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ABSTRACT 
 

The surface electromyogram (EMG) undergoes several changes during an isometric fatiguing muscle 

contraction. Amplitude and spectral parameters, as well as muscle fiber conduction velocity and 

fractal dimension of the surface EMG signal, may be used as indirect fatigability indices to monitor 

these changes. The aims of this thesis were to determine whether surface EMG is a reliable tool for 

estimating conduction velocity, through a systematic review of the literature; to determine the 

relationship between muscle force and the selected fatigability indices; and to study the behavior of 

the fatigability indices in patients with facioscapulohumeral muscular dystrophy (FSHD) during a 

fatiguing task, with respect to healthy controls. It was hypothesized that the fractal dimension was 

not related to the intensity of muscle contraction, and that FSHD patients would have shown 

significant differences in the considered fatigability indices. In the first study (p. 32) high reliability 

was reported in eight studies and was, in general, associated with using the initial or mean conduction 

velocity value, using several electrodes (3 to 8), ensuring appropriate electrode positioning, and 

evaluating muscles with fibers that run parallel to the skin. It was next demonstrated in the second 

study (p. 52), that the values of fractal dimension and mean frequency of the power spectrum 

increased with force unless a plateau was reached at 30% maximal voluntary contraction. Finally, the 

third study (p. 61) showed that FSHD patients presented significantly less steeper slopes of mean 

frequency of the power spectrum, conduction velocity and fractal dimension, compared to the 

controls. The results of this thesis demonstrated firstly, that sEMG is suitable for use when 

investigating conduction velocity, which is sensible to peripheral aspects affecting performance 

fatigability; secondly, the use of fractal dimension, as index of central factors affecting performance 

fatigability, may be considered above a certain level of force, regardless of muscle contraction 

intensity; and lastly, that impaired neuromuscular function caused patients with FSHD to exert a 

smaller force, yield a longer endurance time and experience lower levels of performance fatigability 

compared to healthy participants. In conclusion, the use of the fractal dimension of the sEMG signal 

to infer central aspects of performance fatigability should be considered in particular, in those muscles 

where motor unit decomposition techniques are limited by anatomical constraints. 
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BACKGROUND 
 

The conceptual framework of muscle fatigue 

 

It has been recognized since antiquity that intensively exercised muscles show a progressive decline 

in performance, a phenomenon physiologists term “neuromuscular fatigue” (Allen et al., 2008b). The 

study of neuromuscular fatigue and the factors that limit, or regulate performance during athletic 

events, ergonomic tasks and daily activities, intrigued scientists for centuries, but a clear explanation 

of the etiology of this condition remains elusive (Marino et al., 2011). For instance, between the 

XVIII and the XIX century, the prevailing theories concerning the causes of muscular fatigue 

pertained a lack of oxygen [Antoine Lavoisier (1743-1794)] and the presence of poisons [Edward 

Pflüger (1829-1910) and Nathan Zuntz (1847-1920)]. Later, Angelo Mosso (1889) showed that 

“fatigue had a central (the will) as well as a peripheral (muscular) component”, represented by a 

reduction in muscular force. According to Mosso, the two phenomena may be distinguished. 

Although, he acknowledged the inherent difficulties in measuring purely central fatigue, by 

reminding readers that “it is not will, not the nerves, but it is the muscle that finds itself worn out after 

the intense work of the brain”. 

 

 

Mosso’s original description of fatigue (Figure 1) was based on the concept of repetitive contractions 

that provoked neuromuscular adjustments in healthy subjects that were reversible by rest. 

Consequently, the Mosso dichotomy, in which the phenomenon of force reduction is regarded as 

distinct from the sensations that arise from prolonged muscular activity, was seen as the fundamental 

Figure 1 Frontispiece of the third edition of Angelo Mosso’s “La fatica” (1891). 
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basis of contemporary research on the physiology of fatigue (Enoka and Stuart, 1992). However, 

despite the large number of studies that have adopted the central-peripheral dichotomy (e.g. Bigland-

Ritchie et al., 1978; Gandevia et al., 1995; Kent-Braun, 1999; Schillings et al., 2003), two major 

limitations with this approach have precluded the development of a consensus understanding on what 

causes fatigue (Kluger et al., 2013). In fact, recent studies suggested that it is not possible to identify 

the etiology of fatigue by attempting to separate the decline in muscle force from sensations about 

fatigue, particularly during long-lasting contractions (Taylor and Gandevia, 2008). For instance, 

adjustments in the activation signal discharged by motoneurons during a voluntary contraction begin 

before a detectable reduction in muscle force, and are attributable to changes occurring within the 

muscle (Carpentier et al., 2001; Farina et al., 2009). Moreover, most of the physiological processes 

involved in performing a voluntary action, such as the generation of the motor command or the cross-

bridge cycle, can be challenged under appropriate experimental conditions and thereby contribute to 

the development of fatigue: a phenomenon that has become known as the task dependency of fatigue 

(Enoka and Stuart, 1992). Moreover, it is known that protocol specifications affect the findings and 

the underlying mechanisms of fatigue (Enoka, 1995). Different types of protocols are applied in 

healthy subjects to assess various aspects of fatigue, where submaximal protocols most likely 

challenge the central nervous system (CNS), while high-intensity exercises challenge the peripheral 

neuromuscular system (Taylor and Gandevia, 2008; Vøllestad, 1997). 

 

Recently, Enoka and Duchateau (2016), suggested to refine the definition of fatigue and to adopt a 

unified taxonomy to guide its assessment and management. They proposed the conceptualization of 

fatigue as a disabling symptom or percept, characterized by feelings of tiredness and weakness, in 

which physical and cognitive function is limited by interactions between performance fatigability and 

perceived fatigability. Fatigue is defined in terms of fatigability, to allow the normalization of the 

level of fatigue reported by an individual relative to the demands of the task that produces it (Eldadah, 

2010). Thus, when a person reports the level of fatigue during ongoing activity, the value at a specific 

time point will depend on the rates of change in its two attributes: performance and perceived 

fatigability.  
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Figure 2  Major factors contributing to the two domains of fatigue: perceived and performance fatigability (adapted from 
Kluger et al. 2013). 

 

Characterization of perceived fatigability 

 

Perceived fatigability refers to the sensations that regulate the integrity of the performer; these 

sensations can be modulated by disruptions to homeostasis (e.g. core temperature, hydration status, 

substrate availability) and modifications in psychological state (e.g. arousal, motivation, mood) that 

contribute to the perception of effort required for the task (Figure 2). In contrast to performance 

fatigability, perceived fatigability can be assessed when a person is either at rest (Fieo et al., 2013; 

Glynn et al., 2015), or performing a physical task (Schnelle et al., 2012; Simonsick et al., 2014). High 

levels of perceived fatigability at rest may be attributed to deviation of one or more of the modulating 

factors (e.g. core temperature, hydration, motivation or pain) from normal baseline values. 

Conversely, perceived fatigability during ongoing activity is derived from rates of change in the 

modulating factors, which are used to regulate the pace of the performance and thereby control the 

development of fatigue. Duchateau and Enoka (2016) suggested that, although it seems that the 

influence of psychological factors on fatigue is mediated via perceived fatigability, it remains to be 

determined whether or not psychological factors can have a direct effect on fatigue without involving 

perceived fatigability. Moreover, perceived fatigability may be assessed by self-report scales under 

different constructs, such as physical or cognitive, or state versus trait. 
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Characterization of performance fatigability 

 

Performance fatigability (commonly termed muscle fatigue) is an acute activity-induced reduction of 

force or power of a muscle, and in the laboratory is typically quantified as the decline in an objective 

measure of performance, such as the production of maximal voluntary force, the time to failure of a 

submaximal task, or the involuntary twitch response to electrical stimulation (Enoka and Duchateau, 

2016). Performance and perceived fatigability are interdependent and they interact to modulate and 

determine the symptoms of fatigue. 

Although the taxonomy illustrated in Figure 2 lists many of the factors that can influence each 

attribute of fatigue (performance fatigability and perceived fatigability), the scheme acknowledges 

that most voluntary actions performed by humans involve significant interactions between the two 

domains. For example, several of the modulating factors that contribute to perceived fatigability, 

including the levels of blood glucose (Nybo, 2003), core temperature (Nybo, 2008), arousal (Klass et 

al., 2012), and mood (Steens et al., 2012), can all modulate the capacity of the individual to generate 

the required amount of voluntary activation, which is a factor that influences performance fatigability. 

Similarly, afferent feedback generated during high-intensity exercise can influence the adjustments 

required to maintain homeostasis and thereby contribute to perceived fatigability (Kennedy et al., 

2015; Sidhu et al., 2013). The key feature of this scheme is that the level of fatigue experienced by 

an individual emerges from the many adjustments that occur in the modulating factors within and 

between each fatigability attribute. With this construct, fatigue is defined as a disabling symptom in 

which physical and cognitive function is limited by interactions between performance fatigability and 

perceived fatigability. As indicated in Figure 2, the level of fatigue experienced by an individual can 

be modulated by challenges to homeostasis, disturbances in the psychological state, reductions in 

contractile function, and limitations in the capacity to provide an adequate activation signal to the 

involved muscles (Enoka and Duchateau, 2016). 

According to the definition proposed by Kluger et al. (2013), fatigue may be considered as a single 

entity which does not need to be modified by an accompanying adjective, such as central fatigue, 

mental fatigue, muscle fatigue, peripheral fatigue, physical fatigue, or supraspinal fatigue. Therefore, 

since the new definition considers fatigue as a symptom, its assessment requires the individual to 

interpret relevant psychological and physiological factors by providing responses to standardized 

questions (Avlund, 2013; Bennett et al., 2014; Halson, 2014; Schmidt et al., 2012; Yang and Wu, 

2005). Consequently, conventional measures of fatigue, such as the time to complete a defined task, 

the reduction in maximal voluntary contraction (MVC) force or the decline in power production, may 
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be regarded as indices of performance fatigability, but do not provide a measure of the symptom 

(Enoka and Duchateau, 2016). 

 

Neuromuscular mechanisms 

 

As illustrated in Figure 2, many factors contribute to performance fatigability, which may be 

differentiated in central and peripheral. Central factors results from a combination, though not well 

understood yet, of intrinsic motoneuronal properties and decrease in voluntary activation of the 

muscle, which causes a decrease in the number of recruited motor units (MUs) and their discharge 

rate. Gandevia (2001) suggested that a reduction in the neural drive command from supraspinal sites 

that controls a muscle, results in a decline in the tension development (Fuglevand, 1996). Moreover, 

the discharge rate of MUs decreases to match the change in the mechanical state of the muscle during 

the fatiguing task (Bigland-Ritchie et al., 1983a), a mechanism called the “muscle wisdom” (Barry 

and Enoka, 2007). The changes in the discharge rate have been suggested to be protective mechanisms 

to prevent muscle failure whenever the task was continued at the same intensity (Bigland-Ritchie and 

Woods, 1984). 

In contrast, peripheral contributors, include alterations that occur locally from excitation to muscle 

contraction, such as in neuromuscular action potential propagation, and decreases in the contractile 

strength of the muscle fibers, thus affecting perturbation of calcium ions release from the 

sarcoplasmic reticulum, accumulation of inorganic phosphate, and/or transient large increase in 

adenosine diphosphate concentration (Boyas and Guevel, 2011). The peripheral factors concur in an 

hampered execution of the descending central commands (Allen et al., 2008b). Some of these 

mechanism are affected by blood flow, which is blocked during high contraction intensity (Crenshaw 

et al., 1997, Sjogaard et al., 1988), causing the muscle to operate in ischemic conditions, with 

progressive accumulation of metabolites (Dideriksen et al., 2011; Dideriksen et al., 2010a). 

 

The quantification of performance fatigability 

 

At present there is no gold-standard to assess performance fatigability nor in healthy subjects, neither 

in chronic conditions; nonetheless, three categories of outcome measures used in literature may be 
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identified: (1) strength-based outcomes, (2) neurophysiological outcomes and (3) indirect outcomes, 

as suggested in the systematic review of (Severijns et al., 2017).  

In isometric conditions, strength decline is calculated as the ratio between the initial and the final 

strength during sustained or repetitive contractions, or the slope of the strength decline (e.g. Borji et 

al., 2013; Homma et al., 2015; Mehta and Agnew, 2012; Rantanen et al., 2000). Other authors 

reported a statistical comparison of the maximal strength, assessed before and after a specific task 

(e.g. Delextrat et al., 2018; Severijns et al., 2016). Moreover, during isokinetic protocols, the ratio 

between the work done during the first contractions versus the last contractions (or the slope of torque 

decline) may be used (e.g. Clarkson et al., 1982; Hameau et al., 2017). 

Neurophysiological outcomes may help the researcher in exploring underlying mechanisms of 

fatigability. For instance, the twitch interpolation technique has been validated and is extensively 

employed in neuromuscular research to determine the changes in central and peripheral activation of 

the muscles under investigation, and used as an indication of loss of central drive (“central fatigue”) 

and “peripheral muscle fatigue” (Allen et al., 1995; Gandevia et al., 2013; Kent-Braun and Le Blanc, 

1996; Lepers et al., 2002). Nonetheless, recently the accuracy of the twitch interpolation technique 

has been questioned (Taylor, 2009), suggesting that it mainly reflects the amount of muscle activation 

in a qualitative way (Herzog, 2009). 

Indirect measures comprise different types of outcomes, such as the time until a maximal voluntary 

force declined to 50% of the initial MVC (e.g. Peters and Fuglevand, 1999) or the number of 

repetitions performed until inability to maintain a target force (e.g. Dodd et al., 2011; Grisdale et al., 

1990). In addition, particularly in people with impaired ambulation, performance fatigability may be 

assessed as the deceleration index after a walking task (e.g. Phan-Ba et al., 2012), or as the distance 

walked (e.g. Leone et al., 2016; McDonald et al., 2013; Mercuri et al., 2016). Finally, indexes of 

fatigability may be extracted from gait kinematics (e.g. Boudarham et al., 2013; Engelhard et al., 

2016; Sehle et al., 2014) and electromyography (Vøllestad, 1997). 

 

Electromyography 

 

Changes in the electromyogram were first used to investigate fatigue in the 1950s (Cifrek et al., 2009), 

and are now one of the most widely used indirect indices of performance fatigability in humans 

(Vøllestad, 1997). There are two types of electromyography (EMG): intramuscular EMG (iEMG) 
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and surface EMG (sEMG); with sEMG being the most commonly used, due to the fact of being non-

invasive, with signals recorded from the skin surface (Merletti and Farina, 2016). 

 

Intramuscular EMG 

 

Intramuscular EMG has been used for decades to investigate muscular pathophysiology, with 

concentric needles inserted into muscles. One of the major advantages of this technique consists in 

the fact that the effect of the volume conductor that separates the muscle fibers from the detecting 

electrodes is reduced (Merletti and Farina, 2009). Consequently, in 1929 Adrian and Bronk showed 

for the first time, that the action potentials from individual motor units (MUAPs) in a voluntary 

muscle contraction, can be easily identified and recorded by means of a concentric needle electrodes, 

at least at moderate force levels.  

 

 
Figure 3  Representation of a concentric needle electrode used in the study of Adrian and Bronk (1929). 

 

Nowadays, due to the high sensitivity of iEMG in detecting very small amplitude potentials (such as 

fibrillation potentials) and the accuracy to assess subtle changes in an individual MUAP, this 

technique is considered as a major component of a standard electrodiagnostic examination to assess 

clinical neuromuscular problems (Daube and Rubin, 2009; Rubin, 2012). In fact, iEMG provides 

complimentary information to nerve conduction studies, to help localize a disorder and characterize 

the underlying pathologic changes that occurs in MUs within muscles. Currently, for most clinical 

recordings, concentric or monopolar electrodes are used (Dumitru et al., 1997). In addition, to record 

the activity of only a single or few muscle fibers, single-fiber needle electrodes, with a 25-µm 

diameter, may be used (Ekstedt et al., 1969; Stålberg and Ekstedt, 1971). Single-fiber EMG was 

developed to study the microphysiology of the MU, such as the conduction velocity (CV) of 

individual muscle fibers (Stålberg, 1966), the distribution of muscle fibers within individual MUs, 

and neuromuscular jitter (Sanders and Stålberg, 1996; Stålberg and Trontelj, 1994), which is 

considered as the most sensitive measure of neuromuscular transmission and has become a widely 

accepted technique in assessing myasthenia gravis and Lambert-Eaton myasthenia (Giannoccaro et 

al., 2020; Wolfe et al., 2019). 
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Eventually, intramuscular bipolar fine-wire electrodes for the detection of iEMG signals were 

proposed by Basmajian and Stecko (1962). This type of electrodes consist of a pair of non-oxidizing 

wires with insulation, placed in the cannula of a needle and bent at the tip; the needle is inserted into 

the muscle and then removed and discarded, while the wires are left in the muscle (Basmajian, 1978). 

The advantage with regard to concentric needle electrodes is that the wires can be hardly felt when 

the needle is withdrawn, thereby allowing intense contractions without discomfort or pain for the 

subject. However, upon removal of the needle, their location cannot be changed, while a needle 

electrode may be relocated inside the muscle to search for a suitable position. Wire electrodes are 

usually favored in studies where the iEMG signals are collected over long periods of time or during 

movement because they are more stable than needle electrodes (Merletti and Farina, 2009). 

 

 
Figure 4  Examples of needle and fine-wire electrodes for recording iEMG signals. Selective electrodes are close to fewer 
fibers and detect fewer and simpler MUAP waveforms. Less selective electrodes are close to more fibers and detect more 
and more complex shaped MUAP waveforms (from Marateb and McGill, 2016). 
 

Besides pathophysiological studies, iEMG may be used also to investigate changes in MU behavior 

(e.g. recruitment and firing patterns) induced by a fatiguing task, which gives information about CNS 

motor control and its disturbances (Bigland-Ritchie et al., 1983a; Moritani et al., 1986; Trontelj and 

Stålberg, 1995). Moreover, through full decomposition of multi-unit intramuscular signals it is 

possible to obtain complete discharge patterns of multiple, simultaneously active MUs (McGill et al., 

2005), to investigate adaptations to fatigue, such as MU synchronization, a phenomenon described as 

a higher occurrence of nearly simultaneous discharge of different MUAPs than expected by chance 

(Datta and Stephens, 1990; Nordstrom et al., 1992).  
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Surface EMG 

 

The signal from the sEMG is the instantaneous algebraic summation of the electrical contributions 

made by the recruited MUs, in response to the activation provided by innervating motor neurons 

(Farina et al., 2004a, 2014). In contrast to iEMG, the information extracted from the sEMG is 

considered a global measure of MU activity of the selected muscle. Moreover, amplitude and power 

spectrum of the sEMG signal are dependent on the timing of the MUAPs and the membrane properties 

of the muscle fibers, suggesting that the sEMG is reflective of both central and peripheral properties 

of the neuromuscular system (Farina et al., 2004a). 

 

 
Figure 5  Generation of surface electromyogram (sEMG) from motor unit action potentials (MUAP). The recorded 

sEMG differs from the physiological EMG due to noise and filtering introduced by the detection (adapted from Merletti 
and Muceli, 2019). MU, motor unit; MUAPT, motor unit action potential train. 

 

sEMG has been used in a number of different applications, such as in estimating muscle force, 

exploiting the almost linear relationship between signal amplitude and force (Bigland-Ritchie et al., 

1981; Inman et al., 1952; Lippold, 1952); to investigate muscle activity during gait analysis 

(Sutherland, 1966); or to evaluate fatigability of skeletal muscles (Merletti et al., 1990). More 

recently, the development of multi-channel electrode arrays (Merletti et al., 2003) expanded the 

number of applications of sEMG to other fields, such as neurorehabilitation (e.g. Liu et al., 2020), 

obstetrics (e.g. Cescon et al., 2014; Zacesta et al., 2018), occupational medicine (e.g. Rathleff et al., 

2016), ergonomics (e.g. Januario et al., 2016) and assessment of interventions (reviewed in Drost et 

al. 2006; Frigo and Crenna, 2009). Finally, the combination of techniques of spatial filtering (De Luca 

et al., 2006), spatial sampling (Gazzoni et al., 2004) and source separation (Holobar and Zazula, 2007) 

has provided a robust solution to fully decompose the sEMG signal into the discharge times of single 

MUs, with an accuracy comparable to iEMG decomposition (Del Vecchio et al., 2020). This 

technique was applied for example to investigate neural strategies for the generation of movement in 
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newborns, where iEMG is not applicable (Farina, 2020) or in wearable neural interfaces for prosthetic 

control (Aszmann et al., 2015, Farina et al., 2017). 

 

One of the pioneer studies that used sEMG techniques to track changes in the EMG signal during a 

fatiguing task was conducted by Piper (1912), who observed a progressive “slowing” of the signal 

during isometric voluntary sustained contractions. This phenomenon consisted in a shift of the 

spectral components of the signal towards lower frequencies (Piper rhythm). Besides such a 

frequency shift, Cobb and Forbes (1923) found a consistent increase in the amplitude of the sEMG 

signal. 

 

 
Figure 6  Exaggerated artificial representation of the changes affecting the surface electromyogram during an isometric 

fatiguing task.  

