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Abstract

This thesis addresses several problems encountered in the field of statistical

and machine learning methods for data analysis in neurosciences. The thesis is

divided into three parts. The first part of the thesis is related to classification

tree models. In the research field of polarization measures, a new polarization

measure is defined. The function is incorporated in the decision tree algorithm

as a splitting function in order to tackle some weaknesses of classical impurity

measures. The new algorithm is called Polarized Classification Tree model. The

model is tested on simulated and real data sets and compared with decision tree

models where the classical impurity measures are deployed.

In the second part of the thesis a new index for assessing and selecting the best

model in a classification task when the target variable is ordinal is developed.

The index proposed is compared to the traditional measures on simulated data

sets and it is applied in a real case study related to Attenuated Psychosis

Syndrome.

The third part covers the topic of smoothing methods for quaternion time series

data in the context of motion data classification.

Different proper methods to smoothing time series in quaternion algebra are

reviewed and a new method is proposed.

The new method is compared with a method proposed in the literature in terms

of classification performances on a real data set and five data sets obtained

introducing different degrees of noise. The results confirmed the hypothesis

made on the basis of the theoretical information available from the two methods,

i.e. the logarithm is smoother and generally provides better results than the

existing method in terms of classification performances.
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Introduction

This thesis addresses several problems encountered in the field of statistical and

machine learning methods for data analysis in neurosciences.

The thesis is divided into three parts. Part 1 is related to the study and

improvement of a classical supervised machine learning model, the decision tree

model. Part 2 is about the definition of a model assessment and selection method

in a classification task when the target variable is ordinal. Part 3 describes a new

method to smooth quaternion time series data in order to improve classification

performances.

The topics covered in this thesis fall within the framework of supervised machine

learning. Consider a learning set L = {(xi, yi)i=1,...N}, where xi are the p-

dimensional vectors of covariates (input variables) and yi is the value of the

target variable Y for each subject i = 1, ..., N . The objective of the supervised

machine learning models is to make inference about the function f that links

the covariates with the target variable, i.e. it tries to reconstruct the relation

Y = f(X) + ϵ between the predictors and the target variable, where ϵ is the

random error with E(ϵ) = 0 and independent from X. In the framework of

classification the target variable is qualitative.

Part 1 treats classification tree models. These models are defined in Breiman,

Friedman, and Olsen 1984 as a recursive procedure through which a set of N

statistical units are progressively divided into groups, according to a splitting

rule that aims to maximize homogeneity or purity of the response variable in

each of the obtained groups. Classification tree models are able to handle both

numerical and categorical predictors without requiring any assumption on the

target variable.

The main distinctive element of a classification tree model is the choice of the
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splitting rule. A splitting rule selects a predictor from those available and

chooses the best partition of its levels. The choice is generally made using a

goodness measure which, in standard classification trees, is evaluated observing

the pureness in terms of target variable of the descendant nodes.

In the literature on classification trees (see Mingers 1989), it is recognized that

splitting rules based on the impurity measures (i.e. Gini impurity index and

Information Gain) suffer from some weaknesses. One of them is that most

popular splitting criteria are mainly focus on nodes impurity and do not take

into account the predictors’ distribution.

We propose a new splitting function starting from the definition of polarization

measures. The concept of polarization measures was introduced in Esteban and

Ray 1991, Esteban and Ray 1994, Foster and Wolfson 1992 and in Wolfson 1994,

and it is typically adopted in the socio-economic context to measure inequality

in income distribution.

In our proposal, we define a multidimensional polarization measure, which

considers one continuous variable and exogenously defined groups represented

by a categorical variable.

Since we would like to introduce a measure which treats variables coming from

different contexts (not only from the economic one), a measure of variability

which is not of inequality is introduced. Furthermore, a generalization of the

axioms defined in Duclos, Esteban, and Ray 2004 is required to derive our

multidimensional index of polarization which works on continuous explanatory

variables. The new measure is incorporated in the decision tree algorithm as a

splitting function in order to take into account the distribution of the covariates

instead of the only nodes’ impurity. The new algorithm is called Polarized

Classification Tree model. A toy example is described in order to show the

peculiarity of the new measure as splitting method with respect to the classical

splitting functions (Gini impurity index and Information Gain). The model was

tested on simulated and real data sets and compared with decision tree models,

where the cited classical impurity measures are deployed. Results confirm that

the new model proposed is competitive with respect to the classical measures

2



and in some cases it shows significantly better performances.

In the Part 2 of the thesis, we developed a new index for assessing and selecting

the best model in a classification task when the target variable is ordinal.

Evaluation measures are widely used in predictive models to compare different

algorithms, thus providing the selection of the best model for the data at hand.

Different indicators can be used to assess the performance of a model in terms

of accuracy, discriminatory power and stability of the results. The choice

of indicators to perform model selection is a fundamental point and several

methods have been proposed depending on the nature of the data and the

problem domain (see e.g. Adams and Hand 2000; Bradley 1997; Hand 2009).

While in the model definition stage for ordinal target variable there are

different approaches in the literature (see Agresti 2010; Ahmad and Brown

2015; Kotłowski et al. 2008; Torra et al. 2006), for the model selection there

is a lack of adequate tools (Cardoso and Sousa 2011). Moreover, performance

indicators should take into account the nature of the target variable, especially

when the dependent variable is ordinal. This motivates the proposal of a new

class of measures to select the best model in predictive contexts characterized by

a multi-class ordinal target variable, using the misclassification errors coupled

with a measure of uncertainty on the prediction.

Two toy examples show how the index works and its advantages with respect

to the classical evaluation measures (accuracy, AUC, MSE). The index is tested

on a simulated data set and compared with the cited classical measures in the

evaluation of the performances of different models. Results confirm that the

new index can capture peculiar aspects compared to the traditional measures.

The index proposed is also applied in a real case study. A data set related to the

study of Attenuated Psychosis Syndrome is analysed in terms of classification

task.

The Part 3 covers the topic of smoothing methods for quaternion time series

data in the context of motion data classification.

Smoothing is a fundamental step in time series analysis and even more when

sensors are used for the acquisition and measurements. In fact, sensors tend

3



to collect a certain amount of noise that is difficult to isolate and manage.

The smoothing process attempts to capture important patterns in the data,

while leaving out noise or other fine-scale information that can make the main

structures hardly analysable.

While in the literature many different techniques to perform smoothing are

present for real signals, in a non-standard algebra such as quaternionic algebra

the topic is still developing. Some interesting works related to smoothing time

series in quaternion algebra are Ginzberg and Walden 2012, Janiak, Szczȩsna,

and Słupik 2014, Hsieh 2002. Despite this, the lack of availability of the code

makes these methods leaving open the problem of applications to the real world

cases.

Starting from the method proposed in Hsieh 2002, a new method that deploys

the logarithm transformation instead of angular velocity to transform the

quaternion time series into a real three dimensional time series. These two

methods are compared in terms of classification performances on a real data

set and five derived data set where different degrees of noise are introduced. In

order to confirm the validity of the proposed method, logistic regression models

on accuracy and AUC are performed, where the influence of the transformation

function and the smoothing method is evaluated on simulated data sets. The

results confirm the hypothesis made on the basis of the theoretical information

available on the two methods, i.e. the logarithm is smoother and generally

provides better results than the existing method in terms of classification

performances.

Summary of Papers

Paper I proposes a new splitting method to deploy in the decision tree models,

taking into account the distribution of the explanatory variables in the

space partitioning. The new algorithm proposed is called Polarized

Classification Tree model.
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Paper II proposes a new index for the assessment and selection of classification

models when the target variable is ordinal.

Paper III shows an application to real world problem of the index proposed

in Paper II.

Paper IV proposes a new method to smooth unit quaternion time series in the

classification framework.
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Part 1

Polarized Classification Tree

Models



Introduction

Classification trees are classical supervised machine learning algorithms, intro-

duced in Breiman, Friedman, and Olsen 1984.

They are defined as a recursive procedure through which a set of N statistical

units are progressively divided into groups, according to a splitting rule that

aims to maximize homogeneity or purity of the response variable in each of the

obtained groups. Classification tree models are able to handle both numerical

and categorical predictors without requiring any assumption on the target vari-

able.

In order to build a classification tree model, let Y be a target variable re-

ferring to a set of N samples falling into M classes, e.g. Y can take value in

{1, 2, ...,M}. Let X be the N×K data matrix with N independent observations

and K explanatory variables. The features X1, ..., XK are random variables

that take values in K different sets A1, ..., AK . In order to build a binary

classification tree a process of partition of the input space is required.

The main distinctive element of a classification tree model is the choice of the

splitting rule. A splitting rule selects a predictor from those available and

chooses the best partition of its levels. The choice is generally made using a

goodness measure which, in standard classification trees, is evaluated observing

the pureness of the descendant nodes in terms of target variable.

Despite the great popularity of tree models and the large amount of modifica-

tion proposed also in recent years (see for example Nerini and Ghattas 2007,

D’Ambrosio et al. 2017, Aria et al. 2018, and Iorio et al. 2019), we underline

that most popular splitting criteria are mainly focus on nodes impurity and do

not take into account the variables distribution.

Polarization measures can be a good alternative to evaluate the homogeneity

within classes and heterogeneity between classes to identify the best split to

be performed at a specific node. The concept of polarization measures was

introduced in Esteban and Ray 1991, Foster and Wolfson 1992, Esteban and

Ray 1994 and in Wolfson 1994, and it is typically adopted in the socio-economic
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context to measure inequality in income distribution.

In our proposal we define a multidimensional polarization measure, which con-

siders one continuous variable and exogenously defined groups represented by

a categorical variable. Since we would like to introduce a measure which treats

variables coming from different contexts (not only from the economic one), a

measure of variability which is not of inequality is introduced. Furthermore,

a generalization of the axioms defined in Duclos, Esteban, and Ray 2004 is

required to derive our multidimensional index of polarization which works on

continuous explanatory variables. The new measure is incorporated in the

decision tree algorithm as a splitting function in order to take into account the

distribution of the covariates instead of the only impurity of the nodes. In fact,

the classical impurity measures applied as splitting criteria are Gini impurity

index, defined as i(t) =
∑
j ̸=i p(j|t)p(i|t), and Information Gain that is calcu-

lated by subtracting the weighted entropies of each branch from the original

entropy, where the entropy of the node is H(t) = −
∑n
i=1 p(i|t) log(p(i|t)).

The new algorithm proposed is called Polarized Classification Tree model. A

toy example is described in order to show the peculiarity of the new measure as

splitting method with respect to the classical splitting functions (Gini impurity

index and Information Gain). The model was tested on simulated and real

data sets and compared with decision tree models where the cited classical

impurity measures are deployed. Results confirm that the new model proposed

is competitive with respect to the classical measures and in some cases it shows

significantly better performances.

The main contributions of the work are multiple. From a theoretical point of

view we define a new measure that can generalize polarization measures in order

to be applied in an efficient way in classification trees. From a computational

point of view we develop a new classification algorithm based on decision trees

improving decision tree splitting criteria observing not only the pureness of

a new node but also including variables distribution overpassing some of the

decision trees weaknesses.
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Abstract

In this paper a new approach in classification models, called Polarized

Classification Tree model, is introduced.

From a methodological perspective a new index of polarization to measure

the goodness of splits in the growth of a classification tree is proposed.

The new introduced measure tackles weaknesses of the classical ones used

in classification trees (Gini and Information Gain), because it does not

only measure the impurity but it reflects the distribution of each covariate

in the node, i.e. employing more discriminating covariates to split the

data at each node.

From a computational prospective, a new algorithm is proposed and im-

plemented employing the new proposed measure in the growth of a tree.

In order to show how our proposal works, a simulation exercise has been
1 Department of Mathematics, University of Pavia, Pavia, Italy

2 Department of Economics, University of Genova, Genova, Italy
3 Department of Political and Social Sciences, University of Pavia, Pavia, Italy
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carried out. The results obtained in the simulation framework suggest

that our proposal significantly outperforms impurity measures commonly

adopted in classification tree modeling. Moreover, the empirical evidence

on real data shows that Polarized Classification Tree models are com-

petitive and sometimes better with respect to classical classification tree

models.

Keywords: Classification trees, Polarization Measures, Splitting rules
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I.1 Introduction

Classification trees are non parametric predictive methods obtained by recur-

sively partitioning the data space and fitting a simple prediction model within

each partition Breiman, Friedman, and Olsen 1984.

The idea is to divide the entire X-space into rectangles such that each rectangle

is as homogeneous or pure as possible in terms of the dependent variable (binary

or categorical), thus containing points that belong to just one class Shneiderman

1992.

As decision tree models are simple and easy interpretable models able to obtain

good predictive performance, they are of interest in many recent works in lit-

erature (see for example Aria et al. 2018, Iorio et al. 2019, Nerini and Ghattas

2007 and D’Ambrosio, Aria, et al. 2017).

One of the main distinctive element of a classification tree model is how the

splitting rule is chosen for the units belonging to a group, which corresponds

to a node of the tree, and how an index of impurity is selected to measure the

variability of the response values in a node of the tree.

The main used splitting rules are the Gini index, introduced in the CART al-

gorithm proposed in Breiman, Friedman, and Olsen 1984, and the Information

Gain, employed in the C4.5 algorithm Quinlan 2014. Other different splitting

criteria have been proposed in literature as alternatives to these two ones. A

faster alternative to the Gini index is proposed in Mola and Siciliano 1997 em-

ploying the predictability index τ of Goodman and Kruskal 1979 as a splitting

rule. In Ciampi et al. 1987, Clark and Pregibon 2017 and Quinlan 2014 the

likelihood is used as splitting criterion, while the mean posterior improvement

(MPI) is used as an alternative to the Gini rule in Taylor and Silverman 1993.

Statistical tests are also introduced as splitting criteria in Loh and Shin 1997

and Loh and Vanichsetakul 1988. Different splitting criteria are combined with

a weighted sum in Shih 1999. A more recent work (see D’Ambrosio and Tu-

tore 2011) proposes a new splitting criterion based on a weighted Gini impurity

measure. Mola and Siciliano 1992 introduces a two-stage approach to find the
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best split as to optimize a predictability function. On this approach is based the

splitting rule proposed by Tutore, Siciliano, and Aria 2007, which introduce an

instrumental variable called Partial Predictability Trees. In Cieslak et al. 2012

the Hellinger distance is used as splitting rules, this method is shown to be very

efficient for imbalanced datasets but works only for binary target variables. See

Fayyad and Irani 1992, Buntine and Niblett 1992 and Loh and Shin 1997 for

a comparison of different splitting rules. Despite many different splitting rules

have been proposed in literature, the most used in application problems are still

the Information Gain and the Gini index and they are also used in literature as

benchmark to compare the performance of new proposed splitting rules, see for

example Chandra, Kothari, and Paul 2010 and Zhang and Jiang 2012.

In this paper a new measure of goodness of a split, based on an extension of

polarization indices introduced by Esteban and Ray 1994, is proposed for clas-

sification tree modelling.

The contribution of the paper is twofold: from a methodological perspective a

new multidimensional polarization measure is proposed; in terms of computa-

tion, a new algorithm for classification tree models is derived which the authors

call Polarized Classification Tree. The new measure, based on polarization, tack-

les weaknesses of the classical measures used in classification trees (e.g. Gini

index and Information Gain) by reflecting the distribution of each covariate in

the node.

The rest of the paper is structured as follows: Section I.2 describes impurity

and polarization measures; Section I.3 shows our methodological proposal; Sec-

tion I.4 integrates the new measure inside decision tree algorithm. Section I.5

and Section I.6 reports the empirical evidences obtained on simulated and real

datasets respectively. Conclusions and further ideas for research are summarized

in Section I.7.
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I.2 Impurity and polarization measures

In the literature on classification trees (see Mingers 1989), it is recognized that

splitting rules based on the impurity measures (i.e. the Gini impurity index,

the Information Gain) suffer from some weaknesses. Firstly, impurity measures

are equivalent one to one another and they are also equivalent to random splits,

in terms of the accuracy of the resulting model, see Mingers 1989. Secondly,

impurity measures do not take into account the distribution of the features, but

only the pureness of the descendant nodes in terms of the target variable and

this fact could lead to an high dependence on the data at hand, see Aluja-Banet

and Nafria 2003. The algorithms proposed in classification tree analytics tend

to select the same variables for the splitting in different nodes, especially when

these variables could be splitted in a variety of ways, making it difficult to draw

conclusions about the tree structure.

As explained in previous section, the problem of finding an efficient splitting

rules has been considered in different research papers. The aim of our contri-

bution is to propose a new class of measures to evaluate the goodness of a split

which tackles the previous mentioned weaknesses. In order to consider both the

impurity and distribution of the features in the growth of the tree, our idea is

to replace the impurity measure with a polarization index.

Polarization measures, introduced in Esteban and Ray 1994, Foster and Wolf-

son 1992 and Wolfson 1994, are typically adopted in the socio-economic context

to measure inequality in income distribution. In Esteban and Ray 1994 and

Duclos, Esteban, and Ray 2004 the authors provide an axiomatic definition for

the class of polarization measures and a characterization theorem. In Esteban

and Ray 1994, polarization is viewed as a clustering of an observed variable

(typically ordinal) around an arbitrary number of local means, while in Duclos,

Esteban, and Ray 2004, a definition of income polarization is proposed consid-

ering a continuous variable. In Esteban and Ray 1994 and Duclos, Esteban, and

Ray 2004 the results of polarization measures are related to one variable, thus

they can be considered univariate approaches.
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In Zhang and Kanbur 2001 a multidimensional measure of polarization is pro-

posed which considers within-groups inequality to capture internal heterogeneity

and between-groups inequality to measure external heterogeneity. The index is

composed by the ratio of the between groups and the within groups inequality.

In Gigliarano and Mosler 2008 a general class of indices of multivariate polar-

ization is derived starting from a matrix X of size N ×K, where N is the total

number of individuals with their endowments classified in K attributes. The

class of indices can be written as: P (X) = ζ(B(X),W (X), S(X)) where B and

W reflect the measure of between and within groups inequality respectively and

S takes into account the size of each group. In details B and W can be chosen

among different multivariate inequality indices present in literature, e.g. Tsui

1995 and Maasoumi 1986, and they can be applied only to variables that are

transferable among individuals. ζ is a function R3 → R increasing on B and

S and decreasing on W . Gigliarano and Mosler 2008 discuss the possibility of

extending the discrete version of the axioms proposed in Esteban and Ray 1994

to their proposed measure, stating also some properties of the measure.

Our idea is to define a multidimensional polarization measure, which considers

one continuous variable when groups are exogenously defined coupled with a

generalization of the continuous version of the axioms defined in Duclos, Es-

teban, and Ray 2004, opportunely adapted for our measure, as described in

Section I.3 and proved in the Appendix.

I.3 A new impurity measure of polarization for

classification analytic

Our measure of polarization is evaluated measuring the homogene-

ity/heterogeneity of the population with the use of variability between and

within groups.

The new proposed index is a function of four inputs:

P (X) = ζ(B,W,p,M) (I.1)
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where B and W are the variability between and within groups respectively,

p = (p1, ..., pM ) is the vector describing the proportion of elements in each group

and M is the number of groups. Since we would like to introduce a measure

which treats variables coming from different contexts (not only transferable

variable), a measure of variability instead of inequality is introduced, thus

making our proposal different from the one in Gigliarano and Mosler 2008.

Following the intuition on polarization, P (X) is high for large values of B (i.e.

the groups strongly differ from each other), for small values of W (i.e. the

elements of the groups are homogeneous), for large values of max{pj} and

for small values of M (i.e. the population is divided into few groups with

an unbalanced proportion of elements in one single group).

On the other hand, we expect P (X) to take small values when the population

is divided into numerous balanced groups with small variability between groups

B and high variability within groups W .

Suppose that there are M groups exogenously defined, and that each observation

is classified into one group through the use of a categorical variable with M

levels. Let nj be the number of individuals in the jth group, N the total

number of observations in the population, pj = nj

N the proportion of population

in the jth group. Let fj be the probability density function of the interesting

feature x in the jth group with expected value µj ; the expected value of the

global distribution f of the population is µ.

We set the following assumptions:

Hyp. 1 M > 1

Hyp. 2 pj > 0 ∀j ∈ 1, ...,M

Hyp. 3 {supp(fj)}j=1,...,M are connected and

{supp(fi)} ∩ {supp(fj)} = ∅ for i, j = 1, . . . ,M with i ̸= j.

Hyp. 4
∫
supp(fj) fj dx = 1.

Assumptions 1 and 2 exclude trivial cases, respectively a unique group for

the entire population and the existence of empty groups.
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Assumption 3 directly refers to the basic definition proposed in Duclos, Esteban,

and Ray 2004 for the axiomatic theory of polarization measures. From an

empirical point of view, assumption 3 translates the idea that the M groups of

the original population are separated such that there is no uncertainty about the

belonging of a single element to a certain group. As for the original definition

of polarization measures, also in the case of multidimensional polarization

measures, this assumption is not always verify in real application problems.

Assumption 4 requires that the functions fj are probability densities; this

assumption is necessary to provide an axiomatic definition of the polarization

measure as pointed out in the appendix.

Our polarization measure is defined as follows.

Definition I.3.1. Given a population X and M groups, the polarization is:

P (B,W,p,M) = η(B,W ) · ψ(p,M) (I.2)

where

η(B,W ) = B

B +W
= 1 − W

B +W
(I.3)

with

B =
M∑
j=1

(µj − µ)2 (I.4)

and

W =
M∑
j=1

∫
supp{fj}

(x− µj)2fj(x) dx (I.5)

and

ψ(p,M) =
maxj=1,...,M (pj) − 1

N
N−2
N

(I.6)

The measure proposed in Definition I.3.1 is the product of two components:

η(B,W ) accounts for the variability between and within groups, while ψ(p,M)

considers the number of the groups and their cardinality.

