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Abstract

The thesis addresses the possibility of using mathematical methods, simulation

techniques, repurposed physical theories and artificial intelligence algorithms to

fulfill clinical needs in neuroradiology and neurology. The aim is to describe

and to predict disease patterns and its evolution over time as well as to support

clinical decision-making processes. The thesis is divided into three parts.

Part 1 is related to the development of a Radiomic workflow combined with

Machine Learning algorithms in order to predict parameters that quantify mus-

cular anatomical involvement in neuromuscular diseases, with special focus on

Facioscapulohumeral dystrophy. The proposed workflow relies on conventional

Magnetic Resonance Imaging sequences available in most neuromuscular cen-

ters and it can be used as a non-invasive tool to monitor even fine change in

neuromuscular disorders and to evaluate longitudinal diseases’ progression over

time.

Part 2 is about the description of a kinetic model for tumor growth by means

of classical tools of statistical mechanics for many-agent systems also taking into

account the effects of clinical uncertainties related to patients’ variability in

tumor progression. The action of therapeutic protocols is modeled as feedback

control at the microscopic level. The controlled scenario allows the dumping

of uncertainties associated with the variability in tumors’ dynamics. Suitable

numerical methods, based on Stochastic Galerkin formulation of the derived

kinetic model, are introduced.

Part 3 refers to a still-on going project that attempts to describe a brain

portion through a quantum field theory and to simulate its behavior through

the implementation of a neural network with an ad-hoc activation function

mimicking the biological neuron model response function. Under considered
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conditions, the brain portion activity can be expressed up to O(6), i.e., up to six

fields interaction, as a Gaussian Process. The defined quantum field framework

may also be extended to the case of a Non-Gaussian Process behavior, or rather

to an interacting quantum field theory in a Wilsonian Effective Field theory

approach.
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Introduction

Medicine is an evolving field that takes advantage of the recent progress of a

broad spectrum of sciences such as biology, chemistry, statistics, mathematics,

engineering with the aim of preventing, diagnosing and treating a wide range of

medical conditions (Tuena et al. 2020).

Emerging, high-volume data, derived by the implementation of high-

throughput biomedical assays, such as DNA sequences and imaging protocols,

are showing a great inter-individual variability with respect to the effects and

mechanisms that contribute to disease processes (Goetz and Schork 2018). This

paves the way for the development of personalized and precision medicine which

refers to the idea of delivering the right treatment to the right patient at the

right time (Colijn et al. 2017).

The aim is to achieve patient stratifications, monitoring and treatment

design using quantitative, patient-specific datasets, integrated via algorithmic

analyses. This implies embedding diagnostics and treatments with features

derived from the so-called “-omics” sciences (genomic, proteomic, metabolomic,

radiomics) in order to create complete datasets describing multivariate aspects of

individuals’ health across time. Thus, it is also essential to identify measurable

and accurate indicators, the biomarkers, which potentially can predict disease

initiation and progression. To exploit the potential of such datasets, it is

necessary to develop transparent and replicable mathematical frameworks able

to describe and/or extract information from high-dimensional, dynamic, noisy

and sparsely-sampled processes to highlight time patterns in a disease. For this

reason, we need mathematical modeling methods and statistical data analysis

algorithms to be robust and able to adapt to errors and uncertainties.

Mathematical modeling can be mechanistic and non-mechanistic, such
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as Artificial Intelligence (AI) techniques (Machine Learning (ML) and Deep

Learning (DL)). The mechanistic models focus on the description of elements

forming a system, their mutual interactions and the interaction with the

environment with the possibility to also describe the resulting emerging behavior

and average properties of the systems. Among these kinds of models there are

the dynamic modeling by ordinary and partial differential equations (ODEs and

PDEs) that can give very accurate predictions about process parameter changes

in time, including transition process and steady state. These models can also

take into account different types of non-linearities generating complex system

behavior such as emerging oscillations and instabilities (Stalidzans et al. 2020).

An alternative to ordinary or partial differential equations is stochastic

modeling in which the system is considered as a stochastic process. In

addition, we can have agent-based modeling that describes biological systems

using the concepts of environment, agents (molecules of metabolites, enzymes

cells, complex molecules, organisms) which interact mutually and with the

surrounding environment. These interaction rules give rise to an emerging and

average system behavior. These kind of models also give the opportunities to

involve agents with different levels of detail and to obtain multiscale modeling.

Simulations and optimization steps are crucial for mechanistic models.

AI models, instead, are based on machine learning algorithms and neural

networks and simulate the logical decision-making process taking advantage of

available data. These models can predict the behavior of a system searching

for relationships between inputs and outputs or identifying specific or recurrent

patterns. To train such models, a great amount of available data is fundamental.

Anyway, to obtain new insights in a process of interest it is possible to combine

different modeling approaches in order to shed light on different aspects of the

process or disease under examination.

Several medical fields take advantage from precision medicine and mathe-

matical modeling, to mention a few of them cancer research (Filipp 2017), blood

research (Li, Todor, and Luo 2016) and drug discovery (Thiele et al. 2017).

In the context of predictive and precision medicine, imaging is a fundamental
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technology used in clinical practice to aid decision-making step for screening,

diagnostic, and follow-up purposes (Guiot et al. 2022).

Using imaging techniques, in fact, it is possible to extract structural,

functional and metabolic information. In particular, MRI is the safest and

non-invasive imaging technique that uses strong magnetic fields to create

anatomical images with a good spatial resolution. If it is combined with

magnetic resonance spectroscopy, it can provide anatomical and biochemical

information of a particular region of an organ and, in addition, it can

trace differences in oxygenated and deoxygenated hemoglobin giving functional

activation information (Tuena et al. 2020).

The quantitative analysis of medical imaging includes the field of Radiomics.

The latter allows, after the segmentation of regions of interest (ROIs), the

extraction of features that take into account gray-scale intensity level of the

image, spatial gray-level distribution information, geometry and shape of the

ROIs. Radiomic features can be used as covariates for ML algorithms in order

to identify patterns (Han et al. 2020), to regress biomarkers values (Lee et al.

2017, Parmar et al. 2015), to solve classification problems (Conti et al. 2021

,Rastegar et al. 2020) and to define the best treatment (Arimura et al. 2019).

For further application see Parekh and Jacobs 2019 and Lambin et al. 2017 .

Recently, due to the necessity of minimizing the pre-processing, speeding-

up the segmentation steps and solving classification problems in addition to

identification of specific patterns with high resolution, DL has become largely

used in medicine (Santos et al. 2019). Several DL applications in medicine can

be found in the reviews Bakator and Radosav 2018 and Akay and Hess 2019.

In the described framework, it falls the present thesis. It addresses the

possibility of using mathematical methods, simulation techniques, repurposed

physical theories and artificial intelligence algorithms to fulfill clinical needs in

neuroradiology and neurology with the aim to predict disease patterns and its

evolution over time as well as to support clinical decision-making process. The

thesis is divided in three parts.

Part 1 is about answering the clinical necessity of identifying and under-
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standing patterns and time evolution of neuromuscular diseases, with special

focus on Facioscapulohumeral dystrophy (FSHD), in order to guide and sup-

port clinical decision procedure. Taking advantage of MRI imaging, a combi-

nation of Radiomics and ML algorithms is developed with the aim to predict

Fat Fraction (FF) and water T2 (wT2) biomarkers that are suitable to quantify

muscle fat replacement and muscle inflammation (Güttsches et al. 2021). The

implemented workflow involves MRI images acquired at thigh and calf muscles

level. The goal of the works reported in the Part 1 is to deliver a radiomic and

ML workflow that can predict with good accuracy quantitative MRI parame-

ters relying on conventional, time-saving MRI sequences routinely available in

most neuromuscular centers. To achieve the goal we need to face the muscles’

segmentation process. To speed-up this step we automatized it by introducing

a convolutional neural network (CNN) with a contracting-expanding topology

in order to achieve deep feature extraction (contracting part) from increasingly

compressed levels of resolution and different spatial aggregation levels (receptive

fields) and resolution decompression and consequently segmentation (expanding

part). The output is designed to return the segmentation map of thigh and calf

muscles.

Part 2 describes the development of a kinetic model of tumor growth,

with a special focus on glioblastomas. In Paper IV we describe tumor cells’

growth within a statistical approach based on the physical kinetic theory,

or rather in terms of evolution of a distribution function. The proposed

mathematical description is a kind of agent based model and it relies on

Boltzmann-type model in which statistical behavior of the system, i.e. tumor,

is mainly related to the interaction between agents, i.e. cells, and surrounding

environments at microscopic level without taking into account agents internal

complex structure. Elementary transitions occurring at the cellular level,

incorporating environmental clues and random fluctuations, generate a temporal

variation of such distribution coherently, in suitable limits, with the well-known

ODE-based growth models (Benzekry et al. 2014). In order to give a more

realistic description of tumor growth, we also introduce uncertainties related to
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a limited set of observations, tumor segmentation process and different subject

body response, even if this increases the dimensionality of the resulting kinetic

problem and it influences the equilibrium state, i.e, the solution of the associated

Fokker-Planck-type equation. Concerning a specific choice of parameters,

the tail of the equilibrium distributions (generalized Gamma distribution,

lognormal-type distribution or Amoroso-type distribution) is connected to the

probability of having tumors of size bigger than a given alerting size. Suitable

selective-type controls acting at the level of cellular dynamics are used to

investigate the action of therapeutic protocols trying to reduce the volume size of

tumors. The problem of finding the optimal control is solved at the microscopic

level and studied at the mesoscopic scale through classical methods of kinetic

theory and it gives as results an equilibrium distribution with modified tails.

Proper numerical methods, based on stochastic Galerkin formulation of the

derived kinetic equations, are introduced for uncertainty quantification of the

resulting kinetic model. Our proposed approach is multiscale since it connects

actions on individual cellular-based dynamics to observable patterns in a cohort

of patients.

Part 3 is related to a still on-going project that attempts to combine quantum

field theory and neural networks to describe and simulate the behavior of a brain

portion. In this part, we try to describe a brain portion through a scalar bosonic

self-interacting field theory. Because of the connection between quantum field

theory and neural network underlyed by Halverson, Maiti, and Stoner 2021, we

construct a finite neural network to simulate the brain portion by defining an ad-

hoc activation function inspired to the biological neuron model response function

in the case in which a brain neuron is modeled as a Resistance-Capacity (RC)

circuit. We come out with conclusion that, under suitable conditions, a brain

portion can be well approximated through a Gaussian process on the function

space, or rather through an non-interagent field theory, N(µ, Ξ−1) where the

covariance is the Feynman propagator for the theory. The introduced quantum

field framework is also applicable to the case of Non-Gaussian Process behavior,

or rather to an interacting quantum field theory in a Wilsonian Effective Field
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theory approach.

Summary of papers published or in preparation that are

reported in the thesis

Paper I proposes a Radiomic workflow combined with Machine Learning

algorithms applied to MR images to predict Fat Fraction and water T2

biomarkers in patients affected by Facioscapulohumeral Dystrophy .

Paper II describes a pilot study to predict quantitative qMRI parameters, Fat

Fraction and water T2, from conventional STIR imaging.

Paper III proposes a deep learning approach based on a Convolutional Neural

Network to segment the thigh’s and leg’s muscles on MRI images.

Paper IV proposes a kinetic model of tumor growth taking into account the

effects of clinical uncertainties characterising the tumour progression.

Paper V introduces a first attempt to combine quantum field theory and

neural networks to describe a brain portion.
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Part 1

Magnetic Resonance Imaging,

Artificial Intelligence and

Radiomics for the

Quantification of

neuromuscular biomarkers: a

special focus on

Facioscapulohumeral

dystrophy





Introduction

Neuromuscular diseases are a broadly defined group of disorders characterized by

dysfunction and injury of peripheral nerves or muscle. In muscular dystrophies,

skeletal muscle undergoes several pathophysiological processes encompassing

necrosis, inflammation, fibrosis, and finally replacement by adipose tissue as

reported in X. Deligianni et al. 2022. Among genetic muscular disorders,

facioscapulohumeral muscular dystrophy (FSHD) is the second most common

disease in adults defined by a stepwise, asymmetric and generally slow wasting

and weakness progression of the facioscapulohumeral, abdominal, paraspinal

and lower leg muscles (Andersen et al. 2017; Dahlqvist et al. 2015; Tawil et al.

2015).

Identifying an accurate diagnosis for patients with genetic and inflammatory

muscular disorders is not easy due to the clinical and genetic heterogeneity

of myopathies. Regarding neuromuscular dystrophies, a very powerful and

non-invasive tool for the diagnosis and the assessment of disease progression

is the muscle Magnetic Resonance Imaging (MRI), which allows the spatial

localization of the Nuclear Magnetic Resonance signal and consequently the

construction of an image. In most of the medical MRI applications, hydrogens

(H1) are the nuclei being probed because of their natural abundance in human

body.

To understand the MR image formation and how it brings information, we

need to briefly refer to the physics behind it. H1 nuclei, as quantum mechanics

entities, have a nuclear spin or rather the intrinsic total angular moment of the

nucleus, obtained by the geometric composition of the total magnetic moments

of the nucleons inside it. When the external magnetic field is zero, the nuclear

magnetic moment can be oriented along one of the possible allowed directions.
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Figure 0.1: ⃗Bext = 0 (left) the spins are oriented in random way and M⃗ is zero.
⃗Bext ̸= 0 (right) few spins are aligned along the eternal field direction: the M⃗

in this case is different from zero and it is oriented along the axis of the external
magnetic field.

When an external magnetic field is applied, nuclear spins do a precession along

the field direction, which corresponds to the minimum level of the system

potential energy. Since it is impossible to follow each single spin behaviour

of the sample under examination, the Magnetization vector M⃗ is introduced

in order to take into account for the mean of the magnetic moments per unit

volume. In absence of the external magnetic field the total Magnetization is

also zero, since each magnetic moment tends to precesses in a random way due

to thermal agitation. When an external magnetic field is applied to the system,

few spins tend to align themselves with the external magnetic field direction:

M⃗ is different from zero in this case and it has the same direction of the applied

magnetic fields (see Figure 0.1). To detect the magnetic static and dynamical

properties of the sample under examination, we need to perturb the system that

means to push M⃗ direction away from the direction of the external magnetic

field, i.e. from its longitudinal direction.

As M⃗ precesses around the external magnetic field, it produces a change

of magnetic field flux. According to Faraday law the time-varying magnetic

flux induces in a receiving coil a voltage or an electromotive force (efm), i.e.

an energy transferred per unit of electric charge to the coil. The derived

electrical current is the signal exploited in MRI. The detected signal oscillate

at the Larmor frequency (that is the frequency with which an H1 precesses in

a magnetic field and it depends linearly on the external static magnetic field
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Figure 0.2: Free Induction Decay (FID). The detected signal is reported on
the y-axis and the time t on the x-axis.The signal oscillates with the Larmor
frequency and it decays exponentially with a time constant T2∗.

(Brown et al. 2014)) and it decays exponentially with a time constant T2∗,

producing the so-called free induction decay (FID) signal (see Figure 0.2).

To shift away the magnetization vector from the external magnetic field

direction, it is necessary to apply a radiofrequency (rf) magnetic field for a

short time, i.e. an rf pulse. The rf frequency is tuned to the Larmor frequency

so that the resonance conditions are satisfied.

The resonance phenomenon allows the system to absorb energy and to undergo

transition between the allowed nuclear states1. The release of this absorbed

energy causes the so called M⃗ relaxation. The temporal evolution of M⃗ is

described by the solutions of the Block equations (see Brown et al. 2014), which

incorporate both longitudinal and transversal relaxation effects characterized

by T1 and T2 time constants respectively. The longitudinal relaxation is

connected to the ’spin-lattice’ interactions, or rather to the energy transfer to

1For material with unpaired electrons, such as metal complexes and organic radicals,
Electron paramagnetic resonance (EPR) can be used. EPR relyes on the same basic concept
of nuclear magnetic resonance, but the spins excited are those of the elctrons instead of atomic
nuclei
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the surrounding macromolecules resulting from individual spin states flipping in

the magnetic field, due to perturbations from the surrounding environment, and

accompanied by the emission of a photon of energy proportional to the Larmor

frequency (Ansorge and Graves 2016). Transversal relaxation is connected to

’spin-spin’ interactions which causes a loss of coherence between different spins

due to variations in the local spin precessional frequencies (Brown et al. 2014).

In general, the external magnetic field acting on the sample volume has some

inhomogeneities that translate in additional spin dephasing in the transverse

plane. This means that the signal decay rate is characterized by T2∗, with

T2∗ < T2.

To create an image, it is necessary to correlate a series of signal measurements

with the spatial locations of the different sources. If the static external field is

uniform, the total signal incorporates information about all spins regardless

of their spatial location. To introduce a spatial information it is necessary to

spatially change the magnetic field across the sample. In this way, the resulting

signal has spatially varying frequency components along the direction of the field

gradient. Therefore, the spectral components represent spatial information and

so a mapping of the signal from the signal space to the image position space

could be performed with a Fourier transform.

MR techniques allows the generation of images with different levels of

contrast taking advantage of the large set of variables that can be adjusted.

To mention a few, proton or spin density, relaxation time constants, proton

motion, chemical shift, Larmor frequencies,contrast enhancing agents, diffusion

(Brown et al. 2014).

The MRI signal s(t) from a material or a tissue is s(t) ∼ ρ0(1−e−TR/T1)e−TE/T ∗
2 ,

where ρ0 is proton or spin density, T1 and T2* the relaxation times, TE
2 the

echo time and TR the repetition time 3. Therefore, the most basic mechanisms

that generate contrast are related to tissue differences in spin density and T1

2TE refers to the time between the application of the radiofrequency excitation pulse and
the peak of the signal induced in the coil.

3TR is the time from the application of an excitation pulse to the application of the next
pulse
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Figure 0.3: T1-weighted image related to Facioscapulohumeral muscular
dystrophy patient and acquired with a T1-turbo Spin Echo at Neuroradiology
Department of IRCCS Fondazione Mondino.

and T2 time constants (Brown et al. 2014), once the appropriated combination

for TE , TR is considered. In particular, T1 and T2 constants are sensitive to

local environments of proton spins so the T1-weighted and T2-weighted MRI

can differentiate and characterize the human tissue types (Ansorge and Graves

2016). T1-weighted contrast is a powerful method for delineation of different

tissues, since T1 values of normal soft tissues are different from one another.

T2-weighted images, instead, play an important role when local magnetic field

susceptibility differences between tissues are present. Besides, T2 is found to be

a sensitive indicator of disease (Brown et al. 2014).

Weighted-T1 and -T2 images in neuromuscular disorders promote macro-

scopic evaluation of morphological changes of the muscles, including fat re-

placement and edema. Therefore, muscle MRI protocols routinely include T1-

weighted images (see Figuren 0.3) and sequences sensitive to tissue water, as

short-tau inversion recovery (STIR) (see Figure 0.4) or T2-weighted images,

with or without suppression of the signal of fat tissue (Paoletti et al. 2019)

More in detail, axial T1-Turbo Spin Echo (TSE) weighted sequence shows

the severity and the distribution of the tissue damage highlighting the selective
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Figure 0.4: T2-weighted image related to a Facioscapulohumeral muscular dys-
trophy patient and acquired with STIR sequence at Neuroradiology Department
of IRCCS Fondazione Mondino.

pattern of the muscle involvement in different hereditary and inflammatory

muscle disorders, whereas STIR sequence is able to point out fat replacement

and muscle edema (or edema -like) patterns.

Improvements in MRI techniques combined with post-processing software

solutions pave the way for quantitative assessment of the pathological changes

in neuromuscular disorders. The identification of quantitative features, i.e.,

biomarkers, that bring information regarding muscle atrophy and the extent

of active and chronic degenerative changes is the goal of quantitative MRI

(qMRI). In neuromuscular disorders, expression of muscle degeneration and of

in vivo indicator of ongoing disease activity is given through the quantitative

parameters Fat Fraction (FF), i.e., the percentage of fat replacement of the

muscle, and the muscle water T2 relaxation time (wT2) respectively. FF is

usually obtained from Dixon imaging whereas wT2 by a multi-echo spin-echo

relaxometry, after removing fat signal contribution (Carlier et al. 2016). These

neuromuscular quantitative biomarkers have the largest acceptance among

researches because they show promising correlation with histopathological

changes (Güttsches et al. 2021). Reliable quantitative measurements from MRI
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imply vendor-provided custom-tailored qMRI sequences and complex, high-cost

technical implementations on the MRI scanner. For this reason qMRI methods

are unavailable in many clinical centers and the combination of conventional

MRI and semiquantitative scales is still used in routinely clinical practice.

A possible solution to that has arisen in the last years with Radiomics.

The latter quantifies textural information by mathematical extraction of pixels

intensity and spatial interrelationships distributions, highlighting the main

patterns of a disease. The combination of Radiomics and Artificial Intelligence

(AI) seems to be a promising tool to make diagnosis and to support clinical

decision-making process in different medical fields, especially in the field of

quantitative imaging as reported in M. Monforte et al. 2019; Timmeren et al.

2020 and Felisaz et al. 2021. To address the need of easily obtaining qMRI

parameters, in the following studies a specific workflow combining radiomics

and AI is introduced with the aim to take advantage of the conventional MR

images avalaible in most neuromuscular centers. In particular, in paper I we

implement machine-learning regressors to predict the thigh mean value of wT2

and FF in patient affected by FSHD, starting from texture analysis of the 8-th

echo of Multi-echo Spin-echo (MESE) sequence considered as conventional, non-

quantitative images. In the paper II we take advantage of the time-saving STIR

imaging method to find a workflow that can provide the best predictions for calf-

muscles FF and wT2, comparing ML-based radiomics approach, also used in the

previous work, with the implementation of two new easy-to-compute radiomics

indexes that quantify fat infiltration grade and the muscle edema, respectively,

then used as covariates in ML algorithms.

A crucial point in extracting quantitative information from MRI in the

context of ML and radiomics based workflows is the segmentation process. It

consists in drawing precision regions of interest (ROIs) on MR images. Up to

now, manual drawing of ROIs has been considered the gold standard. However,

it is a time-consuming process and it requires dedicated and trained human

operators (Barnouin et al. 2014; Breiman et al. 2017). Particularly promising in

facilitating and accelerating the segmentation process is the implementation
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of automatic tools based on machine learning and more recently on deep

learning (Ogier et al. 2021). As a further step towards the automatization

of muscle ROI drawing we implemented a convolutional neural network with a

contracting-expanding topology, as reported in paper III, to obtain deep features

extraction from increasingly compressed levels of resolution and different spatial

aggregation levels on the initial MR images (contracting part) and resolution

decompression and segmentation (expanding part). The purpose is to create an

automatic tool for single-muscle segmentation maps at thigh and calf level.

The works presented in this chapter support the usefulness of combining

radiomics, artificial intelligence and MRI to introduce new and powerful

workflows that could help and drive clinical decision process, especially in

the neuromuscular fields. Particularly, the introduced workflows allow disease

diagnosis and progression evaluation using conventional sequences, with the

advantage of getting quantitative MRI parameters in an enlarged cohort of

clinical center in addition to the possibility of eventually reduce the MRI

acquisition scan time.
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Purpose: Quantitative MRI (qMRI) plays a crucial role for assessing dis-

ease progression and treatment response in neuromuscular disorders, but

the required MRI sequences are not routinely available in every center.

The aim of this study was to predict qMRI values of water T2 (wT2)

and fat fraction (FF) from conventional MRI, using texture analysis and

machine learning.

Method: Fourteen patients affected by Facioscapulohumeral muscular

dystrophy were imaged at both thighs using conventional and quantita-

tive MR sequences. Muscle FF and wT2 were calculated for each muscle

of the thighs. Forty-seven texture features were extracted for each muscle

on the images obtained with conventional MRI. Multiple machine learning

regressors were trained to predict qMRI values from the texture analysis

dataset.

Results: Eight machine learning methods (linear, ridge and lasso re-

gression, tree, random forest (RF), generalized additive model (GAM),

k-nearest-neighbor (kNN) and support vector machine (SVM) provided

mean absolute errors ranging from 0.110 to 0.133 for FF and 0.068 to

0.115 for wT2. The most accurate methods were RF, SVM and kNN to

predict FF, and tree, RF and kNN to predict wT2.

Conclusion: This study demonstrates that it is possible to estimate with

good accuracy qMRI parameters starting from texture analysis of con-

ventional MRI.

Keywords: FSHD; MRI; Machine learning; Muscle; Quantitative; Texture
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I.1 Introduction

Quantitative Magnetic Resonance Imaging (qMRI) is a useful non-invasive

diagnostic tool in the field of neuromuscular diseases, providing clinically

relevant parameters, such as Fat Fraction (FF) and muscle water T2 (wT2)

(Paoletti et al. 2019; Strijkers et al. 2019). These parameters provide sensitive

measures of muscle damage and are aimed toward having a prognostic role.

