the Theta-divisor of JC̃, we have

ΘC̃ · P(π) = 2ΞC ,

where ΞC is a principal polarization such that

ΞC := {L ∈ Nm−1(ωC) : h
0(L) ≥ 2}.

The moduli space Rg is thus involved in the following diagram:

Rg

Mg Ag−1

ϕ Pg (4.4)

Here we outline an interesting correspondence between the moduli space of curves and
the moduli space of principally polarized abelian varieties. On one hand we have the
forgetful map ϕwhich sends pairs (C, η) to C. Notice that this map is finite, indeed it has
fibres of cardinality 22g − 1. On the other hand, we have the unramified (or “classical”)
Prym map Pg which assigns the Prym variety P (π) to any double cover π : C̃ → C of
Rg. Since Mumford’s work, a lot of information has been obtained about it. This theory
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is strongly related to the study of the Jacobian locus, Schottky equations and rationality
problems among other topics. An easy computation shows that

dimRg = 3g − 3 ≥ dimAg =
g(g − 1)

2
if g ≤ 6. (4.5)

It thus makes sense to ask if for low values of g the Prym map is dominant, i.e. if we can
realize a (general) principally polarized abelian varieties of dimension less or equal that
6 as the Prym variety of a étale double covering.

Beauville in [7] introduces a partial compactification Rg of Rg parametrizing admis-
sible double coverings of stable curves of genus g (see Section 4.3 for details). It turns
out that the moduli space Rg is a dense open subset of Rg. Moreover he extends Pg to
a proper map

Pg : Rg → Ag−1.

The following theorems give an answer to the above question and to others strongly
connected to it.

Theorem 4.2.2 (Wirtinger, [90]). The Prym map is dominant if g ≤ 6.

Theorem 4.2.3 (Friedman-Smith, [38], Kanev, [52]). The Prym map is generically injec-
tive for g ≥ 7.

Theorem 4.2.4 (Donagi, [25]). The Prym map is never injective.

Indeed, in [25], Donagi associates two admissible double covers to an unramified
double cover of a smooth tetragonal curve showing that the three coverings have the
same Prym variety. This construction, known as tetragonal construction (see Section
4.4.3), proves Theorem 4.2.4.

For exhaustive proofs of the three above results we refer the reader to the mentioned
papers.

Inequality (4.5), together with Theorem 4.2.2, justifies an analysis of the geometric
properties of the generic fibre. Indeed a detailed study of the structure of the fibre is
provided by the work of Verra ([87]), Recillas ([83]), Donagi ([25]) and Donagi and
Smith ([26]). These are the results:

Theorem 4.2.5 (Verra). Let S be a generic principally polarized abelian surface. Then P−1
3

is biregular to the Siegel modular quartic threefold2.

Theorem 4.2.6 (Recillas). The fibre of P4 at a general abelian 3-fold A is birational to the
Kummer variety A/(±1).

Theorem 4.2.7 (Donagi). The fibre of P5 over general A ∈ A4 is isomorphic to a double
cover of the Fano surface of the lines of a certain cubic threefold V .

Theorem 4.2.8 (Donagi-Smith). The map P6 is generically finite and it has degree 27.

All these results have been summarized under a uniform presentation by Donagi in
[25].

2The Siegel modular quartic threefold V ⊂ P4 is considered by Van de Geer in [86].
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The codifferential of the Prym map

In his very famous paper ([7]), Beauville studies the differential of the Prym map com-
puting its codifferential in case C̃, C smooth.

Keeping in mind that moduli spaces of diagram (4.4) have the structure of complex
orbifold we can work as they were smooth computing their orbifold tangent spaces.
Therefore, using the fact that Rg is an unramified cover of Mg as seen in diagram (4.4),
we get:

T(C,η)Rg = TCMg = H1(C, TC) = H0(C, ω⊗2
C )∗.

Moreover

TAAg−1 = Sym2H0(A, TA),

where A is a (g − 1)-dimensional abelian variety. In case A = P (π) there is a further
identification

TAAg−1 = Sym2H0(A, TA) = Sym2H0(C, ωC ⊗ η)∗

which follows immediately from the definition of P (π) as subvariety of JC̃ and the
splitting

H0(ωC̃) = H0(ωC)⊕H0(ωC ⊗ η).

The following holds:

Proposition 4.2.9 ([7]). The codifferential of the Prym map

dP∗
g : T ∗

P (π)Ag−1 → T ∗
(C,η)Rg

can be identified with the multiplication map

m : Sym2H0(ωC ⊗ η) → H0(ω⊗2
C ), (4.6)

using the isomorphism ω⊗2
C ⊗ η2 ∼= ω⊗2

C ⊗OC
∼= ω⊗2

C .

In particular, (4.6) shows that ker(dP∗
g ) is given by quadrics containing the Prym-

canonical curve ψ(C), defined as the image of C through the Prym-canonical map

ψ : C → Pg−2,

associated with the complete linear system |ωC ⊗ η|.

Remark 24. In case of admissible covers C = X/p ∼ q of types as described in Examples
1, 2, Donagi and Smith (see [26, §3 ]) show that the kernel of the codifferential of the
Prym map can be naturally identified with the space of quadrics containing the canonical
curve ψ(X) and the chord connecting ψ(p) to ψ(q).
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4.2.2 The ramified case

In this section we look at the analogue of the Prym variety in the case of ramified double
covers. We refer to [55], [63], [64], [75] and [76].

Let C be an irreducible smooth complex projective curve of genus g and let π : D →
C be a smooth double cover ramified in r > 0 points.

Definition 4.6. The Prym variety P (π) associated to the cover π is the kernel of the
Norm homomorphism

P (π) := kerNm ⊂ JD.

Notice that here, since r 6= 0, we are using that the kernel of Nm is connected (see for
example [71, Section 3,Lemma]). The Prym variety is an abelian variety of dimension
g − 1 + r

2 and polarization Ξ, induced by the principal polarization of JD, of type

δ := (1, ..., 1, 2, ..., 2︸ ︷︷ ︸
g times

).

Giving a covering π : D → C is equivalent to give a triple (C,B, η), with B a reduced
divisor in C of even degree r > 0 and η a line bundle over C satisfying η⊗2 ∼= OC(B).
Indeed the projection

π : D = Spec(OC ⊕ η−1) → Spec(OC) = C

defines a double cover branched over B. Therefore these coverings are parametrized by
the moduli space

Rg,r := {(C, η,B) : C ∈ Mg, η ∈ Pic
r
2 (C), B reduced divisor in |η⊗2|} /∼= .

Denoting with Aδ
g−1+ r

2
the moduli space of abelian varieties of dimension g− 1+ r

2 with

polarization of type δ, for any g > 1 and r > 0 the ramified Prym map is the morphism:

Pg,r : Rg,r → Aδ
g−1+ r

2

[π : D → C] 7→ [P (π),Ξ],

Proposition 4.2.10 ([55], §4.1). The codifferential of Pg,r at the generic point [(C,B, η)]
is given by the multiplication map:

dP∗
g,r : Sym

2H0(ωC ⊗ η) → H0(ω⊗2
C ⊗OC(B)).

Although some specific cases were considered previously in [5] and [74], a system-
atic study of the properties of the ramified Prym map and of its codifferential in full
generality starts with the work of Marcucci and Pirola [64] where firstly appeared evi-
dent that the generic Torelli-type problems are plenty of rich geometry. Generic Torelli
theorems state that the Prym map is generically injective as soon as

dimRg,r ≤ dimAδ
g−1+ r

2
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that is

3g − 3 + r ≤ 1

2

(
g − 1 +

r

2

)(
g +

r

2

)
.

The generic finiteness of Pg,r is shown by Lange and Ortega with the following:

Proposition 4.2.11 ([56]). If

g ≥ 2 and r ≥ 12, g ≥ 3 and r = 8,

g ≥ 5 and r = 4,

the codifferential of the Prym map is surjective at the generic point (C,B, η) and hence Pg,r
is generically finite.

On the other hand, the generic injectivity can be stated combining the result of [64]
with the main theorems of [63] and of [75] in the following

Theorem 4.2.12. A generic Torelli theorem holds for all the cases where the dimension
of Rg,r is smaller or equal to the dimension of the target Aδ

g−1+ r
2
, except for the case

g = 3, r = 4, where the Prym map has degree 3.

Moreover, very recently, the following result has been obtained by Ikeda

Theorem 4.2.13 ([49]). If g = 1 and r ≥ 6 then the Prym map is injective.

This theorem goes, for the first time, in the opposite direction of what expected.
Indeed it shows that a modified version of Donagi’s result in the étale case (see theorem
4.2.4) should not apply to ramified Prym maps. Inspired by the surprising work of Ikeda,
Naranjo and Ortega prove the following

Theorem 4.2.14 ([76]). The Prym map Pg,r is an embedding for all r ≥ 6 and all g > 0.

In next chapter we address to the opposite side of the study of the ramified Prym
map: the structure of the generic fibre when

dimRg,r > dimAδ
g−1+ r

2
. (4.7)

This is only possible in six cases:

1. g = 1, r = 2;

2. g = 1, r = 4;

3. g = 2, r = 2;

4. g = 2, r = 4;

3. g = 3, r = 2;
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4. g = 4, r = 2.

We remark that the case g = 1, r = 4 is considered by Barth in his study of abelian
surfaces with polarization of type (1, 2) (see [6]).

Our first technical result is the following:

Proposition 4.2.15. Assume that

(g, r) ∈ {(1, 2), (1, 4), (2, 2), (2, 4), (3, 2), (4, 2)},

then the ramified Prym map Pg,r is dominant.

Proof. It is enough to show that for a generic (C, η,B) there are no quadrics containing
the image of

ϕωC⊗η : C → PH0(C, ωC ⊗ η)∗.

A detailed analysis of the six cases leads to the following situations.

- There is nothing to prove in the cases (g, r) ∈ {(1, 2), (2, 2), (1, 4)}. Indeed PH0(C, ωC⊗
η)∗ is restricted to a point for (g, r) = (1, 2), while PH0(C, ωC ⊗ η)∗ = P1 for
(g, r) ∈ {(2, 2), (1, 4)}.

- For (g, r) = (3, 2) and (g, r) = (2, 4) the curve ϕωC⊗η(C) is a plane curve (with
nodes) of degree 5 and 4 respectively. Indeed for (g, r) ∈ {(3, 2), (2, 4)} we have
PH0(C, ωC ⊗ η)∗ = P2 and deg(ωC ⊗ η) = 5, 4 respectively.

- For the case (g, r) = (4, 2) we identify elements (C, η, p+ q) ∈ R4,2 with coverings
(C∗ = C/p ∼ q, η∗) of type (∗) in R5 (using the same procedure explained in Exam-
ple 1) and we refer to [26, Proposition 3.4.1]. There the authors study the codiffer-
ential of the extended P5. They prove that the kernel at a point (D∗, C∗) ∈ R5\R5

can be naturally identified with the space of quadrics containing the canonical
curve ϕωC (C) and the chord ϕωC (p), ϕωC (q) (as already recalled in Remark 24).
Since C has genus 4, it is contained in a unique quadric Q. Being p and q generic,
Q doesn’t contain the required chord.

Since the Prym-canonical curve ϕωC⊗η(C) is always contained in no quadrics we can
conclude.

Corollary 4.2.15.1. The assumptions of the previous proposition imply that the dimension
of the generic fibre Fg,r of Pg,r is:

dimF1,2 = 1, dimF2,2 = 2, dimF3,2 = 2, dimF4,2 = 1,

dimF1,4 = 1, dimF2,4 = 1.