 

The traditional approach to acquire sEMG signals, which is still very often used in physiological and 

clinical studies, is based on a pair of electrodes placed on the skin (bipolar detection) in the region 

above the muscle. The signal detected however, is strongly dependent on the location, the 

interelectrode distance (IED), the size of the electrode pair, and the position along the muscle fiber, 

which can result in very different amplitude and spectral characteristics (Barbero et al., 2012; Farina 

et al., 2002b; Farina and Merletti, 2001; Merletti and Muceli, 2019; Mesin et al., 2009b; Nishihara et 

al., 2010). The main advantage of bipolar sEMG is its high suitability for assessing global muscle 

activation in dynamic actions, such as sports, but inferences regarding MU behavior (such as 

recruitment properties and rate coding) are limited. A relatively more recent approach consists in the 

use of multiple electrodes aligned in one- or two-dimensional arrays. When the grid of electrodes is 

dense, this sEMG representation is referred to as high-density sEMG (HD-sEMG, Figure 7). 
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Figure 7  Examples of surface EMG electrodes. IED, interelectrode distance (from http://www.robertomerletti.it).  

 

At least three detection modalities (also called electrode montages, or spatial filters) that can be 

applied when using linear electrode arrays: monopolar, single differential (SD) and double differential 

(DD; Figure 8) (Merletti and Farina, 2016). The monopolar provides the voltage of each electrode of 

the array with respect to a reference; the SD provides the output of the set of differential amplifiers 

and is obtained by taking the difference between adjacent channels; the DD provides the difference 

between adjacent SD channels. Each of these modalities gives three different signals with different 

properties. Monopolar montage senses all of the information in the signal but is the most prone to 

common disturbances affecting all channels, such as the end-of-fiber effect. The SD montage reduces 

the common components, and facilitates the identification of the innervation zone.  

 

 

Figure 8  Examples of simulated monopolar (a), single differential (b) and double differential (c) motor units action 
potentials as detected with a linear array. The a.u. units are arbitrary units that allow amplitude comparisons (from Merletti 
and Muceli, 2019). IZ, innervation zone.  

http://www.robertomerletti.it/
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The DD montage further attenuates non-propagating signals and is therefore preferred in estimating 

muscle fiber CV (Cescon et al., 2008; Farina et al., 2001b), whose measurement is influenced by the 

presence of non-propagating signals. Moreover, the three detection modalities have different volumes 

of detection and therefore detect a different number of MUs: the monopolar montage can detect "far" 

sources while the SD and DD modalities are more selective and detect "close" sources (Merletti and 

Muceli, 2019). 

The multi-channel approach grants access to a set of physiologically relevant variables on the global 

muscle level or on the level of single MUs, providing new methods for the study of performance 

fatigability. For instance, multi-channel sEMG allows (1) a more precise estimation of muscle fiber 

CV, (2) the assessment of regional changes in the sEMG signal due to fatigue and (3) the analysis of 

single MUs, with the chance to obtain information about MU control and fiber membrane changes 

(Gazzoni et al., 2017; Merletti et al., 2003).  

 

Bipolar electrodes 

 

The relation between the sEMG signal and changes occurring in a muscle during a fatiguing task is 

very complex and affected by many factors. Therefore, in order to reduce the influence of some of 

these factors, the first type of contraction that was studied using sEMG techniques, was isometric or 

static contractions (Lloyd, 1971). However, although the recording of the signals is easier with respect 

to dynamic contractions, even in isometric constant force contractions, many factors affect the sEMG 

features (Table 1), ranging from anatomical to the detection system, to the estimation algorithm used 

(Farina et al., 2002b; Farina et al., 2002d; Farina and Merletti, 2000; 2001; Farina et al., 2001a), 

complicating the interpretation of the acquired signals (several factors were described in details in 

Study 1). In contrast to isometric contractions, the interpretation of the sEMG signal changes during 

fatiguing dynamic contractions, is complicated by a number of other factors, such as the changes in 

joint angle, that causes a shift in the underlying muscle fibers with respect to the recording electrodes, 

and the non-stationary nature of the signal, which causes the fact that classical spectral parameters 

may not be appropriate for extracting information (Farina, 2006; Merletti and Farina, 2016). 
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Table 1  Factors that influence the surface EMG signal (modified from Negro, 2020). 
B

IO
PH

Y
SI

C
A

L 

Anatomical 

Spatial distribution of motor 
unit fibers 

PE
R

IP
H

ER
A

L 

Fiber 
membrane 
properties 

Average muscle fiber 
conduction velocity Fibers’ length 

Spread of the innervation 
zone and tendon regions 
among motor units Distribution of motor unit 

conduction velocities Presence of more than one 
pinnation angle 

Detection 
system 

Skin-electrode contact 
(impedance, noise) Distribution of muscle fibers 

conduction velocities within 
the motor units Spatial filter for signal 

detection 
Interelectrode distance Shape of the intracellular 

action potential Electrode size and shape 

Electrodes location 

C
EN

TR
A

L 
MU control 
properties 

Number of the recruited 
motor units 

Geometrical 

Inclination of detection 
system relative to muscle 
fibers orientation 

Distribution of motor unit 
discharge rates 

Muscle fiber shortening Statistics and coefficient of 
variation for discharge rate Muscle shift relative to the 

detection system 
Physical Conductivities of the tissues Motor unit synchronization 

 

For instance, the two main factors that impacts on the sEMG signal in isometric conditions, are the 

decrease in muscle fiber CV and the variations of shape and increase of the spatial support and time 

duration of the transmembrane action potential, also called intracellular action potential (IAP) 

(Andreassen and Arendt-Nielsen, 1987; Arendt-Nielsen et al., 1989; Dimitrov et al., 2008, Dimitrova 

and Dimitrov, 2003). The decrease in muscle fiber CV impacts on the sEMG power spectrum causing 

a compression towards lower frequencies (Brody et al., 1991; Kupa et al., 1995). 

A fundamental characteristic of sEMG signals that are recorded during isometric constant force 

contractions is that the signal can be assumed to be stationary, thus allowing frequency-based 

techniques, such as Fourier transform or discrete fast Fourier transforms to be used to determine 

changes in the sEMG signal due to performance fatigability. However, even in such a controlled 

condition, non-stationarities may manifest, often related to the appearance of fatigue or changes in 

temperature (Bonato et al., 2001). 

 

In the last 40 years a large number of parameters extracted from the sEMG signal to indirectly assess 

performance fatigability was developed. It is not the intention of this thesis to describe them all, but 

rather to review and further discuss the classical (amplitude and spectral parameters), non-linear 

parameters and the estimation of muscle fiber CV. Some recent works in literature give an exhaustive 
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overview and critical analysis of methods for EMG fatigue evaluation using bipolar electrodes (Cifrek 

et al., 2009; Gonzalez-Izal et al., 2012; Merletti and Farina, 2016; Rampichini et al., 2020; Rogers 

and MacIsaac, 2013) or with a multi-channel approach (Gazzoni et al., 2017). 

 

1. Amplitude-based parameters 

 

The averaged rectified value (ARV) and the root mean squared value (RMS, which is the square root 

of the area under the power spectrum) are the main parameters used to investigate the amplitude of 

the sEMG signal:  
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where 𝑥𝑥𝑛𝑛 are the values of the sEMG signal, and n is the number of samples. 

 

Initially, the amplitude of the signal was related to central factors only (recruitment and discharge 

rates of the active MUs (Moritani et al., 1986; Solomonow et al., 1990)). In fact, during maximal 

isometric contractions amplitude falls progressively, in parallel with the decrease in force (Bigland-

Ritchie et al., 1983a; Bigland-Ritchie et al., 1983b; Bigland-Ritchie and Lippold, 1979), whereas 

during submaximal contractions rises gradually, as consequence of additional muscle fibers 

recruitment, in an attempt to maintain the same contraction intensity (Bigland-Ritchie and Woods, 

1984; Viitasalo and Komi, 1977). In addition the behavior of amplitude in dynamic contractions is 

similar, as it was shown to decrease during exercises at maximal intensity (Komi and Tesch, 1979) 

and increase during submaximal dynamic exercises (Tesch et al., 1990). Later, Dimitrov et al. (2006), 

Dimitrova and Dimitrov (2002 and 2003) found that changes in amplitude during submaximal 

contractions are mostly due to peripheral factors (the shape and conduction velocity of the IAPs). 

Moreover, Arabadzhiev et al. (2010) remarked that the use of RMS as estimate of neural drive in 

fatiguing submaximal contractions could be a misleading approach, since changes in amplitude result 

mainly from lengthening of the IAP profile. In order to reduce the effects of peripheral factors the 

authors suggested to normalize RMS, with respect to the initial value (i.e., intercept with the y-axis). 
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Other normalization methods were recently reviewed and discussed in Besomi et al. (2020). Finally, 

changes in the shape of IAP may modify also the EMG-force relation, which may become non-linear, 

as has been observed experimentally during contractions that are sustained at a constant force 

(Carpentier et al., 2001; De Luca, 1984; Fuglevand et al., 1993b; Merletti and Lo Conte, 1997). 

Moreover, Dideriksen et al. (2010b) showed through a computational model, that amplitude and force 

were different depending of the fatiguing protocol. The relation between amplitude and force during 

short isometric contractions was investigated in study 2.  

 

2. Spectral parameters 

 

Two characteristic frequencies have been used to quantify the changes in the spectral content, based 

on the Fourier transform: the mean (or centroid, MNF) and the median frequency of the power 

spectrum (MDF). The MDF is the 50th percentile of the power spectrum, i.e. the value spitting it in 

two parts of equal energy (Gonzalez-Izal et al., 2012): 

 

� 𝑃𝑃𝑃𝑃(𝑓𝑓) ∙ 𝑑𝑑𝑑𝑑 =  � 𝑃𝑃𝑃𝑃(𝑓𝑓)  ∙ 𝑑𝑑𝑑𝑑
𝑓𝑓2

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑓𝑓1
 

 

where PS(f) is the power spectrum calculated using the Fourier transform, and f1 and f2 determine 

the lowest and highest frequency of the bandwidth, respectively, typically ranging from 20 to 400 Hz. 

MNF is however calculated as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
∫ 𝑓𝑓 ∙ 𝑃𝑃𝑃𝑃(𝑓𝑓) ∙ 𝑑𝑑𝑑𝑑𝑓𝑓2
𝑓𝑓1

∫ 𝑃𝑃𝑃𝑃(𝑓𝑓) ∙ 𝑑𝑑𝑑𝑑𝑓𝑓2
𝑓𝑓1

 

 

where PS(f) is the sEMG power spectrum calculated using Fourier transform, and f1 and f2 determine 

the bandwidth of the surface electromyography (f1 = lowest frequency and f2 = highest frequency of 

the bandwidth). 

MDF and MNF are related to changes in muscle fiber CV and subsequent changes in the IAP duration 

(Bigland-Ritchie et al., 1981). It was shown during static contractions that MNF shifts towards lower 

frequencies during increasing fatigue (Lindström et al., 1977; Merletti et al., 1990; Merletti and Lo 

Conte, 1997; Viitasalo and Komi, 1977), due to the diminished CV as a consequence of local 



16 
 

metabolic changes in the working muscle, mainly H+ and K+ distribution across the sarcolemma 

(Dimitrova and Dimitrov, 2003; Masuda et al., 1983). However, the modifications of the MUAP 

shape, MU firing rate and synchronization may also contribute to MNF changes (Bigland-Ritchie and 

Woods, 1984; Brody et al., 1991; Gabriel and Kamen, 2009). MDF is less sensible to noise (Hof, 

1991) and more sensitive to simulated variations in the sEMG spectrum (Bonato et al., 2001) than 

MNF, in particular during dynamic contractions. The probability of discerning the relative 

contribution of physiological, anatomical and source of detection affecting spectral descriptors, as 

regards amplitude descriptors, requires careful reflection. 

The behavior of the spectral variables during dynamic contractions was shown to be variable: Tesch 

et al. (Tesch et al., 1990) found decrements of MNF, whereas others observed no change during 

fatiguing walking exercises (Ament et al., 1996; Arendt-Nielsen and Sinkjær, 1991), for various 

reasons, collectively termed dynamic factors. Merletti and Farina (Merletti and Farina, 2016) 

indicated that those factors include recruitment and de-recruitment of active MUs near to the 

electrodes, the time-varying spatial filter which changes as the muscle change its shape (Mesin et al., 

2006), and the movement of the innervation zone relative to the surface electrodes. Moreover, also 

the skin and intramuscular temperature may have an effect on spectral variable during dynamic tasks 

(Coletta et al., 2018; Petrofsky and Lind, 1980), though it does not act as a primary factor (Masuda 

et al., 1999). Collectively , these findings suggest that, when certain methodological measures are 

taken, traditional spectral descriptors may be well adapted for studying fatigue under both isometric 

and dynamic conditions. 

Besides parameters derived from the Fourier-transform, which apparently were considered as not 

sufficiently sensitive for studying performance fatigability during dynamic contractions, the use of 

time-frequency techniques was proposed, such as the instantaneous mean frequency (iMNF, Bonato 

et al. 2001) and wavelet spectral parameters (González-Izal et al., 2010). However, even though the 

first studies suggested that iMNF was affected by the same physiological factors as the classical 

spectral parameters, Farina et al. (2014) showed that during simulated ramp contractions, no 

association between the estimates of iMNF and recruitment and de-recruitment of MUs was found, 

suggesting the iMNF was insensitive to changes in MU population during a fatiguing task.  
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3. Non-linear parameters 

 

Over the last quarter of century, great interest has been given in literature, particularly in the fields of 

physics, mathematics and chaos theory, to non-linear dynamics. Unlike linear systems, which are 

simple, proportionate and can be viewed as the sum of their parts (Goldberger, 1996, 2006), non-

linear systems are characterized by a lack of proportionality, with small adjustments having dramatic, 

unpredictable consequences, thus restricting their ability to predict their long-term behavior (Peng et 

al., 2009). Non-linear systems are regarded as complex, chaotic and unpredictable; characteristics 

which are of great interest to scientists. 

Previous works suggested that also the sEMG waveform could be better modeled as an output of a 

non-linear dynamic system, rather than as a stochastic output of a linear white-noise driven system 

(Abarbanel et al., 1989; Nieminen and Takala, 1996). As a non-linear signal, sEMG displays chaotic 

behavior, i.e., its time series (1) evolves over the time, (2) depends on the initial state, and (3) is fractal 

in the terms of dimensionality (Nieminen and Takala, 1996). Non-linear analysis offers a powerful 

approach for the investigation of physiological time series because it provides a measure of the signal 

complexity, and may be able to detect additional EMG changes during a fatiguing task. Moreover, it 

has been found that non-linear parameters, such as a entropy, percent of determinism based on 

recurrence quantification analysis, and dimensionality based on fractal analysis are highly sensitive 

for hidden rhythms on sEMG in subjects under fatigue and condition of increased MU 

synchronization (Del Santo et al., 2007; Farina et al., 2002c; Filligoi and Felici, 1999; Gitter and 

Czerniecki, 1995).  

 

3.1 Entropy 

Entropy, as expressed in the second law of thermodynamics, is a measure of disorder or randomness 

which, in an isolated system, tends to a maximum (Schneider and Kay, 1994; Seely and Macklem, 

2004). As far as dynamic systems are concerned, entropy can be defined as the rate of information 

output (Eckmann and Ruelle, 1985; Richman and Moorman, 2000; Seely and Macklem, 2004) and 

can be used to measure the apparent randomness and regularity of a system , i.e. the complexity 

(Pincus, 1991; Seely and Macklem, 2004). A number of parameters were developed to estimate the 

entropy of the sEMG signal, e.g. Pincus (1991) developed the Approximate Entropy (ApEn), as a 

model-independent quantification of the regularity of sequences and time-series data, motivated by 

applications to relatively short, noisy data sets. Richman and Moorman (2000) developed a new 
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parameter, called Sample Entropy (SampEn), which was shown to be more consistent and performant 

than ApEn, although the former parameter has been used less widely than the latter. Thereafter, Costa 

et al. (2002) introduced the multiscale entropy (MSEn) method, which was intended to better detect 

the presence of complexity in the time series. Cashaback et al. ( 2013) applied the MSEn to the sEMG 

signal to evaluate short-term complexity at different contraction intensities, although the complexity 

level at MVC was only slightly different compared to 70% MVC, probably due to the fact that the 

complexity of the signal was mostly influenced by the firing rate rather than MU recruitment.  

Entropy methods have been applied to sEMG signal to detect fatigability changes. For instance, 

Hernandez and Camic (2019) found that SampEn values decreased differently during maximal 

concentric, eccentric and isometric knee extensions. Similar results were found by Cashaback et al. 

(2013) during submaximal and maximal isometric elbow flexions; and by Navaneethakrishna et al. 

(2015) during dynamic biceps brachii (BB) curl exercise until task failure. The authors of these 

studies hypothesized that the reduction of complexity was related to central (MUs synchronization) 

and/or peripheral factors (decrease in muscle fiber CV). 

 

3.2 Fractal analysis 

The fractal’s theory refers to the discovery of Benoit Mandelbrot (1982): ‘an object or a signal which 

can be split into parts, each of which is a reduced-size copy of the whole, might be defined as fractal 

and this property is called self-similarity’. Mandelbrot coined the term "fractal" few years earlier, 

from the Latin fractus, the past participle of the verb frangere, "to break," (1977). The definition of 

fractals was later generalized by Goldberger (1996) to structures consisting of sub-units (and sub-

sub-units, etc.) resembling the overall object's structure. 
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Figure 9  Examples of ideal geometric (exact) fractals. The von-Koch curve, Sierpinski triangle and Menger sponge are 
all generated by repetitively applying a single rule of generation (the generator), to a simple object (the initiator), in an 

infinite number of iterative steps (from Eke et al. 2002). 

 

Fractals have subsequently come to be defined by a set of four characteristic properties: self-

similarity, scaling, the fractal dimension (FD) and statistical properties (Di Ieva, 2016; Eke et al., 

2002): 

1. The self-similarity fractals exhibit, may be either geometrical or statistical. Geometrically 

self-similar objects are those with smaller, exact replicas of the entire object (Eke et al., 2002; 

Mandelbrot, 1982). Statistically self-similar objects are “kind of like” the whole; the pieces' 

statistical properties are proportionate to the statistical properties of the whole 

(Bassingthwaighte and Raymond, 1994). 

2. Owing to the self-similarity, features in one resolution are correlated with features in other 

resolutions. Scaling refers to how the measured values depend on the resolution used to make 

the measurement (Di Ieva, 2016); thus, the length measured at finer resolutions would be 

longer, because it includes finer features. The scaling relationship is defined by self-similarity 

and can contribute to power-law scaling. Thus, the length measured at finer resolutions will 

be longer as it contains finer features (Eke et al., 2002).  

3. The FD offers a quantitative measurement of self-similarity and scaling, explaining how many 

new pieces, similar to the entire object, are revealed when the resolution is finer (Di Ieva, 

2016). 

4. The statistical properties of fractals include the fact that there might not be a mean or variance 

in fractal processes. For the mean, as more data are analyzed, rather than converging to a 

single value, the mean tends to increase to an ever-larger value or decreases to an ever-smaller 
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value (Liebovitch, 1998). For the variance, self-similarity means that small irregularities are 

replicated on a larger scale as larger irregularities, and as more data are examined, those larger 

irregularities increase the variance, which then becomes infinite (Di Ieva, 2016). 

 

Many complex anatomical structures display fractal-like geometry, and unlike the geometric fractals 

developed by mathematicians, which may be defined as exact fractals, these structures are statistical 

fractals (Eke et al., 2002). Anatomical structures are fractal, because their small form tends to be 

identical to their large-scale form (Glenny et al., 1991; Goldberger and West, 1987). Examples of 

fractal-like anatomic structures in the body have been reviewed in Di Ieva (2016) and comprise 

arterial and venous trees, the His-Purkinje conduction system, and the dendrites in the nervous 

system. Other fractal-like physiological processes include blood pressure, ion channel kinetics, gait 

(Chakraborty et al., 2015) and muscle force output. Moreover, fractal geometries have been applied 

to medical signal (1D, 2D or 3D) analysis applications like pattern recognition, texture analysis and 

segmentation. During the past two decades, results from numerous published articles have shown the 

ability of texture analysis algorithms to extract diagnostically meaningful information from medical 

images that were obtained with various imaging modalities, such as mammography, ultrasound, 

computed tomography, positron emission tomography and magnetic resonance imaging (reviewed in 

Lopes and Betrouni 2009). Indeed, some signals have a fractal character; this is particularly the case 

for repeated sequences, like palindromes (local repetitions) and homologies between two different 

nucleotide sequences (motifs along the genome) composing a self-similar (fractal) pattern in 

mitochondrial DNA (Oiwa and Glazier, 2004). 

 

 
Figure 10  Two-dimensional DNA walk for mitochondrial 16S rRNA in Mus musculus. DNA walk exhibits fractal 

nature, and is a vectorial representation of DNA sequences transformed into a planer trajectory (from Oiwa and Glazier, 
2004).  
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The sEMG signal itself, which originates from a strong non-linear combination of similar templates 

(i.e. action potentials of different MUs) that undergo spectral and magnitude compression, has self-

similarity properties, and therefore fractal analysis seems appropriate (Anmuth et al., 1994). As 

outlined above, the description of a fractal structure occurs through the determination of the FD, 

which is a measure of self-similarity and geometrical complexity of the signal. FD gives a quantitative 

indication of the chaotic behavior of a signal, and is also related to the degree of interference of the 

signal, which is inversely related to the ‘smoothness’ of the signal (Mesin et al., 2009a). 