In fact, they could be used to track disease progression or response to

treatments (Mul et al. 2017). However, implementing qMRI protocols is

challenging in terms of technical requirements and financial resources, thus

they are not accessible in every neuromuscular center. Instead, conventional

(non-quantitative) MRI is much more widespread. Conventional sequences in

diagnostic protocols for muscle MRI usually include T1-weighted images and

water sensitive sequences, such as STIR or T2-weighted with or without fat

suppression (Chardon et al. 2019). These conventional sequences are devoted

to the macroscopic evaluation of fat replacement and muscle edema. Semi-

quantitative rating scales are used clinically based on visual inspection, the

most commonly used being the Fischer and Mercuri scales (Guggenberger et al.

2013; Mercuri et al. 2002)

Fascioscapulohumeral muscular dystrophy (FSHD) is one of the most

common muscular dystrophies and is characterized by a progressive asymmetric

loss of strength and atrophy of skeletal muscles (Emery 1991; Wattjes, Kley,

and Fischer 2010). Weakness usually affects first the facial and shoulder girdle

muscles and then abdominal, upper and lower limbs. Conventional MRI is

used for distinguishing FSHD from other myopathies and measuring disease

severity with the common grading scales (Tasca et al. 2016), as well as for semi-

quantitatively assessing disease activity (Monforte et al. 2019) . QMRI instead

can potentially aid in the follow-up of patients with FSHD (Janssen et al. 2016).

Texture analysis can extract quantitative features from qualitative images.

These textural features are descriptors of the pixel intensity variation and

distribution within an image and are related to human discriminable visual
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patterns, such as contrast and granularity (Haralick, Dinstein, and Shanmugam

1973).

They are commonly processed with machine learning algorithms to predict

clinically useful outcomes after training from a dataset. Basically, they can

fall within two broad categories: classifiers, aimed to predict discrete outcomes,

for instance benign versus malignant or a particular grade of pathology, and

regressors, aimed to predict continuous variables such as survival time or a

quantitative biomarker.

The aim of this paper was to use machine-learning regressors to predict wT2

and FF starting from texture analysis of non-quantitative MRI sequences. We

used a dataset of MRI scans from patients affected by FSHD with different

degrees of intramuscular fatty replacement and edema. A cross validation

framework was set to test and compare multiple parametric and nonparametric

machine learning models, including linear regression, ridge regression, lasso

regression, regression tree, random forest (RF), generalized additive model

(GAM), support vector machine (SVM) and k-nearest neighbor (kNN).

I.2 Methods

I.2.1 Study design and participants

The study was approved by the local ethics committee and all the participants

provided written informed consent. Fourteen patients affected by FSHD (11

men, 3 women, mean age 45.6 years, range 32–60) were recruited in a longi-

tudinal study and imaged at the thigh level every six months. Seven patients

were imaged 3 times, four patients were imaged twice and three were imaged

once, for a total of 32 examinations. Patients had different grades of muscular

involvement as per the clinical severity scale (CSS median 3.5, 95 % CI for the

median 2.95–4.00) and the 6 min walking test at the first time point (6MWT

mean 410 min, range 65 57, SD 146).
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I.2.2 MR protocols

All examinations were performed on a 3T scanner (Skyra, Siemens AG Er-

langen, Germany) using integrated spine and body surface coils. Acquisition

volumes were centered on the thigh muscles at a standardized position (the last

slice of the box was located at 10 cm proximally from the upper base of the

patella). The protocol included a 3D 6-point multi-echo gradient echo sequence

with shifted echo times (MEGE, matrix size = 432 × 396; 52 slices, TR = 35

ms; TE = 1.7–9.2 ms; resolution = 1.0 × 1.0 × 5mm3, total scan time =6 min)

and a multiecho spin echo sequence (MESE TE = 10.9 ms, TR = 4100.0 ms,

17 echo times; resolution = 1.2 × 1.2 × 10.0 mm3; gap 30 mm, 5 slices). The

Fatty Riot algorithm was used offline for the calculation of fat/water fraction

maps from the MEGE sequence (Welch et al. 2013). For the MESE sequence,

extended phase graph signal simulation including slice profile was implemented

offline in Python (Python Software Foundation. Python Language Reference,

version 3.8) (Marty et al. 2016; Weigel 2015) .

I.2.3 Image processing and texture analysis

One operator drew regions of interest (ROIs) for each muscle of the thigh using

the images of the first echo obtained from the MESE sequence. 12 muscle ROIs

per side were drawn on each slice, for a total of 12 ROIs per examination (See

Figure I.1). The ROIs were co-registered to the MEGE images with creation

of new corresponding MEGE ROIs, and then manually adjusted by the same

operator. FF and wT2 mean values were extracted from each ROI from the

MESE and MEGE sequences, using the above-described methods. For instance

the observation “Sartorius” included respectively one averaged value of FF and

wT2. The images obtained by the 8th echo of the MESE sequence (T2 weighted

images with TE =88 ms) were extracted and considered as the conventional

(non-quantitative) images of the study. We used the software LifeX (Nioche

et al. 2018) to compute the texture analysis on the T2 weighted images, using
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the same ROIs previously drawn on the MESE images. Voxel values were

normalized and then quantized to 64 Gy levels. All possible features provided

by the software were extracted, including first order features statistics based

on histogram and shape, and second orders statistics including features derived

from the Gray Level Zone Length Matrix (GLZLM), Gray Level Run Length

Matrix (GLRLM), Neighborhood Gray-Level Different Matrix (NGLDM) and

Gray Level Co-occurrence Matrix (GLCM), for a total of 47 features. Similarly

to the process for FF and wT2, ROIs from all 5 slices and both side of the

same muscle were merged in order to obtain 12 observations, each made of

47 texture features, per examination. Then texture features, wT2 and FF of

each observation were integrated in a unique database. FF values were already

normalized whereas wT2 values were scaled ranging from 0 to 1 in order to

apply the algorithms described in the following section.
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Figure I.1: Illustration of the ROI drawing process. A typical axial T2 weighted
image (TE=88 ms) extracted from the MESE sequence is shown (a). One
operator manually drew ROIs of each muscle of the thigh (b). 12 muscle ROIs
per side per each of the 5 central slices acquired were drawn, for a total of 120
ROIs. For the analysis, ROIs of the same muscle from both sides and from of
all slices were merged for a total of 12 observations (each shown with a different
color) per examination (b,c).

I.3 Machine Learning and statistical assessment

We tested a set of parametric models including linear (T. Hastie, Tibshirani, and

Friedman 2009), ridge (Hoerl and Kennard 1970), lasso regression (Tibshirani

1996) and GAMs (T.J. Hastie 2017) and nonparametric models including kNN

(Cover and Hart 1967), SVM (Drucker et al. 1997), tree (Breiman et al.

2017) and RF (Breinman 2001) (Python). All observations were considered

independent to maximize the number of samples for training the models. To

assess the potential effect of correlation between observations from the same

patients, we also implemented a mixed effect model where the different subjects

were considered as random effects.
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Performances of the models were estimated with the indicators mean square

error (MSE) and mean absolute error (MAE). The MSE gives information on

the mean quadratic discrepancy between the target values yi and the predicted

values ŷi:

MSE =
∑N

i (yi − ŷi)2

N
(I.1)

The MAE gives information on the mean of the absolute values of discrepancy

between the target values yi and the predicted values ŷi:

MAE =
∑N

i |yi − ŷi|
N

(I.2)

To achieve a more realistic assessment of the performance we used cross-

validation, a resampling approach in which each model is fitted multiple times

on different subsets of the training data. In more detail, for a preliminary

estimation of the model hyperparameters, a grid search was used and the entire

data set was divided in training and test sets. The training set included the

randomly selected 80 % of the data set and the test set the remaining 20 %.

Then, for model assessment, the k-folds cross-validation with k = 5 was used.

This approach involves randomly dividing the entire data set into 5 folds of

approximately equal size, using one fold as test set and the remaining four as

training sets. The performance indicators are calculated on the test set five

times, each time changing the test set fold. We reported means and standard

deviation of the performance indicators for each model.

I.4 Results

The final dataset consisted of 384 observations, each with 2 target variables and

47 texture features (covariates) related to 32 MR examinations from 14 patients.

The target variables FF values ranged from 0.027 to 0.899 (2.7 to 89.9 %) and

wT2 from 26.40 to 78.14 ms.

Three of the original 47 covariates (HISTOEntropylog10, SHAPEVolumevx,

GLCMEntropylog10) that had strong correlation with the others, established
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on the basis of p-value, were not included in the analysis to avoid collinearity

issues.

Table I.1 reports means of MSE and MAE related to FF prediction for each

model implemented.

As a result, the prediction performances were good for all models in terms of

MSE and MAE and the values were stable (low values of standard deviation).

RF was the model with minimum predictive errors (mean value MSE = 0.023,

MAE =0.105), closely followed by KNN (MSE = 0.024) and SVM (MSE =

0.026). We can thus conclude that in the best case (RF) the algorithm predicted

the expected FF value with a mean error of approximately +/-11 percentage

points (pp), and in the worst case (Trees) of +/-13pp.

Table I.2 reports means of MSE and MAE related to water T2 for each

model implemented. The prediction performances were good for all models in

terms of average MSE and MAE and in terms of stability, but in this case the

kNN gave an outperformance result (MSE = 0.010, MAE 0.068,) followed by

RF (MSE = 0.022) and Ridge and Trees (both with MSE = 0.023). Thus the

algorithms could predict wT2 with an error ranging from +/- 7pp to +/- 12pp,

equivalent to a minimum of 3.50 ms (kNN) to a maximum of 5.94 ms (Linear

regression).

The performance of the mixed effect model was similar to the other models

(for FF MSE = 0.025 and for wT2 MSE = 0.022).

Model MSE MAE
Linear regression 0.029 (0.008) 0.122 (0.015)
Ridge regression 0.028 (0.008) 0.127 (0.018)
Lasso regression 0.030 (0.010) 0.133 (0.021)

GAM 0.028 (0.007) 0.122 (0.013)
Regression Tree 0.033 (0.008) 0.125 (0.013)
Random Forest 0.023 (0.008) 0.105 (0.018)

kNN 0.024 (0.008) 0.110 (0.020)
SVM 0.026 (0.008) 0.114 (0.016)

Mixed effect model 0.025 (0.005) 0.118 (0.009).
Table I.1: Mean squared errors and absolute mean errors for the prediction of
Fat Fraction (standard deviation (SD) in round brackets)
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Model MSE MAE MAE in T2 scale (ms)
Linear regression 0.025 (0.008) 0.115 (0.016) 5.943 (0.831)
Ridge regression 0.023 (0.009) 0.105 (0.017) 5.450 (0.882)
Lasso regression 0.024 (0.009) 0.108 (0.015) 5.580 (0.755)

GAM 0.025 (0.008) 0.113 (0.018) 5.865 (0.909)
Regression Tree 0.023 (0.007) 0.098 (0.015) 5.048 (0.0762)
Random Forest 0.022 (0.007) 0.098 (0.013) 5.089 (0.692)

kNN 0.010 (0.003) 0.068 (0.008) 3.501 (0.438)
SVM 0.026 (0.009) 0.099 (0.016) 5.134 (0.810)

Mixed effect model 0.026 (0.009) 0.109 (0.017) 5.664 (0.810)

Table I.2: Mean squared errors and absolute mean errors for the prediction
of Water T2 (standard deviation (SD) in round brackets). MAE in T2 scale
column reports the MAE rescaled to physical units, milliseconds(ms).

I.5 Discussion

In this study, a set of machine learning models are proposed to predict wT2 and

FF of thigh muscles using texture analysis of conventional MRI, starting from a

dataset of MR examinations from patients affected with FSHD. To the authors’

knowledge, this is the first attempt to derive qMRI parameters from texture

analysis and our promising results should be considered a proof of principle for

further improvements in the future.

There is a growing need to have muscle qMRI parameters accessible and

easily obtainable in most neuromuscular centers for assessing disease progression

or response to new therapies in rare muscle disorders (Fatehi et al. 2016). Studies

showed that qMRI parameters such as wT2 and FF are strongly correlated to

the clinical outcome of patients affected with FSHD (Mul et al. 2017). There

is evidence that wT2 and FF change over time as disease progresses (Andersen

et al. 2017; Ferguson et al. 2018) and that FF can be responsive to the effects

of treatments (Janssen et al. 2016) . However, having accurate qMRI results

is technically challenging and even though commercial and open source qMRI

packages are available, further modifications or tuning are often needed to avoid

drawbacks. For instance, post-processing correction of stimulated echo artifacts

is mandatory for robust measures of wT2 maps obtained with MESE sequences
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(Marty et al. 2016). Likewise, 6-point MEGE sequences FF maps are superior to

the commonly used 2- or 3-point Dixon techniques used for FF maps. However,

6-point MEGE sequences are not consistently available across different scanning

platforms as of now.

Texture analysis and machine learning algorithms can predict clinically

relevant outcomes starting from non-quantitative imaging. Most studies used

texture analysis to classify discrete outcomes, for instance atrophic versus

normal muscles ex vivo (Mahmoud-Ghoneim et al. 2006) and in vivo (Herlidou et

al. 1999), or to distinguish different types of myopathies (Burlina et al. 2017). In

our study we used machine learning models, more specifically regression models,

to predict continuous outcomes such as muscle qMRI parameters FF and wT2.

Our results are encouraging. We observed a minimum MAE of 11pp in FF,

which is enough to automatically score muscles with a clinical 5-point scale

(Guggenberger et al. 2013; Mercuri et al. 2002) allowing also a more precise

grading of intermediate levels of FF. In fact, 5-point scales have extreme values

consisting in normal (0) or completely fatty substituted (4) muscles, and three

intermediate scores consisting in mild, moderate and severe fat substitution. For

wT2 the results were even better, with errors ranging from 3.50 ms to 5.94 ms.

Since we have no previous examples of such similar analysis in the literature,

we can speculate that the better performance for wT2 might reflect a more

homogeneous increase of signal overall the muscle, possibly related to textural

features sensitive to signal intensity. FF, instead, corresponds to a pattern

more related to the morphology, with well-defined strands of fat substituting

the muscles from the epimysium. The application of deep learning methods

would likely further increase the performance of FF prediction and will be the

target of future studies.

We kept almost all features in the analysis, removing only three that were

highly correlated with one another. To reduce a potential cause of over-fitting we

opted for implementing regularization instead of an initial features selection. In

fact, L1 regularization included in the lasso regression, favoring a sparse solution,

implicitly implements feature selections. Since there were no relevant differences
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in performances between regularized (ridge and lasso) and unregularized (linear)

models, we performed the other models (in particular non parametric) while

keeping all 44 features as described in the results section. Nonparametric models

worked better in both analyses, suggesting a complex and nonlinear relationship

between predictors and target variables.

This study has some limitations. The first is related to the relative

homogeneity of the training dataset. To expand the applicability of our results,

algorithms should be trained with a mixed and larger database encompassing

more patients with other muscular diseases, and including normal subjects.

Also, they should include examinations from lower field MRI scanners and

different vendors. Another limitation is the presence of multiple examinations

from the same patients at different time points and different muscles associated

to the same patient. However, the mixed effect model did not demonstrate clear

differences in performance with respect to the analyses where observations were

considered uncorrelated. We applied texture analysis to T2 weighted images

without fat-suppression, extracted from the MESE sequence, but T1 weighted

and STIR are usually preferred in diagnostic protocols. In this study, as a

proof of concept, we chose the sequence where both signals from wT2 and

fat were present in order to maximize the chances to prove the feasibility of

our method. However, future studies should investigate other sequences with

different parameters (TR, TE, slice thickness etc.) including STIR and T1w

sequences. We deliberately considered “observations” from the average of both

left and right. This was a technical limitation related to the necessity of having

a minimum amount of voxels for the texture analysis. In facts, some ROIs were

too small and not all muscles were represented in all slices. Higher resolution

images would have led to twice the number of observations, at least one per

muscle per side.

Future studies may be conducted using deep learning methods that would

remove the necessity of texture analysis. These methods, commonly used for

muscle segmentation, provide faster analysis of qMRI sequences (Weber et

al. 2019) and have been used for classifying different subtypes of muscular
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dystrophies (Cai et al. 2019). However, such techniques typically need much

larger datasets to be properly trained. One solution could be the use of data

augmentation techniques, which artificially increase the training dataset.

In conclusion, we demonstrated the feasibility of predicting the qMRI

parameters FF and wT2 using texture analysis and machine learning methods,

starting from conventional T2 weighted images. Our encouraging results may

extend the implementation of qMRI to all centers dealing with neuromuscular

diseases that use standard sequences. Training data is critical and future studies

with larger and mixed cohorts are warranted to improve the performance of these

methods.

I.6 Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online

version, at doi: https://doi.org/10.1016/j.ejrad.2020.1094.

Appendix B. Comparison of ML performance obtained

with k-folds cross validation and with

Leave-one-patient-out cross validation schemes

In Paper I, a k-fold cross validation has been implemented on all observations

by assuming independence among the observations from the same patient. By

implementing the leave-one-patient-out cross validation scheme, the biomarker

prediction accuracy of ML algorithms are reported in Table I.3 and I.4:
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Model MSE MAE
Linear regression 0,028 (0,066) 0,120 (0,117)
Ridge regression 0,028 (0,042) 0,125 (0,107)
Lasso regression 0,029 (0,044) 0,132 (0,107)

GAM 0,027 (0,060) 0,119 (0,115)
Regression Tree 0,028 (0,066) 0,116 (0,123)
Random Forest 0,023 (0,047) 0,104 (0,108)

kNN 0,025 (0,047) 0,112 (0,110)
SVM 0,025 (0,048) 0,112 (0,114)

Mixed effect model 0,024 (0,059) 0,114 (0,107)

Table I.3: Mean squared errors and absolute mean errors for the prediction of
FF (standard deviation (SD) in round brackets).

Model MSE MAE MAE in T2 scale (ms)
Linear regression 0,025 (0,048) 0,113 (0,112) 5,864 (5,818)
Ridge regression 0,023 (0,046) 0,106 (0,110) 5,471 (5,701)
Lasso regression 0,024 (0,048) 0,108 (0,111) 5,588 (5,717)

GAM 0,026 (0,048) 0,113 (0,114) 5,843 (5,874)
Regression Tree 0,030 (0,067) 0,109 (0,134) 5,635 (6,908)
Random Forest 0,022 (0,045) 0,099 (0,110) 5,112 (5,669)

kNN 0,009 (0,021) 0,066 (0,071) 3,401 (3,694)
SVM 0,027 (0,063) 0,101 (0,129) 5,244 (6,665)

Mixed effect model 0,022 (0,041) 0,108 (0,102) 5,611 (5,301)

Table I.4: Mean squared errors and absolute mean errors for the prediction of
wT2 (standard deviation (SD) in round brackets). The column "MAE in T2
scale" reports the MAE rescaled to physical units, milliseconds(ms).

The order of magnitude and the value of MAE and MSE associated with

the ML algorithms and resulting from leave-one-patient-out (LOO) is similar to

that obtained with the k-folds cross validation scheme with k=5 (k-folds). A

comparison between MAE (MSE) associated with LOO and k-folds scheme is

reported in Figure(I.2)(Figure(I.3)).

The standard deviation (SD) associated to ML algorithms and obtained

with the LOO validation scheme, however, is larger than that obtained with the

k-folds scheme implemented in Part 1 of Paper I. This may be traced back to the

fact that LOO scheme, even if it gives approximately unbiased estimation of the

test error, tends to have higher variance than k-folds cross validation as reported

in James et al. 2013. Therefore, in our case k-folds cross validation provides a

34



Figure I.2: Comparison of Fat Fraction MAE (top) and water T2 MAE (bottom)
obtained with LOO cross validation and k-folds cross validation. On the x-axis
are reported the implemented ML algorithms listed in TableI.3 and I.4.

good bias-variance trade-off. In addition, LOO cross validation scheme is more

computationally expensive with respect to k-folds cross validation, since LOO

corresponds to k=n (number of observations) cross validation scheme.
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Figure I.3: Comparison of Fat Fraction MSE (top) and water T2 MSE (bottom)
obtained with LOO cross validation and k-folds cross validation. On the x-axis
are reported the implemented ML algorithms listed in Table I.3 and I.4.
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Purpose: Quantitative Muscle MRI (qMRI) is a valuable and non-

invasive tool to assess disease involvement and progression in neuromus-

cular disorders being able to detect even subtle changes in muscle pathol-

ogy. qMRI sequences are, however, not commonly available in most of

the clinical centers. The aim of this study is to evaluate the feasibility of

using a conventional short-tau inversion recovery (STIR) sequence com-

bined with different radiomics and machine learning workflows to predict

fat fraction (FF) and water T2 (wT2) in skeletal muscle.

Methods: Twenty-five patients with facioscapulohumeral muscular dystro-

phy (FSHD) were scanned at calf level using conventional STIR sequence

and qMRI techniques. We applied and compared three different radiomics

workflows (WF1, WF2, WF3), combined with seven Machine Learning re-

gression algorithms (linear, ridge and lasso regression, tree, random forest,

k-nearest neighbor and support vector machine), on conventional STIR

images to predict FF and wT2 for six calf muscles.

Results: The combination of WF3 and K-nearest neighbor resulted to be

the best predictor model of qMRI parameters with a mean absolute error

about ±5pp for FF and ±1.8ms for wT2.

Conclusion: This pilot study demonstrated the possibility to predict qMRI

parameters in a cohort of FSHD subjects starting from conventional STIR

sequence.

Keywords:Radiomics, Machine Learning, Muscle MRI, STIR, FSHD

42



II.1 Introduction

Muscle Magnetic Resonance Imaging (mMRI) has been increasingly used over

the last years as a powerful diagnostic tool to evaluate disease involvement

and progression in several neuromuscular disorders (Carlier et al. 2016; Díaz-

Manera et al. 2015; Paoletti et al. 2019). mMRI is able to demonstrate

selective patterns of damage distribution both in terms of fat replacement

and muscular edema (Costa, Di Primio, and Schweitzer 2012; Hollingsworth

2014). Facioscapulohumeral muscular dystrophy (FSHD) is a genetic muscle

disorders that causes a slowly progressive and asymmetric weakness of the

facioscapulohumeral, abdominal, paraspinal, and lower leg muscles (Andersen

et al. 2017; J. Dahlqvist et al. 2014; Tawil, Kissel, et al. 2015; Tawil, Maarel,

and Tapscott 2014) both in pediatric and adult patients.

mMRI of FSHD has relied on acquisition of conventional sequences such as

T1-weighted (T1w) and short-tau inversion recovery (STIR) sequences that are

able to foster the qualitative detection of anatomical changes in muscles size

or shape, particularly related to fat replacement and muscle edema (or edema

–like) (E. Mercuri et al. 2002; Reimers et al. 1994), revealing a widespread

involvement both in upper girdle and lower limbs (Fatehi et al. 2016; Gerevini

et al. 2016).

The use of mMRI enabled to propose a peculiar model for FSHD disease evo-

lution, highlighting how patients undergo a muscle-selective involvement with

an early hyperintense signal on STIR sequence related to edema/inflammation,

followed by fatty replacement of single muscles, particularly evident on T1w

images (M. Monforte et al. 2019). As per other neuromuscular diseases, semi-

quantitative visual scales have been applied to support and improve the eval-

uation of morphological changes in muscles, e.g., Mercuri and Fischer scales

(Fischer et al. 2008; Eugenio Mercuri et al. 2007). The recent development and

implementation of quantitative MRI (qMRI) in the field of neuromuscular dis-

eases allowed to go beyond the conventional and semi-quantitative approaches,

being able to assess quantitative parameters (e.g. the percentage of fat replace-
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ment in the muscle, the so called fat fraction, FF), improving the non-invasive

applicability of muscle imaging in the diagnostic process and follow-up of muscle

disorders (Janssen et al. 2016). Neither the clinical outcomes nor the conven-

tional muscle MRI techniques, in fact, are deemed to be sensitive enough to

track muscle changes in slowly progressing diseases (Carlier et al. 2016).

MRI is considered a valuable tool to monitor even fine changes in neuro-

muscular disease evaluation and longitudinal progression over time because it

delivers quantitative information such as muscles FF and the muscle water T2

relaxation time related to intramuscular edema (wT2) (J. R. Dahlqvist et al.

2020). Dixon imaging and Multi-Echo T2 spin-echo sequences are the most

commonly used qMRI methods to compute FF and wT2 (Carlier et al. 2016).

Up-to-date qMRI methods require custom-tailored sequences provided by ven-

dors on the MRI scanner resulting in high-cost implementations, so qMRI is still

unavailable in many clinical centers. Recently, radiomics proved to be a power-

ful tool to extract quantitative information from MRI images, becoming a new

asset in the diagnostic field (Timmeren et al. 2020). It can identify the main

patterns of a disease through the mathematical extraction of pixel intensity and

spatial interrelationship distributions. Radiomics quantifies textural informa-

tion that, once dimensionally reduced (Abdi and Williams 2010; Glielmo et al.

2022), can be combined with machine learning (ML) algorithms to predict neu-

romuscular quantitative biomarkers FF and wT2 with a good predictive power

(Felisaz et al. 2021).

However, it is still unclear whether and how radiomics could be applied on

conventional STIR images and combined with ML algorithms to predict FF

and wT2. Moreover, it remains unexplored whether the predictive power of

ML algorithms on conventional STIR images could be improved through the

definition of new radiomic features as an alternative to the ones provided by

commercial radiomic feature extraction software (Nioche, Orlhac, and Buvat

2020).