For a detailed analysis of the geometric structure of the general fibre of these maps,
we refer the reader to Chapter 5.
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4.3 Admissible coverings and extended Prym maps

The problem of extending Prym maps to possibly singular and ramified covers was in-
troduced by Beauville ([7]) who first gave the definition of admissible double covers
and he obtained a proper map which on a dense open set factors through the previously
described map Pg. Roughly speaking, he extended the Prym map to

¯̄Pg : ¯̄Rg → Āg−1,

where ¯̄Rg (resp. Āg−1) is a suitable compactification of Rg (resp. Ag−1) and then he
restricted it to the open subset R̄g ⊂ ¯̄Rg of admissible covers in the sense that their Prym
varieties are abelian varieties in Ag−1.

Let us recall the definition of admissible double covers and generalized Prym varieties
as presented in [7].

Let C̃ be a connected curve with only ordinary double points, ν̃ : Ñ → C̃ its normal-
ization and i : C̃ → C̃ an involution. Assume

(?) the fixed points of i are exactly the singular points and at a singular point the two
branches are not exchanged under i

and call C the quotient C̃/〈i〉, π : C̃ → C the projection and ν : N → C the nor-
malization of C. Consider the Norm map induced among the associated generalized
Jacobians as a morphism of algebraic groups Nm : JC̃ → JC and let P+ := ker(Nm)0

the associated subgroup variety.

Proposition 4.3.1 ([7],§3.5). P+ is an abelian variety of dimension ρa(C) − 1, where
ρa(C) is the arithmetic genus of C.

In fact, using the definition of Cartier divisors on singular curves as C̃ and looking at
the Norm maps involved in the following diagram

0 (C∗)γ JC̃ JÑ 0

0 (C∗)γ JC JN 0

Nm Nm Nm (4.8)

it follows that P+ is complete and connected. Hence it is an abelian variety, as desired.

Definition 4.7. We call P+ the generalized Prym variety of the covering π : C̃ → C.
Moreover if C̃ is smooth, we say that P+ = P is a standard Prym variety.

Section 5 of [7], studies Prym varieties under more general assumptions. Using the
same notation as before, let C̃ be a connected curve of genus 2g − 1 with only ordinary
double points and i : C̃ → C̃ an involution. Let C be the quotient curve, Nm : JC̃ → JC
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the Norm morphism and P the connected component to the identity of its kernel (as
before a semi-abelian variety). Assume

(??)





i is not the identity on any component of C̃;

ρa(C) = g;

P is an abelian variety.

Notice that the assumption (??) is equivalent to (?) if there are no components neither
nodes of C̃ exchanged by i .

Definition 4.8. P is the generalized Prym variety of the covering π : C̃ → C. As before
if C̃ is smooth, we say that P is a standard Prym variety.

More explicitly we can resume the previous condition in the following:

Theorem 4.3.2. A stable curve C̃ with involution i and quotient map π : C̃ → C is
admissible, that is the associated Prym variety is an abelian variety, if and only if all the
fixed points of i are nodes of C̃ where the branches are not exchanged and the number of
the nodes exchanged under i equals the number of the irreducible components exchanged
under i.

Very clarifying possibilities are the following:

Example 1. Let π : D → C ∈ Rg,2 be a double cover branched in p, q two distinct points
in C and consider

C̃ := C
/
p ∼ q , D̃ := D

/
p̃ ∼ q̃ ,

where p̃, q̃ are the ramification points in D over p, q and p ∼ q means that we are
identifying the two points of the curve as in Figure 4.1. By definition C̃ is a curve of
arithmetic genus g + 1 with a node. The covering π̃ : D̃ → C̃ is admissible of type (?)
and hence is an element of R̄g+1.

This example shows that the moduli spaces Rg,2 can always be embedded into
Beauville’s partial compactification R̄g+1 of the moduli space of étale double coverings
of curves of genus g + 1 by identifying the two branch points of the base curve (and do-
ing the same for the covering curve). The closure of the image of Rg,2 is an irreducible
divisor in the boundary of R̄g+1 that we denote by ∆n.

Example 2. Let X be an element in Mg−1 with two marked distinct points p, q. Let
C1, C2 be isomorphic copies of X. Then

C̃ := C1 t C2
/
p1 ∼ q2, p2 ∼ q1

together with the involution i : C̃ → C̃ which exchange C1 with C2 and p1 ∼ q2 with
p2 ∼ q1 determines a quotient curve C := C̃/〈i〉 with exactly one node q as in Figure
4.2. The covering π : C̃ → C is étale of degree 2 and maps the two nodes of C̃ to q. It is
admissible of type (??) and hence it is an element of R̄g. The normalization of C is the
curve X and P (π) is isomorphic to JX.

Coverings of such type are called Wirtinger’s covers. This construction shows that
the Jacobian locus is thus contained in the Prym locus.
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p q

D

C

π π̃

D̃

C̃

Figure 4.1
π : D → C ramified double cover, π̃ : D̃ → C̃ admissible cover of type (?).

C̃

X X

X

C

π

ν

Figure 4.2
π : C̃ → C admissible cover of type (??), ν : X → C normalization map.
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4.4 Polygonal constructions

This section is devoted to the description of the so-called polygonal construction. They
provide a very useful tool which starts from a “tower” of covering maps

A→ B → C

and produces new “towers”

A′ → B′ → C ′, A′′ → B′′ → C ′′, ...

determining relations among the Prym varieties. All details of these constructions are
borrowed from [25].

Let us consider a curve C of genus g with a map f : C → P1 of degree n and a
2-sheeted ramified covering π : D → C. Then we can always associate a 2n- covering

D′ → P1

defined in the following way: the fibre over a point p ∈ P1 is given by the 2n sections s
of π over p. This means that:

s : f−1(p) → π−1f−1(p) and π ◦ s = id. (4.9)

D′ can be better described inside D(n), where D(n), as usual, represents the n-symmetric
product of the curve D and it parametrizes effective divisors of degree n. Indeed it can
be described by the following fibre product diagram:

D′ D(n)

P1 C(n)

2n:1 π(n) (4.10)

where P1 is embedded in C(n) by sending a point p to its fibre f−1(p).
D′ carries a natural involution i′ : D′ → D′ defined as follows:

q1 + ...+ qn 7→ i(q1) + ...+ i(qn) (4.11)

where i is the involution of D which induces the covering π. Moreover we can define
an equivalence relation on D′ identifying two sections si, sj if they correspond to a even
number of changes qi 7→ i(qi). This gives another tower

D′ → O → P1

where O is the quotient obtained considering this equivalence. It is known as the Orien-
tation cover of f ◦ π.
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For n even the involution i′ respects the equivalence, thus we have the following
sequence of maps:

D′ → D′/i′ → O → P1,

with, respectively, degrees equal to 2, 2n−2, 2. On the contrary, for n odd, the equivalence
classes are exchanged so we have a diagram of the following type:

D′

D′/i′ O

P1

2:1

2:1

Definition 4.9. D is orientable (over P1) if the orientation cover O → P1 is trivial.

We conclude recalling, without proof, two results shown in [25].

Proposition 4.4.1. Let C → P1 a branched cover and π : C̃ → C an unramified double
cover. Then C̃ is orientable over P1.

Proposition 4.4.2. If D is orientable then D′ is reducible: D′ = D0 ∪D1.

- If n is even then i′ acts on each Dj and the quotient has a degree 2n−2 map to P1;

- If n is odd then i′ exchanges the two branches Dj . Each Dj has a map of degree 2n−1

to P1.

4.4.1 The bigonal construction

Let us see an application of the polygonal construction described above in case of n = 2.
Starting from a tower

D
π−→ C

f−→ P1,

where π and f both have degree 2, we get the following diagram:

D′ D(2)

C ′

g12 C(2)

h

π′

π(2)

f ′

(4.12)

The fibre of h over a point k ∈ P1 is given by the sections s introduced in (4.9). Call
C ′ := D′/〈i′〉, where i′ is the induced involution on D′ of (4.11). The possible situations
over k are the following (see [25], pp. 68-69):

93



Chapter 4. Basics II

1) If π, f are étale the same are π′, f ′;

2) If f is étale while π is branched at one point of f−1(k), then h inherits two critical
points of order 2 in the fibre which are exchanged by i. This means that are π′ is
étale, while f ′ is branched;

3) Viceversa if π is étale while f is branched in k, then h has a critical point of order
2 in the fibre and 2 more points which are exchanged by i′. This means that π′ has
a critical point of order 2 while f ′ is étale;

4) If π, f are both branched the same are π′, f ′ (in particular h has a single critical
point of order 4);

5) If f is étale while π is branched at both points then C ′ has a node over k and π′

becomes an admissible cover which looks like Example 1.

Remark 25. The bigonal construction can be extended by continuity to allow D → C to
degenerate to an admissible cover as in Example 1. Let k be the image in P1 of the node

of C. Then the associated tower D′ π′

−→ C ′ f ′−→ has f ′ étale while π′ is branched at both
points of f

′−1(k).

We call an element D → C → P1 general if it avoids situations of type 5) (where the
bigonal construction deals with singular admissible coverings).

Proposition 4.4.3. Assuming f ◦ π general then g(D′) = r + g − 2 and g(C ′) = r
2 − 1.

Proof. By generality assumption, a straightforward application of Riemann-
Hurwitz formula for h gives:

2g(D′)− 2 = 4(−2) + 2(r − r′) + 6− r′ + 3r′,

where r is the number of branch points of π and r′ the number of branch points of π
which are also ramification points for f . Similarly for π′, we get:

2g(D′)− 2 = 2(2g(C ′)− 2) + 6− r′ + r′.

Lemma 4.4.4 ([25], Lemma 2.7). The bigonal construction is symmetric: if it takes D
π−→

C
f−→ P1 to D′ π′

−→ C ′ f ′−→ P1 then it takes D′ π′

−→ C ′ f ′−→ P1 to D
π−→ C

f−→ P1.

Moreover the following holds:

Theorem 4.4.5 (Pantazis,[79]). The Prym varieties P (D,C) and P (D′, C ′) associated to
the two bigonally-related covering maps D → C and D′ → C ′ are dual each other as
polarized abelian varieties.
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4.4.2 The trigonal construction

The polygonal construction in the case n = 3 was studied by Recillas in [83]. It is known
as trigonal construction and it deals with étale double covers of smooth trigonal curves.
Here we recall the main steps of the construction referring to [11, Chapter 12].

Denote Rtr
g+1 the moduli space of 2:1 étale coverings of trigonal curves C of genus

g+1. Each point in Rtr
g+1 corresponds to a triple (C, η,M), where η ∈ Pic0( C) such that

η 6= 0 and η2 = OC gives the double covering and M is the g13 which gives the map to
P1. This means that we consider towers

C̃
π−→ C

3:1−−→ P1.

Now call Mtet
g,0 the open subspace of Mg given by tetragonal curves X with the property

that above each point of P1 the associated linear series g14 has at least one étale point. In
[83], Recillas showed the existence of a canonical isomorphism:

Rtr
g+1 → Mtet

g,0.

As in [11] we actually look at the opposite direction of this arrow.

Let us consider a general tetragonal curve X of genus g. General means that X is not
hyperelliptic and that the degree 4 map k : X → P1 contains at least one étale point on
each fibre. Identifying the linear series g14 with a P1 embedded in X(4) (as already done
in (4.10)), we can define

C̃ := {p1 + p2 ∈ X(2) : p1 + p2 + p3 + p4 ∈ g14 for some p3, p4 ∈ X}.

Immediately we obtain a degree 6 map

h : C̃ → P1 ⊂ X(4)

p1 + p2 7→ p1 + p2 + p3 + p4.

