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Abstract

The latest improvements in automotive technologies are enabling a paradigm

shift in transportation systems: shared mobility, electrification, connectiv-

ity, and autonomous driving are envisaged as the four major trends in the

near future. To support these advancements, advanced control strategies

are required for the control of both single vehicles and formations of Con-

nected and Automated Vehicles (CAVs). These, in turn, lead to beneficial

features such as greater safety, improved efficiency, and better exploitation

of the traffic infrastructure. Autonomously controlled vehicles can exhibit

advanced performances which determine an improved safety even in cases

where the distances are tight, while the inter-vehicle communication opens

a huge number of new possibilities. Among others, unidimensional and

bidimensional formations can be employed as dynamic actuators in traffic

control.

In this Dissertation a discussion about advanced control techniques for

multi-agent automotive systems is provided, proposing novel research re-

sults. Starting from a brief introduction to the control of single vehicles (in

which electric and hybrid vehicles opened a broad range of new possibili-

ties), the discussion is then extended to the robust control of platoons via

the exploitation of Sliding Mode Control techniques. Lastly, an extension to

the formation control case is examined, presenting a novel iterative method

for the creation and dynamic reshape of formations in highway scenarios.





Sommario

I recenti miglioramenti nelle tecnologie automobilistiche stanno consentendo

un cambio di paradigma nei sistemi di trasporto: mobilità condivisa, elettri-

ficazione, connettività e guida autonoma sono le quattro tendenze principali

previste nel prossimo futuro. Per supportare tali progressi, sono necessarie

strategie di controllo avanzate per il controllo sia dei singoli veicoli che delle

formazioni di veicoli connessi e automatizzati (Connected and Automated

Vehicles, CAVs). Queste, a loro volta, portano a miglioramenti come una

maggiore sicurezza, una migliore efficienza e un migliore sfruttamento delle

infrastrutture di trasporto. I veicoli a controllo autonomo offrono prestazioni

avanzate che determinano una maggiore sicurezza anche nei casi in cui le

distanze inter-veicolo sono ridotte, mentre la comunicazione tra agenti apre

un numero enorme di nuove possibilità. Per esempio, formazioni unidimen-

sionali e bidimensionali possono essere impiegate come attuatori dinamici

nel controllo del traffico.

In questa Tesi viene fornita una discussione sulle tecniche di controllo

avanzate per sistemi automotive multi-agente, proponendo nuovi risultati di

ricerca. Partendo da una breve introduzione al controllo dei singoli veicoli

(in cui i veicoli elettrici e ibridi hanno aperto una vasta gamma di nuove pos-

sibilità), il discorso è poi esteso al controllo robusto dei platoon attraverso

l’introduzione delle tecniche di controllo Sliding Mode. Infine, viene esami-

nata l’estensione al caso del controllo di formazione, presentando un nuovo

metodo iterativo per la creazione e il rimodellamento dinamico delle for-

mazioni in scenari autostradali.
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Chapter 1

Introduction

The control of automotive systems has gained a huge amount of interest

in the last years both from the research and the industry point of view.

On one hand, the introduction of autonomous driving features (empowered

mostly by recent advancements in the field of machine learning1) is gradu-

ally changing how vehicular systems are designed and employed while, on

the other hand, the ever-increasing technological improvements are enabling

more and more complex control strategies. These latter make use of suit-

ably developed transportation infrastructures and advanced communication

architectures to implement coordination features, whether it is among the

vehicles (which become cooperative agents in multi-agent systems) and/or

between the vehicles and the infrastructure [214, 1, 42] (one can think, for

instance, of vehicles able to negotiate a safe and quick dispatch at an inter-

section, or of a vehicle communicating with the road infrastructure to adapt

its velocity for optimizing the traffic flow according to the state of the traffic

lights, [37, 169]).

Looking at the near future, the development of “smart cities” [23] in

which the quality of life is expected to be improved through the exploitation

of the latest technological advancements (for instance, the so-called Inter-

net of Things [228]) seems the most promising direction. In this context,

the evolution of transportation systems appears to be a key element, and

thus many solutions are currently being investigated to make them smarter,

more comfortable, safer, and more environment-friendly [210, 216]. In turn,

1Actually, although the current trend is in the direction of adopting machine learning-
based solutions for autonomous driving, a general discussion should also consider recent
advancements in computer vision, control engineering, and artificial intelligence in general.
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the adoption of advanced communication and control architectures enabled

by the latest technological advancements is of paramount importance for

empowering effective and robust automatic control strategies.

Figure 1.1: Modern electric cars are currently setting new standards in the
vehicles industry. Among many other factors, the new control opportunities
provided by EVs open interesting problems to be addressed in advanced
automotive control systems.

The ever increasing development and marketing of electric vehicles (EVs)

[97] and hybrid electric vehicles (HEVs) [64, 65] is already revolutionizing

the automotive field from an energetic point of view [115], but also offer-

ing completely new control opportunities [182, 178, 183]. On one side, in

fact, new strategies can be investigated to reduce the energy consumption

in lithium-ion batteries [151], which in turn require the development of ad-

vanced Battery Management Systems (BMSs) [152] and optimal charging
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solutions [204]. On the other side, the usual adoption of independent elec-

tric motors allows for more flexible and effective control strategies. The

latest years have witnessed a gradual evolution of the on-board control sys-

tems both from the point of view of the control algorithms and the devices

available for control (sensors, communication units, etc.).

To support these advancements, a key feature remains the development

of safe and reliable control strategies. In particular, the introduction of ro-

bustness has always constituted one of the major aspects in the design of

control systems and nowadays its importance is evident more than ever. As

a matter of fact, the adoption of increasingly more sophisticated architec-

tures must be strictly supported by reliable systems able to implement the

required behaviors in a variety of different situations and under uncertain

conditions.

Thus, several results proposed in the present Thesis are dedicated to the

development of robust strategies for the control of single EVs/HEVs and

multi-agent automotive systems. Throughout the entire discussion, different

levels of automotive control problems are considered, introducing gradually

more complex architectures. At first the robust control of the dynamics of

single vehicles2 is considered. Then, the problem of effectively control uni-

dimensional formations (i.e., platoons) is addressed. Finally, the extension

of formation control to 2-dimensional formations is discussed for the spe-

cific case of highway scenarios. Original solutions are proposed for problems

regarding these three aspects of the advanced automotive control, with a

special focus on robustness. This latter, in particular, is enforced through

the adoption of techniques based on Sliding Mode Control (SMC) [207] as

will be thoroughly discussed in the remainder of the Dissertation.

A brief overview is provided in the following of this chapter on the main

problems faced by modern automotive control systems and considered in

the proposed research works. For further reference, the reader is referred to,

among many other possibilities, [76, 95].

2The focus of the present Thesis being on multi-agent automotive systems, these results
are only briefly introduced in the following of this introductory chapter. The reader is
referred to the respective published manuscripts for a thorough presentation.
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Figure 1.2: An efficient transportation infrastructure constitutes a key ele-
ment in the development of advanced, smart cities.
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1.1 Automotive Control

1.1.1 Vehicle Dynamics Control

The introduction of advanced control strategies for modern automotive sys-

tems must cover, first of all, Advanced Driver Assistance Systems (ADAS)

[116, 132], which provide safety and reliability to the drivers through more

or less invasive automation aimed at improving the driving experience while

avoiding accidents and, in general, dangerous circumstances. These strate-

gies comprise slip/skid [140], (lateral) stability [8] and chassis control ar-

chitectures (considering the anti-rollover systems as part of the latter). Al-

though such features are the most basic ones that a vehicle dynamics con-

troller must address effectively [76, 95], the introduction of more sophisti-

cated control systems that can exploit EVs/HEVs architectures to achieve

better performance is a currently active field of research.

Diving deeper in the discussion of the mentioned problems, slip control is

concerned with the avoidance of slipping phenomena that may lead to a loss

of handling due to abrupt braking especially on low-friction terrains (the

Anti-lock Braking System, ABS, is an example of such mechanisms). Anti-

skid controllers, on the opposite side, prevent skidding during accelerations

thus increasing the vehicle handling and the force exercisable on the ground.

To address these two complementary problems, for instance, the authors

in [88] propose a gain-scheduled LQR slip controller, while in [80, 4, 46]

Sliding Mode Control based solutions are proposed. Fuzzy control is instead

employed in [153], while in [46] a slip controller is developed specifically for

EVs with independent in-wheels motors (see, e.g., [47, 48, 78]).

Stability control, instead, relates to the lateral dynamics of the vehicles

and entails the enforcement of a quasi-kinematic cornering behavior during

turnings. This is to say that, despite the complex dynamic interactions

determining its lateral behavior, the vehicle must be forced to assume a

trajectory prescribed by the driver as it would occur if the vehicle proceeded

at very low speed (see, e.g. [163]). Many occasions may arise where a loss

of handling is experienced, often with disastrous consequences, especially in

low-friction conditions (for instance, sharp turnings on wet or icy grounds).

Lateral dynamics control comes commonly in the form of the so-called yaw

rate control, where the yaw rate of the vehicle is controlled directly through

the exertion of a momentum with respect to the vertical axis of the vehicle

4



itself. Such momentum can be generated via an (automated) steering wheel

input and/or differences in the forces generated by the wheels of the same

axle3. The problem of yaw rate control is addressed in many works in the

literature. For instance, in [233, 202] a lateral dynamics control is proposed

based on Sliding Mode Control, while authors in [96] present a solution

relying specifically on the in-wheels motors architecture of modern electric

vehicles. Active stability control not only allows to improve safety during

stressing lateral maneuvers, but also extends the limit of stability of the

vehicles during cornering [117], providing more freedom and safety to the

driver.

Notice that, in contrast with the past when the different control tasks

were carried out somehow independently from different onboard controllers,

nowadays effort is being made to develop reliable centralized controllers

able to work in many different scenarios (see, e.g. [77, 205, 136, 220])4. This

shift in the design has been made possible by technological advancements

that led to more powerful computation units as well as more complex algo-

rithms. The primary consequence is that the couplings existent between the

different exerted control actions are explicitly taken into account, providing

better-tailored solutions to the mentioned control problems. Additionally,

advanced strategies can be considered, for instance taking into account the

particular tire-road interaction or the various dynamics of the powertrain.

With the aim of effectively implement centralized, multi-function active con-

trol systems, an effort has been devoted to exploiting model-based architec-

tures relying, for instance, on Model Predictive Control (MPC) (refer to,

e.g., [75, 121, 118, 32]). In particular, the flexibility offered by EVs and

HEVs allowed the development of effective solutions able to address physi-

cal and safety constraints in a rather flexible and efficient way. Besides the

solution of general combined slip-stability control problems, addressed for

instance in works as [108, 167], this enabled researchers to propose solutions

able to effectively tackle the problem of stability even in limit conditions, i.e.

during aggressive cornering maneuvers at the limit of handling. The works

3This latter technique is generally faster in terms of the response of the system with
respect to the action on the steering wheel and is particularly easy to implement in EVs
with independent in-wheel motors [48, 78].

4Another aspect of the vehicle dynamics control, not mentioned explicitly here but
equally important and often considered in integrated control solutions, is chassis control
(see, for instance, [74, 186, 40, 219]).
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[24, 35, 190, 81] are special examples that rely on integrated control systems

acting on both the longitudinal and the lateral vehicle dynamics (by means

of the wheels torques and the steering angle).

Despite the proven effectiveness of such approaches, the problem of en-

forcing robustness in sophisticated model-based strategies is still one of the

most crucial issues and is addressed in [165] as an original contribution of

the research work reported in this Thesis. In particular, a multi-rate ar-

chitecture comprising an MPC nominal controller and an Integral Sliding

Mode (ISM) Control component is exploited for yaw-rate control. The re-

sults show great improvement in the performance when vehicles proceed in

cornerings on terrains which exhibit abrupt and unexpected changes in the

tire-road friction coefficients5. The introduced robustness (provided acting

on the steering angle with fast corrections) allows to quickly compensate for

such effects, allowing the vehicles to maintain stability where non-robustified

schemes are shown to fail, leading to potentially destructive losses of han-

dling.

Observers in Vehicle Dynamics Control

Independently of the particular dynamics control problem under investi-

gation or the employed algorithm adopted to solve it, a fundamental ele-

ment for reliably closing control loops is the ability to reconstruct quantities

of interest in real-life scenarios. Output-based control strategies require a

prompt and precise reconstruction of the necessary measurements, while

the usually more sophisticated model-based algorithms necessitate usually

of full states availability. In this respect different solutions have been pro-

posed in the literature, relying for instance on on-line states observers (see,

e.g. [94, 211, 39, 120, 13, 57]) or sensors fusion techniques [124]. While

observation systems allow the design of control loops in case sensors are

not directly available or the measurements are not sufficiently reliable, the

exploitation of the reconstructed quantities can also enable fault detection

5Notice that, despite the major effects are visible during such unaccounted for changes
in the tire-road friction forces (which determine very appreciable differences between the
adopted model and the true vehicle behavior), also other effects are mitigated via the
adoption of the proposed scheme. For instance, the mismatches introduced by the dis-
cretization of the model considered as matched uncertainty is completely compensated
for. With regard to the unmatched component of the uncertainty, it is guaranteed that it
is not amplified by the introduction of the ISM-injected control through the adoption of
the technique developed in [170].

6



or the introduction of fault-tolerant control schemes (see, e.g., [138]).

Figure 1.3: Advanced vehicle dynamics controllers provide safety and effi-
ciency, greatly improving the performance of both manned and autonomous
vehicles.

Authors in [83, 230, 131] propose solutions to reconstruct the vehicle ve-

locity, while the more sophisticated problem of estimating the vehicle sideslip

angle is addressed in [58, 60, 191, 192]. Other interesting quantities describ-

ing the dynamical state of the vehicle such as, for instance, the roll and bank

angle, are estimated in [176, 157].

One of the most challenging problems, though, is the reliable estimation

of the tire-road contact forces [218, 11, 12, 59, 156, 160], which constitutes

a key feature to empower complex and effective control algorithms. In fact,

being able to promptly reconstruct the tire-road contact forces not only en-

ables the design of precise slip/skid and yaw control systems but in principle

can enable more advanced features relying on the knowledge of the terrain

type. Despite sensors exist able to provide such measurements, their im-

pressive cost make thems unavailable for commercial purposes. Thus, the

adoption of observers (or, said differently, virtual sensors) is mandatory and

constitutes a key element in the automotive control research.

An original proposal, part of the research related to this Dissertation,

has been published in [164] and successively extended in [161], in which a

tire-road forces reconstruction algorithm is developed based on the inherent

7



ability of Sliding Mode Control to estimate uncertain dynamics acting on the

considered systems. Specifically, virtual sensors are developed for both the

longitudinal and lateral forces exerted instantaneously by the vehicle wheels

coupling Second-Order Sliding Mode Control and a Kalman filter. While the

former delivers a fast reconstruction of the forces (see, e.g., [194, 73, 234]

and references therein for a general understanding of the concept), the latter

improves the precision via a model-based Extended Kalman Filter (EKF)

which greatly reduces the chattering effects. Notice that the Sliding Mode-

based stage, which relies on the Sub-Optimal algorithm6, adopts an adaptive

strategy to inherently reduce the chattering. In fact, as described in [146,

199], the algorithm automatically adapts the gain based on both a switched

and a time-based law to exert only the actually required control effort to

effectively contrast the uncertainty. The experimental results conducted on

a real prototypical car and included in [161] evidence the great effectiveness

of the developed strategy, which can precisely reconstruct the forces in real-

life scenarios7.

1.1.2 Platoon Control

While the development of robust and effective vehicle dynamics control sys-

tems is of course of paramount importance, in the last few years a shift

towards the control of multi-agent vehicular systems happened rapidly due

to the availability of new communication and control solutions [109, 5]. In

particular, the control of platoons [112, 87] (1D formations of vehicles which

follow a leader while maintaining a specified inter-vehicle distance) has at-

tracted a lot of interest due to its simplicity and effectiveness in providing

safety, comfort and reduced fuel consumption, while allowing for improve-

ments in traffic regulation [208, 22]. Many studies have been carried out

from both the control and the network architecture perspectives (see, e.g.,

[112, 87] and references therein), to improve the effectiveness and practi-

cal realizability of the proposals in real-world scenarios. Platoons can, in

fact, provide a vast amount of benefits in the presence of connected and

automated vehicles (CAVs), especially on highways, depending on the pen-

6Described in Section (2.1.2).
7The experiments have been carried out on prototypical vehicles equipped with specific

tire-road forces sensors. These, though, as already highlighted are hugely expensive and
cannot be equipped on consumer vehicles, hence requiring observation systems for closing
the control loops involving such (virtual) measurements.
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etration rate. Among them, energy efficiency and road occupation appear

to be enhanced if tight inter-vehicle distances are kept, with particular ref-

erence to heavy-duty vehicles (e.g. trucks, see [2]). Additionally, platoons

can be employed as moving bottlenecks (see, e.g. [144]) to act as dynamic

actuators in traffic control architectures [143].

Starting from the concept of Adaptive Cruise Control (ACC), accord-

ing to which single vehicles can adapt their velocity based on their distance

with respect to the preceding one, strings can be built where the agents

only exploit local information (see, e.g., [197]). The task, seemingly sim-

ple in the presence of sufficiently automated vehicles, is in fact quite chal-

lenging since string stability (see, among many others, [66, 215, 148, 149]

for an overview of the concept) must be enforced in order to avoid dis-

ruptive effects which may lead to crashes. It is clear now that this struc-

tural property is mainly determined by the selection of the spacing policy

[217, 198, 197, 180] and, at a successive level, via the adoption of proper

communication systems augmenting the information available to every ve-

hicle. In this direction, exploiting Vehicle-to-Vehicle (V2V) and Vehicle-to-

Infrastructure (V2I) communication systems, Cooperative Adaptive Cruise

Control (CACC) solutions have been proposed in the literature (see, among

many others, [147, 126, 52]). The adoption of such interconnected frame-

works hugely broadens the range of possible strategies which may be imple-

mented, both to enhance particular features of the platoons themselves or to

include them into more complex control architectures (again, think about

platoons on highways which can be dynamically created and dissolved to

promptly implement traffic control strategies and regulate the flow of the

entire highway portion).

In the literature, different control methodologies have been effectively

proposed over the years. With respect to the former linear controllers (see,

among many others, [198]), improvements have been achieved by more re-

cent solutions relying on Sliding Mode Control, which has effectively been

introduced in platoon control in works as [187, 70, 3, 172, 175, 173]. Con-

sensus Control (see, e.g., [124, 71] and references therein) has also been

adopted as a framework to control platoons (see e.g. [53, 113]), often with

promising results. The most popular technique remains, in any case, Model

Predictive Control (see, for instance, [61, 223]). With regard to the lat-

ter, thanks to the advancements in communication technologies additional
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requirements can be addressed based on (distributed) optimal control con-

cepts [33], to further enhance the effectiveness of the platoon formations

[62, 61, 98]. In fact, advanced requisites such as the respect of safety and

physical constraints can be effectively addressed by MPC, which can also

provide various additional features (often in CACC frameworks) [231].

Figure 1.4: The traffic can be effectively regulated introducing platoons of
CAVs, especially on highways.

Independently of the complexity of the platoon control systems, robust-

ness occupies a premium position in the requirements list for an effective

real-life adoption. In particular, it is known that the longitudinal dynamics

models usually adopted to describe the behavior of the vehicles in the pla-

toon are highly uncertain. On one hand, in fact, they are obtained through

feedback linearization [215] based, thus, on a nominal description of the

powertrain and the vehicle kinematics (for instance, aerodynamic drags and

rolling resistances are almost impossible to estimate precisely). On the other

hand, many disturbance phenomena and external factors act on the vehicles

at any time during real-life applications (e.g. lateral wind, turbulences, road

irregularities, and terrain changes). The uncertainty in the modeling of the

vehicle dynamics can disrupt the performance, especially when model-based

control solutions are adopted (which is very common, since they usually al-

low one to consider optimality measures and constraints). As a consequence,

not only the local and string stability can be disrupted, but also accessory ef-
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fects manifest such as for instance the loss of coherence (see, e.g., [114, 112]).

This latter is the ability of a platoon to keep the required end-to-end length

over time (one can see that as the distance between the first and last vehicle

in the string). At a steady speed, this quantity must be constant, but local

perturbations can determine visible effects if not damped correctly inside

of the platoon, with some possible consequences for example on the traffic-

regulation ability of the system. In fact, for instance, shockwaves could be

generated in the following traffic flow.

In this dissertation, two proposals are presented to address the problem

of robust platoon control exploiting the inherent robustness of Sliding Mode

Control, as will be thoroughly described in Chapter 3.

1.1.3 Formation Control

During the last decades, the control of multi-agent systems (MAS) has

emerged as one of the most appealing topics in the Control Engineering

field. In a MAS, agents are required to act considering the underlying aim

of enforcing specific features and global-level goals [188]. The inspiration

for the control of such systems comes from nature observation: in nature, in

fact, many collective behaviors can be witnessed providing survival benefits

for the involved subjects. For instance, extended sensing capabilities and

coordinated actions can advantage predators, while cooperative tactics can

lead to a better defense of the preys.

Similarly, groups of artificial agents can be controlled to achieve com-

plex goals, enabling the solution of more or less specific problems efficiently

through cooperation. For instance, it is possible to exploit groups of agents

to provide distributed surveillance thus enlarging the spanned range (see, e.g.

[137] and applications in [179, 26]) and provide robustness through redun-

dancy in sensors. Different strategies can be referred to the broad category of

MAS control, including flocking [133, 201] consensus control8 [150, 134] and

formation control [38, 55, 50, 36]. This latter is one of the most appealing

topics in the control engineering research. Works as [25, 6, 212, 56] propose

different strategies for the formation control of Unmanned Aerial Vehicles

(UAVs), with applications ranging from cooperative surveillance [209] to

transportation [125]. Automated Underwater Vehicles (AUVs) strategies

8Briefly discussed in Section 2.1.4.
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[45] are instead developed in works as [44, 107] and Automated Ground

Vehicles (AGVs) are considered for instance in [16, 90]).

Particularly, the control of formations of autonomous vehicles (or, more

generally, CAVs) is currently occupying an interesting position in research,

based on the number of new applications it can enable [89, 129]. For in-

stance, the introduction of groups of collectively controlled vehicles can lead

to the possibility of dynamically create moving bottlenecks (see, e.g. [144]),

functioning as flexible actuators in traffic control strategies. In this respect,

coupling the control of single formations with high-level traffic control sys-

tems seems a promising strategy to control the traffic flow and provide sig-

nificantly better exploitation of the transportation infrastructure (especially

in highways) [31, 142, 144, 143] .

Many strategies have been developed for the control of formations, which

may be roughly grouped for convenience in three main classes:

• Leader-follower strategies [41]: an agent is considered as the leader,

and proceeds independently according to a specific objective. The

followers are required, in general, to keep a predefined distance and

orientation with respect to the leader9.

• Behavior-based strategies [14, 128]: several simultaneously desired be-

haviors are considered (for instance, cohesion among the agents, colli-

sion avoidance, and trajectory following)10 and combined to derive the

instantaneous action according to the adopted design. Especially in

the context of mobile robot control, the renowned method of potential

fields is often used as part of the control algorithm.

• Virtual structure approaches [10]: a single virtual rigid structure is

considered for the formation, with a fixed geometric structure.

In the present Dissertation, a novel algorithm for the online creation and

control of CAVs formations in highway scenarios is proposed (see Chapter

4).

9Notice that platoon control, as described in Section 1.1.2, falls into this category.
10Flocking algorithms fall straightforwardly in this category.
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1.2 Contributions of the Thesis

The major contributions of the present thesis rely on the introduction of

Sliding Mode Control (SMC, see Section 2.1) for the development of ad-

vanced automotive control systems, involving one or more vehicles, and the

proposal of a novel formation control algorithm for highway scenarios. Par-

ticular importance is given to robustness, achieved through proposed algo-

rithms directly based on SMC, which are inherently invariant to matched

disturbances, or injecting rubustifying terms in advanced MPC-based strate-

gies.