STIR sequence is most likely available in all MRI centers and it has a very

competitive acquisition time compared to qMRI sequences. In this study we aim
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to investigate whether different radiomic and machine learning algorithms may

be applied to conventional STIR sequence to predict quantitative parameters in

skeletal muscle.

II.2 Materials and Methods

Twenty-five FSHD patients (10 females, age range: 19-60y) and six healthy

volunteers (HCs) (5 females, age range: 47-63y) were scanned on a 3T MRI

scanner (Magnetom Skyra, Siemens Healthcare, Erlangen, Germany) using

integrated spine and body surface coils. Acquisition volume was centered on the

calf with the last acquired slice located at 6cm proximally from the upper limit

of the patella. The MRI protocol included 3D 6-point multi-echo gradient-echo

(MEGE) [52 slices, slice thickness =5.0mm, distance factor =20 %, resolution

= 1x1x5mm3, TR/ TE =35ms/1.7-9.2 ms, scan time = 15 min], multi-echo spin

echo (MESE) [7 slices, TH=10mm, DF=300 %, resolution = 1.2x1.2x10 mm3,

TR/TE = 4100ms/10.9-185.3ms, 17 echoes, scan time = 5.13min] and 2D STIR

sequences [50 slices, TH=5.0mm, DF=20 %, resolution = 1x1x5 mm3, TR/TE

=4200/82ms ,TI=230 ms, scan time = 3.40min]. Pre-processing steps have

been performed on STIR images in order to ensure feature extraction on an

inter-patients harmonized grayscale values. In particular, all images were pre-

processed by 3DSlicer (Fedorov et al. 2012) N4 Bias Field Correction to correct

low frequency intensity non-uniformity in MRI images, and 3DSlicer Histogram

Matching to normalize grayscale MRI images.

From the first echo images of MEGE, one mid-calf slice of each FSHD patient

was chosen to be automatically segmented (Agosti et al. 2021) into six regions

of interest (ROIs) for each calf muscle, i.e., Soleus (S), Medial and Lateral

Gastrocnemius (MG, LG), Anterior Tibialis (TA), Extensor Digitorum Longus

(ELD), Peroneus Longus (Pe). The ROIs were co-registered to the mid-calf

MESE and STIR slice using FSL software (Woolrich et al. 2009) and then

manually corrected by a single trained operator with 3 years of experience.

For each subject, radiomic feature extraction and ML predictions were
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performed on the mid-calf slice of STIR image because it gives a representation

of all calf muscles with a cross sectional area (CSA) wide enough to ensure

the extraction of a robust pixel intensity distribution (Arpan et al. 2013). In

particular, feature extraction was performed averaging the left and right side

of each muscle. Finally, ground truth FF and wT2 values, which the ML

predictions have been compared to, were calculated by Fatty Riot algorithm

(Smith et al. 2013) and by EPG signal simulation (F. Santini et al. 2021; Weigel

2015) from mid-calf MEGE and MESE slice, respectively.

II.2.1 dataset, dimensionality reduction and machine learning

algorithms

We compare the performance in predicting calf muscle-wise FF and wT2 values

introducing three different workflows. In particular, inspired by Felisaz et al.

2021 work, the first workflow predicts FF and wT2 combining radiomics with

LIFEx software (Nioche, Orlhac, and Buvat 2020), principal component analysis

(PCA) (Jolliffe 2002) and ML regression models. The second method uses the

same feature extraction and ML models of the previous method but explores

the use of a new dimensionality reduction technique (Glielmo et al. 2022) as

an alternative to PCA to verify a possible improvement in the prediction of

neuromuscular quantitative parameters. The third method relies neither on

Lifex features nor on any dimensionality reduction technique. In particular,

two STIR-based features are defined as markers of muscle fat percentage and

muscle inflammation. These two features are used as the only predictors in ML

models to test whether there is an improvement in the predictive performance

of FF and wT2.

II.2.1.1 workflow 1

Feature extraction was performed using the IBSI standard-compliant LIFEx

software v.7.1.0 with the aim to extract shape related features, taking into

account for size and geometric properties, to first-order statistic features,
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concerning voxel intensity distributions and to second-order statistic features

highlighting voxel spatial relationship. In particular, a 2D extraction was

performed on each ROI corresponding to the six calf muscles (left and right

side were averaged). Therefore, we obtained six datasets associated to each

calf muscle. On each dataset principal component analysis (PCA) (Jolliffe

2002) dimensional reduction was performed in order to obtain lower-dimensional

data while preserving as much of the data variation as possible. Six principal

components, which in our case retain about 90% of the explained variance,

were identified and consequently each data point was projected onto them. For

each muscle dataset we implemented the parametric linear (Friedman et al.

2001), ridge (Hoerl and Kennard 1970) and Lasso (Tibshirani 1996) regression

and the non-parametric KNN (Cover and Hart 1967), SVM (Drucker et al.

1996), tree (Breiman et al. 2017), and RF (Breiman 2001) algorithms. A k-

fold cross validation resempling approach with k=5 was used on the associated

PCA dimesionally reduced dataset. This procedure guarantees a more realistic

performance evaluation of each machine learning model by fitting the same

statistical model several times on randomly obtained subsets of approximately

equal size.

II.2.1.2 workflow 2

The starting point was the 2D extraction of texture features from the pre-

processed STIR image as described in Sec. II.2.1.1. To reduce the dimesionality

of the dataset we have used the concept of information imbalance described

in Glielmo et al. 2022. More precisely, performing feature selection or

dimensionality reduction in our case is the same task of finding the most suitable

measure between data points, since explicit features are available. This is

because a particular choice of features naturally gives rise to a different distance

function computed through the Euclidean norm (Glielmo et al. 2022). Therefore,

we designed a feature selection algorithm by selecting the subset of features,

which minimizes the information imbalance with respect to the two targets, the
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values of the neuromuscular biomarkers FF and wT2, separately. The definition

of information imbalance ∆ used was its estimation on a dataset with N points

(Glielmo et al. 2022):

∆(A → B) ≈ 2(rB |rA = 1)/N (II.1)

where A is the space consisting in the radiomic feature space and B is the space

associated to FF or wT2 biomarkers, rB and rA represent the rank of each pair

of points in the space B and A respectively, calculated according to the distance

dB and dA, an euclidean norm defined in the relative space. Thus, information

imbalance quantify the relative information content of a distance measure with

respect to another using the concept of local neighborhoods.

A low value of ∆(A → B) means that the combination of a certain features

can predict a specific neuromuscular biomarker. Figure II.1 shows for Soleum

the minimum information imbalance ∆(A → B) achievable with a specific

subset of radiomic features for the two biomarkers wT2 and FF. For each

muscle we optimized the information imbalance respect to target FF and wT2

separately and we selected the subspace of radiomic features corresponding to

the associated minimum ∆. The obtained datasets for each muscle and each

biomarkers were used as input for machine learning algorithms. As in Sec.

II.2.1.1 parametric and non-parametric algorithms were implemented using the

resampling k-folds cross validation.

II.2.1.3 workflow 3

We defined two STIR-based radiomic features to be used as an alternative to the

conventional textural features of WF1 and WF2. We use these new features as

the only covariates in the implementation of ML algorithms to test whether the

prediction performance of ML models could be improved over those obtained

by the previously described workflows.

Firstly, we applied the same segmentation method of FSHD patients on

the pre-processed STIR images of each healthy control (HC). In particular,

six contiguos HCs slices of mid-calf region were segmented in order to ensure
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Figure II.1: Optimized information imbalance respect to the target biomarker
FF(top) and to the wT2 (bottom) showed as a function of subsets of radiomic
features space A.

a robust pixel statistics of the grayscale intensity distributions. Then, two

reference limits, Upper Limit (UL) and Lower Limit (LL), were defined as follow.

Inspired by J. R. Dahlqvist et al. 2020, UL was defined for each calf muscle

through the extraction of pixel-wise histogram of signal intensity distribution
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from all slices. The six muscle-wise UL were set at the mean µ of the associated

pixels-intensity distribution added to 2 standard deviation (S.D.) σ:

ULi = µi + 2σi (II.2)

with i indexing the six calf muscle.

Due to non-uniform fat suppression of STIR sequence, LL was calculated as

a representative value of fat signal intensity. Therefore, subcutaneous fat was

manually drawn in HC slices to ensure the extraction of this LL feature. In

particular, from subcutaneous fat ROI of all slices the pixel-wise histogram of

signal intensity distribution was extracted. Subsequently, the LL was set as the

mode of the distribution. In this way, we could calculate a more realistic fat

intensity representative value, limiting the contribution of blood vessels present

in the subcutaneous fat, which tend to shift the mean value of the associated

distribution towards greater value due to the hyperintesity STIR signal of the

blood.

Moreover, the obtained LL and muscle-wise UL coefficients were set as the

reference limits to quantify, for every FSHD patient, fat infiltration grade (FFG)

and muscle edema grade (MEG) by expressing the number of pixels below LL

and above UL as a percentage of the total pixels in each calf muscle.

FFG and MEG were then used as covariates in ML models to predict FF

and wT2, respectively. Particularly, muscle-wise FFG and MEG values were

separately collected into datasets according to calf muscles and neuromuscular

biomarker and used as input for machine learning algorithms. As described in

Sec. II.2.1.1, we implemented both parametric and non parametric models

using the k-folds cross validation as resampling approach. The workflow 3

brought the advantage of testing the prediction accuracy of neuromuscular

biomarkers with two features that were easy to compute by means of a stand-

alone Python routine, without go through commercial texture softwares and

any dimensionality reduction techniques.
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II.2.2 ML models performance evaluation

According to the aforementioned workflows, the performance estimation of the

models was performed calculating for each muscle and for each machine learning

algorithm the mean absolute error (MAE):

MAEj =
∑N

i=1 |yi − ȳi|
N

(II.3)

where N is the number of observations, yi is the target value, ȳi the predicted

value, index j is related to the different calf muscle and index i runs over the

observations associated to each muscle. Furthermore, Mean MAE ( ¯MAE) was

defined as:
¯MAEj =

∑5
k=1 MAEj

N
(II.4)

where the index k runs over the k=5 folds.

II.3 Results

In Tables II.1 , II.2, II.3 the FF ¯MAE was reported for the three used workflows

(WF1, WF2 and WF3) calculated for each muscle and from each ML algorithm.

Similarly, in Tables II.4, II.5, II.6 the ¯MAE was reported for wT2. Boxplots

in Fig. II.2 show the FF and wT2 ¯MAE distribution per each muscle and

workflow (WF 1, 2 and 3). The discrepancy between the ground truth values

and ML predicted values is expressed in percentage points (pp) for FF and in

milliseconds (ms) for wT2, respectively.

Mean absolute discrepancy (MAE)
Muscle LR ridge Lasso TREE RF KNN SVM

S 0.155 (0.052) 0.139 (0.047) 0.130 (0.042) 0.147 (0.037) 0.137 (0.035) 0.116 (0.064) 0.102 (0.058)
MG 0.284 (0.064) 0.283 (0.059) 0.295 (0.054) 0.276 (0.068) 0.278 (0.073) 0.279 (0.066) 0.276 (0.066)
LG 0.066 (0.074) 0.133 (0.032) 0.139 (0.036) 0.129 (0.027) 0.147 (0.030) 0.137 (0.032) 0.109 (0.034)
TA 0.225 (0.039) 0.220 (0.039) 0.247 (0.051) 0.239 (0.035) 0.205 (0.013) 0.204 (0.030) 0.210 (0.030)

ELD 0.225 (0.028) 0.191 (0.021) 0.235 (0.0334) 0.205 (0.018) 0.189 (0.028) 0.082 (0.010) 0.167 (0.028)
Pe 0.039 (0.02) 0.046 (0.01) 0.043 (0.011) 0.044 (0.017) 0.046 (0.0117) 0.028 (0.011) 0.039 (0.017)

Table II.1: workflow 1 (II.2.1.1): Evaluation of ML models predicting perfor-
mances: mean absolute discrepancy (MAE) between the muscle-wise Fat Frac-
tion gold standard values from Fatty Riot algorithm and the predicted value
through ML algorithms. S.D. is reported in round brackets.
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Mean absolute discrepancy (MAE)
Muscle LR ridge Lasso TREE RF KNN SVM

S 0.171 (0.090) 0.135 (0.050) 0.130 (0.042) 0.128 (0.053) 0.113 (0.063) 0.072 (0.035) 0.096 (0.054)
MG 0.414 (0.180) 0.271 (0.052) 0.296 (0.053) 0.348 (0.042) 0.295 (0.051) 0.098 (0.033) 0.277 (0.050)
LG 1.133 (1.967) 0.255 (0.253) 0.136 (0.038) 0.121 (0.031) 0.134 (0.058) 0.134 (0.032) 0.115 (0.043)
TA 0.225 (0.039) 0.220 (0.039) 0.247 (0.051) 0.239 (0.035) 0.204 (0.013) 0.204 (0.030) 0.210 (0.030)

ELD 0.225 (0.028) 0.191 (0.021) 0.237 (0.033) 0.205 (0.0178) 0.189 (0.028) 0.082 (0.010) 0.167 (0.028)
Pe 0.039 (0.020) 0.046 (0.009) 0.043 (0.011) 0.044 (0.017) 0.046 (0.012) 0.028 (0.011) 0.039 (0.017)

Table II.2: workflow 2 (II.2.1.2): Evaluation of ML models predicting perfor-
mances: mean absolute discrepancy (MAE) between the muscle-wise Fat Frac-
tion gold standard values from Fatty Riot algorithm and the predicted value
through ML algorithms. S.D. is reported in round brackets.

Mean absolute discrepancy (MAE)
Muscle LR ridge Lasso TREE RF KNN SVM

S 0.130 (0.028) 0.130 (0.031) 0.130 (0.036) 0.137(0.032) 0.148 (0.043) 0.066 (0.031) 0.105 (0.054)
MG 0.312 (0.041) 0.309 (0.034) 0.297 (0.021) 0.286 (0.064) 0.275 (0.047) 0.052 (0.012) 0.316 (0.054)
LG 0.135 (0.030) 0.135 (0.030) 0.134 (0.030) 0.149 (0.018) 0.171 (0.026) 0.061 (0.012) 0.110 (0.023)
TA 0.277 (0.043) 0.273 (0.037) 0.262 (0.035) 0.242 (0.068) 0.235 (0.078) 0.057 (0.012) 0.194 (0.062)

ELD 0.242 (0.040) 0.242 (0.039) 0.240 (0.035) 0.270 (0.051) 0.211 (0.059) 0.048 (0.019) 0.180 (0.051)
Pe 0.045 (0.019) 0.044 (0.019) 0.044 (0.020) 0.048 (0.021) 0.052 (0.020) 0.034 (0.019) 0.040 (0.024)

Table II.3: workflow 3 (II.2.1.3): Evaluation of ML models predicting perfor-
mances: mean absolute discrepancy (MAE) between the muscle-wise Fat Frac-
tion gold standard values from Fatty Riot algorithm and the predicted value
through ML algorithms. S.D. is reported in round brackets.

Mean absolute discrepancy (MAE)
Muscle LR ridge Lasso TREE RF KNN SVM

S 4.21 (0.518) 4.21 (0.550) 3.98 (0.647) 3.33 (1.23) 2.78 (0.680) 3.40 (0.874) 0.324 (0.809)
MG 9.22 (1.90) 9.05 (1.81) 8.80 (1.77) 9.73 (1.68) 9.35 (2.61) 8.72 (2.11) 8.25 (2.61)
LG 6.44 (2.49) 5.71 ( 1.29) 5.07 ( 0.387) 5.84 (1.46) 5.71 (1.59) 5.28 (0.730) 4.38 (1.68)
TA 9.28 (2.42) 9.22 (2.38) 9.09 (2.50) 9.34 (3.11) 10.1 (3.48) 9.42 ( 3.44) 9.22 (2.83)

ELD 9.03 ( 4.13) 8.83 (3.97) 8.41 (3.59) 7.33 (2.08) 7.83 (3.09) 7.64 (3.05) 6.64 (2.93)
Pe 1.96 (0.472) 1.92 (0.413) 1.83 (0.325) 1.83 ( 0.384) 1.68 (0.246) 1.81 (0.334) 1.76 (0.197)

Table II.4: workflow 1 (II.2.1.1): Evaluation of ML models predicting perfor-
mances: mean absolute discrepancy (MAE expressed in ms) between the muscle-
wise water T2 gold standard values from EPG signal simulation algorithm and
the predicted value through ML algorithms. S.D. is reported in round brackets.

Mean absolute discrepancy (MAE)
Muscle LR ridge Lasso TREE RF KNN SVM

S 4.31 ( 1.12) 3.92 (1.26) 3.85 ( 1.33) 4.66 (1.07) 3.63 ( 1.33) 2.36 ( 0.615 ) 3.59 ( 0.874)
MG 10.4 ( 1.26) 10.4 (1.22) 10.4 (1.18) 8.17 (1.64) 9.05 (2.36) 2.15 (0.337) 8.25 ( 2.02)
LG 13.2 ( 4.17) 9.49 (2.28) 4.73 (2.32) 8.08 (2.84) 9.02 (2.45) 6.14 (1.98) 7.90 (2.36)
TA 8.36 (1.07) 7.99 ( 0.901) 7.70 (0.737) 7.62 (1.19) 7.04 (1.15) 3.28 (1.07) 6.84 (1.23)

ELD 26.2 (47.8) 4.21 (1.43) 5.21 ( 2.20) 4.21 ( 1.70) 4.90 ( 2.01) 2.39 (1.51) 3.67 ( 2.16)
Pe 2.71 ( 1.03) 2.24 (0.748) 2.24 ( 0.817) 2.07 ( 0.561) 1.97 (0.698) 0.797 (0.384) 1.73 ( 0.708)

Table II.5: workflow 2 (II.2.1.2): Evaluation of ML models predicting perfor-
mances: mean absolute discrepancy (MAE expressed in ms) between the muscle-
wise water T2 gold standard values from EPG signal simulation algorithm and
the predicted value through ML algorithms. S.D. is reported in round brackets.
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Mean absolute discrepancy (MAE)
Muscle LR ridge Lasso TREE RF KNN SVM

S 1.55 (0.453) 1.36 ( 0.453) 1.07 ( 0.453) 1.26 ( 1.33) 0.809 (1.17) 1.90 (0.583) 0.647 (0.971)
MG 8.46 ( 2.19) 8.46 ( 2.15 ) 8.46 (2.15) 9.26 (2.06) 10.4 (2.19) 2.06 (0.758) 8.00 ( 2.40)
LG 4.98 (0.687) 4.98 (0.730) 5.03 (0.687) 5.93 ( 0.902) 5.80 (1.16) 2.58 (0.988) 4.55 ( 1.57)
TA 9.91(2.58) 9.91 ( 2.54) 9.91 (2.50) 9.09 (2.91) 9.38 (2.62) 2.79 (1.07) 8.60 (2.66)

ELD 9.65 (3.47) 9.65 (3.47) 9.68 (3.20) 7.68 (2.01) 7.68 (2.05) 1.43 (0.502) 6.71 (2.35)
Pe 1.76 (0.246) 1.75 (0.236) 1.75 (0.236) 1.81 (0.266) 1.89 (0.295) 0.443 (0.148) 1.70 ( 0.266)

Table II.6: workflow 3 (II.2.1.3): Evaluation of ML models predicting perfor-
mances: mean absolute discrepancy (MAE expressed in ms) between the muscle-
wise water T2 gold standard values from EPG signal simulation algorithm and
the predicted value through ML algorithms. S.D. is reported in round brackets.

CV − parameter Pearson Spearman
Vol - FF -0.19 (0.75) -0.10 (0.80)
Vol - wT2 0.75 (0.080) 0.71 (0.080)
FF - FF 0.43 (0.46) 0.58 (0.30)
wT2 - wT2 0.65 (0.16) 0.55 (0.25)

Table II.7: Pearson and Spearman correlation coefficients between volume CVs,
ground truth CVs and KNN MAE prediction of neuromuscular parameters. P-
values are reported in round brackets with a significant level set at p ≤ 0.05.
KNN FF prediction for Pe muscle was not included to evaluate Pearson and
Spearman correlations because it resulted to be an outliers of KNN FF MAE
distribution.

As inferred from boxplots in Fig. II.2, each workflow resulted in a mean FF

and wT2 prediction performance of ≈ ±20pp and ≈ ±6ms (averaged values)

for the anterior compartment muscles and of ≈ ±15pp and ≈ ±6ms for the

posterior compartment, respectively. Figure II.3 shows the mean prediction

performance, averaged on all calf muscles, for each ML algorithm and workflow.

KNN algorithm proved to be the best predictor model when combined with WF3

for FF ( ¯MAE ± 5pp(S.D.1.8pp)) and for wT2 ( ¯MAE ±1.8ms(S.D.0.7ms)).

By contrast linear regression (LR) combined with WF2 showed the worst

accuracy in estimating FF (±36pp(S.D.38.2pp)) and wT2 (±10.9ms(S.D.9.4)).

To measure the variability of volume and ground truth distributions we also

calculated the coefficients of variation (CVs) defined as:

CVi = σi

µi
(II.5)

where the index i runs over the muscles, σi and µi are the associated S.D.
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and mean of the distributions, respectively. Thus, CVs for muscle-wise FF and

wT2 ground truths quantify the variability range of ground truth values on

which the ML models were tested. Figure II.4 reports the CVi for FF and wT2

for each calf muscle. Similarly, muscle volume CVs account for inter-subject

muscle shape variability. Volume CVs are reported in Fig. II.5. The ground

truth CVs range from 0.45 to 0.99 for FF and from 0.04 to 0.22 for wT2 whereas

volume CVs range from 0.30 to 0.42 (Fig. II.4,II.5).

We explored whether KNN MAE prediction shows linear or monotonic

dependency on CV values of muscle volume and ground truth parameters using

Pearson (ρP ) and Spearman (ρS) correlation coefficients. Table II.7 shows no

significant correlation between KNN ¯MAE and both CVs of ground truths and

volume values. Thus, KNN prediction seemed to be independent from inter-

subject muscle shape, i.e., CVs volume, and ground truth variability ranges,

i.e., CVs of FF and WT2 . Furthermore, the presence of linear and monotonic

correlations was tested even between KNN ¯MAE and muscle mean volume to

examine KNN prediction dependency on different calf size of muscles. For our

cohort, the following mean volume values for calf muscles were: S ≈ 1743.1mm3

, MG ≈ 987.5mm3, LG ≈ 585.9mm3, TA ≈ 458.4mm3, ELD ≈ 295.8mm3, Pe

≈ 534.6mm3. Pearson and Spearman coefficients did not show any significant

correlation neither for ¯MAE FF (ρP =0.66 (0.22)) and ρS=0.52 (0.36)) nor for
¯MAE wT2 (ρP =0.12 (0.83) and ρS=0.08 (0.87)). Therefore, KNN prediction

seemed to be independent even from calf dimension of muscles.

II.4 Discussion

In this study we explored the possibility to predict fat fraction and water T2 of

calf muscles in FSHD subjects starting from a conventional STIR sequence and

applying three different workflows, which combine radiomics, dimensionality

reduction methods and ML models. To the authors’ knowledge, this is the first

attempt to predict qMRI parameters from STIR imaging. The three applied

workflows resulted in a comparable mean prediction performance about ±20pp
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for FF and about ±6ms for wT2 with the exception of LR and KNN models

(Fig. II.3). KNN, according to the obtained results, turned out to be the

best model predictor both for FF and wT2. More specifically, the algorithm-

wise performance highlights the best prediction for the combination of KNN

and WF3 for both FF (±5pp) and wT2 (±1.8ms)( Fig. II.3). The muscle-wise

analysis of the prediction performance also demonstrate a KNN mean prediction

performance with almost no dependency either on the dimension of muscles and

on the inter-subject muscle shape (Figure II.2). We investigate these hyphotesis

by calculating for each muscle the muscle mean volume and the volume Cvs.

Despite the difference both in mean muscle-wise volume values and in volume

CVs (Figure II.5), no significant Pearson and Spearman correlation were found

with KNN ¯MAE that was able to predict wT2 and FF with a mean error of

approximately ±1.8ms and ±5pp respectively.

Furthermore, the combination of a small sample size and high CV of ground

truth distributions may have negatively affected the ML training step and

consequently compromised prediction performance . However, KNN parameters

prediction seemed to have no dependency on CV of ground truth values used

for training ML algorithms (Fig. II.2). In contrast to the good predictive power

of KNN, we found the least performative model being LR combined with WF2

(Fig. II.3). We surmise that LR + WF 2 might be unable to detect the complex

relationship between predictors and target variable as suggested by the wider

error bars. The main limit of the current study is related to the suboptimal

suppression of fat signal in STIR sequences. Nevertheless, we used this non-

uniform fat signal component to identify image fat pixels, which were used to

extract conventional radiomic features (WF 1, 2), and to define FFG feature

(WF3). Conversely STIR imaging is particularly suitable for muscle edema

pattern detection (J. R. Dahlqvist et al. 2020) which may be easily detected by

radiomic features.