Indeed if p ∈ P1 is such that k−1(p) = {p1, p2, p3, p4} then

h−1(p) = {p1 + p2, p1 + p3, p1 + p4, p2 + p3, p2 + p4, p3 + p4}

and thus h has the claimed degree.
A local analysis guarantees that C̃ is smooth and irreducible and Riemann-Hurwitz

formula that it has genus g + 1. Moreover C̃ carries the natural involution

i : C̃ → C̃

p1 + p2 7→ p3 + p4

which, by assumptions, is fixed point free. Therefore, since h induces a g13 on C := C̃/〈i〉,
π : C̃ → C is the double étale cover which realizes the aforementioned isomorphism.
Hence we can state the following
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Theorem 4.4.6 (Recillas). The trigonal construction gives an isomorphism:

T0 : Rtr
g+1 → Mtet

g,0

(C, η,M) 7→ (X, k),

Moreover, calling P (π) the Prym variety associated to π, we have:

P (π) ∼= JX

as isomorphism of principally polarized abelian variety.

Notice that by Proposition 4.4.2 we know that the trigonal construction in case of
C̃ → C → P1 orientable produces a reducible curve. The two components are isomor-
phic tetragonal curves of genus g. We take one of them to define the image (X, k) of
(C, η,M) through T0.

In [25], Donagi showed how the trigonal construction can be extended to admissible
double coverings of trigonal curves of genus g + 1, whose Prym variety is an abelian
variety of dimension g. The map T0 is extended to a partial compactification R̄tr

g+1 and
formally the construction remains the same as before. Indeed it is proved the following:

Theorem 4.4.7 ([25], §2.9). The trigonal construction induces an isomorphism

T̄0 : R̄tr
g+1

∼=−→ Mtet
g .

Moreover if C̃∗ π∗

−→ C∗ h∗−→ P1 is sent to the tetragonal curve k∗ : X∗ → P1, then

P (π∗) ∼= J(X∗),

where P (π∗) denotes the Prym variety associated to the covering C̃∗ π∗

−→ C∗.

Furthermore he shows that the possible situation over a point p ∈ P1 are the follow-
ing:

1) π∗, h∗ and k∗ are étale;

2) h∗ and k∗ have a ramification point of order 2 and π∗ is étale;

3) h∗ and k∗ have a ramification point of order 3 and π∗ is étale;

4) π∗ is admissible, h∗ has a simple node and a smooth point and k∗ has two ramifi-
cation points of order 2;

5) π∗ is admissible, h∗ has a node and it is ramified at exactly one branch and k∗ has
a ramification point of order 4.
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The ramified Trigonal construction

A trigonal construction is valid also in the case of double covers of trigonal curves with
two ramification points. This has been proved by Lange and Ortega in [57]. Here we
recall their construction using their notation.

Denote by Rbtrg,2 the moduli space of ramified double covers π : D → C of smooth
trigonal curves C of genus g and suppose that the branch locus of π is disjoint from the

ramification locus of the degree 3 map f : C → P1. We call an element D π−→ C
f−→ P1

special if the branch locus of π (given by two points p1, p2) is contained in a fibre of f ,
otherwise we will call it general. Let Rbtrg,2,sp be the moduli space of special elements.

Moreover we denote Mtet
g,∗ the moduli space of pairs (X, k) of smooth tetragonal

curves with a 4:1 map k : X → P1 with at least one étale point on each fibre with the
exception of exactly one fibre which consists of two simple ramification points.

Theorem 4.4.8 ([57], §4.3). The map

Rbtrg,2,sp → Mtet
g,∗ (4.13)

is an isomorphism. Moreover if D
π−→ C

f−→ P1 is an element of Rbtrg,2,sp and X is the
corresponding tetragonal curve, then we have an isomorphism of ppav:

P (π) ∼= JX.

This Theorem deals with the boundary of the extended map T̄0 defined by Donagi.
Indeed starting from a covering of special type D → C → P1, the identification of the
branch points p1, p2, and of the corresponding ramification points (as done in Example
1), produces an admissible cover π∗ : D∗ → C∗. Moreover the assumption of “speciality”
guarantees C∗ trigonal. Hence we obtain an element in the partial compactification
R̄tr
g+1 (to be precise of type 4)) and thus we can apply T̄0.

4.4.3 The tetragonal construction

Here we focus on the an application of the polygonal construction in case of n = 4.
Let us start with a tower

D
π−→ C

f−→ P1,

where f has degree 4 and D → C is an unramified double cover. The polygonal con-
struction determines a new tower

D′ → D′/i→ P̃1 → P1,

with maps of degree 2,4,2 (as explained in Section 4.4). By Propositions 4.4.1 and 4.4.2
D is orientable and thus we have splittings:

D′ = D′
1

⊔
D′

2

D′/i = C ′
1

⊔
C ′
2

P̃1 = P1
⊔

P1.
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Here we recall, without proof, the main properties of this construction.

Proposition 4.4.9. The tetragonal construction associates to towers such as D
π−→ C

f−→ P1

two new towers

D′
i

π′

i−→ C ′
i → P1, i = 1, 2

of the same type. Furthermore, the tetragonal construction is a triality: starting from

D′
1

π′

1−→ C ′
1 → P1 (resp. D′

2

π′

2−→ C ′
2 → P1) it returns D′

2

π′

2−→ C ′
2 → P1 (resp. D′

1

π′

1−→ C ′
1 →

P1) and D
π−→ C

f−→ P1

Theorem 4.4.10 (Donagi, [25]§2.16). The tetragonal construction commutes with the
Prym map, that is:

P (π) ∼= P (π′1)
∼= P (π′2)

We remark that this Theorem is the main tool used by Donagi to show the non-
injectivity of the étale Prym map (see Theorem 4.2.4).
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CHAPTER 5

The Fibres of the Ramified Prym Map

This chapter is devoted to the study of the ramified Prym maps, in particular it will
concern the study of the geometric properties of the structure of the generic positive
dimensional fibre.

As we saw in Chapter 4, the Prym map Pg,r assigns to a degree 2 covering π : D −→
C, of a smooth complex irreducible curve ramified in an even number of points r ≥ 0, a
polarized abelian variety P (π) = P (D,C) of dimension g−1+ r

2 , where g is the genus of
C. Hence, denoting by Rg,r the moduli space of isomorphism classes of the morphisms
π, we have maps:

Pg,r : Rg,r −→ Aδ
g−1+ r

2
,

to the moduli space of abelian varieties of dimension g− 1 + r
2 with polarization of type

δ := (1, . . . , 1, 2, . . . , 2), with 2 repeated g times if r > 0 and g − 1 times if r = 0. Notice
that in case of r = 2 the Prym variety is always principally polarized.

The case r = 0 is very classical. Indeed, Prym varieties of unramified coverings are
principally polarized abelian varieties and they have been studied for over 100 years,
initially by Wirtinger, Schottky and Jung (among others) in the second half of the 19th
century from the analytic point of view. They were studied later from an algebraic point
of view in the seminal work of Mumford [71] in 1974. This work inspired many papers
from different mathematicians. Indeed nowadays almost everything is known about the
“classical” Prym map Pg,0 (as already said usually denoted Pg).

The goal of this Chapter is to complete the study of the ramified degree 2 Prym maps
by means of a systematic analysis of the fibre in low genus.

Indeed, very recently, as recalled in Chapter 4 Section 4.2.2, a global Torelli theorem
has been announced for all g > 0 and r ≥ 6 in the work of Ikeda ([49]) and of Naranjo-
Ortega ([76]).

Here we address to the opposite side of the study of the ramified Prym map: the
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structure of the generic fibre when

dimRg,r = 3g − 3 + r > dimAδ
g−1+ r

2
=

1

2
(g − 1 +

r

2
)(g +

r

2
), (5.1)

that is when :

r = 2 and 1 ≤ g ≤ 4;

r = 4 and 1 ≤ g ≤ 2.

Proposition 4.2.15 and Corollary 4.2.15.1 determine the dimension of the generic fibre.
We observe that the case g = 1, r = 4 was already considered by Barth in his study

of abelian surfaces with polarization of type (1, 2) (see [6]).

It is worthy to mention that degree 2 coverings ramified in 2 points, i.e. in four
among the six cases listed above, can be seen as the normalization of coverings of nodal
curves, that corresponds to the opposite procedure to the one explained in Example 1.
In this way, the moduli space Rg−1,2 can be identified with an open set of a boundary
divisor of R̄g, where R̄g is the Beauville’s extension ([7]) of Rg of “admissible” coverings
and it makes the extended Prym map

P̄g : R̄g → Ag−1

proper.
With this strategy the works of Verra, Recillas and Donagi which study the fibre

of P̄3, P̄4 and P̄5 (see Theorems 4.2.5, 4.2.6, 4.2.7) could help to understand the cases
r = 2 and 2 ≤ g ≤ 4. Unfortunately this way becomes cumbersome since the intersection
of the generic fibre with the boundary is usually difficult to be described.

For this reason, we will use (except for the case g = 4) direct procedures to study
the fibre mainly based on the bigonal construction (see [25]) and the extended trigonal
construction (see [57]).

The chapter is organized as follows.
In Section 5.1 we study the fibre P1,2 : R1,2 → A1 over a generic elliptic curve. In

particular, Mumford’s diagrams turn out to be the main tool.
In Section 5.2 we study the fibre of P1,4 : R1,4 → A(1,2)

2 over a generic polarized
abelian surface (A,L) of type (1, 2). This is a result of Barth ([6]) that we recall for the
sake of completeness.

In Section 5.3 we study the fibre of P2,2 : R2,2 → A2 over a generic principally
polarized abelian surface. Since R2,2 parametrizes double coverings of genus 2 curves
C, we can use the hyperelliptic involution of C to apply the bigonal construction which
turns out to be the main tool.

In Section 5.4 we study the fibre of P2,4 : R2,4 → A(1,2,2)
3 over a generic polarized

abelian 3-fold. The situation is very similar to that described previously in case of r = 2.
Indeed, with the appropriate changes for r = 4, we adopt a strategy analogous to the
previous case still using the bigonal construction.
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In Section 5.5 we study the fibre of P3,2 : R3,2 → A3 over a generic principally
polarized abelian 3-fold A. Assuming that A is the Jacobian of a general curve X we
describe the fibre studying its g14 ’s. In particular, the ramified trigonal construction due

to [57] turns out to be the key ingredient. Indeed, it allows to identify pairs (x, k : X
4:1−−→

P1) with elements in R3,2.
In Section 5.6 we study the fibre of P4,2 : R4,2 → A4 over a generic principally polar-

ized abelian 4-fold A. Here we take care of the behaviour at the boundary of the rather
sophisticated Donagi’s description of the fibre of P̄5 (see [25, section 5]). In particular,
we have to study quadrics containing a nodal canonical curve of genus 5, as suggested by
a Theorem of Izadi ([50]). We prove a Lemma concerning a parametrization of singular
quadrics containing nodal curve which can be interesting on its own.

In Section 5.7 we glue the two parts of this Thesis. Indeed we describe some exam-
ples of irreducible components of fibres of ramified Prym maps that yield totally geodesic
or Shimura subvarieties of Ag. In particular we read the result presented in Chapter 2 in
terms of the analysis of the fibre of the Prym maps done here. Therefore we recall that
the irreducible components of the fibres of the Prym maps P1,2 and P1,4 yield infinitely
many totally geodesic curves in A2 and in A3. Countably many of them are Shimura.
Finally we give a new explicit example of a totally geodesic curve which is an irreducible
component of a fibre of P1,2.

5.1 Case g = 1, r = 2

Let us consider π : D → C a double ramified covering in R1,2 and take

P1,2 : R1,2 → A1,

the corresponding Prym map.
We denote by b1 + b2 the branch divisor (on C) and r1 + r2 the ramification divisor

(on D). The covering π is determined by the data (C, η,B = b1 + b2) where

η ∈ Pic1(C) = C satisfies η⊗2 = OC(b1 + b2). (5.2)

Since h0(C,OC(b1 + b2)) = 2, the linear series |b1 + b2| gives a map

f : C
2:1−−→ P1

ramified in four points p1, p2, p3, p4 ∈ C. Therefore 2pi ∈ |b1 + b2|. By construction (i.e.
assumption (5.2)), η is one of the sheaves OC(pi).