The measure P is normalized and takes values in the interval [0, 1] as proved in

the following proposition.
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Proposition I.3.2. Given a population X and M groups, P (B,W,p,M) ∈

[0, 1].

Proof. Considering Definition I.3.1, the measure

P (B,W,p,M) is the product of the two components η(B,W ) and ψ(p,M).

The quantity η(B,W ) is defined as a ratio of the non-negative variability

measures B and W , see equation I.3; by construction η(B,W ) ≤ 1. Moreover,

the variability B is strictly positive, and using assumption 1 and 3 at least

one of the elements in the sum defining B is strictly positive. So we have

η(B,W ) ∈ (0, 1].

The quantity ψ(p,M) is a non-negative ratio; the minimum value is achieved

when maxj=1,...,M (pj) = 1
N so that ψ(p,M) = 0. The maximum value is

obtained when M = 2 and maxj=1,...,M (pj) = N−1
N ; in this case ψ(p,M) = 1.

In general, ψ(p,M) ∈ [0, 1].

As a consequence P (B,W,p,M) = η(B,W ) · ψ(p,M) ∈ [0, 1] and the

proposition is proved. ■

The following Corollary holds.

Corollary I.3.3. The maximum and minimum values for P (B,W,p,M) are

respectively equal to 1 and 0 .

Proof. Trivial from Property I.3.2. ■

We note that P (B,W,p,M) = 0 if and only if ψ(p,M) = 0, or equivalently

maxj=1,...,M (pj) = 1
N . The condition is verified exclusively when M = N ;

considering assumption 2, this is the case where each group contains one

single element of the original population supporting the intuition of absence

of polarization.

On the other hand, note that P (B,W,p,M) = 1 if and only if η(B,W ) = 1 and

ψ(p,M) = 1. The condition on η(B,W ) requires W = 0 while ψ(p,M) = 1 is

equivalent to the case of M = 2 and one of the groups containing N−1 elements.

In other words, the maximum polarization is achieved when the number of
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groups is minimum, the original population except for one element belongs to

one single group and the variance within groups is null such that the groups

show maximum internal homogeneity.

Moreover, we should underline that the proposed measure is invariant for any

permutation of the vector p; intuitively the polarization of a population does not

depend on the order in which we take the groups into account. We provide the

axiomatic base for multidimensional polarization measures as a generalization

of the axioms proposed by Duclos, Esteban, and Ray 2004.

Axiom I.3.4. For any number of groups and any distribution of observations

into the groups, a global squeeze (as defined in Duclos, Esteban, and Ray 2004)

can not modify the polarization.

Axiom I.3.4 requires the polarization measure to be invariant with respect

to a global reduction of the variance of the population.

Axiom I.3.5. If the population is divided symmetrically into three groups, each

one composed of a basic density with the same root and mutually disjoint

supports, then a symmetric squeeze of the side densities can not reduce

polarization.

Axiom I.3.5 requires the polarization measure to increase when the variabil-

ity within groups W decreases. Note that the values of B, p and M are invariant

with respect to the transformation described.

Axiom I.3.6. Consider a symmetric distributed population divided into four

groups, each one composed of a basic density with the same root and mutually

disjoint supports. Slide the two middle densities to the side (keeping all supports

disjointed). Then polarization must increase.

Axiom I.3.6 requires the polarization measure to increase when the variabil-

ity between groups B increases, when W , p and M are given.

Axiom I.3.7. If PF ≥ PG and q is a non negative integer value, then PqF ≥

PqG, where qF and qG represent population scaling of F and G respectively.
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Axiom I.3.7 describes a transformation that changes the sample size of the

population with no consequences on the proportion of individuals in each group.

In the appendix we prove that our proposal respects all four axioms, thus can

be classified as a multidimensional polarization measure.

I.4 Polarized Classification tree

In this section we show how the multidimensional polarization measure intro-

duced in Section I.3 can be used in classification tree models as a new measure

of goodness of a split in the growth of a classification tree.

The new approach, which the authors call Polarized Classification Tree (PCT)

has been implemented in R software. In Breiman, Friedman, and Olsen 1984

a split is defined as "good" if it generates "purer" descendant nodes then the

goodness of a split criterion can be summarized from an impurity measure.

In our proposal a split is good if descendant nodes are more polarized, i.e. the

polarization inside two sub-nodes is maximum. In order to evaluate the polar-

ization in one sub-node as in I.1 we consider:

• The function ψ(p,M) which takes into account, the "pureness" of the sub-

node. A sub-node is "purer" if one class of the target variable is more

represented with respect to the others and the polarization is higher.

• The function η(B,W ) which measures homogeneity and heterogeneity

among groups. η(B,W ), and consequently the polarization, is higher if

the groups are "well characterized" by the variable X, selecting a split that

obtains sub-nodes where the variable clearly discriminates well between

different groups.

To clarify how our measure works with respect to the indices used in the liter-

ature a toy example is described.

As shown in Figure I.1, two explanatory variables X1 and X2 are considered.

The target variable Y assumes three possible values a, b and c, corresponding to
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three different groups. Figure I.1 shows the distribution of the two explanatory

variables in the three groups determined by Y .

In this example the three groups are well distinguishable in both the distribu-

tions of X1 and X2, but it is evident that X2 has an higher discriminatory power

compared to X1. The four best splits, in terms of pureness of the descendant

Figure I.1: Distributions of two explanatory variables for a three-class target
variable.

nodes, are: Split 1 and 3, dividing group a from b and c respectively; Split

2 and 4, dividing a and b from c, as shown in Figure I.1. When evaluating

the goodness of these possible splits, Gini and Information Gain criteria can

not discriminate; indeed, when the tree is estimated on the training set, all

the considered splits generate the same situation of impurity in the descendant

nodes, thus making impossible to discriminate between the different splits.

When evaluating the goodness of the splits using our polarization measure, the

distribution of the explanatory variables in the groups is taken into account.

The goodness is higher for Split 3 and 4 with respect to Split 1 and 2, because

the groups are more ’characterized’ by variable X2, thus leading to selecting a

split on X2 rather than on X1.

Since classification trees can treat both numerical and categorical variables,

we will extend the measure introduced in Section I.3 to deal with categorical
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variables.

Consider a categorical variable X which assumes I different values, e.g. X ∈

{1, ..., I} and suppose that there are M groups exogenously defined and each

observation is assigned to a group.

Let nij be the number of observations taking value in the ith category and

assigned to the jth group, ni· be the number of observations taking value in the

ith category and n·j be the number of observations assigned to the jth group.

The polarization index can be written as in equation (I.2): P (B,W,p,M) =

η(B,W ) · ψ(p,M) where W = N
2 − 1

2
∑M
j=1

1
n·j

∑I
i=1 n

2
ij and B = M .

Assumptions on the polarization index are described in Section I.3. We note that

the theoretical definition of the measure requires that M > 1. Obviously this

assumption can not always be satisfied in the computational stage when a pure

node is obtained at some step. To handle this case we set P (B,W,p,M) = 1

when M = 1. In addition some clarification has to be done on Assumption 3;

from an empirical point of view this assumption reflects the idea that observing

the distribution of a covariate we are able to clearly discriminate among the

groups defined in the target variable. Of course, in real application problems,

this assumption is not always satisfied. We show, in the empirical evaluation

on both simulated and real datasets, that the relaxation of this hypothesis does

not invalidate the performance of the proposed measure as splitting criteria.

Algorithm 1 shows the procedure used to build the PCT model. Let S be the

set of all possible splits defined on the training set T. For each possible split

s ∈ S, all samples can be divided into sub-node tsL the condition s is satisfied,

otherwise tsR. The best split s∗ is identified maximizing the polarization in the

two sub-nodes. The growing procedure is stopped in one node if the node is

pure in terms of target variable or if other stopping conditions are met (i.e.

the number of samples in the node is less than a fixed threshold). Following

the same procedure adopted in CART model, when the tree is built, the most

representative class in each final node is assigned to that final node.

In the next sections we show how the proposed method works on differ-

ent simulated and real datasets. Results obtained using the PCT model are
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PCT: Polarized Classification Tree

Input: Training set T
if T is "pure" OR other stopping conditions met then

return
end
forall possible splits s ∈ S referring to all attribute x ∈ T do

s∗ = arg maxs∈S(P (fx|ts
L
,p) + P (fx|ts

R
,p)) Select best split;

end
PCT = Create a classification node from T based on s∗ generating the
two sub-nodes ts∗

L and ts
∗

R

for each t′ ∈ {ts∗

L , t
s∗

R } do
PolTrees∗ = PCT(Ts∗);
Attach Trees∗ to the corresponding branch of the tree

end

Algorithm 1: PCT: Polarized Classification Tree

compared to the ones obtained using the Gini index and the Information Gain

measure as splitting rule, which are procedures most used as benchmark to

compare new proposed splitting rules, as already underlined in Section I.1.

I.5 Empirical evaluation on simulated data

In order to show how our new impurity measure works inside PCT, this section

reports the empirical results achieved on different simulated datasets. The per-

formance of the PCT algorithm is compared with respect to the classification

tree based on different splitting criteria. In particular the Polarization splitting

criteria is compared to the Gini impurity index and the Information Gain in

terms of the Area Under the ROC Curve (AUC) value. The results reported in

the rest of the paper are based on a cross validation exercise and expressed in

terms of out of sample performance.

The simulation framework considered in this paper is inspired by the paper of

Loh and Shin 1997 where different impurity measures are compared for classifi-

cation tree modeling. The data are sampled from four pairs of distributions that
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are represented by the solid density curves represented in Figure I.2, where each

distribution represents the covariate of a group Gi defined by the associated

target variable. N(µ, σ2) is a normal distribution with mean µ and variance σ2,

T2(µ) is a t-distribution with 2 degrees of freedom centered at µ and Chisq(ν)

is a chi-square distribution with ν degrees of freedom. The 100 observations of

the two groups represented by the target variable Y are sampled respectively

from the first and from the second distribution as shown in Figure I.2. Results

Figure I.2: Simulation and representation of the different class populations used
for the classifiers comparison.

obtained by the three classification models under comparison are expressed in

terms of the AUC value. Averaged AUC values (i.e. mean (AUC)) and the

corresponding confidence intervals at 95% (i.e. CI (AUC)) for each simulated

dataset obtained using Monte Carlo simulation with 100 iterations are reported

in Table I.1.

In the reported examples AUC values obtained for PCT are better with

respect to the classical splitting methods based on the Gini index and
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Split Criteria Distribution G1 Distribution G2 # Simulations mean (AUC) CI (AUC)

Polarization N(0,1) N(1,0.25) 100 0.909 (0.908;0.909)
Gini N(0,1) N(1,0.25) 100 0.872 (0.872;0.873)

Information Gain N(0,1) N(1,0.25) 100 0.882 (0.881;0.883)

Polarization N(0,1) N(2,0.5) 100 0.964 (0.964;0.965)
Gini N(0,1) N(2,0.5) 100 0.919 (0.918;0.920)

Information Gain N(0,1) N(2,0.5) 100 0.926 (0.925;0.927)

Polarization T2(0) N(2,0.5) 100 0.946 (0.945;0.946)
Gini T2(0) N(2,0.5) 100 0.910 (0.909;0.911)

Information Gain T2(0) N(2,0.5) 100 0.918 (0.917;0.919)

Polarization Chisq(2) Chisq(8) 100 0.955 (0.954;0.957)
Gini Chisq(2) Chisq(8) 100 0.922 (0.921;0.923)

Information Gain Chisq(2) Chisq(8) 100 0.928 (0.927;0.930)

Table I.1: Confidence intervals for AUC values obtained through a 100 iteration
Monte Carlo procedure to compare the performance of classifiers on different
simulated datasets

Information gain, as shown in Table I.1. In all cases the confidence intervals

for the AUC derived using the polarization splitting criteria do not intersect

those obtained using the Gini index and Information gain. For each simulated

dataset a De Long test (E. R. DeLong, D. M. DeLong, and Clarke-Pearson 1988)

is performed to compare obtained results, in terms of AUC, among PCT and

trees employing respectively the Gini index and the Information Gain. In Table

I.2 the average pvalue of the De Long test obtained along the 100 simulations for

each dataset are shown. We also applied a one side Wilcoxon test to compare

the AUC values obtained with PCT and decision trees employing Gini and

Information Gain, in both cases obtained pvalues for all the datasets are lower

than 0.05, showing that AUC values obtained with PCT are significantly higher.

On the basis of the results at hand, the polarization measure introduced in

Distributions of G1 and G2 Average pvalue PCT vs Gini Average pvalue PCT vs IG
N(0,1) ; N(1,0.25) 0.0357 0.0006
N(0,1) ; N(2,0.5) 0.0080 0.0033
T2(0) ; N(2,0.5) 0.0294 0.00002

Chisq(2) ; Chisq(8) 0.0070 0.0305

Table I.2: Average obtained pvalue of the De Long test to compare the AUC
values of PCT against trees employing Gini index and Information Gain

this paper, shows a statistical significant superiority with respect to the other

considered splitting criteria in terms of predictive performance observing the
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obtained AUC values.

I.6 Empirical evaluation on real data

The performance of the splitting criteria under comparison are evaluated on 18

different real datasets. The considered datasets come from the UCI repository

Dua and Graff 2017.

In order to have a complete comparison among classifiers, different datasets

characterized by binary or multiple classes target variable are considered. The

datasets are made up of categorical and/or numerical explanatory variables.

In Table I.3 different information on the datasets are reported: sample size

(Samples), total number of variables (Var), number of categorical (Cat) and

numerical (Num) variables, number of classes in the target variable (Num

Class) and the normalized Shannon entropy (Balance). The normalized Shannon

entropy is evaluated on the target variable to measure the level of imbalance of

each dataset (i.e. the value is equal to 0 if the dataset is totally unbalanced and

equal to 1 if the samples are equi-distributed among the classes). See Appendix

I.B for more details on the datasets.

A 10-fold cross-validation procedure for the datasets reported in Table I.3

is performed to evaluate the different approaches under comparison. All the

classifiers are trained and evaluated on the same 10-folds. In addition, the same

stopping condition is used for all the models, i.e. the minimum number of

observations inside a node is set at 10% of the number of observations in the

training set.

As suggested in Demsar 2006, since datasets are different, the evaluated

performance metrics can not be compared directly, but for each dataset the

metrics are used to rank the classifiers. On the basis of the AUC, each

classifiers is ranked assigning value 1 to the best one, considering the mean

value between two ranks if the classifiers perform equally. A Dunn test with

Bonferroni correction is then applied to compare the obtained rankings with
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Dataset Samples Var Cat Num Num Class Balance
banknotes 1372 4 0 4 2 0.99

breast 699 9 0 9 2 0.93
breast cancer 286 9 8 1 2 0.79

breast coimbra 116 9 0 9 2 0.99
car 1728 6 6 0 4 0.60
crx 690 15 10 5 2 0.99

fertility 100 9 6 3 2 0.52
glass 214 9 0 9 6 0.84

haberman 306 3 0 3 2 0.83
hepatitis 155 19 13 6 2 0.73

horse colic 300 27 17 10 2 0.91
krkp 3196 36 36 0 2 1

lymph 148 18 18 0 4 0.61
post operative 87 8 8 0 3 0.85

scale 625 4 4 0 3 0.83
sonar 208 60 0 60 2 1

spectheart 80 22 22 0 2 1
wine 178 13 0 13 3 0.99

Table I.3: Dataset descriptions

confidence at 95%. Table I.4 shows the ranking of each model registered on

the datasets. The polarized classification tree works better with respect to Gini

and Information Gain assuming different kind of target variables (i.e. banknotes

authentication and glass). We note that classification trees based on the Gini

index and Information Gain are superior in terms of performance for only two

datasets each.

A Dunn test with Bonferroni correction show a significant difference between

obtained results for PCT and Gini index (the adjust pvalue is equal to 0.03),

while no differences are present between Information Gain and the other two

splitting methods. Hence, we can affirm that PCT is competitive and sometimes

better with respect to the most two used splitting rules (i.e. Gini index and

Information Gain) and can be considered as a valid alternative to be employed

and compared when looking for the model that better suits the data at hand.

It can be noticed that PCT model obtains good performance when dataset

covariates are mainly numerical, as they perform better or equal to the other

methods (see for example banknotes, glass or breast coimbra). Obtained results
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suggest instead that the balancing of the target variable and the presence of

multiclass target variable do not influence the performance of the introduced

method.

Dataset Rank AUC
Gini InfoGain Pol

bank note authentication 3 2 1
breast 3 1.5 1.5

breast cancer 1.5 1.5 3
breast coimbra 2 3 1

car 1.5 1.5 3
crx 2 3 1

fertility 1 2 3
glass 3 2 1

haberman 3 1.5 1.5
hepatitis 3 2 1

horse colic 3 2 1
krkp 1.5 1.5 3

lymph 2.5 2.5 1
postoperative 1 2 3

scale 3 1.5 1.5
sonar 3 1 2

spectheart 3 1.5 1.5
wine 2.5 1 2.5

Mean Rank 2.36 1.83 1.80

Table I.4: Mean rank values for AUC for each classifier

I.7 Conclusions

This paper introduces a new index of polarization to measure the goodness of

a split in the growth of a classification tree. Definition and properties of the

new multidimensional polarization index are described in detail in the paper

and proved in the appendix.

The new measure tackles weaknesses of the classical measures used in classifi-

cation tree modeling, taking into account the distribution of each covariate in

the node. From a computational point of view, the new measure proposed is

evaluated inside a classification tree model and implemented in R software and

is available from the authors upon request.
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The results obtained in the simulation framework suggest that our proposal

significantly outperforms classical impurity measure commonly adopted in clas-

sification tree modeling (i.e. Gini and Information Gain).

The performance registered running polarized classification tree models on real

data extracted from the UCI repository, confirms the competitiveness of our

methodological approach. More precisely, the empirical evidence at hand, shows

that Polarized Classification Tree models are competitive and sometimes better

with respect to classification tree models based on Gini or Information Gain.

A further analysis on this topic should compare the introduced Polarized Classi-

fication Trees with other splitting measures present in literature and to include

this new splitting measure in ensemble three modelling (e.g. Random Forest).

Appendix I.A Appendix section

Let f be a basic density, as defined in Duclos, Esteban, and Ray 2004 , i.e. an

unnormalized, symmetric and unimodal function, with compact support.

Some transformations can be performed on these functions s:

• λ-squeeze, with λ ∈ (0, 1) fλ = 1
λf

(
x−(1−λ)µ

λ

)
where µ is the mean of f .

• δ-slide, δ > 0 g(x) = f(x± δ)

• population rescaling of a non negative integer q g(x) = qf(x)

• income rescaling to a new mean µ′ g(x) = µ
µ′ f(xµµ′ )

These transformations preserve symmetry and unimodality and the resulting

transformed function is still a basic density.

On the basis of the Hypothesis 1-4, stated in Section I.3, we prove that the

index introduced in this paper verifies the axiomatic definition of polarization

given in Section I.3.

Some preliminary observations are needed for the proof. Let f be a density

function of a continuous. Suppose that supp f = [a, b] and µ is the expected
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value of the population.

Let fλ be the squeeze of f with λ ∈ (0, 1), then:

Observation I.A.1. The support of fλ is: supp fλ = [λa+ (1 − λ)µ, λb+ (1 −

λ)µ] ⊂ [a, b]

Observation I.A.2.
∫ λb+(1−λ)µ
λa+(1−λ)µ

1
λf(x−(1−λ)µ

λ ) dx =
∫ b
a
f(x) dx = 1

Observation I.A.3. µ′ =
∫ λb+(1−λ)µ
λa+(1−λ)µ x

1
λf(x−(1−λ)µ

λ ) dx =
∫ b
a

(λy + (1 −

λ)µ)f(y) dy =

= λµ+ (1 − λ)µ = µ

Observation I.A.4. V (fλ) =
∫ λb+(1−λ)µ
λa+(1−λ)µ (x− µ)2 1

λf(x−(1−λ)µ
λ ) dx =

= λ2 ∫ b
a

(y − µ)2f(y) dy = λ2V (f)

Axiom 1

Let fj be the density function of each group j = 1, ...,M . Since by assumption

the fj have disjoint supports, we can define the global distribution as f =
1
M

(
f1 + ...+ fM

)
. A global squeeze on the entire population is defined as:

fλ = 1
Mλ

f
(x− (1 − λ)µ

λ
) = 1

Mλ
f1

(x− (1 − λ)µ
λ

) + ...+ 1
Mλ

fM
(x− (1 − λ)µ

λ
) =

= 1
M

(
fλ1 + ...+ fλM

)
If supp(fj) = [aj , bj ], then supp(fλj ) = [λaj + (1 −λ)µ, λbj + (1 −λ)µ] (for Obs.

I.A.1). The mean of each group is defined as: µj =
∫ bj

aj
xfj(x) dx The mean of

each group after the squeeze becomes: µ′
j = 1

λ

∫ λbj+(1−λ)µ
λaj+(1−λ)µ xfj(

x+(1−λ)µ
λ ) dx =∫ bj

aj
(λy + (1 − λ)µ)fj(y) dy

= λ
∫ bj

aj
yfj(y) dy + (1 − λ)µ

∫ bj

aj
fj(y) dy = λµj + (1 − λ)µ So we can evaluate

the variability between groups after the squeeze as follow: B′ =
∑
j(µ′

j −µ)2 =∑
j(λµj +(1−λ)µ−µ)2 =

∑
j(λµj −λµ)2 = λ2B The variability within groups

after the squeeze becomes: W ′ =
∑
j

1
λ

∫ λbj+(1−λ)µ
λaj+(1−λ)µ (x−µ′

j)2fj
(x+(1−λ)µ

λ

)
dx =∑

j

∫ bj

aj
(λy + (1 − λ)µ− λµj − (1 − λ)µ)2fj(y) dy =∑

j

∫ bj

aj
λ2(y − µj)2fj(y) dy = λ2W So the polarization becomes:

P (B′,W ′,p,M) = B′

B′+W ′ · ψ(p,M) = λ2B
λ2B+λ2W · ψ(p,M) = P (B,W,p,M)

31



Axiom 1 is proved .