Moreover, to expand the applicability of the current results, we aim to conduct

further studies enrolling larger cohorts of subjects with different neuromuscular

dystrophies and also exploring other skeletal muscle districts (e.g. paravertebral
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muscles).

In conclusion, our study showed that conventional STIR imaging can

potentially be used to predict quantitative muscle MRI parameters with good

accuracy by applying radiomics combined with ML models. In particular,

the KNN algorithm combined with WF3 was the best predictor for both FF

and wT2. The proposed radiomic workflows could contribute to a wider

application of a relatively common imaging technique as STIR to rapidly

estimate quantitative parameters of skeletal muscle, without the need to acquire

long and complex advanced qMRI sequences.
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Figure II.2: Muscle-wise MAE boxplots (first quartile (Q1) to third quartile
(Q3) and median value in orange line) for FF (top) expressed in percentage
points (pp) and wT2 (bottom) expressed in ms. Three boxplots are given for
each muscle related to WF 1 (blue), WF 2 (green), WF 3 (red). Highest accuracy
is related to red dots (FF, wT2 boxplots) corrisponding to KNN prediction
performances.
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Figure II.3: FF (top ) and wT2 (bottom) prediction performances averaged
on all muscles and showed as a function of the different implemented ML
algorithms. According to the proposed workflows, a trio of mean prediction
accuracy was define for each ML model, i.e., green plot (WF1), blue plot (WF2),
red plot (WF3).
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Figure II.4: Muscle-wise boxplots (first quartile (Q1) to third quartile (Q3) and
median value in orange line) for FF (top) and wT2 (bottom) gold standard
values, with CV listed in the legend.
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Figure II.5: Muscle-wise volume boxplots (first quartile (Q1) to third quartile
(Q3) and median value in orange line). Muscle-wise mean volume size is reported
in round brackets on x-axis, CV is listed in legend.
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Abstract

Objective: In this study we address the automatic segmentation of se-

lected muscles of the thigh and leg through a supervised deep learning

approach.

Material and methods: The application of quantitative imaging in neu-

romuscular diseases requires the availability of regions of interest (ROI)

drawn on muscles to extract quantitative parameters. Up to now, man-

ual drawing of ROIs has been considered the gold standard in clinical

studies, with no clear and universally accepted standardized procedure

for segmentation. Several automatic methods, based mainly on machine

learning and deep learning algorithms, have recently been proposed to dis-

criminate between skeletal muscle, bone, subcutaneous and intermuscular

adipose tissue. We develop a supervised deep learning approach based on

a unified framework for ROI segmentation.

Results: The proposed network generates segmentation maps with high

accuracy, consisting in Dice Scores ranging from 0.89 to 0.95, with respect

to “ground truth” manually segmented labelled images, also showing high

average performance in both mild and severe cases of disease involvement

(i.e. entity of fatty replacement).

Discussion: The presented results are promising and potentially translat-
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able to different skeletal muscle groups and other MRI sequences with

different contrast and resolution.

Keywords:Deep learning, Muscle segmentation, Magnetic resonance imaging
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III.1 Introduction

Recent technical advances of muscle MRI imaging have led to an evolution from

traditional qualitative evaluation into what is currently known as quantitative

imaging (qMRI), in which a large amount of diagnostically relevant information

(such as fat substitution and edema) can be quantified and extracted from

muscles of subjects affected by neuromuscular diseases (Carlier et al. 2016;

Paoletti et al. 2019; Schroeder et al. 2019) . By using quantitative indicators, it is

possible to make objective comparisons across subjects or time points to evaluate

the natural history of disease progression or to use those parameters as potential

outcome measures of therapeutic approaches. Muscle imaging protocols in the

setting of qMRI often include several quantitative sequences, with the aim

of evaluating different parameters, mainly intramuscular fat component (fat

fraction, FF) and intramuscular free water relaxation (water T2, w-T2), but also

diffusivity properties, size (muscle volume, cross-sectional area, CSA) etc. To

extract quantitative data, drawing precise regions of interest (ROI) on selected

muscles is crucial. The acquisition of multiple sequences on the same region

also potentially requires registering ROIs to different datasets; such a process

adds the further task to manually correct the registered ROIs in the final space

where data are eventually extracted for statistical analysis.

Up to now, manual drawing of ROIs has been considered the gold standard

for the extraction of quantitative data from muscles in clinical studies (Barnouin

et al. 2014; Pons et al. 2018). It requires dedicated and experienced human op-

erators, long processing times and training curves, but also the necessity to

select certain volumes of the entire muscle to limit the operator workload. Al-

though muscle segmentation algorithms are not a novel concept (e.g. Barra

and Boire 2002), recent advances in hardware (offering faster processing) and

in software/algorithms (new neural networks) made the potential much more

promising. Therefore, the application of automatic tools to this field, mainly

based on machine learning techniques and deep neural networks, already appears

as particularly promising with the aim to accelerate data extraction and analysis
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and eventually go beyond the manual process of ROI drawing and correction. A

complete overview of the evolution of the MR image segmentation strategies is

reported in Ogier et al. 2021 . Indeed, up to now automated segmentation tools

have been successfully used to discriminate thigh tissues into skeletal muscle,

bone, subcutaneous adipose tissue and intermuscular adipose tissue. In particu-

lar, recent studies applied diverse approaches including variational segmentation

methods combined with statistical clustering–based techniques on T1-weighted

scans (Gadermayr et al. 2018; Orgiu et al. 2016), machine-learning classifica-

tion techniques on intensity-based features extracted from multi-contrast Dixon

scans (Yang et al. 2016), Deep Neural Networks (DNN) methods based on con-

volutional architectures combined with variational contour detector on T1-w

scans (Yao et al. 2017) and DNN methods based on an encoder–decoder U-net

architecture (Ronneberger, Fischer, and Brox 2015) combined with a cluster-

ing algorithm on T2 and proton density (PD) maps from multi spin echo scans

(Amer et al. 2019). Finally, Anwar et al. applied a semi-supervised deep learn-

ing approach based on an encoder–decoder architecture on multi-contrast Dixon

scans (Anwar et al. 2020). This latter work provided a unified framework to

automatically segment both the multiple tissues regions and the edges of the

fascia lata, which separates the adipose tissue domain into subcutaneous and

inter-muscular.

All these aforementioned methods provided a high level of accuracy of the gener-

ated segmentation maps with respect to ground truth labelled images, ranging

from 0.8 to 0.97 values of Dice Similarity Coefficient (DSC, a representative

metrics of similarity between the segmented and ground truth maps) for the

different tissues, with the deep learning based methods performing better in

the cases of severe fat substitution (Amer et al. 2019; Gadermayr et al. 2018).

Indeed, Gadermayr et al. showed that classical variational and machine learn-

ing segmentation methods worked well mainly in mildly involved subjects (i.e.

with a low degree of fat replacement of muscular tissue), but actually had lower

accuracy when examining subjects with advanced disease where fat replacement

was predominant (Gadermayr et al. 2018). In particular, they obtained average
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levels of DSC accuracies of 0.90–0.95 for tissue segmentation in mild and mod-

erate cases, whereas they obtained average DSC values of 0.67–0.85 in severely

involved cases. The application of DNN methods in discriminating muscle tis-

sues yielded to higher performances for severe cases. Other authors, in fact,

found average DSC values of 0.93–0.96, depending on the input data type of the

networks (Amer et al. 2019; Yao et al. 2017).

As for the automatic segmentation of individual muscle regions, atlas-based

approaches have been proposed in Le Troter et al. 2016 for the automatic

segmentation of four muscles of the quadriceps femoris from T1-weighted scans

of healthy subjects. In the latter work different registration methods, guided

by an initial discrimination of thigh tissues obtained by means of a clustering

algorithm, were evaluated, obtaining average DSCs ranging from 0.72 to 0.94

for the different muscles. Recently, Ding et al. reported a deep learning

approach based on the U-net architecture which was applied to automatically

segment 4 functional muscle groups of the thigh from multi–contrast Dixon

scans, obtaining an average DSC on the training dataset > 0.85 (Ding et al.

2020). The obtained DNN-generated segmentations were shown to be unsuitable

for patients with markedly severe fat infiltration, since limited data of such

cases were available to train their network. Indeed, they found average DSC

values of 0.85–0.93 for the single thigh muscles considered, with the lowest

value corresponding to the smallest muscle, but they declared (without further

investigations) that their DNN was not suitable for patients with severe fat

infiltration (Ding et al. 2020).

Moreover, in Renkun et al. 2019 a cascade 3-D convolutional DNN seg-

mentation framework, consisting of two-stage process, was designed to capture

location and detailed features of muscles, reporting DSCs values of 0.78–0.97

for small and large muscles, respectively.

In the present work, as a further step towards the automatization of muscle

ROI drawing, we aimed to develop an automatic segmentation tool based on

deep learning techniques to create single-muscle segmentation maps at thigh

and leg level, starting from manually segmented multi-contrast quantitative
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muscle MRI scans of both healthy subjects and patients affected by two differ-

ent neuromuscular diseases. In the interest of reproducibility and of benefiting

the community, we are sharing the resulting automatic segmentation tool as an

open-source repository, available at (Agosti et al. 2021).

III.2 Materials and methods

III.2.1 Subjects

For this project, we included 54 subjects (6 healthy controls and 48 patients af-

fected by facioscapulohumeral dystrophy (FSHD) (n = 30) and by amyotrophic

lateral sclerosis (ALS) (n = 18), that presented muscle alterations. Each subject

was scanned at different time points (up to three). Subjects gave their informed

consent to the examination. This study was approved by the Local Ethics

Committee.

III.2.2 MRI acquisition

All examinations were performed on a 3T MRI whole-body scanner (Skyra,

Siemens Healthineers AG Erlangen, Germany) using integrated spine and

body surface coils. The patient was lying supine in the scanner with

18–channel phased–array coils positioned either on the thighs and the legs

during acquisition, with simultaneous acquisition of both sides (total scanning

time of approximately 20 min for the thighs and 15 min for legs). The MRI

protocol included a 3D six-point multi-echo gradient echo (GRE) sequence with

interleaved echo sampling (matrix size = 432 × 432 × 52 for the thighs, 432 ×

432 × 36 for the legs, TR = 35 ms, TE = 1.7–9.2 ms, resolution = 1.04 × 1.04 ×

5.0 mm3, bandwidth 1050 Hz/Px, flip angle 7◦) and a 2D multi-slice multi-echo

spin echo (MESE) sequence (matrix size = 384 × 192 × 7 for the thighs, 384 ×

192 × 5 for the legs, TE = 10.9 ms both for the first TE and the echo spacing,
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TR = 4100.0 ms, resolution = 1.2 × 1.2 × 10.0 mm3, slice gap=30 mm, 17 echo

times) at thigh and leg level.

III.2.3 Post-processing of MRI sequences

A total of 12 muscle ROIs per thigh and 6 muscle ROIs per leg for each side

were manually drawn by a single experienced operator using ITK-snap v3.0

(Yushkevich, Gao, and Gerig 2016). ROIs were drawn on the first echo images

of the MESE sequence by an expert operator (FS) with 3 years of experience,

avoiding the muscle fascia and bone contours of the femur and tibia.

For what concerns the thigh, ROIs were drawn in the inner thigh slices (5

out of 7) of the MESE acquisition, equidistant from the femur head and the tip

of the patella, and were subsequently registered to the multi-echo GRE dataset

with the creation of new corresponding ROIs, which were manually adjusted by

the same operator. Two additional ROIs were drawn in the GRE space in the

neighboring slices to the medial registered slice, ending in a final number of 7

slices per thigh segmented.

For what concerns the leg, segmentation was performed in the third slice of

the MESE acquisition and then subsequently registered to the multi-echo GRE

dataset where it was manually adjusted. Two additional ROIs were drawn in

the multi-echo GRE dataset on the neighboring slices, ending in a final number

of 3 slices per leg segmented.

The slices to be segmented were chosen as the most representative of the

upper, middle and lower thigh, and, for simplicity, only for the middle portion

of the lower leg (also to include all the most important muscles that may not

be represented especially in the lower slices closer to the ankle).

III.2.4 Training, validation and test dataset

We separated the available dataset of scanned subjects into training and

validation subsets, for the DNN learning process, and a test subset for its testing.

44 subjects (comprising the 6 healthy controls) at the different time points, for a
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total number of 110 scans, were included in the training and validation subsets,

whereas remaining 10 patients at their initial scan time-point were included in

the test subset.

A total number of 770 thigh and 330 leg slices with corresponding manually-

drawn ground truth segmentations were thus available as a working dataset for

the DNN learning process and cross-validation.

III.2.5 Preprocessing and data augmentation

We processed the input volume with a slice-wise approach. Figure III.1 shows

muscle segmentation of an exemplary subject, with segmented muscles reported

in the figure legend. Each manual segmentation map was preprocessed through

the application of consecutive area opening and closing filters, with an area

threshold of 4 pixels, to eliminate small structures which resulted from noise in

the registration operation of the MESE onto the GRE dataset.

We applied data augmentation to the available annotated slices in the

training and validation datasets to gain robustness in the network predictions

on unseen cases and to make the network learn realistic deformations without

these being represented in the available training data. In particular, on each

training and validation image and on each corresponding manual segmentation

we randomly applied elements in the following sequence of transformations

(bicubic spline interpolation was used for the input images, and nearest-neighbor

interpolation was used for the binary segmentation masks):

- Horizontal and vertical translations: separate independent translations of

the left and right thighs (or legs) per image in the horizontal and vertical direc-

tions, with bi-cubic spline interpolation. The amounts of each translation were

uniformly sampled in an interval of values computed per image with the max-

imum value given by the shortest distance of the thighs (or legs) to the image

borders. These transformations enhanced invariance with respect to the relative

position between the left and right thighs (or legs) in the training process;

- Rotations: independent rotations of the left and right thighs (or legs) by
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amounts uniformly sampled per image in the interval [− 7, 7] degrees, with bi-

cubic spline interpolation. These transformations enhanced rotation-invariance

in the training process;

- Piecewise affine transformations: separate affine transformations applied on

each neighborhood of points on a 4 × 4 grid, with each grid point moving of

an amount sampled from a normal distribution with scaled amplitude randomly

sampled per image from the interval [0.1, 1] percent of the image height/width.

Bi-cubic spline interpolation was chosen to determine per–pixel values for the

transformations. These transformations enhanced local distortions-invariance

in the training process;

- Elastic transformations: local transformations obtained in terms of displace-

ment fields with Gaussian kernel smoothing, with strength uniformly sampled

per image from the interval [0, 20] and standard deviation of the kernel uniformly

sampled per image from the interval [5, 10]. Bi-cubic spline interpolation was

chosen to determine new pixel values for the transformations. These trans-

formations enhanced elastic distortions-invariance, representing realistic tissue

variations, in the training process. The aforementioned data augmentation was

applied to the available dataset of 770 thigh and 330 leg slices to obtain 5000

annotated images for thigh and leg respectively. We randomly separated this

augmented dataset into a training dataset of 4500 elements and a validation

dataset of 500 elements, to perform a cross-validation analysis on the network

performance.
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Figure III.1: Illustrative example of thigh and leg slices from MRI scans
with the superposition of the corresponding muscles’manual segmentation and
indications of the muscles’ names. A Thigh case; B Leg case

III.2.6 Deep learning analysis

We considered the segmentation problems for the thigh’s and leg’s muscles as

multi-class localized classification problems for the 2D images with 13 and 7

classes (comprising background and muscles) respectively, where a class label

is assigned to each pixel. We achieved this goal using properly designed

deep convolutional neural networks, inserted in a tree-like structure with

two branches, where the inner node performs a global classification of the

given input 2D image into a thigh’s or leg’s geometry, and according to the

classification result two leaf nodes perform the corresponding segmentation

task on the same input image. The deep convolutional networks used

in this work were customized versions of the VNet (Milletari, Navab, and

Ahmadi 2016) and ResNet (He et al. 2016) architectures, where a contracting

network topology is used for the purpose of classification tasks and deep
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features extraction from increasingly compressed levels of resolution, whereas

an expanding network topology is used for resolution decompression and for

the segmentation task. The VNet (Milletari, Navab, and Ahmadi 2016) and

ResNet (He et al. 2016) architectures were developed to solve problems in

biomedical image segmentation and image classification respectively, based on a

fully convolutional architecture with the key extension that each convolutional

layer learns a residual function. In particular, the VNet architecture was

proven to ensure faster convergence during the learning process, mitigating the

accuracy degradation with increased network depth, with respect to similar

encoder–decoder architectures without residual units (e.g. the Unet network

(Ronneberger, Fischer, and Brox 2015)). These networks and their variants have

been applied with success in recent years in solving different image segmentation,

classification and reconstruction problems (Litjens et al. 2017), becoming the

gold–standard DL tools for solving these tasks. The platform nn–Unet (Isensee

et al. 2021) recently showed that a basic U-Net, properly calibrated on specific

datasets, was able to obtain the highest accuracy over quite different biomedical

semantic segmentation tasks with respect to other even more sophisticated

architectures. We thus choose to use VNet and ResNet architectures in our work,

properly calibrated on our dataset (as will be explained in the sequel). Since

we run our DL implementation on a CPU, we choose to use residual units to

possibly accelerate the convergence of the training process and limit the needed

computational resources. Before going into the details and rationale of the

networks, we report in Fig.III.2 a graphical representation of the building blocks

of the networks. The network weights were initialized from a Glorot normal

distribution (Glorot and Bengio 2010), and batch normalization (Ioffe and

Szegedy 2015) was applied at different levels, which normalized the distributions

of the layers input and helped in quickening the learning convergence for

deep networks. Each convolution and deconvolution operation was applied

with appropriate constant padding, to keep equal dimensions between its

input and output. The architecture of the residual block (RB) layers RBl

and RBr was based on the scheme Convolution–Batch Normalization–Skip

76



Connection–Activation, which proved to give optimal convergence properties

between the different ResNet implementations analyzed in literature. The

network architectures and the learning algorithms were implemented in the

Tensorfow platform (Abadi and al. 2015), using the deep learning interfaces

provided by the Keras API (Chollet and al. 2015). The resulting DNN automatic

segmentation tool has been shared as an opensource repository, available at

Agosti et al. 2021.

Figure III.2: Building blocks of the networks’ architectures, with descriptions
of the performed operations
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III.2.7 Network architecture

Classification Network. In Fig. III.3 we report the network’s architecture

for the classification task into the thigh’s or leg’s category.

The classification network takes as inputs down-sized images (to 128 × 128

size) through cubic spline interpolation and anti–aliasing, to reduce the com-

putational burden. The input image goes through 5 residual block layers RBl

with doubled channel dimension and halved resolution at each level, extracting

features at different spatial aggregation levels (receptive fields). The first resid-

ual block applies a first convolutional layer with 32 channels and unit kernel

filter and stride, to map the input image to a first set of normalized outputs as a

shortcut, after batch normalization, for the residual map. Then, a sequence of 2

convolutional layers with the same channel dimension, a 3 × 3 kernel filter and

a unit stride are applied, to extract independent translation invariant features

at this receptive field resolution after the application of nonlinear units. The

remaining four residual blocks apply a first convolutional layer with doubled

channel dimension with respect to the previous layer and a kernel filter and

stride of dimension 2, working both as a downsampling and as a shortcut, after

batch normalization, for the corresponding residual map. Then, a sequence of

2 convolutional layers with the same channel dimension, a 3 × 3 kernel filter

and a unit stride is applied. Finally, all the extracted features at the different

depth levels are collected into a vector of output neurons and used as an input

to a fully connected layer for the binary classification task. The output of

this final layer (indicated as Output categorical in Fig. III.5) consists of a

two-dimensional vector of probabilities to belong to a specific category, given

the one-hot representation (1, 0) for the thigh class and (0, 1) for the leg class.
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Figure III.3: Graphical representation of the network’s architecture for the
classification task. The number of channels, spatial dimensions and number of
neurons are indicated next to each building block, together with the indications
of the input and the output of the data flow

Segmentation Networks Figure III.4 graphically represents the network’s

architecture for the segmentation of both thigh’s and leg’s MRI.

The segmentation networks take as inputs the images with full 432 × 432

size. They are customized versions of the VNet (Milletari, Navab, and Ahmadi

2016), consisting of a fully convolutional architecture with a contracting path,

composed by a sequence of 6 residual blocks RBl , and an expanding path,

composed by a sequence of 6 residual blocks RBr . The first 5 residual blocks

of the contracting path apply the same operations as the 5 residual blocks of

the classification network. To extend the receptive field to cover the spatial

resolution of the full 432 × 432 images and to introduce a higher number

of features at more abstract aggregation levels, which is necessary to solve

the segmentation task, we add a sixth layer with 1024 channels and a 1/3

downsampling. The 6 residual blocks of the expanding path increase the spatial

resolution in a symmetric way with respect to the contracting path, halving
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the channel dimension at each level and concatenating with the corresponding

resolution features from the contracting path to recover context information. A

final convolutional layer with unit kernel filter and stride is applied to map the

32 channels space to the desired probabilistic space with dimension given by

the proper number of classes, after the application of the Softmax nonlinearity

pixelwise.

We note that the use of small kernel filters (up to dimension 3 × 3) gave

us the possibility to go deeper into the network’s architecture, introducing

a fewer number of weights with respect to bigger filters when covering the

same receptive fields, at the expense of adding additional layers. This reduced

the dimensionality of the network and the computational burden. Also, it

introduced smooth variations in the receptive fields between the different layers,

distributing the spatial resolution of the extracted features uniformly on the

spatial domain and thus covering the patterns’ variability at each spatial scale.

To obtain this result, we had to ensure that the receptive fields cover the whole

extension of the greatest objects detectable in the images (such as the whole

thigh or leg). In Table III.1 we report the progression of the receptive fields for

each layer in the classification network (with input 128 × 128 images) and in the

contracting path of the segmentation network (with input 432 × 432 images) in

the tree-like network in Fig. III.5.

We can observe from Table III.1 that the receptive fields span uniformly

through all the relevant spatial dimensions for 128 × 128 (first 5 residual blocks,

reaching up to dimension 140 × 140) and for 432 × 432 images (all six residual

blocks). In this latter case, we must consider that a single thigh or leg object

extends up to half of the image, and the dimension 380 × 380 contain informa-

tion about the single thigh (or leg) and the relative positions between left and

right thighs (or legs).
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Figure III.4: Graphical representation of the network’s architecture for the
segmentation tasks. The number of channels, spatial dimensions and number of
neurons are indicated next to each building block, together with the indications
of the input and the different outputs of the data flow

81



Figure III.5: Graphical representation of the network’s architecture as a tree-
like structure

Residual Block RBl Receptive fields
RBl(32,1,1,3,1) 1x1,3x3,5x5
RBl(64,2,2,3,1) 6x6,10x10,14x14

RBl (128,2,2,3,1) 16x16,24x24,32x32
RBl (256,2,2,3,1) 36x36, 52x52,68x68
RBl (512,2,2,3,1) 76x76, 108x108,140x140
RBl (1024,3,3,3,1) 188x188,284x284,380x380

Table III.1: Receptive fields associated to each convolutional operation in the
successive residual blocks RBl

Networks concatenation. Figure III.5 graphically represents the concate-

nation of the classification and segmentation networks for the classification and

segmentation of both thigh’s and leg’s MRI.

It consists of a tree-like structure, where the inner node performs the

classification of the 2D downsized input image into the thigh’s or leg’s category.

The two branches of the network perform an argmax operation on categorical

Output, splitting the data flow towards the left or right leaves depending

on the classification outcome: if argmax = 0, the input image with full

432 × 432 size is processed by the left segmentation network with output

a probabilistic segmentation for 13 classes (Output segmentation thigh),

whereas, if argmax = 1, it is processed by the right segmentation network with

output a probabilistic segmentation for 7 classes (Output segmentation leg).
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III.2.8 Hyperparameters optimization, training and

evaluation

The network was trained on the augmented dataset of input images and

corresponding manual segmentations by means of a stochastic gradient descent

method, including data subsampling in mini-batches and dropout regularization

in the input layer. The accuracy of the network was monitored during training

both on the training and validation datasets. We used the AMSGrad variant of

the Adam algorithm (Kingma and Ba 2015; Reddi, Kale, and Kumar 2015) as

an efficient method for stochastic optimization both from the computational and

the convergence rate points of view. We also added L2 weights regularization

to the objective functions to reduce overfitting.

We first tuned the hyperparameters of the training algorithms by means of

the hyperband algorithm (Li et al. 2018), which adaptively allocate computa-

tional resources in an efficient way, choosing as a measure of configurations’

performance the evaluation metrics on the validation dataset and exploring the

discrete space of hyperparameters (lr, dr, reg) ∈ (0.0001 0.01)×(0 0.5)×(0

0.1), for 20 epochs keeping fixed the batch size to 5. Here, lr is the learning

rate, dr is the dropout rate and reg is the factor for the L2 weights regular-

ization. Note that, thanks to the algebraic preconditioning introduced by the

use of residual maps, the learning rate can take higher values than the typical

optimized values given in Kingma and Ba 2015.

After hyperparameters optimization, the training algorithm was imple-

mented with a scheduling which reduced the learning rate of the gradient method

by a factor of 1/2 when no improvements in the validation loss were observed

after 4 epochs, which helped in overcoming plateau domains and local minima

of the loss objective functional.