Calling σ the involution on C attached to f , then

σ(b1) = b2 and σ(pi) = pi, i = 1, ..., 4.

Hence σ leaves invariant b1 + b2 and η. The following is well-known:

Lemma 5.1.1. Let σ be an involution on a curve C leaving invariant a reduced divisor B
and a sheaf η ∈ Pic(C) such that η⊗2 ∼= OC(B). Let π : D → C be the double covering
attached to (C, η,B), then there exists an involution σ̃ on D lifting σ: σ ◦ π = π ◦ σ̃.
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We have the following Cartesian diagram:

D

P1 C E

P1

π

f
f ′

(5.3)

Here E is the quotient of D by σ̃ while P1 is the quotient of D by τ σ̃, where τ is the
involution attached to π. Indeed, without loss of generality, assume that π corresponds
to the point (C, η ∼= OC(p1), b1 + b2). Then the condition

σ ◦ π = π ◦ σ̃,

together with Riemann-Hurwitz formula for the quotient map D → D/〈σ̃〉, guarantees
that the preimages of p1 by π are fixed points of σ̃ and they are the only ones. On
the other hand, τ σ̃ fixes the preimages by π of p2, p3, p4. Therefore E is an elliptic
curve, while D/〈τ σ̃〉 is P1. Notice that if this is not true the contrary holds: τ σ̃ fixes the
preimages of p1 by π, hence D/〈τ σ̃〉 is an elliptic curve, while τ fixes the preimages of
p2, p3, p4 by π and thus D/〈σ̃〉 is P1.

Using Mumford’s results on hyperelliptic Pryms for the diagram (5.3) ([71, section
7]), we get

P (D,C) ∼= JE × JP1 ∼= E.

Calling ai = f(pi) and b = f(b1) = f(b2), the above description of the ramification
locus of the map D → E implies that the branch locus of f ′ : E → P1 is given by
b, a2, a3, a4. Thus we get the following:

Theorem 5.1.2. Fix a generic elliptic curve E ∈ A1. The preimage of E by the ramified
Prym map P1,2 is isomorphic to L1 t . . . t L4, where each Li is the complement of three
points in a projective line.

Proof. Start with E represented as a double covering of P1 branched in four points
c1, c2, c3, c4 and put

Li = P1\{c1, ..., ĉi, ..., c4}, i = 1, ..., 4.

Then for any q ∈ L1 we get a unique element in P−1
1,2 (E) constructed in the following

way: let C be the covering of P1 branched in q, c2, c3, c4 and denote with b1, b2 the
preimages of c1 via this covering. Then D → C in P−1

1,2 (E) is determined by

B = b1 + b2 and by η = OC(p),

where p is the ramification point in C attached to q. Doing the same for the other L′
is,

we conclude.
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5.2 Case g = 1, r = 4

The case

P1,4 : R1,4 → A(1,2)
2 (5.4)

is completely studied in [6]. Here we include the main result without proof by the sake
of completeness.

Actually, instead of (5.4), it is easier to study the composition:

R1,4 → A(1,2)
2

∼=−→ A(1,2)
2 (5.5)

where the isomorphism sends the Prym variety to its dual (see Section 4.1.3).
Fix a general polarized abelian surface (A,L) of type (1,2). We have that:

Proposition 5.2.1 ([6], pp. 46-48). The pencil |L| has no fixed component and its base
locus consists of four points e1, ..., e4. The general member D ∈ |L| is an irreducible smooth
curve of genus 3. Moreover L is symmetric and the same occurs for all D ∈ |L|.

Furthermore if D ∈ |L| is smooth, the multiplication by −1 has exactly 4 fixed points
on it. This means that the quotient D/〈−1〉 is an elliptic curve. A result of general
interest is the following:

Proposition 5.2.2. Let D be a smooth curve of genus 3. Then the following conditions are
equivalent:

• D admits an elliptic involution, that is D admits a 2:1 map onto an elliptic curve;

• D admits an embedding into an abelian surface A.

The main result of [6] is the following

Theorem 5.2.3 (§1.12, Duality Theorem). Let D be a smooth curve of genus 3 and let π :
D → E a double cover over an elliptic curve E. Moreover let D ↪→ A be the corresponding
embedding into an abelian surface A. Then both A and the Prym variety P (π) carry a
natural polarization of type (1, 2). One is isomorphic to the dual of the other.

This justifies the study of the fibre of P1,4 through the isomorphism (5.5) and it yields
the following

Theorem 5.2.4. The fibre of the Prym map P1,4 over a general polarized abelian surface
(A,L) is parametrized by the linear system |L∗|, where L∗ is the dual polarization on A∗

as defined in Theorem 4.3.

103



Chapter 5. The Fibres of the Ramified Prym Map

5.3 Cases g = 2 and r = 2

This section is devoted to the analysis of the fibres of the Prym map

P2,2 : R2,2 → A2.

Let us take an element (C, η,B) ∈ R2,2. Since the genus of C is 2, we can apply the
bigonal construction using the hyperelliptic involution of C. Thus we pass from towers:

D → C
2:1−−→ P1

to towers
D′ π′

−→ C ′ f ′−→ P1,

of degree 2 maps. Proposition 4.4.3 tells us that π′ has 6 branch points and that C ′ is
a curve of genus 0 (possibly with one node if it occurs a fibre of type 5) for the tower
D → C → P1).

Remark 26. To better understand the nodal case, let us see the map f ′ as the choice of
two different points in the projective line. Thereby, the limit case appears when the two
points come together.

We introduce two suitable moduli spaces.

◦ M0,6 is the moduli space of 6 unordered different points in the projective line.

◦ M0,6,2 is the moduli space of two collections of points in P1: 6 unordered different
points and 2 unordered different points more (different from the 6 points already
chosen).

We observe that a partial compactification M̄0,6,2 of the moduli space M0,6,2 consists in
allowing the set of two points being a repeated one.

Section 4.4.1, in particular Lemma 4.4.4, shows that the bigonal construction yields
an injective map:

b : R2,2 → M̄0,6,2,

which is an isomorphism onto its image b(R2,2). Indeed, as already observed in Remark
25 (according to [25, Section 2.3]), the bigonal map extends to nodal admissible cov-
erings. Thus the inverse map is the bigonal construction again. We denote the image
b(R2,2) by M̄0

0,6,2. In order to give precise description of the moduli space M̄0
0,6,2 we

first observe what follows.

Remark 27. It is possible to see P1 ↪→ P2 as a conic via

ν2 : P
1 → P2

[x0 : x1] 7→ [x20 : x0x1 : x
2
1],

the Veronese embedding of degree 2. Hence the symmetric product Sym2P1 can be
identified with a projective plane in the standard way: the pairs of points (possibly
equal) correspond to lines and therefore Sym2P1 can be identified with (P2)∗.
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5.3. Cases g = 2 and r = 2

x1

x2

z1

z2

Figure 5.1
Points forming an harmonic ratio.

By definition, every point in M0,6,2 corresponds to the collections of 6 unordered
different points p1, ..., p6 and 2 unordered different points x1, x2 more. The way that
each pair of different points x1, x2 determines a 2 : 1 map on the conic is easy: two
points z1, z2 correspond by the involution σx1+x2 with fixed points x1, x2, if they form an
harmonic ratio:

|x1, x2; z1, z2| = −1.

Geometrically, viewing the points in the plane, this means that the pole of the line x1x2
is aligned with z1 and z2 as in Figure 5.1:

We have 6 marked points p1, ..., p6 in the line and we have to avoid property 5) of
Section 4.4.1. Indeed we don’t want b−1 (which, as said, is the bigonal construction
again) recovers towers with nodal curve. This means that we have to eliminate the pairs
x1 + x2 ∈ Sym2P1 such that σx1+x2(pi) = pj for some i 6= j. That is:

M̄0
0,6,2 = {[(p1 + . . .+ p6, x1 + x2)] ∈ M̄0,6,2 | |x1, x2; pi, pj | 6= −1, ∀i 6= j}.

Then we have a commutative diagram:

R2,2 A2

M̄0
0,6,2 M0,6

b

ϕ

(5.6)

where ϕ is the forgetful map and M0,6 → A2 is the composition of two maps. Indeed we
have the map M0,6 → M2, which sends the 6 marked points of P1 to the corresponding
genus 2 curve with hyperelliptic involution branched over there, and the Torelli mor-
phism M2 → A2. Therefore, studying the fibre of ϕ, we conclude with the following:

Theorem 5.3.1. The fibre of the Prym map P2,2 over a general principally polarized abelian
surface S is isomorphic to a projective plane minus 15 lines.
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Chapter 5. The Fibres of the Ramified Prym Map

Proof. Let S be a general principally polarized abelian surface, assume that S is the
Jacobian of a genus 2 curve H and represent H as an element in M0,6, where the
six marked points p1, ..., p6 are all different and correspond to the branch locus of the
hyperelliptic involution. Diagram (5.6) says that we must look at the fibre of ϕ over H.
The harmonic condition |x1, x2; pi, pj | = −1 says that x1, x2 and the pole pij of pipj are
in a line. Therefore, looking at the dual, we have to rule out the points of the 15 lines

(pij)
∗ ⊂ (P2)∗.

Notice that the limit case x1 = x2 means that pij belongs to the tangent line at the point
and this is not excluded in the fibre.

5.4 Case g = 2 and r = 4

Here we study the fibres of
P2,4 : R2,4 → A3.

As in the previous section, since an element π : D → C in R2,4 admits naturally a 2:1
map to P1 (the hyperelliptic involution of C), we can apply the bigonal construction to
produce an injective map:

b : R2,4 → R̃1,6,

where R̃1,6 is the moduli space of isomorphism classes of pairs (π′, f ′). On one side π′ is
a double cover of irreducible curves satisfying the following condition

(*) the involution on D′ attached to π′ has 6 smooth fixed points, the curve D′ has at
most one node and, in this case, the point is fixed and the two branches are not

exchanged under the involution.

On the other side f ′ is a g12 on C ′.
Let us denote by R̃0

1,6 the image of b. This is an open set that, as in the previous
section, can be described explicitly

R̃0
1,6 = {(π′, f ′) ∈ R̃1,6 | f ′(pi) 6= f ′(pj) ∀i 6= j}.

Again (see Lemma 4.4.4 and Remark 25), the symmetry of the bigonal construction
makes b an isomorphism onto its image.

Remark 28. In order to state the next diagram we need first to extend P1,6 to the
partial compactification R̄1,6 of the double coverings of curves of (arithmetic) genus 1
satisfying (*). This can be proved imitating Beauville’s construction of the extension of
the Prym map to admissible coverings (see Section 4.3). This means that first the Prym
map P1,6 is extended to a certain compactification ¯̄R1,6 of R1,6. Then it is restricted to
the subset R̄1,6 which allows double coverings satisfying condition (*) showing that the
Prym varieties associated with such coverings are actually abelian varieties.
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Similarly to what we saw in the previous Section we have a commutative diagram:

R2,4 A(1,2,2)
3

∼= A(1,1,2)
3

R̃0
1,6 R̄1,6

b

ϕ

(5.7)

where ϕ is the forgetful map. Moreover the isomorphism A(1,2,2)
3

∼= A(1,1,2)
3 is given

by (4.3) and sends a polarized abelian threefold to its dual (endowed with the dual
polarization). The remaining vertical arrow

P̄1,6 : R̄1,6 → A(1,1,2)
3

is the extension of the Prym map P1,6 (as in Remark 28). From the result of Ikeda (The-
orem 4.2.13), we know that P1,6 is injective and in fact an embedding (see Theorem
4.2.14). Therefore the extension to R̄1,6 is generically injective. Pantazi’s Theorem (see
Theorem 4.4.5 on duality between Prym varieties of bigonally related towers) guaran-
tees the commutativity of (5.7). Thus we can conclude with the following:

Theorem 5.4.1. The fibre of the Prym map P2,4 over a general A ∈ A3 is isomorphic to an
elliptic curve E minus 15 points.