At least eight different methods for estimating FD of sEMG waveforms have been applied in 

literature, including the box-counting method (Barnsley and Hurd, 1989), the Hurst exponent (Hurst, 

1951), a method based on power spectral density (Kaplan, 1999; Raghav and Mishra, 2008; Spasic, 

2007), the methods proposed by Higuchi (1988), Sevcik (2010), Petrosian (1995) and Katz (1988) 

and two variants of the latter (Castiglioni, 2010). These methods were compared and reviewed by 

Coelho and Lima (2014), who evidenced that the normalized version of the Katz’s estimation method, 

followed by the Hurst exponent, significantly outperform the others in terms of generating more 

discriminatory features. However, the Katz’s method provides FD estimates that may depend on the 

length of the time series (Castiglioni, 2010) and in another study, the Higuchi algorithm was preferred 

over the Katz’s, since it provided a more accurate and consistent estimation of FD for physiological 

signals (Esteller et al., 2001). Thus, consensus has not yet been reached, and an accurate selection of 

FD algorithm is required for specific applications. 

The Katz’s method has been further revised by Anmuth et al. (1994) to be applied to sEMG signal 

during isometric contractions. Given a signal lasting 3 seconds, FD was estimated for the middle 1 s 

as: 

 

𝐹𝐹𝐹𝐹 =  
log𝑁𝑁

�log𝑁𝑁 + log �𝑑𝑑𝐿𝐿��
 

 

where 𝑁𝑁 is the number of samples in the signal, 𝑑𝑑 is the planar extent of the waveform (computed as 

the distance between the first point of the sequence and the point of the series that provides the farthest 

distance), and L the total length of the signal (sum of distances between successive points) 

(Rampichini et al., 2020).  

In addition, Wang et al. (2019) introduced a new algorithm named ‘roughness scaling extraction’ 

(RSE) to evaluate FD based on a single morphological image. It was found that RSE algorithm was 

much more accurate than the traditional algorithms.  
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Eventually, another popular estimator of the FD is the box-counting method on the EMG signal 

interference pattern (Gitter and Czerniecki, 1995). The exact calculation of FD through the box-

counting method is given in detail in the General methods. FD values close to 1 reflect smoothed 

signals whereas values approaching 2 are typical of signals with high space-filling propensity 

(Beretta-Piccoli et al., 2015). The box-counting algorithm has been used to evaluate sEMG signals 

during isometric contractions in healthy subjects (Beretta-Piccoli et al., 2017; Mesin et al., 2009a; 

Troiano et al., 2008), elderly (Boccia et al., 2016) and persons with multiple sclerosis (Beretta-Piccoli 

et al., 2020). 

FD was initially used to characterize levels of muscle activation during isometric and isokinetic 

contractions (Anmuth et al., 1994; Gupta et al., 1997; Talebinejad et al., 2009) and patterns of MU 

recruitment (Gitter and Czerniecki, 1995; Xu and Xiao, 1997). Arjunan and Kumar (2010) 

investigated the complexity of muscle activation using the FD during wrist and finger flexions. Later, 

FD was proposed as an index to monitor changes in sEMG signal during a fatiguing task (Beretta-

Piccoli et al., 2015; Boccia et al., 2016; Mesin et al., 2009a). Indeed, we clearly showed a significant 

negative normalized slope of FD, during fatiguing isometric contractions in different muscles (vastus 

lateralis (VL), vastus medialis (VM) and BB) and at different intensities (Beretta-Piccoli et al., 2015, 

2017 and 2020; Boccia et al., 2016; Meduri et al., 2016), suggesting a reduction in signal complexity 

(Figure 11). 

 
Figure 11  Time course of fractal dimension (FD), muscle fiber conduction velocity (CV), mean frequency of the power 

spectrum (MNF) and average rectified value (ARV) for a representative person with multiple sclerosis 
(from Beretta-Piccoli et al., 2020). BB, biceps brachii; VV, vastus lateralis and medialis. 
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Moreover, a decrease in FD was also associated to ageing and disease (Arjunan and Kumar, 2013; 

Boccia et al., 2016; Goldberger et al., 2002). These findings suggest a possible benefit of the fractal 

analysis of the sEMG signal as a complementary tool for the evaluation of fatigability during a 

performance test. However, although the use of non-linear analysis of the sEMG signal is desirable, 

as more sensitive than spectral analysis for the assessment of performance fatigability (Farina et al., 

2002b), it is difficult to relate these parameters to physiological changes in muscle properties resulting 

from fatigue (Merletti and Farina, 2016). Mesin et al. (2009a) compared FD to other linear and non-

linear muscle fatigue indices’ computed from both synthetic and experimental sEMG signals: they 

found that FD was the parameter least affected by CV changes, weakly affected by fat layer thickness 

and mostly related to the level of MU synchronization, which suggested its possible use as index of 

central components of fatigue. Szu-Yu et al. (2015) using the Katz’s calculation of FD, did not report 

any changes during isotonic repeated submaximal contractions (pedaling). Lastly, Mesin et al. (2016) 

investigated the effect on FD of both the percentages of MU synchronization (from 0–20%) and 

different firing rates (5–40 Hz), respectively. The authors demonstrated the presence of an inverse 

relationship between FD and MU synchronization and a positive relationship with the MU firing rate. 

Such results have brought new light to the understanding of FD changes induced by fatigue, rendering 

FD no longer regarded as an exclusive index of MU synchronization only. FD of the sEMG signal 

was investigated in studies 2 and 3. 

 

Other authors have used different fractal parameters, such as detrended fluctuation analysis (DFA) 

and multifractality. DFA, developed by Peng et al. (1994), relates to the color of noise and detects 

long-range correlations in time-series, thus providing an indication of temporal fractal scaling. 

Further details of the DFA calculation are given by Stanley et al. (1999). An extended version of the 

DFA method was applied to identify the components of the multifractal dynamics, since complex 

systems may generate not only monofractal time series, but also multifractals. Wang et al. (2007) and 

Talebinejad et al. (2010) applied the multifractal DFA to investigate performance fatigability during 

static, as well as cyclic and random contractions, respectively. 

 

Finally, among others non-linear methods, the evaluation of the correlation dimension (CD) 

(Grassberger et al., 1991) has been used to classify the sEMG dynamics, both at rest and during light 

and fatiguing muscle contractions. CD is a measure of the amount of correlation contained in a signal 

connected to the FD (Rampichini et al., 2020). During a fatiguing task a reduction in the 

dimensionality of the system, as assessed by CD was demonstrated: this has been ascribed to MU 
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synchronization and reduction in the propagation velocity of the IAP and firing rate, which may 

reduce the neuromuscular system adaptability (Nieminen and Takala, 1996). 

However, a precise connection between the physiologic adaptation to fatigue in muscle activity and 

the changes in CD of sEMG signals is still lacking. 

 

To sum up, although complex biosignals such as sEMG have recently been shown to represent non-

linear, non-stationary, and non-equilibrium processes in nature, the methods used to analyze these 

data often assume linearity, stationary, and equilibrium-like conditions. In particular, studies have 

shown that sEMG signals may contain hidden information that cannot be retrieved using traditional 

analytical methods (Coelho and Lima, 2014; Rampichini et al., 2020). Such hidden information may 

provide important and critical information to be of clinical value as well as to relate to neural and 

muscle properties and activity function (Di Ieva, 2016). 

 

Multi-channel electrodes 

 

With respect to the classical bipolar approach, the use of methods based on more than two channels 

arranged serially (linear arrays) allows the detection of sEMG signals along the longitudinal or 

transverse axis of a muscle (Merletti et al., 2003; Wood et al., 2001). Additionally, bi-dimensional 

electrode arrays (grids of electrodes) may be used to determine the distribution of EMG amplitude 

and spectral descriptors across the entire skin area covering the target muscle (Falla and Farina, 2007; 

Gallina et al., 2013a; Vieira et al., 2015). Even if we recognize the important contribution that EMG 

amplitude maps can make to the study of fatigue, they will only be mentioned, because they go 

beyond the topic addressed in this thesis. In addition, multi-channel sEMG allows, from a global 

muscle level point of view, a more precise and reliable estimation of muscle fiber CV (reviewed in 

Beretta-Piccoli et al., 2019) and the assessment of regional changes in the sEMG signal due to fatigue 

(reviewed in Gazzoni et al., 2017). 

 

1. Muscle fiber conduction velocity 

Muscle fiber CV is not only a mathematical descriptor, but also a significant physiological variable 

directly related to fiber membrane properties, fiber diameter and fiber contractile properties 

(Andreassen and Arendt-Nielsen, 1987). Muscle fiber CV is associated to the size principle 
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(Henneman et al., 1965) has been positively correlated with the percentage of myosin heavy chain 

type I fibers (Farina et al., 2007) and can be used to assess MU recruitment during static and dynamic 

exercise (Merletti et al., 2010; Nicolò et al., 2015; Piitulainen et al., 2013; Pozzo et al., 2006). Muscle 

fiber CV has also been proposed as a non-invasive tool to infer MU recruitment and de-recruitment 

during incremental cycling exercises (Lenti et al., 2010; Sbriccoli et al., 2009). Moreover, since 

during dynamic contractions the number of active MUs changes significantly, the analysis of CV is 

preferred over spectral analysis to extract information on MU recruitment (Farina, 2006). 

The CV of the action potentials in human muscles has been measured successfully by the use of 

needle electrodes in the late 50s: Buchthal et al. (1955) used 3 to 6 coaxial needle electrodes, while 

Stålberg (1966) used a multi-contact needle electrode. Later, Nishizono et al. (1979) conducted the 

first estimation of muscle fiber CV using up to 8 sEMG electrodes placed on the BB (Figure 12) 

 

 
Figure 12  Surface and bipolar fine-wire intramuscular EMG electrodes placement (from Nishizono et al., 1979). 

 

In their study Nishizono et al. (1979) suggested that “if muscle CV could be measured accurately 

using sEMG, it could be applied effectively, for instance, to the detection of muscle disorders and to 

the estimation of muscle fiber composition”. This important physiological parameter will extensively 

be discussed in study 1. 

As was described earlier, during isometric constant force contractions, changes in the EMG signal 

due to fatigue are mainly caused by three physiological factors: (1) a decay in muscle fibers CV 

(Buchthal et al., 1955; Stålberg, 1966), mainly related to a decrease of the intracellular pH (Bouissou 

et al., 1989; Brody et al., 1991; Komi and Tesch, 1979); (2) an increase of the level of MUs 
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synchronization by the CNS (Merletti et al., 1990) and (3) a reduction of the recruitment threshold of 

MUs (Adam and De Luca, 2003). In particular, changes in CV during fatiguing contractions, have 

profound impact on the shape of the MUAP waveform and therefore, on the amplitude and spectral 

variables extracted from the sEMG signal. 

Therefore, the estimation of CV slope (i.e. rate of change), might be useful to characterize the 

peripheral components of muscle fatigue (during an isometric task) (Merletti and Farina, 2016) and 

this variable may be considered as one of the most robust EMG fatigue indices (Figure 11; Dedering 

et al., 2000; Kollmitzer et al., 1999; Linssen et al., 1993; Rainoldi et al., 2001). 

Muscle fiber CV is generally estimated from sEMG signals collected with multi-channel electrodes 

positioned parallel to the muscle fibers. However, most fibers within in-depth pinnate muscles, do 

not lay in planes parallel to the skin, and as a result, electrodes and muscle fibers are not located in 

parallel planes. In such muscles, CV estimates are biased towards values far over the physiological 

range (Merletti and Farina, 2016). Moreover, a pair of electrodes placed above an unspecific muscle 

region may provide very misleading information. An electrode array covering the entire muscle 

surface of an in-depth pinnate muscle, is therefore essential to identify regional activations and to 

detect CV. Indeed, recent publications suggested that in pinnate muscles such as the medial 

gastrocnemius, and the tibialis anterior, it is possible to reliably assess physiological estimates of CV, 

using HD-EMG, from their distal region (Gallina et al., 2013b; Houtman et al., 2003), where fibers 

run parallel to the skin surface.  

 

2. Muscle regional changes in the sEMG signal due to fatigue 

Recent studies conducted with a multi-channel approach along the longitudinal axis of the muscle 

fibers have highlighted that changes in sEMG signals collected locally from a single region of a 

muscle, may not reveal the neural changes occurring somewhere else within the same muscle (Mesin 

et al., 2011; Vieira et al., 2011). For instance, even in small muscles such as those in the forearm 

(Gallina and Botter, 2013), the amplitude parameters extracted from the sEMG detected from 

different locations, were observed to change during fatiguing contractions (Falla and Farina, 2007; 

Gallina et al., 2011; Watanabe et al., 2013; Zijdewind et al., 1995). Farina et al. (2008) demonstrated 

that during a positional endurance task, amplitude and spectral changes were observed to manifest 

locally within the trapezius muscle. Collectively, it appears that fatigue is more likely to affect 

muscles locally, rather than globally. 

 



27 
 

 
Figure 13  Temporal changes of normalized RMS. During knee extension, increases in normalized RMS values with 
time were mainly observed in the proximal and distal regions of rectus femoris muscle (from Watanabe et al., 2013). 
 
 
However, regional variations in muscle activity (Figure 13) should be differentiated from 

anatomically-induced changes in sEMG signals, occurring when surface electrodes are positioned 

near or across the innervation zone, as well as near the tendon regions (Barbero et al., 2012; Farina 

et al., 2002b). 

Several hypothesis upon the physiological mechanisms affecting regional changes in muscle activity 

during prolonged contractions, such as MU rotation or MU substitution (Westgaard and de Luca, 

1999) were described in literature. Rotation indicates different MUs that are periodically and 

alternatively de- and re-recruited during a sustained contraction; whereas, substitution refers to the 

recruitment of fresh MUs, to replace active, tonically discharging MUs of lower recruitment threshold 

(Gazzoni et al., 2017). 
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AIMS AND HYPOTHESES 

 

The overall aim of this thesis is to investigate changes in linear and non-linear sEMG parameters 

during a fatiguing task, in healthy subjects and patients with neuromuscular disorders. The specific 

aims of the three studies are as follows: 

1. to verify whether muscle fiber conduction velocity may be reliably estimated during voluntary 

and electrically elicited contractions using sEMG, and to identify the experimental conditions 

that allow highly reliable CV estimation. 

2. to determine the relationship between muscle force and FD of the sEMG signal during 

isometric contractions. 

3. to investigate whether performance fatigability differs in patients with facioscapulohumeral 

muscular dystrophy (FSHD) during a fatiguing task, with respect to healthy controls. 

 

The hypotheses to be tested within the two experimental studies (2 and 3) are: 

1. that FD of the sEMG signal is not related to the intensity of muscle contraction (similarly to 

what reported in previous publications, but in different muscles) 

2.  that patients with FSHD will produce less force and probably show greater resistance towards 

fatigability. Since FSHD causes strong alteration of the membrane and contractile properties, 

the selected sEMG parameters will probably show different behaviors both for the estimates 

and the slopes. 
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GENERAL METHODS 

 

Ethical concerns 

Full ethical approval of the experimental designs and procedures were obtained from the local ethics 

committee of the Swiss Italian health and sociality department, Bellinzona, Switzerland (study 2) and 

from the ethics committee of the University of Pisa (study 3) prior the commencement of each data 

collection. All subjects gave their written informed consent to participate in the studies, which were 

conducted according to the Declaration of Helsinki (1964). It was made clear to participants that they 

could withdraw their consent at any time, without having to give a reason for their withdrawal.  

 

Participants 

Healthy participants were recruited among the students and staff at the University of Applied Sciences 

and Arts of Southern Switzerland (SUPSI) and at the University of Pavia. Patients with 

facioscapulohumeral muscle dystrophy (FSHD), who were enrolled in the Italian Nation Registry for 

FSHD (INRF), were recruited at the Criams-Sport Medicine Centre Voghera, University of Pavia. 

 

Experimental procedures 

During all experimental sessions, participants were seated in a height-adjustable chair with their 

dominant arm positioned on an isometric ergometer (MUC1, OTBioelettronica, Turin, Italy), 

equipped with a load cell (Model TF022, CCT Transducers, Turin, Italy). In order to isolate the action 

of their BB, the wrist was fastened to the ergometer, with the elbow at 120°, as shown in Figure 14. 

 
Figure 14  sEMG signals were recorded from the BB during isometric contractions of the dominant arm. 
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Initially, two isometric MVCs were performed, separated by 2 min rest. During each contraction of 

the trial, the force trace was displayed to participants on a computer monitor as visual feedback. 

Participants were instructed to increase the force up to their maximum, and to hold it for 2-3 s, and 

were given strong verbal encouragement. 

 

sEMG and force measurements 

Myoelectric signals were detected from the dominant BB, in a monopolar configuration using 

a bidimensional array of 64 electrodes (3 mm diameter, 8x8 grid, 10 mm interelectrode distance; 

model ELSCH064NM3; OT Bioelettronica) (Figure 14). This muscle was chosen in order to obtain 

high-quality sEMG signals according to the qualitative criteria described in Beretta-Piccoli et al. 

(2014). Moreover, the anatomy of the BB (long fibers that run parallel to the skin) is mostly favorable 

to estimate muscle fiber CV as well as, to extract parameters from the sEMG interference signal. On 

the contrary, recent studies (reviewed in Del Vecchio et al., 2020) suggested that this muscle may not 

be suitable for sEMG decomposition techniques. 

The electrode grid was applied on the muscle belly according to Barbero et al. (2012), with its 

distal edge close to the cubital fossa and the midline of the array aligned with the midline of BB along 

a line from the cubital fossa to the acromion (see Figure 14). A ground electrode was placed on the 

contralateral wrist. The EMG signals were amplified (EMG-USB2+; OT Bioelettronica), band-pass 

filtered (10–750 Hz), sampled at 2048 Hz using a 16-bit A/D converter, with 5 V dynamic range, and 

stored on a computer. 

The isometric ergometer was used to measure elbow torque with a torque meter operating linearly in 

the range 0–1000 Nm. The torque signal was amplified (MISO II; OT Bioelettronica) and stored on 

a computer with the sEMG data. The torque signal was displayed on a screen, providing real-time 

biofeedback. 

 

Signal processing 

The number of channels used for CV estimation was selected based on visual inspection, of single 

differential signals, which comprised five steps (Beretta-Piccoli et al., 2017): 

1) Identification of movement artifacts or missing channels: signals with large amplitude 

changes due to movement were removed from the analysis. 
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2) Identification of power line interference: signals which presented large sinusoidal components 

at 50 Hz or their harmonics, were removed from the analysis. 

3) Manual identification of the main innervation zone (if present under the array) and of the 

distal tendons (through observation of propagating waves and inversion of MUAP shapes.). 

4) Selection of the array column where the maximal amplitude and largest MUAPs were visible. 

5) Selection of the channels between the innervation zone and the distal tendons, where the 

MUAPs appear similar in shape and shifted in time.  

The number of channels selected for CV estimation usually ranged between 4 and 7 (according to 

Farina et al., 2004c). CV was estimated using a multichannel algorithm (Farina and Merletti, 2003) 

on single differential signals, based on the matching between signals filtered in the temporal and in 

the spatial domains, using non-overlapping signal epochs of 1-s, on the selected channels. Each of 

the selected signal epochs was used for the estimation of average rectified value (ARV), mean 

frequency of the power spectrum (MNF) and FD: these variables were averaged among all the 

selected channels. ARV and MNF were computed off-line with numerical algorithms (Merletti et al., 

1990) using the following calculation formula (Gonzalez-Izal et al., 2012): 

 

𝐴𝐴𝐴𝐴𝐴𝐴 =
1
𝑛𝑛
�│𝑥𝑥𝑛𝑛
𝑛𝑛

│ 

where 𝑥𝑥𝑛𝑛 are the values of the sEMG signal, and n is the number of samples. 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
∫ 𝑓𝑓 ∙ 𝑃𝑃𝑃𝑃(𝑓𝑓) ∙ 𝑑𝑑𝑑𝑑𝑓𝑓2
𝑓𝑓1

∫ 𝑃𝑃𝑃𝑃(𝑓𝑓) ∙ 𝑑𝑑𝑓𝑓𝑓𝑓2
𝑓𝑓1

 

where PS(f) is the sEMG power spectrum calculated using Fourier transform, and f1 and f2 determine 

the bandwidth of the surface electromyography (f1 = lowest frequency and f2 = highest frequency of 

the bandwidth). 

 

FD was estimated using the box-counting method, as previously reported (Beretta-Piccoli et al., 2017; 

Gitter and Czerniecki, 1995). Briefly, a grid of square boxes is used to cover the signal, and the 

number of boxes that the sEMG waveform passes through is counted (Figure 15). When the box size 

decreases, the number of the boxes that are counted will increase exponentially. The range of box 

size is restricted in order to avoid saturation for high and low value of size (Gitter and Czerniecki, 

1995). 
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Figure 15  Graphical representation of the box-counting algorithm used to determine the fractal dimension of the EMG 
waveform. The total number of boxes entered by the waveform (shaded region) are counted as the size of the overlying 

grid is successively reduced in size. 

 

The box size was fixed to 13 steps equally spaced in logarithmic scale, with the smallest box equal 

to 1/128th of a second and the largest box equal to 1/8th of a second. The vertical side of the boxes 

was normalized to the range of the signal during epochs of 1 second and divided in the same number 

of boxes. However, by plotting the logarithm of the number of boxes required to cover the signal vs. 

the logarithm of the inverse of the box area, the exponential relationship becomes approximately 

linear. The slope of the interpolation line (estimated using the least mean squared procedure) is the 

FD (Mesin et al., 2009a). Therefore, the following expression defines the FD: 

𝐹𝐹𝐹𝐹 =  log𝑁𝑁
log1𝐿𝐿

 

where N is the number of boxes required to cover the signal and L is the box side, with the ratio 

indicating the slope of the interpolation line. 