We chosed the Categorical Cross–Entropy -
∑2

i=1 gtilog(sfi), where gti is

the ground truth score of class i and sfi is the output of the softmax activation,

as the loss function for Output categorical in the classification part of the

network. We moreover measured the classification network’s accuracy on a
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given dataset by means of the Categorical Accuracy metrics, which is defined as

the percentage of predicted values that matches with the ground truth values.

For what concerns the segmentation tasks, we considered a class-balanced

weighted Cross–Entropy both for Output segmentation thigh and Output

segmentation leg. The weights were chosen, as in Ronneberger, Fischer,

and Brox 2015, to compensate the different frequency of pixels belonging to a

certain class in the training dataset, thus giving more importance to foreground

pixels than background ones during learning, giving in particular the most

importance to pixels in small muscles, which are more difficult to segment.

Moreover, the background regions separating neighboring muscles, computed

using morphological operations as in Ronneberger, Fischer, and Brox 2015, were

associated to large weights in order to force the network to learn separation

borders and background regions between muscles. The weighted Cross-Entropy

loss function had the following form

L = −
∑
x∈Ω

w(x)log(pl(x)(x)), (III.1)

where pl(x) is the output value of the Softmax layer at the pixel value x ∈ Ω

associated to pixel’s true label l(x) ∈ {1, .., 13} or {1, ..., 7}, and

w(x) = wl(x)(x) + w0exp

(
− (d1(x) + d2(x))2

2σ2

)
, (III.2)

with wl(x)(x) the inverse of the frequency of the true class l(x) in the training

dataset and d1(x) and d2(x) the distances of pixel x to the nearest muscle and

second nearest muscle respectively. The value of σ was chosen to represent the

maximum distance between neighboring muscles. We set w0 = 10, σ = 7 for

the thigh dataset and σ = 8 for the leg dataset. Finally, the segmentation’s

accuracy was measured by means of the Dice coefficient (DSC)

DSC = 2TP

FP + 2TP + FN
, (III.3)

which is a standard metrics for the overlap between the manual and the

automatic segmentation, where TP, FP and FN are the numbers of true positive,

false positive and false negative.
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III.2.9 Network testing with a qualitative assessment for mild

and severe disease conditions

We tested the performance of the network on the 10 patients of the test dataset,

which were unseen during the learning process, by measuring the DSC between

the manual and DNN generated segmentations for both their thighs and legs.

As a secondary aim, to qualitatively test the performance of the network in

the cases of mild and severe fat infltrations, the 10 patients of the test dataset

were chosen to include 5 subjects with mild and 5 subjects with severe fat

replacement, on the basis of visual assessment of SE scans by the Mercuri scale

(Mercuri et al. 2005).

Figure III.6: Illustrative example of thigh and leg plots of the weight maps
(III.2). A Weights map associated to the background regions separating
neighboring muscles for the thigh case; B Full weight map for the thigh case;
C Weights map associated to the background regions separating neighboring
muscles for the leg case; D Full weight map for the leg case
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III.3 Results

To illustrate the results of the DNN input creation step, in Fig. III.6 we show

an illustrative example for the thigh and leg geometries with the plots of the

weight maps associated to the background regions separating neighboring mus-

cles [(second term in the right–hand side of III.2] and of the full weight maps

(Eq. III.2). We can observe that the background regions separating neighboring

muscles are associated to a high value of the weight, while the highest weight

values are associated with the smallest muscles.

III.3.1 Hyperparameters optimization, training and

validation

We first tuned the hyperparameters of the training algorithm for the left

segmentation network in Fig. III.5, working on the thigh dataset, and we

obtained the optimized values lr = 0.009765, dr = 0.2, reg = 0.01, by which

averaged DSC of 0.8744 on the training dataset and 0.8487 on the validation

dataset were obtained after 20 epochs. We used these optimized values of the

hyperparameters also for the other segmentation and classification networks in

the tree.

In Fig. III.7 we show the plots of the model losses and model accuracies

during the training, with optimized hyperparameters, of the classifcation and

segmentation network nodes in the tree-like architecture in Fig.III.5.

We found that the Categorical accuracy of the classification network and the

DSC of the segmentation networks had an overall monotonical increase during

training on both the training and validation datasets, reaching a plateau which

invariably happens after 40 epochs of training for all the networks.

In Table III.2 we also report the Categorical accuracy and DSC for the

classification and the segmentation networks obtained after 40 epochs of

training.
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We thus obtained 100% accuracy of the thigh-leg classification network on

both the training and the validation dataset. We highlight the fact that, since

the classification network must solve a binary classification problem based on

the overall extended spatial features which distinguish between the thigh’s and

the leg’s morphology, we found that working on down-sized images to 128 × 128

dimension was sufficient to achieve 100% accuracy for the classification problem.

Indeed, it was unnecessary to extract localized features from the full resolution

image to solve this task. We obtained high DSC for both the thigh and leg seg-

mentation networks, namely 93% and 95% respectively on the training dataset,

and 89% and 93% respectively on the validation dataset.

In Fig. III.8 we report illustrative comparisons between the manual segmenta-

tion and the DNN generated segmentation for three elements randomly chosen

in the training dataset and three elements randomly chosen in the validation

dataset, for both the thigh and the leg case.
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Figure III.7: Plots of the model losses and model accuracies during the training
of the classification network (A and B), the thigh segmentation network (C and
D) and the leg segmentation network (E and F)
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Figure III.8: Illustrative comparisons between the manual segmentation and the
network (DNN) generated segmentation for three elements in the training and
three elements in the validation datasets, for both the thigh and leg case, with
the corresponding Dice coefficient score

network type Train accuracy Validation accuracy
Classification network Categorical Categorical

1.0 1.0
Thigh segmentation network DSC DSC

0.9292 0.8894
Leg segmentation network DSC DSC

0.9507 0.9336

Table III.2: Model accuracy after 40 epochs
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III.3.2 Network testing

With regards to the test dataset including selected subgroups of subjects with

mild or severe fat replacement (see Sect. III.2.9), we found that the network

segmentation had good and comparable performances for both mild and severe

cases, with average 88% and 93% accuracies, respectively for the thigh and

the leg, for the subjects with mild fat replacement, and average 87% and 93%

accuracies, respectively for the thigh and the leg, for the subjects with severe fat

replacement. In Table III.3 we report the average DSC over the slices, obtained

by the network for the 10 test subjects, separated into two subgroups with mild

or severe fat replacement.

Figures III.9 and III.10 report the 10 selected cases, with an indication of

the DSC metrics for single slices. The bottom (leftmost column), inner and top

(rightmost column) slices are reported for the thigh, whereas the inner slice is

reported for the leg.

Finally, to evaluate the performance of the DNN on the slices throughout

the 3D stack that were unseen during the training process, our expert operator

manually segmented 4 additional slices around the middle portion of the thigh

and the leg for two subjects randomly chosen in the test dataset, subject A and

subject B, both with severe disease involvement (with subject B presenting a

higher degree of severity with respect to subject A). In Fig. III.11 we show

two coronal and sagittal slices along the 3D stack of the thigh and leg images

for subject A and subject B, together with the manual and the DNN generated

segmentation.

in Table III.4 we also report the DSC between the manual and the DNN

generated segmentations on the 4 additional slices manually segmented along

the 3D stack for both Subject A and Subject B.

We can observe an overall decrease of the DNN performance to DSC between

0.75 and 0.90 on the slices throughout the 3D stack that were unseen during the

training process (at least on the slices around the middle portion of the thigh

and the leg of the subjects).
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Figure III.9: Comparisons between the manual segmentation and the network
(DNN) generated segmentation of thigh muscles for 5 patients with mild and 5
patients with severe fat infiltrations in the test dataset. The bottom (leftmost
column), inner and top (rightmost column) slices are reported

91



Figure III.10: Comparisons between the manual segmentation and the network
(DNN) generated segmentation of leg muscles for 5 patients with mild and
5 patients with severe fat infiltrations in the test dataset. The inner slice is
reported

Figure III.11: Comparisons between the manual segmentation and the network
(DNN) generated segmentation of the thigh and leg muscles for subject A and
subject B, shown along with two coronal and sagittal slices
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Subject Thigh Average DSC Leg Average DSC
Mild

Subject 1 0.9009 0.9367
Subject 2 0.9016 0.9310
Subject 3 0.8531 0.9319
Subject 4 0.8651 0.9341
Subject 5 0.8892 0.9243
Severe

Subject 6 0.8762 0.9247
Subject 7 0.8765 0.9295
Subject 8 0.8695 0.9303
Subject 9 0.8923 0.9331
Subject 10 0.8643 0.9285

Table III.3: Average DSC for the 10 test subjects, with an indication of their
disease severity

III.4 Discussion

In this study, we approached the automatic segmentation of selected muscles

from MRI scans, working on a training dataset composed by thighs and legs of

both healthy subjects and patients affected by two different diseases with muscle

involvement, and testing the results on a dataset including two subgroups with

mild or severe fat replacement. With the aim to standardize and accelerate

the process of ROI drawing we developed a deep neural network architecture,

consisting of a classifer and two segmentation networks with residual units and

contracting and expanding topologies inserted in a tree-like structure, which

gave a unifed framework for the automatic segmentation of both thigh and leg

muscles. Our experience proved the feasibility of a convolutional neural network

approach into the automatic segmentation of muscles ROIs for both thighs and

legs, with very high accuracy. Specifcally, the DNN showed an average DSC of

0.93 and 0.89 on the training and validation sets for the thighs, and of 0.95 and

0.93 on the training and validation sets for the legs, compared to the manually

segmented reference ROIs. On the test dataset, an average DSC of 0.88 and

0.87 is found for the thighs of subjects with mild and severe fat replacement

respectively, whereas a value of 0.93 is found for the legs of the subjects in both
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subgroups. We hypothesize that the leg segmentation network we used actually

performed better with respect to the thigh segmentation due to a minor variance

in the available manually segmented slices along the scanned volume.

The accuracy level obtained by our network was comparable with results

obtained by deep neural networks applied to discriminate between different

tissues (i.e. fat, muscle tissue, etc.) found in the literature. Such studies

which used deep learning methods to discriminate thigh and leg tissues from

MRI scans obtained very high accuracy performances, namely DSC of 0.97,

0.94 and 0.80 (Anwar et al. 2020) and 0.96, 0.92 and 0.93 (Amer et al. 2019)

for muscle, fat and inter-muscular adipose tissue respectively. In our study,

however, as in Ding et al. 2020 we used a different approach as we started

from ground truth segmentation of muscles based on their anatomy, resulting

in a network capable of replicating the manual segmentation of muscles ROIs

done by hand. As muscle MRI studies and also clinical trials often concentrate

on single slices or restricted group of muscles as focus for their analysis, the

possibility to quantify muscle tissue parameters on a single-muscle level is, in

our opinion, of more practical interest. For what concerns tissue segmentation

of selected muscles (ROI-based approach), Ding et al. 2020 found average DSC

values of 0.85–0.93 for the single thigh muscles considered, with the lowest value

corresponding to the smallest muscle, while DSC values of 0.78–0.97 have been

reported in Renkun et al. 2019 for small and large muscles respectively. Even if

our work exploits 2D slices it reaches results similar to the 3D network topology

reported in Renkun et al. 2019, with the advantage to train only one network for

all thigh’s muscles and only one for all leg’s muscles in contrast to Renkun et al.

2019 in which the authors train individual networks for each target muscles.

As explained in the Methods, the network was trained on the augmented

dataset by means of a stochastic gradient descent method, with a schedule of

the learning rate to overcome plateau domains of the loss objective functionals.

The hyperparameters of the networks were chosen in advance by solving an

adaptive optimization problem based on monitoring the DSC on the validation

dataset. The proposed supervised training algorithms converged with an
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overall monotone behavior to a local minimum for each component networks,

proving robustness of the learning process. We cross-validated the networks

performances on a validation set of unseen slices, which were excluded from the

training dataset, and we tested their performances on a test dataset of unseen

subjects, obtaining very high DSC values between the human and network

generated segmentations, in the order of 90%.

In addition to this our classification network obtained a 100% accuracy,

both over the training and validation datasets, in classifying between the thigh

or leg geometry. This paves the way to a consistent extension of our deep

learning network to automatically segment proper labels for different anatomical

districts, once the classifier is also trained on a properly adapted dataset from

different sequences with different contrast and resolutions.

One secondary aim of our study was to evaluate whether the performance

of our DNN was affected by the different level of muscle involvement (i.e

more or less fat replaced muscles) in the subjects. We found that when

evaluating subjects with mild disease involvement, our DNN showed a high

level of accuracy, comparable to that of previous tissue discriminating networks

and also to the previous experience of Ding et al. 2020 and Renkun et al. 2019.

Differently from the reported literature and due to the subjects’ variability in

our data set (control subjects and subjects affected by different diseases), a high

level of accuracy was also obtained by our DNN when evaluating subjects with

the most severe disease involvement.

The current study had some limitations. First, since ground truth

segmentations were available only on selected slices of the MRI volume stack (see

Sect. III.2.3), the DNN performance on the other slices that were unseen during

the training process is lower than on selected slices, and manual corrections were

needed on the DNN generated segmentations on unseen slices in the overall

subject volumes. Second, the DNN was trained and tested only on the available

thigh and leg datasets, achieving high accuracy performances, but an external

validation and eventually incremental training on independent datasets acquired

with different sequence parameters or even different sequences or systems
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would be further needed to ensure the reproducibility of our segmentation

tool to clinical practice. Also no evaluation was performed on data from

healthy volunteers. As a future development, incremental learning will be

used to incorporate information from other contrasts and thus aim at a higher

generalizability of the model.

Subject Thigh DSC Leg DSC
Subject A
Subject 1 0.8041 0.9018
Subject 2 0.8063 0.8954
Subject 3 0.8058 0.9084
Subject 4 0.8113 0.9005

Subject B
Subject 1 0.7514 0.8383
Subject 2 0.7546 0.8529
Subject 3 0.7520 0.8447
Subject 4 0.7327 0.8390

Table III.4: DSC for the 4 additional slices for Subject A and Subject B

III.5 Conclusion

In this study, we explored the applicability of deep neural networks in ROI draw-

ing of muscles of the lower limbs, with promising results in terms of accuracy

compared to the standard manual reference currently in use. The application of

neural networks to substitute or at least greatly accelerate the work of human

operators in ROI drawing can be extremely helpful in clinical studies, where a

large amount of data have to be analyzed. Once reliable dedicated datasets of

muscle ROIs are collected, deep neural networks can be promisingly applied for

segmentation of other sequences with different contrast and image resolution

and also to different anatomic districts.
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Part 2

Kinetic Theory and

Uncertainties Quantification

for Tumor Growth





Introduction

Tumor formation and evolution is the result of different and complex multistep

processes. The latter starts with unrepaired DNA damages or epigenetic

alteration (a mutation in the expression of a gene) caused by environmental

and genetic factors that lead to genome alteration and abnormal proliferation

of a single cell in absence of apoptosis (Frank 2018). Cell proliferation drives

the outgrowth of a population clonally derived from the initial mutated cell

(Cooper, Hausman, and Hausman 2007). Then, tumor progression is sustained

by additional mutations within cells which confer selective advantages, such as

more rapid-growing and increasingly malignant characteristics.

In the past decades, several mathematical models have been developed to

describe and predict the growth trend of the tumor progression. The goal of

these efforts is to aid in the understanding of the root causes of solid tumor and

metastasis, in the explanation of experimental and clinical observations for the

purpose of finding new treatment strategies, which could eventually optimize

therapy protocols and minimize patient suffering (Cristini and J. Lowengrub

2010, J. S. Lowengrub et al. 2009). The easiest but still most used way to model

the cancer growth law or rather the evolution in time of the tumor volume is

by ordinary differential equations (ODEs), usually named according to the form

of the right-hand side, e.g. Malthus(i.e., the exponential growth law), Verhulst

(i.e., logistic growth law), Gompertz, Von Bertalnffy and West (see Marušić,

Vuk-Pavlovic, and Frejer 1994; West, Brown, and Enquist 2001; Wodarz and

Komarova 2014). Most of these models show a similar sigmoidal trend with

an asymptotic tendency to an equilibrium due to the presence of a carrying

capacity (Preziosi, Toscani, and Zanella 2021). The definition of the model

parameters is obtained through an optimization procedure in a way that the
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resulting trajectory of the models fit the collected experimental and clinical data.

More recent works approach the description from different representation scales:

discrete models focus on microscopic and mesoscopic scale, continuum model on

macro scale and the hybrid ones combine both previous representations. For

further details see Preziosi, Toscani, and Zanella 2021. Despite all the refined

mathematical models used for studying cancer evolution there is no unanimous

consensus on the type of growth law that is more appropriate to fit data and

describe the tumor dynamics, with stochasticity often driving the difference

among the predicted evolution associated to different models.

Rather than modeling the tumor with a stochastic version of the ODE

growth models, we can describe it as an emerging collective and self-organized

phenomenon whose behavior is the result of interactions at the microscopic

level. In particular, we can consider the tumor as an ensemble of identical copies

of the initial mutated cell, which interact mutually and with the surrounding

environment. This approach allows us to take advantage of concepts and

methods of the statistical physics and in particular of the kinetic theory of the

rarefied gases (Pareschi and Toscani 2013). Previous approaches in this direction

could be found in Perthame 2006. The growth of the tumor volume is described

in terms of distribution function. The temporal evolution of such distribution is

the result of elementary interactions occurring at cellular level and characterized

by a transition function which takes into account both random fluctuation and

environmental influence, while being coherent with known microscopic ODE

models for tumor growth. The microscopic system can be described through a

Boltzmann-type equation expressing the thermalization of the particles towards

an equilibrium distribution. The latter is the solution of a Fokker-Planck-type

equation, obtained considering the grazing limit of the Boltzmann equation.

Therefore, kinetic equations allow us studying the emergent behavior of tumor-

complex-system and the spontaneous formation of spatio-temporal structures

as result of local interactions. This also means that the statistical behaviour of

the system is manly related to the way agents interact and not to their internal

complex structure.
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The equilibrium distribution shows heterogeneous steady behavior according

to different regimes of transition function parameters that translate in terms of

different tails distribution decay. In particular, it is contemplated the steady

solution of a generalized Gamma density function with slim tail, i.e. by an

exponential decay, in the suitable limit of a transition function related to logistic-

type growth and an Amoroso-type distribution with polynomial decay, i.e., fat

tail, in the case in which transition law is related to Von-Bertalanffy growth-

type. Indeed, a lognormal-type of equilibrium with slim tail is associated to

a Gompertz growth law. From a phenomenological point of view a fat-tailed

distributions can take into account the possibility of having higher probability

of finding large tumor.

In paper IV we also introduce a more realistic description that incorporates

uncertainties in the tumor dynamics in order to take into account the proper

body-response and the different clinical history of each patient. From a mathe-

matical point of view, the introduced uncertainties at the cellular level translate

into an increased dimensionality of the resulting kinetic problem that also af-

fects the statistical equilibrium state. Consequently, the average behaviour of

the tumor is the result of the superposition of different dynamics produced by

different values of the variable associates to this extra dimensionality. In this

scenario, we model therapies as a control, a deterministic external action that

acts as an instantaneous correction of the microscopic interaction. The dumping

of structural uncertainties of the system is achieved at macroscopic level. This

is supported by the implementation of suitable numerical methods, based on

stochastic Galerkin formulation of the resulting kinetic equations.

Thanks to the multiscale proprieties of the proposed model, we have the

possibility to make a connection between cellular dynamics and observable

patterns in a group of patient and so to calibrate the resulting kinetic model

by means of experimental data. To validate theoretical and simulated results of

the model we compared the patient tumor volume with the expected values

of the first order momentum of the obtained distribution function, that is

the expected dimension of the tumor volume predicted by the model. In our
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work IV, we consider the particular case of the very aggressive glioblastoma

tumor, characterized by invasive cell migration, phenotypic plasticity, infiltrative

growth morphologies (Alfonso et al. 2017), robust angiogenesis mostly through

the white matter and genomic instability (Furnari et al. 2007). To construct

the validating dataset, thus to estimate tumor volume at different time points

for each subjects, we take advantage of the magnetic resonance imaging (MRI).

More precisely we use the T1-weighted 3D MRI with contrast agent. This MRI

sequence, exploiting the spin-lattice interactions, allows differentiating tissue

type and anatomical structure on the base of longitudinal relaxation time.

Therefore, the combination of mathematical modelling through the kinetic

theory and the extraction of information from magnetic resonance imaging give

us the possibility to deal, from a different perspective, with the studying and

prediction of the tumor volume evolution and to mimic the action of therapies

in shrinking the tumor dimension towards a defined target volume.
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Paper IV

Uncertainty quantification and

control of kinetic models of tumour

growth under clinical uncertainties
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Abstract

In this work, we develop a kinetic model for tumour growth taking into

account the effects of clinical uncertainties characterising the tumours’

progression. The action of therapeutic protocols trying to steer the

tumours’ volume towards a target size is then investigated by means of

suitable selective-type controls acting at the level of cellular dynamics. By

means of classical tools of statistical mechanics for many-agent systems,

we are able to prove that it is possible to dampen clinical uncertainties

across the scales. To take into account the scarcity of clinical data

and the possible source of error in the image segmentation of tumours’
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evolution, we estimated empirical distributions of relevant parameters

that are considered to calibrate the resulting model obtained from real

cases of primary glioblastoma. Suitable numerical methods for uncertainty

quantification of the resulting kinetic equations are discussed and, in the

last part of the paper, we compare the effectiveness of the introduced

control approaches in reducing the variability in tumours’ size due to the

presence of uncertain quantities.

Keywords: kinetic modelling; tumour growth; uncertainty quantification; opti-

mal control
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IV.1 Introduction

The processes of tumour formation are highly complex phenomena involving

different stages starting from damages in the DNA molecules leading to harmful

mutations in the cell’s genome that are not repaired in absence of cellular

apoptosis. This mechanism leads to an unregulated mitosis and then to the

formation of tumours. These mutations may be triggered by many aspects,

including both environmental and genetic factors, see (Frank 2007; Grizzi and

Chiriva-Internati 2006; Langer et al. 1980).

In the last decades, extensive research efforts have been devoted to the

mathematical formalisation of tumour growth dynamics and to the formalisation

of growth factors, see e.g. (Albano and Giorno 2006; Gerlee 2013; Henscheid

et al. 2018; Leory-Lerêtre et al. 2017; Nobile and Ricciardi 1980; Rodriguez-

Brenes, N. J. Komarova, and Wodarz 2013; Roose, J. Chapman, and Maini

2007). Among the easiest way to describe these biological phenomena can be

found in the literature of population dynamics to describe the evolution in

time of the volume of a tumour. This modelling approach is based on first

order ODEs that are named according to the form of the right-hand side.

Leading examples are Gompertz and von Bertalanffy models. More recently,

West and collaborators proposed a variation to the von Bertalanffy model in

(G. B. West, Brown, and Enquist 2001). It is worth mentioning that there is

no unanimous consensus on the most appropriate modelling setting and several

proposals have been introduced to better describe these dynamics. In particular,

in (Preziosi, G. Toscani, and Zanella 2021) the authors proposed a statistical

approach based on kinetic theory to describe the growth of tumour cells in

terms of the evolution of a distribution function. The temporal variation of

such distribution is considered as a result of elementary transitions occurring at

the cellular level which takes environmental cues and random fluctuations into

account. The expected cellular variations are coherent with the mentioned ODE-

based models in suitable limits. Furthermore, through the explicit computation

of the equilibrium states of the resulting Fokker-Planck-type equation, we get
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additional information on the decay of the tails. In particular, it is shown that

von Bertalanffy-type models lead to fat tailed distributions of the volumes of

tumours, whereas Gompertz-type models are linked to slim tailed distributions.

The mathematical understanding of the behaviour of the tails is essential to

quantify the probability of having tumours growing to sizes that are harmful to

the human body. Existing kinetic models for statistical growth dynamics are

linked to cell mutations (Kashdan and Lorenzo Pareschi 2012; Giuseppe Toscani

2013). In Particular, in recent years a huge literature on mathematical modeling

for glioma growth have been developed, (see Conte and Surulescu 2021; Engwer

et al. 2015; Painter and Hillen 2013) and the references therein.

Even if the mathematical simplicity of ODE-based modelling allows to

handle more efficiently parameter estimation tasks, see e.g. Benzekry et al.

2014; Marušić, Vuk-Pavlovic, and Frejer 1994; Norton 1988; J. West and Newton

2019; Wheldon. 1988; Wodarz and N. Komarova 2014, the models based on

partial differential equations are capable to describe the phenomenon under

study in a statistical way (Loy and Preziosi 2020; Preziosi, G. Toscani, and

Zanella 2021) or highlighting the mechanical properties of the tissues, see e.g.