Axiom 2

Let f1, f2, f3 be three basic densities of the population corresponding to three

different groups and P the total polarization value. The global distribution is

completely symmetric, so groups 1 and 3 have the same population and group

2 is exactly midway between them. If we operate the same squeeze to f1 and

f3, we can prove that the polarization value is not decreasing.

First, it is possible to observe that as the squeeze is performed on f1 and

f3 separately, the expected values µ1 and µ3 do not change (for Obs. I.A.4).

P (B,W,p,M) = B
B+W ·ψ(p,M) where W =

∑3
j=1

∫
suppfj

(x−µj)2fj(x) dx and

P ′(B,W ′,p,M) = B
B+W ′ · ψ(p,M) where W ′ = K2

∫
suppf2

(x− µ2)2f2(x) dx+

λ2
(
K1

∫
suppf1

(x− µ1)2f1(x) dx

+K3
∫
suppf3

(x− µ3)2f3(x) dx
)
< W

So we can conclude that P ′(B,W ′,p,M) ≥ P (B,W,p,M).

Axiom 3

Let f1, f2, f3, f4 be four basic densities referred to four different groups, with

mutually disjoint supports, and let the distribution of the entire population be

completely symmetric. A symmetric slide of f2 and f3 to the side must increase

the polarization.

Before the slide: P (B,W,p,M) =
(

1 − W
B+W

)
· ψ(p,M) where B =∑4

j=1(µj − µ)2 = (µ1 − µ)2 + (µ2 − µ)2 + (µ3 − µ)2 + (µ4 − µ)2 After the

slide, because of the symmetry of the transformation, the global mean µ does

not change while the means of f2 and f3 become respectively µ2 − δ and µ3 + δ.

So we obtain: B′ = (µ1 − µ)2 + (µ2 − δ − µ)2 + (µ3 + δ − µ)2 + (µ4 − µ)2

= (µ1 − µ)2 + (µ2 − µ)2 + δ(δ − 2µ2 + 2µ)

+ (µ3 − µ)2 + δ(δ + 2µ3 − 2µ) + (µ4 − µ)2 where δ(δ − 2µ2 + 2µ) > 0 and

δ(δ + 2µ3 − 2µ) > 0 under the hypothesis that µ2 < µ and µ3 > µ and B′ > B.

Thus we obtain that P ′(B′,W,p,M) > P (B,W,p,M).
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Axiom 4

Considering two different distributions referred to the same population, the

function η(B,W ) is not affected by the scaling transformation of the two dis-

tributions.

So if PF (BF ,WF ,pF ,M) > PG(BG,WG,pG,M),

then maxj p
F
j − 1

N
N−2

N

>
maxj p

G
j − 1

N
N−2

N

.

Then we can trivially show that

PqF (BqF ,WqF ,pqF ,M) > PqG(BqG,WqG,pqG,M) with q a non negative inte-

ger value. Indeed: maxj p
qF
j

− 1
qN

qN−2
qN

>
maxj p

qG
j

− 1
qN

qN−2
qN

. We conclude that the measure

proposed is a multidimensional polarization measure.

Appendix I.B Appendix section

The performance of the splitting criteria under comparison are evaluated on 18

different real datasets, coming from the UCI repository (Dua and Graff 2017).

In this section detailed information on each dataset are reported.

Banknotes authentication Data were extracted from images that were

taken from genuine and forged banknote-like specimens. For digitization, an

industrial camera usually used for print inspection was used. The final images

have 400x 400 pixels. Due to the object lens and distance to the investigated

object gray-scale pictures with a resolution of about 660 dpi were gained.

Wavelet Transform tool were used to extract features from images.

Breast The dataset contains information about samples that arrive periodi-

cally as Dr. Wolberg reports his clinical cases. The database therefore reflects

this chronological grouping of the data and contains 8 groups of patients.
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Breast cancer This is one of three domains provided by the Oncology

Institute that has repeatedly appeared in the machine learning literature (see

also lymphography and primary-tumor). It contains clinical informations about

patient with breast cancer. This data set includes 201 instances of one class

and 85 instances of another class. The instances are described by 9 attributes,

some of which are linear and some are nominal.

Breast coimbra The dataset contains clinical features that were observed or

measured for 64 patients with breast cancer and 52 healthy controls. There are

10 predictors, all quantitative, and a binary dependent variable, indicating the

presence or absence of breast cancer. The predictors are anthropometric data

and parameters which can be gathered in routine blood analysis. Prediction

models based on these predictors, if accurate, can potentially be used as a

biomarker of breast cancer.

Car Car Evaluation Database was derived from a simple hierarchical decision

model originally developed for the demonstration of DEX, as described in

Bohanec and Rajkovic 1990. The model evaluates cars according to the following

concept structure: car acceptability is estimate by overall price (that is divided

in buying price and price of the maintenance) and technical characteristics

detailed as confort (number of doors, capacity in terms of persons to carry

and size of luggage boot) and safety.

CRX This dataset contains informations that concerns credit card applica-

tions. All attribute names and values have been changed to meaningless sym-

bols to protect confidentiality of the data. This dataset is interesting because

there is a good mix of attributes: continuous, nominal with small numbers of

values, and nominal with larger numbers of values. There are also a few missing

values.

Fertility 100 volunteers provide a semen sample analyzed according to the

WHO 2010 criteria. Sperm concentration are related to socio-demographic data,
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environmental factors, health status, and life habits

Glass This data are from USA Forensic Science Service; it contains 6 types

of glass defined in terms of their oxide content (i.e. Na, Fe, K, etc). The study

of classification of types of glass was motivated by criminological investigation.

Haberman The dataset contains cases from a study that was conducted

between 1958 and 1970 at the University of Chicago’s Billings Hospital on the

survival of patients who had undergone surgery for breast cancer.

Hepatitis This dataset contains medical information about a group of 155

people with acute and chronic hepatitis, initially studied by Peter B. Gregory

of the Stanford University School of Medicine. Among this 155 patients 33

died and 122 survived, and for each of them 19 variables, such as age, sex and

the results of standard biochemical measurements, are collected. The aim of

the dataset is to discover whether the data could be combined in a model that

could predict a patient’s chance of survival. See Diaconis and Efron 1983.

Horse Colic This dataset contains health information about horses in order to

predict whether or not a horse can survive, based upon past medical conditions.

Krkp The Chess Endgame Database for White King and Rook against Black

King (KRK) contains information on chess end game, where a pawn on a7 is one

square away from queening. The main aim is to predict the outcome of the chess

endgames, thus the target variable contains two possible values: White-can-win

("won") and White-cannot-win ("nowin").

Lymph This is one of three domains provided by the Oncology Institute that

has repeatedly appeared in the machine learning literature. The aim of this

dataset is to make a lymphatic diseases diagnosis observing different information

extracted through medical imaging techniques; four different diagnosis are

possible: normal, arched, deformed, displaced.
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Post Operative Because hypothermia is a significant concern after surgery, in

this dataset different attributes which correspond roughly to body temperature

measurements are collected from 87 different patients. The aim of this dataset

is to determine where patients in postoperative recovery area should be sent

to next. In particular three different decisions can be taken: I (patient sent to

Intensive Care Unit), S (patient prepared to go home) and A (patient sent to

general hospital floor).

Scale In this dataset results of a psychological experiment are collected

observing tips of 625 patients. Four attributes are collected for each sample:

the left weight, the left distance, the right weight, and the right distance. Each

example is then classified as having the balance scale tip to the right, tip to the

left, or be balanced.

Sonar This dataset is composed by 208 sonar signals bounced off a metal

cylinder or a roughly cylindrical rock. For each signal we have a set of 60

numbers in the range 0.0 to 1.0, representing the energy within a particular

frequency band, integrated over a certain period of time. The integration

aperture for higher frequencies occur later in time, since these frequencies are

transmitted later during the chirp. The target variable associated to each record

contains the letter "R" if the signal is bounced off a rock and "M" if it is bounced

off a mine (metal cylinder).

Spectheart Diagnosing of cardiac Single Proton Emission Computed Tomog-

raphy (SPECT) images are describer in the dataset. The database of 80 SPECT

image sets (patients) was processed to extract features that summarize the orig-

inal SPECT images. As a result, 44 continuous feature pattern was created for

each patient and then each pattern was further processed to obtain 22 binary

feature patterns. Each of the patients is classified into two categories: normal

and abnormal, contained in the target variable.
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Wine The wine dataset contains the results of a chemical analysis performed

on three different types of wines grown in a specific area of Italy. 178 samples are

analysed and 13 different attributes are recorded for each sample. The target

variable is a three classes categorical variable representing the analysed type of

wine.
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Part 2

Model selection methods for

ordinal target variables



Introduction

Classification and regression are among the founding tasks of the machine

learning field. A lot of tools are developed in literature and applied in many

different domains. In this context, less attention was paid to tasks where the

target variable is ordinal.

Ordinal data are those categorical data where a natural order exists between

levels. This kind of data was often considered as pure nominal or converted

to numeric to reflect the natural order of categories. Increasing the number of

real problems that involve this type of data, the development of suitable tools

is attracting more and more interest.

Concerning ordinal response variables modelling, different approaches are de-

scribed in literature, both parametric (see Agresti 2010; Kotłowski et al. 2008;

Torra et al. 2006) and non-parametric (see Ahmad and Brown 2015; Galimberti,

Soffritti, and Di Maso 2012; Hornung 2020; Morrone, Piscitelli, and D’Ambrosio

2019; Piccarreta 2004), for the model selection stage there is a lack of adequate

tools (Cardoso and Sousa 2011).

Moreover, performance indicators should take into account the nature of the

target variable, especially when the dependent variable is ordinal. This mo-

tivates the proposal of a new class of measures to select the best model in

predictive contexts characterized by a multi-class ordinal target variable, using

the misclassification errors coupled with a measure of uncertainty on the pre-

diction.

Two toy examples show how the index works and its advantages with respect

to the classical evaluation measures deployed in literature in this context (accu-

racy, AUC, MSE). The index is applied on a simulated data set and compared

with the cited classical measures in the evaluation of the performances of dif-

ferent models. Results confirm that the new index can capture peculiar aspects

compared to the traditional measures.

The index proposed is also deployed in a real case study. A data set related to

the study of Attenuated Psychosis Syndrome is analysed in terms of classifica-
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tion task.

The main contribution of this work is the definition of a new class of measures

to select the best model in predictive contexts characterized by a multi-class

ordinal target variable, using the misclassification errors coupled with a mea-

sure of uncertainty on the prediction. This new approach takes into account

the ordered nature of the variable and, in addition, takes into account the

uncertainty that the model assigns to the prediction in order to obtain the

maximum of interpretability. This second aspect is particularly important in

medical applications.

In the Paper II we propose the new method for model selection when the target

variable is ordinal. Paper III presents an application of the index to a real

case study in the neuropsychiatric field: a classification task on three different

groups of subjects (subject with psychosis, subjects at risk and subjects not at

risk) is performed.
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II.1 Introduction

Evaluation measures are widely used in predictive models to compare different

algorithms, thus providing the selection of the best model for the data at hand.

Performance indicators can be used to assess the performance of a model in

terms of accuracy, discriminatory power and stability of the results. The choice

of indicators to perform model selection is a fundamental point and many

approaches have been proposed over the years (see e.g. Bradley 1997, Adams

and Hand 2000, Hand 2009).

Concerning binary target variables, distinct criteria to compare the performance

of classification models are available (see Hand 1997, Hand 2001, Sokolova,

Japkowicz, and Szpakowicz 2006, Hossin and Sulaiman 2015).

Multi-class classification models are generally evaluated averaging binary

classification indicators (see Hand and Till 2001, Sokolova and Lapalme 2009,

Hossin and Sulaiman 2015) and in literature there is not a clear distinction

among them with respect to multi-class nominal and ordinal targets (e.g. Frank

and Hall 2001, Pang and Lee 2005, Gaudette and Japkowicz 2009).

In the model definition stage for ordinal response variables there are different

approaches described in literature, both parametric (see Agresti 2010; Kotłowski

et al. 2008; Torra et al. 2006) and non-parametric (see Ahmad and Brown 2015;

Hornung 2020; Morrone, Piscitelli, and D’Ambrosio 2019; Piccarreta 2004),

while for the model selection stage there is a lack of adequate tools.

In our opinion, performance indicators should take into account the nature of the

target variable, especially when the dependent variable is ordinal. This leads us

to propose a new class of measures to select the best model in predictive contexts

characterized by a multi-class ordinal target variable, using the misclassification

errors coupled with a measure of uncertainty on the prediction.

The paper is structured as follows: Section II.2 reviews the metrics most

used in literature; Section II.3 shows our methodological proposal and proves

mathematical properties; Section II.4 explains how our proposed index works

in two toy examples; Section II.5 reports the empirical evidence obtained on
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simulated data. Conclusions and further research ideas are summarized in

Section II.6.

II.2 Review of the literature for ordinal dependent

variables

The most popular measures of performance in ordinal predictive classification

models are based on AUC (Area Under the Receiver Operating Characteristic

(ROC) Curve), accuracy (expressed in terms of correct classification) and MSE

(Mean Square Error), see Gaudette and Japkowicz 2009 and Huang and Ling

2007 among others. The accuracy, measured as percentage of correct predic-

tions over total instances, is the most used evaluation metric for binary and

multi-class classification problems (Sokolova, Japkowicz, and Szpakowicz 2006),

assuming that the costs of the different misclassifications are equal.

The AUC for multi-class classification is defined in Hand and Till 2001 as a gen-

eralization of the AUC (based on the probabilistic definition of AUC); it suffers

of different weaknesses also in the binary classification problem (Gigliarano,

Figini, and Muliere 2014) and it is cost-independent, assumption that can be

viewed as a weakness when the target is ordinal.

The mean square error (MSE) measures the difference between prediction values

and observed values in regression problems using an Euclidean distance. MSE

can be used in ordinal predictive models, converting the classes of the ordinal

target variable y in integers and computing the difference between them and it

does not take into account the ordering in a predictive model characterized by

ordinal classes in the response variable.

Furthermore, it is well known that in imbalanced data characterized by under-

fitting or over-fitting the mean square error could provide trivial results (see

Hossin and Sulaiman 2015).
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II.3 A new index for model performances evaluation and

comparison for ordinal target

Let y = {y1, .., yN} be a test set for the ordinal target variable Y , where

yi ∈ {1, ...,M} (with M number of classes ordered of the target variable) and

let X be the N × p data matrix, where N is the number of observations and p

the number of covariates.

The output of a predictive model is a matrix P = {pij}, where 0 ≤ pij ≤ 1,

which contains the probability that observation i belong to the class j estimated

by the model under evaluation.

Standard multi-class classification rules assign the observation i to the class

j = argmaxl{pi,l}.

In order to introduce our proposal, the definitions of classification function and

error interval are required.

Definition II.3.1 (Classification function). Let observations {1, ..., N} be

grouped by the estimated classes ŷi = j. For each class, sort the observations

in a non-increasing order with respect to pi,j . The vector of indexes i of the

observations is a permutation of the original vector, according to the ordering

defined above. For a given model, the classification function is a piecewise

constant function fmod : [0, 1] → {1, ..,M} such that fmod([ i−1
N , iN )) = yi for

i ∈ {1, ..., N}.

As a special case, the perfect classification function, is a piecewise constant

function fexact : [0, 1] → {1, ..,M} such that each estimated class corresponds

to the real class identified by y.

Note that the function fexact is unique except for permutation of the observa-

tions in the same estimated class.

The error interval in each class can be derived as the interval between the

first misclassified observation and the end of the observations in that estimated
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class.

Definition II.3.2 (Error Interval). Considered the vector of observations

ordered as described in Definition II.3.1. Suppose that the range corresponding

to the estimated class j in that vector has indexes in [nj−1, nj). Let ĩj ∈

{nj−1, ..., nj} the index of the first misclassified observation. So the error

interval is defined as [ ĩjN ,
nj

N ), i.e. the interval between the first misclassified

observation and the last observation of the estimated class j, and its length is

defined as ej = nj−ĩj
N .

If no misclassification occurs in [nj−1, nj), the error interval is defined as an

empty set and the length is ej = 0.

Consider an artificial example. Let N = 10 be the number of observations

and each of these belongs to a class defined by a three levels target variable

(M = 3). Suppose that a (hypothetical) predictive model returns the predictions

as in Table II.1.

Observation Probabilities Estimated Class Real Class
Class 1 Class 2 Class 3

1 0.288 0.174 0.538 3 1
2 0.325 0.478 0.197 2 2
3 0.828 0.013 0.159 1 1
4 0.310 0.106 0.584 3 3
5 0.120 0.262 0.618 3 3
6 0.426 0.167 0.407 1 3
7 0.849 0.126 0.025 1 2
8 0.520 0.401 0.079 1 1
9 0.147 0.670 0.183 2 2
10 0.142 0.593 0.265 2 3

Table II.1: Example. The probabilities are randomly generated, the estimated
class is the class with the maximum of probability assigned, the real class
are generated starting from the estimated class with some classification errors
artificially introduced.

The classification function is derived grouping the observations in the

estimated class as: {3,6,7,8} in Class 1, {2,9,10} in Class 2 and {1,4,5} in Class

3. In each group the observations are sorted with respect to the probability of
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the estimated class. For the group 1 the probabilities are 0.828, 0.426, 0.849,

0.520 respectively, then the ordered group is: {7,3,8,6}. Following the same rule

the group 2 becomes {9,10,2} and group 3 is {5,4,1}.

The final sequence of observations can be written as in Table II.2.

i 7 3 8 6 9 10 2 5 4 1
i 1 2 3 4 5 6 7 8 9 10
y 2 1 1 3 2 3 2 3 3 1
ŷ 1 1 1 1 2 2 2 3 3 3

Table II.2: Index construction

The classification function and the corresponding perfect classification

function are depicted in Figure II.1 and Figure II.2 respectively.

Figure II.1: Classification function Figure II.2: Perfect classification func-
tion

In order to define the three error intervals, as a preliminary step we identify

the intervals of observations related to each estimated class: [0, 0.4) for Class

1, [0.4, 0.7) for Class 2, [0.7, 1) for Class 3. From Table II.2, in the estimated

Class 1 the first error corresponds to the first observation, so the error in-

terval is [0, 0.4), in the estimated Class 2 the first error corresponds to the

observation 6, then the error interval is [0.5, 0.7) and in the estimated Class 3
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the first error corresponds to the observation 10 and the error interval is [0.9, 1).

Starting from Definition II.3.1 and Definition II.3.2, Definition II.3.3 in-

troduces a new index for model performance evaluation in predictive models

characterized by an ordinal target variable.

Definition II.3.3 (Index). Consider for each class {1, ...M} the corresponding

weight wj = ej

lj
, where ej is the jth error interval length and lj = nj − nj−1 is

the length of the jth estimated class in the domain, such that 0 ≤ wj ≤ 1. We

define the new index as:

I =
M∑
j=1

wj

∫ nj
N

nj−1
N

|(fmod(x) − fexact(x))|dx

i.e. the new index is defined as the weighted sum of the distance between

classification function and perfect classification function.

On the basis of the previous example, we can compute the value for the index

introduced in Definition II.3.3: the three integral results are (0.3, 0.1, 0.2) and

the corresponding weights are (1, 0.67, 0.33), thus I = 0.433.

The index satisfies the following properties.

Propr II.3.4. I ∈ [0,+∞).

I = 0 if and only if fmod = fexact.

Proof.

I =
M−1∑
j=0

wj

∫ nj
N

nj−1
N

|(fmod−fexact)(x)|dx ≥
M−1∑
j=0

nj − ĩj
N

|fmod−fexact|
nj − nj−1

N

and

• nj ≥ ĩj ,

• nj > nj−1

by definition, than we can conclude that I ≥ 0.

We prove also that I = 0 if and only if fmod = fexact.
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I = 0 =⇒ wj = 0 or
∫ nj

N
nj−1

N

|(fmod−fexact)(x)|dx = 0 ∀ j in {1, ...,M−1}.

• wj = 0 ⇐⇒ ĩj = nj , i.e there are not classification errors, so fmod = fexact

in class j.

•
∫ nj

N
nj−1

N

|(fmod − fexact)(x)|dx = 0 ⇐⇒ fmod = fexact in the class j.

So we can conclude that I = 0 =⇒ fmod = fexact.

The other implication is trivial. ■

Propr II.3.5. I has a sharp upper bound M − 1

The upper bound M − 1 is reached if and only if M = 2 (binary classification).

Proof.

I =
M−1∑
j=0

wj

∫ nj
N

nj−1
N

|(fmod − fexact)(x)|dx ≤
M−1∑
j=0

1 ·
∫ nj

N

nj−1
N

|(fmod − fexact)(x)|dx ≤

≤ max
x

|(fmod − fexact)(x)|
M−1∑
j=0

nj − nj−1

N
≤ M − 1

If M = 2 we obtain |(fmod − fexact)(x)| = 1 ∀x ∈ [0, 1] so that I = M − 1.

If M > 2, |(fmod − fexact)(x)| > 1 for at least one class (by construction) the

inequality is strict. ■

Proposition II.3.6. I ≤ K,

where K is defined as

K =
M∑
i=1

li max{M − i, i− 1}

Proof. The maximum value is reached when the worst classification is obtained,

i.e. when all observations are associated to the farthest class. If this happens,

the error interval is as long as the class domain, so wj = 1 ∀j = 1, ...,M and

each integral is the area of a rectangle with basis the class domain lj and height

the maximum height reachable.

■
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Definition II.3.7 (Normalized index).

In = 1
K

M−1∑
j=0

wj

∫ nj
N

nj−1
N

|(fmod − fexact)(x)|dx

where K is the maximum defined in the Proposition II.3.6.

So 0 ≤ In ≤ 1.

In the previous example, K = 1.7 and the corresponding value of the defined

normalized index is 0.255.