The already introduced works [164, 165, 161] provide solutions for single-

vehicle systems, and will not be discussed further in this Dissertation since

the focus is mainly devoted to multi-agent automotive systems. In this

respect, the results developed and presented in the remaining of the Thesis

provide the following contributions:

• In the context of platoon control, two main contributions are proposed.

One relies on a multi-rate architecture for the robustification of an orig-

inal distributed MPC strategy, providing a feasible and lightweight

algorithm for robust platoon control (see Section 3.3). The other

proves theoretically and in simulation that enforcing second-order slid-

ing modes locally (for each vehicle, with respect to the reference inter-

vehicle distance) enables to achieve not only local stability but also

Global Disturbance String Stability (GDSS) in a rather general case

(i.e. with feedback-linearized vehicle dynamics, described by third-

order models). In particular, it proposes a particular formulation for

the local spacing policy, able to track at the same time a predefined

inter-vehicle distance and a space-dependent reference velocity track-

ing. This results are presented in Section 3.4.

• In the context of formation control, a novel general two-step asyn-

chronous algorithm for 2D-formations creation and reshaping in high-

way scenarios is proposed based on discrete Dynamic Programming

and continuous trajectory tracking through local MPC (see Section

4.2). With respect to the classification provided above in Section

1.1.3, the proposed control strategy can be considered as mainly based

on a virtual structure. Despite that, though, additional flexibility is

provided by the two-step asynchronous formulation which relaxes the
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inherent rigidity exhibited usually by such kinds of algorithms. Addi-

tionally, the modular architecture provides a high degree of flexibility,

making the proposal a possible starting point for the development of

more advanced solutions.

Besides these main results, minor developed contributions are also briefly

discussed in the context of Consensus Control (see 2.1.4) and Constrained

Control. Although not straightforwardly employed in the presented automo-

tive control algorithms, such techniques are promising and might be further

investigated in automotive applications for improved performance.
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1.3 Outline

The remaining of this Dissertation is organized as follows. In Chapter 2,

a general overview of the main control techniques adopted in the proposed

strategies is provided. In particular, an introduction on Sliding Mode Con-

trol and Model Predictive Control is presented in Sections 2.1 and 2.2, re-

spectively. Specifically, in the former First-Order Sliding Mode (FOSM) and

Higher-Order Sliding Mode (HOSM) control are presented, with particular

emphasis on the Second-Order Sliding Mode (SOSM) control. Additionally,

Integral Sliding Modes (ISM) are introduced and proposed in Section 2.1.3

as a straightforward way of introducing robustness with respect to matched

uncertainty in MPC formulations. Section 2.1.4, in particular, proposes an

overview of the exploitation of Sliding Mode Control in Consensus control

problems.

Unidimensional formations (platoons) are considered in Chapter 3. Specif-

ically, in Section 3.1 a brief overview of platoon control is provided to lay

the foundations for the subsequent discussion. The longitudinal dynamics

modellings employed in platoon control are presented in 3.2. Successively,

the two proposals are presented in Section 3.3 and 3.4, respectively.

The extension of automotive formation control strategies to the two-

dimensional case is discussed in Chapter 4. In particular, the adopted com-

bined longitudinal and lateral dynamics model upon which the proposed

algorithm relies is described in 4.1, and then the novel algorithm is pro-

posed for formation creation and dynamic reshape in highway scenarios, in

Section 4.2.

Final conclusions are drawn in Chapter 5, where also an outlook on

possible further improvements is proposed.
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Chapter 2

Preliminaries

In this chapter, an introduction about the two control strategies on which

the results presented in this Thesis rely, namely Sliding Mode Control (SMC)

and Model Predictive Control (MPC), is provided. In particular, Section 2.1

introduces at first the concept of First-Order Sliding Mode Control (2.1.1),

illustrating the basic mathematical concepts composing the theory and high-

lighting the main drawbacks, which led subsequently to the adoption of

Higher-Order Sliding Mode Control strategies. These latter are introduced

in Section 2.1.2, with particular reference to the chattering alleviation fea-

tures offered by such strategies. Specifically, Second-Order Sliding Mode

Control is presented in Section 2.1.2, with specific emphasis on the Sub-

Optimal algorithm. This latter, in fact, is adopted in most of the works

proposed in this Dissertation and thus deserves a thorough presentation.

Additionally, considerations about the possibility of adopting constrained

SMC algorithms are drawn. Integral Sliding Mode Control is presented in

Section 2.1.3, while the employment of SMC for leader-follower consensus

control is discussed in Section 2.1.4, where an original control strategy is

also presented.

Lastly, the basics of MPC are introduced in Section 2.2.
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2.1 Sliding Mode Control (SMC)

In this section, a brief introduction to Sliding Mode Control [207, 63, 189] is

provided, since it constitutes the approach upon which many of the results

proposed in this Thesis rely. Nowadays the theory and practice of SMC is

very mature and extremely broad, and going through the whole range of

different coverable topics is out of the scope of the present work. For this

reason, only the concepts useful for the present and subsequent discussion are

here introduced, providing to the reader also a number of valuable references

covering specific aspects not explicitly considered here.

Specifically, First-Order Sliding Mode (FOSM) Control is first briefly

introduced. It forms the historical and mathematical basis for developing

all of the subsequent, more advanced, Higher-Order Sliding Mode (HOSM)

Control strategies. These latter are then presented for systems with arbi-

trary relative degree, but special attention is given to Second-Order Sliding

Mode (SOSM) Control, it being widely adopted in the literature and in the

present work.

As will be made evident, the selection of the sliding manifold constitutes

a crucial step in SMC, which characterizes the behaviour of the system

under control. With this respect, the particular design giving rise to Integral

Sliding Mode (ISM) Control is presented and discussed, since it constitutes

the fundamental aspect underlying the robustification schemes proposed in

this dissertation.

An insight about the possibility of designing constrained sliding mode

controllers [225] is also provided: although this technique are not currently

resorted to by the proposed strategies, the introduction of constraints can be

beneficial in some cases to enlarge the range of applicability of the proposals

without changing the theoretical and practical basis on which they rely, and

may constitute a valuable objective for further research work. Similarly,

a digression about the employment of Sliding Mode Control in Consensus

Control is made, presenting also a novel contribution for finite-time leader-

follower consensus with prescribed transient, in Section 2.1.4.
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2.1.1 First-Order Sliding Mode (FOSM) Control

The basic idea of SMC is that of transforming a system affine in the control,

i.e. of the form

ẋ(t) = f(x(t), t) + g(x(t), t)u(t) (2.1)

where x(t) ∈ Rn, into a Variable Structure System (VSS) by means of a

discontinuous control input u(t) ∈ Rm. The resulting system can generically

be expressed as

ẋ(t) = fd(x(t), t) (2.2)

where the vector function fd(x(t), t) ∈ Rn is discontinuous at some points in

Rn. The system in Equation (2.2) can be equivalently seen as composed of

a finite number of different subsystems, called structures, whose right-hand

side is continuous (i.e., the particular shape of fd(·) is determined in some

way, at each time instant, by x(t)). The structures switch according to the

value of the states and/or time, leading to non-trivial behaviors.

A simple example of VSS can be, for instance,

ẋ =

1 if x < 0

−1 if x > 0
(2.3)

In Equation (2.3), the discontinuity set is constituted by {x = 0}, for which

the right-hand side is not defined1. In general, the set of values for which

the function fd(x(t), t) is discontinuous are manifolds in Rn+1, called switch-

ing manifolds. A particular behavior of VSSs is the so-called sliding mode

(or sliding motion), which is the motion of the state trajectory constrained

to a particular switching manifold, called thus the sliding manifold. This

condition arises if the state vector enters a positive attraction region, where

the positive attraction property holds, i.e. the vector tangential to the state

trajectory is always directed towards the sliding manifold. As a direct con-

sequence, a sequence of switches occurring at infinite frequency takes place

1This is a characteristic of VSSs, and in particular of the Coulomb friction model
reported in Equation (2.3). The discussion of the consequent mathematical details is
beyond the scope of the present Dissertation, and the reader is referred e.g. [207] for
further details.
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across the particular attracting manifold (in general, m sliding manifolds

exist and the motion is established on their intersection, see e.g. [49]), thus

constraining the trajectory on it.

The description of this behavior is mathematically challenging, and was

formerly formalized by Filippov (see [72]). Successively, a simpler methodol-

ogy called the method of equivalent control was proposed by Utkin (refer to

[207]). This latter is simple but accurate, and thus it is usually employed in

the SMC literature to study the behaviour of the controlled systems during

sliding. It will be better described in the following, where it is used to study

the equivalent dynamics of systems in sliding motion throughout the whole

Dissertation.

Notice that once the sliding mode is attained (in a finite time, as will be

made evident in the subsequent discussion) the order of the dynamics of the

system is reduced due to the constraint that the trajectories must lie on the

manifold. In particular, the so-called reduced order dynamics (also referred

to as equivalent dynamics) is determined by the particular choice of the

sliding manifold. Therefore, in general one starts in a situation in which the

system states are in the region of attraction of a manifold, and so the system

trajectory moves in such a way that eventually convergence to it is attained

(during the so called reaching phase). After a finite time, convergence is

attained and the system trajectory remains constrained indefinitely (sliding

phase).

Since the values on the basis of which the dynamics switchings occur

determine the resulting behaviour of the VSS, being able to arbitrarily design

the sliding manifold makes it possible to impose arbitrary reduced-order

dynamics, and thus offers a mean to control the system. This feature is

achieved in SMC, which entails a two-step procedure for the design of the

closed-loop strategy. At first, a sliding variable σ(x, t) ∈ Rm is designed, on

the basis of the required behavior of the system once a sliding motion on

the manifold

σ(x, t) = 0 (2.4)

is attained and kept. Notice that in this phase the hypothesis that the

system eventually reaches such condition in a finite time is made, but needs

to be assured in the second stage. The equivalent control method can here be
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used to study the reduced-order dynamics in a simple and reliable way. Such

procedure consists in finding the equivalent control ueq(x, t) which solves the

equation

σ̇(x, t) = 0 (2.5)

and then substituting such expression in the original dynamics. The ob-

tained description is independent of u(t), and composed of n−m ordinary

differential equations and m algebraic equations (given by (2.4)). Equation

(2.5) makes evident that the reduced-order dynamics is dependent on the

choice of σ(x, t).

The second step consists in finding a suitable discontinuous control law

able to enforce finite-time convergence to the selected manifold (2.4). Specif-

ically, global finite-time stability is required to be enforced. Notice that

although in general Multi-Input systems are considered in the SMC theory,

from now on only the Single-Input case is considered (i.e. m = 1) for the

sake of simplicity and because all the subsequent discussion does not require

a so general introduction. For a more general discussion, the reader can refer

to, e.g., [49, 189]. A commonly adopted input is the relay-like

u(t) = −Ksign(σ(x, t)) (2.6)

where K > 0 is the control gain and must be properly chosen. To do so,

Lyapunov theory can be exploited: let us select the energy function

V (x, t) =
1

2
σ2(x, t) (2.7)

Based on (2.7), it can be shown that ensuring the so-called η-reachability

condition

V̇ (x, t) = σ(x, t)σ̇(x, t) < −η|σ(x, t)| (2.8)

for some η > 0 proves global finite-time convergence to the manifold (2.4)

and the enforcement of a sliding motion on it. An upper bound for the

reaching time tR, in this case, is given by

tR ≤
|σ(x0, t0)|

η
(2.9)

20



from which one can see that higher η values ensure usually a faster conver-

gence.

Condition (2.8) imposes a lower bound on the control gain K, which can

be found under the hypothesis that the sliding variable and its first time

derivative are bounded by a known constant. In the presence of uncertainty,

this usually translates in the requirement of a known constant upper bound

for the absolute value of the uncertain terms. Notice that the latter require-

ment is quite mild, and entails the fact that SMC is robust with respect to

matched uncertainty2: intuitively, it is sufficient to exert a strong enough

control action to contrast the uncertainty in the input channel, provided

that such uncertainty does not exceed a known constant value.

In order to clarify the stated concepts, let us consider now a simple linear

unstable system (with open-loop eigenvalues 1± 6i) controlled through the

input u(t): [
ẋ1

ẋ2

]
=

[
0 1

−10 2

][
x1

x2

]
+

[
0

1

]
u(t), x(0) =

[
10

4

]
. (2.10)
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Figure 2.1: Uncontrolled system: evolution in time.

The uncontrolled system is unstable and exhibits a second-order (os-

cillating) behavior, captured in Figure 2.1. In particular, the origin is an

unstable focus, as can be seen in Figure 2.2. One would like to stabilize the

origin by means of the control variable u(t) exploiting SMC. To do so, a

2The component of the uncertainty affecting a system referred to as “matched” can be
informally defined as that which can be written as an additive term with respect to the
input. In other words, it is the “projection” of the uncertainty on the input. For further
reference and a formal description, please refer to e.g. [170].
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Figure 2.2: Uncontrolled system: phase plane trajectory.

sliding surface must be defined, such as for instance

σ(x, t) = cx1 + x2 = 0 , c > 0 (2.11)

which describes a subspace of dimension 1 (n −m = 2 − 1 = 1). A stan-

dard relay law (2.6) is selected and a suitable gain K is chosen considering

the condition (2.8). Specifically, the total time derivative of the Lyapunov

function V (x) is considered, i.e.

V̇ (x) = σ(x, t)(cẋ1 + ẋ2) = σ(x, t)[(c+ 2)x2 − 10x1 + u(t)]

= σ(x, t)[(c+ 2)x2 − 10x1]−K|σ(x, t)| < L|σ(x, t)| −K|σ(x, t)|
(2.12)

for a certain positive constant L such that

L > (c+ 2)x2 − 10x1 (2.13)

which may be found introducing the assumption that the state vector values

are bounded element-wise by known constants. Then, it follows that

V̇ (x) < −(K − L)|σ(x, t)| < −η|σ(x, t)| (2.14)

and so, consequently,

K > η + L (2.15)
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In this case the reaching time can be bounded inserting η in Equation (2.9)

as

tR ≤
|σ(x, t)|
K − L

(2.16)

which evidently depends on the initial value of σ(x, t) as well as the bounds

on the state vector elements and the chosen gain.
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Figure 2.3: FOSM: Time evolution of the controlled system.
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Figure 2.4: FOSM: Phase plane trajectory of the controlled system.

Let us select c = 1, so that the sliding surface is x2 = −x1. In Figure 2.4

the state trajectory is plotted: as it is clear, the selected manifold is reached

in finite time (reaching phase) and then the system begins to slide on it

(sliding phase). Once in sliding mode, the system behaves as a first-order

system and it is asymptotically stable, as can be seen in Figure 2.3.

Suppose that, once on the sliding manifold, the state trajectory continues

to lay on it. Then, in this situation both the sliding variable σ(x, t) and its

first derivative must be vanishing. This means that, referring to the example
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under investigation,

σ̇(x, t) = (c+ 2)x2(t)− 10x1(t) + u(t) = 0 (2.17)

The control function that allows to maintain the condition expressed in

Equation (2.17) (which means that the sliding manifold is not going to be

left), is

ueq(t) = 10x1(t)− (c+ 2)x2(t) (2.18)

The equivalent control can be used to determine the dynamics of the

controlled system once in sliding mode. In the aforementioned example,

inserting Equation (2.18) into (2.10) and considering that on the sliding

manifold x2(t) = −cx1(t),ẋ1(t) = x2(t) = −cx1(t)

ẋ2(t) = −cx2(t)
(2.19)

The two states evolve, independently, as first-order systems. In particular,x1(t) = x1(tr)e
−ct

x2(t) = x2(tr)e
−ct

(2.20)

for t ≥ tR where tR <∞ is the time at which sliding manifold is reached. It

is clear then how the choice of c (and, thus, of parametrization of the sliding

variable) can affect the dynamics of the equivalent system.

In order to show clearly the insensitivity to bounded matched uncer-

tainty, we can introduce now a generic exogenous matched disturbance d(t).

The system in Equation (2.10) becomes then[
ẋ1

ẋ2

]
=

[
0 1

−10 2

][
x1

x2

]
+

[
0

1

]
d(t) +

[
0

1

]
u(t), x(0) =

[
10

4

]
. (2.21)

The control law can be chosen, for instance, as in Equation (2.6), but this

time introducing also a continuous term dependent on the (supposed known)

states. This latter choice is not related to the enforcement of robustness,

and is done here just to highlight the possibility of using SMC together with

any other form of control strategy to effectively reject the uncertainty. The
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resulting control law is, then,

u(t) = (c+ 2)x2(t)− 10x1(t)−Ksign(σ(x, t)) (2.22)

To guarantee the finite-time convergence, therefore,

V̇ (x) = σ(x, t)(cẋ1 + ẋ2 + u(t)) = σ(x, t)[(c+ 2)x2(t)− 10x1(t) + d(t) + u(t)] =

= σ(x, t)d(t)−K|σ(x, t)| ≤ L|σ(x, t)| −K|σ(x, t)|
(2.23)

where L is a positive constant such that L > |d(t)|. This requires obviously

that d(t) is bounded. In this case, for a proper choice of K, the controlled

system behaves as expected.
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Figure 2.5: FOSM: Time evolution of the controlled (uncertain) system
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Figure 2.6: FOSM: Phase plane trajectory of the controlled (uncertain)
system

For simulation purposes, let us assume that the unknown matched dis-

turbance is d(t) = 10sin(3t). It is not possible to appreciate differences in
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the behavior of the uncontrolled system, which still has an unstable focus

(as in Figure 2.2) and explodes as in Figure 2.1. In Figures 2.5 and 2.6 the

evolution and the trajectory of the controlled system states are plotted. It

is evident that the goal is reached despite the disturbance, thus highlighting

the invariance property of SMC.
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Figure 2.7: FOSM: Equivalent control, corresponding to the opposite of the
injected disturbance.

The equivalent control in this case is ueq(t) = −d(t). This is evident

from the plot of the (filtered) control law in Figure 2.7. Here a notable

property of the Sliding Mode Control appears: the equivalent control can

be used to estimate unknown terms that determine the system dynamics.

The only assumption needed for this basic implementation is that they are

bounded and matched3.

Main issues of FOSM Control

In spite of the effectiveness of the FOSM strategies, two main problems can

be identified, namely:

• Only situations in which the pair {σ(x, t), u(t)} exhibits relative de-

gree4[99, 91] r = 1 can be considered. In other words, only choices of

3Such idea is at the basis of the observation system briefly introduced in Section 1.1.1.
4The relative degree of an output-input pair can be identified intuitively as the order

of the first derivative of the output in which the input appears explicitly.
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the sliding variable σ(x, t) such that for a system as in Equation (2.1)

σ̇(x, t) =
∂σ(x, t)

∂x(t)
ẋ(t) +

∂σ(x, t)

∂t

=
∂σ(x, t)

∂x(t)
(f(x, t) + g(x, t)u(t)) +

∂σ(x, t)

∂t

=
∂σ(x, t)

∂x(t)
f(x, t) +

∂σ(x, t)

∂t︸ ︷︷ ︸
h(x,t)

+
∂σ(x, t)

∂x(t)
g(x, t)︸ ︷︷ ︸

p(x,t)

u(t)

= h(x, t) + p(x, t)u(t)

(2.24)

holds with p(x, t) 6= 0 can be effectively considered to produce a sliding

motion;

• The so-called chattering effect [105], as explained in the following,

appears due to non-idealities in the switching and can potentially lead

to disruptive effects.

Figure 2.8: Schematic representation of the chattering phenomenon for a
two-states system, considering a linear sliding variable of the type σ(x, t) =
cx1(t) + x2(t) for some c < 0.
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As already described, when

σ(x, t) = 0 ∀t ≥ tR (2.25)

the so-called ideal sliding mode occurs, during which the control variable

switches at infinite frequency. In practical situations, though, the commu-

tations occur at high (but finite) frequency: a practical sliding mode (or real

sliding mode) is always enforced [146]. It is characterized by the fact that

the state trajectory is confined not exactly on the sliding manifold but in a

vicinity of it (the so-called boundary layer), whose size is inversely propor-

tional to the switching frequency. This is clearly visible in Figure 2.4 and

2.6, and schematically reported in Figure 2.8. In such situation, the control

variable exhibits large high-frequency oscillations (chattering). Especially if

mechanical actuators are employed, the high-frequency ripple appearing in

the resulting control law can represent an issue. In fact, the actuators are

stressed and can be seriously damaged if, for instance, resonating modes are

excited. For this reason, some techniques have been developed in order to

reduce such effect.

The most trivial one is the introduction of a low-pass filter for the control

signal: the fast dynamics, attributable to the chattering effects, are filtered

out according to the time constant of the filter. This approach can be

effective in practice, but exhibits a number of issues. First of all, the filter

must be slow enough to eliminate chattering but also sufficiently fast to

preserve the control action, since strong filtering can lead to delays and

degradations of the performance. The choice of fixed time constants can be

tricky since, at least in presence of disturbances, the resulting control law is

unpredictable. Issues like this have led to the development of more advanced

techniques.

For instance, an effective approach can be the induction of a quasi-sliding

mode: the main idea is to enforce a smoother behavior of the control variable,

approximating the sign function with a similar but continuous shape. The

sigmoid function can be used for instance, i.e.

sign(σ(x, t)) ≈ σ(x, t)

|σ(x, t)|+ ε
, ε > 0. (2.26)

Point-wise, if ε is small enough, the sigmoid tends indeed to the sign func-
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tion while retaining smoothness properties. In practice, a tradeoff choice

must be performed for the value of ε: the bigger it is, the smoother is the re-

sulting function (less chattering) at the cost of more non-ideal performances.

Although usually the resulting behavior resembles the ideal one in an ac-

ceptable way, the major drawback is the loss of accuracy and robustness.

Additionally, the control law cannot provide exact finite-time convergence

since the sliding variable does not approach the origin, but rather a vicinity

of it.

Another possible solution relies on the idea that, if the discontinuity is

moved to the first derivative of the control variable by means of the adoption

of an auxiliary sliding manifold

Σ(x, t) = σ(x, t) + cσ̇(x, t) (2.27)

for some c > 0, the resulting control law is a smooth continuous function.

This idea leads to induce an asymptotic sliding mode, since the sliding vari-

able σ(x, t) vanishes only asymptotically (exponentially, and not in finite

time). Notice in fact that when

Σ(x, t) = 0 (2.28)

is attained in a finite time, a subsequent motion of the original sliding vari-

able to zero starts. In fact,

σ̇(x, t) = −1

c
σ(x, t) (2.29)

holds. In view of the choice reported in Equation (2.28), the control input

appears already in the expression of Σ(x, t). Thus, the pair {Σ(x, t), u̇(t)}
exhibits relative degree r = 1, and one can adopt v(t) = u̇(t) as a dummy

discontinuous input. Notice that this technique, besides the asymptotic

convergence which does not guarantee the theoretical properties established

by the classical choices of the sliding variable, the need to know the time

derivative σ̇(x, t) of the sliding variable arises. In practical situations this

can be an issue, and the introduction of additional observers to estimate it

may become mandatory.
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2.1.2 Higher-Order Sliding Mode (HOSM) Control

Both the problems introduced in 2.1.1 can be effectively solved via the adop-

tion of Higher Order Sliding Mode (HOSM) Control [101, 189]. In fact, a

k-th order sliding motion5 [99] is attained when the sliding set attains in a

finite time the origin, i.e.

σ(x, t) = σ̇(x, t) = · · · = σ(k−1)(x, t) = 0 (2.30)

and thus systems with relative degree r = k can be effectively considered6.