Agosti et al. 2018; Giverso and Preziosi 2019. Furthermore, the lack of accurate

clinical data introduces many sources of uncertainties stemming out at various

levels of observation when facing the progression of human cancer. To mention

a few, the main limitation consists in a limited set of observations due to

clinical constraints. The second one may arise from the manual corrections

of 3D semi-automatic tumours segmentation. The third comes from the fact

that the evolution may differ strongly from one individual to another, since

in each host the response of the body is influenced by many factors, like the

clinical history of a patient. For these reasons, to produce effective predictions

and to better understand the physical phenomena under study, we incorporate

ineradicable uncertainties in the dynamics from the beginning of the modelling.

The introduction of uncertain quantities points in the direction of a more

realistic description of the underlying processes and helps us to compute possible

deviations from the prescribed deterministic behaviour.
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Once established the emerging distribution of the kinetic model in presence

of uncertain quantities we further propose a robust approach to steer the system

towards a prescribed target to mimic implementable therapeutic protocols. The

control is here conceived as an additional external dynamics depending on the

state of the system. The proposed control setting has roots in Boltzmann-

type controls proposed in Albi, Fornasier, and Kalise. 2016; Albi, Herty, and

L. Pareschi 2015; Albi and L. Pareschi 2018; Albi, L. Pareschi, and Zanella

2014 where an optimal control problem is solved at the microscopic level

and then studied at the mesoscopic scale through classical methods of kinetic

theory (Cercignani 1988; L. Pareschi and G. Toscani 2013). This approach has

connections with classical approaches for the control of mean-field equations,

see Bensoussan, Frehse, and Yam 2013. Aside from the mentioned methods,

the control of emergent behaviour has been studied also on the level of the

microscopic agents, see e.g. Bailo et al. 2018, as well as fluid–dynamic equations.

The contributions have to be further distinguished depending on the type

of applied control. Without intending to review all literature we give some

references on certain classes of control, e.g. sparse control (Fornasier, Piccoli,

and Rossi 2014), Nash equilibrium control (Degond, Herty, and Liu 2017),

control using linearised dynamics and Riccati equations (Herty, Steffensen, and

L. Pareschi 2015).

In the proposed setting, we discuss analytical properties of the asymptotic

regime highlighting that a damping of structural uncertainties of the system

is achieved at the macroscopic/observable level. Furthermore, the proposed

approach is genuinely multiscale since it makes it possible to bridge actions on

the individual cellular-based dynamics to observable patterns in the cohort of

patients. In a different context, the asymptotic properties of such controls have

been investigated in Tosin and Zanella 2021.

From the mathematical viewpoint, the introduction of such clinical uncer-

tainties translates in an increased dimensionality of the resulting kinetic problem

whose equilibrium depends on all the uncertainties introduced at the cellular

level. The construction of numerical schemes for the resulting equations needs
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to guarantee spectral convergence on the random field under suitable regularity

assumptions together with the preservation of the main physical properties of

the model, see e.g. Carrillo, L. Pareschi, and Zanella 2019; Carrillo and Zanella

2019; L. Pareschi and Zanella 2020; Xiu 2010.

In more details, the paper is organised as follows: in Section [IV.2] we

introduce the kinetic model of interest and we discuss the role of the uncertain

parameters present at the level of the transition function. Hence, we briefly

derive in the quasi-invariant limit reduced order models of Fokker-Planck-type

from which large time distributions are explicitly computable. In Section [IV.3]

we introduce a hierarchical control protocol with the aim to steer the tumour’s

size towards a prescribed size through the minimisation of two possible cost

functionals. The emerging macroscopic properties of the introduced approach

is then discussed together with their interplay with the model uncertainties.

In Section [IV.4] we face the calibration of the model with real clinical data

provided and in Section [IV.5] we introduce suitable numerical strategies to

deal with uncertainty quantification of Boltzmann-type and Fokker-Planck-type

equations.

IV.2 Kinetic modelling of tumour growth dynamics with

clinical uncertainties

Let us characterise the microscopic state of an evolving tumour by means of

a variable x ∈ R+ representing the volume of the tumour. Furthermore, we

collect all the source of uncertainties of the dynamics in the random vector

z = (z1, . . . , zd) ∈ Rd whose distribution is ρ(z), i.e.

P[z ∈ A] =
∫

A

ρ(z)dz,

for any A ⊆ Rd. In details, for any fixed z, if X(z, t) is a random variable

expressing the volume of the tumour, the probability density associated to

X(z, t) is f(z, x, t) and f(z, x, t)dx is the fraction of tumours that, at time

t ≥ 0, are characterised by a volume between x and x + dx. It is worth to
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mention that the knowledge of the evolution of f(z, x, t) allows to compute the

evolution of macroscopic quantities that are given by∫
R+

φ(x)f(z, x, t)dx,

where φ is a test function. We can observe that the macroscopic quantity of

interest still depends on the introduced uncertainties.

In details, for a given volume x ∈ R+ of cancer cells, we characterise an

elementary variation x → x′ as follows

x′ = x + Φϵ
δ(x/xL, z)x + xηϵ, ϵ ≪ 1. (IV.1)

where Φϵ
δ is a transition function taking into account variations due to

environmental cues and which depends on the tumour size x and on additional

clinical uncertainties expressed by the random vector z ∈ Rd characterising

the lack of knowledge of parameters. The quantity xL = xL(z) > 0

is a characteristic patient-based tumour size, e.g. the carrying capacity.

Furthermore, in (IV.1) the random variable ηϵ takes into account unpredictable

changes in the transition dynamics and such that ⟨ηϵ⟩ = 0 and ⟨η2
ϵ ⟩ = ϵσ2, where

⟨·⟩ denotes the expectation with respect to the distribution of ηϵ. Therefore,

in a single transition the tumour’s size can be modified by two multiplicative

mechanisms parametrised by the positive constant ϵ ≪ 1 and by the uncertain

parameter δ = δ(z) ∈ [−1, 1] influencing the considered type of growth.

IV.2.1 Transition functions

The transitions characterising the proposed elementary growths should be

considered arbitrary small. For this reason, coherently with Preziosi, G. Toscani,

and Zanella 2021, we require that Φϵ
δ is of order ϵ and that

lim
ϵ→0+

Φϵ
δ(x/xL, z)

ϵ
= Φδ(x/xL, z).

Having in mind this requirement we now characterise a general transition

function that is coherent with known microscopic models for tumour growth.
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We consider

Φϵ
δ(y, z) = µ

1 − eϵ(yδ−1)/δ

(1 + λ)eϵ(yδ−1)/δ + 1 − λ
, y = x

xL
(IV.2)

where we introduced the uncertain parameters µ = µ(z) ∈ (0, 1) and λ = λ(z) ∈

[0, 1) characterising birth and death rates of tumour cells in a single transition

since, independently on ϵ ≪ 1, we have

− µ

1 + λ
≤ Φϵ(x/xL, z) ≤ µ

1 − λ
.

In absence of fluctuations, we have x′ > x when x < xL for all values of the

parameter δ. In terms of δ, the transition function do not behave in the same

way in the region x < xL. As highlighted in Giacomo Dimarco and Giuseppe

Toscani 2020; Preziosi, G. Toscani, and Zanella 2021, the transition function

Φϵ
δ with δ > 0 is increasing convex for all x ≤ xL, whereas it is concave in an

interval [0, x̄], x̄ < xL and then convex for δ < 0. A compatibility condition

for the elementary variations (IV.1) with the transition functions (IV.2) is that

x′ remains in R+. This can be guaranteed by imposing the following sufficient

condition on the fluctuation ηϵ. In particular, by considering for any z ∈ Rd a

random variable such that

ηϵ ≥ −1 + max
z∈Rd

µ

1 + λ
,

the post-transition size x′ is positive.

It is worth to remark that in the limit ϵ → 0+ we have

Φϵ(x/xL, z) ≈ ϵµ
(yδ − 1)/δ

(1 + λ)ϵ(1 − yδ)/δ + 2 , y = x

xL

which implies

lim
ϵ→0+

Φϵ(x/xL, z)
ϵ

= µ

2δ

(
1 −

(
x

xL

)δ
)

.

Therefore, the proposed transition function is coherent in the limit ϵ → 0+

with existing models for the description of tumour growth. In particular, if we

consider the following first order Bernoulli differential equation

d

dt
x(z, t) = µ

2δ

(
1 −

(
x(z, t)

xL

)δ
)

x(z, t), (IV.3)
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in the limit δ → 0 we recover Gompertz growth dynamics since (IV.3)

corresponds to
d

dt
x(z, t) = −µ

2 log
(

x(z, t)
xL

)
x(z, t), (IV.4)

whereas for any δ < 0 we recover von Bertalanffy dynamics of the form

d

dt
x(z, t) = px(z, t)δ+1 − qx(z, t), (IV.5)

with q = q(z) = − µ

2δ
, p = p(z) = − µ

2δxδ
L

. It can be easily observed that for

any δ > 0 we recover logistic-type growth that are not of limited interest in the

present context.

Remark IV.2.1. The dynamics described by (IV.3) are coherent with the

expected transition scheme (IV.1). Indeed, if we introduce a forward time

discretisation with time step ∆t > 0 from (IV.3) we get

xn+1(z) = xn(z) + ∆t
µ

2δ

(
1 −

(
xn(z)

xL

)δ
)

xn(z),

where xn(z) = x(tn, z) and tn = n∆t, n ∈ N. Hence, by identifying ∆t = ϵ we

can recognise the transition scheme in (IV.1).

IV.2.2 Kinetic models and equilibria

Let f = f(z, x, t) be the distribution function of cells of size x ∈ R+ at time

t ≥ 0 and depending on the epistemic uncertainties collected in z. The evolution

of f is then given by the following kinetic equation

∂tf(z, x, t) = QG(f)(z, x, t), (IV.6)

where the transition operator QG(·)(z, x, t) is defined as follows

QG(f)(z, x, t) =
∫
R+

1
′J

f(z, ′x, t)dx − f(z, x, t), (IV.7)

being ′x the pre-transition state and ′J is the absolute value of the Jacobian of

the transformation from the pre-transition state ′x to the state x.The kinetic
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equation (IV.6) can be fruitfully written in weak form to evaluate the evolution

of observable quantities as follows

d

dt

∫
R+

φ(x)f(z, x, t)dx =
∫
R+

⟨φ(x′) − φ(x)⟩f(z, x, t)dx, (IV.8)

where φ is a smooth function. Since the computation of equilibrium distribution

of (IV.6) is very hard it is convenient to resort to a surrogate model with

which we can analytically obtain the large type distribution of the studied

phenomenon. This approach is defined as quasi-invariant limit and it has roots

in the grazing limit of kinetic theory. Several applications of this approach

have been employed in recent years for the statistical description of collective

phenomena, see L. Pareschi and G. Toscani 2013; G. Toscani 2006 for an

introduction. In the following we briefly recall the derivation of Fokker-Planck-

type equations from (IV.6) thanks to a quasi-invariant limit technique.

We may observe that for ϵ ≪ 1 the difference x′ − x is small and we can

perform the following Taylor expansion up to order three

φ(x′) − φ(x) = (x′ − x)dφ(x)
dx

+ 1
2(x′ − x)2 d2φ(x)

dx2 + 1
6(x′ − x)3 d3φ(x̄)

dx3 ,

with x̄ ∈ (min{x, x′}, max{x, x′}). Since x′ −x = Φϵ
δ(x/xL, z)+xηϵ we can plug

this expression in (IV.8) to obtain

d

dt

∫
R+

φ(x)f(z, x, t)dx =
∫
R+

Φϵ
δ(x/xL, z)

ϵ
xf(z, x, t)dφ(x)

dx
dx

+ σ2

2

∫
R+

x2f(z, x, t)d2φ(x)
dx2 dx + Rφ(f)(z, x, t),

(IV.9)

where we have exploited the fact that ⟨ηϵ⟩ = 0 and we have defined the rest

Rφ(f)(z, x, t) as

Rφ(f)(z, x, t) :=1
2

∫
R+

(Φϵ
δ(x/xL, z))2

ϵ
x2f(z, x, t)d2φ(x)

dx2 dx

+ 1
6

∫
R+

⟨Φϵ
δ(x/xL, z)x + xηϵ⟩3

ϵ
f(z, x, t)d3φ(x)

dx3 dx.
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Assuming that the third order moment of ηϵ is bounded, i.e. ⟨|ηϵ|3⟩ < +∞,

thanks to the smoothness of φ we have

|Rφ(f)(x, t, z)| ≲ ϵ + ϵ2 + ϵ +
√

ϵ,

where we use the notation a ≲ b to mean that there exists a constant K > 0

such that a ≤ Kb. Hence, in the limit ϵ → 0+ we have |Rφ(f)(z, x, t)| → 0, for

every x ∈ R+, t > 0 and z ∈ Rd. As a consequence, if we introduce the new

time scale τ = ϵt, for ϵ ≪ 1, such that f(z, x, τ) = f(z, x, τ/ϵ) and we observe

that d
dt = ϵ d

dτ , the model defined in (IV.9) for ϵ → 0+ converges to

d

dτ

∫
R+

φ(x)f(z, x, τ)dx =
∫
R+

Φδ(x/xL, z)xf(z, x, τ)dφ(x)
dx

dx

+ σ2

2

∫
R+

x2f(z, x, τ)d2φ(x)
dx2 dx,

where

Φδ(x/xL, z) = µ

2δ

(
1 −

(
x

xL

)δ
)

. (IV.10)

Hence, integrating back by parts we obtain the following Fokker-Planck-type

equation with uncertainties

∂τ f(z, x, τ) = ∂x

[
−Φδ(x/xL, z)xf(z, x, τ) + σ2

2 ∂x(x2f(z, x, τ))
]

. (IV.11)

provided that for all τ ≥ 0 the density f(z, x, τ) satisfies the following no-flux

boundary condition

−Φδ(x/xL, z)xf(z, x, τ) + σ2

2 ∂x(x2f(z, x, τ))
∣∣∣∣∣
x=0

= 0. (IV.12)

Thanks to the obtained surrogate model we can study the large time

behaviour of the system. In particular, the model (IV.11) with no-flux boundary

condition (IV.12) admits a unique equilibrium distribution f∞(z, x) that is

solution to

−Φδ(x/xL, z)xf∞(z, x) + σ2

2 ∂x(x2f∞(z, x)) = 0.

see Risken 1996. In view of (IV.10) we have

f∞(z, x) = Cµ,σ2,xL
(z)
(

x

xL

) µ

σ2δ
−2

exp
{

− µ

σ2δ

((
x

xL

)δ

− 1
)}

, (IV.13)
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with Cµ,σ2,xL
> 0 a normalisation constant.

In particular, we highlight that the two reference microscopic models we

consider, corresponding to the choices δ < 0 and δ → 0, generate slight different

equilibria. In particular, the Gompertzian growths, obtained in the limit δ → 0,

generates at the equilibrium the lognormal distribution

f∞(z, x) = 1√
2γπx

exp
{

− (log x − k)
2γ

}
,

with γ = γ(z) = σ2/µ(z) and k = k(z) = log xL(z) − γ(z). This distribution

is characterised by slim tails with exponential decay. On the contrary, von

Bertalanffy-type growths, obtained from (IV.2) with −1 ≤ δ(z) < 0, are

associated to Amoroso-type distributions

f∞(z, x) = |δ|
Γ(k/|δ|)

θk

xk+1 exp
{

−
(

θ

x

)|δ|
}

,

k(z) = 1
γ|δ|

+ 1, θ(z) = xL(z)
(

1
γδ2

)1/|δ|

,

where again γ = γ(z) = σ2/µ(z). It is important to remark that the emerging

equilibrium distribution in the case δ < 0 exhibits fat tails with polynomial

decay. From a phenomenological point of view this is a substantial difference,

since fat-tailed distributions are associated to a higher probability that the

tumour is large. We point the interested reader to Preziosi, G. Toscani, and

Zanella 2021 for more details.

IV.3 Observable effect of therapeutic protocols

In the following, we interface the natural growth mechanisms under clinical

uncertainties with a superimposed therapeutical protocol that seeks to steer

tumours’ size towards a prescribed target. Hence, at each transitions, the

tumours’ size is influenced by two competing dynamics, the first characterised

by the uncertain growth, and the second by therapeutical protocols. In details,

to determine measurable effects of therapies on growth dynamics, we include a

deterministic external action as an instantaneous correction of the microscopic
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interaction. In details, we distinguish two types of volume updates acting on

the tumour growth:

i) the first is based on the transition law discussed in (IV.1)

ii) the second is the therapy that acts in reducing the volume of the tumour

x′′ = x + ϵS(x)u, (IV.14)

where u ∈ U , where U is the set of admissible controls such that x′′ ≥ 0

and u is a control defined such that

u = arg min
u∈U

J(x′′, u), (IV.15)

subject to the constraint (IV.14). We consider also a cost function of the

form

J(x′′, u) = (x′′ − xd)2 + ν|u|p, (IV.16)

with ν > 0 a penalisation coefficient and xd > 0 the desired tumours’ size

reachable with the implemented therapeutical protocol. The function S(·)

acts selectively with respect to the tumour size.

In the introduced framework, we highlight that the control obtained from

(IV.15) subject to (IV.14) is indipendent on z. Furthermore, it is worth to

remark that the typical choices for the cost function (IV.16) are obtained for

p = 1, 2. More general convex functions may be considered leading often to

problems that are not analytically treatable. Furthermore, in the following we

will concentrate on three possible selective functions S(x) = 1,
√

x.

The kinetic equation expressing the control strategy defined in (IV.1) and

in (IV.14) is as a sum of transition operators

∂tf(z, x, t) = QG(f)(z, x, t) + QC(z, x, t), (IV.17)

where QG(·) has been defined in (IV.7) and the influence of therapeutical

protocols on the dynamics is expressed by the new operator QC(·) whose strong

formulation is given by

QC(f)(z, x, t) =
∫
R+

1
′′J

f(z,′′ x, t)dx − f(z, x, t), (IV.18)
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with ′′J the the absolute value of the Jacobian of the transformation from ′′x

to x. Under suitable hypotheses is possible to obtain explicit formulation of the

operator QC(·) by solving the control problem (IV.15) in feedback form at the

cellular level. As before equation (IV.17) can be fruitfully rewritten in weak

form

d

dt

∫
R+

φ(x)f(z, x, t)dx =
∫
R+

⟨φ(x′) − φ(x)⟩ f(z, x, t)dx+
∫
R+

(φ(x′′)−φ(x))f(z, x, t)dx.

(IV.19)

The evolution of macroscopic quantities in the constrained setting is determined

by suitable choices of the test function φ. In the following we will consider two

main cases based on the minimisation of the cost (IV.16) with p = 1, 2.

IV.3.1 The case p = 2

Let us consider p = 2 in the cost function (IV.16). The minimisation of (IV.15)

can be classically done by resorting to a Lagrangian multiplier approach. We

recall for related approaches the works Albi, Herty, and L. Pareschi 2015; Albi,

L. Pareschi, and Zanella 2014. We consider the Lagrangian

L(u, x′′) = J(x′′, u) + α[x′′ − x − ϵS(x)u], (IV.20)

where α ∈ R is the Lagrange multiplier associated to the constraint (IV.14).

Hence, the optimality conditions are the following
∂

∂u
L(x′′, u) = 2νu − αϵS(x) = 0

∂

∂x′′ L(x′′, u) = 2(x′′ − xd) + α = 0,

whence we find the optimal value

u∗ = −S(x) ϵ

ϵ2S2(x) + ν
(x − xd). (IV.21)

Therefore, plugging the optimal control (IV.21) defined at the cellular level into

(IV.15), we obtain the controlled transition

x′′ = x − ϵ2S2(x)
ϵ2S2(x) + ν

(x − xd).

122



In this way we can study the evolution of the kinetic distribution function

solution of (IV.17)-(IV.18) through standard methods of kinetic theory. In

details, we will study the evolution of observable quantities in presence of

uncertain quantities. The interplay of the introduced control with epistemic

uncertainties is of paramount importance to define robust protocols.

IV.3.1.1 Main properties

We define the first order moment m(z, t) and the second order moment E(z, t),

or energy, respectively as

m(z, t) =
∫
R+

xf(z, x, t)dx

E(z, t) =
∫
R+

x2f(z, x, t)dx,

whose evolutions are obtained by considering φ(x) = x, x2 in (IV.19).

A convenient insight on the evolution of the first order moment m(z, t) can

be obtained by scaling ν = ϵκ, κ > 0. Under the introduced hypotheses we get

d

dt
m(z, t) = 1

ϵ

〈∫
R+

(Φϵ
δ(x/xL, z)x + xηϵ)f(z, x, t)dx

〉

−
∫
R+

S2(x)
ϵS2(x) + κ

(x − xd)f(z, x, t)dx.

Therefore, in the time-scale τ = ϵt, by indicating m(z, τ) = m(z, t/ϵ), we get in

the limit ϵ → 0+

d

dτ
m(z, τ) =

∫
R+

Φδ(x/xL, z)xf(z, x, τ)dx −
∫
R+

S2(x)
κ

(x − xd)f(z, x, τ)dx.

Arguing as before for the energy E(z, t) in the case of zero diffusion, i.e., with

ηϵ ≡ 0 in (IV.1), we obtain

d

dτ
E(z, τ) =

∫
R+

Φδ(x/xL, z)x2f(z, x, τ)dx −
∫
R+

S2(x)
κ

x(x − xd)f(z, x, τ)dx.

Assuming f(z, x, t) ∈ L1(R+) it is possible to show that the model (IV.19)

has an unique equilibrium distribution f∞(z, x), we point the interested reader
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to L. Pareschi and G. Toscani 2013 (Proposition 2.1). Hence, under the

introduced regularity assumption, we can obtain some information on the large

time behaviour of the first and second order moment, corresponding to the

quantities m∞(z) and E∞(z). In the following we discuss the effect of the

introduced control by considering different selective functions:

a) if S(x) = 1 the asymptotic mean is solution of the following identity∫
R+

Φδ(x/xL, z)xf∞(z, t)dx = 1
κ

(m∞(z) − xd).

Note that since Φδ is bounded for all z ∈ Rd by the following uncertain

quantities

− µ

1 + λ
≤ Φδ ≤ µ

1 − λ

we have∣∣∣∣∣
∫
R+

Φδ(x/xL, z)xf∞(z, t)dx

∣∣∣∣∣ ≤
∫
R+

|Φδ(x/xL, z)| xf∞(z, t)dx ≤ µ

1 − λ
m∞(z).

(IV.22)

Hence, the following inequality holds

1
κ

|m∞(z) − xd| ≤ µ

1 − λ
m∞(z),

whose solution is such that

1 − λ

1 − λ + κµ
xd ≤ m∞(z) ≤ 1 − λ

1 − λ − κµ
xd

provided κ < minz∈Rd
1−λ

µ . We easily observe that in the limit κ → 0+

corresponding to vanishing penalisation of the control the large time mean

size is such that m∞(z) → xd. In other words, we have

− κµ

1 − λ + κµ
xd ≤ m∞(z) − xd ≤ κµ

1 − λ − κµ
xd,

and

|m∞(z) − xd| ≤ κµ

1 − λ − κµ
xd. (IV.23)
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Let us assume that σ2 = 0. Then, the second order moment is such that∫
R+

Φδ(x/xL, z)x2f∞(z, t)dx = 1
κ

(E∞(z) − m∞(z)xd).

We note that∣∣∣∣∣
∫
R+

Φδ(x/xL, z)x2f∞(z, t)dx

∣∣∣∣∣ ≤
∫
R+

|Φδ(x/xL, z)| x2f∞(z, t)dx ≤ µ

1 − λ
E∞(z),

since Φδ is bounded for all z ∈ Rd, as we observed before. Consequently,

we have

E∞(z) − m∞(z)xd ≤ κµ

1 − λ
E∞(z),

that is

E∞(z)
(

1 − κµ

1 − λ

)
≤ m∞(z)xd.

Since in the limit κ → 0+ we have observed that m∞(z) → xd we can

write

E∞(z) − (m∞(z))2 ≤ 0.

We observe also that E∞(z) − (m∞(z))2 ≥ 0 by definition, since it is the

variance of the random variable X ∼ f∞(z, x). In other words, in the

limit κ → 0+ we have Varf∞ [X] → 0, that is, the equilibrium distribution

tends to a Dirac delta centred in x = xd.

b) We consider now the case S(x) =
√

x corresponding to a heavier control

on large sized tumours. We can observe that in this case the asymptotic

first order moment solves∫
R+

Φδ(x/xL, z)xf∞(z, x)dx = 1
κ

∫
R+

x(x − xd)f∞(z, x)dx.

In details, since from the Jensen’s inequality we have∫
R+

(x − xd)2f∞(z, x)dx ≥

(∫
R+

(x − xd)f∞(z, x)dx

)2

.

we get

1
κ

m∞(z)(m∞(z) − xd) ≤
∫
R+

Φδ(x/xL, z)xf∞(z, x)dx.
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Therefore, thanks to (IV.22) we obtain

|m∞(z) − xd| ≤ µκ

1 − λ
. (IV.24)

As obtained in point (a) we obtain that for vanishing penalisation κ → 0+

the asymptotic first order moment is such that m∞(z) → xd.

Assuming now that σ2 = 0 the asymptotic energy solves∫
R+

Φδ(x/xL, z)x2f∞(z, x)dx = 1
κ

∫
R+

x2(x − xd)f∞(z, x)dx,

from which we get∣∣(m∞(z))3 − xdE∞(z)
∣∣ ≤ µκ

1 − λ
E∞(z),

and in the limit κ → 0+ we obtain that the large time distribution tends

to a Dirac delta centred in x = xd.