Proof. Let us consider a generic polarized abelian threefold in A(1,2,2)
3 and let (E, η, p1 +

. . .+p6) be its unique preimage in R1,6. CallB = p1+...+p6 the branch divisor . Diagram
(5.7) says that the fibre over A is isomorphic to the fibre of ϕ over (E, η, p1 + . . . + p6).
This means that it is isomorphic to:

Pic2(E)r
⋃

pi,pj∈B,
pi 6=pj

OE(pi + pj).

Indeed we have to consider all the possible maps f ′ : E → P1 of degree 2 avoiding those

towers D′ → E
f ′−→ P1 which are sent by b−1 to nodal towers.

The isomorphism Pic2(E) ∼= E concludes the proof.

5.5 Case g = 3, r = 2

This section is devoted to the Prym map

P3,2 : R3,2 → A3. (5.8)

Let us start with π : D → C an element of R3,2, this means that C is a smooth curve of
genus 3, and we denote by B = p1 + p2 the branch divisor of π.

107



Chapter 5. The Fibres of the Ramified Prym Map

Remark 29. Each non-hyperelliptic curve of genus 3 admits a 1-dimensional space of
g13 ’s. In particular, identifying C with its canonical image (a quartic plane curve) and
considering the line l = p1+ p2 passing through p1 and p2 we can always get two degree
3 maps: they are defined considering the two different projections from one of the two
remaining points x, y of the intersection C · l. In fact if we consider the canonical divisor

KC = p1 + p2 + x+ y

we get h0(C, ωC(−x)) = h0(C, ωC(−y)) = 2 and we can use the associated linear systems
to define the 3:1 maps to P1. Call them fx and fy. Both have, by definition, the two
branch points p1, p2 on the same fibre and they are the unique trigonal maps on C with
this property.

We will use the following diagram to describe the fibres of P3,2:

Mtet
3,∗ Mqtet3,∗

Rbtr3,sp M3

R3,2 A3

2:1

2:1

∼=

j

P3,2

(5.9)

As already seen in Section 4.4.2, we denote by Rbtr3,sp the moduli space of ramified
double covers π : D → C of smooth trigonal curves C of genus 3 such that the branch
locus of π is contained in a fibre of the degree 3 map to P1 (towers of “special” type). By
above considerations on g13 ’s, the forgetful map

Rbtr3,sp → R3,2

is a 2:1 map. Furthermore the ramified trigonal construction determines the existence
of an isomorphism between Rbtr3,sp and Mtet

3,∗ (see Theorem 4.4.8). For convenience of
the reader we recall that Mtet

3,∗ is the moduli space of pairs (X, g14) of smooth tetragonal
genus 3 curves X with a 4:1 map X → P1 with at least one étale point on each fibre
with the exception of exactly one fibre which consists of two simple ramification points.

We will study the fibre of P3,2 using the map Mtet
3,∗ → M3. Notice that in the above

diagram it factors as the composition of two maps:

Mtet
3,∗ → Mqtet3,∗ → M3.

The first one is defined as the quotient map associated to an involution that acts on
Mtet

3,∗. We will describe this action later. The second one is the forgetful map.
Finally, j is just the Torelli morphism.
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Let us take a general abelian threefold A ∈ A3. We can assume that A is the Jacobian
of a general curve X of genus 3. In order to study the fibres of Mtet

3,∗ → M3, which looks
at degree 4 maps on the curve X with fibres of the aforementioned type, we need to
recall some facts on g14 ’s on X.

5.5.1 The blow-up

Let X ⊂ P2 = P(H0(X,ωX)
∗) be a non hyperelliptic curve of genus 3 canonically em-

bedded. Let G1
4(X) be the variety of all g14 linear series on X, complete or not (see [1],

chapter IV). Then by Riemann-Roch

ψ : G1
4(X) −→W 1

4 (X) = Pic4(X)

is a birational surjective map which is an isomorphism out of W 2
4 (X) = {ωX}. In fact

Supp(G1
4(X)) = {(L, V ) | L ∈ Pic4(X), V ∈ Gr(2, H0(X,L))}.

Therefore if
L 6= ωX we have h0(X,L) = 2

and thus the fibre of ψ over L is just the complete linear series (L,H0(X,L)). Calling E
the preimage of the canonical sheaf, then

G
1
4(X)r E ∼= Pic4(X)r {ωX}.

The set E parametrizes all the non-complete g14 linear series |V | on X which correspond
to

Gr(2, H0(X,ωX)) ∼= {lines in PH0(X,ωX)} = P(H0(X,ωX)
∗) = P2.

In other words G1
4(X) is the blow-up of Pic4(X) at ωX and the points of the exceptional

divisor correspond to points in the plane P2 where the curve X is canonically embed-
ded. The linear series |V | is the projection from this point (which is the kernel of the
projectivization of the map H0(X,ωX)

∗ � V ∗). If the point belongs to X itself, then the
linear series has a base point.

Since we are interested in the fibre of P3,2 over a general JX, we can assume that
X has exactly 28 bitangents, that is that there are not hyperflexes in X (points p such
that the tangent line at p intersects X in 4p). In fact, the curves with hyperflexes define
a divisor in M3. Each bitangent defines a divisor of the form

2pi + 2qi ∈ |KX |

Denote by B ⊂ X(2) the set {pi + qi | i = 1, . . . , 28} and let

S := BlBX(2)

be the surface obtained by blowing-up X(2) at B. By the universal property of the blow-
up we have a diagram:
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Chapter 5. The Fibres of the Ramified Prym Map

S G1
4(X)

X(2) Pic4(X),

ϕ

ψ

ϕ0

(5.10)

where ϕ0(x+ y) = OX(2x+ 2y).

5.5.2 Geometric description of the complete linear series

In the case of complete linear series g14, we can describe geometrically the divisors in the
image of ϕ: fix two different points r, s ∈ X such that the line l = r + s intersects X in
four different points. Put

l ·X = r + s+ u+ v.

Denote by tr, ts, tu, tv the tangent lines to X at the points r, s, u, v respectively. Let
us define:

Fr,s = {conics through u, v tangent to tu, tv at u, v resp.} ∼= P1.

If Q ∈ Fr,s, then Q·X = 2u+2v+p1+p2+p3+p4. All these degree 8 divisors are linearly
equivalent on X (they belong to |2KX | since we are intersecting with a conic). One of
these conics is the double line l2 ∈ Fr,s which intersectsX in the divisor 2u+2v+2r+2s.
Therefore:

2u+ 2v + 2r + 2s ∼ 2u+ 2v + p1 + p2 + p3 + p4,

hence
2r + 2s ∼ p1 + p2 + p3 + p4.

Now the description of the g14 is simple: given a point p1 ∈ X, there is a unique Q ∈ Fr,s
passing through p1. Then there is a map

fr,s : X −→ Fr,s ∼= P1 s.t. p1 7→ Q.

The fibre (over Q) is the divisor p1 + p2 + p3 + p4 considered above.
Notice that one of the fibres is 2r + 2s, hence fr,s is one of the g14 we are looking for.
In the same way taking the pencil Fu,v of conics tangent to tr (resp. ts) at r (resp. s),

intersecting the conics with X and subtracting the divisor 2r + 2s we obtain the linear
series fu,v : X −→ Fu,v ∼= P1.

5.5.3 The curve of g14 ’s with two special fibres

We need to determine the curve on ϕ(S) ⊂ G1
4(X) given by the g14 ’s on X with two fibres

of type 2p+ 2q (more than two is not possible).
In the case of linear series in E (the non-complete linear series), these clearly corre-

spond to points which are in two bitangents.
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5.5. Case g = 3, r = 2

In the other cases we have to understand when a map fr,s as above has a second
fibre of the form 2x + 2y. Thanks to the description of the previous Section, we know
that actually we only have to look at

Γ := {r + s ∈ X(2) | ∃ a conicQ (of rank at least 2)

with Q ·X = 2r + 2s+ 2x+ 2y},

i.e. we need to study conics which are tangent to X. This corresponds to find all line
bundles O(D) with deg(D) = 4 and O(2D) = OX(2) (notice that by adjunction formula
ωX = OX(1)).

Consider the composition of maps

X(2) ×X(2) m−→ X(4) s−→ Pic8(X),

where m is the addition of divisors and s is the “square” map
∑
pi 7→ OX(2

∑
pi). The

map s is surjective since it is the composition of two surjective maps.
We observe that s−1(ω⊗2

X ) is the disjoint union of 22·g(X) = 26 = 64 components.
One is isomorphic to a projective plane and it is simply the canonical linear series.
This component is rather uninteresting since it gives only double lines l2. The other
63 components are projective lines corresponding to the paracanonical systems |ωX⊗α|,
α ∈ JX2 r {0}. A divisor D in one of these lines is thus formed by 4 points not in a line
and such that there is a conic intersecting X in 2D. Define Γα := m−1(|ωX ⊗ α|) for a
non trivial 2-torsion point α. Then

Γ =
⋃

α∈JX2r{0}

Γα.

Since Γ does not contain points of B, its preimage in S is isomorphic to Γ hence it is
a disjoint union of curves in S that we still denote by Γ.

Call UX the open set obtained subtracting to S the set Γ and the set of points in the
exceptional divisors corresponding to points belonging to two bitangents.

5.5.4 The involution on G
1
4(X)

We want to prove that the natural involution in Rtr
3,sp, which exchanges the trigonal

maps fx and fy, corresponds, via the trigonal construction, to the involution

i : Mtet
3,∗ → Mtet

3,∗

(X,L) 7→ (X,ω⊗2
X ⊗ L−1).

Remark 30. Notice that the involution in Rbtr3,sp does not exchange the covering (it acts
only on the trigonal series). Since the Prym variety of the covering is isomorphic to the
Jacobian of the associated tetragonal curve we know that the involution i has to leave
the curve X invariant.
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Fixing the curve X, i acts on Pic4(X). Moreover, since i(ωX) = ωX , the involution i
lifts to G1

4(X) and, by construction, it leaves ϕ(S) invariant.

Proposition 5.5.1. The involution i on Pic4(X) lifts to an involution in G1
4(X) and it acts

as the identity on the exceptional divisor E.

Proof. To simplify the notation put Pic = Pic4(X). The involution i has an isolated fixed
point at ωX . In fact, by definition of i, the fixed points are the line bundles L such that
L⊗2 = ω⊗2

X . This happens if and only if L = ωX ⊗ η, where η is a two torsion point.
The exceptional divisor E is equal to P(TωX Pic) so the action of i on E is given by

the projectivisation of the differential of i at ωX : diωX . We claim that diωX is −Id, hence
it is the identity on E = P(TωX Pic). In fact by the linearisation theorem of Cartan, there
exist local coordinates z in a neighborhood U of ωX such that

i(z) = Az, where A2 = Id .

Thus the eigenvalues of A are ±1. But if there is an eigenvalue equal to 1, there would
exist a space of fixed points which is positive dimensional. This leads to a contradiction.

Let us fix the quartic X as above and the two complete linear series fr,s, fu,v such
that r, s, u, v are on a line l.

Proposition 5.5.2. The two linear series fr,s, fu,v correspond by the involution i.

To prove the equality of the involutions it is enough to prove the coincidence of both
involutions for these examples since they are the generic elements.