Additionally, the generation of HOSM is one of the most effective tech-

niques for chattering alleviation. In fact, it allows to reduce the chatter-

ing without losing all the properties of sliding mode, like finite time con-

vergence and disturbance rejection7. Supposing the relative degree of the

{σ(x, t), u(t)} pair is r > k, it is possible to integrate the control input u(t)

generated by a k-th order HOSM algorithm l = r − k times to produce an

input suitable for the original system (see the discussion in Section 2.1.2 and

the proposal described in Section 3.3 for further clarification).

Different HOSM algorithms are available in literature, as for instance

the ones in [101, 102, 103, 54]. Among them, those belonging to the Second

Order Sliding Mode (SOSM) Control class (k = 2) are widely used.

Second-Order Sliding Mode Control

SOSM Control [18, 21] entails generating a sliding mode of order k = 2, thus

producing a reduced-order dynamics constrained to the subspace

σ(x, t) = σ̇(x, t) = 0 (2.31)

If, for the considered system as in (2.1), the relative degree of the {σ(x, t), u(t)}
pair is r = 2, it is straightforward to derive that the input u(t) appears for

the first time in σ̇(x, t) thus requiring (at least) a SOSM to reach a sliding

5The order of a sliding mode (sliding order) is defined as the number of continuous
total derivatives minus one (including the 0-th, in case of FOSM) of the sliding variable
σ(x, t) which define the sliding motion when attain and keep a null value. It represents,
in some sense, the degree of smoothness of the motion constrained to the manifold [99].

6Clearly, FOSM corresponds to k = 1 and therefore in Equation (2.30) no derivatives
are included.

7In fact, it can be proved that the size of the boundary layer is inversely proportional
to the k-th power of the sampling frequency (being k the order of the sliding motion) [99].
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motion. Considered in fact Equation (2.24), one has that if p(x, t) = 08,

σ̈(x, t) =
∂h(x, t)

∂x(t)
ẋ(t) +

∂h(x, t)

∂t

=
∂h(x, t)

∂x(t)
(f(x, t) + g(x, t)u(t)) +

∂h(x, t)

∂t

=
∂h(x, t)

∂x(t)
f(x, t) +

∂h(x, t)

∂t
+
∂h(x, t)

∂x(t)
g(x, t)u(t)

(2.32)

holds. The discussion becomes then trivial and overlaps that already made

for the FOSM case except that the original dynamics is reduced of two orders

instead of one.

If, instead, r = 1 for the system under consideration, chattering allevia-

tion can be enforced by means of any SOSM algorithm. In fact, considered

again Equation (2.24), it can be derived that

σ̈(x, t) =
∂h(x, t)

∂x(t)
ẋ(t) +

∂h(x, t)

∂t
+

(
∂p(x, t)

∂x(t)
ẋ(t) +

∂p(x, t)

∂t

)
u(t)︸ ︷︷ ︸

φ(x,t)

+ p(x, t)w(t)

= φ(x, t) + p(x, t)w(t)

(2.33)

where w(t) = u̇(t) is the considered (virtual) input such that the pair

{σ(x, t), w(t)} has relative degree 2. It follows, then, that taking the in-

tegral of w(t) produces a suitable input for the considered (original) system,

which is continuous thus producing a smooth input. In addition, the chat-

tering is reduced due to the fact that, as already highlighted, the “width”

of the boundary layer is greatly reduced during a real sliding motion.

Among the most popular algorithms effectively solving this problem, the

Sub-Optimal [19, 20] (S-SOSM) algorithm is presented below, since it is the

strategy adopted in the following of the discussion.

Sub-Optimal Sliding Mode Control

The S-SOSM algorithm relies on the adoption of a control law derived from

the idea of a bang-bang algorithm for two-states systems. To formally state

the control problem, making use of the results derived in the previous dis-

8This is required, since otherwise the relative degree would be k = 1.
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cussion (Equations (2.24) and (2.33) or (2.32)), an auxiliary dynamics can

be introduced posing ζ1(t) = σ(t) for any system with r = 29. By means of

the respective diffeomorphism10, one obtainsζ̇1(t) = ζ2(t)

ζ̇2(t) = φ(ζ1(t), ζ2(t), t) + p(ζ1(t), ζ2(t), t)v(t)
(2.34)

where, v(t) = w(t) in case of chattering alleviation (k = 1) or v(t) = u(t) if

for the original system r = 2 holds. The Sub-Optimal strategy, then, aims

at enforcing in a finite time a sliding motion on the subset ζ1(t) = ζ2(t) = 0

under the following assumption.

Assumption 1. There exist known positive constants Φ, P1 and P2 such

that

|φ(·)| ≤ Φ, P1 ≤ p(·) ≤ P2 (2.35)

holds.11

By means of the following control input

v(t) = −α(t)Ksign

(
ζ1(t)− ζ∗1

2

)
, (2.36)

where α is a modulation parameter, K is the gain and ζ∗1 = ζ1(t∗) with t∗

the last time instant at which ζ2(t) = 0, a SOSM is enforced. In particular,

the selection of K and α must fulfil the following conditions

α =

α∗ if
(
ζ1(t)− 1

2ζ
∗) (ζ∗ − ζ1(t)) > 0

1 otherwise
(2.37)

K > max

(
Φ

α∗P1
;

4Φ

3P1 − α∗P2

)
(2.38)

9As already described, this can be the actual relative degree of the {σ(x, t), u(t)} pair,
or that obtained introducing a virtual input w(t) to the end of achieving chattering allevia-
tion. Equation (2.34) reports the case described in Equation (2.33) (chettering alleviation)
to maintain coherence with respect to the paper [20]. Anyway, in the other case very sim-
ilar considerations can be made employing the same notation to describe the quantities
in Equation (2.32).

10This diffeomorphism always exists, see for instance [91, Chapter 13].
11If p(·) < 0, similar bounds hold considering −v(t) as the input.
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with

α∗ ∈ (0, 1] ∩
(

0,
3P1

P2

)
(2.39)

a parameter to be arbitrarily chosen. The reader can refer to [20] for the

complete proof of convergence.

Notice that, to implement an n-th order sliding mode control law, the

knowledge of the first n − 1 time derivatives of the sliding variable is usu-

ally mandatory. This increases the complexity of the resulting schemes,

in which additional sensors or differentiators must be introduced (see, e.g.

[100, 104, 43]). On the contrary, one of the peculiarities of S-SOSM is that

no derivatives of σ(t) are needed (in particular, the value of ζ2(t) is not

required), as can be seen in (2.36). In fact, in real implementations, ζ∗1
can be determined using commercial peak detectors or looking at successive

measurements of ζ1(t) = σ(x, t). If the difference ∆ζi = ζ1(ti)− ζ1(ti−1) be-

tween the last two acquired values has opposite sign with respect to ∆ζi−1,

it means that ζ2(ti) = 0 happened. This is an approximation, which implies

that some non-idealities are introduced in practice with respect to a perfect

knowledge of σ̇(x, t) = ζ2(t), but they are typically negligible for sufficiently

high sampling frequencies.
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Figure 2.9: S-SOSM: Time evolution of the controlled (uncertain) system.

An example is obtained applying the S-SOSM to system (2.21) in chat-

tering alleviation form. The results are reported in Figures 2.9 and 2.10,

where the time evolution and the phase plane of the controlled system are

plotted, respectively. With respect to the choice σ(t) = x1(t) + x2(t), made

also in the example of Section (2.1.1) where the c = 1 was considered, the

plot of the phase plane for the pair (σ(t), σ̇(t)) is reported in Figure 2.11.
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Figure 2.10: S-SOSM: Phase plane trajectory of the controlled (uncertain)
system
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Figure 2.11: S-SOSM: Phase plane trajectory of the sliding variable and its
first time derivative.

Notice the shape of the resulting trajectory, which is composed of parabolic

branches: this is one of the two typical behaviors enforced by the S-SOSM

algorithm, and highlights the affinity of it with the bang-bang control ap-

proach in second-order systems.

Additionally, comparing Figures 2.6 and 2.10, it is possible to clearly

appreciate the chattering alleviation feature of the adopted strategy. In

fact, the two simulations are carried out with the same sampling time, but

the boundary layer obtained from the application of the S-SOSM is visibly

tighter.

Constrained SMC

When dealing with HOSM, an important aspect concerns actuators and

states saturations. Although constraints on the system state vector or the

input are not explicitly accounted for in standard HOSM control algorithms,
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advanced solutions exist to take into account physical or safety limitations

in real systems. A broad overview of the available techniques is provided in

[225], which constitutes a side result of the work on which this Dissertation is

based12. Specifically, as an example one can consider actuators saturations

which may arise when chattering alleviation is performed. In fact, in case

a discontinuous control action is exerted (thus, based on Equation (2.32)),

the input signal u(t) is bounded in absolute value by the selected gain. On

the contrary, the chattering alleviation form entails the exertion of a control

signal which corresponds to the integral of the discontinuous input. Thus,

u(t) could in principle grow unbounded: as can be seen in Equation (2.33),

this could lead to unbounded φ(x, t) terms which may prevent the respect

of Assumption 1. Particular selections of the control law can prevent this,

leading to a more robust and safe implementation which is guaranteed to

converge.

Many additional types of constraints, for techniques enforcing different

sliding mode orders, are available in the literature but are out of the scope of

the present Thesis. Nevertheless, it can be envisaged that introducing con-

strained sliding mode techniques in the solutions proposed in the following

could lead to improved strategies in most circumstances.

2.1.3 Integral Sliding Mode (ISM) Control

ISM control was formerly introduced in [206] in the context of FOSM with

the aim of enforcing robustness (and, in general, the features offered by

SMC) from the first time instant, avoiding the reaching phase typical of

classic SMC algorithms. Such condition is achieved introducing an auxiliary

sliding manifold Σ(x, t) obtained in general combining the “original” sliding

manifold σ(x, t) with an integral term z(x, t), such that

Σ(x, t) = σ(x, t) + z(x, t) (2.40)

is defined. As will be more clear in the following, the term integral slid-

ing mode refers to the fact that no order reduction is achieved during such

motion (i.e., the equivalent dynamics is of the same order as the original sys-

tem). Obviously, in the controller design Equation (2.40) is to be considered,

12Additionally, a novel constrained sliding mode control algorithm is proposed by the
author in [222], exploiting a linearization-based approach to constrain the trajectories of
the controlled systems.
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which may change the bounds to consider (see Assumption 1).

The choice of z(x, t) must be made such that

Σ(x, t0) = 0 (2.41)

and thus a sliding motion on it is kept from the initial time instant. In

particular, the function z(x, t) can be chosen based on two different main

aims:

• To prescribe the transient dynamics, in case z(x, t) is made to vanish

eventually so that a sliding motion is established (asymptotically or in

a finite-time) on the originally designed manifold σ(x, t);

• To introduce robustness, using the ISM to compensate for matched

uncertain dynamics.

Both the cases will be discussed in the following, considering for generality

the HOSM case (the FOSM case is naturally included).

ISM for Prescribing the Transient Dynamics

A general, well presented overview on the subject is given in [106], which

provides both the motivations and the theoretical basis on which Higher-

Order Integral Sliding Modes (HOISM) generation relies13. In general, when

designing z(x, t) to prescribe the transient phase for HOSM different re-

quirements can be addressed through the degrees of freedom offered by the

selection of such function14. For instance, one could considered smoothness

requirements for the entrance on the motion on σ(x, t), or the possibility of

enforcing a prescribed-time convergence. In any case, the following condition

has to be ideally attained to effectively pursue this aim

z(x(t0), t0) = −σ(x(t0), t0)

ż(x(t0), t0) = −σ̇(x(t0), t0)

· · ·

z(k−1)(x(t0), t0) = −σ(k−1)(x(t0), t0)

(2.42)

13The reader is referred to the mentioned reference for further details, which rely on a
deeper analysis of HOSMs not provided in this Dissertation.

14Notice that the z(x, t) function must anyway be taken (k− 1)-smooth, where k is the
order of the enforced sliding motion.
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and

z(x, t) = 0, t ≥ tf (2.43)

with tf a finite time instant (called the entrance moment). The authors in

[106] propose a (k − 1)-regular polynomial shape for z(x, t), i.e.

z(x, t) = (t− tf )kρ(t) (2.44)

with

ρ(t) = c0 + c1(t− t0) + · · ·+ ck−1(t− t0)k−1 (2.45)

where tf is to be designed15. The coefficients c0, · · · , ck−1 are to be chosen

at the beginning of the control so as to respect the conditions in (2.42) and

(2.43). An example of algorithm exploiting HOISM for transient prescription

is provided in Section 2.1.416.

ISM for Matched Uncertainty Rejection

Considering a system with dynamics as in Equation (2.1), the uncertainty

affecting the dynamics can be modelled generically with a d(t) term. There-

fore, the dynamics of the system can be equivalently described as

ẋ(t) = f̄(x, t) + ḡ(x, t)u(t) + d(t) (2.46)

where f̄(·) and ḡ(·) are vector functions representing the nominal description

of the system (i.e. without uncertainty). In this context, one may consider

an input signal u(t) as

u(t) = ū(t) + uism(t) (2.47)

where ū(t) is a nominal control input and uism(t) is an ISM discontinuous

control signal [206] of any type.

As described for instance in [170], the d(t) term in (2.46) can always be

15Constant values for tf − t0 lead to unbounded required control gains, since this latter
depends on the initial values of σ(x, t). Therefore, an homogeneous law is proposed in
[106] to make tf dependent on the initial conditions thus enabling (at least formally) a
guaranteed convergence.

16Another case is [67], while an adaptive HOISM strategy is proposed in [86].
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decomposed in two parts, i.e. a matched and an unmatched component.

Considering, for simplicity, a system comprising only the matched compo-

nent17 dm(x, t), one has that the dynamics correspond to

ẋ(t) = f̄(x, t) + ḡ(x, t)u(t) + dm(t) (2.48)

with a slight abuse of notation (in the general case, Equation (2.48) should

only refer to the part of the dynamics which is affected by the matched

component of d(t)).

Considered the nominal dynamics in Equation (2.48), the selection of

the integral function z(x, t) can be made as18

ż(x, t) = −∂σ(x, t)

∂x

(
f̄(x, t) + ḡ(x, t)ū(t)

)
, z(x(t0), t0) = −σ(x(t0), t0)

(2.49)

Analysing the equivalent dynamics of (2.48), one must consider the usual

equation Σ̇(x, t) = 0. Considered that

Σ̇(x, t) = σ̇(x, t) + ż(x, t) =
∂σ(x, t)

∂x
(ḡ(x, t)uism(t) + dm(t)) (2.50)

one has, thus, that

ḡ(x, t)uism(t) = −dm(t) (2.51)

Therefore, the dynamics followed by the controlled system corresponds to

ẋ(t) = f̄(x, t) + ḡ(x, t)ū(t) + ḡ(x, t)uism(t) + dm(t)

= f̄(x, t) + ḡ(x, t)ū(t)− dm(t) + dm(t)

= f̄(x, t) + ḡ(x, t)ū(t)

(2.52)

which is the nominal dynamics driven by the nominal input ū(t). This

latter can therefore be designed basing only on the nominal (completely

17For additional considerations, the reader can refer to the discussion in [170]. In par-
ticular, the of the mentioned work propose a strategy to design the ISM controller in such
a way that the unmatched component of the uncertainty does not amplify (which may
generally happen in case the selection of the integral function is not cleverly made).

18Notice that in the specific considered case, where the uncertainty is completely
matched, no considerations regarding the amplification of the unmatched component need
to be made. In general, though, an additional term should be included according to [170].
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known) description of the system, thus pursuing additional control objectives

robustly with respect to the bounded (see, again, Assumption (1)) matched

disturbances. As a special case, the adoption of MPC algorithms for the

nominal control law ū(t) has been vastly investigated in the literature (see,

e.g., [84, 85]).

Notice that an extension to HOSM control is possible, although the prop-

erty of robustness from the initial time instant is in general lost. In par-

ticular, using (2.40) as the sliding variable, one has that during the HOSM

Σ(x, t) = 0, thus providing for all the discussion developed above. Anyway,

although condition (2.41) can easily be respected, the same does not hold in

general for the time derivatives of Σ(x, t), which cannot be imposed as null.

Thus, the sliding set

Σ(x, t) = Σ̇(x, t) = · · · = Σ(k−1) = 0 (2.53)

is attained in a finite time tr > 0. This fact in practice should not constitute

a major problem, but nevertheless at least it must be considered at least the-

oretically that a reaching phase (of unpredictable duration) still exists. An

example of adoption of such strategy is provided by the proposal presented

in Section 3.3, where a Second-Order ISM is induced to robustify an MPC

nominal control scheme via a multi-rate approach.

2.1.4 SMC in Leader-Follower Consensus Control

In the following discussion an application of SOSM is proposed, both for its

relevance in the context of multi-agent systems and to provide a practical

example of the features offered by sliding mode control based solutions. In

particular, the adoption of an Integral SOSM control strategy is presented

to achieve robust prescribed-time leader-follower consensus as one of the

results of the research work related to this Thesis (published originally in

[71]).

Consensus control in multi-agent systems (MAS) has become a relevant

topic in control systems research (see [226], whch constitutes one of the side

contributions of the research work reported in this Dissertation), due to

the increase of engineering applications relying, by nature or by design, on

such concept [134, 168]. It entails, in particular, the attainment (consensus

reaching) of a common value for a function of the state vector of the agents
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involved in the MAS, which can be described by means of a graph19. Such

function can be chosen differently dependent on the particular considered

task, giving rise to different forms of consensus control.

Specifically, leader-follower consensus [82, 141, 130] holds a primary role,

since it is the reference structure for a large variety of practical problems

including formation control [159] and platooning [181], which are the main

subjects of the present Dissertation. Due to the relevance of the topic, great

effort is being made in solving consensus problems under different conditions:

for instance, directed and/or dynamically changing topologies, presence of

delays and faults, and finite-time convergence (see, e.g., [135, 213, 111, 154]).

The introduction of SMC-based techniques has gained significant atten-

tion in the last few years, since it provides complete robustness against

bounded matched uncertainty and the ability to enforce finite-time conver-

gence [226]. Among many possible examples, FOSM control strategies are

succesfully employed in works as [93, 51, 155]20. Discontinuous control laws,

however, might induce the so-called chattering effect, already discussed in

Section 2.1.2. This issue has been considered in consensus problems only in

few works (see, for instance, [145, 127]).

As pointed out in Section 2.1.3 the robustness of SMC in sliding mode

is not exhibited during the so-called reaching phase (i.e. when the sliding

motion is not yet established): the invariance principle does not apply, and

thus robustness cannot be guaranteed. This implies that the controlled

system dynamics is completely dependent on uncertainty, which can disrupt

performance and lead to disastrous consequences. In order to overcome

these limitations, the adoption of integral sliding manifolds is proposed in

works as [145, 92], where it is employed in the classical FOSM formulation

to add robustness to nominal consensus controllers through the rejection of

matched disturbances.

In the following of the discussion, a second-order sliding mode (SOSM)

control strategy, inspired to the so-called Sub-Optimal algorithm (see Sec-

tion 2.1.2), is proposed for robust finite-time leader-follower consensus con-

19To formally study consensus control algorithms, reference is commonly made to the
graph algebraic theory, which allows to model the agents as nodes. A brief introduction
is provided in the following of the Section, while the interested reader may refer to [124]
for a detailed discussion.

20It is worth noticing that a consistent portion of the results rely on Terminal Sliding
Modes (TSM) generation, able to enforce finite-time convergence once the designed sliding
manifold is attained.
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trol in MASs with directed topologies (thus, in a general case). The consid-

ered agents can exhibit first or second-order (perturbed) chain of integrators

dynamics, and the network graph is only assumed to contain a directed span-

ning tree [168] with the leader as the root. With respect to the majority

of the works about consensus already present in the literature, a first con-

tribution is that only partial information is required, namely the relative

distance between the first state of each agent and those of its neighbours.

This constitutes a valuable feature for instance in the case of vehicular or

mobile robot agents, since it implies that information exchange (with all the

subsequent network-related issues) can be avoided if simple range sensors are

present on board. Additionally, it is sufficient that the control signal driving

the leader is bounded for the second-order agents case or with bounded first

derivative in the first-order case, with no specific assumptions about the

particular shape, enabling for a wider range of applications.

A further contribution lies in the introduction of second-order integral

sliding manifolds (see [106] and Section 2.1.3), never used previously in

MAS consensus problems, as an effective design element able to eliminate

the reaching phase (thus guaranteeing robustness from the beginning of the

control process) and enforcing prescribed-time consensus attainment. Thus

guarantees the respect of possible time constraints dictated by the particular

application21.

Due to the establishment of a SOSM, chattering alleviation arises natu-

rally in the proposed approach for first-order agents, while for second-order

agents specific chattering alleviation strategies can be adopted together with

our approach, as will be pointed out in the following.

Graph Theory in MAS Control

Before diving into the details of the proposed strategy, a brief introduction

about graph theory in the context of leader-follower MAS control is pro-

vided. In fact, the most commonly adopted description for the agents in

a MAS and their connections (in terms of “information availability”, it be-

ing through sensors or direct/indirect communication) makes use of graph

21This feature is also of particular importance since, in asymptotic consensus-seeking
protocols, the speed of convergence is tightly related to the graph algebraic connectivity
[134]. However, higher connectivity, which usually implies faster convergence, can also
decrease the tolerance to disturbances and faults, so that a trade-off is required. This
drawback is avoided if the proposed approach is adopted.
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algebraic methods (see [124]).

Consider a generic networked MAS of N + 1 agents (an uncontrolled

leader and N followers), indexed by the subscript i = 0, · · · , N , with the

leader corresponding to i = 0 without loss of generality. One can then

describe the network topology by means of a non-empty directed graph G =

(V,E), with V = 0, · · · , N the set of nodes modelling the agents and E ⊂
V ×V the edges describing the information exchange. In particular (i, j) ∈ E
if and only if j ∈ Ni, with Ni = {j ∈ V : (i, j) ∈ E} the set of neighbours

of agent i, i.e. the agents from which agent i can gather information about

the states. This, in general, can happen through a communication channel

or by any other mean (e.g. sensors, or virtual links).

Definition 1. A directed tree is a directed graph where every node, apart

from the root, has one and only one parent. The root has a directed path to

every node. A directed spanning tree of G is a directed tree that contains all

the nodes of G.

From the literature, it is known that a directed graph G has a (directed)

spanning tree if and only if it has at least one node (in this case, the leader)

with a directed path to all other nodes [168]. The leader-follower network

topology can be described also by means of an adjacency matrix

A =


0 0 · · · 0

a10

... Ā

aN0

 , Ā =


a11 · · · a1N

...
. . .

...

aN1 · · · aNN


ajj = 0, aij = 1 ⇐⇒ j ∈ Ni, 1 ≤ i ≤ N, 0 ≤ j ≤ N

(2.54)

Defining the followers graph degree matrix D̄ = diag{d1, · · · , dN} with di =∑
j aij , one can finally write the Laplacian of a digraph Ḡ comprising only

the N followers as

L̄ = D̄ − Ā ∈ RN (2.55)

The Laplacian of the entire graph G, which is not explicitly reported here

since it will not be useful in the following discussion, can be obtained sim-

ilarly to (2.55) considering d0 = 0 and the complete adjacency matrix A.
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Defining bi = ai0 for convenience, the pinning matrix

B̄ = diag([b1, · · · , bN ]) (2.56)

can now be introduced.

The following result, fundamental for the remaining of the discussion,

holds:

Theorem 1 ([93]). If the digraph G has a directed spanning tree, then L̄+B̄

is invertible.

With the adopted convention and terminology, the problem of enforcing

a leader-follower consensus can be stated as follows.

Problem 1. [Leader-Follower Consensus] Enforce and keep the following

relationship for every agent i = 1, · · · , N in the MASx1i(t) = x10(t)−∆i

xhi(t) = xh0(t), ∀h = 2, · · · , n
(2.57)

with n the order of the considered agents and ∆i > 0 the desired distance

between the first state of the i-th agent and that of the leader.