In both the discussed cases and in particular from (IV.23) and (IV.24),

we can observe that the introduced protocols induce the mean tumours’ sizes

to stick the deterministic target size xd. These results have an important

consequence on the uncertainties of the system. In particular, looking at the

variance with respect to z ∈ Rd we have

Varz(m∞(z)) = Varz(m∞(z) − xd) = Ez[(m∞(z) − xd)2] − Ez[(m∞(z) − xd)]2,

from which we get

Varz(m∞(z)) ≤ Ez[(m∞(z) − xd)2] ≤ max
{

κµ

1 − λ − κµ
xd,

µκ

1 − λ

}
. (IV.25)

Hence, since max
{

κµ

1 − λ − κµ
xd,

µκ

1 − λ

}
→ 0 for κ → 0+, we argue that the

introduced controls are capable to dampen invariably the variability due to the

presence of clinical uncertainties z ∈ Rd.

IV.3.1.2 Large time behaviour of the controlled model

At this point, proceeding as in Section IV.2.2 for the new kinetic model (IV.17)

we can assess the effects of the control therapies on the emerging kinetic
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distribution. In the limit ϵ → 0+ and scaling ν = ϵκ, where κ > 0 is the

scaled penalisation, the kinetic equation converges to a Fokker-Planck equation

with modified drift term that takes into account the presence of the control.

The resulting Fokker-Planck-type equation reads

∂tf(z, x, t) = ∂x

[
−Φδ(x/xL, z)xf(z, x, t) + σ2

2 ∂x(x2f(z, x, t))
]

+ 1
κ

∂x

[
S2(x)(x − xd)f(z, x, t)

]
.

(IV.26)

Since we have obtained in Section IV.2.2 that if δ < 0 the introduced

model lead to equilibrium distributions with polynomial tails, linked to a high

probability that the tumours’ sizes are large, we concentrate on this case. Under

this assumption, the asymptotic large time distribution of the controlled model

is given by

f∞(z, x) = Cµ,σ2,xL
(z)
(

1
x

) 1
γ|δ| +2

exp
{

− 2
σ2δ2

(
x

xL

)δ
}

exp
{

− 2
σ2κ

∫
S2(x)(x − xd)

x2 dx

}
,

with Cµ,σ2,xL
> 0 a normalisation constant. Hence, if S(x) = 1 a direct

computation gives

f∞(z, x) = Cµ,σ2,xL
(z)
(

1
x

) 1
γ|δ| + 2

σ2κ
+2

exp
{

− 2
σ2δ2

(
x

xL

)δ
}

exp
{

− 2xd

σ2κ

1
x

}
,

and the emerging equilibrium of the controlled exhibits again power law tails

for large x’s. Anyway, it is worth to observe that the exponent increases due to

the presence of the introduced control. On the other hand, for selective controls

with S(x) =
√

x we get

f∞(z, x) = Cµ,σ2,xL
(z)
(

1
x

) 1
γ|δ| − 2xd

σ2κ
+2

exp
{

− 2
σ2δ2

(
x

xL

)δ
}

exp
{

− 2
σ2κ

x

}
,

provided κ > 2xdγ|δ|/σ2, corresponding to a distribution with exponential decay

of the tail. In other words, even if the introduced therapies are capable to reduce

in any case the influence of clinical uncertainties, selective-type controls, whose

action is heavier on large tumours, are necessary to modify the nature of the

emerging distribution of tumours’ sizes.
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IV.3.2 The case p = 1

Let us consider p = 1 in (IV.16). Proceeding as before we consider the

Lagrangian (IV.20) with the cost function J(x′′, u) = (x′′ − xd)2 + ν|u|. The

optimality conditions read now
∂

∂u
L(x′′, u) = νsign(u) − αϵS(x) = 0

∂

∂x′′ L(x′′, u) = 2(x′′ − xd) + α = 0.

A direct solution of the previous system leads, as before, to a feedback

formulation of the optimal control that can be written as follows

u∗ = ΠU

(
S1(x − xd)

)
,

where the operator S1(x − xd) is defined as

S1(x − xd) :=


x − xd

|x − xd|
ν

2ϵ2S2(x) − x − xd

ϵS(x) , |x − xd| >
ν

2ϵS(x) ,

0 otherwise

and ΠU is the projection onto a compact subset U ⊂ R. It should be noted

that for any value of ϵ > 0 the applied control is active only on a portion of

tumours. This result is coherent with analogous works in related fields, see Albi,

Fornasier, and Kalise. 2016; During, L. Pareschi, and G. Toscani 2018.

In this scenario, it is not possible to apply the same arguments of Section

IV.3.1.2 to get analytical results on the evolution of observable quantities.

Furthermore, the derivation of surrogate Fokker-Planck-type models does not

help to obtain insights on the large time behaviour of the system. As

a consequence, in the following we will focus on the consistent numerical

approaches to have a qualitative indication of the emerging phenomena.

IV.4 Quantities of interest and data

In this section, we face the calibration of the kinetic model (IV.6) defined in

Section IV.2.2 in presence of uncertain quantities by means of experimental
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data. In particular, to obtain some evidence on the distribution of uncertain

quantities, we focus on the microscopic laws defined in (IV.1) to get a patient-

based estimation of all the relevant parameters characterising the dynamics.

Thus, to deal with the uncertainties brought by the parameter z and affecting the

evolution of the distribution f(z, x, t), we consider as a quantity of interest (QoI)

the expected evolution of the first order moment Ez[m(z, t)]. In this way, we are

able to compare the theoretical and numerical results with the measures of our

dataset relative to the cohort of subjects affected by glioblastoma. Empirical

measurements of a subject’s tumour sizes correspond to a specific realisation of

a particular value of the random variable z. Therefore, the average behaviour of

a glioblastoma is the result of the superposition of different dynamics, produced

by different values of z, incorporating the subjects’ variability, that are then

weighted by the associated probability measure ρ(z).

In particular, we are interested in the analytical and numerical solutions

obtained for δ → 0 and for δ < 0, reproducing Gompertz and von Bertalanffy

growth models respectively. Parameter estimation in tumour growth dynamics

is a classical problem and we mention A. K. Laird 1965; A. Laird 1964 for an

introduction on the topic. More recently a similar problem has been considered

for glioblastoma in Ma et al. 2020.

IV.4.1 Dataset construction and Segmentation

In this work, we consider clinical data for tumour growth relative to a cohort

of patients referred to IRCCS Mondino, collected from 2011 to 2021. Among

263 subjects suffering from brain tumour, we select those affected by primary

glioblastoma. In all these cases MRI (Magnetic Resonance Imaging) scans were

available after each visit. Combining the neuro-radiological and the clinical

information, we choose among the selected patients the ones who exhibit an

initial tumour free-growth and that have at least two MRI scans at different

times. In this way, we are capable to estimate the patient-based growth

dynamics. Anyway, only very few observations can be obtained of these
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characteristics since the great majority of patients are enrolled for follow-up

at Mondino after initial treatments. For these reasons, we include subjects with

treatments’ interruption. At the end of this preliminary analysis, we considered

the evolution of the tumours’ size of 13 patients.

Among the patients’ MRI sequences, typical of the MRI brain tumour

acquisition protocol, we are interested in the T1 weighted 3D MRI scans with

contrast agent to estimate the subjects’ tumour volume x in mm3 at a given time.

The T1-weighted MRI images rely upon longitudinal relaxation of the tissue’s

magnetisation vector due to the protons spin-lattice interactions. Different

tissue types are characterised by different T1 relaxation times, therefore it

is possible to differentiate anatomical structures. An injection of a contrast

agent, such as gadolinium, during the T1- weighted image acquisition, supplies

information about current disease activity. In fact, passing through the

blood brain barrier, the contrast agent reveals inflammation areas that appear

brighter, helping in identifying the tumours’ contours.

For each subject, the glioblastoma volume segmentation is performed using

the software 3D slicer (Fedorov et al. 2012). We combine a data clustering

algorithm and manual segmentation corrections. In particular, we apply the

region growing algorithm based on the examination of neighbouring pixels of

the initial seeds, a set of selected points in the region of interest, determining

whether a neighbour pixel should be added to that region or not. After that,

a manual correction of contours is performed. The procedure is iterated in

the axial, coronal and sagittal image projection in order to obtain more precise

results. To determine the tumours’ volume, the number of voxels contained in

the segmentation and the MRI metadata information have been considered.

IV.4.2 Growth curves and growth model parameters’

distributions

To determine the empirical distribution of the parameters characterising the

tumours’ dynamics we adopted a two-level approach. In particular, in the phase
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preceding therapies, we estimated the parameters characterising the growth for

each patient. This estimation will be then kept to evaluate the observable

effects of the treatment. In more details, for a cohort of N patients we define

{x̂i(tn)}N
i=1 the observed volume size at time tn.

Assuming Gompertz-type growths we need to estimate a 2D vector for each

patient, i.e. the tumour growth rate α > 0 and the carrying capacity xL > 0.

We indicate with Θ = (α, xL) the 2D vectors of parameters. Hence, in the

time interval [0, T ] we solve a least square problem based on the minimisation

of a suitable norm of theoretical and empirical tumour’s sizes measured at the

available times t0, . . . , tn ≤ T . More precisely, we considered a minimisation

problem based on the following norm

min
Θ

[∑
h∈Hi

|x(th) − x̂(th)| + β∥Θ∥L1

]
, (IV.27)

where Hi collects all the observations of the tumour’s volume of the ith subject.

Furthermore, we introduced the regularisation parameter β > 0. In the case

δ → 0+ we considered the theoretical evolution for x given by (IV.4).

For von Bertalanffy-type dynamics we have to estimate a 3D vector for each

patient Θ = (a, p, q), with a = δ+1, as observed in Section IV.2.1. Furthermore,

information on the carrying capacity xL has been considered compatible with

the Gompertz case. In the time interval [0, T ] we solved a least square problem

(IV.27) where the theoretical evolutions of the tumours’ volumes are given by

(IV.5).

Since the first MRI time point t0 and tumour size x0 are different for each

subject, we need to find a common point with the aim of comparing the patient

specific growth curves for both models. As initial volume, we take the tumour

size 1mm3 as the mentioned point. This choice is justified by the fact that the

smallest appreciable MRI voxel dimension is 1mm3. Hence, we solve through

standard numerical methods IV.3 to obtain, for each subject, the specific time

corresponding to 1mm3. Subsequently, we translate for each subject the initial

time of the estimated time. The obtained growth curves and empirical volume
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size data are shown for each subject and for Gompertz and von Bertalanffy

models in Figure IV.1. 1

To understand the trends of the aforementioned model parameters, incorpo-

rated in the random variable z, we construct the associated histograms and we

determine the theoretical distributions that better reproduce each of them in

the associated range of variability. The results are shown in the Fig. IV.2. We

obtained a poor fit of the parameter α characterising Gompertz-type growths

and we decided to consider an uninformative uniform distribution over the ob-

served interval of variability [0.001, 0.03]. Anyway, we observe that the range

of α is consistent with values reported in Ma et al. 2020 and obtained from a

global fit on a larger subjects data cohort.

The parameters of the theoretical distributions are obtained by maximising

the proper likelihood function. To verify the goodness of the theoretical

representations, we quantify the distance between each distribution function

of the empirical sample and the cumulative distribution function of the selected

theoretical one by performing the Kolmogorov-Smirnov test. The results are

summarised in Table IV.1.

All other parameters, as can be seen from Table IV.1, are instead well

described by a Beta distribution defined by

f(x, c1, c2) = Γ(c1 + c2)xc1−1(1 − x)c2−1

Γ(c1)Γ(c2)

with c1 and c2 the shape parameters that have been reported in the third column

of Table IV.1.

1From Figure IV.1 it seems that different clusters of fast-growing tumors, less-fast-growing
tumors and more- slowly-growing ones can be found. However, the available clinical data
about glioblastoma and patient characteristics (age, survival outcome, therapeutic protocol,
received Dose (Gy), chemotherapy drugs or type of alkylating agent used ) do not allow a
precise identification of patterns or significant features to distinguish those clusters. According
to Han et al. 2020 the analysis of genetic mutations, in particular IDH mutant neomorphic
activity “establishes distinctive patterns in cancer metabolism, epigenetic shift and therapy
resistance.” The available clinical data report the IDH mutation (wild type) information for
3 of 13 patients. As a future perspective we aim to collect a statistically significant group of
glioblastoma data coupled with genetic analysis of biopsies in order to apply the developed
model and to investigate if we find effectively the clusters that seem to emerge in Figure IV.1
and if they can be distinguished according to genetic mutations or clinical characteristics.
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Figure IV.1: Growth curves and empirical data relative to untreated glioblas-
toma. The trajectory of each curve (solid line) and the empirical volume size
(circle marker) data are shown for each patient and for different growth laws:
Gompertz case (left plot), von Bertalanffy case (right plot). Values reported on
y-axes are scaled by a quantity of 105.

Parameter Range Distribution Constants (c1, c2) KS-pvalue
xL [0.4, 1.1] Beta (0.705, 0.574) 0.823
a [0.69, 0.8] Beta (0.656, 0.193) 0.902
q [0.007, 0.12] Beta (0.112, 0.238) 0.314

Table IV.1: We report for each parameter the best fitted Beta distribution
characterised by the constants (c1, c2) in the third column and the range of
definition in the second column (the xL range is scaled by a quantity of 105).
The quantification of the goodness of the theoretical representations is given by
KS-pvalue in the last column.
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Figure IV.2: Empirical distributions of the obtained parameters and fitted Beta
distributions with parameters given in Table IV.1.

IV.5 Numerical tests

In this section we introduce accurate numerical strategies for kinetic equations

based on a stochastic Galerkin formulation of the derived equations, see Carrillo

and Zanella 2019; G. Dimarco, L. Pareschi, and Zanella 2017; L. Pareschi 2021;

Zhu and Jin 2017 and the references therein. In particular, we present several

numerical tests highlighting the obtained theoretical results focusing first on

the untreated tumour growth case providing results on spectral convergence

of the adopted methods. Furthermore, we compare the evolution of the QoI

with the experimental data. Next, we investigate the case including therapies

through the considered control protocols testing its effectiveness in damping the

introduced uncertainties at the level of observable quantities. In the following,

we will consider all the tumours’ volumes scaled by a factor of 105.
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IV.5.1 Stochastic Galerkin methods

The stochastic Galerkin (sG) method is based on the construction of a set

of hierarchical orthogonal polynomials {Ψk(z)}M
k=0 of degree less or equal to

M ∈ N, orthonormal with respect to the PDF of the random parameters ρ(z),

that is

Ez[Ψk(z)Ψh(z)] =
∫
Rd

Ψk(z)Ψh(z)ρ(z)dz = δkh, k, h = 0, . . . , M,

where δkh is the Kronecker delta. The choice for the orthogonal polynomials

obviously depends on the PDF of the parameters ρ(z) and follows the so-called

Wiener-Askey scheme (see Xiu 2010; Xiu and Karniadakis 2002).

Let f = f(z, x, t) be the solution of a Fokker-Planck equation at time t ≥ 0,

provided that it is sufficiently regular, it can be approximated by fM that is

defined as follows

f(z, x, t) ≈ fM (z, x, t) =
M∑

k=0
f̂k(x, t)Ψk(z), (IV.28)

where f̂k(x, t) is the projection of the solution over the space generated by the

polynomial of degree k = 0, . . . , M

f̂k(x, t) := Ez[f(z, x, t)Ψk(z)] =
∫
Rd

f(z, x, t)Ψk(z)ρ(z)dz.

Hence, if we substitute the approximation (IV.28) of the PDF into the Fokker-

Planck equation (IV.11), exploiting the orthonormality of the polynomials, we

find a system of M+1 equations for the time evolution of the projections f̂k(x, t),

that reads

∂tf̂k(x, t) = ∂x

[
M∑

h=0
Akh(x)f̂h(x, t) + σ2

2 ∂x(x2f̂k(x, t))
]

, (IV.29)

where the matrix Akh(x) is defined as

Akh(x) = −
∫
Rd

xΦδ(x/xL, z)Ψk(z)Ψh(z)ρ(z)dz.

We stress the fact that the system of equations (IV.29) is deterministic since

it does not depend on the random parameters z. The main advantage of the
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stochastic Galerkin approach relies on the fact that, if the solution of the PDE

of interest is sufficiently regular, the approximated solution spectrally converges

to the correct solution of the problem. This translates into the fact that it is

sufficient to consider M relatively small.

Analogous computations can be performed in the model that includes the

introduced control (IV.26) with the only difference that the drift coefficient

results modified by an additional term. In particular, in the controlled case the

matrix Akh(x) reads

Akh(x) = −
∫
Rd

(
xΦ(x/xL, z) − S2(x)(x − xd)

κ

)
Ψk(z)Ψh(z)ρ(z)dz.

In order to prove the stability result for the sG scheme, we may reformulate

the Fokker-Planck equation (IV.29) in a more compact form. If we define the

M + 1 vector f̂(x, t) = (f̂0(x, t), . . . , f̂M (x, t)), the (M + 1) × (M + 1) matrix

A(x) = {Akh(x) + σ2xI}M
k,h=0, being I a unitary matrix, and the diffusion

coefficient D(x) = x2σ2/2, we have

∂tf̂(x, t) = ∂x

[
A(x)f̂(x, t) + D(x)∂xf̂(x, t)

]
. (IV.30)

We denote with ∥f̂∥L2 the standard L2 norm of the vector f̂(x, t)

∥f̂∥L2 :=

∫
R+

(
M∑

k=0
f̂2

k (x, t)
)2

dx

1/2

,

and we observe that, thanks to the orthonormality of the polynomials {Ψk}M
k=0

in L2(Ω), we have

∥fM ∥L2(Ω) = ∥f̂∥L2 .

Now, we can show the stability result.

Theorem IV.5.1. Assume that there exists two constants CA > 0 such that

∥∂xAkh∥L∞ ≤ CA for every k, h = 0, . . . , M and D(x) > 0 for every x ∈ R+,

then

∥f̂∥2
L2 ≤ eCA t∥f̂(0)∥2

L2 .
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Proof. We multiply every component of (IV.30) by f̂k and we integrate over R+

to get ∫
R+

1
2∂t

(
f̂2

k

)
dx =

∫
R+

f̂k∂x

[
M∑

h=0
Akhf̂h + D(x)∂xf̂k

]
dx.

We integrate by parts the transport term on the right-hand side of the equation

to obtain
M∑

h=0

∫
R+

f̂k∂x

(
Akhf̂h

)
dx =

M∑
h=0

∫
R+

(
f̂kf̂h∂xAkh + f̂kAkh∂xf̂h

)
dx

= −
M∑

h=0

∫
R+

Akh∂x

(
f̂kf̂h

)
dx −

M∑
h=0

∫
R+

f̂h∂x

(
Akhf̂k

)
dx.

We sum over k = 0, . . . , M and we exploit the symmetry of A to have

2
M∑

k,h=0

∫
R+

f̂k∂x

(
Akhf̂h

)
dx = −

M∑
k,h=0

∫
R+

Akh∂x

(
f̂kf̂h

)
dx

=
M∑

k,h=0

∫
R+

f̂kf̂h∂xAkhdx.

Since ∥∂xAkh∥L∞ ≤ CA and from Cauchy-Schwartz inequality, we have

M∑
k,h=0

∫
R+

f̂k∂x

(
Akhf̂h

)
dx ≤ CA

2 ∥ f̂ ∥2
L2 .

As for the diffusion term, we have

M∑
k=0

∫
R+

f̂k∂x

(
D(x)∂xf̂k

)
dx = −

M∑
k=0

∫
R+

D(x)
(

∂xf̂k

)2
dx ≤ 0,

since D(x) ≥ 0 by assumption. If we sum over k, the left-hand side is nothing

but the derivative in time of the L2 norm of f̂

M∑
k=0

∫
R+

1
2∂t

(
f̂2

k

)
dx = 1

2∂t∥f̂∥2
L2 .

Finally, we have
1
2∂t∥f̂∥2

L2 ≤ CA

2 ∥f̂∥2
L2 ,

and thanks to Gronwall’s Lemma we conclude. ■
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We concentrate on the case where the evolution of the Fokker-Planck

equations (IV.13) and (IV.26) is affected by an uncorrelated 2D random term in

the Gompertz case, i.e. z = (z1, z2) and z ∼ ρ(z1, z2) = ρ1(z1)ρ2(z2), or by an

uncorrelated 3D random term in the von Bertalanffy case, i.e. z = (z1, z2, z3)

and z ∼ ρ(z1, z2, z3) = ρ1(z1)ρ2(z2)ρ3(z3). The distribution of the components

of the random vectors are determined by the analysis presented in Section IV.4.

In the limit δ → 0+, corresponding to a kinetic Gompertz model, the

approximated solution is therefore given by

f(z, x, t) = fM (z, x, t) ≈
M∑

h,k=0
f̂hk(x, t)Ψ1

h(z1)Ψ2
k(z2)

being {Ψ1
h}M

h=0 and {Ψ2
k(z2)}M

k=0 the set of polynomials orthonormal with

respect to ρ1(z1) and ρ2(z2) respectively. Under the introduced assumptions

we obtain the following set of equations

∂tf̂hk = ∂x

 M∑
ℓ,r=0

Ahkℓrf̂ℓr(x, t) + σ2

2 ∂x(x2f̂hk(x, t))

 , (IV.31)

with

Ahkℓr(x) = −
∫
R2

xΦδ(x/xL, z)Ψ1
h(z1)Ψ2

k(z2)Ψ1
ℓ(z1)Ψ2

r(z2)ρ1(z1)ρ2(z2)dz1dz2.

Similarly, we can consider the approximated solution of the obtained von

Bertalanffy kinetic model

f(z, x, t) = fM (z, x, t) ≈
M∑

h,k,ℓ=0
f̂hkℓ(x, t)Ψ1

h(z1)Ψ2
k(z2)Ψ3

ℓ(z3)

that is determined by the following set of equations

∂tf̂hkℓ = ∂x

[
M∑

p,r,s=0
Ahkℓprsf̂prs(x, t) + σ2

2 ∂x(x2f̂hkℓ(x, t))
]

, (IV.32)

and

Ahkℓprs(x) = −
∫
R3

xΦδ(x/xL, z)Ψ1
h(z1)Ψ2

k(z2)Ψ3
ℓ(z3)Ψ1

p(z1)Ψ2
r(z2)Ψ3

s(z3)

ρ1(z1)ρ2(z2)ρ3(z3)dz1dz2dz3.
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IV.5.2 Free growth case: convergence and agreement with

available data

In the following, we show the convergence of the sG scheme for the Fokker-

Planck equation (IV.11). We consider deterministic initial conditions coherent

with growth curves of Figure IV.1 after 100 days from the tumour onset. These

observations are distributed as a Gamma density

f0(x) = pp2
1 xp1−1e−p2x

Γ(p1) ,

with (p1, p2) = (0.3, 2.8) for the Gompertz case and with (p1, p2) = (0.37, 2.2)

for the von Bertalanffy case.

We introduce then a uniform discretisation of the domain [0, 2] ⊂ R+

obtained with N = 201 gridpoints, ∆x = 10−2 and a time discretisation of

the interval [0, T ] obtained with ∆t = ∆x/C with C = 102 and T = 10. A

central difference scheme is then considered for the numerical solution of the

systems of equations (IV.31)-(IV.32).

As for the uncertain parameters, we refer to Subsection IV.4.2, and in

particular to Table IV.1, for the choice of the distributions and, consequently,

of the polynomial basis. Let us recall that the Uniform distribution and the

Beta distribution corresponds to a Legendre polynomial chaos expansion and a

Jacobi polynomial chaos expansion, respectively.

In the following, we numerically check the convergence of the scheme in the

space of random parameters in terms of the evolution of mean volumes. Hence,

we consider a reference approximation of the first momentum

mM̄ (z, t) =
∫
R+

xfM̄ (z, x, t)dx

obtained with M̄ = 50 at fixed time T = 10. Then, we compute the L2 error at

time t > 0 defined as

∥mM̄ (z, t) − mM (z, t)∥L2(Ω)

where mM (z, T ) is the first momentum obtained with a sG expansion up to

order M < M̄ , with M = 0, . . . , 30. In Fig. IV.3 we may observe the rapid
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Figure IV.3: Convergence of the L2 error with respect to a reference solutions
obtained with M̄ = 50, at fixed time T = 10. The top row corresponds to
the Gompertz case whereas the bottom row to the von Bertalanffy case. Top-
Left: z1 = α ∼ U([10−3, 3 · 10−2]) and fixed z2 = xL ≡ 0.5. Top-Right:
z2 = xL ∼ B(c1, c2) and fixed z1 = α ≡ 0.01. Bottom-Left: z1 = a ∼ B(c1, c2)
and fixed z2 = q ≡ 0.01, z3 = xL ≡ 0.5. Bottom-Right: z2 = q ∼ B(c1, c2) and
fixed z1 = a ≡ 0.8, z3 = xL ≡ 0.5. The values (c1, c2) are reported in Table
IV.1.

decay of the numerical error in the random space in both models that we have

considered. We observe that we reach essentially the machine precision with a

relatively small number of projections.