 

Calculation of performance fatigability 

Performance fatigability was quantified indirectly as the slopes of ARV, MNF, CV and FD. Please 

refer to the single studies for more details. 

 

Statistical analyses 

Extraction of the relevant data from the raw files was performed in MATLAB R2014b (The 

MathWorks, Massachusetts, USA). Statistical analyses of data were then performed using SPSS 

Version 26.0 (IBM, Chicago, IL, USA), with specific procedures detailed in each experimental study. 

Statistical significance was accepted at α = 0.05 level.   
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STUDY 1 Reliability of surface electromyography in estimating muscle fiber 

conduction velocity: A systematic review. 
 

Introduction 

 

Muscle fiber conduction velocity (CV) is defined as the propagation velocity of action potentials 

along the membrane of a muscle fiber. As an important physiological parameter, CV is correlated 

with muscle fiber membrane properties, e.g., ion concentration, pH, muscle temperature and motor 

unit (MU) firing rate (Andreassen and Arendt-Nielsen, 1987; Arendt-Nielsen and Zwarts, 1989; 

Brody et al., 1991; Farina, 2001). Moreover, muscle fiber CV depends on the muscle fiber diameter, 

which is related to the fiber type (Del Vecchio et al., 2018; Hakansson, 1956). Therefore, changes in 

CV have been associated with the recruitment of different types of MUs (Del Vecchio et al., 2017; 

Masuda and De Luca, 1991; Sbriccoli et al., 2009). Moreover, alterations in muscle fiber CV are 

related to gradation of muscle force (Sbriccoli et al., 2003), local muscle fatigue (Merletti et al., 1990), 

and neuromuscular disorders (Zwarts and Arendt-Nielsen, 1988). 

The increased investigation of and interest in muscle fiber CV is probably linked to the fact that it 

can be determined non-invasively and from a large number of concurrently detectable MUs, using 

surface electromyography (sEMG), during normal muscle function. The classic method of calculating 

CV involves estimating the delay between signals recorded at fixed distance along the direction of 

propagation, and the ratio between such measured distance and the estimated delay (Merletti and 

Farina, 2016). As two sEMG signals detected at different points along a fiber are usually not identical, 

there is no strict mathematical definition of the delay between them. Thus, several methods for CV 

estimation from sEMG recordings have been proposed (for a review, see Farina and Merletti, 2004b). 

The methods are all based on the assumption that signals are propagated along the muscle fibers from 

the innervation zone (IZ) to the tendon regions (i.e., in muscles with fibers parallel to the skin). As 

not all muscle fibers end in the same place, operators need to be able to identify the channels where 

unidirectional propagation is observed. In addition, it is important to note that when multichannel 

sEMG techniques are used for CV estimation, CV refers to the mean value of the different MU action 

potentials (MUAPs) propagating under the electrodes at different velocities (Farina and Merletti, 

2004b). The CV of individual MUs can be estimated using MUAP templates obtained via spike-

triggered averaging based on the firing instants identified by decomposition of intramuscular EMG 

recordings (Farina et al., 2002a) and sEMG recordings (Keenan et al., 2006). Recently, Negro et al. 

(2016) proposed the convolutive blind source separation method, which allows the identification of 
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tens of MUs detected using high-density sEMG (for a comprehensive review, see Farina et al., 2016). 

Estimation of the CV from a MUAP template is relatively simple, but it is considerably more complex 

for an interferential signal, which is the sum of the contributions of different asynchronously 

appearing MUs (Farina and Merletti, 2000). 

Many factors other than the physiological phenomena under study bias the estimation of CV during 

voluntary contractions. In fact, the detection system’s features, such as the electrode positioning, 

interelectrode distance (IED), number of electrodes, and algorithm used (Farina et al., 2002b; Farina 

and Merletti, 2000; 2003; 2004b; Farina et al., 2001b), directly influence the CV estimations. 

Furthermore, to reduce the effect of cross-talk from nearby muscles or to “isolate” the investigated 

muscle from the central nervous system, selective electrical stimulation of a nerve branch or of the 

motor point may be applied. Electrically evoked myoelectrical signals allow easier estimation of the 

muscle fiber CV from a MU pool, which is likely to lead to a more stable estimation than an estimation 

based on voluntary contractions (Botter et al., 2009; Merletti et al., 1992a). 

In addition, the estimation of muscle fiber CV during dynamic exercise has become possible due to 

the development of multichannel adhesive arrays of electrodes (Pozzo et al., 2004) and a novel data 

processing algorithm that allows CV estimation based on short signal epochs (Farina et al., 2004b). 

This method has helped to overcome the problems previously associated with CV estimation during 

dynamic exercise (which were exhaustively discussed in a study by Merletti and Farina, 2016), such 

as movement artifacts (Clancy et al., 2002) and signal non-stationarity (Merlo et al., 2005). Moreover, 

the evaluation of muscle fiber CV has gained the attention of researchers and clinicians interested in 

understanding the neuromuscular system modifications caused by disease (Allen et al., 2008a; 

Bazzichi et al., 2009; Blijham et al., 2006; Boccia et al., 2016; Butugan et al., 2014; Campanini et al., 

2009; Meijer et al., 2008; Minetto et al., 2011), pain (Falla and Farina, 2005; Klaver-Krol et al., 2012) 

and fatigue (Gonzalez-Izal et al., 2012). For instance, the CV value may be used to supplement 

information obtained at the muscle fiber level with intramuscular EMG, which is the clinical standard 

for neurological assessments, allowing the firing pattern of single MUs to be reliably studied and the 

shape of intramuscular potentials to be investigated, which is critical for the diagnosis of several 

neuromuscular diseases (Drost et al., 2006). Recently, several studies in the field of sport science 

have focused on possible relationships between CV and cardiorespiratory responses during dynamic 

exercise (e.g., Kilen et al., 2012; Lenti et al., 2010; Pereira et al., 2013; Stewart et al., 2011). 

The assessment of the reliability of CV (measured using sEMG) is of considerable relevance, as it is 

important to be confident that changes in estimated muscle fiber CV are associated with real 

physiological events and not with measurement errors. Thus, the aims of this systematic review were 
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(1) to verify whether muscle fiber CV may be reliably estimated during voluntary and electrically 

elicited contractions using sEMG and (2) to identify the experimental conditions that allow highly 

reliable CV estimation. 

 

Methods 

 

A systematic review of studies reporting on the reliability and/or reproducibility of sEMG for 

assessing muscle fiber CV was performed according to the Preferred Reporting Items for Systematic 

reviews and Meta-Analysis (PRISMA) statement (Moher et al., 2009). A detailed protocol was 

written a priori and is available at https://www.crd.york.ac.uk/prospero/ (CRD42018092421). 

1. Identification of studies 

On April 20, 2018, a comprehensive search of the databases MEDLINE (PubMed) and Web of 

Science was conducted. The search string for MEDLINE involved the following medical subject 

heading (MeSH) terms and free-text terms: [[Reproducibility of Results (MeSH) AND 

Electromyography (MeSH)] AND conduction velocity], whereas Web of Science was searched using 

the following search string: [surface electromyography OR surface-electromyography OR surface 

EMG OR sEMG] AND [conduction velocity] AND [reliability OR reproducibility OR agreement]. 

No restrictions were applied regarding the publication date or the language of the articles. All hits 

obtained using the search strategies were exported to EndNote X8 (Clarivate Analytics, Philadelphia, 

PA, USA), and duplicates were then removed. 

2. Study selection 

Two reviewers (MBP and CC) independently screened the titles and abstracts of the resulting studies 

and identified those that satisfied the inclusion and exclusion criteria (see Section 2.3). If it was not 

clear whether an article should be included based on the title and abstract, the full text was inspected. 

Moreover, controversies between the reviewers regarding the eligibility of titles/abstracts or full texts 

were solved in a consensus meeting involving the two reviewers. If a consensus could not be reached, 

a third reviewer (MB) was asked to make the final decision.  

3. Eligibility criteria 

Studies that fulfilled all of the following inclusion criteria were eligible for inclusion in this review: 

(1) full-text article published in peer-reviewed journal; (2) longitudinal study with a repeated-

measures experimental design; (3) investigated reliability or reproducibility of sEMG for assessing 

https://www.crd.york.ac.uk/prospero/
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CV; (4) used sEMG to estimate CV. In addition, we excluded studies that fulfilled at least one of the 

following criteria: (1) used mathematical models; (2) used needle/intramuscular EMG; (3) estimated 

CV of nerve signal; (4) used animal models. Studies that met the eligibility criteria formed the final 

sample, and two reviewers (MBP and CC) independently assessed the reporting quality. 

4. Reporting quality assessment 

Each included study was assessed using the Guidelines for Reporting Reliability and Agreement 

Studies (GRRAS) checklist, which is a 15-item checklist designed to determine the reporting quality 

of reliability studies. The GRRAS checklist was developed in 2011 by Kottner et al. (2011) to 

improve the quality of reporting in reliability and agreement studies in the healthcare and medical 

field, as no established standards were previously available. The items overlap with the Standards for 

Reporting of Diagnostic Accuracy (STARD) (Bossuyt and Reitsma, 2003) and the Standards for 

Educational and Psychological Testing (American Educational Research Association et al., 1999).  

Studies were not given an overall numeric quality score. Instead, each item was considered separately, 

and the page number of the page containing an appropriate description was noted, if applicable. A 

chart involving three categories (reported, not reported or inapplicable) was then constructed.  

5. Data extraction 

The following information related to sEMG methodology was extracted from the studies: sEMG 

electrode description (type, size, inter-electrode distance and electrode positioning); a priori 

identification of the muscle IZ or motor point; muscle contraction type (voluntary or electrically 

elicited) and intensity; signal type (interferential or single potential); sEMG signal detection 

derivation (monopolar or single differential); CV estimation method and interval of acceptance of the 

physiological range of CV values; extracted CV parameters (i.e., initial value, slope [rate of change] 

and area ratio). Based on the study by Merletti et al. (1990), the initial CV value and slope were 

defined as follows. First, a regression line of CV over time was estimated using the CV estimates 

obtained from each signal epoch. Thereafter, the intercept with the y-axis and rate of change of the 

regression line were used to define the initial CV value and slope, respectively. 

Next, the following study characteristic data were extracted: test-retest period, whether the electrodes 

were repositioned and relative and absolute reliability values. The criteria used for the interpretation 

of the relative reliability correlation coefficients were as follows:  

I. Intraclass correlation coefficient (ICC): 0.00–0.25: very low; 0.26–0.49: low; 0.50–0.69: 

moderate; 0.70–0.89: high; 0.90–1.00: very high reliability (Munro, 2005). 
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II. Pearson’s correlation coefficient (r): 0.00–0.19: very weak; 0.20–0.39: weak; 0.40–0.59: 

moderate; 0.60–0.79: strong; 0.80–1.00: very strong correlation (Evans, 1996). 

The data were extracted by a reviewer (MBP) and double-checked for accuracy by another reviewer 

(CC).  

6. Grouping of studies 

A previous literature analysis showed that terms such as “reliability,” “repeatability,” 

“reproducibility,” “consistency” and “agreement” have been used interchangeably (Atkinson and 

Nevill, 1998). For this reason, we defined three categories of reliability study: (1) test-retest reliability 

(i.e., repeated measurements within one day, without electrode replacement); (2) intrasession 

reliability (i.e., repeated measurements within one day, with electrode replacement); and (3) 

intersession reliability (i.e., repeated measurements separated by at least one day, with electrode 

replacement). 

 

Results 

 

1. Literature search 

Figure 16 shows a flowchart of the processes regarding study retrieval, screening and eligibility 

assessment. The literature search yielded 89 potentially eligible articles on CV assessment using 

EMG. Of these, 72 were excluded based on the title/abstract or full text, leaving 17 articles that met 

all the eligibility criteria (Beretta-Piccoli et al., 2018; Beretta-Piccoli et al., 2017; Falla et al., 2002; 

Farina et al., 2004c; Harba and Teng, 1999; Hogrel et al., 1998; Linssen et al., 1993; Macaluso et al., 

1994; Macdonald et al., 2008; Martinez-Valdes et al., 2016; Martinez-Valdes et al., 2017; McIntosh 

and Gabriel, 2012; Merletti et al., 1998; Merletti et al., 1995; Ollivier et al., 2005; Rainoldi et al., 

2001; Rainoldi et al., 1999). A single discrepancy between reviewers about the inclusion of one of 

the studies (Macaluso et al., 1994) was resolved by discussion. Table 2 shows the study details, with 

the studies listed in chronological order from 1993 to 2018. The most frequent reasons for exclusion 

were: muscle fiber CV was not assessed; lack of reliability data or appropriate reliability study design; 

and needle EMG or mathematical simulations were used to evaluate CV (Figure 16). 

 

2. Study characteristics 

a) Subjects, muscles and contractions 
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The number of participants in the studies varied from three to 40. The following muscles were 

investigated to assess CV reliability during isometric constant force contractions: biceps brachii (BB; 

n=7), vastus medialis, vastus medialis obliquus and/or vastus lateralis (VM, VMO and VL; n=5), 

tibialis anterior (TA; n=2), sternocleidomastoid and anterior scalene muscles (SCM and AS; n=1) and 

anterior temporal muscle (ATM; n=1). The study by (Macdonald et al., 2008) investigated CV 

reliability during cyclic movements of the vastii muscles (Table 2). 

 

b) Electrode characteristics, positioning and CV estimation 

In 11 studies, myoelectric signals were detected using linear electrode arrays in single differential 

(SD) configuration, whereas in the other six, bi-dimensional arrays in SD or monopolar configuration 

were used. Electrode positioning, except in the study by (Macaluso et al., 1994), involved considering 

anatomical landmarks and, in 12 studies, the IZ (or motor point) position on the muscle belly was 

defined. Electrode repositioning occurred in all the studies except the study by (Macaluso et al., 

1994). However, electrode repositioning only occurred partially in the studies by Hogrel et al. (1998) 

and Beretta-Piccoli et al. (2018), which both used multiple experimental designs. In eight out of 16 

studies, to improve the reliability and reduce the displacement error, the position of the electrode 

array was marked on the skin. 

CV was computed with the fast Fourier transform algorithm (Linssen et al., 1993), the cross-

correlation method (Harba and Teng, 1999; Hogrel et al., 1998; Macaluso et al., 1994; McIntosh and 

Gabriel, 2012; Ollivier et al., 2005), the discrete Fourier transform-based alignment algorithm 

developed by McGill and Dorfman (1984) (Falla et al., 2002; Merletti et al., 1998; Merletti et al., 

1995; Rainoldi et al., 2001; Rainoldi et al., 1999) or the multichannel maximum-likelihood algorithm 

developed by Farina et al. (2004c) (Beretta-Piccoli et al., 2018; Beretta-Piccoli et al., 2017; Farina et 

al., 2004c; Macdonald et al., 2008; Martinez-Valdes et al., 2016; Martinez-Valdes et al., 2017) (Table 

3). 
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Figure 16  PRISMA Flowchart of study retrieval, screening and eligibility 

 

3. Quality of reporting 

Studies were classified depending on how compliant they were with respect to the GRRAS checklist. 

The reviewers classified items 4, 6, 7, 9 and 12 (out of 15) as inapplicable to the included studies, as 

the number of raters and their characteristics are usually only relevant in clinical studies. Additionally, 

information about the sample size (item 6) was disregarded in all the studies, as the all investigated 

reliability in relatively small groups, with the number of participants varying from three to 40. 

Although none of the studies satisfied all the relevant criteria for reporting quality (Figure 17), most 

were compliant with many of the checklist items: in 15 studies, it was possible to locate an appropriate 

description of up to five items out of 10. The studies by Merletti et al. (1995) and Rainoldi et al. 

(1999) had the best quality, whereas the studies by Harba and Teng, (1999) and Beretta-Piccoli et al. 

(2018) had the lowest.  
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Figure 17  Stacked bar chart representing reliability reporting quality of the reviewed studies (n=17) 

 

Several studies were lacking regarding one or more of the following minor points: 

- Item 1: 13 studies did not mention the type of reliability (i.e., test-retest, intrasession or 

intersession) investigated in the title/abstract (Beretta-Piccoli et al., 2018; Falla et al., 2002; 

Farina et al., 2004b; Harba and Teng, 1999; Linssen et al., 1993; Macaluso et al., 1994; 

MacDonald et al., 2008; Martinez-Valdes et al., 2017; McIntosh and Gabriel, 2012; Merletti 

et al., 1998; Ollivier et al., 2005; Rainoldi et al., 2001; Rainoldi et al., 1999). 

- Item 3: as the included studies were conducted with healthy subjects only, 10 studies did not 

specify the subject population of interest, leaving it implied (Beretta-Piccoli et al., 2018; 

Farina et al., 2004b; Harba and Teng, 1999; Hogrel et al., 1998; MacDonald et al., 2008; 

Martinez-Valdes et al., 2016; Martinez-Valdes et al., 2017; McIntosh and Gabriel, 2012; 

Ollivier et al., 2005; Rainoldi et al., 2001). 

- Item 15: only three studies (Martinez-Valdes et al., 2017; Rainoldi et al., 2001; Rainoldi et 

al., 1999) provided supplementary materials in an appendix.  
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Several studies were lacking regarding the following items, which were considered to represent major 

issues: 

- Item 10: in two studies (Harba and Teng, 1999; Macaluso et al., 1994), the statistical approach 

used to evaluate the reliability of CV was not described sufficiently to allow repetition of the 

study by other researchers. 

- Item 11: five studies (Beretta-Piccoli et al., 2018; Beretta-Piccoli et al., 2017; MacDonald et 

al., 2008; Martinez-Valdes et al., 2016; Martinez-Valdes et al., 2017) did not mention, in the 

Results section, whether it was possible to estimate CV in all the participants. 

- Item 13: five studies (Beretta-Piccoli et al., 2018; Harba and Teng, 1999; Hogrel et al., 1998; 

Macaluso et al., 1994; Ollivier et al., 2005) did not report a combination of reliability 

coefficients, which makes it difficult to form a detailed impression of the degree of reliability. 

 

4. Reliability results 

The diversity among the included studies precludes a simple synthesis of the results. Thus, the studies 

were grouped according to the reliability design (Table 4): 

1) Hogrel et al. (1998) reported good within-location test-retest reliability (i.e., without electrode 

replacement) for CV estimates at L0 (the electrode location where CV was minimal, when averaged 

over all contraction conditions) in the VL. 

Martinez-Valdes et al. (2016) reported high to very high test-retest and intersession reliability (ICC 

up to 0.97; SEM ≤ 0.11) for the initial MU CV value, estimated using bi-dimensional arrays, 

monopolar EMG derivation and MU decomposition techniques. High reliability was found at all the 

isometric contraction levels in the VL and VM. Furthermore, the study by Beretta-Piccoli et al. (2018) 

evaluated test-retest reliability (1-hour delay between measurements, without electrode 

repositioning) and intersession reliability (1-week delay between measurements) in the BB. They 

obtained very high ICC values for test-retest reliability (>0.9). However, for intersession reliability, 

the ICC values regarding the initial CV value were much lower (0.04–0.79), and the ICC value 

depended on the contraction level (the higher the maximum voluntary contraction [MVC, %], the 

lower the ICC). Unfortunately, Macaluso et al. (1994) did not succeed in measuring the CV in the 

ATM. 
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Table 2  Study characteristics of included articles 

 
Abbreviations: MVC, maximal voluntary contraction; AS, anterior scalene; ATM, anterior temporal muscle; BB, biceps brachii; CV, conduction 

velocity; EMG, electromyography; PPO, peak power output; SCM, sternocleidomastoid, VL, vastus lateralis; VM, vastus medialis, VMO, vastus 

medialis obliquus. 

* only 13 subjects participated in the intraindividual reliability analysis. 

 

2) Harba and Teng (1999) and Merletti et al. (1998, 1995) investigated the intrasession reliability of 

CV. Harba and Teng evaluated the reliability of CV measured at different locations in the BB, with 

a custom-made linear array, using the relative variance (R%), which is defined as the squared 

coefficient of variation. Nevertheless, their results suggest that it was not possible to obtain the exact 

same CV value using the cross-correlation technique. The authors found CV variations over time of 

up to 5.4% (in terms of R%), when the electrode location, IED and signal epoch were fixed. When 

different electrode locations were investigated, and the IED was fixed, the CV variations were up to 

± 0.75 ms-1. An increase in the time delay (when the electrodes were more widely spaced) resulted in 

more consistent CV estimates. The studies by Merletti et al. (1998, 1995) examined the reliability of 

muscle fiber CV estimates, slope and area ratio after electrically eliciting contractions in the VM and 
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TA muscles. Their results showed the low reliability of CV based on the ICC values although, in 

general, the Pearson’s r values were high. 

 

Table 3  Characteristics of sEMG electrodes and signal acquisition. 

 
Abbreviations: IED, inter-electrode distance; anat land, anatomical landmarks; IZ, innervation zone; SD, single differential; DD, double differential; c-c, cross-correlation; 

NA, not available; maxlike maximum likelihood; FFT-based, fast Fourier transform based algorithm; DFT-based AA, discrete Fourier transform alignment algorithm. 