Define (following Recillas, see Section 4.4.2):

D̃r,s = {a+ b ∈ X(2) | fr,s(a) = fr,s(b)},

and the analogous for D̃u,v. Then there are involutions σr,s (and resp. σu,v) on the
curves D̃r,s (and resp. D̃u,v) sending each pair of points to the complement in the cor-
responding linear series. We denote by C̃r,s and C̃u,v the quotient (trigonal) curves.
Recillas trigonal construction (see (4.4.6)) says that there are isomorphisms of princi-
pally polarized abelian varieties:

P (D̃r,s, C̃r,s) ∼= JX ∼= P (D̃u,v, C̃u,v).

The assignment explained with these steps

(X, fr,s) 7→ (D̃r,s, C̃r,s,M)

is the inverse of the trigonal construction. M is the g13 on C̃r,s which sends

[p1 + p2] = [p3 + p4] ∈ C̃r,s
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5.5. Case g = 3, r = 2

to the corresponding conic in Fr,s. Its fibre is of the form

{[p1 + p2], [p1 + p3], [p1 + p4]}.

Notice that here the tetragonal maps fr,s (and resp. fu,v) come with two simple ramifi-
cation points over l2. This implies that (D̃r,s, C̃r,s) (and resp. (D̃u,v, C̃u,v)) is a Beauville
admissible double cover of type (?). This is due to the extended trigonal construction
T̄0 studied by Donagi (see Theorem 4.4.7 and the correspondence among fibres there
recalled).

Call (Dr,s, Cr,s) (and resp. (Du,v, Cu,v)) the normalizations of these coverings.

Proposition 5.5.3.

a) There is a canonical isomorphism D̃r,s
λ−→ D̃u,v compatible with the involutions: λ ◦

σr,s = σu,v ◦ λ. In particular there is an isomorphism C̃r,s
λ̄−→ C̃u,v.

b) Let b ∈ C̃r,s be the branch point of D̃r,s
πr,s−−→ C̃r,s, then b′ := λ̄(b) is the branch point

of D̃u,v −→ C̃u,v.

c) There exist points x ∈ Cr,s and y ∈ Cu,v such that |b1 + b2 + x| and |b′1 + b′2 + y| are
the corresponding trigonal series (where bi and b′i are the preimages of b and b′ in the
normalizations of C̃r,s and C̃u,v).

d) There is an isomorphism OCu,v(b
′
1 + b′2 + λ̄(x) + y) ∼= ωCu,v .

Proof. Let p1+ p2 ∈ D̃r,s. By definition h0(X,OX(2r+2s− p1− p2)) = 1. Thus, by Serre
duality we have that

1 =h0(X,ωX(p1 + p2 − 2r − 2s)) =

h0(X,OX(r + s+ u+ v + p1 + p2 − 2r − 2s)) =

h0(X,OX(u+ v + p1 + p2 − r − s)).

Let q1 + q2 ∈ |u+ v + p1 + p2 − r − s|. Let us see that q1 + q2 ∈ D̃u,v. Indeed:

h0(X,OX(2u+ 2v − q1 − q2)) =

h0(X,OX(2u+ 2v − u− v − p1 − p2 + r + s)) =

h0(X,OX(u+ v + r + s− p1 − p2)) = 1.

Therefore the map D̃r,s
λ−→ D̃u,v given by

λ(p1 + p2) = q1 + q2 ∼ p1 + p2 + u+ v − r − s,

is well defined and the compatibility with the involutions is an exercise. This proves a).
Observe that b) is an obvious consequence once we notice that σr,s has a unique fixed
point given by r + s. The same occurs in u + v for σu,v. From point a) we know that

113



Chapter 5. The Fibres of the Ramified Prym Map

λ(r+ s) = u+ v. Thus, calling b and b′ the images of r+ s (resp. u+ v) in C̃r,s (resp. in
C̃u,v), we get

λ̄(b) = b′.

To prove c) we refer to the description of the extended trigonal construction T̄0 given
by Donagi. Indeed, we have that the fibre of the 3:1 map C̃r,s → P1 over l2 consists of a
node in b and an additional point x = πr,s(2r) = πr,s(2s). The normalization of C̃r,s gives
the trigonal series |b1+ b2+x|. The same occurs for C̃u,v calling y = πu,v(2u) = πu,v(2v).

Finally we conclude with d). First notice that with an abuse of notation we are
still calling λ̄ the isomorphism induced between the normalized curves Cr,s → Cu,v.
Then consider Cr,s and Cu,v as quartic plane curves and the canonical divisors obtained
intersecting Cr,s (resp. Cu,v) with the line b1 + b2 (resp. b′1 + b′2). Thus we get

KCr,s = x+ b1 + b2 + z and KCu,v = y + b′1 + b′2 + w.

Now we have two possibilities:

w = λ̄(x) or w = λ̄(z).

We claim that w = λ̄(x). In fact if w = λ̄(z), since by construction x = πr,s(2r) = πr,s(2s)
then we would have λ(2r) = 2u or λ(2r) = 2v. But this contradicts the definition of λ
given above. Hence we get OCu,v(b

′
1 + b′2 + λ̄(x) + y) ∼= ωCu,v .

Remark 31. The isomorphism of Proposition 5.5.3[d)], gives the compatibility between
the two trigonal maps fx and fy defined for the general element of Rbtr3,sp and the two
trigonal maps obtained on Cr,s (resp. Cu,v) projecting from x or from z (resp. from λ̄(x)
or from y).

5.5.5 The Fibre

At this point we have all the tools to explain diagram 5.9. Hence we are ready to state
the following:

Theorem 5.5.4. The fibre of P3,2 at a generic JX is isomorphic to the quotient of ϕ(UX) ⊂
G1
4(X) by the involution i.

Proof. Starting with a general 3-dimensional abelian variety, i.e. the Jacobian of a curve
X, diagram (5.9) says that the fibre of P3,2 over JX is described by the fibre over X of
the map Mtet

3,∗ → M3. Thus we need to look for all tetragonal maps k : X → P1 which
have an étale point on every fibre and only a fibre with exactly two ramification points
of order 2.

In order to obtain such k’s, we consider the map ϕ0 in (5.10) and we look at its
image in Pic4(X). The blow up S of X(2) at B recovers all tetragonal maps obtained
as projections from points on bitangent lines. Hence, considering the open set UX , we
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avoid tetragonal maps which have two fibres of type 2p+ 2q (which are not allowed by
the trigonal construction).

Finally, since Rbtr3,sp has an involution which exchanges the two special trigonal se-
ries, we let i act on Mtet

3,∗ to identify the two tetragonal maps on X which correspond
(by the isomorphism (4.13)) to the trigonal maps fx and fy and we denote by Mqtet3,∗ the
corresponding moduli space. Letting i act on ϕ(UX), we obtain the fibre over JX.

5.6 Case g = 4, r = 2

In this last case we identify R4,2 with ∆n,0, the set of isomorphism classes of irreducible
admissible coverings of curves of arithmetic genus 5 with exactly one node. The iden-
tification is done through the procedure explained in Example 1. Notice that ∆n,0 is a
dense open set of an irreducible divisor ∆n in the boundary of R̄5.

Thus we take care of the map

P4,2 : R4,2 → A4

using Beauville’s proper extension

P̄5 : R̄5 → A4

and guided by Donagi’s description of its generic fibre (see [25, Section 5]).

5.6.1 Donagi’s Construction

In [25], the author defines a birational map

κ : A4 99K RC+,

where RC+ is the moduli space of pairs (V, δ), where V is a smooth cubic threefold V
and δ ∈ JV2 a non-zero 2-torsion point in the intermediate Jacobian JV with a “parity”
condition that we will explain later. An explicit open set in A4 where κ is an isomorphism
is given in [50].

Let F (V ) be the Fano surface of lines in V and, recalling that

Pic0(F (V )) ∼= JV,

let
τ : F̃ (V ) → F (V )

be the double covering attached to δ.
We have the following:

Theorem 5.6.1 ([25], §5.1 ). Let A ∈ A4 be a generic abelian 4-fold and let (V, δ) be its

image through k. Then the fibre of κ◦ P̄5 at (V, δ) is isomorphic to the surface F̃ (V ), which
is the unramified double covering of F (V ) attached to δ.
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Chapter 5. The Fibres of the Ramified Prym Map

The key point of the proof goes around a triangular diagram ([25], Figure (5.7)).
We would like to recall it and to sketch the proof in order to make easier the study of
the ramified Prym map which we are interested in.

Let A ∈ A4 be a generic abelian fourfold and put κ(A) = (V, δ).
Choose a generic line l ∈ F (V ) and denote by πl : Q̃l −→ Ql the admissible double

covering attached to the conic bundle structure on V provided by l. Then Ql is a smooth
quintic plane curve and P (Q̃l, Ql) ∼= JV (as seen in 4.1.2).

Let σ ∈ (JQl)2 be the 2-torsion point that determines πl. Then, by the general theory
of Prym varieties (see [71, page 332, Corollary 1]), there is an exact sequence

0 −→ 〈σ〉 −→ 〈σ〉⊥ −→ P (Q̃l, Ql)2 = JV2 −→ 0, (5.11)

where 〈σ〉⊥ ⊂ (JQl)2 is the orthogonal with respect to the Weil pairing. Denote by ν a
preimage of the fixed 2-torsion point δ in JV2, then there is another preimage

ν ′ := ν + σ.

These three elements define an isotropic subgroup Wl of rank 2 on JQl, that is a 2-
dimensional Z/2-subspace of (JQl)2 on which the intersection pairing 〈 , 〉 is identically
zero.

The parity condition of (V, δ) ∈ RC+ means that

h0(Ql,OQl
(1)⊗ ν) and h0(Ql,OQl

(1)⊗ ν ′)

are even. Thus there are two curves of genus 5, C̃ and C̃ ′, such that

JC̃ ∼= P (Ql, ν) and JC̃ ′ ∼= P (Ql, ν
′).

Indeed, this is due to the 1-1 correspondence

{
curves C of genus 5

}
↔





[Q,α] s.t.
α ∈ Pic0(Q)rOQ, α

⊗2 ∼= OQ and
h0(Q,OQ(1)⊗ α) is even



 ,

where (Q,α) corresponds to the 2:1 unramified coverings

W 1
4 (C) → Q :=W 1

4 (C)/i with i(L) = ωC ⊗ L−1.

It is possible to show that Q is a plane quintic and JC ∼= P (Q,α).
Looking at Donagi’s diagram (Figure 5.2), the two curves C̃ and C̃ ′ give two lines

that intersect in the point Ql.

Using for P (Ql, ν) an exact sequence similar to (5.11), we get:

0 −→ 〈ν〉 −→ 〈ν〉⊥ −→ P (Ql, ν)2 = JC̃2 −→ 0.

Therefore the rank 2 subgroup Wl ⊂ 〈ν〉⊥ determines on JC̃ a 2-torsion point µ. Sim-
ilarly there is a µ′ ∈ JC̃ ′

2. Denoting with λ the sheet interchange for the covering τ ,
Donagi proves that:

λ(C̃, µ) = (C̃ ′, µ′) and P (C̃, µ) ∼= P (C̃ ′, µ′) ∼= A.

This shows that the preimages of l by τ are the elements (C̃, µ), (C̃ ′, µ′) obtained previ-
ously and thus it concludes the proof.
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C̃

Ql

C̃′

V

Figure 5.2: Donagi’s description of the generic fibre of P̄5.

5.6.2 Discriminant curves and quadrics

Our aim is to identify which elements of F̃ (V ) correspond to admissible irreducible
double coverings of nodal curves. In other words, we want to find the intersection:

F̃ (V ) ∩∆n,0.