The Proposed Strategy

In this section, the Integral Sub-Optimal SOSM (IS-SOSM) strategy is pre-

sented to robustly solve Problem 1 in a prescribed (arbitrary) time. Firstly,

second-order agents dynamics (thus, with r = 222) are considered, where

a bounded discontinuous control signal is produced. In this case, partic-

ular techniques can be adopted to reduce the chattering effect. Then, the

strategy is adapted for chattering alleviation producing a continuous control

signal in case of first-order agents (for which, thus, r = 1 holds).

22This follows straightforwardly from the fact that the considered dynamics are in form
of (perturbed) chains of integrators, see Equation (2.58), and the choice of the sliding
variable as in Equation (2.59).
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Second-Order Agents The dynamics of the i-th agent can be modelled

as ẋ1i(t) = x2i(t)

ẋ2i(t) = γi(t) + ui(t)
(2.58)

with γi(t) being an unknown sufficiently smooth function, respecting the

following assumption.

Assumption 2. |γi(t)| ≤ Γi with Γi known constants possibly different for

the different agents i23.

The following further hypothesis are also introduced:

Assumption 3. G contains a spanning tree, as per Definition 1.

Assumption 4. Every follower i, i = 1, · · · , N can get in real time the first

state relative information (x1i(t) − x1j (t)) with respect to all neighbouring

agents j ∈ Ni.

Assumption 5. The input of the leader is bounded and with bounded first

time derivative. This is to say, |(u0(t) + γ0(t))| ≤ U0 and |(u̇0(t) + γ̇0(t))| ≤
Ū0, with U0 and Ū0 known positive constants.

The task is to design a distributed control strategy solving the leader-

follower consensus problem (Problem 1) in a prescribed finite time T > 0

in spite of any possible realizations of γi(t), thus providing robustness with

respect to matched uncertainty. To do so, the following local sliding variable

is selected for agent i.

σi(t) =
∑
j∈Ni

(x1i − x1j + ∆i −∆j) + bi(x1i − x10 + ∆i) (2.59)

As already anticipated, it is evident that the pair {σi(t), ui(t)} exhibits

relative degree r = 2. Additionally, it is worth noticing that only the relative

measurements (x1i(t) − x1j (t)) and possibly (x1i(t) − x10(t)) (if the agent

has the leader as neighbour), available in view of Assumption 4, are required

in (2.59).

23See Assumption 1.
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Then, basing on the discussion provided in Section 2.1.3, the following

choice for the auxiliary sliding variable (2.40) is made

Σi(t) =

σi(t)− (t− tfi)2(c0 + c1(t− t0i)), t ≤ tfi
σi(t) t ≥ tfi

(2.60)

with tfi > 0 being an arbitrarily chosen reaching time. In particular, at

time t = t0i the coefficients c0i and c1i in (2.60) are computed solving the

algebraic system of equationsc0i = σ(t0i)(tfi − t0i)−2

c1i = σ̇i(t0i)(tfi − t0i)−2 + 2σi(t0i)(tfi − t0i)−3
(2.61)

where σ̇i(t) is estimated as θ1i via a Levant exact differentiator [101] con-

verging in a finite time tli ≤ t0iθ̇0i = −λ0i |θ0i − σi(t)|1/2sign(θ0i − σi(t)) + θ1i)

θ̇1i = −λ1isign(θ0i − σi(t))
(2.62)

with λ0i , λ1i > 0 constant gains to be designed according to the desired

performance [101].

Remark 1. Notice that due to (2.62) the reaching phase elimination actually

starts at time t = t0, but in practice this does not constitute an issue since

the differentiator convergence time can be made arbitrarily small increasing

the gains.

The following distributed control law, based on (2.36),

ui(t) = −Kisign

(
Σi(t)−

Σ∗i
2

)
(2.63)

is proposed, where α∗ = 1 is taken for the sake of simplicity with reference

to Assumption 1 and (2.37), since P1 = P2 = 1 holds for (2.58).

Theorem 2. For a MAS of N+1 agents with dynamics as in (2.58) and un-

der the stated assumptions, there exist control gains Ki, i = 1, · · · , N such

that the control law (2.63) robustly solves the leader-follower consensus prob-

lem (i.e., Problem 1) with n = 2 in a finite prescribed time T = max(tfi).
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Proof. Let us initially define, stacking the respective quantities of the agent

dynamics (2.58), the error vectors

e(t) = x1(t)− 1x10(t) + ∆(t), ė(t) = x2(t)− 1x20(t),

ë(t) = u(t) + γ(t)− 1(u0(t) + γ0(t)) := u(t) + d(t)
(2.64)

and then define for convenience κ1(t) = ė(t). Exploiting the fact that L̄1 =

0, and relationships (2.40) and (2.59), one can rewrite (2.60) in vector form

as

σ(t) = (L̄+ B̄)e(t)−ψ(t) (2.65)

Now, let us consider the systemκ̇1(t) = u(t) + d(t)

σ̇(t) = (L̄+ B̄)κ1(t)− ψ̇(t)
(2.66)

which is in the appropriate form for the application of the so-called method

of control hierarchy [49, Section VI]. This method can be employed to find

Ki in (2.63) basing on σ̈(t) for the respect of conditions (2.37) and (2.38),

and thus proves the existence of a suitable set of gains guaranteeing robust

convergence in spite of the matched disturbance d(t). Since the considered

control law enforces a SOSM, the sliding mode is eventually established

both on σ̇(t) = 0 and σ(t) = 0 at a certain reaching time tr > 0. Then,

as soon as t = T = max(tfi) > tr, ψ(t) = ψ̇(t) = 0 and so, due to the

invertibility of (L̄ + B̄) (Theorem 1), the previous relationships translates

directly into (2.57) in view of (2.65) and (2.66), thus solving the stated

consensus problem.

The method of control hierarchy introduced in the proof of Theorem 2

guarantees the possibility of finding suitable gains for the distributed con-

trollers once the topology of the network is known. According to the pro-

cedure, the succession of equivalent dynamics κ
[j]
1 , j = 1, · · · , N − 1 has to

be computed, considering at each iteration j the Utkin-Drazenovic equiv-

alent controls ueqi (t) for agents i = 1, · · · , j and κ
[0]
1 = κ1. These latter

are computed as the solution of σ̈
[i−1]
i (t) = (L̄ + B̄)iκ̇

[i−1]
1 (t) − φ̈i(t) = 0.

Then, proceeding backwards, the gains KN , · · · ,K1 are found considering
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successively the obtained systems κ
[j]
1 , j = N − 1, · · · , 0 for the selection of

Ki according to (2.38) (the reader is referred to [49] for a thorough presen-

tation and illustrative examples clarifying the concept).

Remark 2. It is worth noticing that, at least from simulation results, one

can conjecture that also in the case of gains Ki = K, ∀i chosen all equal,

there exist a finite value K∗ such that K ≥ K∗ guarantees finite-time con-

vergence, independently of the particular structure of the system. Therefore,

the procedure previously described is needed only to prove existence of fea-

sible gains but appears not mandatory in practice. In practical situations

and especially if a large number of agents has to be considered, in order to

avoid possibly cumbersome computations, a proper set of gains can be found

by trial and error in simulation. The formal proof of such a statement is

anyway currently subject of further investigation.

Remark 3. Theorem 2 deals with the general case in which a reaching phase

exists. When a manifold of integral type is employed, the system is in sliding

mode from the initial time instant (i.e. tr = 0) or tr = max(t0i) in case

distributed Levant differentiators are employed.

Remark 4. Particular chattering alleviation techniques, for instance that

proposed in [206] or those relying on the selection of a non-discontinuous

law can be adopted also for the second-order case. Alternatively, to maintain

unaltered the robustness and increase precision, third-order SMC [54] can be

effectively employed.

First-Order Agents In the case of first-order dynamics, for agent i rela-

tionship (2.58) is replaced by

ẋ1i = γi(t) + ūi(t) (2.67)

with γi(xi(t), t) an unknown sufficiently smooth function with assumed bounded

first time derivative, i.e.

Assumption 6. |γ̇i(t)| ≤ Γ̂i, Γ̂i being known constants.

In order to achieve prescribed-time consensus, the same choices (2.59),

(2.60) are made as before, and hence also (2.61) keeps holding for the initial

time instant t0. The Sub-Optimal law can be employed here in chattering
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Figure 2.12: Graph representation of the MAS network considered in the
simulations. The arrows follow the information flow direction, opposite with
respect to the edges of graph G. From [71].

alleviation form using as control ūi(t) =
∫ t

0 ui(t) dt, with ui(t) as per (2.63).

The same considerations made in the previous case for convergence can easily

be adapted for this case under the additional Assumption 6.

Simulation Results

The proposed approach is now tested in simulation, considering a network

of 4 agents and an independently controlled leader for both the cases of first

and second order chain of integrators dynamics.

The dynamics of the agents are supposed affected by sinusoidal distur-

bances γi(t) of different amplitude and frequency generated from a uniform

random distribution, as reported in Figure 2.13. The leader is considered

as governed by a sinusoidal input signal, generated independently of the

presented architecture. The considered task is that of robustly reaching

leader-follower consensus, i.e. (2.57), while keeping ∆i = 5i. A prescribed

convergence time of T = 1s is considered as a requirement for the design of

the integral manifold, while the initialization time is set as t0 = 0.1 for all

the agents.

The gains of the local Levant differentiators are taken as λ0i = 250,

λ1i = 70000, in both the first and second-order cases, while the control

gains are chosen according to the introduced procedure for the second-order

case and all equal (Ki = 1000) for the first-order case. The two different

design methodologies are presented simultaneously in order to validate both
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Figure 2.13: Sinusoidal disturbances acting on the agents dynamics. From
[71].

the formal methodology and the practical Remark 2.

The application of the method of control hierarchy to the considered

network with agents ordered as in Figure 2.12 gives the following sufficient

conditions for convergence, according to (2.38):

K1 > 2Γ1 + 2U0 +K2 + Γ2 + sup
t∈[0,T ]

(ψ̈1(t))

K2 > 2

(
Γ2 + U0 + sup

t∈[0,T ]
(ψ̈2(t))

)

K3 > 2

Γ3 + U0 + sup
t∈[0,T ]

∑
i=2,3

ψ̈i(t)


K4 > 2

Γ4 + U0 + sup
t∈[0,T ]

 ∑
i=2,3,4

ψ̈i(t)



(2.68)

In practice, one could either choose magnitudes so high to consider all the

possible realizations of the functions ψi(t) or compute suitable values for the

gains once the transient functions coefficients become explicitly available by

means of (2.61). In the second case, if t0i > 0 for the i-th agent, for t ∈ [0, t0i)

one can simply neglect the existence of the terms ψ̈(t) in the expression of

the lower bound for Ki. For the sake of simplicity, here K2 = K3 = K4 =
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(a) Sub-Optimal law.

(b) Integral Sub-Optimal law.

Figure 2.14: States x1(t) for the second-order agents. From [71].

K5 = 800, K1 = 1500 were conservatively selected.

The time evolution of the states of the second-order agents are reported

in Figure 2.14 and 2.15, respectively. It is evident that the adoption of the

proposed Integral Second-Order Sub-Optimal Sliding Mode (IS-SOSM) law

is capable of enforcing finite-time consensus reaching if suitable gains are

selected. Additionally, the benefits of introducing a second-order integral

manifold are appreciable, since it allows greater robustness as well as pre-

scribed convergence time. In particular, it is possible to see how during the

reaching phase (present if a plain S-SOSM is employed as the local controller
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(a) Sub-Optimal law.

(b) Integral Sub-Optimal law.

Figure 2.15: States x2(t) for the second-order agents. From [71].

for the agents) the dynamics are affected by the sinusoidal uncertainty, while

in the proposed IS-SOSM case a robust behaviour is observed. In fact, dur-

ing the transient phase σi(t) = ψi(t), σ̇i(t) = ψ̇(t) are smooth polynomials

independent of the external disturbances.

Similar considerations can be drawn for the first-order agents case, for

which the states evolution is depicted in Figure 2.16, with the standard

Sub-Optimal controller able to enforce finite-time consensus. Anyway, the

superiority of an integral manifold selection appears evident also in this cir-

cumstance, for which the continuous input signals are reported in Figure

2.17. Moreover, one can evidence that avoiding the reaching phase trans-
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(a) Sub-Optimal (continuous) law.

(b) Integral Sub-Optimal (continuous) law.

Figure 2.16: States x1(t) for the first-order agents. From [71].

lates directly into the generation of a smoother control signal: this can be

beneficial for instance in vehicular applications (consider the agents as cars

with passengers, for which abrupt velocity changes constitute a source of

discomfort). In fact, the characteristic “sawtooth” behaviour, which arises

from the integration of a constant signal with switching sign, is avoided.

Notice that the degrees of freedom provided by the possibility of design-

ing the transient function could also be exploited to considered advanced

features in place of a prescribed transient time. In fact, for instance, col-

lision avoidance capabilities could possibly be embedded in the design of
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(a) Sub-Optimal (continuous) law.

(b) Integral Sub-Optimal (continuous) law.

Figure 2.17: Continuous inputs of the first-order agents. From [71].

the functions ψi(t), although this is not an issue addressed in the present

contribution. As a general rule, stated here on the sole basis of intuition

but derivable also from formal computations, notice that the requirement

for a fast transient (i.e. small T ) or a particularly sharp transient function

entail the need for greater control gains. Thus, the trade-off between the

contrasting requirements should be considered during the design procedure.
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2.2 Model Predictive Control (MPC)

In this section a very brief introduction on Model Predictive Control (MPC)

is provided. Although the topic is one of the most extensively treated in the

control systems literature (for reference, see for instance [121, 118, 32]), here

only the bare minimum concepts are reported in order to understand the

solutions adopted in the following of this Dissertation24.

MPC is a family of optimal control strategies which rely on the model

of the system under control to predict the successive state trajectory and

select an appropriate sequence of inputs to drive it according to a given

cost function, possibly in the presence of constraints. Different algorithms

exist, addressing a variety of problems characterized by the cost function,

the dynamics of the system, the shape of the constraints and the values upon

which the control scheme relies to close the feedback loop. An exhaustive

discussion on these different aspects is out of the scope of the present Thesis,

which reports the general concept as follows.

Let us introduce a sampling time Ts along with a prediction horizon

P ∈ N which induces a sequence of inputs

ūk = (uk, uk+1, · · · , uk+P−1) (2.69)

for every sampling step k (corresponding to the sampling instant kTs). The

formulation adopted here relies on a continuous time framework, so that the

input signal is to be considered as a piece-wise constant function25, namely

u(t) = uk, kTs ≤ t < (k + 1)Ts (2.70)

Considered also a general dynamics description of a system

ẋ(t) = f(x(t), t, u(t)) (2.71)

with x(t) ∈ Rn and u(t) ∈ Rm, the (nonlinear) MPC algorithms rely on a

24A huge amount of different aspects have been addressed in research: just to mention
a few among many others, the study of stability (see, e.g. [184, 121, 9]), the proposal of
robust solutions such as [27, 119, 122] and the development of stochastic algorithms [123].

25This is a commonly adopted framework, although other possibilities (e.g. discrete
MPC formulations) can be adopted.
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provided cost function

Jk =
k+P−1∑
i=k

j(x((i+ 1)Ts), iTs, u(iTs)) + j̄k (2.72)

at every time instant k to compute the respective optimal input sequence

ūk as in (2.69). In Equation (2.72), the function ji(·) describes the cost

associated to the i-th time step, while j̄k provides a general term which

includes any possible quantity in the prediction horizon k, · · · , k+P −1. In

particular, it can be vanishing or correspond to the terminal cost, depending

on the adopted formulation. Possibly, constraints can be provided both in

terms of the input values, the states, or in general an arbitrary function of

states, inputs and time.

The problem of MPC can then be generically stated as follows.

Problem 2 (Nonlinear MPC). At each time step k, find the optimal se-

quence ūk (as in (2.69)) which minimizes the cost function (2.72) under the

dynamics (2.71), subject to the constraints

g1(x(t), t, u(t)) < 0 (2.73)

g2(x(t), t, u(t)) ≤ 0 (2.74)

with g1(·) and g2(·) an arbitrary vector function of any dimension (possibly

null) of states, inputs and time, samples at discrete time instants k, · · · , k+

P .

Once computed the optimal sequence ūk, according to the principle of

receding horizon, only the first input is applied to the system for the subse-

quent Ts seconds, before a new optimization is performed at time k+ 126 to

provide greater robustness.

Among the many possible frameworks in which MPC can be successfully

adopted, the linear case is of paramount importance. In fact, if both the dy-

namics of the controlled system and the constraints are linear, and the cost

function is quadratic, the optimization problem becomes a Quadratic Pro-

26In this discussion, as always in the theoretical developments about MPC, the assump-
tion that the solution of the optimization problem is instantaneous is made. Of course, this
is not the case in real-life applications, where in general performance is of great importance
and well-crafted implementations are required to cope with the control requirements. A
discussion about these aspects is out of the scope of the present work.
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gramming one. Thus, special techniques can be adopted which provide su-

perior performance and guaranteed convergence. Additionally, linear MPC

is well studied in the literature and many theoretical results are available.

In that specific case, one has in particular that the MPC cost function

can be defined by means of the matrices Q � 0 and R � 0. The general

expression becomes then

Jk =
k+P−1∑
i=k

(
x̂Ti+1Qx̂i+1 + uTi Rui

)
(2.75)

where x̂i is the vector of predicted states at step i according to model (4.8)

starting from x(kTs) and sampled over the considered prediction horizon, i.e.

at time instants (k+ 1)Ts, · · · , (k+P )Ts. Thus, x̂i represents the predicted

state at the time step i, obtained sampling the trajectories computed inside

the MPC algorithm, dependent on the chosen input sequence ūk. Also

in Equation (2.75) the terminal penalty cost could be included (and it is,

indeed, in many formulations). However, in the following of the discussion

this additional term is not considered and thus the simplified expression

(2.75) is provided here.
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Chapter 3

Robust Platoon Control

In this chapter, the problem of robustly control a platoon of arbitrary size

is presented and addressed proposing two different approaches relying on

Sliding Mode Control. In fact, as will be made more clear in Section 3.2,

uncertainty always exists in practical platoon control applications and could

in principle disrupt the performance or even determine unstable behaviors,

possibly leading to crashes. Therefore, independently of the specific adopted

control strategy, robustness remains one of the major issues to address in

order to deploy effective platoon control systems in real-life scenarios [193],

especially in the presence of tightly spaced vehicles. The inherent robustness

of SMC, together with its low computational complexity, constitute then a

promising feature which can be effectively exploited in this context.

Specifically, in the present Dissertation,

• A first solution, presented in Section 3.3 (and published originally

in [223]) deals with the specific problem of robustifying a nonlinear

distributed MPC platoon control system by means of a multi-rate local

control scheme including a fast, lightweight Integral Sliding Mode (see

Section 2.1.3) correction loop. While the local MPC is in charge of

tracking the inter-vehicle distance and consider energy efficiency1, the

corrective term is injected at a high frequency to reject the matched

disturbance acting on the vehicle dynamics. This latter, in particular,

is considered as a second or third-order system, depending on the

1In the present implementation energy efficiency is considered as an additional objec-
tive in the optimal control problem. However, this is just to highlight the possibility of
effectively including advanced features while controlling the platoon.
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dynamics of the powertrain and the working assumptions made (as it

will be clarified in the following).

Besides the introduced general robustness, which guarantees better

tracking properties and more precise consideration of the constraints,

an additional effect is that of enforcing coherence in the string. This

concept can be informally defined as the ability of the formation to

behave like a rigid body, which implies that (at constant velocity) the

distance between the leader and the last follower remains constant and

equal to a prespecified one [15], obtained as the sum of the steady-state

distances between the single adjacent vehicles. When vehicles proceed

at a constant relative distance, e.g. during cruising on highways, co-

herence becomes a valuable feature especially when a large number of

agents is considered (see, e.g. [69]). Despite the enforcement of local

and string stability, in fact, as highlighted for instance in [114], co-

herence cannot be guaranteed in principle in the presence of unknown

perturbations of the acceleration, determined e.g. by the presence of

uncertainty in the description of the dynamics or due to external phe-

nomena. Some proposals exist making use of linear local controllers

considering linear dynamics for the vehicles, but the results do not

apply in principle to the nonlinear case. The simulation results pro-

vided show, instead, how the proposed strategy helps in maintaining

coherence while countering the uncertainty acting on the dynamics of

each controlled vehicle.

• The results presented in Section 3.4 and published in [224] rely instead

entirely on Sliding Mode Control. Specifically, it is shown both theo-

retically and in simulation that the generation of Second-Order Sliding

Modes by means of local controllers guarantees the robust achievement

of Disturbance String Stability (DSS, a relatively new concept of string

stability considering a wide range of cases, introduced in [30]) in a

rather general case, i.e. for vehicles dynamics describable by means of

uncertain third-order models. In order to enforce global convergence

and string stability, a particular formulation of the spacing policy is

introduced, which aims at the attainment of a specified constant inter-

vehicle distance and a predefined space-dependent velocity profile. In

this respect, it is worth noticing how the particular strategy chosen to
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enforce the sliding motion is not important, and therefore any SOSM

control algorithm can in principle be adopted considering proper lower

bounds for the control amplitude. However, an explicit proof is given

for the adoption of the Sub-Optimal SOSM strategy, which is used

also in the reported simulations.

Before going through a detailed description of the research results, a

brief general introduction on platoon control is provided below in Section

3.1 with the aim of establishing a common knowledge base and a uniform

notation.
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3.1 Platoon Control Basics

In order to introduce the basic concepts of platoon control, a string composed

of N + 1 vehicles indexed by i in ascending order of position (with i = 0

corresponding to the leader) is considered. A platoon is enforced with the

vehicles following the leader (which may or may not be explicitly controlled)

while keeping a determined inter-vehicle distance (of course, while avoiding

collisions). The reader may refer to Figure 3.1 for a schematic representation

of the concept.

Figure 3.1: Basic idea of a platoon.

Two fundamental requirements, namely local and string stability, are

crucial in platoon control. The former relates to the most classical concept

of stability and describes the ability of the single vehicles in the platoon

to effectively track the specified inter-vehicle distance with respect to the

preceding vehicle. The selection of this distance by means of a suitable

spacing policy, in turn, is key in determining not only the local (transient)

behavior of the vehicles but also the string stability properties of the entire

platoon. This latter, roughly speaking, can be identified as the ability of

the string to positively respond to perturbations, specifically avoiding their

amplification as they propagate backward toward the platoon tail [195, 66,

185, 149, 171].

To dive a little deeper, one can define the distance di(t) > 0 between

vehicle i and i− 1 as

di(t) = si−1(t)− si(t), i = 1, · · · , N (3.1)

with si(t) the position of vehicle i in a unidimensional space (i.e. along the

unique spatial coordinate, which will be referred to as s). Notice that, obvi-

ously, the inter-vehicle distance is not defined for the leader, which in gen-

eral does not have to follow any preceding vehicle. Additionally, near-zero

or negative distances mean that a crash has occurred, and thus represent a
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situation to avoid. With respect to this particular issue, notice that special

considerations must be made in the design of the local controllers in order

to avoid undershoots, especially during the transient phase, in the track-

ing of the inter-vehicle distance. To this end, a minimum safety distance

can be imposed as a constraint in MPC-based local controllers (as done,

for instance, in [223]) with long enough prediction horizons. As a possible

alternative, the authors in [172] propose instead a special formulation of the

local tracking control problem with sliding mode onboard controllers.

In general, having in mind the just introduced concepts, the process

of designing a distributed platoon control system can be divided into two

distinct parts:

• At first, a proper spacing policy is selected to enforce the desired be-

havior for the controlled vehicles in terms of transient dynamics and

string stability. In other words, a reference distance d∗i (t) is defined to

be tracked by each vehicle i;

• Then, a proper local control strategy is developed for the single vehicles

to track the desired distance, i.e. to enforce2

di(t)→ d∗i (t). (3.2)

Notice that local controllers must rely only on the locally available

information (whether it comes from sensors or inter-vehicle communi-

cation), i.e. distributed control architectures are usually considered.