Proposition II.3.8. The accuracy is a special case of the index introduced in

Definition II.3.3.

Proof. The accuracy is acc = perr = #{misclassified observations}
N i.e. the

proportion of misclassified observations.

Setting M = 2, from the Proposition II.3.6, K = 1.

maxx|fmod(x) − fexact(x)| = 1, each weight is wj = 1
N if w1 = w2 = 1 and

In = perr. ■

Propr II.3.9 (Monotonicity). Consider a classification C with ϵ misclassifica-

tions and N observations. Operating a transformation of the classification C

in C ′ where an observation right classified is changed in a misclassification, the

index In becomes higher.

Proof. In the classification C ′, ϵ′=ϵ + 1 are misclassified observations: the ϵ

observations misclassified in C plus a new misclassification. Suppose that the

new misclassification is the observation i that is classified in the class j′ instead

of the real class j.

All the components in the sum of the index In remain unchanged except for the

jth, thus obtaining Ijn. So

Ijn = wj

∫ nj
N

nj−1
N

|fmod(x) − fexact(x)|dx

Looking at each of the two elements in the product:
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• w′
j ≥ wj

Two different cases are possible: if the probability associated to the ith

observations is less or equal than the probability of the first error, the error

interval w′
j = wj ; on the other hand, the error interval become larger, thus

w′
j > wj .

• |f ′
mod − fexact| > |fmod − fexact|

In C ′ there is one misclassification more than in C, so the distance between

fmod and fexact increases.

We can conclude that I ′j
n ≥ Ijn. ■

We remark that in the Property II.3.9 the vice versa does not hold, i.e.

if Imod1 ≥ Imod2 we can not make conclusions on the number of misclassified

observations in the two classifications.

II.4 Toy examples

In order to show how our index works with respect to the indexes proposed in

the literature, toy examples are reported in this section with the main aim of

discussing the behaviour in terms of model selection of our index with respect

to AUC, accuracy and MSE.

Y is a target variable characterized by M = 3 levels yi ∈ {1, 2, 3} and Model

1 and Model 2 are two competitive models under comparison. The numerical

setting of both examples is stated in Appendix II.A.

II.4.1 First toy example

In the first toy example we take into account the ordinal structure of the

target variable Y . Table II.3 and Table II.4 are the corresponding confusion

matrices for Model 1 and Model 2. It is clear that the Model 2 makes a better

classification than Model 1.
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Actual
1 2 3

Pr
ed

ic
t 1 5 0 1

2 0 7 0
3 0 0 7

Table II.3: Confusion matrix Model 1

Actual
1 2 3

Pr
ed

ic
t 1 5 1 0

2 0 6 0
3 0 0 8

Table II.4: Confusion matrix Model 2

Model Proposed Index Normalized Index AUC accuracy MSE
1 0.08 0.05 0.95 0.95 0.20
2 0.04 0.03 0.95 0.95 0.05

Table II.5: Results

For the sake of comparison, for each model the AUC, the accuracy, the MSE

and our index are computed as summarized in Table II.5.

We remark that looking at Table II.5 the values obtained for the AUC and the

accuracy indexes for Model 1 and Model 2 are exactly equal, thus, in terms of

model choice, Model 1 and Model 2 are not different. Our index highlights a

difference in terms of performance between the two models under comparison

and it selects Model 2 as the best one. Further details about the setting are

given in Table II.11 in Appendix II.A.

II.4.2 Second toy example

The second toy example considers the probability assigned to each observation.

In practical applications where we need also to evaluate how much uncertainty

is associated to a prediction, the starting point considers the probability that

the new observation belongs to the estimated class.
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From Table II.6, both Model 1 and Model 2 assign an observation of the third

class to the first one. The first classification assigns a higher probability to the

misclassified observation than the second (p=0.866 vs p=0.400), see Table II.12

in Appendix II.A. Table II.12 reports set probabilities and consequent assigned

classes. Then we can conclude that Model 2 is better than Model 1 for data at

hands.

Actual
1 2 3

Pr
ed

ic
t 1 5 0 1

2 0 7 0
3 0 0 7

Table II.6: Confusion matrix

From Table II.7 both models are equivalent in terms of MSE and accuracy,

thus on the basis of classical measures Model 1 and Model 2 are not different.

Our index reports different values for the models under comparison and select

Model 2 as the best one.

Model Proposed Index Normalized Index AUC accuracy MSE
1 0.083 0.051 0.956 0.950 0.200
2 0.017 0.010 0.983 0.950 0.200

Table II.7: Results

II.5 Empirical evaluation on simulated data

In order to show how our proposal works in model selection, this section reports

the empirical results achieved on a simulated dataset.

The simulated dataset is composed of three covariates obtained by a Monte

Carlo simulation and an ordinal target variable with M = 5, as reported in

Table II.8. The sample size is N = 7500. The dataset is exactly balanced in

terms of response variable: 1500 observations are generated for each level of y.
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y 1 2 3 4 5
x1 N(2,1.5) N(3,1) N(4,1.5) N(5,1) N(6,1)
x2 N(1,2.5) N(5,2) N(7,2.5) N(8.5,2) N(9.5,2)
x3 U(0,3)

Table II.8: Simulated data structure.

Five different models are under comparison:

• Ordinal logistic regression (Ord Log),

• Conditional inference tree (Tree),

• Support vector machine (SVM),

• Ordinal Random forest (RFor),

• k- Nearest Neighbour with k=20 (kNN-20),

• k- Nearest Neighbour with k=50 (kNN-5),

• Naive Bayes (NaiveB).

For each model AUC, accuracy, MSE and our index are computed using a

10-fold cross validation. More specifically, the dataset is randomly partitioned

into 10 equal sized subsamples (of 750 observations), each of which is retained

as validation data and the remaining 9 subsamples are used as training data.

The process is then repeated 10 times, with each of the subsamples used exactly

once for validation. The resulting metrics are averaged and than reported in

Table II.9.

For the sake of clarity, Table II.10 shows the resulting ranks for the models,

using the results obtained for the four metrics under comparison.

We can see that the k-nearest neighbour with k = 5 is classified as the best

model according to all the indexes employed for model choice except for the

AUC metric, but the values of AUC are extremely similar to the best model (the

difference is less than 0.001). Furthermore, from Table II.9 k-nearest neighbour
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Model Proposed Index Normalized index AUC Accuracy MSE
Ord Log 0.450 0.141 0.864 0.581 0.580

Tree 1.569 0.491 0.875 0.586 0.643
SVM 0.446 0.137 0.869 0.592 0.581
RFor 0.469 0.143 0.875 0.589 0.643

kNN-20 0.003 0.0009 0.999 0.976 0.025
kNN-5 0.002 0.0006 0.999 0.993 0.008
NaiveB 0.434 0.132 0.877 0.604 0.594

Table II.9: Model comparison

Model Proposed Index/Normalized AUC Accuracy MSE
Ord Log 5 7 7 3

Tree 7 4 6 6
SVM 4 6 4 4
RFor 6 5 5 7

kNN-20 2 1 2 2
kNN-5 1 2 1 1
NaiveB 3 3 3 5

Table II.10: Results in terms of ranking.

outperforms the other models (with both choices of k). The Naive Bayes is

ranked as the second-best model after kNN with respect to all performance

indicators except for MSE (with minimum differences from Ord Log and SVM).

When the performance differences between models are macroscopic all the

indexes agree in model selection. The interest of a new metric come out when

other indexes can not individuate differences between performances, then the

natural structure of data and prediction probabilities become fundamental for

the selection of the best model.

II.6 Conclusions

A new performance indicator is proposed to compare predictive classification

models characterized by ordinal target variable.

Our index is based on the definition of a classification function and an error

interval. A normalized version of the index is derived. The empirical evidence

at hands underlined that our index discriminates better among different models
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with respect to classical measures available in the literature.

Our index can be used coupled with other metrics for assessing model

performances for model selection.

From a computational point of view a further idea of research will consider the

implementation of our index in a new R package. In terms of application we

think that our index could be directly incorporate in the process of assessment

for predictive analytics.

Appendix II.A Toy example settings

In order to make the toy examples reproducible, numerical settings are reported.

Table II.11 and in Table II.12 contain the hypothetical output of the two models

described in Section II.4: a progressive ID of observations, probabilities assigned

for each class (p1, p2, p3) by Model 1 and Model 2, the resulting Estimated class

for each model and the Real class assigned arbitrary by the author.

Observation Model 1 Model 2 Estimated class Model 1 Estimated class Model 2 Real class
p1 p2 p3 p1 p2 p3

1 0.114 0.473 0.413 0.114 0.473 0.413 2 2 2
2 0.068 0.184 0.747 0.068 0.184 0.747 3 3 3
3 0.750 0.125 0.125 0.125 0.750 0.125 1 2 3
4 0.587 0.212 0.201 0.587 0.212 0.201 1 1 1
5 0.0583 0.623 0.319 0.0583 0.623 0.319 2 2 2
6 0.371 0.063 0.565 0.371 0.063 0.565 3 3 3
7 0.329 0.179 0.491 0.329 0.179 0.491 3 3 3
8 0.114 0.444 0.442 0.114 0.444 0.442 2 2 2
9 0.936 0.014 0.050 0.936 0.014 0.050 1 1 1
10 0.116 0.229 0.655 0.116 0.229 0.655 3 3 3
11 0.376 0.398 0.226 0.376 0.398 0.226 2 2 2
12 0.435 0.438 0.128 0.435 0.438 0.128 2 2 2
13 0.452 0.226 0.321 0.452 0.226 0.321 1 1 1
14 0.740 0.173 0.087 0.740 0.173 0.087 1 1 1
15 0.180 0.796 0.0243 0.180 0.796 0.0243 2 2 2
16 0.343 0.392 0.265 0.343 0.392 0.265 2 2 2
17 0.049 0.073 0.878 0.049 0.073 0.878 3 3 3
18 0.522 0.076 0.403 0.522 0.076 0.403 1 1 1
19 0.012 0.194 0.794 0.012 0.194 0.794 3 3 3
20 0.128 0.380 0.491 0.128 0.380 0.491 3 3 3

Table II.11: First toy example
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Observation Model 1 Model 2 Estimated class Real class
p1 p2 p3 p1 p2 p3

1 0.114 0.473 0.413 0.114 0.473 0.413 2 2
2 0.068 0.184 0.747 0.068 0.184 0.747 3 3
3 0.866 0.012 0.121 0.400 0.300 0.300 1 3
4 0.587 0.212 0.201 0.587 0.212 0.201 1 1
5 0.0583 0.623 0.319 0.0583 0.623 0.319 2 2
6 0.371 0.063 0.565 0.371 0.063 0.565 3 3
7 0.329 0.179 0.491 0.329 0.179 0.491 3 3
8 0.114 0.444 0.442 0.114 0.444 0.442 2 2
9 0.936 0.014 0.050 0.936 0.014 0.050 1 1
10 0.116 0.229 0.655 0.116 0.229 0.655 3 3
11 0.376 0.398 0.226 0.376 0.398 0.226 2 2
12 0.435 0.438 0.128 0.435 0.438 0.128 2 2
13 0.452 0.226 0.321 0.452 0.226 0.321 1 1
14 0.740 0.173 0.087 0.740 0.173 0.087 1 1
15 0.180 0.796 0.0243 0.180 0.796 0.0243 2 2
16 0.343 0.392 0.265 0.343 0.392 0.265 2 2
17 0.049 0.073 0.878 0.049 0.073 0.878 3 3
18 0.522 0.076 0.403 0.522 0.076 0.403 1 1
19 0.012 0.194 0.794 0.012 0.194 0.794 3 3
20 0.128 0.380 0.491 0.128 0.380 0.491 3 3

Table II.12: Second toy example
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Abstract

The presence of an ordinal variable poses several problems that are not

deepen in the literature. In this work we aim to analyse a dataset on

mental state at risk, a delicate and extremely debatable definition in the

psychiatric field, in order to produce a model that is of double value.

On the one hand it allows to understand which are the most influential

characteristics on the mental state, on the other hand it allows to predict

the correct diagnosis and possibly also to assess the risk of a possible

transition to the psychotic state. With this aim we focus on model

selection methods in the framework of ordinal target variable.
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III.1 Introduction

Despite advances in pharmacological and psychotherapeutic interventions over

the last decades, psychotic disorders continue to be among the most severe

disorders in medicine. In children and adolescents, schizophrenia is one of the

ten main causes of disability-adjusted life years (DALYs) in 10 to 14-year-old

boys and 15 to 19-year-old girls Gore et al. 2011). The identification of people

at high-risk of developing psychosis is one of the most promising strategies to

improve outcomes. Indeed, retrospective studies indicate that the onset of full

psychosis is commonly preceded by a prodromal phase lasting up to several

years Hafner et al. 1999; Schultze-Lutter et al. 2010. Recently, the importance

of research in persons at high risk has been increasingly recognized to such an

extent that Attenuated Psychosis Syndrome has been introduced in section III

(“Emerging Measures and Models”) of the Diagnostic and Statistical Manual of

Mental Disorder, fifth Edition. Some concerns raised regarding the introduction

of this new syndrome need to be addressed with special attention in children

and adolescents, where research on the high risk state is still in its infancy

Schimmelmann, Walger, and Schultze-Lutter 2013. In particular, criticism

about pathologization of non-ill behaviours and experiences has been voiced. In

fact, during adolescence, the assessment of psychiatric symptoms and disorders

is challenging. Several authors have underlined the difficulty in discriminating

between normal behaviours and psychiatric symptoms Welsh and Tiffin 2013.

Normative adolescent experiences can make the clinical picture blurred and

lead to false positive psychotic diagnoses Carol and Mittal 2015. Overall,

in children and adolescents research on the high risk state and attenuated

psychotic symptoms is still in its infancy and the clinical validity of at risk

criteria appears understudied. Furthermore, only few studies have evaluated the

psychopathological and neuropsychological characteristics of adolescents with

attenuated psychotic symptoms (APS).

In this context an accurate data analysis is fundamental for knowledge ex-

traction and prediction: it is extremely important to deploy adequate models
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and to perform a suitable selection procedure.

If there are several models that are suitable for the analyses, it can be noted

that the evaluation measures for model selection are few and inadequate to the

problem under analysis.

Performance indicators can be used to assess the performance of a model in

terms of accuracy, discriminatory power and stability of the results. The choice

of indicators to made model selection is a fundamental point and many ap-

proaches have been proposed over the years (see e.g. Bradley 1997; Hand 2009).

Multi-class classification models are generally evaluated averaging binary clas-

sification indicators (see Hossin and Sulaiman 2015) and in the literature there

is not a clear distinction among them with respect to multi-class nominal and

ordinal targets (e.g. Gaudette and Japkowicz 2009).

While in the model definition stage for ordinal target variable there are different

approaches in the literature (see Agresti 2010; Kotłowski et al. 2008), for the

model selection there is a lack of adequate tools (Cardoso and Sousa 2011).

In our opinion, performance indicators should consider the nature of the target

variable, especially when the dependent variable is ordinal. In medical appli-

cation is also fundamental to take into account the uncertainty that the model

assign to the prediction in order to obtain the maximum of interpretability.

This leads us to apply and compare different measures to select the best model

to predict the mental status, contexts characterized by a multi-class ordinal

target variable.

The rest of the paper is organized as follow: Section III.2 describes data

at hand and the analysis performed, Section III.3 describes preliminary results

obtained.

III.2 Data description and analysis

The dataset is composed by 240 observation (corresponding to 240 patients

under examination). The target variable is the membership to one of three cat-
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egories: subject not at risk, at risk, psychotic. This variable is clearly ordinal

and in this context is extremely important to consider the order of levels.

The covariates considered are some personal information like age at onset, sex,

ethnicity, some medical history of the patients and familiarity to mental ill-

nesses, some information about symptoms, duration of the psychotherapy and

of the drugs assumption, the IQ index (Intelligence Quotient) and the SOFAS

(Social and Occupational Functioning Assessment Scale).

On this dataset, five different models are implemented and compared: Ordi-

nal logistic regression McCullagh 1980, Classification tree Breiman, Friedman,

and Olsen 1984, Support vector machine Drucker et al. 1997, Random forest

Breiman 2001, k-Nearest Neighbour Cover and Hart 1967.

In the model selection step we compare the information given by an index for

ordinal target proposed in Ballante, Uberti, and Figini 2020 with standard

indexes used in literature that are AUC (Area Under the ROC curve), accuracy

(expressed in terms of correct classification) and MSE (Mean Square Error) (see

Gaudette and Japkowicz 2009 and Huang and Ling 2007 among others), an-

other index for ordinal target variable proposed in Cardoso and Sousa 2011 and

the total misclassification cost used in Piccarreta 2008. The index proposed in

Ballante, Uberti, and Figini 2020 is defined basing on a classification function,

i.e. a function which represents the actual classification made by the model

under evaluation, compared with an exact classification function that is the

goal of each model. This index takes into account the ordinal structure of the

target variable and the probability assigned from the model at each observation.

This first aspect has obvious advantages in this context, whereas the second

aspect is extremely useful in medical application, when we need to consider the

uncertainty of the prediction as well as the prediction itself. In the rest of the

paper we refer to this index as OPI (Ordinal Probability Index). The AUC for

multi-class classification is defined in Hand and Till 2001 as a generalization of

the AUC (based on the probabilistic definition of AUC); it suffers of different

weaknesses also in the binary classification problem (Gigliarano, Figini, and

Muliere 2014) and it is cost-independent, assumption that can be viewed as a
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weakness when the target is ordinal.

Accuracy (percentage of correct predictions over total instances) is the most used

evaluation metric for binary and multi-class classification problems (Sokolova,

Japkowicz, and Szpakowicz 2006), assuming that the costs of the different mis-

classifications are equal.

Mean square error (MSE) measures the difference between prediction values

and observed values in regression problems using an Euclidean distance. MSE

can be used in ordinal predictive models, converting the classes of the ordinal

target variable y in integers and computing the difference between them and it

does not takes into account the ordering in a predictive model characterized by

ordinal classes in the response variable. Furthermore, it is well known that in

imbalanced data characterized by under-fitting or over-fitting the mean square

error could provide trivial results (see Hossin and Sulaiman 2015).

Total misclassification cost is simply defined as the sum of absolute values of the

differences between the real class and the predicted class, transformed integer

values as in MSE. It was used in Piccarreta 2008 to prune a new classification

tree algorithm in ordinal framework.

Ordinal Index proposed in Cardoso and Sousa 2011 is based on confusion matrix

and on the concept of non-discordant pair of points, i.e. when the relative order

of the predicted classes of two observations is the same of the relative order of

the real classes. The advantage of this method with respect to AUC, accuracy

and MSE is that consider the ordinal structure of the target variable, but it

does not take into account the probabilities assigned to the prediction like the

first index proposed.

III.3 Preliminary results

Data at hands are composed by 240 observations and fifteen covariates both

qualitative and quantitative as possible explanatory variables and predictors.

The target variable has three ordered level (not at risk, at risk, psychotic). On
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this dataset six different predictive models are implemented:

• Ordinal logistic regression (Ord Log),

• Classification tree (Tree),

• Support vector machine (SVM),

• Random forest (RFor),

• k- Nearest Neighbour (kNN),

• Naive Bayes (NBayes).

In order to select the best model a 5-fold cross validation is implemented. The

models are compared in terms of out of sample performance on the basis of

OPI, AUC, accuracy, MSE, the ordinal index (Ord Ind) and misclassification

cost (Misc Cost). Table III.1 reports the mean values of the metrics under

comparison derived from the cross validation exercise. For sake of clarity, Table

III.2 shows the resulting ranks for the models, using the results obtained for the

four metrics under comparison.

Model OPI AUC Accuracy MSE Ord Ind Misc Cost
Ord Log 0.176 0.847 0.713 0.316 0.372 12.6

Tree 0.215 0.850 0.685 0.399 0.410 14.6
SVM 0.150 0.987 0.760 0.310 0.335 11.2
RFor 0.138 0.902 0.774 0.282 0.315 10.4
kNN 0.351 0.735 0.624 0.404 0.451 16.4

NBayes 0.165 0.912 0.756 0.301 0.341 11.2

Table III.1: Model selection.

Model OPI AUC Accuracy MSE Ord Ind Misc Cost
Ord Log 4 5 4 4 4 4

Tree 5 4 5 5 5 5
SVM 2 2 2 3 2 2.5
RFor 1 3 1 1 1 1
kNN 6 6 6 6 6 6

NBayes 3 1 3 2 3 2.5

Table III.2: Results in terms of ranking.
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The performances achieved on the model under comparison underline that

there is a group of models with worst performances (Ord Log, Tree, kNN) and

a group of model with better performances (SVM, RFor, NBayes). On the basis

of OPI, Accuracy, MSE, Ord Ind and Misc Cost the Random Forest model is the

best one. Looking at AUC the best model is Naive Bayes but the performance

exactly the same of Random Forest in terms of De Long test (p > 0.2).

On the basis of the results obtained in Table III.1 a further analysis considers

the results obtained using Random Forest. A necessary aspect to consider is

the analysis of features involved in the classification process. The next steps

will be divide the data in 60% and 40% to deploy and train the single model

selected on the dataset, on this model the variable importance can be analyse

in order to understand which aspects have more weight in the classification.

Random Forest model produces as output an index of variable importance; on

the basis of the data at hand the variable with higher degree of importance

are also interesting in the clinical domain, as for example SOFAS score, CGIS

score, depressive disorders. Also SES score is one of the variables with greater

importance, underlining the influence of the socio-economic level on mental

status.

A further analysis will consider longitudinal behaviour of the patient thus pro-

viding the opportunity to model also time dependent covariates. Moreover

in a different dataset we have information about the transition to psychosis

of some patient included in this study and further analysis will focus on this

groups of patients that make the transition to psychosis in order to evaluate

the performances of the model selected only on this category.
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Remarks

The Paper III is a short proceeding and describes only preliminary results in

order to show the potential of the application of the ordinal index proposed

in Paper II in a real world problem. Further results obtained analysing the

same cohort of patients of the short paper can be found in Mensi et al. 20211,

where the data set was extended with longitudinal information and additional

analysis.