In fact, we prove (see Proposition 5.6.6 below) that the image of this intersection by
the double covering

τ :
(
κ ◦ P̄5

)−1
(V, δ) = F̃ (V ) → F (V )

lies in a curve Γ already considered in the literature. It is related to the geometry of the
cubic 3-folds and to the following Beauville’s result:

Proposition 5.6.2 ([8], §1.2). Let V be a cubic 3-fold with l a line in V . Let πl : Ṽ → P2

be a conic bundle and let Ql be the discriminant curve. Then:

} The curve Ql has at most ordinary double point as singularities.

} If p is a regular point in Ql, then the corresponding conic is formed by two different
lines.

} If p is a node of Ql, then the corresponding conic is formed by a double line.

This justifies the interest in the following set of lines:

Γ := {l ∈ F (V ) | ∃ a plane Π and a line r ∈ F (V ) with V ·Π = l + 2r},
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which parametrizes lines l for which the discriminant curve Ql is singular. We recall the
following:

Proposition 5.6.3 ([75]). Let V be a generic cubic threefold. Then the curve Γ is smooth
and irreducible and belongs to the bicanonical system of F (V ).

Proposition 5.6.4 ( [8]). For any l ∈ Γ, the discriminant curve Ql has only one node.

Let us denote by Γ̃ the curve τ−1(Γ). Then we have the following technical:

Lemma 5.6.5. The curve Γ̃ is irreducible.

Proof. Indeed, otherwise it would be the union of two disjoint curves G1, G2. Using the
projection formula with respect to the 2:1 map τ we get that G2

i = Γ2 = 4 ·K2
F (X) > 0.

By the Index Theorem G2
1 > 0 and G1 ·G2 = 0 imply G2

2 ≤ 0, a contradiction.

Since the fibre we are looking for is one dimensional, the next result implies that it
is an open set of Γ̃:

Proposition 5.6.6. For a generic cubic threefold V we have that

τ(F̃ (V ) ∩∆n,0) ⊂ Γ.

We have two proofs for this fact. The first follows closely Donagi’s description of the
fibre and concludes that if l ∈ F (V ) r Γ then τ−1(l) is given by the smooth coverings
(C̃, µ) and (C̃ ′, µ′). Therefore τ−1(l) ⊂ R5.

The second proof, which takes all the remaining part of this Section, is more con-
structive and more useful for our purposes. We show directly that for a covering in ∆n,0

the corresponding line l belongs to Γ. This approach relies on the following result of
Izadi (see [50, Theorem 6.13]):

Theorem 5.6.7. Let (V, δ) be a generic smooth cubic threefold and let π∗ : D∗ → C∗ be
an admissible covering in the fibre of (V, δ). Assume that τ(π∗) = l ∈ F (V ). Then the
discriminant quintic Ql of the conic bundle structure attached to l parametrizes the set of
singular quadrics through the canonical model of C∗.

By canonical model we mean the image of C∗ by the morphism attached to the
dualizing sheaf.

Remark 32. The line l attached to π∗ is defined in [50] in a different way. However it
is proved in 6.30 in loc. cit. that it equals τ(π∗).

Let π : D −→ C be an element in R4,2 and denote by π∗ : D∗ −→ C∗ the correspond-
ing admissible covering in ∆n,0 ⊂ R̄5. By definition

C∗ = C/b1 ∼ b2
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5.6. Case g = 4, r = 2

is a curve of arithmetic genus 5 with a node in p obtained by glueing the two branch
points b1, b2 of π (as usual see technique of Example 1).

Theorem 5.6.7 tells us that we have to study the set of singular quadrics through
the canonical model of the curve C∗. This leads to the following quite computational
Lemma. We warn the reader that the proof is a little bit long and it requires a technical
result which is included (see Proposition 5.6.9 below).

Lemma 5.6.8.

a) The quintic plane curve parametrizing the singular quadrics containing the image of
the canonical map of C∗ is a quintic with exactly one node. In particular τ(π∗) ∈ Γ.

b) The quintic plane curve parametrizing the singular quadrics containing the canonical
image of an arithmetic genus 5 curve with at least two nodes is a nodal quintic with
at least two nodes.

Proof. Observe that it is enough to prove a) assuming that π is a general element of R4,2.
In particular we assume that C is not trigonal.

The map ϕ : C → P(H0(C, ωC(b1 + b2))
∗) satisfies ϕ(b1) = ϕ(b2) and it is an isomor-

phism out these two points. Hence ϕ(C) = C∗ and ϕ can be seen as the normalization
n : C → C∗ composed with the inclusion C∗ ⊂ P (H0(C, ωC(b1 + b2)))

∗ = P4.
We have the following exact sequence:

0 → ωC∗ → n∗(ωC(b1 + b2)) → Cp → 0, (5.12)

which induces

0 → H0(C∗, ωC∗) → H0(C, ωC(b1 + b2))
res−−→ C → C → 0, (5.13)

where res is the map ω 7→ resb1ω+resb2ω. By the residue theorem it vanishes identically.
Therefore

H0(C∗, ωC∗) ∼= H0(C, ωC(b1 + b2)).

Now let L be a g13 on C and consider bases

H0(C,L) = 〈t1, t2〉, H0(C, ωC ⊗ L−1) = 〈s1, s2〉.

Put
ω1 = t1s1 ω2 = t2s1 ω3 = t1s2 ω4 = t2s2,

to get

H0(C, ωC) = 〈ω1, ω2, ω3, ω4〉 and H0(C, ωC(b1 + b2)) = 〈ω1, ω2, ω3, ω4, ω5〉.

We obtain the following diagram:

C P4

P3

ϕ

g (5.14)
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where g is the canonical map and the vertical rational map is given by dualizing the
inclusion H0(KC) ⊂ H0(KC(b1+ b2)). It corresponds to the projection from the point p.

Since C is a general curve of genus 4, there exists a unique quadric Q containing its
canonical model and it has rank 4, namely:

Q = ω1 � ω4 − ω2 � ω3.

In particular, in the chosen coordinates, ϕ(bi) = p = [0 : 0 : 0 : 0 : 1] (i = 1, 2) and

Q = {x1x4 − x2x3 = 0}.

The preimage of Q by the projection is a cone with vertex p which contains C∗ and has
rank four (and in fact the same equation). We still call it Q.

Using now
0 → ω⊗2

C∗ → n∗(ω
⊗2
C (2b1 + 2b2)) → Cp → 0 (5.15)

and its corresponding long exact sequence in cohomology, we obtain that also in the
case of a nodal curve of arithmetic genus 5

dim I2(ωC∗) = 3.

Taking Q,Q1, Q2 as a basis, we would like to show that the discriminant curve ∆ of the
family of quadrics

P(I2(KC∗)) = P(〈Q,Q1, Q2〉)

is nodal. By the above considerations p ∈ S(Q) ∩ C∗, where S(·) denote the singular
locus.

In the paper [88], Wall studied the discriminant locus of nets of quadrics. In partic-
ular [88, Lemma 1.1] ensures that ([1 : 0 : 0], p) belongs to S(N), where

N := {([λ0 : λ1 : λ2], x) | xt(λ0A0 + λ1A1 + λ2A2)x = 0} ⊂ P(〈Q,Q1, Q2〉)× P4

is the universal family of the net of quadrics containingC∗ (Ai, i = 0, 1, 2 are the matrices
associated to Q,Q1, Q2). To be more precise we would have to write Q = Q[1:0:0] and
the analogous for other Qi. We will omit the subscript when it will be possible.

Assuming that every point in S(C∗) is tame (we give the definition below), the map

S(N) → S(C∗) defined as (λ = [λ0 : λ1 : λ2], x) 7→ x,

becomes bijective. Since, in our case, S(C∗) = {p}, we obtain that

S(N) = {([1 : 0 : 0], p)}.

Moreover p ∈ S(C∗) and ([1 : 0 : 0], p) ∈ S(N) have the same type of singularity (by
[88, Proposition 1.3]).
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Proposition 5.6.9. The map

ρ : N → P2

(λ, x) 7→ λ

sends S(N) to S(∆).

Proof. First observe that since

ρ−1(∆) = {(x, λ) : x ∈ Qλ and Qλ is singular},

we get
S(N) ⊆ ρ−1(∆).

We conclude with the Jacobian criterion. Indeed, using local coordinates for which a
singular point of N is ([1 : 0 : 0], [0 : 0 : 0 : 0 : 1]), we have:

Q↔




a1 0 0 0 0
0 a2 0 0 0
0 0 a3 0 0
0 0 0 a4 0
0 0 0 0 0



, Q1 ↔




∗

0



, Q2 ↔




∗

0



,

since p is a point in all quadrics of the net and Q is singular in p. Therefore λ0A0 +
λ1A1+λ2A2 has a 0 in position (5, 5), homogeneous linear polynomials l = l(λ1, λ2) out
of the diagonal and l + ai on the diagonal (i = 1, 2, 3, 4).

Put G(λ0, λ1, λ2) = det(λ0A0 + λ1A1 + λ2A2). Then it is possible to write

G = f5 + λ0f4 + λ20f3 + λ30f2,

where fi are homogeneous polynomials in (λ1, λ2) of degree i. Therefore ∂λG(p) = 0,
i.e. G is singular and thus [1 : 0 : 0] belongs to S(∆).

Applying [88, Theorem 1.4] for ([1 : 0 : 0]) in S(∆) (and resp. ([1 : 0 : 0], p) ∈ S(N)),
we conclude that the discriminant locus of N has a unique nodal point, as claimed.

It only remains to show that p is tame. By definition a point of C∗ is tame if the
tangent planes to C∗ at the point span a 2-dimensional vector space. We check that p is
tame: call πi, i = 0, 1, 2 the tangent planes of the three quadrics at p. In coordinates:

πi : (0 : 0 : 0 : 0 : 1)Aiy = 0, i = 0, 1, 2.

Thus:

pA0y = (0 : 0 : 0 : 0 : 1)




0 0 0 1 0
0 0 −1 0 0
0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0




y = 0
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and
pAiy = 0 ⇔ (ai5,1, a

i
5,2, a

i
5,3, a

i
5,4, a

i
5,5)y = 0,

where ai5,j are the coefficients of the last row of the matrices Ai, i = 1, 2. Call these
vectors a1,a2. Then p is tame if

dim〈a1,a2〉 = 2.

Suppose, by contradiction, that a2 = µa1. Then Q′ : µA1 − A2 belongs to I2(KC), so
Q′ = νQ. Therefore

0 = νQ−Q′ = νQ− µQ1 +Q2,

which is impossible. This concludes the proof of Lemma 5.6.8, part a).
In order to prove part b), let us start with an admissible double-nodal covering π2∗ :

D2∗ → C2∗, i.e. S(C∗) = {p1, p2}. Consider the following partial normalization maps:

N1 Ñ1 C2∗α

n

β

where n is the normalization, β is the partial normalization of the node in p2 while α of
the one in p1.

A short exact sequence for ωÑ1
similar to (5.12) ensures that

dim I2(ωÑ1
) = dim I2(ωN1(q1 + q′1)) = 1,

where q1, q′1 are the two points of N1 sent to p1 by α.
We remark that the unique quadric Q containing the image of

N1 → Ñ1 ⊂ P(H0(ωN1(q1 + q′1)))

cannot be singular in p1. Otherwise, if we write in local coordinates

Q =
∑

i,j≤4

aijxixj and p1 = [0 : 0 : 0 : 1],

we would get ∂iQ(p1) = ai4 = 0 for every i. But this would imply Q ∈ I2(ωN1), which is
impossible since I2(ωN1) = 0. Then, dualizing the inclusion

H0(ωÑ1
) ⊂ H0(ωÑ1

(q2 + q′2)) (points q2, q′2 are identified in p2 ∈ C2∗),

we obtain a diagram as (5.14) where the rational map P4 99K P3 is given by the pro-
jection from p2. The preimage of Q is a cone with vertex p2 which is smooth in p1 and
which contains our curve with two nodes. With an abuse of notation, we still denote it
by Q.