Among the possible choices for the spacing policy, the most commonly

adopted are, by far, the Constant Distance (CD) (see, for instance, [79, 232])

and Constant Time Headway (CTH) [198, 110] ones3. For the first,

d∗i (t) = ds (3.3)

2The achievement of such inter-vehicle distances is to intend slightly differently, depen-
dent on the adopted controllers. For instance, linear and MPC controllers only guarantee
asymptotic convergence, while pure SMC strategies enforce finite-time convergence.

3A wide variety of spacing policies can actually be designed, and have been proved to
work under certain circumstances, often providing better performance than the CD and
CTH ones at the expense of more complex control architectures and/or stability analysis.
For instance, among others, the authors in [217, 229] propose nonlinear spacing policies,
while the policy proposed in Section 3.4 makes use of information coming from the platoon
leader.
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holds, with ds > 0 a constant distance to be chosen. The second, instead,

relies on the idea of a velocity-dependent spacing. In fact, a time headway

th > 0 is introduced so that the reference spacing becomes

d∗i (t) = ds + thvi(t) (3.4)

where ds > 0 is considered in this case a minimum safety distance (to be

kept when the velocity is null). It is well understood in the literature that,

due to the inherent filtering features of (3.4), perturbations are attenuated

throughout the string of vehicles, thus providing some forms of string sta-

bility in many cases. In particular, this can be easily proved for a string

of linear systems (refer to, e.g., [3]) under the assumption that the initial

perturbations are null. Notice that the same cannot be said, in general, for

the CD policy as defined in Equation (3.3), for nonlinear vehicle dynamics

or for non-null initial perturbations. In these cases, ad-hoc formulations of

the controllers must be developed and specifically studied.
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3.2 Longitudinal Dynamics Modelling

For platoon control applications, it is almost always sufficient to rely on

the longitudinal dynamics description of the vehicles. In particular, for

the modelling of the i-th vehicle, with i = 0, · · · , N , one can consider the

following general third-order model
ṡi(t) = vi(t)

v̇i(t) = ai(t) + φi(t)

ȧi(t) = −ai(t) + ui(t) + γi(t)

(3.5)

where the state vector xi(t) = [si(t) vi(t) ai(t)]
T includes, respectively, the

absolute position, velocity and reference acceleration for vehicle i, and ui(t)

is the control input (it can be conceptually seen as a reference commanded

acceleration).

In order to provide a formal description of the uncertainty affecting the

vehicle models, the unknown terms φi(t) and γi(t) are here introduced.

These account mainly for the following issues:

• The models usually adopted for platoon control applications are often

derived by means of I/O linearization (see, e.g., [91]), as described

for instance in [215]. Such a technique enables to transform a complex

dynamic system (dependent, among other elements, on the engine and

powertrain characteristics, the aerodynamic drag, and the rolling re-

sistances) into a chain of integrators (notice that, here, one would be

considering the system in (3.5) with φi(t) = γi(t) = 0). Anyway, to do

so the exact knowledge of the dynamics to be linearized is mandatory:

since it is never the case, due to the fact that a precise description of all

the involved complex dynamics is impossible to obtain in practice, it

produces approximate descriptions where uncertainty is not explicitly

accounted for;

• Some external disturbances and unmodelled effects may act on the

system in various forms, introducing further uncertainty;

• Despite (3.5) describes a platoon of homogeneous vehicles, the possi-

ble inhomogeneities existing in practice can be included in the model

uncertainty.
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Notice that in most of the literary works, not explicitly considering the

robustness of the proposed strategies, the actually employed model does not

comprise the explicit inclusion of the uncertainty. This, thus, can be seen

as an initial partial contribution of the following works.

The next assumptions are made4, which will be useful in the remainder

of the chapter.

Assumption 7. There exist known positive constants Φ, Φ̂ and Γ such that

|φi(t)| ≤ Φ, |φ̇i(t)| ≤ Φ̂, |γi(t)| ≤ Γ (3.6)

hold for every controlled vehicle i.

Assumption 8. The conditions

vi(t) > 0, |ai(t)| < A (3.7)

hold for some known positive constant A and for every controlled vehicle i.

Another possible representation for the longitudinal dynamics of the ve-

hicles in a platoon, often adopted in the literature, considers explicitly the

forces exerted at the wheels level (see Assumption 9) and the vehicles pa-

rameters. The most simple description is the following two-states model,

which anyway still accounts for uncertainty as already discussed, namelyṡi(t) = vi(t)

miv̇i(t) = Fin,i(t)− Floss,i(t) + φi(t)
(3.8)

where m is the vehicle mass, while Floss,i(t) encompasses the aerodynamic

drag and rolling resistance forces such that

Floss(t) =
1

2
ρCaSv

2(t) + Crmg (3.9)

with ρ the air density, Ca the aerodynamic coefficient, S the equivalent

vehicle surface, Cr the rolling resistance coefficient and g the gravitational

acceleration.

4Such assumptions are (almost) always made in the context of (robust) platoon control
when the local controllers are of SMC-type. Thus, they do not constitute a limitation with
respect to the currently available literature works.
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As for the input force Fin(t), let us introduce the following assumption

(indices i will be omitted for the sake of simplicity, although all the quantities

are to refer to all the vehicles under control).

Assumption 9. The vehicles are equipped with low-level fast enough slip

controllers, able to maintain the desired slip ratio while keeping the tire-road

friction characteristic in the linear region (see, e.g., [163]). As a conse-

quence, defining ωl(t) as the l-th wheel rotational speed, one has

ω̇l(t) ' 0 ∀t (3.10)

That is to say, a steady state condition is considered so that at each time

instant the forces exerted at the wheels level can be considered as coincident

with that in output from the powertrain. Therefore,

∑
l∈DW

Tinl(t)

Rel
= Fin(t) (3.11)

where DW is the set of driving wheels, Tinl(t) is the net torque applied to

the l-th wheel (supposed equal for the two wheels on the same axle) and Rel
is its effective radius.

From Assumption 9, two consequences can be directly drawn:

• The scope of validity of model (3.8) coincides with a limited range of

input forces Fin(t). In particular, it corresponds to the linear region

of the tire-road friction characteristic curve (see for instance [76]).

This, in turn, implies that for an effective control the forces must be

constrained in the range

Fin(t) ∈ [Fmin(t); Fmax(t)] (3.12)

with bounds which depend on the specific properties of the tire-road

characteristic curve and, thus, may in principle vary with time.

• Since the major effects of a transient in the generation of the tire-road

forces are neglected, it appears reasonable to assume that the force

Fin(t) actually exerted follows a first-order dynamics with respect to

the one requested, namely

τḞin(t) = Fu(t)− Fin(t) + γ(t) (3.13)
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where τ is the (possibly unknown) time constant and Fu(t) is the

requested force, which can be positive or negative.

Notice that the introduction of a third equation leads to a third-order

representation analogous to the already introduced kinematic model in (3.5),

based on similar considerations but with explicit representation of the forces

and the vehicle parameters5, namely one has
ṡi(t) = vi(t)

miv̇i(t) = Fin,i(t)− Floss,i(t) + φi(t)

τiḞin,i(t) = Fu,i(t)− Fin,i(t) + γi(t)

(3.14)

Remark 5. Possible residual mismatches due to imperfect knowledge of the

effective radius and the real slip control actuation, which are neglected by

virtue of Assumption 9, can be lumped into the uncertainty terms φi(t) and

γi(t) as well.

5Also this representation is usually derived by means of feedback linearization, ne-
glecting the real underlying dynamics of the powertrain. Moreover, it is always possible
to represent the same vehicle dynamics by means of one model or the other, rescaling suit-
ably the involved variables. For instance, note that the acceleration in (3.5) is represented
as the ratio between the exerted force at the wheels level and the vehicle mass in (3.8)
and (3.14).
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3.3 ISM-Robustified Multirate Distributed MPC

for Platoon Control

In the following, a non-iterative non-cooperative Distributed Model Predic-

tive Control (DMPC) scheme is proposed for the robust control of arbitrarily-

sized platoons. In particular, a multi-rate scheme is proposed for the local

distributed controllers. Its design couples a (relatively slow) nominal DMPC

regulator with a fast second-order integral sliding mode controller. This lat-

ter compensates for bounded uncertainty, and thus the resulting system is

led to follow the trajectory predicted using the nominal model during each

control step. As a consequence, any formulation for the distributed model

predictive controllers can be exploited to account for distance tracking and,

in general, other goals such as energy efficiency. In the present work, in

particular, a fleet of EVs is considered and the power flowing out of the bat-

teries is required to be minimized in a multi-objective optimization. Due to

the obvious environmental and economic benefits that follow, in fact, energy

efficiency appears to be a natural advanced objective in an evolved forma-

tion control system [158]. With reference to EVs and HEVs, specifically, the

employment of the so-called regenerative braking allows to recover energy

while decelerating the vehicle. This feature, of course, makes the control

problem non-trivial and rather interesting.

In contrast to already existent robust strategies, that rely on complex

MPC formulations, the proposed architecture only introduces a simple and

lightweight additional term which can be easily implemented on the on-

board vehicles controllers. Additionally, the second-order formulation for

the ISM algorithms helps to reduce the chattering phenomena and enables

the consideration of either second-order (3.8) or third-order (3.14) dynamics

without affecting the design of the basic multi-rate algorithm6.

As a direct consequence of the robustification, it is evidenced in the

following that the closed-loop control scheme becomes far less sensitive to

the MPC sampling time, which in principle can be chosen relatively high.

This feature may enable less required computational power and lower packet

transmission rates, with obvious benefits from both a local and a network

standpoint. An internal schematization of the distributed controllers is

6Beside introducing an integration step in case of chattering alleviation, as already
discussed in Section 2.1.2.
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Figure 3.2: Schematic of the multirate control system. The brighter gray
box indicates a slower rate (sampling time Ts), while the darker box refers
to the higher one (sampling time ts). From [223].

sketched in Figure 3.2, which provides a reference for the entire subsequent

discussion.

In order to allow the description of a more general situation, the leader is

kept uncontrolled. For instance, a higher-level controller (e.g. a traffic regu-

lation system, which controls the steady-state platoon speed [142]) could be

employed to provide reference speeds for the leader. To provide a modern

approach to the problem, as already introduced in the previous discussion,

electric vehicles are considered, and thus a side objective of the local op-

timizations is identified in the battery energetic out-flow minimization. In

particular, the regenerative braking feature (see, e.g., [28]) is considered,

encouraging it over the usage of the mechanical braking system. With refer-

ence to models in Equations (3.8) and (3.14), the input force is then taken

here as

Fin(t) = Fe(t) + Fb(t) (3.15)

where Fe(t) is the total electric force (which can be either positive or nega-

tive, during acceleration or regenerative braking, respectively) and Fb(t) ≤ 0
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is the mechanical braking force, which can only be negative.

A simple model for the electric power flow is then introduced, and will

be used in the MPC optimizations to account for the efficiency-related ob-

jective. Specifically, the total power utilized by the motors can be written

as

Pm(t) =
∑
µ∈M

Tinµ(t)ωµ(t)ηµ(Tinµ(t), ωµ(t))−sign(Tinµ (t)) (3.16)

where M is the set of electrical motors driving the vehicle wheels. The

efficiency function ηµ(Tinµ(t), ωµ(t)), specific of the particular motor µ, is

usually obtained via experiments. In this work, anyway, for the sake of sim-

plicity it is assumed constant over the whole considered working region. The

wheels rotational speeds ωl(t) in (3.16) can then be approximated through

the expression

ωl(t) =
grl
Rel

v(t) (3.17)

where the gear ratio grl is supposed constant, as usually done with EVs7.

Notice that the sign(.) function at the exponent in Equation (3.16) allows to

consider also regenerative braking, during which the power flows “backward”

from the wheels to the engine, in a unique expression. Thus, the total power

entering (or exiting) the battery pack can be described as

Pb(t) = Pm(t)η
−sign(Fin(t))
b (3.18)

with ηb ∈ [0, 1] the efficiency of the conversion from mechanical to chemical

energy, supposed here constant again for the sake of simplicity.

3.3.1 Distributed MPC

In the proposed approach, every vehicle in the platoon equips an indepen-

dent controller and a short-distance Vehicle-to-Vehicle (V2V) communica-

tion device. The required measured quantities for closing the local feedbacks

comprise the instantaneous velocity as well as the distance from the preced-

ing vehicle (obtainable, for instance, via a range sensor on the front bumper).

Since the communication frequency is assumed comparable with that of the

7Nevertheless, a variable ratio can be considered for canonical vehicle configurations,
with a possible additional degree of freedom in the control (anyway, notice that this would
in principle require a mixed-integer optimization procedure, which might be quite heavy
from the computational point of view).
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local DMPC controllers, the resulting architecture is designed based on a

non-iterative MPC scheme. At each step, specifically, every vehicle sends

the computed optimal control sequence (from the second time step on) to

the following one, which at the successive iteration computes an updated

prediction of the future distances8. The ISM correction term, as will be

thoroughly explained in the following, is instead computed locally for each

of the vehicles. As a consequence, no fast interaction is required among the

neighbors for the transmission of information, thus avoiding the need for

a large transmission bandwidth. The main result of the remaining of this

section can be summarized as the fact that if all of the vehicles equip the

proposed local multi-rate controller, robust control of the entire formation

is enforced. This holds for both the considered cases (namely, with models

as in Equation (3.8) and (3.14)) under Assumption 7, and allows to achieve

coherence of the whole platoon.

For the MPC on-board controller of the i-th vehicle, the following nom-

inal model9 (i.e. not accounting for uncertainty) is considered based on

(3.8) 
˙̄di(t) = v̄i−1(t)− v̄i(t)
˙̄vi−1(t) = 1

mi−1

(
F̄ini−1(t)− F̄lossi−1

(t)
)

˙̄vi(t) = 1
mi

(
F̄ini(t)− F̄lossi(t)

)
= f̄v(v̄i(t), ui(t))

(3.19)

where the term d̄i(t) is the nominal relative distance, which is defined as

d̄i(t) = s̄i−1(t)− s̄i(t) (3.20)

as per Equation (3.1). Notice that d̄i(t) is available for every vehicle through

measurement (supposedly with ideal precision) by assumption. The velocity

vi(t) is also assumed to be available, and hence vi−1(t) can be sent to vehicle

i−1 through short-range communication. Alternatively, it can be estimated

through precise enough differentiators (e.g. exact Levant differentiators, see

[101]). The second equation in (3.19) is based on the nominal parameters

received by i from i−1 at connection time, i.e. as soon as vehicle i approaches

vehicle i− 1 and recognizes it as its predecessor in the platoon.

8Notice that, in order to match the length of the future predicted trajectory with the
received input sequence, the last term of this latter is repeated in the adopted strategy.

9The ·̄ notation indicates nominal quantities, predicted or estimated using the nominal
models.
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For a generic vehicle r = {i− 1, i}, the control input signal coming from

the on-board MPC ur(t), is decomposed as

ur(t) = u1r(t) + u2r(t) = Fer(t) + Fbr(t) (3.21)

according to Equation (3.15). Two cases can be identified in practice with

reference to Equation (3.13), which require to slightly different control schemes.

Case 1. The actuators dynamics can be neglected, i.e.

τr ' 0 ⇒ F̄inr(t) = ur(t) (3.22)

so that the final model is of order two as per Equations (3.8) and, conse-

quently, (3.19).

Case 2. The actuators dynamics cannot be neglected, i.e.

τr > 0 ⇒ ˙̄Finr(t) =
1

τr

(
ur(t)− F̄inr(t)

)
(3.23)

so that the an additional equation must be added to (3.19) basing on the

third-order description in Equation (3.14)10.

As described already in Section 2.2, at each discrete time instant k (sam-

pled with period Ts corresponding to the selected MPC time step), vehicle i

computes an optimal control sequence uoi,k = {uoi,k, · · · , uoi,(k+P−1)}, uoi,k =

[uo1i,k, u
o
2i,k

]T solving a constrained optimization problem minimizing a cost

function Ji,k over the P future steps (i.e. the prediction horizon). Then,

following the receding horizon approach, only the first computed input

uoi,k is applied for the entire subsequent interval Ts. The rest of the con-

trol sequence is sent to vehicle i + 1, which in the successive optimiza-

tion, at time instant k + 1, predicts v̄i,(k+1) = {v̄i,(k+1), · · · , v̄i,(k+1+P )} and

d̄i,(k+1) = {d̄i,(k+1), · · · , d̄i,(k+1+P )} applying the received sequence to the

stored nominal model of vehicle i (as already anticipated, the last term is

duplicated in order to match the required length).

Remark 6. Even if the leader is considered independently controlled as

a generalization, it is nevertheless required that it sends to the following

10In this scenario, in the case of a state-feedback MPC formulation (as the one adopted
in this work) also Finr (the real value, sampled before performing the MPC optimizations)
must be available to close the loop.
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vehicle the future P − 1 control inputs, sampled at an according rate so that

its nominal evolution can be computed by vehicle 1.

A CTH policy (see Equation (3.4)) is considered in the present proposal,

which provides a reference for the first objective of the MPC optimization.

Thus, the i-th vehicle should minimize the following cost

Ji,k = αdcd,k + αece,k + αbcb,k (3.24)

where

cd,k =
k+P∑
j=k+1

(d̄i,j − d̄∗i,j)2 (3.25)

is the cost associated with the distances sequence predicted by means of

(3.19),

ce,k =

k+P∑
j=k+1

Pmi,j (3.26)

is the net energy outcome from usage and regeneration during the prediction

horizon and

cb,k =
k+P∑
j=k+1

F 2
bi,j

=
k+P∑
j=k+1

u2
2i,j (3.27)

is the cost associated with the mechanical braking force. In order to avoid

the usage of the mechanical brake, which does not provide energy regener-

ation, αb should always be kept large. In this way, the mechanical braking

input Fb(t) is avoided unless inevitable thus encouraging regenerative brak-

ing to decelerate the vehicle.

The following minimal constraints are introduced, which are fundamental

for the practical effectiveness of the proposed algorithm

Fmini,k + κ ≤ u1i,k + u2i,k ≤ Fmaxi,k − κ (3.28a)

0 ≤v̄i,k ≤ vmax,k (3.28b)

dmin ≤ d̄i,k ≤ dmax,k (3.28c)

where κ is to be introduced in the following section. Specifically, (3.28a)

accounts for relationship (3.12), determined by the physical tire-road friction

available, the maximum torque exercisable by the electric motors and the

limit braking force. For safety and road speed limit purposes, (3.28b) and
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(3.28c) are also enforced with vmax and dmax possibly varying parameters.

Remark 7. Notice that, despite in the presented proposal the considered

model is nonlinear, a linearization based solution could also be investigated.

In particular, the mismatch between the linearized version of the model

(which may be performed at every working point, to increase the accuracy of

the representation) and the real behavior of the vehicles can be included in

the disturbances.

Remark 8. A more advanced solution could be based on a lexicographic

formulation, where the main objective is that of attaining and keeping the

inter-vehicle distances, while the secondary objective could include additional

features such as energy efficiency. No changes are required with respect to

the proposed multi-rate architecture as per the disturbances compensation11.

3.3.2 ISM robustification

The optimal control input uoi,k, computed by the i-th vehicle at the time

instant k, is obtained relying on nominal models. Thus, the controllers

performance can be heavily degraded due to the fact that, in general, the real

dynamics is affected by uncertainty. To face this issue, the fundamental idea

of this proposal is that of having a trivially implementable controller able to

run at a much higher rate which compensates for the bounded uncertainty

so that the real system behaves as the nominal one.

To do so, in particular, a second-order Sub-Optimal Sliding Mode (refer

to Section 2.1.2) is resorted to. The resulting law is in chattering alleviation

form when it directly affects the acceleration (Case 1) but also directly

suitable for Case 2, when the relative degree is r = 2. It is now worth

noticing that in a practical implementation the action of the ISM correction

must be exerted at discrete time instants. In this regard, one defines ts

as the ISM sampling time, and therefore the computation of the corrective

control term is performed at discrete steps h, of length ts. At these time

instants, the velocity measurements are to be acquired and the total control

ui,h is to be applied and held for the successive time step (refer again to

Figure 3.2 for a schematic representation).

11This implementation is currently under investigation.
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Under Assumption 7, the local sliding variables are proposed as

σi,h = vi,h − v̄i,h (3.29)

where v̄i,h is the nominal velocity of vehicle i, computed relying on model

(3.19) starting from the most recent previous MPC sampling time instant,

i.e.

v̄i,h = vi(kTs) +

∫ kTs+hts

kTs

f̄v(v̄i(t), u
o
i,k) dt (3.30)

Then, for the two considered cases, the total control input to be used during

the h-th time step is

ui,h = (uo1i,k + uismi,h) + uo2i,k = ūi,h + uismi,h (3.31)

while (3.19) is left evolving under the nominal

ūi,h = uo1i,k + uo2i,k, ∀h : kTs ≤ hts < (k + 1)Ts (3.32)

The next propositions hold, respectively, for the two considered cases.

Notice that they are stated for simplicity in continuous time.

Proposition 1. In Case 1, for the generic vehicle i and for a choice of Ki

as in Equation (3.37), if the corrective term in Equation (3.31) is selected

as

uismi,h = uismi(kTs)−
∫ kTs+hts

kTs

Kisign

(
σi(t)−

σ∗i
2

)
dt (3.33)

where σ∗i is the value of σi(t) at the last time instant when σ̇i(t) = 0, the real

velocity evolution tracks in a finite time the nominal one, predicted relying

on model (3.19).

Proof. The formal proof of the finite-time convergence for the Sub-Optimal

Sliding Mode Control algorithm is given in [20]. Therefore, it suffices to

verify that in the present case the needed hypothesis hold. Let us derive the

expression of the derivatives of σi(t), namely

σ̇i(t) = v̇i(t)− ˙̄vi(t)

=
1

mi
(uismi(t)− F ∗i (t) + δ(t))

(3.34)

74



with F ∗i (t) = Flossi(t)−F̄lossi(t) a time-dependent component, locally bounded

by F̄ ∗i ≥ 0 and with first time-derivative locally bounded by F̂ ∗i ≥ 0, since

in practice velocities and accelerations can only assume values in a closed

set. Therefore,

σ̈i(t) =
1

mi
u̇ismi(t) +

1

mi
(δ̇i(t)− Ḟ ∗i ) (3.35)

Introducing also Assumption 7, one has that

1

mi

∣∣∣δ̇i(t)− Ḟ ∗i ∣∣∣ ≤ 1

mi

(
∆̂i + F̂ ∗i

)
(3.36)

so that (3.33) enforces a sliding motion provided that

Ki > 2(∆̂i + F̂ ∗i ) (3.37)

Once attained σi(t) = 0, at time instant tf , v̄i(t) = vi(t) ∀t ≥ tf , which

concludes the proof.

During the sliding mode, since v̄i(t) = vi(t), also F ∗i (t) = 0 ∀t ≥ tf

holds. Relying on the concept of equivalent control [207], one can then infer

that

uismi(t) ' F ∗i (t)− δi(t) = −δi(t) ≤ ∆i (3.38)

holds in Filippov’s sense and therefore in (3.28a) κ must be chosen larger

than ∆i.

In order to guarantee that |uismi(t)| ≤ κ also during the reaching phase

(where, in general, this relationship could not hold in view of the fact that

(3.38) is not in place), a constrained formulation can be resorted to. Specifi-

cally, one can adopt the constrained Sub-Optimal SOSM algoritm proposed

in [68], which modifies the usual S-SOSM law in Equation (2.36) leading to

u̇ismi(t) =

−Kisign(σi(t)−
σ∗
i
2 ) if |uismi(t)| < κ

−Kisign(uismi(t)) if |uismi(t)| ≥ κ
(3.39)

in place of (3.33). The proof of Proposition (1) still holds, in view of the

convergence proof provided in [68] and the choice of κ.