The aims of this study were to characterize the profile of DSM-5 APS (Attenu-

ated Psychosis Syndrome as introduced in Diagnostic and Statistical Manual of

Mental Disorders, Fifth Edition) adolescents, at presentation, compared with

adolescents suffering from early-onset psychosis (EOP) and with other psychi-

atric disorders and to estimate their long-term risk of transition to psychosis

and prognostic accuracy of DSM-5 APS.

1Mensi, M.M., Molteni, S., Iorio, M., Filosi, E., Ballante, E., Balottin, U., Fusar-Poli,
P., Borgatti, R. (2021). "Prognostic Accuracy of DSM-5 Attenuated Psychosis Syndrome in
Adolescents: Prospective Real-World 5-Year Cohort Study", Schizophrenia Bulletin, vol. 47,
no. 6, pp. 1663–1673
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Part 3

Quaternion time series

analysis



Introduction

Quaternion algebra and quaternion time series analysis are fields of interest

for researchers as the need to study motion data is emerging in several kinds

of applications: computer animation, virtual reality, robotics, and biomedical

sensors are only some examples.

The quaternion algebra was introduced by W.R. Hamilton in 1843 as a general-

ization of complex numbers to describe rotations in a three dimensional space.

The popularity of quaternions is due to the possibility to use them to describe

orientations in a convenient way that tackle different limits of the classical

representation of orientations as Euler angles through rotation matrices.

In general, in time series analysis, the smoothing process is often a crucial step

and even more in this context when sensors are used for the acquisition and

measurements. In fact, sensors tend to collect a certain amount of noise that is

difficult to isolate and manage.

Different methods to smoothing time series in quaternion algebra were devel-

oped in literature and some of these were applied to real or simulate data

sets, see for example Ginzberg and Walden 2012, Janiak, Szczȩsna, and Słupik

2014, Hsieh 2002. In general, these methods are based on the generalizations of

classical smoothing methods as Fourier transform and wavelet analysis. Despite

this, the lack of availability of the code makes these methods leaving open the

problem of applications to the real world cases.

In the following work, we reviewed the existing methods in literature for

smoothing unit quaternion time series. We considered the method proposed

in Hsieh 2002, that consists in transforming the quaternion time series in the

corresponding angular velocity time series. The angular velocity time series was

smoothed and then transformed back to quaternion space. This method seems

promising, easy to apply and particularly useful because it allows to implement

all the theories developed in Euclidean spaces. With reference to this idea, we

proposed a new method that deploys the logarithm transformation instead of

angular velocity calculation to transform the quaternion time series in a real
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three dimensional time series. The advantage of the proposed method is that

logarithm is in general a smoother transformation than angular velocity, so it

can introduce a lower degree of transformation errors.

These two methods are compared in terms of classification performances on a

real data set and five derived data sets where different degrees of noise are intro-

duced. The results confirm the hypothesis made on the basis of the theoretical

information available from the two methods, i.e. the logarithm is smoother

and generally provides better results than the existing method. These results

are strengthened by a regression model that confirms this conclusion from a

statistical point of view.

The real data set considered for the analysis contains the measurements of

motion of the hip joint of 27 healthy subjects registered under two different

conditions: natural walking and a walking made difficult by an impediment to

simulate a walking impairment. This work is part of a bigger project that aims

to detect first signs of walking impairments in patients with ALS, MS and other

neurodegenerative diseases to personalize the therapeutic approach.

The main contribution of this new method is to manage unit quaternion in a

proper way, transforming the time series in an Euclidean space in order to take

advantage of all the literature of smoothing techniques, with better results than

the angular velocity transformation method already defined in Hsieh 2002.
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Abstract

Smoothing orientation data is a fundamental task in different fields of

research. Different methods of smoothing time series in quaternion

algebras have been described in the literature, but their application to real

world problems is still an open point. This paper develops an effective

method, which is easy to apply, for smoothing quaternion time series in

order to obtain good performance in classification tasks.

Following the idea described in C. C. Hsieh 2002, which involves an

angular velocity transformation of unit quaternion time series, we propose

a new method based on the idea of employing the logarithm function to

transform the quaternion time series to a real three-dimensional time series

that can be smoothed with classical methods.

The results on classification tasks involving both a real data set and 10
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artificially noisy data sets confirm the effectiveness of the proposed method

compared with the angular velocity one. These results are strengthened

by a regression model that confirms this conclusion from a statistical point

of view.

Keywords: Quaternion time series, Smoothing method, Classification task
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IV.1 Introduction

The representation and analysis of the motion of human body is a research

subject which has been constantly expanding with the increasing use of

sensors. In time series analysis, smoothing is a fundamental step in real world

applications, especially when sensors are involved, because a certain amount

of noise is always captured. The presence of noise can lead to inconclusive

results or even wrong conclusions when data are analyzed and classification or

clustering algorithms are applied. Instead, preprocessing the data can extract

meaningful features and patterns.

In this paper, we analyse motion data registered by a motion sensor called

MetaMotionR (MMR), from Mbientlab, that measures the spatial orientation

of the hips and stores them as a quaternion time series. The motion of the hip

joint is registered under two different conditions: natural walking and a walking

made difficult by an impediment to simulate a walking impairment due to ALS,

MS and other neurodegenerative diseases.

In this context, different smoothing techniques for quaternion time series are

reviewed. The smoothing technique proposed in C. C. Hsieh 2002 has been

selected for its simplicity of implementation and its power in making available

all the techniques developed in Euclidean spaces. On the basis of this method,

a new technique is proposed and compared with the previous one. They were

applied to real and artificially noisy data to understand the influence of the level

of the noise on the performance of a smoothing methods.

The rest of this paper is organized as follows: in Section IV.2 different

approaches to quaternion smoothing present in the literature and suitable for

the specific problem of smoothing a 1D quaternion time series are described

and the new method is described. In Section IV.3 a theoretical comparison of

some of the methods is presented. Section IV.4 shows the experimental settings

and results of the quaternion wavelet smoothing of real and noisy data in terms

of classification performance. Conclusions and further ideas for research are

summarized in Section IV.5.
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IV.2 Quaternion time series smoothing methods

We are interested in smoothing methods suitable for one-dimensional

quaternion-valued signals. Consider a signal f ∈ L2(R,H). Most of the

existing smoothing methods for this type of signal are generalizations of clas-

sical smoothing techniques originally meant for Euclidean spaces: the Fourier

transform, spline functions, and wavelets. These methods have been adapted

to quaternion time series in different ways.

Spline functions are often used in quaternion algebras to interpolate signals (see

Ramamoorthi and Barr 1997 and Nielson 2004, for example), while there are no

examples of applications where they are directly applied to smoothing signals.

The Fourier transform was extended in Hitzer 2007 and Li, Leng, and Fei

2018 as a proper transform in quaternion space. Instead, the application of

the Fourier transform to quaternionic signals in real world examples involves

a transformation from H to a real vector space where the Fourier transform is

applied. The real spaces involved were an angular velocity space in Fang et al.

1998 and C. Hsieh et al. 1998 and a frequency space in Kenwright 2015.

Regarding the Quaternion Wavelet Transform (QWT), extensive reviews of

the techniques related to it can be found in Xu et al. 2010 and Fletcher and

Sangwine 2017. With the exception of the naïve approach of smoothing each

component of the quaternions independently (see Traversoni 1995, for example),

the other methods exploit different isomorphisms between H and other spaces

with well known properties.

One of the earliest attempts to apply wavelet methods to quaternion time

series in a proper way is Mitrea 1994, where Clifford wavelets and a Clifford

multiresolution analysis were introduced. The application to quaternion time

series is possible because H is isomorphic to the Clifford Algebra Cl(0,2). The

author limited his considerations to the theoretical statement of the method

and the definition of the Haar wavelet.

In Traversoni 2001, the idea of Mitrea was explored in the context of image

analysis, and the Haar wavelet was applied to biomedical data (tomography
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images) written in terms of quaternions and compressed via wavelets, but the

idea was not further explored.

The idea of matrix-valued wavelets (MVWs) was explored in Ginzberg 2013 and

Ginzberg and Walden 2012, where they demonstrate that the wavelets defined

in the previous literature, such as He and Yu 2005 and Peng and Zhao 2004,

were trivial, and so they proposed new matrix-valued wavelets, using the iso-

morphism between H and the space of matrices R4x4 with quaternion-structure

conditions on the coefficients. The isomorphism is defined as in Equation (IV.1).

q = w + xi + yj + zk 7→


w −x −y −z

x w −z y

y z w −x

z −y x w

 (IV.1)

In this framework, they designed quaternion-structured MVWs and hence

quaternion wavelets. The MATLAB code to compute the wavelet filter

coefficients was presented, but no code was provided to perform a wavelet

analysis on quaternion signals.

Ginzberg and Walden 2012 applied MVWs to a simulated quaternion time series.

Fletcher 2017 extended this work, adding new wavelet filters of different lengths

and explained how to arrange the filters in a matrix for analysing images and

applying it to the analysis of a colour vector image.

Szczȩsna, Słupik, and Janiak 2012 presented a different approach to analysing a

quaternion signal, with multi-resolution techniques, based on second generation

wavelet transform. The quaternion lifting scheme is defined as follows. The

input data set is split into two disjoint sets of even and odd indexed samples.

Samples with odd indices are predicted based on the sample with even indices

(using the SLERP or SQUAD methods for quaternion time series, as reviewed

in IV.B). Next, the input value with the odd index is replaced by the offset

(difference) between its value and its prediction. The outputs are updated, so

that coarse-scale coefficients have the same average value as the input samples.

This step is necessary for the stability of the wavelet transform.
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In this procedure, the wavelet function used can be reconstructed, but it is not

necessary for the computation.

Another approach to quaternion signal smoothing through wavelets is described

in C. C. Hsieh 2002, recalling the methods explored in Fang et al. 1998 and C.

Hsieh et al. 1998 for the application of the Fourier transform to quaternion

signals. The analysis is now focused on unit quaternion time series (see

section IV.B for definition an properties) in H1 ⊂ H.

The underlying idea is that if a unit quaternion time series is smooth, the

changes of the angular velocities should be small. With this rationale, the

smoothing process can be applied in the angular velocity space. As the

angular velocities are in three-dimensional Euclidean space, all the real wavelet

techniques, and even more, in general, all smoothing techniques for Euclidean

spaces can be deployed. After the smoothing process, the unit quaternion time

series are reconstructed.

In order to obtain angular velocities without employing derivatives, the following

approximation formulas are used. Given a unit quaternion time series q1, ..., qN

and the time step h at which they were measured, the angular velocity is

approximated as follows:

vi = log(q−1
i qi+1)
h

, i = 1, ..., N − 1. (IV.2)

Further details about the derivation of this expression from the definition of

angular velocity are provided in IV.B.

With these approximate angular velocities ṽ1, ..., ṽN , the quaternion time series

is reconstructed as

q̃i = q1

i∏
j=2

exp(ṽjh), i = 1, ..., N − 1. (IV.3)

Following this idea, our proposed approach considers the logarithm transforma-

tion in order to go from H1 to its tangent space R3. The logarithm of a unit

quaternion time series is a time series in 3-dimensional Euclidean space defined

as follows (see IV.B for further details):

log(q) = ( x
|v|
arccos( w

|q|
), y

|v|
arccos( w

|q|
), z

|v|
arccos( w

|q|
)) ∈ R3 (IV.4)
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The idea is to employ suitable smoothing process to each component of the

logarithm of the quaternions and then compute the unit quaternions by taking

the quaternionic exponential, as follows:

exp(q) = exp(w)(cos(|v|), x
|v|

sin(|v|), y
|v|

sin(|v|), z
|v|

sin(|v|)) (IV.5)

where the w component of the logarithm is always 0.

This transformation is smoother with respect to the angular velocity and it has

some intrinsic differences that will be explored in Section IV.3. These differences

in the definition of the transformed space, where the smoothing is performed,

affect the performance in classification tasks in ways that will be described in

Section IV.4.

IV.3 Comparison of the methods

Firstly, we are interested in the comparison of the images of the two transfor-

mations involved.

The quaternionic logarithm function, for a unit quaternion, is f : H1 7→ R3 such

that q = (w, x, y, z) 7→ log(q) = (x,y,z)
|(x,y,z)|arccos(

w
|q| ) ∈ R3.

For v = (x, y, z), write v
|v| for the vector of unit norm in R3 in the same direc-

tion as v and arccos(w/|q|) ∈ [0, π].

As a consequence, Image(f) = {v ∈ R3 : |v| ≤ π} is the ball of radius π in R3.

Given a unit quaternion time series q1, ..., qN , the angular velocities are ap-

proximated as in Equation (IV.2): vi = log(q−1
i
qi+1)

h , where q−1
i qi+1 ∈ H1.

Therefore, the same considerations can be applied to the numerator and

Image(f) = {v ∈ R3 : |v| ≤ π
h} is the ball of radius π

h in R3. In the the-

oretical framework, the angular velocity is calculated as a derivative and in the

limit for h that goes to 0, the image of the transformation is all of R3.

Since in our application the angular velocity is approximated, h is a small

positive constant and the image of the transformation is a ball in R3 with a

radius larger than that with the logarithm transformation.

To further develop this comparison, we consider the geometric interpretation of
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the transformations involved: angular velocity and logarithm.

The logarithm function applied to a unit quaternion q, gives the point corre-

sponding to q in the tangent space at the identity quaternion. So when we take

the logarithm of a quaternion time series, we obtain a series lying entirely in

that one specific tangent space.

The angular velocity transformation log(q−1
i qi+1) gives the point in the tangent

space at qi corresponding to qi+1. As a consequence, the corresponding time

series in R3 is a collection of points lying in tangent spaces at different points.

Another critical issue that must be taken into account is that in the space H1

of unit quaternions, the product is not commutative.

As is well known, the formula exp(p) exp(q) = exp(p+ q) does not hold in gen-

eral when p and q do not commute. In this case, the Cambell-Baker-Hausdorff

formula (see Baker 1905) for the product of two non-commuting exponentials

is applied and in the general case it provides an infinite correction term within

the right-hand side of the exponential.

The problem was exactly solved for rotational data in SO(3) (see Condurache

and Ciureanu 2020) and in SU(N) (note that SU(2) is isomorph to H1), see

Weigert 1997.

An exact formula to determine the value of the quaternion α such that

exp(p) exp(q) = exp(α) is stated in Froelich and Salingaros 1984.

IV.4 Experimental results

In this section we will describe how the different smoothing methods and

transformations affect the classification, in order to suggest a rationale with

which to proceed in the smoothing of unit quaternion time series.

IV.4.1 Data description

The original data set consists of 54 unit quaternion time series of 101 obser-

vations each. The time goes from 0 to 100 (%) in steps of 1%. The data
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were recorded by a wearable motion sensor called MetaMotionR (MMR) an

Inertial Measurement Unit (IMU) from Mbientlab. It is a device that combines

a three-axis accelerometer, a gyroscope, and magnetometer, to determine its

orientation in the form of a unit quaternion. It is worn at the level of the

hip to measure the angle of rotation of the hip during walking movements, at

a frequency of 100 Hz. The signal captured by a motion sensor is periodic

and composed of actual walking steps referred to as gait cycles. A gait cycle

is defined as the sequence of movements performed by the body during the

phase delimited by two successive contacts of a given foot with the ground.

We therefore compute an average gait cycle, referred to as the individual gait

pattern, by jointly aligning in time and pointwise averaging the segmented gait

cycles.

Data related to 27 healthy subjects were collected under two different con-

ditions. The first evaluation was made letting the subject perform a natural

walking movement. Another record was made using a knee immobilizer orthosis

to simulate a walking impairment.

To represent 3D rotations we choose a unit quaternion representation for con-

venience, as suggested in the literature on 3D rotation analysis (see, e.g. Dam,

Koch, and Lillholm 2000).

A unit quaternion represents a 3D rotation between a given object’s frame,

or coordinate system (the IMU’s coordinate system), and a fixed coordinate

system defined as the reference. We choose the first orientation observed of the

Individual Gait Pattern (IGP) as the reference, and each unit quaternion of the

IGP represents the rotation between this first orientation and the one observed

at a given time. For this reason, in the original dataset, the first element of

each time series is the quaternion (1 0 0 0), representing the identity rotation.

We also processed the data in order to ’straighten’ the IGP, so that the first

and the last element of the IGP are the identity rotation. In order to apply

wavelet methods, the original time series is re-sampled to have 128 time points.
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Figure IV.1: Component-wise representation of the individual gait pattern data.
Color represents the two conditions.

In order to understand the influence of noise on the performance of the

different smoothing methods, we applied the methods described in Section

IV.4.2 to data to which different levels of noise had been added. We generated

these noisy data sets by adding Gaussian noise to the logarithm of the curves in

the original data set, following Ieva et al. 2019. The quaternion time series were

transformed to R3 through the logarithm transformation and then Gaussian

noise was added independently to each component. Consider the observation

Xi,k, where i corresponds to the i-th subject and k correspond to the k-th

component of the multidimensional time series, m(t) identifies the median line,

and ϵ is a Gaussian error term:

Xi,k = mk(t) + ϵk(t), Cov(ϵk(s), ϵk(t)) = C(s, t), ∀i = 1, ..., N, ∀i = k, ..., L

where Cov(ϵk(s), ϵk(t)) = C(s, t) is generated as an exponential-like covariance

function with two parameters:

C(s, t) = αe−β|s−t|. (IV.6)

Different degrees and types of noise were simulated by varying the parameters

α and β as described in Table IV.1 and visually represented in Figure IV.2.
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α β Noise
0.001 0.01 Low noise, moderately correlated
0.01 0.001 Moderate noise, highly correlated
0.01 0.01 Moderate noise, moderately correlated
0.01 0.1 Moderate noise, weakly correlated
0.1 0.01 High noise, moderately correlated

Table IV.1: Combination of parameters for the generation of the noisy data.

(a) Original data set (b) Noisy data set. α = 0.001 and β = 0.01.

(c) Noisy data set. α = 0.01 and β = 0.001. (d) Noisy data set. α = 0.01 and β = 0.01.

(e) Noisy data set. α = 0.01 and β = 0.1. (f) Noisy data set. α = 0.1 and β = 0.01.

Figure IV.2: Component-wise representation of the individual gait pattern
data with the different levels of noise. The colour indicates which of the two
conditions.
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IV.4.2 Methods and experimental settings

We compare the wavelet smoothing method with Fourier and spline smoothing,

each one embedded in one of the two transformations from H1 to R3.

In order to smooth signals using wavelets, the discrete wavelet transform

was applied, with soft thresholding in its generalized sense for multidimensional

signals, as defined in Pigoli and Sangalli 2012:

w̄ =

0, if ||w|| ≤ tp;

(1 − tp
||w|| )w, if ||w|| > tp;

where w are the p-dimensional vectors of the detail coefficients of the DWT.

The chosen threshold was the universal threshold as generalized in Pigoli and

Sangalli 2012: tp = σ
√

3 log(N) where σ is the standard deviation of the

noise. As σ is generally unknown in practical situations, it must be estimated

following the idea described in Donoho, Johnstone, and Picard 1995, where

the Median Absolute Deviation (MAD) of the details coefficients was proposed

(MAD(x) = median(|x − median(x)|)). The estimated standard deviation in

the multidimensional case is as follows:

σ̂ = MAD(d1)
0.6745

where d1 = {di1,k}k,i is the vector of detail coefficients obtained from the first

level of decomposition of each component function (all pooled together).

The following mother wavelets and decomposition levels are considered:

• Mother wavelets: Haar, Daubechies 4 (d4), Daubechies 6 (d6), Daubechies

8 (d8), Daubechies 16 (d16), Least Asymmetric 8 (la8), Least Asymmetric

16 (la16), Least Asymmetric 20 (la20), Best Localized 14 (bl14), Best

Localized 20 (bl20).

• Decomposition levels (DLs): from 1 to 6.

The Fourier smoothing was performed through a non-parametric regression

smoothing using 20, 40 and 60 basis elements. No covariates and no rough-

ness penalty was used.
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Linear, cubic and quintic splines were employed with cross validated parameters

for each curve. The number of knots considered is 71. The parameters selected

are not optimal, because their optimization it is outside the scope of this paper.

For each combination of parameters, the smoothing process is evaluated in terms

of classification performance. A k-nearest neighbours (k-NN) model is used to

perform classification on the original and on the smoothed quaternion time se-

ries in order to select the smoothing method that removes noise while preserving

the most important features that can distinguish between two groups.

The k-NN algorithm is a non-parametric classification method first developed

in Fix and Hodges 1951. An observation is classified by a plurality vote of its

neighbours, with the object being assigned to the class most common among its

k nearest neighbours. Here, k is a positive integer, typically small, that we will

set to the standard value of 5. The value of k is generally optimized based on

data at hand, but that is outside the scope of this paper.

Being a distance-based algorithm, it is easily generalized to quaternion time

series using the Dynamic Time Warping distance as defined in Equation IV.8

(IV.B), as suggested in Świtoński, Josiński, and Wojciechowski 2019.

The results presented in the present paper are based on a cross validation ex-

ercise, where 5 folds are defined to obtain stable results working with a small

sample size.

For each series in the test fold, the distances from the series in the training fold

are computed. The 5 nearest time series in the training set are considered and

the majority label is assigned to the tested series.

The results are evaluated in terms of accuracy and AUC (area under the ROC

curve) and presented as the average taken over the 5 folds.

To increase the robustness of the conclusions, linear regression models were stud-

ied to model the influence of the transformations and of the choice of smoothing

methods on the performance indices. Each level of noise described in subsec-

tion IV.4.1 was simulated three times and the original data were simulated

adding a minimal noise setting α = 0.0001 and β = 0.0001. The accuracy

and the AUC were evaluated and considered as target variables, and smoothing
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method and type of transformation were considered as covariates.