The short exact sequence (5.15) for the bicanonical ω⊗2
C2∗ ofC2∗ shows that dim I2(ωC2∗) =

3. Call, as before, N ⊂ P(I2(ωC2∗))× P4 the universal family of the net of quadrics con-
taining C2∗. Thus, Q is the point λ = [1 : 0 : 0] in P2.
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Since C2∗ has two singular points, [88, Lemma 1.2] shows that there exists µ ∈ ∆
(the discriminant curve of the net P(I2(ωC2∗))) such that p1 ∈ S(Qµ). Hence Q 6= Qµ.
This concludes the proof of the case of two nodes: (λ, p2) and (µ, p1) belong to S(N).
Therefore the map ρ of Proposition 5.6.9 determines two different singular points in ∆.

The cases #S(C∗) = 3, 4 are similar: the partial normalization at one point leads to
a curve of arithmetic genus 4 with singular points. Call one of them p1. As above we
find a quadric Q in I2 which is a cone with vertex p1 on a quadric which is smooth in at
least one of the remaining nodes. Applying Wall’s theorems, we know the existence of
another quadric which is singular in at least one among the other nodes. This leads to a
discriminant curve ∆ which has at least two singular points.

5.6.3 The fibre

Previous Sections explain how to use Donagi’s description of the fibre of P̄5 over (V, δ) to
look for the elements in the boundary. This justifies the study of the curve Γ. Moreover
Izadi’s description of the discriminant quintics attached to the conic bundle structure
provided by V leads to the study of quadrics containing a nodal canonical curve of
genus 5 (which, actually, could be interesting on its own). Hence we state the following:

Theorem 5.6.10. The generic fibre of P4,2 at (V, δ) is isomorphic to Γ̃.

Proof. Take π : D → C in R4,2 and denote, as above, π∗ the corresponding element in
∆n,0. Lemma 5.6.8a) shows that τ(π∗) belongs to Γ. Therefore, in order to show that
the generic fibre of P4,2 at (V, δ) is isomorphic to Γ̃ and not only contained as an open
subset, it remains to prove that Γ̃ doesn’t include elements of the boundary of R̄5 which
are not admissible covering of irreducible curves with exactly one node. Since A ∈ A4

is generic, we can suppose A simple and hence, using [7], we can just take into account
coverings of irreducible curves. Finally, the inclusion ∆n,0 ⊂ ∆n guarantees that we only
have to take care of admissible coverings of irreducible curves with more than one node.
Therefore, suppose by contradiction that Γ̃ contains admissible coverings of irreducible
curves with (at least) two nodes. Lemma 5.6.8b) gives us a quintic plane curve with at
least two nodes. This contradicts the assumption on Γ and thus we can conclude.

5.7 Fibres of the Prym map and Shimura varieties

This section creates a link between Part I and Part II of this Thesis. Indeed, here we
characterize some irreducible components of certain fibres of the ramified Prym maps as
Shimura subvarieties of Ag. To do this we refer to some explicit examples.

Recall that, as treated in Chapter 2, first in [69], [70] and then in [32], [36] exam-
ples of Shimura subvarieties of Ag generically contained in the Torelli locus have been
constructed as families of Jacobians of Galois covers of P1 or of elliptic curves. In these
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works there have been constructed (to be precise) 32 examples of Shimura subvarieties
of Tg. All are collected in [32] and in [36].

Some of them are contained in (or equal to) fibres of ramified Prym maps, as we will
see below.

As seen in Part I of this Thesis, in [34] (see Chapter 2, Theorem 2.3.16) and [44]
infinitely many examples of totally geodesic and of Shimura varieties generically con-
tained in the Torelli locus have been constructed as fibres of ramified Prym map. In
particular, if we focus on degree 2 Prym maps, we refer to P1,2 and to P1,4.

Indeed, the images of R1,2 (and resp. R1,4) in M2 (and resp. in M3) are the bielliptic
loci in genus 2 (and resp. in genus 3 ). In [36] they are denoted as families (1e) (and
resp. (2e)) and it is shown that their images in A2, resp. A3, via the Torelli maps, are
Shimura subvarieties. In [34] it is proven the following:

Proposition 5.7.1. The irreducible components of the fibres of the Prym maps P1,2, P1,4

are totally geodesic curves. Moreover, (1e) and (2e) contain a dense subset of CM-points,
since are Shimura. Hence countably many of the fibres are Shimura curves.

For the proof we refer the reader to Corollary 2.3.17.1.

A detailed analysis of the families found in [32], [36] (as done in Chapter 2, Section
2.4) characterizes some of the fibres of the Prym maps described in this Chapter as
totally geodesic subvarieties of Ag. Indeed we show the following:

Proposition 5.7.2.

a) Family (7) = (23) = (34) of [32] is a fibre of the Prym map P1,4, which is a Shimura
curve.

b) Family (24) of [32] is contained in a fibre of the Prym map P2,2

Proof. For the proof of part a) we refer to Proposition 2.4.2, part i. Let us see b): (24) is
a family of curves D of genus 4 with an action of a group

G = Z/2× Z/2× Z/3 = 〈g1, g2, g3 : g21 = g22 = 1, g33 = 1〉

and quotient
π : D → D/G ∼= P1.

The branch locus B consists of 4 distinct points. The monodromy map of the covering is

θ : π1(P
1 −B) ∼= 〈γ1, ..., γ4 | γ1γ2γ3γ4 = 1〉 → G

θ(γ1) = g2, θ(γ2) = g1g2,

θ(γ3) = g3, θ(γ4) = g1g
2
3,

with m = (2, 2, 3, 6).
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Using the notation of MAGMA, we can decompose

H0(D,ωD) ∼= V6 ⊕ V7 ⊕ V8 ⊕ V11,

where Vi are irreducible C-representations of G all 1-dimensional (the group is abelian).
Moreover, the group algebra decomposition gives us a decomposition of the Jacobian JC
up to isogeny:

JC ∼ B6 ×B7 ×B8,

where B6 and B8 are 1-dimensional, while dimB7 = 2.
One easily checks that the map D → D/〈g1〉 is a double covering of a genus 2 curve

C, ramified over 2 points. Moreover the Prym variety P (D,C) is isogenous to E × E′

where
E = D/〈g2〉 ∼ B6 and E′ = D/〈g1g2〉 ∼ B8.

Indeed
H0(D,ωD)

〈g2〉 = V6 and H0(D,ωD)
〈g1g2〉 = V8.

The curves E and E′ do not move, since the Galois covers E → E/(G/〈g2〉) = D/G = P1

and E′ → E′/(G/〈g1g2〉) = D/G = P1 both have only 3 critical values. This shows that
the family of covers D → C is contained in a fibre of the Prym map P2,2.

Finally, for the sake of completeness, we present a result related to a Prym map not
involved in the study of the fibre done in this Chapter. Let us define Rg(d) the moduli
space of degree d étale coverings C̃ → C of curves of genus g and let P (C̃, C) be the
associated Prym variety defined, as usual, as the connected component containing the
zero of the kernel of the norm map. Let us adopt the same notation as in [56]: let δ be
the type of the induced polarization on P (C̃, C) by JC̃ and let Bδ be the the component
of the moduli space of abelian varieties of dimension (d− 1)(g − 1) with polarization of
type δ compatible with the action of the group Aut(C̃, C). Then

Pg(d) : Rg(d) → Bδ

is the associated Prym map. The following holds:

Theorem 5.7.3 (Lange-Ortega, [56]). Let the notations be as above. Then the Prym map
Pg(d) is dominant and generically finite exactly in the following cases:

(g, d) = (6, 2),

= (4, 3),

= (2, 7).

Our analysis shows the existence of a “special” positive dimensional fibre for a Prym
map not occurring in this list. Indeed we have the following:
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Proposition 5.7.4. Family (25) = (38) of is contained in a fibre of the Prym map

P3(3) : R2(3) → A2,

where R2(3) is the moduli space of étale coverings of degree 3.

Proof. Let us borrow from Chapter 2 the data for this family:

G = Z/3× S3 with g1 = ([0]3, (12)), g2 = ([1]3, (1)) and g3 = ([0]3, (123)).

x = (g1g
2
3, g1g3, g2g3, g

2
2), m = (2, 2, 3, 3).

We know that H0(C̃, ωC̃)
∼= V3 ⊕ V4 ⊕ V8 and that the Jacobian decomposes as JC̃ ∼

B3 × B2
8 , where the first term is 2-dimensional while the second is 1-dimensional. It is

easy to check that C̃ → C̃/〈g3〉 ∼= Z/3 is an unramified covering map of degree 3 of a
genus 2 curve C. Moreover we have

dim(V
〈g3〉
3 ) = 1 = sV3 and dim(V

〈g3〉
8 ) = 0,

hence JC ∼ B3 (see [51, Lemma 1]). Therefore the Prym variety P (C̃, C) is isogenous
to B2

8 , where the elliptic curve

E := C̃/〈g2g3〉 ∼ B8

remains fixed in family. This shows that the family of covers C̃ → C is contained in a
fibre of the Prym map P3(3).

5.7.1 A new example

We finish this Chapter giving an explicit new example of a totally geodesic curve which
is an irreducible component of a fibre of the Prym map P1,2.

Consider a family of Galois covers ψ : D → D/G ∼= P1, with

g(D) = 11 and G = (Z/4× Z/4)n Z/2,

ramified over
B = {P1 = λ, P2 = 1, P3 = 0, P4 = ∞}.

We use the following presentation of G:

G ∼= 〈g1, g2, g3, g4, g5 | g81 = g22 = g43 = g44 = g25 = 1, g21 = g4,

g23 = g24 = g5, g
−1
1 g2g1 = g2g3, g

−1
1 g3g1 = g3g5, g

−1
2 g3g2 = g3g5〉.

Notice that G = (〈g1g2g3〉 × 〈g4〉) n 〈g2〉 ∼= (Z/4 × Z/4) n Z/2. The monodromy of the
cover θ : π1(P1 −B) ∼= 〈γ1, ..., γ4 | γ1γ2γ3γ4 = 1〉 → G is

[θ(γ1) = g2g3g5, θ(γ2) = g3g4g5, θ(γ3) = g1g2g4g5, θ(γ4) = g1g3g4g5]
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and these elements have orders m = (2, 2, 4, 8) in G.
Consider the subgroup H = 〈g2, g5〉 ∼= Z/2×Z/2 of G. By Riemann Hurwitz formula

one easily computes the genus of the quotient C := D/H which is 2. Set

K := 〈g2, g3g4〉 ∼= D4,

K1 := 〈g2, g4〉 ∼= Z/2× Z/4, K2 := 〈g2, g3〉 ∼= D4.

The genus 2 curve C occurs in three distinct double covers:

f : C = D/H → D/K ∼= P1,

f1 : C = D/H → D/K1 =: E1, f2 : C = D/H → D/K2 =: E2,

where E1 and E2 are elliptic curves and J(C) is isogenous to E1 × E2.
The double covers

π1 : E1 = D/K1 → D/〈g2, g3, g4〉 ∼= P1, and

π2 : E2 = D/K2 → D/〈g2, g3, g4〉 ∼= P1

allow to express the elliptic curves E1 and E2 in Legendre form:

E1 : y
2 = x(x− µ)(x2 − 1), E2 : y

2 = x(x2 − 1),

where µ2 = λ.
Thus it becomes evident that the elliptic curve E2 does not depend on the parameter.

So the Prym variety P (C,E1) is isogenous to the fixed elliptic curve E2. Therefore we
have the following:

Proposition 5.7.5. The 1-dimensional family of double covers π1 : C → E1 described above
is contained in a fibre of the Prym map P1,2: it has Jacobians isogenous to the product of
two elliptic curves, with one of them fixed. Hence it gives a new example of a totally geodesic
curve which is an irreducible component of a fibre of P1,2.
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