Proposition 2. In Case 2, for the generic vehicle i and for a choice of Ki

as in Equation (3.42), if the corrective term in Equation (3.31) is selected
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Table 3.1: Nominal vehicles parameters
m [Kg] Ca × S [m2] Cr gr ρ [kg/m3]

1200 0.8 0.008 10 1.22

ηm ηt ηb τ ηµ ∀µ
0.75 0.85 0.95 0.05 ηmηt

Table 3.2: Simulation Parameters
N Ts [s] ts tCTH [s] K [N]

10 2 0.01 3 350

Fmin [N] Fmax [N] dmin [m] dmax [m] vmax [m/s]

-6500 6500 4 100 50

as

uismi,h = −Kisign

(
σi,h −

σ∗i
2

)
(3.40)

the real velocity evolution tracks in finite time the nominal one, predicted

relying on model (3.19).

Proof. Similar argumentations as the ones given above can be used also in

this case, where

σ̈i(t) =
1

miτi

(
F̄ini(t)− Fini(t) + γi(t) + τi

(
δ̇i(t)− Ḟ ∗i

))
+

1

miτi
uismi(t) (3.41)

with |F̄ini(t)−Fini(t)| locally bounded by a certain known positive constant

∆Fini , since F̄ini(t) can never grow unbounded in practice. In order to

enforce finite-time convergence, the following choice

Ki > 2[(∆Fini + Γi + τi(∆̂i + F̂ ∗i )] (3.42)

must be made.

In this case, the κ term in Equation (3.28a) can be simply chosen such

that κi > Ki. Moreover, notice how in (3.42) the required control effort

decreases with τi. In other words, one needs lower control efforts with more

“responsive” actuators, according with intuition.
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Figure 3.3: Case 1: Velocity and acceleration profiles for the vehicles in the
platoon, optimal control only.

3.3.3 Simulation Results

A scenario is proposed where the platoon is composed of 6 vehicles, consid-

ered here as having all the same nominal dynamics parameters (summarized

in Table 3.1) and the settings of the local control schemes reported in Table

3.2. Sinusoidal uncertainty is injected into the vehicle dynamics with the

aim of simulating the previously mentioned mismatches between the mod-

els and the real systems, as well as possible external forces arising from

actuation lags, unaccounted nonlinearities, etc. Specifically, the following

shifted low-frequency sinusoid is employed, on which random uniform noise

is superimposed

βi1 + βi2 ∗
[
sin

(
1

βi3
t+ βi4

)
+ ri(t)

]
(3.43)

both for δ(t) and γ(t), where all the parameters βi are constants randomly

picked for each of the vehicles, while ri(t) is a uniform random variable. In

particular, the values are taken such that βi1 ∈ [−150; 450], βi2 ∈ [0; 450],

βi3 ∈ [1; 11], βi4 ∈ [0; 5], ri(t) ∈ [0; 0.25], and the resulting injected uncer-

tainty is as the one reported in Figure 3.4.

As one can see in Figure 3.3, the maneuver considered here is designed so

that the leader initially follows a sinusoidal velocity. Then, it starts to cruise

at an almost constant velocity for the rest of the time. All the vehicles start
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Figure 3.4: Example of the uncertainty used in simulation.

at random initial positions, with random initial velocities. Throughout the

simulation, it is evidenced that the vehicles are able to merge into a platoon

(see Figures 3.5 and 3.6). In the former phase, the shape of velocity of

the followers is evidently smoother than that of the leader, and so is the

acceleration. Thus, an overall decrease in the energy waste can reasonably

be inferred as the consequence of the underlying behavior of the DMPC

controllers.

Notice how, for the sake of the simulation, the leader follows a velocity

profile that for some time becomes negative12 (see Figure 8). While this

does not represent a likely scenario, such behavior is enforced to highlight

the effectiveness of the proposed strategy even in more extreme conditions.

Despite that, it can be evidenced how the positive velocity constraint is kept

effectively by all of the followers.

During the second phase, in which the platoon instead cruises, coherence

is enforced by the introduction of the ISM correction term, as it is evidenced

in Figure 3.7. The distances between vehicles are almost identical in both

cases when the robust controller (compare Figures 3.5(b) and 3.6(b)) is em-

ployed, highlighting the insensitivity of the proposed scheme to uncertainty

in spite of the fact that the MPC sampling time is as high as Ts = 2s and

could be in principle increased even more.

12This is not in contrast with Assumptions 9 and 8, since the leader is not controlled in
this case.
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(a) Optimal control only.

(b) ISM-robustified optimal control.

Figure 3.5: Case 1: Distances between the vehicles. Solid lines refer to
actual distances, dashed ones are the respective CTH references.
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(a) Optimal control only.

(b) ISM-robustified optimal control.

Figure 3.6: Case 2: Distances between the vehicles. Solid lines refer to
actual distances, dashed ones are the respective CTH references.
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(a) Case 1.

(b) Case 2.

Figure 3.7: Total platoon length. The oscillations which appear in the
second half of the maneuver, which are more and more present as the number
of vehicles increase and represent lack of coherence, are canceled by the ISM.
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3.4 Second-Order Sliding Modes Generation for

Robust Disturbance String Stable Platoon Con-

trol

As a second possible solution to the problem of robust platoon control, in

the following discussion original results are reported evidencing how the gen-

eration of second-order sliding modes, locally in the vehicles composing the

platoon, can lead to robust control in terms of both local and string stabil-

ity. In particular, the results are shown to be rather general: on one hand,

they hold for vehicles described by the model in (3.5), which encompasses

almost all the longitudinal dynamics descriptions adopted in the literature

and the possible uncertainties (both matched and unmatched). On the other

hand, as it will be made evident in the remainder of this section, it is proved

that the adoption of a special formulation for the (local) sliding variables

guarantees a very general form of string stability. This latter considers both

non-null initial perturbations and time-varying uncertainty affecting the dy-

namics of the vehicles. Specifically, it is shown that the resulting platoon is

Disturbance String Stable, as per the Definition 2 reported below.

A novel spacing policy is adopted, based on the idea that in some cases

the tracking of a desired velocity prescribed in space would be more suited for

the particular application. Especially in the presence of heavy-duty vehicles,

in fact, there may be for instance situations in which high road slopes can

lead to input power saturation. This, in turn, implies perturbations in the

velocity (and, as a consequence, in the position) of the vehicles. This leads

to the undesirable possibility of having a too high required velocity in a

portion of the road where it cannot be physically reached, thus disrupting

the overall performance.

To overcome this issue, the adoption of a policy able to pursue at the

same time a predefined inter-vehicle distance while tracking a reference ve-

locity in space is proposed. Namely, the considered objective is that of

establishing

d∗i (t) = ds (3.44)

vi(t)→ vref (si(t)) (3.45)

with vref (s(t)) a space-dependent reference velocity common to all the ve-
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hicles. The following assumption on such velocity reference is made:

Assumption 10. The designed velocity vref (s) must be twicely differentiable

in time, with

|v̇ref (s)| ≤ V1, |v̈ref (s)| ≤ V2 (3.46)

for some known positive constants V1 and V2.

Remark 9. The policy in Equations (3.44) and (3.45) is based on consider-

ations made in [30], where the authors propose a Delay-Based strategy which

reads as

s∗i (t) = si−1(t−∆t) (3.47)

with s∗i (t) as the reference position for vehicle i and ∆t > 0 the chosen time

delay. In the mentioned work, it is shown that the proposed control strategy

(which is designed in the spatial domain) is able to enforce both (3.47) and

(3.45) at the same time. As a consequence, the inter-vehicle distance varies

when the velocity vref (s(t)) changes. With the choices suggested in this

Dissertation, instead, a prescribed distance is pursued as the main control

objective and, thus, is the consequent time delay which is possibly subject to

changes.

The task of robustly achieving (3.44) while tracking (3.45) in spite of the

disturbances (as modelled in (3.5)) is the main aim of the work developed in

the remaining of this discussion. In addition, the novel notion of Disturbance

String Stability (DSS, introduced in [30]) is employed to study the string

stability of the resulting platoon, which allows one to consider non-zero

initial conditions as well as the effects of exogenous disturbances acting on

a cascade of interconnected systems. Thus, it provides a great tool for the

assessment of platoon control systems performance, with particular reference

to string stability. To formally introduce the notion of DSS for cascades of

N + 1 interconnected systems (platoons, in this case), systems in the formẋ0(t) = f(x0(t), 0, w0(t))

ẋi(t) = f(xi(t), xi−1(t), wi(t))
(3.48)

are considered for i = 0, · · · , N . In Equation (3.48), xi(t) ∈ Rn, and w(t) =
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[wi(t) · · ·wN (i)]T represents a generic disturbance vector.

The following definition, rephrased here for the sake of the reader’s con-

venience, introduces formally the concept of Disturbance String Stability

(DSS) [30, Def. 3]

Definition 2. System (3.48) is said to be disturbance string stable (DSS) if

there exist functions β̄ and σ̄ of class KL and K respectively, and constants

c̄ > 0, c̄w > 0 such that, for any initial condition xi(t0) and disturbance

wi(t) such that

X = sup
i
|xi(t0)| < c̄, W = sup

i
||wi(t)||[t0,t]∞ < c̄w (3.49)

hold, the solution xi(t) exists for all t ≥ t0 and is such that

sup
i
|xi(t)| ≤ β̄ (X, t− t0) + σ̄ (W ) (3.50)

for i = 0, · · · , N , where N ∈ N. If, moreover, c̄ and c̄w can be taken as

c̄ = c̄w =∞, then the platoon is said to be globally disturbance string stable

(GDDS).

Remark 10. The Definition 2 allows to consider both the effects of initial

state perturbations and external disturbances at the same time, and can be

seen as a sort of input-to-state stability for the entire platoon system. In

particular, one can see that in absence of disturbances (i.e. for wj = 0, j =

0, · · · , N), the definition coincides with that of the classical asymptotic string

stability formerly introduced in [196].

The next theorem [30, Th. 2], reported here in a simplified form sufficient

for the particular considered case, can be used to prove DSS on the basis of

local properties. It will be useful in the remaining of the discussion.

Theorem 3. Consider system (3.48) and let each vehicle i be input-to-state

stable with respect to the same inputs xi−1(t) and wi(t), i.e. there exist a

function βx of class KL, and functions γx and σx of class K∞ such that, for

some constants c > 0 and cw > 0 such that

|xi(t0)| < c, ||xi−1(t)||∞ < c, ||wi(t)||∞ < cw (3.51)
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hold, the relationship

|xi(t)| ≤ βx(|xi(t0)|, t− t0) + γx(||xi−1(t)||[t0,t]∞ )

+ σx(||wi(t)||[t0,t]∞ ), ∀t ≥ 0
(3.52)

holds too. Then, considering σx = 0, if the function γx satisfies

γx(r) ≤ γ̄r, ∀r ≥ 0, γ̄ < 1 (3.53)

the platoon in (3.48) is DSS. If, in addition, c and cw can be chosen such

that c = ∞ and cw = ∞, then the platoon is Globally Disturbance String

Stable (GDSS).

3.4.1 The Proposed Strategy

With the aim of designing a distributed controller achieving conditions (3.44)

and (3.45), one may define first the following quantities

∆i(t) = si(t)− si−1(t) + ds (3.54)

∆0
i (t) = si(t)− s0(t) + ids (3.55)

ei(t) = vi(t)− vref (si(t)) (3.56)

Notice that Equation (3.54) refers to the inter-vehicle spacing error between

vehicle i and its predecessor, i− 1, with respect to the desired distance ds.

Instead, the quantity in (3.55) refers to the distance error between i and the

leader, while Equation (3.56) refers to the velocity tracking error.

The leader is considered as controlled, but for it a different choice of the

quantities in (3.54), (3.55) and (3.56) must be made due to the fact that its

preceding vehicle does not exist. Therefore, relationships

∆0(t) = s0(t)− s0(t0)−
∫ t

t0

vref (s0(σ)) dσ (3.57)

∆0
0(t) = ∆0(t), e0(t) = v0(t)− vref (s0(t)) (3.58)

are introduced and considered.

Proceeding with the design of the local sliding mode controllers, the
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proposed sliding variable for the i-th vehicle is to be defined as

ζ1,i(t) = (1− κ0)∆i(t) + κ0∆0
i (t) + κei(t) (3.59)

with κ > 0 and 0 ≤ κ0 < 1.

Remark 11. Note that, for κ0 > 0, the information on the leader position is

required for every follower. This feature, in view of the discussions proposed

in the introductory part of this dissertation, can be enabled through suitable

V2V or V2I architectures.

The pair {ζ1,i(t), ui(t)} exhibits relative degree r = 2 considering rela-

tionship (3.5) (see, for instance, [99]) and so it induces a diffeomorphism

Ω13 transforming (3.5) into its normal form ([91]). The choice of consider-

ing the spacing error (3.54) is made here for the internal dynamics of the

transformed system, so that

Ω


si(t)vi(t)

ai(t)


 =

∆i(t)

ζ1,i(t)

ζ2,i(t)

 (3.60)

is taken, with

ζ2,i(t) = ζ̇1,i(t)

= vi(t)− (1− κ0)vi−1(t)− κ0v0(t)

+ κ(ai(t) + φi(t)− v̇ref (si(t)))

(3.61)

The resulting dynamics, thus, read as

∆̇i(t) = 1
κ

(
ζ1,i(t)−∆i(t)−∆0

i−1

)
− ei−1(t)

ζ̇1,i(t) = ζ2,i(t)

ζ̇2,i(t) = ai(t) + φi(t)− (1− κ0)(ai−1(t) + φi−1(t))

−κ0(a0(t) + φ0(t)) + κ(−ai(t) + γi(t)

+φ̇i(t)− v̈ref (t)) + κui(t)

= h(xi(t), t) + gui(t)

(3.62)

13Ω is guaranteed to exist, at least locally. However, one can see that (3.60) holds also
globally in R3 × R (see [91, Chapter 13] for reference)
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which can be used to prove local finite-time convergence to the sliding set

(ζ1,i(t), ζ2,i(t)) = 0 and the subsequent GDDS of the platoon.

Remark 12. Notice that the dynamics of ζ2,i(t) in (3.62) has been kept

expressed in the original coordinates, to make the following discussion more

intuitive. Anyway, if necessary, an expression in the new coordinate system

can be computed straightforwardly by means of the defined diffeomorphism

Ω(·).

3.4.2 Local Stability

The choice of the particular SOSM control algorithm does not influence the

resulting features of the platoon (under the respect of Assumptions 9 and

8) once the motion is established. Similar considerations with respect to

these made in the following can be easily carried out to assess the local

convergence of different controllers as described in Section 2.1.2. However,

for the sake of completeness, the Sub-Optimal strategy (see Section 2.1.2) is

proposed and analysed here. Thus, in this case, the next proposition follows:

Proposition 3. For systems (3.5) under Assumptions 7 and 8 and the

choice of the sliding variable (3.59), the design of a local controller in the

form14

ui(t) = −Ksign
(
ζ1,i(t)−

ζ∗1,i
2

)
(3.63)

where ζ∗1,i is the last value in time of ζ1,i(t) for which ζ2,i(t) = 0 held, with

K >
4(A+ Φ)

κ
+ 2

(
A+ Γ + Φ̂ + V2

)
(3.64)

guarantees the finite-time convergence of ζ1,i(t) and ζ2,i(t) to the origin.

Proof. It is sufficient to evidence that in (3.62), due to the assumptions

made, for the dynamics of ζ2,i(t) conditions

Φ = 2(A+ Φ) + κ(A+ Γ + Φ̂ + V2) (3.65)

P1 = P2 = κ (3.66)

14See the Sub-Optimal formulation in Section 2.1.2 or [20].
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hold. Then, with the choice (3.64), the proof for the establishment of a

SOSM follows straightforwardly from the results presented in [20] (consid-

ered, in the referred paper, α∗ = 1).

Remark 13. The requirement that κ > 0 is of primary importance. In fact,

κ = 0 would lead to an increase in the relative degree exhibited by the pair

{ζ1,i(t), ui(t)}, while for κ < 0 an inversion in the sign of the input control

action would be produced, leading to instability.

3.4.3 String Stability

In order to prove (Global) Disturbance String Stability, the zero dynamics

obtained for (3.62) during the sliding motion must be considered, leading

consequently to κ∆̇0(t) = −∆0(t)

κ∆̇i(t) = −∆i(t) + (1− κ0)∆i−1(t)
(3.67)

where the condition ζ1,i(t) = 0 is introduced, holding during sliding, together

with the relationship

∆0
i (t) = ∆i(t) + ∆0

i−1(t) (3.68)

which is easily verifiable by substitution.

Notice that the velocity tracking error can be expressed as a function of

∆i(t), as a consequence of the dynamic order reduction (see Section 2.1).

Namely,

ei(t) = −1

κ

(
∆i(t)− κ0∆0

i−1(t)
)

(3.69)

holds as an algebraic constraint.

The following theorem summarizes the results obtained so far:

Theorem 4 ([224]). Consider a platoon of vehicles described by the (per-

turbed) dynamics in (3.5) under Assumptions 7 and 8, controlled by a prop-

erly designed SOSM law. Then, the choice of the sliding manifold (3.59),

with κ > 0 and 0 ≤ κ0 < 1, guarantees the establishment of a Globally

Disturbance String Stable platoon with respect to the objectives specified in

(3.44) and (3.45).
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Proof. From system (3.5), by means of the diffeomorphism (3.60), (3.62) can

be obtained. The design of a proper SOSM control law, which always can be

found due to the assumptions made (an example is given by Proposition 3)

guarantees that the sliding variable and its first time derivative vanish in a

finite time. Then, the dynamics of the system can be completely character-

ized by the reduced order dynamics in (3.67) and the algebraic constraints

obtained from ζ1,i = 0 and ζ2,i = 0. In particular, expression (3.69) holds

for the velocity tracking error. Solving (3.67) in time (here only the follow-

ers will be considered, since for the leader an obviously exponentially stable

dynamics is in place), one obtains

|∆i(t)| ≤ |e−
t−t0
κ ||∆i(t0)|+ (1− κ0)‖∆i−1(t)‖[t0,t]∞ (3.70)

Therefore, one can easily derive that the conditions required by Theorem 3

hold with

βx = |e−
t−t0
κ ||∆i(t0)|, γx = γ̄‖∆i−1(t)‖[t0,t]∞ (3.71)

Since γ̄ = (1 − κ0) < 1, Disturbance String Stability follows. Moreover,

the constant c can be chosen as c = ∞, and thus platoon (3.5) is Globally

Disturbance String Stable. The velocity tracking error ei(t) depends alge-

braically from ∆i(t) and ∆0
i−1(t), and therefore it is sufficient to see that it is

bounded and decreasing for bounded and decreasing ∆i(t) and ∆0
i−1(t).

Remark 14. Theorem 4 established the possibility of obtaining a GDSS pla-

toon by means of any SOSM Control algorithm, independently of the actually

adopted strategy. Proposition 3 gives sufficient conditions for the employ-

ment of the Sub-Optimal law.

Remark 15. The uncertainty considered in (3.5), which comprises both

matched and unmatched components, is entirely compensated by the adopted

control strategy. In fact, to counter the term γi(t) (matched uncertainty),

a proper choice of the gain as in (3.64) is sufficient. The φi(t) term (un-

matched) is instead compensated through a dynamic adjustment of the ac-

celeration, and therefore it does not appear anymore in the dynamics of the

velocity. In particular, one has that

ai(t) = −1

κ
(ei(t)− (1− κ0)ei−1(t)− v̇ref (t)) + φ(t) (3.72)
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which remains bounded for bounded velocity errors. Additionally, it is worth

noticing how higher values of κ result in lower values of the acceleration,

which can be controlled also acting on the first time derivative of the pre-

scribed velocity v̇ref (t) so as to take into account the saturations naturally

present in the vehicles actuators.

3.4.4 Simulation Results

In the following, simulation results obtained applying the control system

previously described to a platoon of 6 vehicles (a leader and 5 followers)

are reported. The initial velocities and displacements are randomly gen-

erated with the aim of presenting a meaningful scenario. The parameters

for the (sinusoidal) injected uncertainties are sampled from uniform random

distributions (their plots are reported in Figures 3.8 and 3.9). The goal inter-

vehicle distance is chosen as ds = 10m, and the reference velocity vref (s(t))

is generated in the space domain according to the function depicted in Fig-

ure 3.1015. The values κ = 1 and κ0 = 0.5 are selected for the parameters

of the distributed controllers. As visible in Figure 3.11, the local controllers

are able to produce local convergence to the selected sliding manifolds in a

finite time, thus effectively enforcing the sliding modes.

The consequent evolution of the quantities ∆i(t) and vi(s) is reported

in Figures 3.12 and 3.13 (where also the reference velocities are plotted, in

the time domain) for all the considered vehicles. The validity of the present

proposal in robustly attaining the desired platoon features is made evident:

in particular, besides the asymptotic convergence to zero of the spacing

errors, it is possible to notice how they do not amplify in the upstream

direction, making the GDSS of the proposed strategy evident.

15Notice how the transition between the different constant reference velocities is smooth,
so that Assumption 8 is well respected.
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Figure 3.8: Disturbances φi(t). From [224].

Figure 3.9: Disturbances γi(t). From [224].

91



Figure 3.10: Reference speed in the space domain. From [224].

Figure 3.11: Local sliding variables. From [224].
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Figure 3.12: Spacing errors. From [224].

Figure 3.13: Vehicles velocities. From [224].
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Chapter 4

Formation Control on

Highways

This Chapter presents a novel algorithm for the on-line creation and dy-

namic reshaping of heterogeneous formations of automated ground vehicles

in highways scenarios, which relies upon a two-step iterative procedure. The

controlled vehicles are required to be CAVs, or semi-automated vehicles able

to exhibit CAV capabilities on demand. A global coordinator must exist,

that is able to communicate with every involved vehicle and perform basic

coordination operations. This latter can easily be integrated in a multi-level

traffic control architecture which computes on-line the required formation

size, shape, position and velocity. A preliminary implementation of the

algorithm is published in [221], where its validity has been assessed exper-

imentally on small-scale trucks (as reported in Section 4.3), while a more

extensive proposal is developed in [227].

Before proceeding with the description of the adopted strategy, in Sec-

tion 4.1 the so-called single-track model is presented1, which is a commonly

adopted model for the vehicles longitudinal and lateral dynamics. Then,

in Section 4.2, the original approach described above is presented and dis-

cussed, providing experimental results in a preliminary case and simulation

results in more advanced scenarios.

1A dynamic model for the vehicles dynamics is here employed due to the fact that
high-speed lateral maneuvers excite complex behaviors which need to be considered. On
the other hand, the single-track model is simple enough to be usually suitable for on-line
prediction in the MPC controllers.
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4.1 Vehicles Dynamics Modelling

The Single-Track model [95, 76, 162] (often informally referred to also as

“bicycle model”) is a commonly adopted simplified 3-states model for both

the longitudinal and lateral dynamics of non-holonomic ground vehicles. It

is derived assuming that no moment is generated by differences among the

forces applied on the two wheels of the same axle, and that the steering

angles are equal for the two front wheels. As a direct consequence, the

vehicles can be considered as formally having a unique wheel for each axle

(from which the name follows). The resulting dynamic equations, which

describe the longitudinal and lateral velocities vx(t) and vy(t), respectively,

and the yaw angle velocity r(t) (the yaw rate) in the vehicle reference frame

are then 
v̇x(t) = vy(t)r(t) + 1

m (Fx(t)− Floss(t))

v̇y(t) = −vx(t)r(t) + 1
m (Fy,f (t) + Fy,r(t))

ṙ(t) = 1
Jz

(lfFy,f (t)− lrFy,r(t))

(4.1)

where m and Jz are, respectively, the mass and the moment of inertia of

the vehicle. The inputs are the total longitudinal forces Fl,f (t) and Fl,r(t)

exerted, respectively, by the front and rear wheels and the steering angle

δ(t). The total longitudinal force Fx(t) = Fx,f (t) + Fx,r(t) is then obtained

projecting the input forces exerted by the wheels with respect to the vehicle

reference frame, induced by the steering angle δ(t), i.e.