All the computations were performed using the R software (R Core Team

(2017)), the figures are generated with the ggplot2 package (v3.3.3; Wickham,

2016) and the plotly package (Plotly Technologies Inc. Collaborative data sci-

ence. Montréal, QC, 2015. https://plot.ly.). The quaternion related functions

are provided in the squat package (https://github.com/astamm/squat).

IV.4.3 Classification results

The performances reached by k-NN on the original individual gait pattern data

set have an accuracy of 0.8200 and an AUC of 0.9149. When we applied a

smoothing process to the data after the logarithm transformation, for all the

methods and all the choices of parameters, the accuracy is 0.8100 and almost

all the AUCs are 0.8531, with small differences for some combinations of the

parameters, as can be seen in Table IV.8, Table IV.9 and Table IV.11. All

the values reached using smoothed data are below the performances with the

original data set without any type of smoothing.

Considering the angular velocity transformation, the performances are lower

than both the original data and he logarithm smoothing process (see Ta-

ble IV.12, Table IV.13, Table IV.14 and Table IV.15).

This shows that the smoothing process does not improve the classification

performance when the curves considered are already nearly smooth. Instead,

in some cases, the performances are lower, which seems to suggest that the

smoothing process removes some important features in the data that are al-

ready exploitable.

The comparison between angular velocity methods and the logarithm shows

that when smooth functions are involved, the logarithm better preserves the

characteristics of the curves, as can be seen in Figure IV.3. An explanation for

this could be that the logarithm transformation is smoother than the angular

velocity, which presents a higher variability also for regular curves.
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Figure IV.3: Results on original data. Performances of the different methods
are evaluated in terms of accuracy and AUC. The shape distinguishes between
Fourier, spline or wavelet smoothing methods and colours distinguish between
logarithm and angular velocity transformations.

IV.4.3.1 Classification results on noisy data: Analysis of variance

at fixed autocorrelation

Now consider the performances reached with noisy data sets as defined in

Table IV.1. We start with a fixed value of the autocorrelation (β = 0.01),

increasing the value of the variance parameter (α = 0.001, α = 0.01, α = 0.1).

Consider at first the data set generated with α = 0.001 and β = 0.01. We

are introducing low levels of noise (the noise has low variance) and a moderate

correlation between the nearest points.

The performances reached without any smoothing have an accuracy of 0.550

and an AUC of 0.601. The results regarding the logarithm method are shown

in Table IV.16, Table IV.17, Table IV.18 and Table IV.19.

The best methods can be identified as the wavelet smoothing method with
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different combinations of parameters: wavelet d6 with 4 in terms of accuracy

(accuracy=0.5433 and AUC=0.6527) and wavelet d4 with 5 and 6 decomposi-

tion levels in terms of AUC (accuracy=0.49 and AUC=0.6958).

The results regarding the angular velocity method are presented in Table IV.20,

Table IV.21, Table IV.22 and Table IV.23.

The angular velocity method achieves poorer results in terms of classifica-

tion accuracy for all the smoothing functions and choices of parameters

(accuracy≤0.47) as can be seen in Figure IV.4. The highest values of AUC

are reached with wavelet d16 with 1 decomposition level (accuracy=0.3933 and

AUC=0.7434).

It should be noted that almost all the smoothing methods and transformation

yield higher AUC but lower accuracy. The only method competitive with the

non-smoothed data set is the best of the logarithm transformation.

Figure IV.4: Results on noisy data with low levels of noise and moderate
correlation between close points. Performances of the different methods are
evaluated in terms of accuracy and AUC. Shape distinguishes between Fourier,
spline or wavelet smoothing methods and colours distinguish between logarithm
and angular velocity transformations.
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Now consider the data set with moderate noise variance and moderate cor-

relation (α = 0.01 and β = 0.01). Data classification without any smoothing

obtains an accuracy of 0.407 and an AUC of 0.608.

The results regarding the logarithm method are presented in Table IV.32, Ta-

ble IV.33, Table IV.34 and Table IV.35 and the results regarding the angular

velocity method are presented in Table IV.36, Table IV.37, Table IV.38 and

Table IV.39.

We can observe that in this case the logarithm transformation performs simi-

larly to the angular velocity and it is difficult to identify the best method as

can be seen in Figure IV.5. Almost all the smoothing methods obtain better

results than the non-smoothed data set.

Figure IV.5: Results on noisy data with moderate levels of noise and moderate
correlation between close points. Performances of the different methods are
evaluated in terms of accuracy and AUC. Shape distinguishes between Fourier,
spline or wavelet smoothing methods and colours distinguish between logarithm
and angular velocity transformations.

Now consider the noisy data set generated with high noise variance

and moderate correlation between close points (α=0.1 and β=0.01). Data
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classification without any smoothing reaches an accuracy of 0.5 and an AUC of

0.609.

The results regarding the logarithm method are presented in Table IV.48,

Table IV.49, Table IV.50 and Table IV.51 and the results regarding the angular

velocity method are presented in Table IV.52, Table IV.53, Table IV.54 and

Table IV.55.

We can see that one method reaches better results than the original data

classification in terms of the AUC, but with the same accuracy (wavelet la20

with 3 decomposition levels, accuracy=0.5 and AUC=0.6322). Higher values of

AUC are reached with lower levels of accuracy: for this reason it is difficult to

identify the best method. The logarithm transformation seems to obtain better

results in terms of AUC than does the use of the angular velocity, with similar

values of accuracy.

Figure IV.6: Results on noisy data with high levels of noise and moderate
correlation between close points. Performances of the different methods are
evaluated in terms of accuracy and AUC. Shape distinguishes between Fourier,
spline or wavelet smoothing methods and colours distinguish between logarithm
and angular velocity transformations.
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IV.4.3.2 Classification results on noisy data: Analysis of

autocorrelation at fixed variance

Now consider the performances reached with noisy data sets generated with a

fixed value of variance (α = 0.01), increasing the value of the autocorrelation

parameter (β = 0.001, β = 0.01, β = 0.1).

Consider the data set with moderate noise variance (α = 0.01) and an high

correlation between close points (β = 0.001). Data classification without any

smoothing reaches an accuracy of 0.630 and an AUC of 0.591.

The results regarding the logarithm method are presented in Table IV.24, Ta-

ble IV.25, Table IV.26 and Table IV.27 and the results regarding the angular

velocity method are presented in Table IV.28, Table IV.29, Table IV.30 and

Table IV.31.

In this data set the angular velocity performs better than logarithm in terms

of AUC, but worse in terms of accuracy. Both the transformations with all

the methods obtain worse performances than the raw data classification and no

smoothing is suggested, as can be seen in Figure IV.7.
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Figure IV.7: Results on noisy data with moderate levels of noise and high
correlation between close points. Performances of the different methods are
evaluated in terms of accuracy and AUC. Shape distinguishes between Fourier,
spline or wavelet smoothing methods and colours distinguish between logarithm
and angular velocity transformations.

In general we can observe that when noise levels are low, the smoothing

process is not necessary and it increases the risk of removing important features

of the data set.

Now consider the data set with moderate noise variance and moderate correla-

tion (α = 0.01 and β = 0.01). As seen before, data classification without any

smoothing obtains an accuracy of 0.407 and an AUC of 0.608.

The results regarding the logarithm method are presented in Table IV.32, Ta-

ble IV.33, Table IV.34 and Table IV.35 and the results regarding the angular

velocity method are presented in Table IV.36, Table IV.37, Table IV.38 and

Table IV.39.

We can observe that in this case the logarithm transformation performs simi-

larly to the angular velocity and it is difficult to identify the best method as

can be seen in Figure IV.5. Almost all the smoothing methods obtain better

results than the non-smoothed data set.
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Figure IV.8: Results on noisy data with moderate levels of noise and moderate
correlation between close points. Performances of the different methods are
evaluated in terms of accuracy and AUC. Shape distinguishes between Fourier,
spline or wavelet smoothing methods and colours distinguish between logarithm
and angular velocity transformations.

Now consider the noisy data generated with a moderate noise variance and

low correlation between close points (α = 0.01 and β = 0.1). Data classification

without any smoothing reaches an accuracy of 0.640 and an AUC of 0.678.

The results regarding the logarithm method are presented in Table IV.40,

Table IV.41, Table IV.42 and Table IV.43 and the results regarding the angular

velocity method are presented in Table IV.44, Table IV.45, Table IV.46 and

Table IV.47.

We can see that a lot of smoothing methods reach better results than the

original data classification, but only if we consider a smoothing transformation.

The angular velocity transformation seems to have lower results. The best

result in terms of accuracy is reached by wavelet d4 with 1 decomposition

level (accuracy=0.7200, AUC=0.7136). In terms of AUC the best method is

wavelet la8 with 4 decomposition levels, accuracy=0.6467 and AUC=0.7416
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(see Figure IV.9).

Figure IV.9: Results on noisy data with moderate levels of noise and low
correlation between close points. Performances of the different methods are
evaluated in terms of accuracy and AUC. Shape distinguishes between Fourier,
spline or wavelet smoothing methods and colours distinguish between logarithm
and angular velocity transformations.

IV.4.4 Final results

The influence of noise is clear: when the curves are nearly smooth, the smoothing

methods can not improve in the classification, whereas when we introduce noise

(both in terms of high variance and low autocorrelation), the need for applying

smoothing methods becomes clear and the performance can be improved by the

process, as we can see in Figure IV.10.
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(a) Original data set (b) Noisy data set. α = 0.001 and β = 0.01.

(c) Noisy data set. α = 0.01 and β = 0.001. (d) Noisy data set. α = 0.01 and β = 0.01.

(e) Noisy data set. α = 0.01 and β = 0.1. (f) Noisy data set. α = 0.1 and β = 0.01.

Figure IV.10: For each method (Fourier, spline and wavelet) and transformation
(logarithm and angular velocity) the best result is presented, where the best
result is identified by using the sum of the accuracy and the AUC. Shape
distinguishes between Fourier, spline or wavelet methods and colours distinguish
between logarithm and angular velocity transformations.

In order to confirm the validity of the proposed method, a linear regression

analysis of the accuracy and the AUC has been performed, where the influence

of the transformation function and the smoothing method is evaluated. Ten

data sets have been generated for each combination of parameters α and β,

as defined in Equation IV.6, and the original data set is simulated with the
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parameters α = β = 0.0001. The covariates of the three models are:

• The variable ’transformation’ indicates if the transformation function is

angular velocity or logarithm. It is a factor variable with reference value

’angular velocity’ (two levels).

• The variable ’smoothing_method’ indicates if the smoothing method is

Fourier, spline or wavelet. It is a factor variable with reference value

’Fourier’ (three levels).

• Par alpha and par beta correspond to the noise parameters as defined in

Equation (IV.6) and are numerical variables.

The target variables of the three models are the accuracy and the AUC. The

logit transformation is applied to each of the target variables to transform the

range from [0,1] to (−∞,+∞). This produces a larger range of values than

the other common transformations. Because the target variables still do not

satisfy the normality assumption, a bootstrap procedure is applied to obtain

the coefficients and confidence intervals.

The results are summarized in Table IV.2 and Table IV.5. For each model, the

ANOVA tables for the linear model are presented in Table IV.3, Table IV.4,

Table IV.6, Table IV.7.

Variables Coefficients stdev CI
Intercept 0.088 0.020 (0.051, 0.125) *

Transformation logarithm 0.121 0.008 (0.106,0.138) *
Smoothing method spline 0.011 0.028 (-0.043,0.068)

Smoothing method wavelet 0.022 0.020 (-0.043,0.068)
Noise variance (α) -2.965 0.114 (-3.196, -2.756) *

Noise autocorrelation (β) -0.752 0.097 (-0.945,-0.562) *
Table IV.2: Linear regression model for accuracy target variable with a
bootstrap procedure.
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Variables Df Sum of Sq Mean Sq F value p value
Transformation 1 28.92 28.921 201.3827 < 2 10−16 ***

Smoothing method 2 0.20 0.101 0.7023 0.4955
Noise variance (α) 1 81.94 81.941 570.5719 < 2 10−16 ***

Noise autocorrelation (β) 1 5.50 5.501 8.3024 6.36 10−10 ***
Residuals 7914 1136.55 0.144

Table IV.3: ANOVA table for linear model with accuracy target variable.

Res Df RSS Df Sum of Sq F value p value
Null model 7919 1253.1
Final model 7914 1136.5 5 116.56 162.33 < 2 10−16 ***

Table IV.4: ANOVA table for linear model with accuracy target variable.

Variables Coefficients stddev CI
Intercept 0.676 0.015 (0.645,0.707) *

Transformation logarithm 0.052 0.007 (0.038,0.064) *
Smoothing method spline 0.002 0.021 (-0.035,0.043)

Smoothing method wavelet 0.004 0.015 (-0.027,0.033)
Noise variance (α) -1.564 0.061 (-1.679,-1.433) *

Noise autocorrelation (β) -1.838 0.065 (-1.969,-1.714) *
Table IV.5: Linear regression model for AUC target variable with a bootstrap
procedure.

Variables Df Sum of Sq Mean Sq F value p value
Transformation 1 5.31 5.312 70.2698 < 2 10−16 ***

Smoothing method 2 0.01 0.003 0.0406 0.9602
Noise variance (α) 1 18.69 18.689 247.2439 < 2 10−16 ***

Noise autocorrelation (β) 1 32.83 32.829 434.3070 < 2 10−16 ***
Residuals 7914 501.55 0.063

Table IV.6: ANOVA table for linear model with AUC target variable.

Res Df RSS Df Sum of Sq F value p value
Null model 7919 655.06
Final model 7914 598.22 5 56.837 150.38 < 2 10−16 ***

Table IV.7: ANOVA table for linear model with AUC target variable.

There are certain commonalities of these two target variables. The

smoothing methods (wavelet, spline and Fourier) do not seem to have a global

impact on the quality of the smoothing process in terms of the classification
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performance: the coefficients of the wavelet and spline methods compared to the

reference level (Fourier) are not significant. Instead, the coefficient related to the

logarithm transformation with respect to the angular velocity transformation is

significantly different from zero and positive. The results confirm the positive

effects of the logarithm transformation on that target variable. We can also

observe that the variance and autocorrelation parameters in the noise generation

are significant, with negative coefficients. Higher levels of noise have a negative

impact on the classification performances, as can be expected.

IV.5 Conclusions

In this paper, we presented a new method to smooth unit quaternion time series

and compared it with the method proposed in C. C. Hsieh 2002.

The main contribution of this new method is to manage unit quaternions in a

proper way, transforming the time series to an Euclidean space in order to

take advantage of all the existing smoothing techniques. More specifically,

we considered wavelet methods and compared this with Fourier and spline

smoothing methods.

The results were evaluated in terms of their classification performance on a

data set of unit quaternion time series describing walking cycles with a binary

outcome variable. Another 5 versions of this data set were created by adding

noise to the original data, in order to evaluate the influence of different degrees

of noise on the smoothing process.

The results on the original data set and on the noisy ones confirm the need for

applying smoothing techniques when the data are noisy and the opportuneness

of deploying the proposed method (namely, using the logarithm transformation

of unit quaternion time series) to obtain in general better results. Which one

of the different smoothing techniques in R3 should be used depends on the

particular data set to be analyzed and should be evaluated on a case by case

basis.

Further avenues of research include the application of different noise models to
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evaluate the influence of the particular nature of the data set, the application

of other classification models, and a deeper analysis of the classical smoothing

methods applied in this context. The approach described in this paper can be

exploited in terms of the functional representation of quaternion time series, but

this aspect needs further study.

The R functions developed for this work will be provided in the squat package.

Appendix IV.A Detailed results

IV.A.1 Original dataset

Linear Cubic Quintic
Accuracy 0.8100 0.8100 0.8100

AUC 0.8611 0.8531 0.8531

Table IV.8: Original data, spline smoothing method, logarithm transformation

20 basis 40 basis 60 basis
Accuracy 0.8100 0.8100 0.8100

AUC 0.8667 0.8531 0.8531

Table IV.9: Original data, Fourier smoothing method, logarithm transformation

DLs 1 2 3 4 5 6
haar 0.8100 0.8100 0.8100 0.8100 0.8100 0.8100

d4 0.8100 0.8100 0.8100 0.8100 0.8100 0.8100
d6 0.8100 0.8100 0.8100 0.8100 0.8100 0.8100
d8 0.8100 0.8100 0.8100 0.8100 0.8100 0.8100

d16 0.8100 0.8100 0.8100 0.8100 0.8100 0.8100
la8 0.8100 0.8100 0.8100 0.8100 0.8100 0.8100

la16 0.8100 0.8100 0.8100 0.8100 0.8100 0.8100
la20 0.8100 0.8100 0.8100 0.8100 0.8100 0.8100
bl14 0.8100 0.8100 0.8100 0.8100 0.8100 0.8100
bl20 0.8100 0.8100 0.8100 0.8100 0.8100 0.8100

Table IV.10: Original data, accuracy, wavelet smoothing method, logarithm
transformation
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DLs 1 2 3 4 5 6
haar 0.8639 0.8651 0.8707 0.8787 0.8627 0.8627

d4 0.8531 0.8611 0.8611 0.8611 0.8611 0.8611
d6 0.8531 0.8531 0.8531 0.8611 0.8611 0.8611
d8 0.8531 0.8611 0.8611 0.8611 0.8531 0.8611

d16 0.8531 0.8531 0.8531 0.8531 0.8531 0.8531
la8 0.8531 0.8531 0.8611 0.8611 0.8611 0.8611

la16 0.8531 0.8531 0.8531 0.8531 0.8531 0.8531
la20 0.8531 0.8531 0.8531 0.8531 0.8531 0.8531
bl14 0.8531 0.8531 0.8611 0.8611 0.8611 0.8611
bl20 0.8531 0.8531 0.8531 0.8531 0.8531 0.8531

Table IV.11: Original data, AUC, wavelet smoothing method, logarithm
transformation

Linear Cubic Quintic
Accuracy 0.5500 0.5500 0.5500

AUC 0.6081 0.6081 0.6081

Table IV.12: Original data, spline smoothing method, angular velocity trans-
formation

20 basis 40 basis 60 basis
Accuracy 0.6200 0.6333 0.6533

AUC 0.6996 0.7436 0.6872

Table IV.13: Original data, Fourier smoothing method, angular velocity
transformation

DLs 1 2 3 4 5 6
haar 0.5733 0.5933 0.5933 0.6133 0.6300 0.5933

d4 0.6833 0.6333 0.6733 0.6333 0.6900 0.6900
d6 0.6500 0.7200 0.7400 0.7033 0.7400 0.7233
d8 0.6867 0.6600 0.7233 0.6867 0.6500 0.6867

d16 0.7100 0.7500 0.7333 0.7467 0.7667 0.7667
la8 0.7033 0.7100 0.6733 0.6733 0.6733 0.6733

la16 0.7067 0.6733 0.6500 0.6667 0.6667 0.6667
la20 0.7067 0.6700 0.6867 0.6500 0.6833 0.6833
bl14 0.6900 0.7233 0.6900 0.7267 0.7233 0.7433
bl20 0.7067 0.6700 0.6900 0.6700 0.6867 0.6867

Table IV.14: Original data, accuracy, wavelet smoothing method, angular
velocity transformation
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DLs 1 2 3 4 5 6
haar 0.6026 0.6737 0.6684 0.6626 0.6796 0.6604

d4 0.6962 0.7423 0.7130 0.7236 0.7293 0.7213
d6 0.6928 0.7103 0.7134 0.7091 0.7159 0.7020
d8 0.7079 0.6523 0.7291 0.6869 0.6737 0.7060

d16 0.7300 0.7549 0.7799 0.7743 0.7783 0.7783
la8 0.7334 0.7217 0.7177 0.7238 0.7198 0.7158

la16 0.7467 0.7333 0.6730 0.7180 0.7100 0.7100
la20 0.7467 0.7053 0.6980 0.6573 0.6768 0.6768
bl14 0.7244 0.7630 0.7488 0.7660 0.7599 0.7679
bl20 0.7467 0.7164 0.6918 0.6989 0.6937 0.6857

Table IV.15: Original data, AUC, wavelet smoothing method, angular velocity
transformation

IV.A.2 First noisy dataset, alpha=0.001, beta=0.01

Linear Cubic Quintic
Accuracy 0.4500 0.4667 0.4667

AUC 0.6554 0.6610 0.6610

Table IV.16: First noisy data set, spline smoothing method, logarithm
transformation

20 basis 40 basis 60 basis
Accuracy 0.5033 0.5033 0.5067

AUC 0.6194 0.6302 0.6283

Table IV.17: First noisy data set, Fourier smoothing method, logarithm
transformation
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DLs 1 2 3 4 5 6
haar 0.4833 0.4833 0.4833 0.4833 0.4667 0.4667

d4 0.4500 0.4700 0.4667 0.4867 0.4900 0.4900
d6 0.4500 0.4667 0.4667 0.5433 0.5067 0.5067
d8 0.4667 0.4833 0.4667 0.4867 0.4867 0.4667

d16 0.4500 0.5000 0.5000 0.5033 0.4867 0.5033
la8 0.4500 0.4833 0.4833 0.5067 0.4700 0.4500

la16 0.4500 0.4667 0.4867 0.4867 0.4867 0.4700
la20 0.4500 0.4667 0.4667 0.4867 0.4867 0.4700
bl14 0.4500 0.4667 0.4500 0.5067 0.5067 0.4867
bl20 0.4500 0.4833 0.4667 0.4667 0.4667 0.4667

Table IV.18: First noisy data set, accuracy, wavelet smoothing method,
logarithm transformation