1 according to Farina et al., 2001 
2 according to Rainoldi et al., 2001 
3 according to Farina et al., 2004 
 

3) Finally, the other 10 studies (Beretta-Piccoli et al., 2017; Falla et al., 2002; Farina et al., 2004b; 

Linssen et al., 1993; MacDonald et al., 2008; Martinez-Valdes et al., 2017; McIntosh and Gabriel, 

2012; Ollivier et al., 2005; Rainoldi et al., 2001; Rainoldi et al., 1999) investigated the intersession 

reliability of CV. Moderate to high reliability scores (ICC 0.7–1), of either CV or slope estimates, 

were reported by six studies (Beretta-Piccoli et al., 2017; Farina et al., 2004b; Linssen et al., 1993; 

Martinez-Valdes et al., 2017; McIntosh and Gabriel, 2012; Ollivier et al., 2005; Rainoldi et al., 2001). 

Rainoldi et al. (2001) also evaluated the reliability of CV using the Fisher test (F) ratio between the 

mean squared error (MSE) due to the subject’s differences and the sum of the MSE due to trial and 

day variations, and they obtained similar results.  

 

Furthermore, both relative and absolute reliability of CV were evaluated in 12 out of 17 studies (of 

these 12, one assessed test-retest reliability, one assessed intrasession reliability and 10 assessed 

intersession reliability). The following coefficients were used to assess relative and absolute 

reliability: 
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- relative reliability: ICC (n=13 studies); Pearson’s r (n=3); analysis of variance (ANOVA)-

based Fisher test, F (n=1) (Atkinson and Nevill, 1998); 

- absolute reliability: standard error of the mean, SE (n=5); standard error of measurements, 

SEM (n=5); coefficient of variation, CoV (n=4); square CoV (n=1); minimal detectable 

change, MDC95 (n=1); Bland & Altman 95% limits of agreement, LoA (1986) (n=2). 

In the study by Hogrel et al. (1998), median reliability was assessed, without using a particular 

coefficient (Table 4). 

Generally, a higher degree of reliability was found more often in the more recent studies, in 

association with the use of bi-dimensional arrays, reduced IED, multichannel algorithms and, in 

particular, in association with the use of the initial CV value.  

 

Discussion 

 

In this systematic review, we aimed to synthesize the evidence concerning the reliability of sEMG 

for assessing muscle fiber CV. Seventeen studies met the inclusion criteria and were reviewed. 

Despite several methodological flaws identified in the included studies, which are discussed later on, 

the results of this review indicate that sEMG is a reliable tool for estimating CV in muscles with 

relatively long fibers that are parallel to the skin surface. There was great variability in the 

experimental conditions (e.g., isometric or dynamic conditions in various muscles, with various 

acquisition systems and CV estimation methods using interferential signals or single potentials), and 

in the test-retest periods (ranging from 4 minutes to 2 weeks). The more recent studies showed a 

higher degree of reliability (ICC up to 0.9; Table 4). Moreover, the results suggest that the mean and 

initial CV values are generally the most reliable extracted parameters (compared to the slope and area 

ratio), with higher ICC and lower absolute reliability values, suggesting that the mean and initial CV 

values are sufficiently accurate for clinical applications. 

Nevertheless, a major aspect of using sEMG to estimate CV is the operator-dependent nature of the 

CV estimates, though this was not considered in any of the 17 studies. For instance, muscle fiber CV 

estimation during isometric contractions and, in particular, dynamic contractions is strongly affected 

by the electrode positioning. Before placing the electrodes, attention should be paid to the guidelines 

suggested by the “Surface EMG for a Non-Invasive Assessment of Muscles” (SENIAM) project 

(Hermens et al., 2000) and to descriptions of the IZ locations in superficial muscles (Barbero et al., 

2012; Beretta Piccoli et al., 2014). Moreover, due to the anatomical variability of the IZ, while an 
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optimal or highly reliable method regarding electrode placement may exist for specific muscles and 

specific subjects, there is no optimal method for the same muscle in different populations or different 

muscles in the same subject. 

 
Table 4  Reliability analysis 
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Abbreviations: MVC, maximal voluntary contraction; AS, anterior scalene; ATM, anterior temporal muscle; BB, biceps 

brachii; SCM, sternocleidomastoid, VL, vastus lateralis; VM, vastus medialis, VMO, vastus medialis obliquus; NA, not 

available; ND, not defined; ICC, intraclass correlation coefficient; MU, motor unit; n slope, normalized slope; (n)SE, 
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(normalized) standard error of the mean; (n)SEM, (normalized) standard error of measurement; CoV, coefficient of 

variation; LofA, level of agreement; B&A, Bland and Altman; MDC95, minimal detectable change; T1, trial 1; ES, 

electrical stimulation; intra, intrasession; inter, intersession.  

** see text for explanations. 

 

1. Reporting quality assessment 

The overall reporting quality of the included studies (five GRRAS checklist items were considered 

inapplicable) was in general between moderate and good. Although the majority of the item results 

are self-explanatory, the following points are notable: 

Item 1: 13 studies did not mention in the title/abstract which types of reliability (test-retest, 

intrasession and/or intersession) were selected to investigate CV. This lack only partially affects the 

MEDLINE search as, in the hierarchical classification of MeSH terms, the entry term reliability refers 

to the MeSH term “reproducibility of results” (which was used in the search string), which also 

includes “test-retest reliability,” but not “intrasession” or “intersession.” Moreover, in the Web of 

Science database, the terms “test-retest,”, “intrasession” and “intersession” are not indexed. 

Therefore, since the primary resources for searching evidence are internet and the bibliographic 

resource, authors should use the MeSH terms explicitly in the title/abstract as suggested in (Kottner 

et al., 2011).  

Item 5: the reviewers agreed to consider item 5 (which requires the information that is already known 

about reliability and agreement to be described) as inapplicable to the studies by Macaluso et al. 

(1994) and Martinez-Valdes et al. (2017), as the two studies were pioneer investigations and thus 

were not required to provide an overview of existing reliability evidence. 

Item 10: the statistical methods selected to analyze reliability were heterogeneous, ranging from 

Pearson’s r to the Bland & Altman plot. Moreover, the early studies assessed only one type of 

reliability (relative or absolute). Additionally, two studies (Harba and Teng, 1999; Macaluso et al., 

1994) did not accurately describe their statistical methods or the reason why a certain approach was 

chosen. 

Item 13: Due to the very broad spectrum of statistical approaches that can be adopted, the GRRAS 

recommends reporting at least one combination of reliability coefficients, e.g., measures of relative 

and absolute reliability, to allow a better interpretation of the calculated values. In five studies 

(Beretta-Piccoli et al., 2018; Harba and Teng, 1999; Hogrel et al., 1998; Macaluso et al., 1994; 
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Ollivier et al., 2005), the Results sections provided only limited information about the reliability tests, 

making the reliability results more difficult to comprehend and interpret. 

 

2. Reliability assessment 

In the medical literature, at least two critical issues regarding reliability studies have been identified: 

1) The term “reliability” has been used interchangeably with “repeatability,” “reproducibility,” 

“consistency,” “agreement,” “concordance” and “stability,” with varying degrees of consistency 

(Atkinson and Nevill, 1998; Bartlett and Frost, 2008). 

2) Many statistical tests have been used to assess reliability, and no single approach can be regarded 

as standard (Dunn et al., 2004). Despite this, the recommendations in the GRAAS (Kottner et al. 

2011) suggest reporting at least one combination of coefficients (e.g., ICC and SEM), which should 

allow the reader to form a more detailed impression of the degree of reliability. For instance, the 

reliability results expressed using Pearson’s r in this systematic review should be treated carefully, as 

this coefficient only gives information about the degree of association between repeated measures. 

Moreover, it cannot detect systematic errors: high correlation does not mean high reliability (Bruton 

et al., 2000). 

 

2.1 Test-retest reliability 

Very high test-retest reliability (ICC > 0.9) of initial CV values estimated using interferential signals 

in the BB was reported in the study by Beretta-Piccoli et al. (2018). Moreover, the study by Martinez-

Valdes et al. (2016) also reported mostly very high levels of reliability (ICC > 0.8) for MU CV 

estimated using surface multichannel single potentials in the vastii muscles. High reliability was 

independent of force intensity in both studies. 

 

2.2 Intrasession reliability 

Two studies reported low intrasession reliability of initial CV values, normalized slopes and area 

ratios (ICC < 0.45) estimated from compound potentials in muscles of the lower limb (Merletti et al., 

1995; 1998). A third study, by Harba and Teng (1999), also reported intrasession reliability but, as 

reliability was not expressed in terms of ICC, or Pearson’s r, it was not possible to compare the 

reliability results with those of the other studies. 
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2.3 Intersession reliability 

Seven out of 12 studies (including studies with multiple designs for assessing reliability) showed high 

intersession reliability of CV estimated from compound potentials (ICC > 0.8) and interferential 

signals (ICC > 0.7) in lower and upper limb muscles, mainly at force levels ≥ 50% MVC. Low 

absolute reliability estimators for CV and slope values (within-subjects normalized SE < 10% and 

SEM ≤ 0.11) suggest that these parameters are sufficiently accurate and suitable for clinical 

applications (Table 4). 

 

3. Conditions for reliable CV estimation 

The authors of the included studies identified several factors that may affect the reliability of the CV 

estimation, ranging from the muscle architecture to the algorithm used. In this section, the most 

relevant conditions for highly reliable CV estimation are summarized. 

 

a) Muscle characteristics and contraction type 

The muscles from which CV was reliably estimated were limited in number, but included the VL and 

VM/VMO (Martinez-Valdes et al., 2016; Martinez-Valdes et al., 2017; Rainoldi et al., 2001), BB 

(Beretta-Piccoli et al., 2018; Beretta-Piccoli et al., 2017; Farina et al., 2004b; Ollivier et al., 2005) 

and TA (McIntosh and Gabriel, 2012). The common anatomical features of these muscles are the 

presence of relatively long fibers arranged in a plane parallel to the skin, with IZs concentrated in a 

small muscle region. In addition to isometric contractions, these features are particularly relevant 

when dynamic contractions are performed (e.g., MacDonald et al., 2008) as, during movement, the 

IZ shift and muscle shortening limit the portion of fiber semi-length in which propagating signals can 

be detected (Farina et al., 2004b). Notably, in pinnate or fusiform muscles with multiple IZs, the CV 

cannot be estimated reliably (Barbero et al., 2012). 

 

b) Electrode locations and positioning 

The issue of electrode locations (as well as repositioning before each experiment) was identified as 

the most critical factor influencing the reliability of CV estimation in all the included studies. For 

instance, in the study by Hogrel et al. (1998), the authors identified two “muscular critical zones” that 

must be avoided. A systematic overestimation of CV occurred in these regions, i.e., when 

myotendinous junctions and/or neuromuscular junctions were in the detection volume. Moreover, 
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reliable CV estimation requires careful orientation of the electrodes along the muscle fibers. This 

issue was investigated by McIntosh and Gabriel (2012), who proposed a novel procedure to help 

operators orient the electrodes, which resulted in highly reliable CV estimates. Furthermore, the 

development of accurate electrode positioning criteria (based on the localization of the IZs) is 

recognized as vital for achieving standardization of sEMG methodology (Falla et al., 2002). The 

identification of these criteria represent the main goal of the standardization process initiated with 

European Concerted Action – “Surface EMG for a Non-Invasive Assessment of Muscles” (SENIAM) 

and continued with the publication of “Atlas of Muscle Innervation Zones” (Barbero et al., 2012), 

which suggests appropriate electrode positions when a single electrode pair is used. 

In addition, when using electrode arrays, visual inspection is needed to select the channels between 

the IZ and tendons, where the MUAPs appear similar in shape and shifted in time (Beretta-Piccoli et 

al., 2018; Beretta-Piccoli et al., 2017; Farina et al., 2004c; Martinez-Valdes et al., 2016; Martinez-

Valdes et al., 2017). 

 

c) IED and number of channels 

The selection of the distance between detection points is critical, and it greatly depends on the semi-

fiber length. Thus, it is not possible to suggest an optimal IED that applies to all muscles. 

Nevertheless, the reliability of CV estimates increases with an increasing number of signals and an 

increasing IED, between 5 and 10 mm (Farina et al., 2004c; McIntosh and Gabriel, 2012; Ollivier et 

al., 2005; Rainoldi, 2001). As, an IED of 5 mm may be more affected by minor electrode 

displacements and local tissue dishomogeneities (Merletti et al., 1995), small electrodes (diameter < 

3 mm) with small IED (< 10 mm) have to be recommended in order to avoid the spatial aliasing 

(Afsharipour et al., 2019; Afsharipour et al., 2015). Therefore, using multichannel sEMG with 

between four and eight electrodes and 5 mm IED, can help to increase the reliability of CV (Beretta-

Piccoli et al., 2018; Beretta-Piccoli et al., 2017; Farina et al., 2004c; MacDonald et al., 2008; 

Martinez-Valdes et al., 2016; Martinez-Valdes et al., 2017).  

 

d) CV estimation method 

Among the factors affecting the reliability of CV estimates, the estimation method has an impact. In 

fact, before the study by Farina et al. (2004c), in which bi-dimensional arrays of electrodes and the 

multichannel maximum-likelihood algorithm were used, a highly reliable estimation of CV was 

achieved only once, in the study by Rainoldi et al. (2001). This was done using the discrete Fourier 
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transform-based algorithm (McGill and Dorfman, 1984) and a four-bar linear electrode array. 

Furthermore, the cross-correlation analysis of two delayed signals (Naeije and Zorn, 1983) may be 

applied to reliably estimate muscle fiber CV when using a three- or four-electrode system (McIntosh 

and Gabriel, 2012; Ollivier et al., 2005), anyway this method requires interpolation, which requires a 

spatial sampling frequency is above the Nyquist rate (Afsharipour et al., 2019). 

Nonetheless, the most reliable and robust methods are those based on maximum-likelihood estimation 

in the frequency domain (Farina et al., 2001), which provide higher velocity resolution and lower 

variance than other approaches (Farina and Merletti, 2004b). Further developments and adaptations 

of the maximum-likelihood algorithm (Farina and Merletti, 2004a; Farina et al., 2004c) have allowed 

highly reliable estimates of muscle fiber CV and CV associated with single MUs to be obtained during 

isometric and dynamic contractions, using multichannel sEMG involving interferential and single 

potential signals (Beretta-Piccoli et al., 2018; Beretta-Piccoli et al., 2017; MacDonald et al., 2008; 

Martinez-Valdes et al., 2016; Martinez-Valdes et al., 2017).  

 

e) CV parameters 

Initial and mean CV values were the most reliable parameters in eight studies (Beretta-Piccoli et al., 

2018; Farina et al., 2004c; MacDonald et al., 2008; Martinez-Valdes et al., 2016; Martinez-Valdes et 

al., 2017; McIntosh and Gabriel, 2012; Ollivier et al., 2005; Rainoldi et al., 2001), whereas the slope 

was associated with a high degree of reliability only once, during fatiguing isometric contractions of 

the BB (Beretta-Piccoli et al., 2017). The estimation of the muscle fiber CV slope may be useful to 

characterize the peripheral components of muscle fatigue (Arendt-Nielsen et al., 1989; Bigland-

Ritchie et al., 1981). Furthermore, if the MU pool is stable, this variable correlates with fiber size and 

type (Sadoyama et al., 1988).  

In seven studies (Falla et al., 2002; Farina et al., 2004c; Merletti et al., 1998; Merletti et al., 1995; 

Ollivier et al., 2005; Rainoldi et al., 2001; Rainoldi et al., 1999), CV slopes were not as reproducible 

as the initial CV values, reflecting the high sensitivity of CV slope to electrode repositioning in retest 

sessions. Notwithstanding, the promising result of Beretta-Piccoli et al. (2017), regarding the high 

degree of reliability of slope estimates, may be related to the reduction in noise associated with the 

use of bi-dimensional arrays with a 10-mm IED (which allows a larger number of electrodes and an 

optimal distance between detection points, and which lowers the sensitivity to electrode 

displacement). 
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However, it should be noted that as CV slopes depend on fatigability, their reproducibility also 

depends on the reproducibility of the fatiguing protocol and of the subject’s fatigability conditions. 

Good reproducibility of such variables is very difficult to achieve. Additional studies are needed to 

investigate whether muscle fiber CV slope calculated using multichannel recordings in various 

superficial muscles with fibers parallel to the skin is a reliable parameter. 

 

f) Operator 

Importantly, the issue is not simply the reliability of sEMG itself for assessing CV, but also the 

training and expertise of the operator regarding the use of this technique to correctly detect, process 

and interpret sEMG signals (Barbero et al., 2012). For example, visual inspection to select the 

appropriate number of channels of a bi-dimensional electrode array, to be used for CV estimation, is 

still needed. Operators should be able to identify movement artifacts, missing channels or the 

presence of large sinusoidal components at 50 Hz, which must be dealt with before the analysis. 

 

Study limitations 

i) The lack of standardized reporting across the reliability studies (probably partly because the 

GRRAS checklist was only published in 2011) combined with the poor statistical analysis 

descriptions (particularly in the early studies) limited the data extracted for use in this systematic 

review. Adequate reporting regarding the methodology used in reliability studies should be 

encouraged. Reporting can often be affected by the word count restrictions imposed by journals at 

the time of publication. However, inadequate reporting affects the comparison of results between 

studies and restricts the synthesis of evidence.  

ii) The included studies considered only six muscles when investigating the reliability of CV: BB 

(n=7), VL and VM (n=5), TA (n=2), SCM (n=1) and AS (n=1). Therefore, the conclusions of this 

systematic review may only be applicable to these muscles and may not be generalizable to other 

muscles. 

iii) Most studies analyzed the reliability of CV estimation during isometric contractions as opposed 

to functional activities (only one study analyzed dynamic contractions, which involved cyclic 

movements of the vastii muscles (MacDonald et al., 2008)). Therefore, the results of this review are 

not generalizable to dynamic conditions other than cyclic. 
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Conclusions 

 

Since the publication of the recommendations by Farina et al. (2004c) regarding the appropriate 

number of electrodes and IED, along with visual channel selection and the use of the maximum-

likelihood algorithm, the results of studies investigating the reliability of CV estimation in muscle 

fibers parallel to the skin exhibited an increase in reliability. In addition, trained expert operators 

should be encouraged to use a standardized electrode location and possibly to identify the IZ location 

prior to positioning. In these conditions, muscle fiber CV estimates (as an important physiological 

parameter) and slope (as an indicator of muscle fatigue), are suitable for use in sport science, 

rehabilitation and interventional studies with multisession longitudinal designs. To continuously 

increase the reporting quality of reliability studies, a critical requirement for future studies is to follow 

the GRRAS guidelines. 
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STUDY 2 Relationship between isometric muscle force and fractal 

dimension of surface electromyogram 
 

Introduction 
 

The relation between electromyography (EMG) and force has been a controversial topic for 

more than four decades. The surface EMG (sEMG)/force relationship strongly depends on motor 

units (MUs) control by the central nervous system (CNS) and by the peripheral features of muscle. 

The CNS modulates the force expressed by the muscle by controlling two parameters: the recruitment 

of MUs and the firing rate of active MUs (Erim et al., 1996). These two parameters are directly 

connected with the generation of electrical activity inside the muscle and also influence the sEMG 

signal (Fuglevand et al., 1993a). Indeed, the sEMG signal is a result of the interferential summation 

of MU action potentials (MUAPs) detected by electrodes and thus it is of interest to understand the 

role played by the neural parameters in driving the sEMG-force relationship (Keenan and Valero-

Cuevas, 2007). The shape of this relationship has been explored in experimental and simulation 

studies, with conflicting results ranging from linearity to non-linearity (Al Harrach et al., 2017; 

Basmajian, 1978; Bigland-Ritchie, 1981; Botter et al., 2011; Lawrence and De Luca, 1983; Milner-

Brown and Stein, 1975; Moritani and deVries, 1978; Zhou and Rymer, 2004). The shape of this 

relationship might also depend on the muscle investigated, on muscle fiber composition and muscle 

fiber size (Alkner et al., 2000; Zhou and Rymer, 2004). 

Inconsistent results in the literature may also reflect that muscles are not necessarily uniformly 

activated at increased loads in a specific action. For this reason, sEMG varies spatially over the muscle 

belly (Holtermann et al., 2005; Staudenmann et al., 2009; Staudenmann et al., 2014). Applying 

multichannel array electrode systems in sEMG recordings have been demonstrated to improve the 

extraction of reliable sEMG/force relationship increasing the representability of the measured sEMG 

signal (Rantalainen et al., 2012; Staudenmann et al., 2006; Staudenmann et al., 2005).  

Great interest has been given in the literature to the non-linear feature of the sEMG signal, such 

as recurrent quantification analysis, percentage of determinism, sample entropy, normalized mutual 

information and fractal dimension (FD) (Bingham et al., 2017; Eckmann et al., 1987; Felici et al., 

2001; Gitter and Czerniecki, 1995; Richman and Moorman, 2000). Non-linear analysis offers a 

powerful approach for the investigation of physiological time series because it provides a measure of 

the signal complexity. In particular, the FD of the signal is a measure of self-similarity over multiple 

time scales. Several studies (Anmuth et al., 1994; Gitter and Czerniecki, 1995; Gupta et al., 1997; 



 

56 

Shields, 2006; Xu and Xiao, 1997) have applied box-counting methods to estimate the FD of the 

sEMG signal and a recent investigation, showed a good reliability of FD during isometric contractions 

in the BB muscle (Beretta-Piccoli et al., 2017).  