Fx,f (t) = Fl,f (t) cos(δ(t)) + Fc,f (t) sin(δ(t)) (4.2)

Fx,r(t) = Fl,r(t) (4.3)

Similarly to (4.2), the lateral forces Fy,f (t) and Fy,r(t) are obtained pro-

jecting the cornering forces Fc,f (t) and Fc,r(t) in the vehicle reference frame.

These are obtained resorting to a linear description of the tire-road inter-

action forces [76] in terms of the wheels sideslip angles αf (t) and αr(t),

i.e.

Fc,f (t) = −αf (t)Cf , Fc,r(t) = −αr(t)Cr (4.4)
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where

αf (t) = β(t) + lf
r(t)

v(t)
− δ(t) (4.5)

αr(t) = β(t)− lr
r(t)

v(t)
(4.6)

with

v(t) =
√
v2
x(t) + v2

y(t), β(t) = arctan

(
vy(t)

vx(t)

)
(4.7)

and Cf , Cr are the cornering stiffness coefficients for the front and rear

wheels. The Floss(t) term in Equation (4.1) accounts for the aerodynamic

and rolling resistance losses as in Equation (??), while lf and lr are, respec-

tively, the distances between the front and rear axle and the vehicle center

of mass.

Remark 16. In the following of the discussion, the assumption that the

input forces Fl,f (t) and Fl,r(t) are actually exerted on the corresponding

axles will be made. In this respect, it is worth noticing that, in practice,

the actually controllable inputs are torques, which interact with the ground

and generate forces according to the tire-road interaction characteristic and

the wheels dynamics. Thus, the reasonable assumption that fast-enough low-

level slip controllers are available is usually made (see, e.g. [4]) so that the

input (reference) forces can safely be confused with these actually exerted.

Regarding the cornering forces, in standard conditions (β ' 0) the linearity

assumption is well respected. Nevertheless, low-level stability control systems

can be included to ensure that the cornering tire-road characteristic curve

remains in the linear region during all the maneuvers.

Since equations (4.1) describe quantities in the vehicle reference frame,

in order to obtain the positions in the global reference frame the following
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Figure 4.1: Schematic representation of the single track model. In this
depiction, the reference frame XY is intended as being the global (world)
reference frame, while the reference xy is attached to the vehicle. Addition-
ally, COG denotes the center of gravity of the vehicle, assumed at the center
of the vehicle with respect to the y axis.

kinematic model is considered2:
ṗx(t) = vx(t) cos(ψ(t))− vy(t) sin(ψ(t))

ṗy(t) = vy(t) cos(ψ(t)) + vx(t) sin(ψ(t))

ψ̇(t) = r(t)

(4.8)

Please refer to figure 4.1 for a comprehensive schematic representation of

the adopted model.

2The assumption β ' 0 is here made, since it is the standard condition in absence of
sharp maneuvers intended to generate a drifting behavior of the vehicle. Additionally,
low-level stability controllers can ensure the condition is kept (see Remark 16)
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4.2 Two-Step Event-Triggered Iterative Algorithm

for Formation Control in Highway Scenarios

The core idea of the present formation control strategy resides in the con-

struction of a virtual reference frame attached to a virtual leader, which

enables the construction of a (virtual) grid covering the involved portion of

the highway and allowing for the subsequent two-step iterative procedure.

The two stages involve a discretized and a continuous space framework which

allow to flexibly address different problems. Specifically:

1. During the first stage, a discrete subdivision of the considered portion

of the highway is performed and exploited to find the best path each

vehicle would be required to follows in order to reach and join the

formation through Dynamic Programming (DP). At this level, cost

functions can be specifically designed at runtime to pursue particular

requirements or encourage/discourage certain behaviors, for the sake

of performance, safety or contingent external factors (for instance, one

may want to discourage lane changes to reduce lateral maneuvers, or

encourage joins of vehicles from lanes which may become unavailable

in the near future). Additionally, an arbitrary number of pseudo-

parallel DPs can be specified in order to improve the formation creation

performance in terms of duration, without affecting any other aspect

of the strategy.

2. The subsequent stage involves the creation of a smooth local trajectory

able to move the vehicle along the previously computed (optimal) path,

which is then followed making use of Model Predictive Control (MPC)

and a single-track vehicle model. At this level safety and comfort can

be considered, while taking into account physical constraints specific

to the single vehicles.

Among the benefits of such approach, the main ones can be identified in

the fact that

• The most critical operations (in terms of duration magnitude and vari-

ability) are carried out in a safe environment where only a small subset

of controlled vehicles has non-zero relative velocity with respect to the

rest of the formation;
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• The presented framework possesses a great structural flexibility given

by both the iterative and mixed discrete-continuous nature, which

make it straightforward to include more advanced features and ex-

pand the already present ones or tailor them to specific needs;

• The inclusion of a mechanism to arbitrarily reshape the formation

allows one to consider many practical cases (for instance, the restric-

tion of the available road due to e.g. working sites or the dynamic

join/leave of particular vehicles), while the adoption of an MPC for-

mulation enables stable high-speed maneuvers.

Notice that, as already discussed in Section 1.1.3, the on-line creation

(and reshape) of formations can be seen as a way of introducing moving

bottlenecks in highways with aim of regulating the traffic flow. Although

this is not the only possible way of exploiting formations of CAVs, in this

work the situation in which an high-level traffic controller exists and dictates

the characteristics of the formation(s) to be created is made.

In the remainder of the chapter, the problem addressed by the proposed

algorithm is first formalized (in 4.2.1). Then, the strategy is introduced and

thoroughly described in 4.2.2, relying on the model introduced in Section

4.1. At the end, examples of application are provided to highlight the valid-

ity of the presented control framework. In particular, in 4.3 an experimental

validation carried out on small-scale trucks is presented for a preliminary for-

mulation of the problem, which does not cover the most advanced features.

These latter, in fact, have been developed later and validated in simulation

during complex high-speed maneuvers, as reported in 4.4.

4.2.1 Problem Statement

In order to formalize the formation control problem under consideration, one

may define a highway H = {1, 2, · · · , Nl} as a set of Nl lanes of uniform and

constant width wl, indexed in ascending order by starting from the rightmost

lane. A number N of CAVs, which are required to implement autonomous

driving features involving both longitudinal and lateral dynamics at high

speed, is considered in the set of indices V = {1, 2, · · · , N}. Such vehicles

start initially uncontrolled and proceed, scattered on the highway according

to usual traffic patterns, with velocities vi(t) > 0, i ∈ V.
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Due to the need for communication between the vehicles, a reliable in-

formation exchange mechanism must be in place through either V2V or

V2I architectures, or a mixture of the two. A sufficiently accurate position

measurement system (relying for instance on GPS) is also required, while

the vehicles need local sensors (or observation systems) to close the MPC

feedback loop.

Assumption 11. The quantities necessary to close the local MPC control

loops are readily and precisely available. Similarly, an effective communica-

tion is put in place between every vehicle and the formation coordinator3.

Remark 17. In practice, sensors and observers are employed to guarantee

the access to such measurements, as these proposed in e.g. [177, 34, 17,

200, 161]. The adoption of such strategies is anyway out of the scope of the

present work.

For the sake of the discussion, a generic framework is adopted where at

some point in time t1 a signal generated by a high-level controller triggers

the creation of a formation in a designed area of the highway. The formation

is required to cover a certain area, with a specific shape, and proceed at a

predefined speed v̄ > 0 (that is supposed to be constant in the initial phase).

The shape of the formation can be arbitrarily defined, provided that

a grid-like underlying pattern is respected. This means that the required

formation must be representable by a matrix G = {ghj} of dimension Nl×Lv
(with ghj being the element in the h-th row and j-th column), where Lv is

the number of subdivisions of the considered space for every lane. It must

be greater or equal than the longitudinal extension of the formation itself,

and such that an area is covered large enough to comprise all the vehicles in

V. Such matrix can then be defined by using zero entries except in positions

where a vehicle must be placed to construct the formation. For instance

G1 =

0 0 0

1 1 0

1 1 0

 , G2 =

0 1 0 1

1 0 1 0

0 1 0 1

 (4.9)

3As will be evident from the development of the algorithm, it is not necessary that the
coordinator is one of the vehicles. In fact, it may also be the infrastructure itself, with the
only constraint that a sufficient computational and communication capability is available.
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represent a square 2 × 2 (G1) and a lattice formation on a highway with 3

lanes (G2), respectively.

The matrix G can change arbitrarily over time, to dynamically address

different objectives. In spite of the generality of such mechanism, practical

considerations lead to consider simple shapes, often composed of lines of

vehicles of arbitrary length covering the various lanes. The specific case in

which the formation covers an arbitrary subset of lanes H̄ ∈ H with lengths

specified in number of vehicles is addressed specifically in [225].

In order to translate the matrix representation of the formation in a spa-

tial description, the width of the lanes is naturally exploited in determining

the cells width. For the length, an additional parameter d > 0 specifying the

inter-vehicle distance is considered (see Figure 4.2 for a schematic represen-

tation of the concept, where the red dots correspond to the elements of the

considered matrix). This latter is crucial in defining the overall length of the

formation, and plays an important role in safety: in fact, longer distances

lead to an improved safety at the expense of a coarser formation description.

Assumption 12. The length dLv of the portion of highway covered by the

adopted discretization includes all of the vehicles to consider for control.

Assumption 13. All of the vehicles present in the considered region must

actually be under control, with the ability of performing the required commu-

nication and control tasks.

Remark 18. Assumption 13 allows one to effectively implement the strategy

presented in this article, but nevertheless in practice it can sometimes be

slightly relaxed. For instance, the considered highway H may include only a

contiguous subset of physical lanes, so that the ones not considered can be

populated and traversed by uncontrolled vehicles. Notice additionally that the

vehicles are required to implement a normal operating mode, since emergency

situations will not be considered in the present work. Nevertheless, strategies

to deal with such extraordinary contingencies are required in practice to be

considered and included separately.

Flexibility and scalability are two crucial characteristics for multi-agent

control systems, and therefore are here addressed as specific requirements.

The former relates, on one hand, to the possibility for the algorithm to

be effective in a broad range of scenarios and, on the other hand, to the
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Figure 4.2: A generic three-lanes highway, i.e. H = {1, 2, 3}.

possibility of implement changes in parts of the algorithm without affecting

the others. Scalability is, instead, related to the guarantee of an effective

and efficient process in the presence of an arbitrarily high number N of

considered vehicles, which should not require major changes in the control

architecture both from an algorithmic and an infrastructural point of view.

To formally state the problem, a global reference frame XY is introduced

for the highway such that the lanes are parallel to the X axis and the edge of

lane 1 coincides with Y = 0 (see Figure 4.2). Additionally, a reference frame

xy is considered with the same orientation as XY but moving in the positive

X direction with velocity v̂(t) > 0. In both the frames, the y-position of the

center of the j-th lane is

Ylh = ylh =
wl
2

+ (h− 1)wl, h ∈ H (4.10)

as evident from Figure 4.2. Given all the considerations made in this section,

the problem can be summarized as follows:

Problem 3. Find a scalable (for N → ∞) and flexible control strategy for

the set of vehicles V with positions pi(t) = [px,i(t) py,i(t)]
T with respect

to the frame xy such that they converge to a rigid position-based forma-

tion specified, for any time instant, by the reference formation matrix G(t).

Specifically, after having defined the desired formation in space as the set

F(G, d) =
{
p̄h,j = [−(j − 1)d ylh ]T ∀(h, j) : ghj = 1

}
(4.11)
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with
∑

h,j ghj(t) ≤ N, ∀t, a strategy must be found such that

∀p̄h,j ∈ F ∃! i ∈ V : pi(t)→ p̄h,j (4.12)

and, at the same time,

vi(t)→ v̄(t) > 0, ∀i ∈ V (4.13)

with v̄(t) the required speed for the formation, under the constraints

0 < yi(t) < Nlwl, ∀i ∈ V (4.14)

and without collisions between vehicles, independently of their geometrical

and dynamical characteristics (heterogeneous formations).

4.2.2 The Proposed Strategy

In this section, the proposed formation control strategy is presented, starting

from the generic situation in which, at time t1, a higher-level control layer

selects the parameters G, d, and v̄ in order to pursue a particular objective

on a specified section of the highway. The whole procedure is composed

of two sequential, independent phases: an initialization phase (described in

4.2.3), to be performed once for a set of controlled vehicles, and an iterative

phase composed of two successive steps (presented in 4.2.4) which starts after

the initialization and remains active throughout the whole control time to

provide reshaping capabilities.

An event-triggered approach is adopted to provide an asynchronous ac-

tivation of the different steps (see Figure 4.3), while a sharp separation is

put in place between global procedures (cheaper, carried out by the coor-

dinator) and the local ones (more expensive, implemented in a distributed

way at the vehicles level). Specifically, the general strategy is designed such

that vehicles receive position references from the coordinator, and trigger it

back when specific events occur. An high-level schematic representation of

the proposed procedure is presented in Figure 4.4.

103



Figure 4.3: Schematic representation of the formation control architecture.

Figure 4.4: Schematic representation of the proposed algorithm, where the
specific functioning modes and the information exchange paths are omitted
for the sake of clarity.

4.2.3 Initialization Phase

The initialization phase is started as soon as the coordinator receives an up-

date signal from the high-level controller, which also provides the formation

parameters. Such phase is crucial in enabling the subsequent iterative phase,

and thus it must be performed once for every different selection, i.e. every

considered set V, of vehicles. Among them, the vehicle with highest (global)

X coordinate is designated as the virtual leader and referred to as vehicle

1 without loss of generality. Then, a virtual grid, which constitutes one of

the key concepts of the proposed strategy, is built in the moving reference
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Figure 4.5: Grid designed with G = G1 as in Equation (4.9). The grey cells
must be “covered” to obtain the desired formation.

frame xy of the formation (see Section 4.2.1 for its definition). The grid is

attached to it in such a way that the x position of the leader px,1 coincides

with the center of the cells corresponding to the first row of the matrix G

(see g11, g12 and g13 in Figure 4.5), while the first lane of the highway is

occupied by the cells corresponding to the first column of G (see Figure 4.5).

This, in turn, means that the grid moves instantaneously with the velocity

of the leader, i.e. v̂(t) = v1(t).

The grid is formally defined in terms of its cells, that are indexed in the

space S = {1, 2, · · · , Nl}×{1, 2, · · · , Lv}. A map K is defined, which assigns

to every cell the spatial coordinates of its center in the frame xy, i.e.

K(h, j) =
[
−(j − 1)d ylh

]T
, (h, j) ∈ S (4.15)

All the vehicles are subsequently required to attain and keep the refer-

ence velocity v̄, which is constant in this phase and communicating to the

coordinator when the objective is attained by means of a trigger signal. This

is performed passing to the vehicles successive position references to track,

with the x coordinate obtained integrating discretely the required velocity

v̄ in time. Once a trigger is received from all of the vehicles (meaning that

they exhibit no relative velocity with respect to the virtual grid), a static

association map Θ : S 7→ V is defined basing on the relationship in (4.15),
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such that

Θ(h, j) = i, (h, j) ∈ S, i ∈ V (4.16)

if vehicle i is the nearest to K(h, j) along the x axis at the time instant

in which the evaluation is performed. Subsequently, an occupation map

Ω : S 7→ {0, 1} is also introduced, where

Ω(h, j) =

1 if (h, j) is occupied

0 otherwise
(4.17)

Notice that the vehicles communicate to the coordinator their position,

and this latter performs internally the construction of suitable maps Θ and

Ω. All the process occurs at constant velocity v̄, so that vehicles maintain

the communicated position throughout all of it independently of the time

taken to perform computations and communication.

Remark 19. In practice, possible cases in which overlapping associations

could occur must be addressed properly. For instance, if two vehicles concur

for cell (h, j), the preceding of the two shall be assigned the preceding cell

(h, j − 1) if this is available.

At this point the coordinator starts to send to the involved vehicles

(except the leader, thus belonging to the set V̄ = V\{1}) a reference position

to track, which corresponds to the center of the assigned cell. Again, when

convergence to a neighborhood of the (moving) reference position is attained,

the coordinator is notified by the vehicles. At the end of the initialization

phase, every controlled vehicle is placed, within a designed tolerance, at

the center of a moving cell, and no relative speed is present between the

vehicles. In such conditions, at time t2 > t1, the core procedure of the

proposed algorithm, i.e. the iterative phase, is started.

4.2.4 Iterative Phase

Each iteration in the iterative phase is composed of two distinct steps,

namely the generation of reference positions for the vehicles to compose and

keep the formation (computed by the coordinator and described in 4.2.4)

and a reference tracking procedure (reported in 4.2.4), carried out by the
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Table 4.1: Main Algorithm Parameters
Parameter Values Meaning

vehicles approach ∈ {0, 1} Whether vehicles not performing trajectory tracking can move towards the formation

free cells ahead ∈ N+ Specifies vehicles approach, see 4.2.4

outer lanes go backwards ∈ H Lanes to be considered as “out” of the formation, and thus to be freed

outer lanes discount ∈ R+ Negative bias in the cost of actions for vehicles in outer lanes

free cells behind ∈ N+ Specifies lanes go backwards, see 4.2.4

max cells dist behind ∈ N+ Specifies lanes go backwards, see 4.2.4

init distance threshold ∈ R+ Radius of the neighborhood of the cells centers to be considered as reached in 4.2.3

goal distance threshold ∈ R+ Radius of the neighborhood of the cells centers to be considered as reached in 4.2.4

new dp after completion ∈ {0, 1} Replanning flag: new iteration after a single vehicle finished trajectory tracking

max parallel dps ∈ N+ Maximum number of pseudo-parallel DPs to be performed in one iteration

vehicles independently. Specific features of the proposed approach can be

controlled by means of the parameters reported in Table 4.1, which will be

better described in the subsequent discussion.

First Step - Reference Generation

As a first step, the generation of optimal paths through the grid cells is

performed for all the involved vehicles, if at least one candidate goal cell is

available, through Dynamic Programming [29]. In particular, the goal cells

are chosen among the currently non-occupied cells which are marked as to be

covered to build the formation according to a selection policy. In this work,

it considers cells with successive rows (first) and columns (then) indices,

but it can be substituted by any other algorithm. If no cells are available at

the current iteration, a flag is activated indicating that no further DP steps

may be carried out until a new reference formation is provided. Otherwise,

a prediction horizon PDP ∈ N is selected depending on Lv so that a feasible

path is always possible to obtain, if existent, towards any goal cell. This

can be formalized using an increasing integer subscript p ∈ N+ associated

to every subsequent considered DP problem. Additionally, every cell in the

grid c ∈ S is considered as a discrete state gp(q) ∈ S visited at step q

during task p, with q = 1, 2, · · · , PDP and gp(q) a map associating, for every

problem p, a cell to the time step q. A set of state-dependent feasible actions

Ā(gp(q)) ⊆ A is then defined, with

A = {F,B,R,L, S} (4.18)

corresponding to forward, backward, right, left and still, respectively. The

direction is referred to the relative frame, i.e. a still action still requires
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that the vehicle keeps the velocity of the reference frame, and the left and

right actions entail also a shift forward of one cell to better account for

the non-holonomicity of the vehicles while encouraging motion towards the

formation.

A cost function c(u(q)) is specified by the high-level controller (and/or

the coordinator itself) at any iteration for every feasible action u(q) ∈
Ā(gp(q)). Notice that this way of defining the states and costs leads to

the fact that space constraints (the vehicles must not go past the width of

the highway) are automatically considered.

Based on the occupation map Ωp considered during the p-th DP task

in the current iteration), a goal cell g∗p is chosen. The problem can then

be formally stated as that of finding an optimal actions sequence u∗i,p =(
u∗i,p(0), u∗i,p(1), · · · , u∗i,p(PDP − 1)

)
leading from the location gp,i(0) to the

goal state g∗p, for every vehicle i ∈ V̄. Based on the Bellman’s optimality

principle, this translates in solving iteratively the optimization problems

Ji(q) = min
ui(q)∈Ū(gi(q))

c(ui(q)) + Ji(q + 1),

q = PDP − 1, PDP − 2 · · · , 0
(4.19)

where the cost function Ji(q) is defined so that

gp,i(PDP ) = g∗p with Ji(PDP ) = 0, ∀i ∈ V (4.20)

As a consequence of relationships (4.19) and (4.20), one has that Ji(0)

is the total optimal cost for vehicle i. A minimum-cost vehicle i∗ can then

be found as that associated with the lowest cost. An optimal states (cells)

sequence Gi
∗
p = (g∗i∗(0), · · · , g∗i∗(Pdp − 1)) is then considered as that induced

by the optimal action sequence u∗i∗,p.

The occupation map is then updated marking all of the cells in G
i∗p
p as

occupied, adding also the cell adjacent to all the couples of cells associ-

ated to lane changes, in order to mathematically avoid the possibility of

trajectory crossings (refer to Figure 4.6 for a clarification). The procedure

is then repeated, for a number of times less or equal than that specified

in max parallel dps, considering the new occupation map Ωp+1. Specifi-

cally, the step is stopped if either the threshold max parallel dps is hit or

none of the currently available vehicles can find an optimal path to the goal,
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Figure 4.6: The light purple cell is marked as occupied even though it does
not belong to the cells composing the optimal path (darker shaded), in order
to avoid the possibility of generating another path (corresponding to the
dashed red trajectory) that would cross the already composed path (solid
green).
meaning that a feasible path is not physically available.

The reference generation is then performed as a subsequent task, which

periodically updates position references p̄i, i ∈ V̄ (they may be in the global

or local reference frames) based on the task to be performed by every vehi-

cle4. In particular, the vehicles which are marked as minimum-cost in the

DP (and thus, have a minimum-cost path G
i∗p
p for some p in the current

iteration) are assigned references taken by a smooth trajectory generated

using the centers of the cells in G
i∗p
p . A third-order curve is adopted here

to generate position and yaw references in time and space domain, but any

trajectory generation procedure providing sufficiently smooth paths can be

effectively adopted.

For all of the other vehicles, which are not associated with a minimum-

cost path, the references generation mechanism comprises the possibility of

adopting different strategies depending of the particular situation and the

algorithm settings. The default reference is the center of the cell currently

associated to the considered vehicle, but two different flags can be employed

to modify the behavior of the vehicles not performing trajectory tracking.

4Although in the present proposal the trajectory planning is entirely carried out in the
coordinator, in principle local, distributed strategies can be adopted so that each vehicle
constructs its own trajectory given the control points (i.e. the centers of the respective
cells). This, on one hand, would increase complexity. On the other hand, though, it would
allow for instance to generate trajectories dependent on the specific model of the vehicle.
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The vehicles approach flag enables the possibility for the vehicles to ap-

proach the formation, being associated sequentially to free cells (if existent)

ahead of the currently occupied one. In doing so, a minimum number of

cells free cells ahead is to be kept free between the final position of the

considered vehicle and the “last” (with highest h-index in the G matrix) cell

composing the formation or the next cell occupied by a vehicle. The main

advantage of such an approach is that the vehicles safely traverse in parallel

and independently cells that otherwise would require the subsequent trajec-

tories to be longer, thus leading to appreciable increases in the formation

creation speed.

As an additional mechanism, a subset of lanes outer lanes go backwards

⊂ H can be defined such that the vehicles assigned to cells belonging to these

lanes are successively assigned as reference the center of cells at the back of

the currently occupied one. The variable free cells behind can be set so

that, in assigning new cells to the considered vehicles, a number of cells is

kept free with respect to the closest vehicle in the same lane. A maximum

distance, in terms of cells, between the farthest cell that can be assigned

with respect to the formation and the formation itself can be specified in

the flag max cells dist behind. This particular feature is included so that

peculiar situations can be considered where vehicles are required to join the

formation from specific lanes (for instance in case the presence of construc-

tion sites ahead requires them to be freed). To this end, a discount factor

(outer lanes discount) is also included so that lane changes performed

from the lanes specified in outer lanes go backwards are discounted, thus

encouraging inclusion of the vehicles in the formation.