DLs 1 2 3 4 5 6
haar 0.6527 0.6391 0.6394 0.6434 0.6351 0.6462

d4 0.6391 0.6594 0.6613 0.6754 0.6958 0.6958
d6 0.6391 0.6530 0.6530 0.6527 0.6148 0.6228
d8 0.6530 0.6647 0.6511 0.6471 0.6163 0.6363

d16 0.6471 0.6650 0.6650 0.6191 0.6163 0.6191
la8 0.6471 0.6527 0.6567 0.6431 0.6148 0.6348

la16 0.6471 0.6471 0.6271 0.6160 0.6191 0.6274
la20 0.6471 0.6530 0.6391 0.6191 0.6191 0.6274
bl14 0.6471 0.6650 0.6594 0.6431 0.6320 0.6231
bl20 0.6471 0.6567 0.6471 0.6511 0.6511 0.6511

Table IV.19: First noisy data set, AUC, wavelet smoothing method, logarithm
transformation

Linear Cubic Quintic
Accuracy 0.3900 0.3900 0.3900

AUC 0.6503 0.6503 0.6503

Table IV.20: First noisy data set, spline smoothing method, angular velocity
transformation

20 basis 40 basis 60 basis
Accuracy 0.3933 0.4167 0.4467

AUC 0.6649 0.6797 0.6639

Table IV.21: First noisy data set, Fourier smoothing method, angular velocity
transformation
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DLs 1 2 3 4 5 6
haar 0.3933 0.4133 0.3967 0.3900 0.4267 0.3767

d4 0.4333 0.4667 0.4333 0.3933 0.3867 0.3700
d6 0.4133 0.4333 0.3767 0.4700 0.3567 0.3933
d8 0.4700 0.4133 0.4500 0.4367 0.3567 0.3767

d16 0.3933 0.4333 0.4133 0.4700 0.3400 0.3767
la8 0.4133 0.4333 0.4300 0.3733 0.3367 0.3533

la16 0.3933 0.4133 0.4300 0.3933 0.3733 0.3700
la20 0.3933 0.4167 0.4133 0.3733 0.3900 0.3900
bl14 0.4333 0.4333 0.4500 0.4133 0.3567 0.3567
bl20 0.3933 0.4167 0.4300 0.3933 0.4100 0.4100

Table IV.22: First noisy data set, accuracy, wavelet smoothing method, angular
velocity transformation

DLs 1 2 3 4 5 6
haar 0.7000 0.6689 0.6677 0.6288 0.6001 0.6566

d4 0.6920 0.6439 0.6470 0.6658 0.6269 0.6448
d6 0.7040 0.6861 0.6341 0.6288 0.6541 0.6347
d8 0.6988 0.6624 0.6183 0.6581 0.6686 0.6486

d16 0.7434 0.6790 0.6246 0.6608 0.6664 0.6366
la8 0.7172 0.6538 0.6451 0.6482 0.6686 0.6587

la16 0.7372 0.6538 0.6347 0.6427 0.6427 0.6408
la20 0.7400 0.6969 0.6110 0.6396 0.6288 0.6288
bl14 0.6760 0.6778 0.6131 0.6562 0.6646 0.6646
bl20 0.7400 0.6981 0.6091 0.6276 0.6220 0.6180

Table IV.23: First noisy data set, AUC, wavelet smoothing method, angular
velocity transformation

IV.A.3 Second noisy dataset, alpha=0.01, beta=0.001

Linear Cubic Quintic
Accuracy 0.4633 0.4633 0.4633

AUC 0.5872 0.5709 0.5829

Table IV.24: Second noisy data set, spline smoothing method, logarithm
transformation
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20 basis 40 basis 60 basis
Accuracy 0.4800 0.5000 0.5000

AUC 0.5603 0.5807 0.5807

Table IV.25: Second noisy data set, Fourier smoothing method, logarithm
transformation

DLs 1 2 3 4 5 6
haar 0.4633 0.4633 0.4800 0.4800 0.5000 0.5000

d4 0.4633 0.4633 0.4800 0.4967 0.4967 0.4967
d6 0.4633 0.4800 0.4633 0.4800 0.4800 0.4800
d8 0.4633 0.4633 0.4633 0.4800 0.4800 0.4800

d16 0.4633 0.4633 0.4633 0.4800 0.4800 0.4800
la8 0.4633 0.4633 0.4633 0.4633 0.4800 0.4800

la16 0.4633 0.4633 0.4633 0.4633 0.4633 0.4633
la20 0.4633 0.4633 0.4800 0.4800 0.4800 0.4800
bl14 0.4633 0.4633 0.4633 0.4800 0.4800 0.4800
bl20 0.4633 0.4633 0.4633 0.4800 0.4800 0.4800

Table IV.26: Second noisy data set, accuracy, wavelet smoothing method,
logarithm transformation

DLs 1 2 3 4 5 6
haar 0.5952 0.5952 0.5761 0.5841 0.6001 0.6001

d4 0.5832 0.5848 0.5681 0.5634 0.5634 0.5634
d6 0.5832 0.5681 0.5832 0.5758 0.5773 0.5718
d8 0.5912 0.5789 0.5653 0.5662 0.5678 0.5622

d16 0.5832 0.5709 0.5709 0.5718 0.5718 0.5718
la8 0.5832 0.5829 0.5789 0.5909 0.5798 0.5798

la16 0.5832 0.5789 0.5789 0.5829 0.5829 0.5829
la20 0.5832 0.5792 0.5801 0.5718 0.5718 0.5718
bl14 0.5832 0.5792 0.5829 0.5718 0.5718 0.5718
bl20 0.5832 0.5709 0.5909 0.5798 0.5718 0.5718

Table IV.27: Second noisy data set, AUC, wavelet smoothing method, logarithm
transformation

Linear Cubic Quintic
Accuracy 0.4400 0.4600 0.4400

AUC 0.6112 0.5937 0.6451

Table IV.28: Second noisy data set, spline smoothing method, angular velocity
transformation
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20 basis 40 basis 60 basis
Accuracy 0.5800 0.5600 0.5833

AUC 0.6514 0.6598 0.6798

Table IV.29: Second noisy data set, Fourier smoothing method, angular velocity
transformation

DLs 1 2 3 4 5 6
haar 0.4600 0.4400 0.4400 0.4233 0.4600 0.4600

d4 0.4800 0.4400 0.4600 0.4200 0.4400 0.4400
d6 0.4400 0.4233 0.4400 0.4400 0.4400 0.4400
d8 0.4600 0.4600 0.4400 0.4200 0.4400 0.4600

d16 0.4600 0.4400 0.4400 0.4600 0.4400 0.4600
la8 0.4600 0.4600 0.4600 0.4600 0.4400 0.4600

la16 0.4600 0.4600 0.4400 0.4433 0.4600 0.4600
la20 0.4600 0.4400 0.4400 0.4433 0.4600 0.4600
bl14 0.4600 0.4400 0.4400 0.4400 0.4400 0.4400
bl20 0.4600 0.4400 0.4400 0.4433 0.4600 0.4600

Table IV.30: Second noisy data set, accuracy, wavelet smoothing method,
angular velocity transformation

DLs 1 2 3 4 5 6
haar 0.6112 0.6112 0.6112 0.6331 0.6239 0.6239

d4 0.6232 0.6152 0.5992 0.6232 0.6116 0.6239
d6 0.6484 0.6442 0.6152 0.6236 0.5912 0.6017
d8 0.6340 0.6223 0.6112 0.6232 0.6079 0.6112

d16 0.6272 0.6303 0.6112 0.6112 0.5912 0.6072
la8 0.6152 0.6143 0.5952 0.6076 0.6116 0.6156

la16 0.6236 0.6143 0.6112 0.6374 0.6112 0.6152
la20 0.6236 0.6383 0.6112 0.6371 0.6112 0.6152
bl14 0.6281 0.6423 0.6112 0.6152 0.5992 0.6236
bl20 0.6236 0.6383 0.6112 0.6211 0.6143 0.6060

Table IV.31: Second noisy data set, AUC, wavelet smoothing method, angular
velocity transformation
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IV.A.4 Third noisy dataset, alpha=0.01, beta=0.01

Linear Cubic Quintic
Accuracy 0.5267 0.5067 0.5067

AUC 0.6233 0.6273 0.6329

Table IV.32: Third noisy data set, spline smoothing method, logarithm
transformation

20 basis 40 basis 60 basis
Accuracy 0.4433 0.4867 0.4867

AUC 0.6797 0.6101 0.6277

Table IV.33: Third noisy data set, Fourier smoothing method, logarithm
transformation

DLs 1 2 3 4 5 6
haar 0.4867 0.4867 0.4833 0.4867 0.4667 0.4667

d4 0.4867 0.4633 0.4667 0.4800 0.5033 0.5233
d6 0.4333 0.4067 0.4667 0.4833 0.4667 0.4667
d8 0.4500 0.4067 0.3900 0.4467 0.4500 0.4467

d16 0.4867 0.4267 0.4467 0.4867 0.4667 0.4267
la8 0.4700 0.4867 0.4267 0.4833 0.4667 0.4633

la16 0.4700 0.4467 0.4467 0.4067 0.4267 0.4267
la20 0.4700 0.4467 0.4467 0.4067 0.4267 0.4267
bl14 0.4500 0.4067 0.4467 0.4433 0.4300 0.4633
bl20 0.4700 0.4467 0.4267 0.4267 0.4667 0.4467

Table IV.34: Third noisy data set, accuracy, wavelet smoothing method,
logarithm transformation
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DLs 1 2 3 4 5 6
haar 0.6609 0.6449 0.6911 0.6918 0.6782 0.6782

d4 0.6609 0.6449 0.6911 0.6918 0.6782 0.6782
d6 0.6344 0.6833 0.6286 0.6424 0.6286 0.6341
d8 0.6443 0.6698 0.6917 0.6767 0.6388 0.6298

d16 0.6692 0.6757 0.6446 0.6548 0.6421 0.6757
la8 0.6553 0.6073 0.6406 0.6184 0.6046 0.6464

la16 0.6553 0.6353 0.6437 0.6917 0.6677 0.6597
la20 0.6553 0.6517 0.6397 0.6781 0.6652 0.6597
bl14 0.6273 0.6781 0.6557 0.6760 0.6624 0.6560
bl20 0.6473 0.6637 0.6621 0.6661 0.6301 0.6381

Table IV.35: Third noisy data set, AUC, wavelet smoothing method, logarithm
transformation

Linear Cubic Quintic
Accuracy 0.4133 0.4133 0.4133

AUC 0.6877 0.6877 0.6877

Table IV.36: Third noisy data set, spline smoothing method, angular velocity
transformation

20 basis 40 basis 60 basis
Accuracy 0.4700 0.4667 0.4833

AUC 0.6541 0.6350 0.6271

Table IV.37: Third noisy data set, Fourier smoothing method, angular velocity
transformation

DLs 1 2 3 4 5 6
haar 0.4500 0.5067 0.4900 0.4500 0.4500 0.4300

d4 0.3900 0.4900 0.4900 0.4500 0.4533 0.4300
d6 0.4233 0.4900 0.4700 0.4500 0.4333 0.4500
d8 0.4033 0.5233 0.4300 0.4500 0.4900 0.4700

d16 0.4100 0.5067 0.4500 0.4300 0.4900 0.4533
la8 0.4133 0.5267 0.5100 0.4300 0.4533 0.4300

la16 0.3733 0.5267 0.4333 0.4300 0.4700 0.4133
la20 0.3900 0.4900 0.4333 0.4300 0.4700 0.4133
bl14 0.4233 0.5067 0.4900 0.4300 0.4533 0.4333
bl20 0.4100 0.4900 0.4533 0.4300 0.4700 0.4300

Table IV.38: Third noisy data set, accuracy, wavelet smoothing method, angular
velocity transformation
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DLs 1 2 3 4 5 6
haar 0.6359 0.6562 0.6489 0.6600 0.6356 0.6821

d4 0.6519 0.6606 0.6282 0.6646 0.6772 0.6738
d6 0.6601 0.6793 0.6646 0.6664 0.6852 0.6710
d8 0.6444 0.6352 0.6628 0.6828 0.6882 0.6550

d16 0.6821 0.6288 0.6788 0.6988 0.6726 0.6522
la8 0.6719 0.6728 0.6694 0.6566 0.6856 0.6793

la16 0.6870 0.6728 0.6723 0.6704 0.6661 0.6682
la20 0.6811 0.6494 0.6624 0.6788 0.6661 0.6682
bl14 0.6872 0.6189 0.6534 0.6984 0.6692 0.6738
bl20 0.6691 0.6618 0.6541 0.6948 0.6824 0.6877

Table IV.39: Third noisy data set, AUC, wavelet smoothing method, angular
velocity transformation

IV.A.5 Fourth noisy dataset, alpha=0.01, beta=0.1

Linear Cubic Quintic
Accuracy 0.6600 0.6600 0.6767

AUC 0.6649 0.6788 0.6696

Table IV.40: Fourth noisy data set, spline smoothing method, logarithm
transformation

20 basis 40 basis 60 basis
Accuracy 0.6633 0.6600 0.6467

AUC 0.6557 0.6942 0.6393

Table IV.41: Fourth noisy data set, Fourier smoothing method, logarithm
transformation
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DLs 1 2 3 4 5 6
haar 0.6200 0.6500 0.6467 0.5700 0.6300 0.5700

d4 0.7200 0.6600 0.5933 0.6133 0.6100 0.6633
d6 0.7067 0.6467 0.5567 0.6133 0.6333 0.6333
d8 0.6633 0.5900 0.6100 0.6467 0.6433 0.6467

d16 0.6833 0.7000 0.5900 0.6100 0.5900 0.6300
la8 0.7067 0.6233 0.6433 0.6467 0.6867 0.6833

la16 0.6867 0.6600 0.6267 0.6633 0.6267 0.6467
la20 0.6867 0.6800 0.5700 0.6633 0.6300 0.6800
bl14 0.7067 0.5900 0.6033 0.6867 0.6267 0.6100
bl20 0.6867 0.6800 0.5700 0.6300 0.6167 0.6833

Table IV.42: Fourth noisy data set, accuracy, wavelet smoothing method,
logarithm transformation

DLs 1 2 3 4 5 6
haar 0.6409 0.6784 0.6270 0.5860 0.6183 0.6196

d4 0.7136 0.6642 0.6057 0.6236 0.6319 0.7046
d6 0.6748 0.6544 0.5928 0.6564 0.6574 0.6263
d8 0.6612 0.6800 0.6831 0.6963 0.6791 0.6557

d16 0.6720 0.6600 0.6390 0.5924 0.5894 0.6467
la8 0.6957 0.6909 0.6989 0.7416 0.7096 0.7007

la16 0.6704 0.7001 0.6994 0.7053 0.6788 0.6807
la20 0.6649 0.6593 0.6329 0.6643 0.6313 0.6638
bl14 0.6788 0.6553 0.6853 0.6824 0.6803 0.6856
bl20 0.6704 0.6687 0.5910 0.6366 0.6538 0.6498

Table IV.43: Fourth noisy data set, AUC, wavelet smoothing method, logarithm
transformation

Linear Cubic Quintic
Accuracy 0.4433 0.4433 0.4433

AUC 0.6534 0.6534 0.6534

Table IV.44: Fourth noisy data set, spline smoothing method, angular velocity
transformation

20 basis 40 basis 60 basis
Accuracy 0.4833 0.5433 0.4800

AUC 0.6408 0.5954 0.6161

Table IV.45: Fourth noisy data set, Fourier smoothing method, angular velocity
transformation
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DLs 1 2 3 4 5 6
haar 0.4633 0.5433 0.5400 0.4267 0.4633 0.4400

d4 0.5267 0.4833 0.4600 0.3900 0.4800 0.4233
d6 0.4867 0.4500 0.4667 0.4300 0.4667 0.4267
d8 0.3733 0.4667 0.4467 0.4300 0.4267 0.4267

d16 0.4833 0.5100 0.4633 0.4500 0.4467 0.4433
la8 0.4667 0.4867 0.4267 0.3700 0.4633 0.4233

la16 0.4467 0.4833 0.4633 0.4833 0.4833 0.4267
la20 0.4467 0.5600 0.4667 0.5000 0.5033 0.4267
bl14 0.4867 0.5100 0.4267 0.4100 0.4667 0.4433
bl20 0.4667 0.5233 0.4667 0.4500 0.4667 0.4267

Table IV.46: Fourth noisy data set, accuracy, wavelet smoothing method,
angular velocity transformation

DLs 1 2 3 4 5 6
haar 0.6490 0.6062 0.5883 0.6276 0.6174 0.6131

d4 0.6512 0.5980 0.6036 0.6190 0.6088 0.6310
d6 0.6540 0.6084 0.6220 0.6477 0.6494 0.6273
d8 0.6652 0.5711 0.6053 0.6267 0.6559 0.6350

d16 0.6493 0.5798 0.6060 0.6331 0.6383 0.6211
la8 0.6426 0.5456 0.5927 0.6402 0.6116 0.6310

la16 0.6266 0.5902 0.5986 0.6211 0.6316 0.6713
la20 0.5881 0.5617 0.6078 0.6128 0.6276 0.6713
bl14 0.6368 0.6063 0.6069 0.6621 0.6310 0.6378
bl20 0.6041 0.5796 0.6238 0.6522 0.6298 0.6713

Table IV.47: Fourth noisy data set, AUC, wavelet smoothing method, angular
velocity transformation

IV.A.6 Fifth noisy dataset, alpha=0.1, beta=0.01

Linear Cubic Quintic
Accuracy 0.4400 0.4400 0.4400

AUC 0.6451 0.6451 0.6451

Table IV.48: Fifth noisy data set, spline smoothing method, logarithm
transformation
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20 basis 40 basis 60 basis
Accuracy 0.4033 0.4367 0.4733

AUC 0.6957 0.6609 0.6763

Table IV.49: Fifth noisy data set, Fourier smoothing method, logarithm
transformation

DLs 1 2 3 4 5 6
haar 0.4600 0.4200 0.4400 0.4400 0.4600 0.4600

d4 0.4233 0.4267 0.4267 0.4233 0.4433 0.4433
d6 0.4267 0.4267 0.4800 0.4433 0.4267 0.4067
d8 0.4600 0.4833 0.4800 0.4400 0.4200 0.4600

d16 0.4400 0.4667 0.4400 0.4400 0.4733 0.4733
la8 0.4233 0.4233 0.4233 0.4433 0.4233 0.4400

la16 0.4433 0.4800 0.4800 0.4433 0.4233 0.4033
la20 0.4433 0.4667 0.5000 0.4433 0.4400 0.4400
bl14 0.4267 0.4467 0.4600 0.4400 0.4233 0.4067
bl20 0.4267 0.4667 0.4600 0.4433 0.4233 0.4433

Table IV.50: Fifth noisy data set, accuracy, wavelet smoothing method,
logarithm transformation

DLs 1 2 3 4 5 6
haar 0.6291 0.6778 0.6852 0.6602 0.6263 0.6343

d4 0.6741 0.6276 0.6534 0.6611 0.6451 0.6451
d6 0.6494 0.6454 0.6411 0.6710 0.6543 0.6703
d8 0.6411 0.6341 0.6541 0.6821 0.6981 0.6741

d16 0.6698 0.6063 0.6901 0.6976 0.6849 0.7163
la8 0.6741 0.6491 0.6571 0.6451 0.6540 0.6651

la16 0.6541 0.6402 0.6458 0.6646 0.6734 0.6894
la20 0.6621 0.6094 0.6322 0.6204 0.6571 0.6571
bl14 0.6494 0.6334 0.6538 0.6618 0.6590 0.6503
bl20 0.6454 0.6094 0.6402 0.6454 0.6654 0.6124

Table IV.51: Fifth noisy data set, AUC, wavelet smoothing method, logarithm
transformation

Linear Cubic Quintic
Accuracy 0.4367 0.4367 0.4367

AUC 0.5764 0.5764 0.5764

Table IV.52: Fifth noisy data set, spline smoothing method, angular velocity
transformation
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20 basis 40 basis 60 basis
Accuracy 0.4367 0.4800 0.4967

AUC 0.5933 0.5884 0.5203

Table IV.53: Fifth noisy data set, Fourier smoothing method, angular velocity
transformation

DLs 1 2 3 4 5 6
haar 0.4567 0.4567 0.4533 0.4200 0.4533 0.4367

d4 0.4733 0.4900 0.4733 0.4733 0.4533 0.4200
d6 0.4400 0.4933 0.4733 0.4733 0.4367 0.4200
d8 0.4967 0.4400 0.4733 0.4533 0.4367 0.4367

d16 0.4533 0.4800 0.4733 0.4733 0.4567 0.4200
la8 0.4933 0.4800 0.4167 0.4567 0.4533 0.4367

la16 0.4933 0.4967 0.4533 0.4167 0.4733 0.4367
la20 0.4933 0.4767 0.4367 0.4367 0.4733 0.4367
bl14 0.4400 0.4967 0.4167 0.4733 0.4533 0.4200
bl20 0.4933 0.4767 0.4367 0.4733 0.4533 0.4533

Table IV.54: Fifth noisy data set, accuracy, wavelet smoothing method, angular
velocity transformation

DLs 1 2 3 4 5 6
haar 0.5927 0.5912 0.5942 0.5751 0.5829 0.5678

d4 0.5718 0.5909 0.5940 0.5940 0.6032 0.5653
d6 0.5927 0.5989 0.5952 0.5940 0.6048 0.5733
d8 0.6059 0.5982 0.5980 0.5721 0.5817 0.5844

d16 0.5906 0.5514 0.5952 0.5601 0.5804 0.5706
la8 0.5834 0.5742 0.6213 0.5968 0.6032 0.5737

la16 0.5918 0.5878 0.6112 0.6093 0.5817 0.5737
la20 0.5918 0.5579 0.5973 0.5893 0.5817 0.5737
bl14 0.5902 0.5798 0.6213 0.5940 0.5937 0.5733
bl20 0.5918 0.5619 0.5973 0.5601 0.6029 0.5681

Table IV.55: Fifth noisy data set, AUC, wavelet smoothing method, angular
velocity transformation

Appendix IV.B The theory of quaternions

IV.B.1 Introduction to quaternions and quaternion algebra

Quaternion algebra has been fully studied and applied since the development

of computer graphics, specifically to approach the problem of the motion of a
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rigid body.