Non-linear feature of the sEMG has been widely applied to monitor the myoelectric 

manifestations of fatigue during the course of isometric contractions (Gazzoni et al., 2017). Indeed, 

during sustained submaximal contractions, the alterations in the activity of muscles undergoing 

fatigue can be quantified, using linear or non-linear methods, prior to task failure (Gazzoni et al., 

2017). Mesin and colleagues (2009a) computed a combination of both linear and non-linear analysis 

to synthetic and experimental sEMG signals. They found that FD was the most related to the level of 

synchronization and least related to the changes of muscle fiber conduction velocity (CV). 

Consequently, they proposed the combination of FD and CV as a bi-dimensional index providing 

information about the central and peripheral adjustments occurring during fatigue (Mesin et al., 

2009a). In a more recent simulation study, Mesin and colleagues (2016) found that beyond 

synchronization level, the FD of the EMG signals increased with the average firing rate of the active 

MUs. For this reason, recently, the combined monitoring of muscle fiber conduction velocity (CV) 

and FD parameters during continuous contractions was applied in the evaluation of myoelectric 

manifestations of fatigue (Boccia et al., 2016; Beretta-Piccoli et al., 2015; Meduri et al., 2016). 

However, to fully understand the applicability of FD analysis in the study of myoelectric 

manifestations of fatigue, it is crucial to determine if the FD is also affected by the level of force 

exerted by muscles. 

Some studies found that the FD of sEMG was linearly but weakly related to the contraction 

level (% of maximal voluntary contraction, MVC) in simulated and experimental conditions (Gitter 

and Czerniecki, 1995; Anmuth et al., 1994; Gupta et al., 1997). However, recent investigations 

showed that FD is not related to the intensity of muscle contraction (Arjunan and Kumar, 2014; 

Troiano et al., 2008): therefore, the relationship between force and the FD of sEMG is still 

controversial. Thus, the aim of this study was to evaluate the relationship between force and FD of 

sEMG during isometric contractions of the BB. 
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Methods 

 

Participants 

Twenty-eight healthy recreationally active volunteers (14 women and 14 men) aged between 

20 and 36 years (25±4 yrs) from a university setting were recruited to participate in the study. 

Experimental procedure 

The subjects participated in three experimental sessions (“trials 1-3”): the first two trials were 

conducted within the same day, with four minutes of rest in between, without repositioning the 

electrodes. The third trial was performed a week apart under the same environmental conditions.  

Initially, two isometric MVCs were performed, separated by 2 min rest. During each 

contraction of the trial, the force trace was displayed to participants on a computer monitor as visual 

feedback. Participants were instructed to increase the force up to their maximum, and to hold it for 2-

3 s. Participants were given strong verbal encouragement.  

Next, after 4 min rest, the subjects performed a sequence of nine short contractions, from 10 to 

90% of their MVC in steps of 10% MVC in randomized order, lasting 5 s, with 20 s of rest in between. 

After each contraction, the subjects were asked to provide a value of the perceived exertion on a 

visual Borg scale, ranging from 6 to 20 (Borg, 1982). In the first day of measurement, after the first 

session (trial 1), a second sequence of contraction, constituting the trial 2, was performed.  

The methods used for the setup of the ergometer, sEMG and force measurements and signal 

processing are described in the General Methods. 

Signal processing 

For each signal, a 3-s lapse was identified, where the force level was stable within the 10% 

boundaries of the target force requested to the subjects. Signals were then divided in epochs of 1-s 

and CV was computed using a multichannel algorithm (Farina and Merletti, 2003) on the selected 

channels. The three obtained values were then averaged. Next, each of the three epochs of each signal 

were used for the estimation of ARV, MNF and FD. Estimates obtained from single channels were 

averaged over the channels previously selected by visual analysis and over the three signal epochs. 

Therefore, for each contraction level one value for ARV, MNF and FD was obtained.  

In addition, ARV, MNF, CV, and FD data, as well as Borg scale values were normalized for 

each subject according to their values at 70% MVC and expressed as percentages. The force level of 

70% was selected after the completion of data collection, since many of the subject could not perform 
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80 and 90% MVC contraction. The 70% value was the maximum force level, which all the subjects 

could reach. 

Statistical analysis 

Intra- and inter-session reliability was examined using the Intraclass Correlation Coefficient 

(ICC(2,1)) on averaged measures (Weir, 2005), since its use has been recommended in reliability 

studies (Bruton et al., 2000, Rankin and Stokes, 1998). The criteria used for the interpretation of the 

ICCs were as follows: 0.00–0.25: no correlation; 0.26–0.49: low correlation; 0.50–0.69: moderate 

correlation; 0.70–0.89: high correlation; 0.90–1.00: very high correlation (Munro, 2005).  

To test the relationship between EMG variables and force, only the first session, i.e. trial 1, 

was considered. A Shapiro-Wilk test revealed that all the estimated EMG variables were not normally 

distributed across subjects and thus, the non-parametric Kruskal-Wallis test was performed on the 

sEMG variables for each contraction at difference force levels. Considered factors were trial and force 

level. When the Kruskal-Wallis test indicated significant variations, a post-hoc Dunn-Bonferroni test 

(Dunn et al., 2004) was applied on pairwise comparisons; statistical significance was accepted at the 

p < 0.001 level.  

The epsilon-squared estimate of effect size was calculated using the following equation 

(Tomczak and Tomczak, 2014): 

𝐸𝐸𝑅𝑅2 =
𝐻𝐻

𝑛𝑛 − 1
 

where H is the value obtained in the Kruskal-Wallis test (the K-W H-test statistics) and n the 

total number of observations. The 𝐸𝐸𝑅𝑅2 coefficient assumes values between 0 (indicating no 

relationship) and 1 (perfect relationship).  

Statistical analyses were performed using SPSS Version 22.0 (SPSS Inc, Chicago, IL, USA), 

and significance was set to α=0.05. Results are reported as median and interquartile range. 

 

Results 

 

Reliability analysis 

Table 5 documents the results of ICC(2,1) analysis for the initial values of CV, FD, MNF and ARV 

during the short isometric contractions, with force levels between 10 and 90% MVC. According to 

the classification of (Munro, 2005), high to very high levels of intra-session reliability were identified 



 

59 

for all the parameters (ICC between 0.86 and 0.97), whereas the intersession reliability was 

considerably lower. The most reliable parameter across experimental sessions was indeed ARV, 

followed by FD and MNF. Initial values of CV showed higher ICC values at lower contraction levels, 

whereas at force levels between 70% and 90% MVC, CV displayed a very low inter-subject 

variability, demonstrating dependence on days and trials larger than dependence on subjects (Farina 

et al., 2004c; Rainoldi et al., 2001). 

 
Table 5  Results of the reliability analysis of initial values of CV, FD, MNF and ARV at 10 to 90% MVC. Intra- and 
intersession ICC scores are reported. 

MVC 
 ICC  ICC  ICC  ICC 

 intra inter  intra inter  intra inter  intra inter 

10% 

CV  

0.95 0.79 

FD 

0.86 0.74 

MNF 

0.94 0.76 

ARV 

0.92 0.83 

20% 0.97 0.76 0.86 0.78 0.96 0.86 0.86 0.74 

30% 0.98 0.77 0.91 0.81 0.97 0.78 0.96 0.87 

40% 0.97 0.68 0.94 0.85 0.97 0.75 0.90 0.85 

50% 0.96 0.39 0.91 0.81 0.97 0.59 0.88 0.83 

60% 0.96 0.59 0.89 0.90 0.96 0.79 0.89 0.81 

70% 0.90 0.21 0.87 0.70 0.96 0.77 0.96 0.87 

80% 0.91 0.04 0.94 0.82 0.96 0.73 0.96 0.89 

90% 0.96 0.22 0.90 0.81 0.96 0.76 0.96 0.81 
Note: MVC, maximal voluntary contraction; ICC, intra-class correlation coefficient intra- and inter-session. 

 

Relation with force 

Kruskal-Wallis test did not reveal any statistical dependence of the variables on trials. Distributions 

of FD, ARV, MNF and Borg ratings were similar for all contraction levels, as assessed by visual 

inspection of boxplots (Figure 18 and 19). Median scores of these parameters were statistically 

different across the nine levels of force (p < 0.0001). Only the increasing trend of CV versus force 

was not statistically significant, for this reason no post-hoc analysis was performed for CV. 

To allow a better visualization of the parameters trend, a boxplot for each normalized parameter 

with respect to their values at 70% MVC was added to Figure 18. Effect size analysis, i.e. the 

percentage of the variability of the considered parameters which is really accounted for by the level 

of force, revealed very high scores for ARV and Borg values (epsilon-squared estimates respectively 

87% and 70%), whereas smaller effect size was found for FD and MNF (epsilon-squared estimates 
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respectively 37% and 17%). The post-hoc analysis revealed statistically significant differences in the 

considered parameters obtained at low force levels (respectively 10-40% MVC for ARV and Borg 

ratings and 10-30% MVC for FD and MNF) with respect to high force levels (50-90% MVC) (Figures 

18 and 19).  
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Figure 18  Box-and-whisker plots of initial and normalized values (with respect to their values at 70% MVC) of fractal 
dimension (FD) conduction velocity (CV), average rectified value (ARV), and mean frequency (MNF) during short 
isometric 10-90% maximal voluntary contractions (MVCs) of the biceps brachii. Statistically significant results of the 
Dunn-Bonferroni post-hoc test are indicated (* p < 0.001) 
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Figure 19  Box-and-whisker plots of the initial and normalized values (with respect to their values at 70% MVC) of 

Borg ratings during short isometric 10-90% maximal voluntary contractions (MVCs) of the biceps brachii. Statistically 
significant results of the Dunn-Bonferroni post-hoc test are indicated (* p < 0.001) 

 

Discussion 
 

1. Intra- and intersession reliability 

FD, MNF and ARV showed high intra- and intersession reliability, in accordance with previously 

published studies (e.g. Arnall et al., 2002; Beretta-Piccoli et al., 2017; Falla et al., 2002; Farina et al., 

2004c; Lee et al., 2011; Rainoldi et al., 2001); the intersession reliability of CV at contraction levels 

higher than 60% MVC, was very low. This result might be explained by the fact that the variability 

of CV between subjects decreases as the level of contraction increases over 60% MVC (Rainoldi et 

al., 1999). 

 

2. Relation between EMG parameters, Borg ratings and force 

In the present study, FD and MNF were the variables least influenced by the level of exerted force 

(Figures 18A and D). In fact, both variables showed a trend, increasing from 10% to 30% MVC, but 

thereafter reaching a plateau beyond 30% of MVC (confirmed by the results of the post-hoc analysis, 

as well). The little or even independence of FD and MNF on the level of muscle force, was reported 

also in two previous investigations in other muscles and with different methods (Bilodeau et al., 2003; 

Troiano et al., 2008). In particular, in Troiano et al. (2008) the upper trapezius muscle was 

investigated, which compared to the BB, presents a much more complex architecture and an 

heterogeneous distribution of the muscle activity (Gallina et al., 2013a).  
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As already reported in literature, FD is sensitive to the presence of large active MUAPs that usually 

appear in the signal due to synchronization at high force levels, during fatiguing contractions (Mesin 

et al., 2009a). Nevertheless, a similar phenomenon happens also at low force levels, whenever larger 

MUs and with low firing frequency, are recruited according to the Henneman’s size principle. 

Moreover, in simulated EMG signals, FD was positively correlated to the firing rate of the active 

MUs, and negatively correlated to the level of MU synchronization (Mesin et al., 2016). Since the 

level of synchronization is not expected to change in non-fatiguing contractions, it was reasonable to 

hypothesize that FD could somehow increase with increasing force levels. Thus, it is possible to 

speculate that FD might be a reliable indicator of MU synchronization, less dependent from the firing 

rate.  

Muscle fiber CV, seems to be the most affordable variable for relating EMG signals 

modifications and MUs pool recruitment (Farina et al., 2004a). Since CV increases gradually when 

larger MUs are recruited (Blijham et al., 2006), it was expected to increase with contraction intensity 

(Andreassen and Arendt-Nielsen, 1987). Contrary to the expectation, the average CV did not increase 

significantly with increasing force levels although we could observe a trend in that direction in our 

data set (see Figure 18B). There are two main confounding factors that could have affected CV 

estimates: (1) the subcutaneous tissue and (2) the alignment of the electrode row along the direction 

of muscle fibers. Indeed, a high thickness of subcutaneous tissue and malalignment of electrode grids 

might both produce an overestimation of CV and consequently affect the trend of CV across force 

levels. Since the CV values were relatively high (>4.5 m/s) even at the lowest force levels (i.e. 10% 

of MVC), this explanation seems to be plausible. Anyway, an overestimation of CV, if present, would 

be visible at all contraction levels, thus normalized values would not be affected by this bias. 

The amplitude of the EMG signal (ARV) was the variable most dependent on the level of force 

exerted (Figure 18C). This was an expected result, since many previous studies demonstrated a direct 

relationship between EMG and force (Al Harrach et al., 2017; Basmajian, 1978; Bigland-Ritchie, 

1981; Botter et al., 2011; Lawrence and De Luca, 1983; Milner-Brown and Stein, 1975; Moritani and 

deVries, 1978). In particular, ARV values obtained at the highest force, i.e. the 90% of the MVC, 

were greater than those lower or equal to the 50% of MVC. Whereas, between 60% and 90% of MVC, 

no increase in ARV was found. Thus, EMG amplitude seemed to be sensitive to the increase of force 

only from low (10% of MVC) to medium (50% of MVC) force levels, but not from 50% to 90%. 

Even this was an expected result because Troiano and colleagues previously reported the same pattern 

(Troiano et al., 2008). The recruitment of motor units and the firing rate of active motor units 

progressively increase at increasing force exertion (Erim et al., 1996), and this leads to increasing 

electrical activity inside the muscle (Fuglevand et al., 1993a). Consequently, increasing amplitude of 
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EMG signal would be expected throughout the whole range of forces. However, our results showed 

that the EMG amplitude was not consistently affected by the increase in force after 50% of MVC. 

This can be explained by the fact that the amplitude cancellation influenced the measures of EMG 

amplitude mostly at high force levels. Indeed, the amplitude cancellation has been proven to increase 

with increasing number of active motor units (Keenan et al., 2005). 

Finally, the present study found a relation between ratings of perceived exertion (Borg ratings) 

and force levels (Figure 19) in line with previous published studies, where a linear relationship, during 

isometric contractions, was found (Stevens and Cain, 1970; Timmons et al., 2009; Troiano et al., 

2008). Interestingly, as occurred with ARV, no statistically significant increase in perceived exertion 

was found between 60% and 90% of MVC. Together, these results furthermore support previous 

findings indicating the relationship between muscle activation and perceived exertion (Lagally et al., 

2002).  

The limitations of this study are mainly related to technical constraints. Firstly, we investigated 

only one muscle, which, of course, does not represent the behavior of all the muscles. Secondly, to 

our knowledge, literature is currently lacking studies on validity of FD in estimating MU 

synchronization. If future studies will overcome this gap, FD will provide a valid and robust measure 

of MU synchronization during fatiguing contractions. 

 

Conclusions 

 

The present study showed that FD is a reliable EMG parameter at all contraction levels and has 

little dependency from muscle force, in the BB muscle above 30% MVC. In such conditions, FD can 

be applied in experimental studies focusing on fatigue or on motor unit synchronization, 

independently from the force exerted. 
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STUDY 3 Increased resistance towards fatigability in patients with 

facioscapulohumeral muscular dystrophy 
 

Introduction 

 

Fatigue is recognized as a common symptom in muscular dystrophies (Kalkman et al., 2005), 

although little is known about the pathophysiology of this disabling condition. Among dystrophies 

whose genetic defects have been molecularly identified, facioscapulohumeral muscular dystrophy 

(FSHD), shows the most peculiar mutation: in fact, the FSHD genetic defect does not reside in any 

protein-coding gene (Wijmenga et al., 1990). Instead, the disease has been associated in the majority 

of patients with the contraction a polymorphic region known as D4Z4 (4q35 chromosome) that is 

characterized by an array of tandemly repeated units of 3.3 kb (van Deutekom et al., 1993; Wijmenga 

et al., 1992). In normal conditions, the D4Z4 array varies from 10 to 100 repeated units, whereas 

FSHD patients have less than 10 (Larsen et al., 2015). Clinically, FSHD is characterized by slowly 

progressive weakness of the facial and shoulder girdle muscles, followed by leg and trunk muscles. 

The wide variability of clinical outcomes, linked to a large heterogeneity of severity (Mul et al., 

2017), allows the identification of at least nine patient subcategories, including classic FSHD 

phenotype/category A and facial sparing phenotypes/category B1 (Ricci et al., 2016). Overall, clinical 

examination and family studies suggest that FSHD is a complex disease, in which several factors, 

including genetic, epigenetic or environmental variables, can influence the onset and development.  

In FSHD, fatigue appears as an early leitmotif of the disease and a disabling symptom in common 

daily activities. In a recent qualitative study by Schipper et al. (2017), patients described fatigue as 

“an overwhelming and unpredictable experience”, without recognizing the actual causes, which 

makes it hard to deal with and thus causing a huge impact on participation, social contacts and their 

quality of life. Moreover, in a survey involving 328 participants with FSHD, one of the symptoms 

with the highest prevalence was fatigue (93.8%) (Hamel et al., 2019). 

For the purpose of this study, fatigue will be discussed within the taxonomy proposed by Kluger et 

al. (2013). Specifically, fatigue is defined as a symptom or percept, characterized by feelings of 

tiredness and weakness, in which physical and cognitive functions are limited by interactions between 

performance fatigability and perceived fatigability. Performance fatigability refers to the decline in 

an objective measure of performance, such as the production of maximal voluntary force, the ability 

to provide an adequate signal to voluntary activate muscle, or the involuntary twitch response to 
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stimulation (Enoka and Duchateau, 2016). In addition, indexes of fatigability may be extracted from 

the surface electromyogram (sEMG), such as muscle fiber conduction velocity (CV) or non-linear 

parameters (see Rampichini et al. 2020 for a review).  

For instance, Schulte-Mattler et al. (2003) described excessive fatigability in different neuromuscular 

disorders, though only four patients with FSHD were recruited. Later, Schillings et al. (2007) used 

the twitch interpolation technique on the BB of patients with myogenic or neurogenic disorders 

(FSHD, myotonic dystrophy and hereditary motor and sensory neuropathy type I), and described an 

increased voluntary activation at rest and a reduced performance fatigability following a 2-min 

sustained isometric MVC, in comparison with age/sex matched controls. However, reduced 

performance fatigability may be linked to lower strength production caused by an impaired neural 

drive. Finally, these results agreed with the observations of Di Lazzaro et al. (2004) showing an 

increased resting motor threshold in FSHD using transcranial magnetic stimulation that, in contrast, 

was found unchanged by Liepert et al. (2004) in a group of 6 FSHD patients. More recently, 

Bachasson et al. (2014) using femoral nerve magnetic stimulation showed higher voluntary activation 

of VL at baseline in FSHD patients compared to control, in contrast to the large activation failure in 

BB reported by Schillings et al. (2007). Overall, available data do not allow drawing safe conclusions 

on the relative contribution of central and peripheral factors to performance fatigability in FSHD 

patients, thus the main purpose of this study was to determine, using fatigability indices extracted 

from the sEMG signal, whether patients fatigued differently with respect to healthy controls. 

Moreover, based on the above considerations, we aimed at exploring possible associations between 

fatigability and clinical parameters of the patients. 

 

Methods 

 

Participants  

The study was part of a crowdfunding project (#Sport4therapy) carried out at the CRIAMS-Sport 

Medicine Centre Voghera promoted by the University of Pavia, aiming at identifying the correct sport 

therapy approach in patients affected by rare neuromuscular diseases (Siciliano et al., 2019), 

including FSHD (Berardinelli and D’Antona, 2019). Data collection started in 2013 and was 

completed in 2019. Inclusion criteria were: age of ≥16 years, a clinical or genetic diagnosis of FSHD, 

and enrollment in the Italian National Registry for FSHD (INRF). Exclusion criteria were wheelchair 

bound at selection, use of corticosteroids, severe cardiac and respiratory dysfunction, and 

psychological-psychiatric disorders. A diagnosis of FSHD had to be confirmed by DNA testing 
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(Lemmers et al., 2012) at the University of Modena and Reggio Emilia (Italy). Nineteen patients with 

FSHD were enrolled in the study. Disease severity was assessed through the FSHD clinical score 

(Lamperti et al., 2010). The FSHD score ranges from 0, when no objective sign of functional 

impairment is present, to 15, when all tested muscle groups are severely impaired and patient is wheel-

chair dependent. Functional alterations of scapular girdle muscles was determined through the 

specific subscale (scored from 0 to 3). Main participants’ characteristics are listed in Table 6. Patients 

were allocated to the four clinical categories according to the Comprehensive Clinical Evaluation 

Form (Ricci et al., 2016). Seventeen participants were selected among the FSHD group to be 

compared with 17 healthy controls, matched for age and sex. All subjects gave their written informed 

consent to participate in this study, which was conducted according to the Declaration of Helsinki 

with approval from the local Ethics Committee of the University of Pisa. 

 

Experimental procedures 

Perceived and performance fatigability was assessed only once, when the participants attended the 

Sports Medicine Center Voghera.  