Notice that in order to implement the local MPC control loops, a se-

quence of P successive references, computed considering a sampling time

Ts which must match in the coordinator and the single vehicles, is actually

transmitted to the vehicles to consider the whole prediction horizon. Addi-

tionally, a reference yaw angle ψ̄i is included, so that at each sampling time

a reference sequence

r̄
(i)
k =

(
r

(i)
k+1, r

(i)
k+2, · · · , r

(i)
k+P

)
(4.21)
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where

r
(i)
k =

[
p̄x,i(kTs) p̄y,i(kTs) ψ̄i(kTs)

]T
(4.22)

is a generic reference vector for the vehicle i.

The references generation is entirely carried out inside of the coordina-

tor, which provides the reference positions to the respective vehicles. Given

that the formation moves uniformly at the reference speed v̄, an easy inter-

polation mechanism can be included to improve robustness with respect to

possible delays and packet losses.

At this point the reference tracking step (described in 4.2.4) is performed

by the subset of vehicles obtaining a minimum-cost path in the DP step.

While all of them need to trigger the coordinator once they reach the last

cell in the associated sequence, the information about the subset of vehicles

in charge of performing trajectory tracking is particularly important. In fact,

if the flag new dp after completion is set, the iteration finishes as soon as

one vehicle finished trajectory tracking, while if it is not the coordinator

waits for all of the minimum-cost vehicles to carry out their associated task

before starting the successive iteration.

Second Step - Reference Tracking

For each of the vehicles required to implement local control loops, a reference

sequence (4.21) is received from the coordinator for the 2D position and the

yaw angle. On the basis of this information, an MPC reference tracking

problem is formulated as a quadratic program. In order to do so, the single-

track dynamic model is adopted foe every vehicle, as described in Section

4.1.

In order to implement the local position-tracking feature at vehicles level,

Model Predictive Control (MPC) is exploited, see e.g. [118]. To describe

the particular adopted strategy, a sampling time Ts is introduced along

with a prediction horizon P ∈ N (based on which the references in (4.21)

are generated), which induces a sequence of inputs

ūk = (uk, uk+1, · · · , uk+P−1) (4.23)

for every sampling step k (corresponding to the sampling instant kTs).
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Please note that the formulation adopted in this work relies on a continuous

time framework, so that the input signal is to be considered as a piece-wise

constant function, namely

u(t) = uk, kTs ≤ t < (k + 1)Ts (4.24)

With respect to the problem under consideration, the vehicle inputs are

taken as u(t) = [Fl,f (t) Fl,r(t) δ(t)]
T (see in particular Equations (4.1) and

Remark 16).

Then, since a model of the vehicles dynamics is required to implement

the MPC strategy, a successively linearized version of the model in (4.1) and

(4.8) is computed on the basis of the initial vehicle state for each step k, so

that a system in the form

∆ẋk(t) = f(x(kTs)) +Ak∆xk(t) +Bk∆uk(t) (4.25)

is obtained, where f(·) is the vector function obtained stacking the right-

hand sides of (4.1) and (4.8) (thus representing the derivative of the complete

vehicle model), while Ak ∈ R6×6 and Bk ∈ R6×3 are obtained through

a standard linearization procedure around the reference state xk and the

reference input uk = [0, 0, 0]T . These latter are therefore the jacobians of

f(·) with respect of x(t) and u(t), respectively. As a consequence, ∆xk(t) =

x(t)− xk, while δuk(t) = u(t).

The MPC cost function is then defined to reflect the control objectives

on the prediction horizon, namely the tracking of the references (4.21), by

means of the diagonal matrix Q � 0. The diagonal matrix R � 0 is also

employed to consider the cost associated with the magnitude of the inputs,

so that the final expression is

J(x(kTs), ūk) =

k+P−1∑
l=k

(
r̂Tl+1Qr̂l+1 + uTl Rul

)
(4.26)

where r̂l = x̂l− rl, with rl as defined in Equation (4.22), and x̂l is the vector

of predicted states at step l according to model (4.8) starting from x(kTs)

and sampled over the considered prediction horizon, i.e. at time instants

(k + 1)Ts, · · · , (k + P )Ts. Thus, r̂l represents the predicted tracking error

at the time step l, obtained sampling the trajectories computed inside the
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MPC procedure, dependent on the input sequence ūk.

Apart from the linear dynamics constraints given by (4.25), a set of

convex constraints is introduced for the states and inputs. In particular, the

relationships

F−f ≤ u1(t) ≤ F+
f , F

−
r ≤ u2(t) ≤ F+

r , ∆− ≤ u3(t) ≤ ∆+ (4.27)

are enforced for the inputs, while

V − ≤ vx(t) ≤ V + (4.28a)

A− ≤ v(t)− v(t−)

Ts
≤ A+ (4.28b)

J− ≤ v(t)− 2v(t−) + v(t−−)

T 2
s

≤ J+ (4.28c)

where (4.28b) and (4.28c) allow to consider, respectively, the acceleration

and jerk in terms of the velocity by means of the backward finite-difference

method. Specifically, in (4.28) the term v(t−) and v(t−−) are the velocities

sampled one and two previous sampling instants, respectively. Notice that

this formulation, as well as the adoption of the relationships (4.25), (4.26),

(4.27) and (4.28), allows to cast the MPC optimization problem into the form

of a quadratic program. Once obtained the optimal sequence, according to

the receding horizon approach, only the first input vector, u∗k, is actually

applied for t ∈ [kTs, (k + 1)Ts).

The coordinator is periodically updated by the vehicles as soon as they

enter a neighborhood of one cell (control point) of predefined radius, so

that the considered cell is assigned to it in the map Θ and all of the cells

behind it, previously occupied, are freed in Ω. This is crucial, especially if

new dp after completion is set, in maintaining a coherent description of

the cells status. In any case, the vehicles trigger the coordinator as soon as

they enter a neighborhood of the center of the last cell in the sequence.

Remark 20. The linear MPC formulation adopted here focuses on the adop-

tion of a QP formulation to keep complexity low, thus constituting a rather

basic but performing solution which can be further extended. For instance, in

order to introduce robustness, one could resort to the introduction of integral

sliding modes (ISM). With this respect, works as [170, 165] propose a multi-

rate architecture in which a fast ISM correction term is aimed at rejecting
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the matched disturbances with negligible increase in complexity. Addition-

ally, the linearization strategy proposed in [151] can be straightforwardly

adopted with possible improvements in prediction accuracy. While the men-

tioned strategies preserve the QP nature of the optimization problem, the

introduction of nonlinear constraints and cost functions can be exploited to

consider, e.g., explicit safety constraints or efficiency-related metrics. The

adoption of such modifications and the assessment of the trade-off between

the increase in computational complexity with respect to the practical im-

provement is currently under investigation, and thus not addressed in the

current work.
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(a) (b)

Figure 4.7: Small-scale automated trucks employed in the experimental
tests. From [221].

4.3 Experimental Results

In this section experimental results carried out on a simplified version of

the strategy described above are reported, to testify the effectiveness of the

proposal in real-life conditions. In particular, the experiments have been

conducted on three small-scale vehicles at the Institute of Automation and

Control of the Graz University of Technology employing the testbed describe

thoroughly in [174, 173]. The coordinator, in particular, is embedded into an

external computation unit (simulating, thus, a V2I approach), which com-

municated with the vehicles through a UDP connection. A sampling time

of 0.01s is considered, for control and information retrieval. In particular,

the position and orientation measurements are given by cameras mounted

on the ceiling, which emulate a GPS tracking system.

Notice that the algorithm employed is the one described in [221], which

presents these main simplifications with respect to the more extended ap-

proach described in this Chapter:

• Only the creation of formations is allowed, and no on-line reshape. In

particular, the formations must be described via the composition of

arbitrary-length strings of vehicles occupying each available lane;

• Only one DP is allowed per iteration;

• The trajectory following task is carried out with model-free local Stan-

ley controllers [203] for the steering angle and a simple PI controller

for velocity tracking5.

5The choice of using such algorithms instead of MPC for trajectory tracking follows
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(a) Until t = t1, the vehicles proceed on the highway.

(b) The grid is created and the vehicles are required to reach and keep
the center of the nearest cell. The first DP is performed by the black and
the red trucks.

(c) Once the red truck reached the goal cell, another DP is performed
(only by the black truck).

(e) The formation is finally created and maintained.

Figure 4.8: Frames of the first formation creation experiment. From [221].

from the fact that the small-scale trucks possess very low velocities. Dynamic models
cannot represent low-speed situations (see, for instance, how Equations (4.5) and (4.7)
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Two experiments are reported here: in the first one, three trucks should

achieve a triangular formation proceeding at a velocity of 0.1m/s on both

lanes of a two-lane road. At the beginning of the experiment the vehicles A =

{1, 2, 3} (respectively, the yellow, red and black truck) proceed uncontrolled

on the left lane, as depicted in Figure 4.8, where frames of the experiment

over time are reported. At time t = t1 = 3s, the trigger signal is received

and the virtual grid is created with respect to the yellow truck as explained

in Section 4.2.3. Then, basing on the position of the followers, the nearest

cell is assigned to each of them. In particular, the map Θ defined in (4.16)

is such that Θ(1) = (1, 2), Θ(2) = (1, 1) and Θ(3) = (2, 1). The vehicles are

controlled to reach and keep the center of the corresponding cells, as depicted

in Figure 4.8(b). From Figure 4.8 it is evident that in the considered case

Lv = 6 has been chosen, while the portion of the road to be covered by

the formation based on the requirements (in the leaders reference frame) is

constituted by the three red cells.

Once the distance between the center of all the assigned cells and the

respective vehicles becomes lower than a predefined threshold of 5cm, the

second phase is started and the first of the stages described in Section 4.2.4

is carried out by vehicles 2 and 3 at time t = 13.72s, with the considered goal

cell being (1, 1). The cost for going forward has been set to 1, to go left and

right 5, to go backwards 2 and to stay still 0. Consequently, the vehicle with

minimum cost is the red one (J∗2 = 5), which then reaches the goal cell as

reported in Figure 4.8(c) with α = 1.15 chosen as a fixed design parameter.

Finally, the last iteration is performed by vehicle 3 only at time t = 21.38s,

which then reaches its position in the grid with cost J∗3 = 7. Notice that, in

this case, it is obviously not necessary since vehicle 3 is the only one left. As

represented in Figure 4.8(d), at t = 50s the formation is created as required

and kept throughout all the subsequent time. The evolution of the X and

Y coordinates over time of the involved vehicles are reported in Figure 4.9

to show the working principles of the employed algorithm. In particular, it

is worth noticing how the reference Ȳi changes as soon as the corresponding

vehicle i is selected as that in charge of reaching the goal. At the same time,

the velocity (slope of the reference X̄i curve) increases accordingly. The

degenerate for v(t)→ 0), and simple proportional-integral controllers are simple to imple-
ment but yet very effective. Other strategies, anyway, could have been resorted to (see,
e.g. [139])
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Figure 4.9: Xi and Yi coordinates of the trucks i = {1, 2, 3} during the first
experiment. The vertical lines correspond to the time instants reported in
the results discussion and the frames reported in Figure 4.8. From [221].

maneuvers are safe and no collisions occur during the experiment, since d is

chosen sufficiently high.

A second experiment, on a three-lanes road, has been performed and

reported in Figures 4.10 and 4.11. All the design choices have been kept

equal to those of the first experiment, but with different initial conditions.

Also in this case the algorithm proves to be effective and no collisions occur,

reinforcing the soundness of the presented approach in a realistic scenario

where not considered delays and other nonidealities are present.
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Figure 4.10: Initial (upper plot) and final (lower plot) frame of the second
experiment. From [221].
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Figure 4.11: Xi and Yi coordinates of the trucks i = {1, 2, 3} during the
second experiment. From [221].
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4.4 Simulation Results

Two different simulation scenarios are here considered in order to exemplify

the proposed (extended) approach and show the flexibility of the adopted

strategy. In the first simulation (described in 4.4), a rectangular forma-

tion is created and then reshaped in order to allow vehicles to leave a lane

(the first) free. This maneuver highlights the capability of the algorithm to

effectively create the formation from the initial traffic flow and to straight-

forwardly adopt reconfiguration mechanisms when required, just acting on

the external signals coming from the high-level controller and the algorithm

parameters in Table 4.1. The second simulation, discussed in 4.4, is pro-

posed in order to evidence the ability of creating and reshaping formations

with arbitrary disposition of vehicles. In particular, the possibility of dy-

namically reconfigure the formation to allow a vehicle to exit the highway

is shown.

Formation Creation

A 2 × 4 rectangular formation is created in the first two lanes as the first

task addressed in this scenario, starting from N = 8 vehicles randomly

placed on the highway. Although similar to the maneuvers proposed in

[221], here a higher number of vehicles is considered and proceed at high

speed (v̄ = 30m/s). Additionally, vehicles are equipped with local MPC

controllers and a maximum of 3 pseudo-parallel iterations is considered

(max parallel dps= 3). The approach mechanism is exploited for vehi-

cles not performing trajectory tracking, with free cells ahead= 1. The

considered highway comprises 3 lanes (i.e. H = {1, 2, 3}) of width wl = 4m,

and the dynamics of the vehicles follow the description in (4.1) and (4.8).

The local MPC loops consider a prediction horizon P = 8 with sampling

time Ts = 0.3s. For all of the vehicles, considered as having random mass

(m ∈ [800, 1400]kg) and moment of inertia (Jz ∈ [900, 1300]kgm2), the

same input constraints are considered. Specifically, the total input force

is such that F− = F+ = 3000N while the steering angle is constrained

to be such that δ(t) ∈ [−0.2, 0.2] during trajectory tracking and δ(t) ∈
[−0.025, 0.025] during the tracking of the cells centers. The (longitudinal)

velocity of the vehicles is imposed to be such that 0.8v̂ ≤ vx(t) ≤ 1.2v̂,

while horizontal and lateral accelerations as well as the respective jerks are

121



(a)

(b)

(c)

(d)

(e)

Figure 4.12: Frames of the first simulation.

all constrained in the range [−1.5, 1.5] (see equations (4.27) and (4.28)).

Notice that the latter constraints are softened in the final formulation to

improve the feasibility of the optimization task. The utilized weights are

such that Q = diag ([0 0 0 1 1 100]) and R = diag ([0.8 0.8 1]).

Both the continuous-time dynamics simulations and the MPC optimiza-

tions are carried out, for the two considered simulation scenarios, in Matlab

using the CasADi framework [7].

In Figure 4.12, some key frames of the simulation are reported. The ve-

hicles start in random positions on the lanes of the highway. Frame 4.12(a)

depicts a situation in which the initialization phase is in progress, with

the grid already been constructed (with the cells d = 25m in length) and

attached to the leader (colored in red). The cells to be occupied by the

formation are highlighted in red, while the blue segments link the vehicles

with the respective associated cell centers. In frame 4.12(b), taken during

the iterative phase, it can be highlighted how three different trajectories

have been generated (green curves) with respect to three different goal cells

in the formation (max parallel dps= 3). No replanning is considered for
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this particular situation (new dp after completion= 0), and therefore all

of the parallel DPs are carried out for every iteration. In frame (4.12(c))

it is possible to evidence how the formation is effectively created (just af-

ter about 200 seconds). The reshaping occurs from 450 seconds on, and

entails moving all of the vehicles to the second lane, to free the first one.

To do so, it is only required that the high-level controller passes to the co-

ordinator the new reference disposition and triggers is for an update. The

iterative phase is then carried out as usual, only considering the new refer-

ence cells as successive goals. In this particular case one can see how the

vehicles move backwards to achieve the new shape (frame 4.12(d)) due to

the fact that, additionally with respect to the results from the DP stages

(in this case, max parallel dps is lowered to 1), a mechanism for which

in the first lane the vehicles are encouraged to decelerate is employed (i.e.

outer lanes go backward= {1}), with free cells behind= 0. In Frame

4.12(e) the new disposition is finally attained.

Formation Reshape

In the second maneuver, formation creation is followed by a situation in

which a vehicle not occupying the rightmost lane needs to exit the highway,

and therefore has to leave the formation. To do so, an online reconfiguration

maneuver is required to be performed so that space is left for the considered

vehicle to safely reach the rightmost lane and, consequently, be able to leave

the highway. For the sake of simplicity, the same parameters employed

for the previous simulation are kept, so that the only difference lies in the

number of vehicles (N = 9 in this case), the initial positions and velocities,

and the reference shape of the formation, which covers all the 3 lanes of the

highway and is 3 cells long.

In the first simulation frame 4.13(a) the initial vehicles disposition is de-

picted, together with the cells to be occupied in order to cover the reference

formation shape. Frame 4.13(b) represents a situation in which, during the

iterative phase, the vehicles move towards goal cells, independently and in

parallel. The final disposition of the vehicles is reported in frame 4.13(c).

Then, the vehicle which needs to leave the highway triggers a leave request

to the coordinator, and this latter reshapes the formation as little as possi-

ble to allow the vehicle reaching the rightmost lane through free cells (see

the new reference cells in Frame 4.13(d)). Frame 4.13(e) reports the backup
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.13: Frames of the second simulation.

movements of nearby vehicles to achieve such disposition, while the final

shape is achieved in Frame 4.13(f). This highlights the fact that arbitrary

dispositions can be imposed as reference online, and the algorithms under-

lying structure takes care of moving the vehicles appropriately and in a

completely automatic way. Following the marked arrow, then, the inter-

ested vehicle can safely move to the first lane and then exit, implementing

the same trajectory generation and following technique proposed here or any

other control strategy guaranteeing collision avoidance in the traversing of

the cells.
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Chapter 5

Conclusions

The present Dissertation introduces original advanced techniques for the

control of automotive systems, based mainly on MPC and SMC. Different

aspects of the automotive control are presented, starting from the control of

single vehicles and extending the considered systems to unidimensional and

bidimensional formations.

Novel results concerning the robust yaw-rate control of EVs are briefly

introduced, along with an original observation system for the online recon-

struction of the tire-road interaction forces, though not exhaustively pre-

sented. Instead, the main focus in the discussion of this Thesis is devoted

to the multi-agent case, which covers both (robust) platoon control and

formation control (this latter, in the specific case of highway scenarios).

Specifically, the solutions to the former problem aim mainly at providing

robust schemes, which rely on the introduction of a multi-rate ISM correc-

tion loop in non-cooperative distributed MPC schemes and an SMC-based

distributed control architecture, respectively. Besides providing increases in

safety, efficiency, and road infrastructure exploitation, it is made evident

in the literature how platoons can be exploited as dynamic actuators for

traffic control. Therefore, improvements in this direction could be made by

developing integrated solutions comprising high-level traffic controllers and

lower-level platoon control algorithms. Many possible scenarios could be

envisaged considering this topic, dependent on the adopted infrastructure,

architecture, and communication system.

Additionally, an effort could be made in the direction of effectively ad-

dress the problem of energy efficiency, which nowadays is of paramount
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importance. Again, considering explicitly this issue in the design of the con-

trol architecture could open a wide range of possibilities worth investigating

especially in view of the possibilities offered by EVs/HEVs.

The proposed novel formation control algorithm possesses peculiar fea-

tures, broadly discussed in the related Chapter, which make it particularly

interesting. Among many others, the possibility of greatly extending it

opens to many improvement directions. In particular, the inclusion of more

advanced techniques such as, for instance, machine learning to account for a

broader range of situations (e.g. the presence of uncontrolled vehicles in the

considered area of the highway) may lead to the direction of state-of-the-art

results enabling a completely new paradigm in the control of formations of

commercial (unmanned) vehicles. At the same time, also in this case the de-

velopment of integrated solutions encompassing high-level traffic controllers,

road infrastructure design, and communication systems development could

profoundly change the nature of highway travels, improving the safety and

comfort of the passengers.

As side results, developed together with the presented works, some fur-

ther original pieces of literature are reported. In particular, while introduc-

ing the basics of Sliding Mode Control a general overview of the employment

of SMC in Consensus control is given, providing also a novel algorithm for

the robust finite-time leader-follower consensus reaching of MAS. Though

not directly employed in the proposed developments, the possibility of adopt-

ing consensus-based solutions is broadly investigated in research and could

constitute a promising direction in the improvement of already existing or

newly designed control systems in the automotive field. Similarly, a brief di-

gression is provided on robust consensus control, which again is not directly

employed in the proposed works but could be investigated as a straight-

forward way of considering constraints in real-life implementations of the

proposed strategies.
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Appendix A

Peer-Reviewed Scientific

Publications

Journals:

• M. Zambelli, M. Steinberger, M. Horn, and A. Ferrara. Two-step

event-triggered iterative formation control for heterogeneous vehicles

in highwayscenarios. In (Submitted to) IEEE Transactions on Intelli-

gent Vehicles, 2020

• A. Pozzi, M. Zambelli, A. Ferrara, and D. M. Raimondo. Balancing-

aware charging strategy for series-connected lithium-ion cells: A non-

linear model predictive control approach. IEEE Transactions on Con-

trol Systems Technology, pages 1–16, 2020

• E. Regolin, A. Alatorre, M. Zambelli, A. Victorino, A. Charara, and

A. Ferrara. A sliding-mode virtual sensor for wheel forces estimation

with accuracy enhancement via ekf. IEEE Transactions on Vehicular

Technology, 68(4):3457–3471, 2019

Book Chapters:

• M. Zambelli and A. Ferrara. Emerging Trends in Sliding Mode Con-

trol – Theory and Application, chapter Sliding Modes in Consensus

Control. Springer, 2021

• M. Zambelli and A. Ferrara. Variable-Structure Systems and Sliding-

Mode Control: From Theory to Practice, chapter Constrained Sliding-
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Mode Control: A Survey, pages 149–175. Springer International Pub-

lishing, Cham, 2020

Conference Proceedings:

• M. Zambelli and A. Ferrara. Second-order sliding modes generation

for robust disturbance string stable platoon control. In 2020 European

Control Conference (ECC), pages 1879–1884. IEEE, 20201

• M. Zambelli, P. Carulli, M. Steinberger, M. Horn, and A. Ferrara.

A novel formation creation algorithm for heterogeneous vehicles in

highway scenarios: Assessment and experimental validation. In IFAC-

PapersOnLine: Proceedings of the 21st IFAC World Congress, 2020

• M. Zambelli and A. Ferrara. Robustified distributed model predictive

control for coherence and energy efficiency-aware platooning. In 2019

American Control Conference (ACC), pages 527–532, July 2019

• A. Ferrara and M. Zambelli. Integral second-order sliding modes for

robust prescribed-time leader-follower consensus control with partial

information. In Proceedings of the 58th Conference on Decision and

Control, 2019

• E. Regolin, M. Zambelli, M. Vanzulli, and A. Ferrara. A path tracking

approach for autonomous driving on slippery surfaces. In 2019 IEEE

International Conference on Connected Vehicles and Expo (ICCVE),

pages 1–6, 2019

• M. Zambelli and A. Ferrara. Linearization-based integral sliding mode

control for a class of constrained nonlinear systems. In 2018 15th

International Workshop on Variable Structure Systems (VSS), pages

402–407, 2018

• E. Regolin, M. Zambelli, and A. Ferrara. A multi-rate ism approach for

robust vehicle stability control during cornering. IFAC-PapersOnLine,

51:249–254, 2018

• E. Regolin, M. Zambelli, and A. Ferrara. Wheel forces estimation via

adaptive sub-optimal second order sliding mode observers. Proceedings

12020 European Control Conference Best Student Paper Award finalist
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of the 2017 XXVI International Conference on Information, Commu-

nication and Automation Technologies (ICAT 2017), Oct. 2017
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