Quaternions were first defined by Hamilton in 1843, as a generalization of the

complex numbers, with three imaginary units: i, j, k.

Each quaternion can be represented as q = w+ xi + yj + zk where w, x, y, and

z are real numbers: w is referred to as the real part of q and x, y, and z are the

imaginary parts.

Imaginary units satisfy the conditions

i2 = j2 = k2 = ijk = −1

This implies that quaternion multiplication is not commutative. Quaternions

are often represented as the 4-dimensional vector of their real components:

q = (w, x, y, z).

The norm of a quaternion is defined to be |q| =
√
w2 + x2 + y2 + z2.

These different types of quaternions and operations on quaternions include:

• The pure quaternion q = (0, x, y, z).

• The identity quaternion q = (1, 0, 0, 0).

• The unit quaternion q = (w, x, y, z), where |q| = 1.

• The conjugate quaternion q̄ = (w,−x,−y,−z).

• The quaternion inverse q−1 = q̄/|q|

If we define v = (x, y, z) ∈ R3:

• The logarithm log(q) = (log(|q|), x|v|arccos(
w
|q| ),

y
|v|arccos(

w
|q| ),

z
|v|arccos(

w
|q| )),

• The exponential exp(q) = exp(w)(cos(|v|), x|v| sin(|v|), y
|v| sin(|v|), z

|v| sin(|v|)).

Unit quaternions are specifically used for describing rotations in three dimen-

sions. Their intrinsic properties confer on them a number of advantages over

the other classical representations, such as Euler angles and rotation matrices

(see Dam, Koch, and Lillholm 2000).

A unit quaternion (i.e. a finite rotation) can also be represented as a single
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rotation about an appropriately chosen axis. So the quaternion can also be de-

fined as an angle θ ∈ R and a three element vector v = (vx, vy, vz) ∈ S2, where

S2 := {v ∈ R3 : ∥v∥ = 1}:

q = q(θ,v) = (cos θ2 , vx sin θ2 , vy sin θ2 , vz sin θ2)

The inverse mapping is defined by the equations:

 θ(q) := 2arccos(w)

v(q) = (x,y,z)
|(x,y,z)| = (x,y,z)√

1−w2

We remark that the map from the unit quaternions to the rotations is not

injective: for every rotation, two quaternions, +q and –q, lying at antipodal

points of a hypersphere, correspond to it.

For unit quaternions, the exponential and logarithm maps assume specific

formulations and meanings. In fact, Euler’s identity for complex numbers

generalizes to quaternions, i.e. exp(vθ) = cos θ+v sin θ, results derived from the

power series representation for exp(x). From this formulation is also possible

to define the logarithm of a unit quaternion, log(q) = vθ ∈ R3. It is important

to note that the noncommutativity of quaternion multiplication invalidates the

standard identities for the exponential and logarithm functions, as described in

Baker 1905.

Let us suppose that r = (rx, ry, rz) is a point in 3D space and qr represents the

same vector in quaternionic form, qr = (0, rx, ry, rz).

The vector q′
r, resulting from the rotation by an angle θ around the axis v, can

be calculated by quaternion multiplication as q′
r = qqrq

−1

Let q1 = (w1, x1, y1, z1) and q2 = (w2, x2, y2, z2) be unit quaternions. The

distance between them is the geodesic distance defined as follows:

d(q1, q2) = 2arccos(|q1 · q2|) = 2arccos(w1w2 + x1x2 + y1y2 + z1z2). (IV.7)

This definition is functionally equivalent to the geodesic distance on the unit

sphere, defined by d(q1, q2) = ∥log(q1q
T
2 )∥.
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The average of n quaternions q1, ..., qn is defined as the sample Fréchet mean:

q̄ = avg(qi) = argminq(
n∑
i=1

d2(q, qi))

IV.B.2 Quaternion time series

A quaternion time series is a sequence of (unit) quaternions q(i), i ∈ {1, ..., n}.

One of the distances between two quaternion time series q1 and q2 is defined

as the l2 geodesic distance:

d(q1,q2) =

√√√√ n∑
i=1

d2(q(i)
1 , q

(i)
2 ) =

=

√√√√ n∑
i=1

(arccos(w(i)
1 w

(i)
2 + x

(i)
1 x

(i)
2 + y

(i)
1 y

(i)
2 + z

(i)
1 z

(i)
2 ))2

A more elastic distance measure defined in Jablonski 2011 is called Dynamic

Time Warping (DTW).

DTW (q1,q2) = min
ω
dω(q1,q2) = min

ω

T∑
i=1

d(q(ω(i))
1 , q

(ω(i))
2 ) (IV.8)

where ω(i) is the warping path, i.e. a function which defines a mapping between

index i to index j. The distances implemented in Equation IV.8 can be chosen

according to the purpose, but the geodesic distance as defined in Equation IV.7

is the most common choice.

In the context of quaternion time series, quaternion spherical linear interpolation

(SLERP) is an extension of linear interpolation along a plane to spherical

interpolation in three dimensions, as first proposed in Shoemake 1985. Given

two quaternions, q1 and q2, SLERP interpolates a new quaternion, q0, along the

great circle that connects q1 and q2:

q0 = sin((1 − T )θ)
sin(θ) q1 + sin(Tθ)

sin(θ) q2

where T is the interpolation coefficient that determines how close the new

quaternion is to either q1 and q2, and θ is one-half the angular distance between

q1 and q2.
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The spherical quadrangle interpolation (SQUAD) is a spline-based interpolation

of rotations (unit quaternion), also known as spherical cubic interpolation.

If {qi}i=1,...N is a sequence of N quaternions, then define an ’helper’ quaternion

si = exp(− log(qi+1q
−1
i

)+log(qi−1q
−1
i

)
4 )qi.

Then the interpolation is given by

squad(qi, qi+1, si, si+1, T ) = slerp(slerp(qi, qi+1, T ), slerp(si, si+1, T ), 2T (1−T ))

where qi, qi+1 represent the start and destination rotations and T is the

interpolation parameter, which lies in the interval [0, 1].

Another crucial point in our work is the definition of angular velocity for

a quaternion time series. A unit quaternion time series is the discrete

representation of a curve q : T → H1. The space of unit quaternions can

be thought of as the sphere S3 ⊆ R4 so the linear properties can be exploited

to define the derivative of a quaternion curve as follows:

q̇(t) = d

dt
q(t) = lim

h→0

q(t+ h) − q(t)
h

As S3 is a Lie group, the angular velocities of q(t) can be represented as a vector

Ω(t) ⊆ R3 such that:

q̇(t) = 1
2q(t) ∗

 0

Ω(t)


Inverting this equation we obtain that

Ω(t) = lim
h→0

2Im( q̄(t) ∗ q(t+ h)
h

)

where the imaginary part excludes only the first component, which is always

zero in this expression.

As a consequence, Ω(t) = 2Im( q̄(t)∗q(t+δ)
δ ) is a good approximation of the

angular velocity for small values of δ.

In order to go back from angular velocity to the unit quaternion time series we

can exploit a forward Lie-group Euler method to calculate the next orientation

q(t+ δ) from q(t) and Ω(t), defined as follows:

q(t+ δ) = q(t) ∗ ˜exp(δΩ(t))
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where ˜exp : R3 → S3 is the exponential function in Lie groups, defined as

power series. For unit quaternions it has the closed form ˜exp(v) = cos( 1
2 ||v||) +

v
||v|| sin( 1

2 ||v||) where v ∈ R3 and || • || is the standard Euclidean norm (see

Rico-Martinez and Gallardo-Alvarado 2000 and Boyle 2017 for further details).

Appendix IV.C Wavelet theory

IV.C.1 Introduction to real wavelets

Wavelet analysis is a mathematical theory developed in the late 1900s to analyse

signals from a time–frequency point of view.

Compared to the traditional Fourier method for frequency analysis, wavelets

have several advantages. Some of them are that wavelets provide different

possibilities for the choice of the basis, so as to better fit the signal, and they

analyse a resolution matched to scale. For these reasons, they are a more flexible

tool when the signal contains discontinuities and sharp spikes. Moreover, in most

of the applications, if the best wavelet adapted to the data is chosen, or if the

coefficients are truncated below a threshold, the data are sparsely represented.

The procedure for wavelet analysis is to adopt a wavelet to represent the noise,

called the analysing wavelet or the mother wavelet, and another wavelet to

represent the rest of the signal, called the scaling function or the father wavelet.

For the Fourier transform, this new domain contains basis functions that

are sines and cosines. For the wavelet transform, this new domain contains

more complicated basis functions called wavelets, mother wavelets, or analyzing

wavelets.

While both types of basis function are localized in frequency, only wavelet

functions are localized in space. This localization makes many functions and

operators using wavelets sparse when transformed into the wavelet domain.

This sparseness, in turn, results in a number of useful applications such as data

compression, detecting features in images, and removing noise from time series.

An advantage of wavelet transforms is that the windows can vary. This is crucial
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in order to isolate signal discontinuities and to obtain a detailed frequency

analysis. In fact, with wavelet analysis, we have short high-frequency basis

functions and long low-frequency ones. The different families of wavelet make

different trade-offs between how compactly the basis functions are localized in

space and how smooth they are.

IV.C.2 Multiresolution analysis

The time–frequency resolution problem is caused by the Heisenberg uncertainty

principle and exists regardless of the technique of analysis used. By using an

approach called multiresolution analysis (MRA), it is possible to analyse a signal

at different frequencies with different resolutions.

It is assumed that low frequencies last for the entire duration of the signal

and give the basic information, whereas high frequencies represent the noise

component of the signal. This is often the case in practical applications. Wavelet

analysis calculates the correlation between the signal under consideration and

a wavelet function ψ(t). The similarity between the signal and the analysing

wavelet function is computed separately for different time intervals, resulting in

a two-dimensional representation. The analysing wavelet function ψ(t) is also

referred to as the mother wavelet.

Definition IV.C.1. Let {Vj}j∈Z be a sequence of closed subspaces Vj ⊆ L2(R)

and let ϕ ∈ V0. An orthogonal multiresolution for L2(R) is a couple ({Vj}j , ϕ)

such that:

IV.C.1.1. Vj ⊂ Vj+1

IV.C.1.2. ∪jVj = L2(R) and ∩+∞
j=−∞Vj = {0}

IV.C.1.3. {l 7→ f(l)} ∈ Vj ⇐⇒ {l 7→ f(2l)} ∈ Vj+1

IV.C.1.4. {ϕ(l − k)}k∈Z is an orthonormal basis for V0 and
∫
R ϕ ̸= 0.

The projection of f ∈ L2(R) on the sequence {Vj}j gives a progressively

better approximation of f as j increases. The function ϕ is called the scaling
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function or the father wavelet. Due to properties 3 and 4, {2 j
2ϕ(2j l− k)}k is an

orthonormal basis for Vj .

It is more useful for exploring the detailed information needed to go from

the space Vj to the space Vj+1, starting from a coarse space V0.

For this reason the sequence of complement spaces Wj = Vj+1 \Vj is introduced.

A mother wavelet is a function ψ ∈ W0 so that {ψ(l − k)}k is a basis for W0.

Moreover, the mother wavelet ψ must be a measurable function in L2(R)∩L1(R),

i.e. ∫ +∞

−∞
|ψ(x)| dx < ∞ and

∫ +∞

−∞
|ψ(x)|2 dx < ∞.

IV.C.3 The discrete wavelet transform

Dilations and translations of the mother function, or the analyzing wavelet ψ(x),

define an orthogonal basis, our wavelet basis:

ψj,k(x) = 2
j
2ψ(2jt− k)

The parameters j and k are integers that scale and dilate the mother function

ψ to generate wavelets. The scale index j indicates the wavelet’s width, and

the location index l gives its position. Note that the mother functions are

rescaled, or dilated by powers of two, and translated by integers. What makes

wavelet bases especially interesting is the self-similarity caused by the scales

and dilations. Once we know about the mother functions, we know everything

about the basis. To span our data domain at different resolutions, the analysing

wavelet is used in a scaling equation:

ψ(x) =
∑
n

hψ[n]
√

2ϕ(2t− n)

where ϕ(x) is the scaling function for the mother function and hψ[n] are the

wavelet coefficients.

As a consequence of the properties stated in the last paragraph, L2(R) =

⊕j∈ZWj and {ψj,k(l)}k = {2 j
2ψ(2j l − k)}k is an orthonormal basis for L2(R).
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Moreover L2(R) = V0 ⊕W0 ⊕W1 ⊕W2 ⊕ ....

Therefore, for each f ∈ L2(R), we have

f =
∑
j

∑
k

⟨f, ψj,k⟩ψj,k =
∑
k

⟨f, ϕ0,k⟩ϕ0,k +
+∞∑
j=0

∑
k

⟨f, ψj,k⟩ψj,k =

=
∑
k

s0,kϕ0,k +
+∞∑
j=0

∑
k

dj,kψj,k

where ⟨·, ·⟩ is the scalar product in L2(R), s0,k := ⟨f, ϕ0,k⟩ are called the

approximation (or scaling) coefficients and dj,k := ⟨f, ψj,k⟩ are the details (or

wavelet) coefficients.

The parameter j represents all the possible decomposition levels.

The coefficients {s0,k}j∈Z and {dj,k}j∈Z∩{j≥0},k∈Z are called the discrete wavelet

transform (DWT) of f . It can be shown that ϕ and ψ satisfy the dilation

equations:

ϕ(l) =
∑
k

√
2hkϕ(2l − k) and ψ(l) =

∑
k

√
2gkϕ(2l − k)

for some sequences {hk}k and {gk}k, called, respectively, the scaling filter and

the wavelet filter.

The iterative process that determines the scaling function is sometimes called

the cascade algorithm. The calculation requires an initial ϕ(0)(l). In practical

examples the initial iteration function is a constant.

The two sets of coefficients H = {hk}k and G = {gk}k are known in the signal

processing literature as quadrature mirror filters.

The scaling function and its defining coefficients H detect localized low fre-

quency information and are called low-pass filters (LPF). The wavelet function

and its defining coefficients G detect localized high frequency information and

are called high-pass filters (HPF).

For Daubechies wavelets the number of coefficients in H and G, or the length

of the filters H and G, denoted by L, is related to the number of vanishing

moments M by 2M = L.
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The number of vanishing moments is a regularity property and is expressed as:∫ +∞

−∞
ψ(x)xm dx = 0,

for m = 0, ...,M − 1.

IV.C.4 The Mallat pyramidal algorithm

The theory of wavelets as already presented gives a representation of a real

continuous signal f ∈ L2(R) as a projection onto an orthonormal basis.

If we assume given a discrete sample of the original signal f , this analysis give

us an approximate wavelet representation of that signal (see Resnikoff and Wells

1998) and is called the discrete wavelet transform (DWT).

An efficient way to implement the DWT was proposed in Mallat 1989 and is

called the Mallat pyramidal algorithm.

The signal f is convolved with two filters: a high pass filter and a low pass

filter. The high pass filter retains the high frequency components (details)

and the low pass filter retain low frequency components (approximation). The

resulting coefficients are down-sampled to maintain the original size of the data

set. The decomposition process can be iterated and successive approximations

can be further decomposed. This is called the wavelet decomposition tree. The

number of iterations performed is called the maximum decomposition level and,

as a consequence, is the number of detail levels considered.

While in theory the process can continue indefinitely, in reality the maximum

value of decomposition level is log2(N). This is due to the Mallat Algorithm

and specifically to the down-sampling process: at each step the length of the

signal is one-half of the previous length.

IV.C.5 Smoothing using the wavelet transform

The smoothing process in the framework of DWT is essentially carried out by

shrinking the wavelet coefficients.
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In fact we suppose that the wavelet coefficients can be described by:

dj,k = d0
j,k + ρj,k

where dj,k are the empirical wavelet coefficients extracted from the data, d0
j,k

are the true wavelet coefficients of the signal without noise, and ρj,k are the

wavelet transforms of the noise.

The general idea of shrinkage is to subtract from the empirical coefficients the

values related to noise. This can be done using different approaches.

Hard thresholding :

dj,k =

0, if |dj,k| ≤ T ;

dj,k, otherwise

Soft thresholding:

dj,k =

0, if |dj,k| ≤ T ;

sign(dj,k)||dj,k| − T |, otherwise

Mid thresholding:

dj,k =


0, if |dj,k| ≤ T1;

sign(dj,k)||dj,k| − T2|, if T1 < |dj,k| ≤ T2

dj,k otherwise

The next step, following the choice of the thresholding method, is to

determine the best value for the threshold T .

In general, T can be manually chosen to give what appears to be the right

amount of smoothing.

A grid-search approach can be implemented to compare the smoothed signals

obtained with different threshold values.

There are also data driven methods to calculate the threshold value and the

most well known is the universal threshold as defined in Donoho, Johnstone,

and Picard 1995.

The universal threshold is defined so that if the original time series is nothing
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but Gaussian noise, then all the wavelet coefficients are (correctly) set to zero

using a hard thresholding scheme.

The universal threshold is:

λ = σ
√

2 log(N)

where N is the length of the series and σ is the –unknown– noise variance.

σ̂ = MAD(d1)
0.6745

where d1 = {d1,k}k is the vector of detail coefficients obtained from the

first level of decomposition and MAD is the Median Absolute Deviation:

MAD(x) = median(|x −median(x)|).

In order to perform a smoothing procedure using DWT, the following steps

are necessary:

• Choosing the wavelet function ψ (specifying the family and length L).

• Choosing the decomposition level (i.e. the maximum value of j in the

decomposition of f , in practice the number of detail coefficients used in

the decomposition).

• Applying the wavelet transform to the data and extracting the wavelet

and detail coefficients.

• Choosing the shrinkage method and threshold value.

• Applying the inverse wavelet transform to the smoothed coefficients.

IV.C.6 Evaluation of the smoothing process

There are two main approaches to evaluating the smoothing process, depending

on the aim of the research.

The first approach is the estimation of the similarity (or dissimilarity) between

the original signal f and the smoothed one fsmooth. Here are some examples of

common metrics:
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• Residual autocorrelation (Horgan 1999)

• P, Q, MS criteria (Sharie, Mosavi, and Rahemi 2020)

• Reconstruction Square Error (Pasti et al. 1999)

• Minimum Descriptor Length (Pasti et al. 1999)

• Energy based methods (Y. Sang 2012)

• Entropy based methods (Y. F. Sang et al. 2009)

The second approach consists in the evaluation of the smoothing process on the

basis of the performances of a classification model, as proposed in Zhang et al.

2016.
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Conclusion

This thesis addresses several problems encountered in the field of statistical

and machine learning methods for data analysis in neurosciences. The thesis is

divided into three parts.

Part 1 is related to the study and improvement of a classical supervised machine

learning model, the decision tree model. A new algorithm called Polarized

Classification Tree model is defined in order to tackle some weaknesses of

classical tree models. In the research field of polarization measures, a new

measure is defined and incorporated in the decision tree algorithm as a splitting

function. The polarization measure proposed allows the model to take into

account the distribution of the predictors instead of the only impurity of the

nodes. Results confirm that the new model proposed is competitive with

respect to the classical measures and in some cases it shows significantly better

performances.

The main contributions of this work are two folds: from a theoretical point

of view a generalization of polarization axioms in the multidimensional case is

provided and a new measure is defined, from a computational point of view a

new classification model is provided. Further ideas of research include the use of

Polarized Classification Tree model into ensemble models starting from Random

Forest model. An additional planned work is the application of the new model

proposed and the comparison with the existing models in a real world problem

in order to show the real potential of the proposal for the applications.

Part 2 is about the definition of a model assessment and selection method in

a classification task when the target variable is ordinal. The new index can

compensate for the lack of appropriate performance evaluation measures for

classification models with ordinal target variables. Two toy examples show
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how the index works and its advantages with respect to the classical evaluation

measures (accuracy, AUC, MSE). Results on simulated data confirm that the

new index can capture peculiar aspects compared to the traditional measures.

The index proposed is also applied in a real case study. A data set related to the

study of Attenuated Psychosis Syndrome is analysed in terms of classification

task.

The main contribution of this work is the proposal of an index to perform

model selection in the case of ordinal target variables that, coupled with other

metrics, can be incorporated in the routine process of model selection. From a

computational point of view, the next step will be the implementation of the

index in a R package to make it easily available. From a theoretical point of

view, a possible extension is the definition of a family of indices where different

distances defined in literature are employed and the different consequences of

this choice should be discussed.

Part 3 describes a new method to smooth motion data represented as quaternion

time series. Different methods to smoothing time series in quaternion algebra

were developed in literature and some of these were applied to real or simulate

data sets, see for example Ginzberg and Walden 2012, Janiak, Szczȩsna, and

Słupik 2014, Hsieh 2002. Despite this, the lack of availability of the code makes

these methods leaving open the problem of applications to the real world cases.

For this reason, starting from the method proposed in Hsieh 2002, a new method

that deploys the logarithm function instead of angular velocity to transform the

quaternion time series in a real three dimensional time series.

These two methods are compared in terms of classification performances on

simulated data sets where different degrees of noise are introduced. The results

confirm the hypothesis made on the basis of the theoretical information available

from the two methods, i.e. the proposed method generally provides better

results than the existing one in terms of classification performances evaluated

through accuracy and AUC measures.

From a computational point of view, the R functions developed for this work

will be made available.
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From a theoretical point of view, further ideas of research include the application

of different noise models to evaluate the influence on data sets of different nature,

the application of other classification models and a deeper analysis on classical

smoothing methods applied in this context. The approach described in this

paper can be exploited in terms of the functional representation of quaternion

time series, but this aspect needs further study.

Moreover, this work is part of a bigger project and data collected from patients

with neurodegenerative diseases will be analysed with the suitable statistical

and machine learning methods starting from the ones developed in this thesis.
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