1. Perceived fatigability 

Trait levels of perceived fatigability were assessed before the fatiguing task, with the fatigue subscale 

of the Checklist Individual Strength (CIS-fatigue). This scale consists of 8 questions regarding 

fatigability experienced during the previous 2 weeks; each question was scored on a 7-point Likert 

scale (Vercoulen et al., 1994). A total score ≥ 35 indicates severe fatigue (Vercoulen et al., 1996). 

The CIS-fatigue has good internal consistency (Cronbach a 0.83–0.92), high discriminative validity, 

and high sensitivity to change in patients with FSHD (Kalkman et al., 2007).  

2. Performance fatigability 

The selected protocol has been shown to produce fatigue in the elbow flexors in healthy subjects and 

patients (Beretta-Piccoli et al., 2017). Briefly, participants were asked to perform two maximal 

voluntary contraction (MVC), separated by 2 min rest, followed by a 20% MVC contraction lasting 

2 min and finally a 60% MVC held until the force level decreased below 90% of the target (endurance 

time, i.e. the time for which a subject is able to maintain the requested mechanical task). The two 

submaximal contractions were separated by 5 min rest. 

The methods used for the setup of the ergometer, sEMG and force measurements and signal 

processing are described in the General Methods. 
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Statistical analysis 

Descriptive statistics were used to present the variables included in both the comparative and the 

explorative analyses; the categorical variables were described through frequency distributions, while 

the continuous variables were described using synthetic indicators (median and interquartile range, 

IQR). At the bivariate level, the analyses were conducted using nonparametric statistical indicators 

and tests to account for the small sample size and the generalized non-normality of the distributions. 

The Wilcoxon signed-rank test was used to evaluate the differences between 20% and 60% MVC for 

the initial values and the slopes of MNF, CV and FD. Differences in the sEMG measures between 

FSHD patients and healthy controls were assessed using the Mann-Whitney U test. 

For the explorative analysis, the relations between continuous variables were investigated using 

Spearman correlation coefficients. Finally, differences in the continuous variables related to FSHD 

categories and asymmetry were assessed using the Mann-Whitney U test. The statistical significance 

was set at α = 0.05. All statistical analyses have been carried out with Stata/IC 16.0 (StataCorp, 

College Station, Texas, USA). 

Table 6  Descriptive statistics of the socio-demographic and clinical variables 

 n Median IQR 

Socio-demographic variables    

Gender Woman 10 - - 

 Man 9 - - 

Age  - 33.50 31.25 

Clinical variables     

FSHD categories A 14 - - 

 B 3 - - 

 D 2 - - 

FSHD asymmetry Right > Left 10 - - 

 Right = Left 6 - - 

 Right < Left 3 - - 

D4Z4 contraction (kb) - 27.00 11.50 

Checklist individual strength1 - 26.00 15.00 

Severity of FSHD (clinical score) - 4.00 6.25 

Scapular girdle involvement score  2.00 1.00 

1 Variable with 3 missing values (n=17) 

FSHD, facioscapulohumeral muscular dystrophy; IQR, interquartile range 
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Results 

Socio-demographic and clinical variables 

Fourteen patients out of 19 belonged to category “A”, according to (Ricci et al., 2016), presenting 

facial and scapular girdle muscle weaknesses. A more accentuated muscle weakness on the right side 

was observed in 10 patients, nine of whom were right-handed (Table 6, category “Right > Left”), 

while for three patients it was more accentuated on the left side and for six of them it was equally 

distributed. The median length of the D4Z4 contraction was 27 kb [IQR=11.5]. The median clinical 

score assessing the severity of FSHD was 4 [IQR=6.25], while the median scapular girdle 

involvement score was 2 [IQR=1]. 

Perceived fatigability, as measured with the CIS fatigue-subscale, was reported as mild (26, 

[IQR=15]).  

 

sEMG variables 

Significant changes between the two levels of isometric contractions, were observed in the initial 

values of CV (p<0.01) and in the negative slopes of all the considered sEMG parameters (p<0.001; 

data not shown). 

 

Comparative analysis between the FSHD patients and matched healthy controls  

No statistically significant variations were observed in patients’ category “A” with respect to the full 

sample of patients with FSHD. Thus, the results of the comparative analysis are referred to the entire 

sample of patients. Both groups were composed by 9 women and 8 men. The difference in the median 

age was not statistically significant (Table 7). The hypothesis test highlighted some statistically 

significant differences between the two groups: (1) both the MNF and the FD initial values at 20% 

MVC resulted higher in the FSHD group, while the negative MNF and FD slopes at 60% MVC were 

less steep. (2) The CV negative slope at 60% MVC resulted less steep in the FSHD patients’ group. 

Finally, the exerted force resulted lower in the FSHD group, whereas the endurance time was longer 

compared to the healthy subjects. 
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Table 7  Descriptive statistics of the variables for the FSHD patients’ group and the healthy controls and results of the 
test 

 % MVC 
FSHD patients Healthy controls Mann-

Whitney U 
test result Median IQR Median IQR 

      
      

Socio-demographic variables    
     

Gender  (Men; Women) (9 women; 8 men) (9 women; 8 men)  
       
Age    33.0000   31.2500   24.000   7.7500 z=-0.856 
       
Electromyographic variables      
      

MNF initial value 20% 97.8149   23.1978   81.1161 14.0275 z=-2.784** 
 60% 85.2488     7.4633   86.8530 18.3018 z=-0.380 
      
MNF slope 20%  -0.0271     0.0886    -0.0461   0.1184 z=-0.063 
 60%  -0.3611     0.4637    -0.6962   0.5111 z=-3.006** 
       
CV initial value2 20%   4.0234     0.7594     4.3410   0.6002 z=1.898 
 60%   4.5405     1.2137     4.7504   1.0464 z=1.070 
      
CV slope2 20%  -0.0095     0.1792    -0.0469   0.1208 z=-1.311 
 60%  -0.2873     0.3570    -0.6526   0.4602 z=-2.139* 
      
FD initial value 20%   1.6503     0.0352     1.5828   0.0493 z=-4.208*** 
 60%   1.6115     0.0854     1.6167   0.0571 z=-1.107 
      
FD slope 20%  -0.0050     0.0164    -0.0101   0.0304 z=-0.664 
 60%  -0.0673     0.0754    -0.1471   0.0834 z=-2.942** 
       
MVC3  20.0806   11.3750   34.2736 15.6047 z=3.533*** 
      
Endurance time 60% 82 32 43 19 z=-3.260*** 
       

* p<0.05, ** p<0.01, *** p<0.001 
2 Variables with 2 missing values in the FSHD patients’ group (n=15) 
3 Variable with 4 missing values in the FSHD patients’ group (n=13) 
MNF, mean frequency; CV, conduction velocity; FD, fractal dimension; MVC, maximal voluntary contraction; IQR, interquartile 
range. 
 
 

Correlation analysis 

No significant correlations were observed between socio-demographic and clinical variables. The 

length of D4Z4 fragment resulted not significantly correlated to any variables extracted from the 

sEMG signal. The score of the scapular girdle involvement showed a significant correlation to the 

slope of muscle fiber CV during the 20% MVC (Spearman’s rho = 0.52, p = 0.03).  
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Differences in the continuous variables related to FSHD category and asymmetry 

The length of the D4Z4 contraction did not show any statistically significant differences among the 

FSHD categories, which were recoded into binary variables as “A” and “not-A”. 

Patients with muscle weakness more accentuated on the right side (category “Right>Left”) reported 

a significantly lower FSHD severity (clinical score) and MNF initial value at 20% MVC, while they 

had significantly higher CV initial values (Table 8). 

 

Table 8  Statistically significant differences in the continuous variables related to FSHD category and asymmetry 

 FSHD asymmetry Mann-Whitney U test result  Right>Left Not Right>Left 
    

Severity of FSHD (Median)   3.0000     5.0000    z=-2.156* 
    
MNF initial value 20% (Median) 86.8923 105.1850      z=-2.849** 
    
CV initial value 20% (Median)   4.1765     3.6348  z=2.252* 
    

* p<0.05, ** p<0.01, *** p<0.001 

 

Discussion 

 

This study measured investigated sEMG parameters known to be indirect indices of performance 

fatigability, in the BB of FSHD subjects and healthy controls matched for age and sex. We also 

assessed whether socio-demographic and clinical variables of the patients correlated with several 

sEMG parameters known to be indirect indices of performance fatigability, in a group of FSHD 

patients. Results indicated that in FSHD category A, significant differences in all the considered 

parameters were detectable in comparison with the healthy controls. In particular, at higher 

contraction intensity, a lower rate of change in fibers conduction velocity and a longer time of task 

revealed a condition of reduced fatigability, most probably sustained by a fast to slow transition in 

skeletal muscle composition as a common phenotype evolution in presence of the disease. 

 

Comparative analysis between FSHD patients and healthy controls 

In line with previous studies, the results showed a rather consistent picture, characterized by the fact 

that patients with FSHD were not able to exert a comparable force with respect to healthy controls 

(Bachasson et al., 2014; Doix et al., 2017; Kalkman et al., 2007; Schillings et al., 2007; Turki et al., 

2012). As a direct consequence, the patients’ endurance time was significantly longer than healthy 
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controls, suggesting lower fatigability, likely for several reasons. First, patients with FSHD may have 

fibrosis and lipid infiltration (Friedman et al., 2012) and strong alteration of the sarcomeric contractile 

properties, preferentially of type II fibers (D'Antona et al., 2007; Lassche et al., 2013). Second, 

weaker participants are shown to be less fatigable than stronger ones (Hunter and Enoka, 2001); as 

the intramuscular pressure is lower, the blood occlusion will also be lower (Zwarts and Arendt-

Nielsen, 1988) and the negative feedback from afferent groups III and IV will be reduced. 

Interestingly, an increased resistance towards fatigability was also confirmed from the results of the 

sEMG parameters. In fact the initial values of MNF and FD during the low level contractions were 

higher in patients with FSHD. Furthermore, although not statistically significantly different, the CV 

initial values were lower (both at 20% and 60% MVC) in the FSHD group probably related to the 

fast-to-slow muscle fiber shift. A similar reduction in CV, was reported also by Naumann and Reiners 

(1996) in several muscular dystrophies.  

However, during the low level contraction, the slopes of MNF, CV and FD did not change 

significantly in patients with FSHD over healthy controls, possibly due to larger recruitment of type 

I muscle fibers. On the contrary, a significant reduction in the considered fatigability parameters 

(MNF, CV and FD slopes) during the high-level fatiguing contraction was observed, suggesting that 

patients are less prone to get fatigued, probably due to the fast-to-slow muscle fiber shift. In literature 

there are several studies which assessed fatigability in patients with FSHD, using the twitch 

interpolation technique or electrical neurostimulation combined to MVC protocols (e.g. Bachasson 

et al., 2014; Schillings et al., 2007; Schulte-Mattler et al., 2003); however, the results of these studies 

are contradictory and difficult to compare, due to different stimulation procedures, muscle groups, 

fatiguing tasks and disease severity. For instance, Bachasson et al. (2014) showed similar levels of 

performance fatigability in patients compared to healthy controls, whereas Schillings et al. (2007) 

described lower levels of BB fatigability in patients with FSHD than in healthy controls. Arguably, 

one could question that this procedure (electrical stimulation and MVC) may not be representative of 

fatigability after activities in daily living, where mainly submaximal contractions are performed. 

 

Correlations between socio-demographic, clinical variables and performance fatigability parameters 

 

i. Scapular girdle involvement score 

Importantly the scapular girdle involvement score showed a relevant correlation with the slope of 

muscle fiber CV measured at 20% MVC (p<0.05). This evidence suggests that the clinically relevant 

scapular girdle involvement links to the level of peripheral fatigue arising when the BB contraction 
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is held at low percentage of MVC. Considering that, in FSHD, scapular girdle dysfunction generally 

precedes the involvement of other muscular districts, this evidence identifies the CV slope change as 

a sensitive outcome measure for the early identification of scapular girdle involvement in apparently 

asymptomatic subjects carrying a genetic defect and for the study of the clinical evolution in these 

subjects. In addition, if we consider that a low level of contraction is mainly sustained by slow or 

intermediate muscle fibers, the correlation between clinically relevant dysfunction and peripheral 

fatigue seems to suggest the presence of a state of dysfunction of slow/intermediate muscle fibers 

even in the presence of a fast to slow transition, or a defect in the motor unit rotation and central drive 

during sustained contraction. 

ii. Age 

In healthy subjects it is well known that a correlation between muscle fiber CV and age, characterized 

by a tendency of delay due to age, both during MVC and submaximal contractions, exists (Bilodeau 

et al., 2001; Hara et al., 1998; Mase et al., 2006; Merletti et al., 2002; Merletti et al., 1992b; Yamada 

et al., 2002). This phenomenon was interpreted as a consequence of the selective atrophy of fast-

twitch fibers and decrease of central drive (Merletti et al., 1992b). In addition, an age-related decrease 

in FD  was demonstrated by Arjunan and Kumar (2013) in 96 healthy subjects. The authors suggested 

that the reduction in FD may be an indicator of the reduced number of motor units (De Luca et al., 

1996; Merletti et al., 2002; Roos et al., 1997). Since FSHD is characterized by selective muscle fibers 

atrophy (Kalkman et al., 2006), our results seem to suggest that young patients (median age 33.5) 

behave as healthy elderly with a similar age-related decrease in CV and FD. 

iii. D4Z4 contraction  

A rather discordant picture emerges from the literature: Wang et al. (2012) provided evidence of a 

negative correlation between muscle computed tomography grade values and D4Z4 fragment size, 

whereas Olsen et al. (2006) showed that radiological severity was not related to the D4Z4 array. 

Esnault et al. (2018) found a correlation between the number of D4Z4 repetitions and trunk extensors 

and flexors isokinetic peak torque. Recently, Sacconi et al. (2019) found significant correlations 

between D4Z4 repeat size and manual muscle testing sum score. A possible explanation for this 

heterogeneity in the correlation results could be related to the mean deletion length, as noted by 

Scionti et al. (2012). Evidence of the absence of a correlation between a “border-line” number of the 

D4Z4 repeats (8 to 10) and the severity of clinical manifestations was made evident in Zernov and 

Skoblov (2019). Since the FSHD patients in our study had a median D4Z4 contraction of 27 kb (or 

8.2 repeats), our results seem to agree with what has been reported in the literature. 
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iv. Perceived fatigability 

In line with previous findings in patients with FSHD (Schillings et al., 2007) and in other 

neuromuscular disorders such as multiple sclerosis, no correlation with any of the indices of 

performance fatigability was determined (e.g. Beretta-Piccoli et al., 2020; Dodd et al., 2011; Severijns 

et al., 2016; Wolkorte et al., 2015a). An hypothesis may be that, in the current study, patients were 

not severely fatigued (CIS-fatigue <35). In addition, Wolkorte et al. (2015b) suggested that at least 

age and maximal voluntary contraction values, may affect positively and negatively performance 

fatigability. These parameters also interact with each other and will interfere with the association 

between perceived and performance fatigability, as established also in a study with a large sample 

size (Romani et al., 2004). 

Influence of FSHD category and asymmetry over fatigability 

Surprisingly, no statistically significant differences in the continuous variables were detected across 

the categories of FSHD, which were considered as A or not-A, suggesting that the two groups are 

comparable from a clinical point of view. In particular, the fact that the D4Z4 array is not different 

across the categories, seems to underline a labile relationship with the clinical picture and even that 

the size of the deletion is not sufficient to tell if a patient with 8.2 repeated units belongs to category 

A or not-A. The two considered categories share common pathophysiological traits, at least from the 

point of view of fatigue. For instance, the most conclusive shared event is the loss of strength and a 

fast-to-slow shift of muscle fiber-type composition.  

The results concerning asymmetry, which is a very common feature in FSHD, unexpectedly showed 

that patients with muscle weakness more accentuated on the right side have a better clinical picture, 

compared to those with symmetric or greater left side involvement. Interestingly, the right-sided 

initial value of muscle fiber CV during the 20% MVC contraction was higher, probably due to a 

recruitment of both slow and fast muscle fibers. On the contrary, the left-sided CV was much lower, 

suggesting a deficit in fast muscle fibers, probably due to a more pronounced fast-to-slow shift of 

muscle fiber composition. Moreover, right-sided MNF initial value at 20% MVC is lower in those 

patients with a lower clinical score and this corresponds to a higher initial CV (Table 8). 

The prevalence of involvement on the right side, is in accordance with previous findings and has been 

put in relation with mechanical factors and in particular with preferential use of the right side by right-

handed people (Brouwer et al., 1992; Tasca et al., 2014). 
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Limits 

This study has some limitations. First, since the assessment of fatigability is task dependent (Enoka, 

1995; Enoka and Stuart, 1992), it is known that protocol specifications affect the findings and the 

underlying mechanisms of fatigue. We used submaximal isometric contractions, which may not be 

related to patients’ daily living activities. Moreover, the majority of the studies on fatigability in 

FSHD patients were conducted using electrical stimulation, thus the results may not be comparable. 

Second, we evaluated fatigability in the dominant BB only, which may not be representative of the 

disease condition on the entire individual.  

 

Conclusions 

 

We reported impaired neuromuscular function due to muscle weakness and selective muscle atrophy, 

which caused patients with FSHD to exert a smaller MVC, yield a longer endurance time and perform 

a reduced fatigability compared to healthy participants. Unexpectedly, this study also showed that 

FSHD patients with muscle weakness more accentuated on the right side had a better clinical picture, 

characterized by a probable less pronounced fast-to-slow shift of muscle fiber composition. 

Considering these results, this study identifies the sEMG variables of peripheral fatigue as strong 

predictors of skeletal muscle involvement and its temporal evolution in FSHD patients. In particular, 

results open new avenues onto the identification of early muscular involvement and its evolution in 

presence of asymptomatic subjects carrying a contraction of the polymorphic region D4Z4.  

Further studies must be conducted to assess performance fatigability in the FSHD subcategories and 

to investigate the patients’ fatigue induced by functional exercise unrelated to individual MVC (e.g. 

walking, sit-to-stand transfer) in order to clarify the impact fatigue on their daily living activities. 
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GENERAL DISCUSSION 
 

The sEMG signal undergoes several changes of features during sustained isometric and dynamic 

muscle activities. These features reflect both central and peripheral phenomena leading to mechanical 

fatigue and are detectable much earlier than mechanical failure (Merletti and Farina, 2016). For 

instance, linear and non-linear parameters have been obtained for monitoring changes in the sEMG 

signal due to fatigue, and may be considered as indirect indices of performance fatigability (Gazzoni 

et al., 2017; Gonzalez-Izal et al., 2012; Rampichini et al., 2020). This thesis focused on several 

parameters, including classical amplitude and spectral parameters, muscle fiber CV (as a unique 

physiological parameter) and FD of the sEMG (as a non-linear parameter). We investigated whether 

muscle fiber CV may be reliably estimated through sEMG (study 1), the relationship between the 

force exerted by healthy subjects and the considered parameters (study 2) and how they changed 

during fatigue in patients with FSHD. 

 

Main findings 

 

I. Muscle fiber CV can be reliably estimated through sEMG if certain conditions are met (Study 1). 

 

The first study of this thesis was a systematic review sought to determine if sEMG is a reliable tool 

for estimating CV of muscle fibers as well as CV associated to single MUs. The results obtained 

suggested that, after the publication of the study of Farina et al. (2004c) the reliability of sEMG in 

estimating CV in muscles with relatively long fibers that run parallel to the skin surface, has extremely 

increased. In fact the combination of multi-channel electrodes, visual channel selection, and the 

maximum likelihood algorithm (Farina et al., 2001b) has proven to be a highly reliable method for 

the estimation of CV. Furthermore, high to very high relative reliability values combined to low 

absolute reliability estimators suggested that CV is sufficiently accurate and suitable for clinical 

applications. 

Several conditions to be met were identified: 

a) The operator-dependent nature of the CV estimates. Importantly, the issue is not simply the reliability 

of sEMG itself for assessing CV, but also the training and expertise of the operator regarding the use 

of this technique to correctly detect, process and interpret sEMG signals (Barbero et al., 2012). 
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b) Electrode locations and positioning. The issue of electrode locations was identified as the most 

critical factor influencing the reliability of CV estimation in all the included studies. The 

myotendinous and neuromuscular junctions must be avoided to obtain physiological values of CV. 

c) IED and number of channels. The use of multi-channel sEMG with between four and eight electrodes 

and 5 mm IED, can help to increase the reliability of CV. 

d) Estimation method. The most reliable and robust methods are those based on maximum-likelihood 

estimation in the frequency domain (Farina et al., 2001b). Further developments and adaptations of 

the maximum-likelihood algorithm (Farina and Merletti, 2004a; Farina et al., 2004b) have allowed 

highly reliable estimates of muscle fiber CV and CV associated with single MUs to be obtained during 

isometric and dynamic contractions, using multichannel sEMG (Beretta-Piccoli et al., 2018; Beretta-

Piccoli et al., 2017; MacDonald et al., 2008; Martinez-Valdes et al., 2016; Martinez-Valdes et al., 

2017). 

e) CV parameters. Initial and mean CV values were the most reliable parameters. 

 

II. MNF and FD were the parameters least influenced by the level of the exerted force        (Study 2). 

 

The second study sought to determine the relation between fatigability parameters (ARV, MNF, CV 

and FD), perceived fatigability (measured through the Borg scale) and force during short isometric 

contractions (from 10% to 90% MVC) of the BB muscle of healthy subjects using multi-channel 

sEMG. It was demonstrated, as expected, that ARV was the most force-dependent parameter, 

showing an high sensitivity to force, particularly between 10% and 50% MVC (similar to Troiano et 

al., 2008). The fact that ARV beyond 50% MVC did not increase significantly could be motivated by 

the fact that the amplitude cancellation influenced the measures of EMG amplitude mostly at high 

force levels. Indeed, the amplitude cancellation has been proven to increase with increasing number 

of active MUs (Keenan et al., 2005). In addition, geometrical aspects, such as a preferential 

distribution of large MUs deep into the muscle, could have contributed to the result. 

Unexpectedly, muscle fiber CV did not increase with increasing force level, probably due to a 

technical constraint caused by a malalignment of the electrode grids along the direction of the muscle 

fibers, which caused an overestimation of CV. Consequently, the relation between CV and force was 

apparently biased.  

MNF and FD increased with the increasing force level, but only between 10% and 30%. Thereafter, 

they reached a ‘plateau’ beyond 30% MVC, similar to the study of Gitter and Czerniecki et al. (1995), 
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where an almost linear increase of FD with force was determined for force values below 50% MVC. 

Conversely, above this level the FD rise declined, deviating from the linear increase. However, it 

should be noted that the relationship between the FD and force could also depend on the method of 

calculation of FD (box-counting, Katz’s or Higuchi’s algorithms), the muscle where the experiment 

was conducted and the sample size.  

Finally, the rate of perceived exertion showed an almost linear relationship with the force level 

(Stevens and Cain, 1970; Timmons et al., 2009; Troiano et al., 2008). Similarly, to the behavior of 

ARV, between 60% and 90% MVC, no statistically significant increase was found, supporting 

previous findings that perceived exertion is related to muscle activity (Lagally et al., 2002). 

 

III. Patients with FSHD showed lower levels of fatigability compared to healthy subjects (Study 3). 

 

The third study was conducted in a group of patients with facioscapulohumeral muscular dystrophy 

(FSHD) and a matched population of healthy participants, to evaluate the behavior of MNF (as 

parameter sensible to global performance fatigability), CV (as peripheral descriptor) and FD (as 

central descriptor of performance fatigability). The results showed that patients with FSHD exerted 

lower MVCs compared to healthy participants. As a direct consequence, the patients’ endurance time 

was significantly longer, suggesting lower fatigability. Similarly, all the fatigability indices exhibited 

a significant reduction during the 60% MVC contraction, indicating that patients are less prone to get 

fatigued. A key finding of this study was that the initial values of MNF and FD during the 20% MVC 

contraction were higher in patients compared to the controls. However, during the same contraction 

level, the slopes of MNF, CV and FD did not change significantly in the patients’ group. 

A second key finding was that the score of the scapular girdle involvement showed a significant 

relatively strong correlation to the slope of muscle fiber CV during the 20% MVC (rs = 0.52, p = 

0.03). 
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Discussion of the results 

 

From the literature that was reviewed in this thesis, it seems evident that the majority of the 

mathematical descriptors that have been used in the past decades to track changes in the EMG signal 

during a fatiguing task, show several limitations. In particular, global signal features extracted from 

the interference EMG signal (such as amplitude and spectral parameters) are influenced by both 

central and peripheral properties of the neuromuscular system. Thus, it is not possible to extract 

information related either to the inputs from the CNS or to peripheral MU properties (Gazzoni et al., 

2017). Nevertheless, complexity analysis may still provide useful information to detect changes in 

the sEMG signal during a fatiguing task, even though more works remain to be done to elucidate the 

relationship between complexity indices with the physiologic phenomena underlying performance 

fatigability (Rampichini et al., 2020). In addition, the estimation of CV slope using multi-channel 

EMG, might be useful to characterize the peripheral components of fatigue (Merletti and Farina, 

2016) and this physiological variable may be considered as a robust index of performance fatigability. 

 

Study 1  Reliability of muscle fiber CV 

The aim of the systematic review, in which seventeen studies were included, was to synthesize the 

evidence concerning the reliability of sEMG for assessing muscle fiber CV. Different types of 

reliability, including test-retest, intrasession and intersession were considered. The most peculiar 

results concern the very high levels of test-retest reliability, which were reported for initial CV values 

estimated using interferential signals and for MU CV estimate using multichannel single potentials 

(Beretta-Piccoli et al., 2018 and Martinez-Valdes et al., 2018, respectively). Moreover, high 

intersession reliability estimated from compound potentials and interferential signals were reported 

in seven out of twelve studies. This result combined to low absolute reliability suggested that CV 

parameters (initial values and slope) are sufficiently accurate and suitable for clinical applications. 

In addition, we identified several conditions for reliable CV estimation, such as the presence of 

relatively long muscle fibers arranged in a plane parallel to the skin, with an IZ concentrated in a 

small region (e.g. in VL, VM, BB and TA); accurate electrode positioning criteria (based on the 

SENIAM and on the “Atlas of Muscle Innervation Zones”, Barbero et al., 2012) when a single 

electrode pair is used, or accurate visual inspection to select the channels between the IZs and tendons, 

when electrode grids are used; the use of multi-channel sEMG with between four and eight electrodes 

and 5 mm IED; a CV estimation method based on the maximum-likelihood algorithm (Farina and 

Merletti, 2004b; Farina et al., 2001b); the use of initial and mean CV values, which appeared to be 
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the most reliable parameters in the considered studies; and finally, a trained and expert operator, able 

to identify movement artifacts, missing channels or the presence of large sinusoidal components at 

50 Hz. 

As regards CV slope, good reliability is very difficult to achieve, since it depends not only on 

fatigability, but also on the reproducibility of the fatiguing protocol and on the subject’s fatigability 

conditions. The study of Beretta-Piccoli et al. (2017) was the only one which showed high reliability, 

probably related to the reduction in noise associated with the use of an electrode grid with a 10-mm 

IED (which allows a larger number of electrodes and an optimal distance between detection points, 

and which lowers the sensitivity to electrode displacement).  

 

Study 2  Relation between force and FD 

Since in literature the relation between the FD of the sEMG signal and the exerted force is 

controversial (some studies found a linear, though weak, relation (Gitter and Czerniecki, 1995; 

Anmuth et al., 1994; Gupta et al., 1997), others showed no relation to the intensity of muscle 

contraction (Arjunan and Kumar, 2014; Troiano et al., 2008), we aimed at evaluating this relationship 

during isometric contractions of the BB.  

The results showed that MNF and FD were the parameters least influenced by the force level, at least 

above 30% MVC. The little or even independence of FD and MNF on the level of muscle force, was 

reported also in previous investigations in other muscles and with different methods (Troiano et al., 

2008; Bilodeau et al., 2003). Conversely, Gitter and Czerniecki (1995) showed that FD increased 

almost linearly with the force intensity for force values below 50% MVC, whereas above this level 

the FD rise declined. 

As already reported in literature, FD is sensitive to the presence of large active MUAPs that usually 

appear in the signal due to synchronization at high force levels, during isometric fatiguing 

contractions (Mesin et al., 2009a). Nevertheless, a similar phenomenon happens also at low force 

levels, whenever larger MUs and with low firing frequency, are recruited according to the 

Henneman’s size principle. Moreover, in simulated EMG signals, FD was positively correlated to the 

firing rate of the active MUs, and negatively correlated to the level of MU synchronization (Mesin et 

al., 2016). Since the level of synchronization is not expected to change in non-fatiguing contractions, 

it was reasonable to hypothesize that FD could somehow increase with increasing force levels. Thus, 

it is possible to speculate that FD might be a reliable indicator of MU synchronization, less dependent 

from the firing rate.  
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Study 3  Performance fatigability in facioscapulohumeral muscular dystrophy. 

The third study was conducted in a population of patients with FSHD. The objective of this study was 

to verify whether fatigability indices extracted from the sEMG signal (MNF, CV and FD) were 

suitable to differentially characterize performance fatigability in the patients compared to matched 

healthy controls. FSHD is marked by slowly progressive weakness of the facial and shoulder girdle 

muscles, followed by leg and trunk muscles. Moreover, patients with FSHD may have fibrosis and 

lipid infiltration (Friedman et al., 2012) and strong alteration of the sarcomeric contractile properties, 

preferentially of type II fibers (D'Antona et al., 2007; Lassche et al., 2013). In addition, one of the 

symptoms with the highest prevalence is fatigue. 

The results confirmed previous studies on FSHD, which suggested that the patients were unable to 

exert similar forces compared to the controls (e.g. Bachasson et al., 2014; Doix et al., 2017). 

Furthermore, results indicated that in FSHD, significant differences in all the considered sEMG 

parameters were detectable in comparison with the healthy controls. In particular, at higher 

contraction intensity (60% MVC), a lower CV slope and a longer endurance time revealed a condition 

of reduced fatigability, most probably sustained by a fast to slow transition in skeletal muscle 

composition, as a common phenotype evolution in the presence of the disease. In addition, weaker 

participants are shown to be less fatigable than stronger ones (Hunter and Enoka, 2001): as the 

intramuscular pressure is lower, the blood occlusion will also be lower (Zwarts and Arendt-Nielsen, 

1988) and the negative feedback from afferent groups III and IV will be reduced. 

However, during the low level contraction, the slopes of MNF, CV and FD did not change 

significantly in patients with FSHD over healthy controls, possibly due to larger recruitment of type 

I muscle fibers.  

The correlation analysis between clinical variables and indices of performance fatigability revealed a 

significant relatively strong correlation between the scapular girdle involvement score and the slope 

of muscle fiber CV during the intensity contraction. This evidence suggests that the clinically relevant 

scapular girdle involvement links to the level of peripheral contributions to performance fatigability, 

arising when the BB contraction is held at low percentage of MVC. Considering that, in FSHD, 

scapular girdle dysfunction generally precedes the involvement of other muscular districts, this 

evidence identifies the changes in CV slope as a sensitive outcome measure for the early identification 

of scapular girdle involvement in apparently asymptomatic subjects carrying a genetic defect and for 

the study of the clinical evolution in these subjects. In addition, if we consider that a low level of 

contraction is mainly sustained by slow or intermediate muscle fibers, the correlation between 
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clinically relevant dysfunction and peripheral factors affecting performance fatigability, seems to 

suggest the presence of a state of dysfunction of slow/intermediate muscle fibers even in the presence 

of a fast to slow transition, or a defect in the MU rotation and central drive during sustained 

contractions. Beyond the significant correlation just described, no other correlation was found. 

Possible reasons are explained in the discussion of the third manuscript. 

Finally, the behavior of MNF and FD over the two groups of participants will be discussed a little 

further. As regards the initial values, MNF and FD showed the most significant changes (p<0.01) in 

the FSHD group compared to the healthy controls at 20% MVC. Moreover, similar changes were 

described also for their slopes (normalized with respect to their initial values) at 60% MVC (p<0.01). 

Furthermore, in the correlation analysis, a strong significant positive correlation between FD and 

MNF slopes both at 20% and at 60% MVC in the FSHD group (p<0.001). 

Changes in MNF during fatigue were initially related to changes in muscle fiber CV, and in the IAP 

duration (Bigland-Ritchie et al., 1981) and later to the modifications in the MUAP shape, MU firing 

rate and synchronization (Brody et al., 1991; Bigland‐Ritchie and Woods, 1984; Dimitrova and 

Dimitrov, 2003; Gabriel and Kamen, 2009). Therefore, MNF may be considered as a parameter 

sensitive to global performance fatigability. As far as FD is concerned, Mesin et al. (2009a) showed 

no association with changes in muscle fiber CV, supporting the idea that FD was more sensible to 

central factors, such as MU synchronization during fatiguing contractions. Later, Mesin et al. (2016) 

evidenced during simulated contractions, the existence of an inverse relationship between FD and 

MU synchronization and a positive relation with MU firing rate. Alternatively, a reduction in FD 

during fatigue may be seen also as a decrease in the geometrical complexity of the sEMG signal 

(Gitter and Czerniecki, 1995).  

The results of the third study seems to indicate that the origin of performance fatigability affecting 

FSHD patients is related to both central and peripheral factors, and unless the methodology do not 

include MU decomposition techniques, it is not possible to separate the contribution of the single 

factors. However, three major limitations affect the applicability of MUs decomposition: the muscle 

anatomy, the volume conductor and the contraction intensity (reviewed in Del Vecchio et al., 2020). 

In particular, to identify a greater number of MUs by decomposition, muscles with fibers that are not 

all parallel to each other should be preferred, such as the tibilias anterior. Therefore, to evaluate 

central and peripheral factors affecting performance fatigability in muscles such as the BB, during 

contraction intensities above 50% MVC, may not be favorable for using sEMG decomposition 

techniques. Moreover, FD may be easier to implement in clinical settings than decomposition.  
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DIRECTIONS FOR FUTURE RESEARCH 

The results of the present thesis have demonstrated that the considered parameters are useful to 

monitor changes in the sEMG signal during fatiguing contractions, both in healthy subjects and in 

patients. Moreover, recent studies have demonstrated that the EMG signal also exhibits many 

complexity characteristics deserving to be evaluated, particularly to understand if these features have 

a different sensitivity to the changes in the sEMG signal due to fatigue, compared to the classical 

parameters. Consequently, it is evident that classical parameters (such as ARV and MNF) are not able 

to differentiate between central and peripheral factors affecting performance fatigability, even when 

normalized. On the contrary, FD seems to be more sensible to central factors, whereas muscle fiber 

CV is a physiological parameter. However, the sensitivity of FD to MU synchronization and firing 

rate was confirmed during simulated contractions, only (Mesin et al., 2009a and 2016). Hence, the 

priority is first and foremost, to conduct a study to verify in vivo whether the FD of the sEMG signal 

is related to MU synchronization. 

In 2019 we set up an experimental protocol to determine if a relation between the MUs 

synchronization index based on the study of De Luca et al. (1993) and the FD does exist. Briefly, 

participants performed two isometric maximal voluntary extensions of the quadriceps muscle 

(MVC_pre), interspersed by 120 s, followed by a 5% MVC lasting 300 s. Immediately after the 

contraction, participants performed another MVC (MVC_post), which was later used to calculate a 

fatigue index (Enoka and Duchateau, 2008). The EMG signal was detected using fine-wire needle 

electrodes and two couples of bipolar adhesive surface electrodes. The iEMG signal was decomposed 

into its constituent MUAP trains by the use of an interactive decomposition algorithm, EMGLAB 

(McGill et al., 2005), which includes a user interface for manually editing and verifying the accuracy 

of the spike trains. Once the automatic discrimination was completed, each MU spike train was 

manually edited by an experienced operator and inspected for checking potential discrimination 

errors.  

Calculation of FD is reported in the General methods section.  

The ‘synchronization index’ was calculated based on De Luca et al. (1993) as follows: 
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Figure 20  Definition of the synchronization index. The green area shows synchronous occurrences that are beyond 
what would be expected if motor units fired independently.  

 

Peak Area-Mean Area refers to the area under the cross-interval histogram in the peak region that 

surpasses the expected level. Total Area refers to the total area under the histogram between ± the 

mean interfering interval of the alternate MU, whereas Total Area/2 represents the total number of 

firings of the reference MU that were considered in the histogram (De Luca et al., 1993). 

Unfortunately, due to the COVID-19 emergency, we were not able to conclude the data analysis by 

the submission deadline of this thesis. We expect to submit a manuscript by the end of 2020. 

 

Secondly, Coelho and Lima (2014) demonstrated that the normalized version of the Katz’ algorithm 

(Castiglioni et al., 2010) and the Hurst exponent (Hurst, 1951) significantly outperformed the other 

FD methods as feature extractors from the sEMG signal. Consequently, a study should be conducted 

initially in simulated conditions, and later on in vivo, to identify the algorithm most sensitive to 

changes in MU synchronization and firing rate during fatiguing isometric contractions. 

Furthermore, it has been demonstrated that a reduction in the complexity of the sEMG interference 

signal, is not only a characteristic of fatiguing contractions, but also of aging (Arjunan and Kumar, 

2013) and pathological conditions (Rampichini et al. 2020), and is associated with a loss of system 
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control and increased dysfunction (Lipsitz and Goldberger, 1992; Peng et al., 2009). For instance, 

Meigal et al. (2013) found differences in complexity indices between Parkinson’s disease (PD) 

patients, whose MU synchronization is known to be increased, and controls. The authors suggested 

that sEMG signal in PD is less complex, more predictable and regular. Thus, they concluded that non-

linear parameters may be used in pre-clinical diagnosis as they were able to differentiate healthy 

participant from PD patients’. However, research into complexity is very much in its infancy, and 

further research is undoubtedly warranted to expand the findings of this thesis. Thus, FD as 

complexity parameter of the EMG signal, may be used in future studies during dynamic contractions 

(such as cycling, or concentric and eccentric contractions), to investigate the recruitment pattern of 

the MUAP trains and their firing patterns (Chakraborty and Parbat, 2017), to quantitatively assess 

muscle activity and fatigue.  

Finally, the combined use of CV and FD, as performance fatigability indices should be further 

explored and investigated in other muscles and different experimental conditions. Recently, we 

conducted a study in a group of persons with multiple sclerosis, which showed the inability of FD 

and CV in detecting changes in the sEMG signal due to fatigue in VL and VMO. On the contrary, the 

same parameters succeeded in detecting performance fatigability in the BB (Beretta-Piccoli et al., 

2020). This unexpected behavior, was hypothetically explained by clinical issues related to the non-

physiological MUs recruitment or to methodological constraints. However, to better understand what 

lies behind these results, we should consider to analyze the complexity of the sEMG signal (which 

was not explored), and to compare it with healthy controls. 

 

Limits and generalization of the results 

 

Several limitations were identified in the three studies, and were reported in the end of the discussions 

of each individual study. The experimental studies presented in this thesis investigated only the 

changes in the sEMG signal during fatiguing isometric elbow flexions. 

Future studies on changes in fatigability and complexity parameters extracted from the sEMG 

interference signal, in other muscle groups and as a result of dynamic exercise would extend and 

enhance the present findings. 
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CONCLUSIONS 

 

In literature, it is commonly reported that the progress of performance fatigability may be indirectly 

assessed through the changes in features of the sEMG signal. In particular, during isometric constant 

force contractions, changes in the sEMG signal are caused by several physiological factors, such as 

a decay in muscle fibers CV; an increase of the degree of synchronization between the firing times of 

simultaneously active MUs, by the CNS; a reduction of the recruitment threshold and a modulation 

of MUs firing rate (Farina et al., 2014). Amplitude and spectral parameters may be used to 

characterize the global contributions to performance fatigability, such as MU control properties and 

fiber membrane properties, or central and peripheral factors, respectively. In addition, being CV a 

physiological parameter, its estimation is of marked interest to the study of fatigue both in 

physiological and in clinical studies. 

As regards the FD of the sEMG several studies suggested that it may be related to central factors, in 

particular MU synchronization and firing rate (Mesin et al., 2009a and 2016). In addition, direct 

evidence of a fatigue-induced increase in MU synchronization was reported by McManus et al. (2016) 

using a sEMG decomposition technique. Nevertheless, it should be noted, that sEMG decomposition 

is still affected by limitations associated to muscle and subject anatomy (Del Vecchio et al., 2020). 

For instance, to investigate central factors affecting performance fatigability in muscles like the BB, 

VL and VM, non-linear parameters extracted from the interference signal, such as the FD, seems to 

be a valid alternative. 

The present thesis aimed at investigating the reliability of sEMG in the estimation of muscle fiber 

CV, the relationship of fatigability parameters to force, and the applicability of these parameters in 

differentiating performance fatigability in patients and healthy subjects. The promising results 

suggested that the analysis of features extracted from the interference sEMG signal, in particular CV 

and FD, may be still considered as useful to investigate peripheral and central factors affecting 

performance fatigability. It is indeed well known that for separating the neural information (MU 

recruitment/de-recruitment and discharge characteristics) from the peripheral information (membrane 

properties and MU anatomy) in the surface EMG signal, the use of multi-channel detection systems 

along with more advanced processing techniques are needed.  
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APPENDIX 
 

Guidelines for Reporting Reliability and Agreement Studies (GRRAS)-checklist, based on Table I in 

Kottner et al. (2011) 

 
Section Item 

# 
Checklist item Reported 

on page # 
Title/Abstract 1 Identify in title or abstract that interrater/intrarater reliability 

or agreement was investigated. 
 

Introduction 2 Name and describe the diagnostic or measurement device of 
interest explicitly. 

 

 3 Specify the subject population of interest.  
 4 Specify the rater population of interest (if applicable).  
 5 Describe what is already known about reliability and 

agreement and provide a rationale for the study (if applicable). 
 

Methods 6 Explain how the sample size was chosen. State the 
determined number of raters, subjects/objects, and replicate 
observations. 

 

 7 Describe the sampling method.  
 8 Describe the measurement/rating process (e.g. time interval 

between repeated measurements, availability 
of clinical information, blinding). 

 

 9 State whether measurements/ratings were conducted 
independently. 

 

 10 Describe the statistical analysis.  
Results 11 State the actual number of raters and subjects/objects which were 

included and the number of replicate 
observations which were conducted. 

 

 12 Describe the sample characteristics of raters and subjects 
(e.g. training, experience). 

 

 13 Report estimates of reliability and agreement including measures 
of statistical uncertainty. 

 

Discussion 14 Discuss the practical relevance of results.  
Auxiliary 
material 

15 Provide detailed results if possible (e.g. online).  
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