Once we have checked for the spectral convergence of the method, we can

investigate the behaviour of our models with respect to the experimental data.

In particular, we will look at the QoI introduced in Section IV.4. To this aim,

we use the introduced numerical setting with M = 3 in all the subsequent

numerical tests. In the top row of Fig. IV.4 we show the emerging equilibrium

distribution from (IV.31) with the discussed 2D uncertainty and in the right plot

the evolution of the mean volume of the tumours. In the bottom row of Figure

IV.4 we concentrate on the model (IV.32) with 3D uncertainty and again the

140



Figure IV.4: Top: large time distribution (left) and evolution of the mean
volume (right) for the Gompertz kinetic model with 2D uncertainties. The
solid line is the numerical solution of (IV.11) at the final time T = 500, the
markers refers to the expectation of the analytic solution (IV.13). Bottom:
large time distribution (left) and evolution of the mean volume (right) for the
von Bertalanffy kinetic model with 3D uncertainties. In all the cases, we choose
∆x = 10−2, ∆t = ∆x/C with C = 102 and M = 3. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article).

evolution of the mean volume of tumours in the right plot. The shaded colour

bands are relative to the variability computed with percentiles with respect to

the introduced uncertain quantities.

IV.5.3 Effects of the control and damping of uncertainties

We consider now the kinetic models (IV.26) in presence of control strategies

to test the effectiveness of the introduced control in reducing the tails of the

distributions and damping the uncertainties of the system. For this reason,

we consider here only the von Bertalanffy case that induces a power-law-type
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(a) p = 1, κ = 1, S(x) = 1 (b) p = 1, κ = 1, S(x) =
√

x

(c) p = 1, κ = 0.1, S(x) = 1 (d) p = 1, κ = 0.1, S(x) =
√

x

(e) p = 2, κ = 1, S(x) = 1 (f) p = 2, κ = 1, S(x) =
√

x

Figure IV.5: Evolution of m(z, t) in the uncontrolled scenario for t ≤ 60 and in
a controlled scenario for t > 60, with p = 1, 2, S(x) = 1,

√
x and κ = 0.1, 1. The

dashed lines represent the trend of the tumour if the control is not in action.
In the case p = 2, we adopted a sG scheme with ∆x = 10−2, ∆t = ∆x/C
with C = 102, M = 3 for the numerical solution of (IV.32) with the introduced
clinical uncertainties. In the case p = 1, we adopted a stochastic collocation
DSMC with N = 105, ∆t = 0.05, ϵ = 2∆t and M = 3. We considered the
experimental target volume size xd = 0.18x105mm3. and the results are scaled
by a factor 105.
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equilibrium distribution as discussed in Section IV.2.2. From experimental

measurements we observed an average value of the target volume xd = 0.18 ×

105mm3 after the implemented therapeutic protocols, for this reason we have

fixed this value in each experiment of this section.The obtained value of the

target volume will be scaled by a factor 105 through the section The activate

the control we compute the mean tumours’ size from experimental data. Hence,

u starts acting when Ez[m(z, t)] exceeds this threshold.

In Fig. IV.5 we present the evolution of the expected values of the first order

momentum m(z, t) in a constrained setting obtained from (IV.26). In particular,

we plot the uncontrolled evolutions up to the time t = 60 and then we activate

the control. As in the uncontrolled scenario, we consider a uniform discretisation

of [0, 2] obtained with N = 201 gridpoints and a time step ∆t = ∆x/C, with

C = 102, for the time interval [0, T ], with T = 100 final time. We notice that

the control succeeds in reducing both the expected values of the first momentum

and the uncertainty, with smaller values of κ.

To quantify the effectiveness of the adopted control strategy, we define an

index that quantifies the variability around the target xd computed at a given

time T > 0 and defined as follows

Gκ(z) =
∫
R+

(x − xd)2f(z, x, T )dx, (IV.33)

where f(z, x, T ) is the kinetic distribution of the controlled model with

embedding the penalisation coefficient κ > 0. In Fig. IV.6 we show the

behaviour of Ez[Gκ(z)] together with confidence bands and computed for several

penalisation coefficients. We considered both the cases p = 1, 2 and selective

functions S(x) = 1,
√

x.

For the case p = 1 we adopt a stochastic collocation approach for the kinetic

model (IV.17) that is solved through a DSMC scheme (Tosin and Zanella 2018).

We choose N = 105, M = 3 and ∆t = 0.05 and ϵ = 2∆t. We notice that, in

all the considered cases, Ez[Gκ(z)] decreases with smaller values of κ and the

uncertainty is dampen.
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(a) p = 1, S(x) = 1 (b) p = 1, S(x) =
√

x

(c) p = 2, S(x) = 1 (d) p = 2, S(x) =
√

x

Figure IV.6: Expectation of the quantity Gκ(z) defined in (IV.33) and computed
with xd = 0.18 versus the penalisation κ, for p = 1, 2 and S(x) = 1,

√
x,

considering the von Bertalanffy model with uniform-distributed coefficients.
The plots are in semi-logarithmic scale to highlight the uncertainty damping
for small values of κ. In all the cases, a collocation DSMC scheme is adopted,
with the choices N = 105, M = 3, ∆t = 0.05 and ϵ = 2∆t.

Now we look directly to the effectiveness of the control strategies in reducing

both the tails and the uncertainty of the distributions. In Fig. IV.7 we show the

expected distributions in the controlled case for large times, obtained with the

introduced sG scheme for the kinetic von Bertalanffy model. We may observe

how the introduction of selectivity is capable to change the behaviour of the tail

of the distribution as discussed in Section IV.3.1.2.
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(a) p = 1, κ = 1, S(x) = 1 (b) p = 1, κ = 1, S(x) =
√

x

(c) p = 2, κ = 1, S(x) = 1 (d) p = 2, κ = 1, S(x) =
√

x

Figure IV.7: Details of the expected value of the controlled and uncontrolled
distributions in the von Bertalanffy growth scenario, for fixed penalisation κ = 1,
p = 1, 2 and S(x) = 1,

√
x. The solid line is the numerical controlled solution

at the final time T = 100, the dashed line is the uncontrolled analytic solution
at the equilibrium. The plots are in semi-logarithmic scale to highlight the
suppression of the fat tails. We considered the experimental target volume size
xd = 0.18 x 105mm3 and results are scaled by a factor 105.

Conclusions

In the present paper, we concentrated on the influence of uncertain quantities

on kinetic models for tumour growths. Under suitable assumptions, we derived

surrogate Fokker-Planck models from which we obtain analytical insight on the

large time behaviour of the system. Hence, we proposed suitable selective control

strategies mimicking the effects of therapies in steering the volume of tumours

towards a target value xd. Through explicit computations, we showed that the
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solution of the controlled model is close to the target volume and the distance

of the first order momentum from xd depends on the penalisation of the control.

These control protocols are capable to dampen the variability of the tumours’

dynamics due to the presence of uncertainties. Since from the pathological point

of view fat-tailed distributions are related to a higher probability of finding

large tumours with respect to thin-tailed distributions we observed that by

implementing suitable selective strategies we can also change the nature of the

emerging distribution of tumours’ sizes. Thanks to real observations on a cohort

of subjects we observed great variability in the choice of parameters of the

models that has been considered in the numerical section. Numerical schemes

for the uncertainty quantification of kinetic equations are then considered to

observe the effects of the control on the solution of the models.
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Part 3

A first attempt to combine

quantum field theory, neural

network and brain description





Introduction

The brain is an organ capable of extreme complex activities that elaborates

and integrates internal and external stimuli. Its behavior spans nine orders of

magnitude-scale in spatial structures tiers in ways that have yet to be fully

understood (Swan, Santos, and Witte 2022). Modeling the brain means to

introduce a mathematical framework to reproduce the non-linear dynamics

of a physical system exhibiting a highly stochastic activity (Rolls and Deco

2010). Brain models also link hidden neuronal processes to observed neural

data obtained from Elettronencephalogray (EEG) (Binnie and Prior 1994),

Magnetoencephalography (MEG) (Proudfoot et al. 2014) and functional MRI

(fMRI) (Matthews and Jezzard 2004).

There are two main classes of brain models (Toronov et al. 2013) one based

on single neurons organized into functional units (Markram 2006), and another

based on the average behavior of neuronal populations (Friston, Harrison, and

Penny 2003; Haken 2007; Valdes-Sosa et al. 2009). Early neurodynamic models,

such as Wilson-Cowan model (Wilson and Cowan 1972), are based on the

description of interactions between populations of excitatory and inhibitory

neurons. However, to deal with large cerebral neural networks and to compare

model predictions with spatially averaged neuronal signals directly measured

with non-invasive tools (such as EEG and fMRI), it is introduced the mean

field approximations of subpopulations of excitatory and inhibitory neurons. A

mean field brain model is based on stochastic differential equations that include

random fluctuations and it expresses the distribution of the neuronal activity

states in terms of probability density. In particular, in Jirsa and Haken works

(Jirsa and Haken 1996; Jirsa and Haken 1997) a semi-quantitative non-linear

model based on quasi-microscopic properties of neural populations and realistic
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anatomical connectivity is developed, with a temporal evolution in agreement,

in some extent, with the signals of magnetoencephalography measured by Kelso

et al. 1992. In addition, it is also introduced in Haken 2007 the idea of

synchronization as the element underlying information processing mechanism

of combining signals from various regions of the brain.

Another model that summarizes the activity of the neuronal population with

a single state, i.e., by mean activity, is the neural mass model (David and

Friston 2003; Moran et al. 2007). The central idea is to approximate a group

of neurons by its average properties by treating the current state “as a point

‘mass’, i.e a delta function, approximation to the underlying density on the

population’s states”(Marreiros, Kiebel, and Friston 2010). Conversely to mean

field models, neural mass models describe neuronal states evolution through

ordinary differential equations.

Brain space-state models are known in literature as Dynamic causal models

(DCM) (Friston, Harrison, and Penny 2003) in which the brain is treated as

a deterministic non-linear dynamic system influenced by inputs and producing

outputs. The distinguishing trait of this approach is framing the problem of the

parameterized connectivity estimation by perturbing the system and measuring

its response.

All these models are based on the classical treatment of the underlying

neuronal physical processes and they all rely on the assumption that neurons

are modeled as binary units, whose output can be represented by a step-

function. These models also consider the activity or inactivity states of the

neurons, the values of neurons’ thresholds and the strangeness of their coupling

coefficients as the most important parameters of the brain. In this way, the

instantaneous net behavior can be obtained as the solution of a N nonlinear

equations which can be solved once the specification of the neurons’ couplings

and thresholds are defined (Globus, Pribram, and Vitiello 2004). Models of this

type encourage a computer-like machine vision performing classical stimulus-

response computations. In this regard, a very powerful tool for simulating the

brain is The Virtual Brain (TVB) that reduces the complexity on the micro level
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to attain the macro organization and it also merges the individual patient’s

anatomy from brain imaging data with state-of-art mathematical modeling

(Sanz Leon et al. 2013, https://www.thevirtualbrain.org/tvb/zwei).

New studies, however, demonstrate that biological systems exhibit non-

trivial quantum effects as a result of their interaction with the noisy environment

(Rolls and Deco 2010). Therefore, quantum events may have an impact on brain

activity (Jedlicka 2017, see also Koch and Hepp 2006), since nonlinear chaotic

dynamics can amplify, instead of self-averaging, the lowest-level quantum fluctu-

ations that can affect large-scale mesoscopic and macroscopic neuronal activity.

The first approach to describe fundamental brain information processing with

physical quantum theory principle is related to the theory proposed by Umezawa

and Ricciardi (Ricciardi and Umezawa 1967) that describes the physical aspect

of living matter in terms of collective mode. In Fröhlich 1968 it is pointed out

the existence of coherent dipolar wave propagation in the cytoskeletal structure

of biological cells and its interaction with external magnetic fields. After the

Umezawa model, several physicists began to investigate the quantum nature

and dynamics of the brain (QBD). Among them, there are the works of Penrose

and Nanopoulos (Pothos and Busemeyer 2009; Yukalov and Sornette 2011) ac-

cording to which quantum phenomena are essential for consciousness and they

occur in cytoskeletal microtubules within brain neurons. In fact, microtubules’

periodic paracrystalline structure makes microtubules able to support superpo-

sition of coherent quantum states. Although this idea was initially approached

with skepticism and dismissed by some scientists, recent researches on EEG

rhythms and on anesthesia seem to support it (https://www.elsevier.com/).

Guided by all these evidences supporting a quantum treatment of the brain,

we try to introduce a quantum field theory and a deep learning framework for

the description and the simulation of a brain portion. This is a still ongoing

project and the obtained results are presented in the draft below.
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Abstract

We propose an exploratory study to combine quantum-field theory and

neural-network approaches to describe a brain portion. By drawing

a parallel with theoretical particle physics, we assume that a brain

portion can be described by a scalar self-interacting bosonic theory in the

stimulus-response space. We simulate a brain portion by considering the

relationships between free fields, Gaussian processes and infinite neural

networks, and the ones between interacting fields, Non-Gaussian processes
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and finite neural networks. We introduce an ad-hoc neural-network

activation function inspired by the biological-neuron response function in

the case where a brain neuron is modeled as a Resistance-Capacity circuit.

We come out with the conclusion that, under the considered conditions,

a brain portion can be modeled up to O(6), i.e., six fields interaction, as

a Gaussian Process, or rather a quantum free field theory with an ad-hoc

constructed propagator. Then, the Fourier-transform relation allows us

to make quantitative statements in the physical space.
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V.1 Introduction

The brain is a complex physical system in constant interaction with the external

world. It elaborates and integrates information on the internal and external

environment involving spatial structures spanning nine orders of magnitude-

scale in ways that have yet to be fully elucidated (Swan, Santos, and Witte

2022).

From an anatomical point of view, the brain is subdivided into the cerebrum,

the brainstem and the cerebellum. The cerebrum is in turn divided down

the middle into left and right cerebral hemispheres. From a functional

point of view, four main areas controlling senses, thoughts and movements,

called lobes, can be identified: frontal, parietal, temporal and occipital lobes.

The frontal lobe is responsible for the decision-making process, execution of

voluntary actions, planning, reasoning, and it is also involved in personality

traits. The parietal lobe is implicated in sensory perceptions, whereas the two

temporal lobes play a crucial role in storing of memory and auditory processing,

emotions and learning. The occipital lobe is responsible for processing visual

stimuli. Below the cerebral hemispheres, there are thalamus and hypothalamus

which regulate emotions, the behavior and many unconscious body functions.

Other basic functions such as consciousness, sleep-awake cycle, respiratory and

cardiovascular control are managed by the brainstem. The cerebellum, instead,

controls balance, posture, stores learned movements and synchronizes muscle

contractions. Both the cerebrum and cerebellum have comparatively thin

outer surface layers of gray matter involved in various kinds of computational

tasks and larger inner regions of white matter consisting of axons, i.e., long

nerve fibers, carrying signals from one part of the brain to another. From a

neurophysiological point of view, three areas has been initially distinguished: the

ancient brain, the intermediate brain and the recent brain. The ancient brain is

connected to instinctive processes, the intermediate brain is involved in emotions

whereas the recent brain is the most rational part of the brain responsible

for highly information processing. Today the interconnection and interaction
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among these areas are studied to determine the functioning of the decision-

making process. A deep knowledge of the latter can lead to understanding

the mechanisms characteristic of social neuroscience and of economic field, as

suggested by neuroeconomics and neuroethics cognitive neuroscience subfields

(Camerer, Loewenstein, and Prelec 2004).

Neurons are elementary processing units in the central nervous system. They

are connected to each other in an intricate pattern (Gerstner et al. 2014).

Functionally speaking, a neuron can be divided into soma, which contains the

nucleus of the cell, the axon transmitting the neuron’s output signal, and the

dendrites, i.e., tree-like structures that extroflect from the soma and along which

input data are carried into the soma. Signals pass from one neuron to another

through the junctions, i.e., synapses, where a synaptic knob (the end of axon’s

bifurcation) of one neuron is attached to another neuron’s soma or dendrites.

The axon terminal comes very close to the postsynaptic neuron, leaving only a

small gap between pre- and postsynaptic cell membrane called synaptic cleft.

Nerve fibers are cylindrical tubes containing a mixed ionic solution of NaCl and

KCl. The same kind of ions, but in different concentrations, are present in the

surrounding environment. In the resting state, a negative membrane potential

of -65mV is established and a different concentration of Na+, K+, Cl− and

proteic anion is maintained inside and outside the nerve fiber.

A signal is actually a region of charge reversal traveling along the fiber:

sodium-potassium pump, voltage-gated sodium channels, which are closed at

the resting potential, open in response to an initial change in voltage causing

the influx of Na+ and the depolarization of the cell. Once the depolarization

is completed, it leaves the cell membrane potential at +40mV and the voltage-

gated sodium ion channels close. The resulting increased positive charge within

the cell causes the opening of potassium channels allowing a K+ flux outside the

membrane, following the electrochemical gradient, with consequent restoring of

resting potential.

When the depolarization reaches the synaptic knob, it triggers the emission

of vesicles containing neurotransmitters. These chemical substances diffuse into
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the synaptic cleft and interact with receptor proteins on receiving neurons

causing the opening of ions gate. The ion influx changes the membrane

potential at the postsynaptic site so that the chemical signal is translated into

an electrical response. The voltage response of a postsynaptic neuron to a

presynaptic action potential, or spike, is called postsynaptic potential. The spike

on the postsynaptic neuron can reduce the negative polarization of the resting

polarization value thus it is an excitatory synapse, whereas it is an inhibitory

synapse if the spike increases the negative membrane polarization. The effect

of the spike on the membrane can be recorded with an electrode that measures

the potential difference between the interior of the cell and its surroundings.

Since networks of nerve cells linked by many mutual connections are capable

of non-linear computation (London, Hausser, et al. 2005), i.e., nonlinear

summation of information from multiple sources, the brain acts as a non-

linear dynamical complex system exhibiting a highly stochastic activity (Rolls

and Deco 2010). A widespread idea in neuroscience is that the brain is a

computer-like machine performing classical stimulus-response computations.

However, recent research shows that non-trivial quantum effects are present in

biological systems because of the amplification of the quantum fluctuations due

to the interaction with the noisy environment (Jedlicka 2017). The original

idea of a deterministic, classic brain is supported by the fact that, as a

macroscopic object, the brain presents self-averaging of quantum fluctuations,

or rather a decoherence timescales much shorter than the relevant timescales

for regular neuron firing and other excitations in microtubules (Tegmark

2000). Therefore, phenomena such as quantum entanglement, superposition

or tunneling cannot contribute to its rich and complex dynamics (Koch and

Hepp 2006). However, in a non-linear system with high sensitivity, such

as the brain, microscopic quantum fluctuations may be amplified: quantum

events may influence the activity of the brain (Barr 2001, see also Jedlicka

2005; Jedlicka 2009) because non-linear chaotic dynamics can amplify lowest-

level quantum fluctuations modulating even the large-scale mesoscopic and

macroscopic neuronal activity. In addition, non-trivial quantum effects can
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accelerate computational processes at the microscopic level in living organisms

(Jedlicka 2017). As reported in Al-Khalili and McFadden 2014, extracellular

electrical fields, affected by ion-channel activity, influence the membrane

potential of neurons and their spiking activity. These fields are also coupled

to quantum coherent events in many neurons, potentially causing synchrony

of neural firing. Furthermore, several studies have shown that certain aspects

of the decision-making behavior are better described by a quantum-probability

framework than a classical one (Mogiliansky, Zamir, and Zwirn 2009; Pothos

and Busemeyer 2009; Wang et al. 2014; Yukalov and Sornette 2011). A quantum

treatment of the brain theory is also supported by Penrose’s and Nanopoulos

works (Hameroff and Penrose 1996 and Nanopoulos 1995), according to which

quantum phenomena are essential for consciousness and occur in cytoskeletal

microtubules within brain neurons. Microtubule structure allows organizing

cell functioning and processing information, whereas microtubule subunits are

coupled to internal quantum events and cooperatively interact with other

tubulins. The periodic paracrystalline structure of microtubules makes them

able to support a superposition of coherent quantum states for sufficient time

needed for efficient quantum computing.

After 20 years of skeptical criticism and many scientist dismissing the quan-

tum idea, "recent discovery of warm temperature quantum vibrations in micro-

tubules inside brain neurons by the research group led by Anirban Bandyopadhyay

suggests that EEG rhythms derive from deeper level microtubule vibrations. In

addition, work from the laboratory of Roderick G. Eckenhoff suggests that anes-

thesia, which selectively erases consciousness while sparing non-conscious brain

activities, acts via microtubules in brain neurons." (https://www.elsevier.com/).

Driven by all these evidences supporting a quantum treatment of the brain,

we pursue the goal to introduce a quantum field-theory framework for the brain

description in addition to a neural network framework for brain simulation.

A very important and significant fact for the construction of our model is

that each neuron receives some 104 synaptics inputs from the axons of other

neurons and that each branching neuron axon forms about the same number of
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synaptic contacts on postsynaptic neurons. A closer look at the brain cortex

would expose a “mosaic-type structure of assemblies of a few thousand densely

connected neurons” (Nanopoulos 1995) considered as the fundamental cortical

processing modules, i.e., brain portions with a size of about 1 mm2. Moving to

larger scale, parallel and integrative processing of local collective behavior are

allowed by a neural connectivity that gets much sparcer (Nanopoulos 1995).

Our intent is to formulate a description of a brain portion and its activity

with a quantum field theory and deep learning neural network approach. The

brain portion can be identified with a cortical processing module, or with

interconnected groups of neurons across different cortex layers, with each group

sharing similar properties, since the framework that is about to be introduced

is valid for different size of brain portion.

V.2 Theory

In order to describe a portion of the brain and its activity, we work in the input-

output, or stimulus-response space that mathematically corresponds to a one-

dimensional (1D) space. According to functional magnetic resonance imaging

(fMRI), during a particular task (Esteban et al. 2020) different regions of the

brain are simultaneously activated. Therefore they share the same activation

status. This suggests that we need a 1D bosonic field theory in analogy to

nuclear physics in which bosonic particles (an irreducible representation of the

Poincaré group (Di Giacomo 1992)) can occupy the same physical state. We

assume zero vacuum expectation value. The bosonic field is defined as:

ϕ(x) : Rdin → Rdout (V.1)

where din and dout are the dimensions of the input and output space,

respectively, that turn out to be both the 1D R space in our case, and an element

x of the input-output space can be thought as a signal intensity, for example

the voltage of the brain portion activity measured with Electroencelography

(EEG). We also consider a self-interacting bosonic theory to take into account
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the physical and chemical interconnection of brain neurons and regions. A

suitable action S for fields with these characteristics can be written as:

S[ϕ] = S1 +
∫ ∞

−∞
ddinx

∑
k

gkOk (V.2)

where Ok := ϕ(x)k and with S1 defined as:

S1[ϕ] =
∫

ddϕ(x)(2 + m2)ϕ(x) (V.3)

in which 2 := ∂µ∂µ = 1
c2

∂2

∂t2 −∇2 = 1
c2

∂2

∂t2 − ∂2

∂x2 and m is the mass of the bosonic

particle associated to ϕ. In this case m could be thought as the mass parameter

of the considered brain portion. A non-equilibrium theory with the action of

Eq.(V.2) up to four field interaction is proposed in Nishiyama and Tuszynski

2019 to describe memory formations with a quantum brain dynamics.

S1 in Eq. (V.2) is the component that takes into account for a quantum free

field ϕ(x) and essentially it can be considered as the log-likelihood SGP of a

Gaussian process (i.e. a Gaussian distribution on the function space):

SGP = 1
2

∫
dinxdinx′ϕ(x)Ξ(x, x′)ϕ(x′) (V.4)

with Ξ(x, x′) = K−1(x, x′) the kernel function, defined by:∫
dinx′K(x, x′)Ξ(x, x′′) = δ(din)(x − x′′) (V.5)

and δ(din)(x−x′′) the din-dimensional Dirac delta function. Eq. (V.2), therefore,

describes a non-Gaussian process, with∫
ddinx

∑
k

gkOk

being the terms that take into account the self-interaction, or rather the non-

Gaussian corrections to the Gaussian process S1. The resulting non-Gaussian

process (NGP) generate n-pt correlation functions:

G(n)(x1, ..., xn) =
∫

dϕ(x1)...ϕ(xn)e−S

Z0
(V.6)

with Z0 =
∫

dϕe−S . The non-Gaussian component can lead to divergent

integrals. A way to treat these divergences is to bound the integrals over input
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space from below by −Λ and above by Λ. Therefore, we can replace S → SΛ and

the resulting theory is valid in finite regimes, in analogy to scattering theory

valid at some momentum scale that should not be valid up arbitrarily to all

momenta. In the range of validity of the theory, the coefficient of operators in S

must obey to Wilsonian renormalization-group equations (RGEs) obtained by

imposing:
dG(n)(x1, ..., xn)

dΛ = 0. (V.7)

V.3 Correspondence between quantum-field theory and

neural network

A first attempt to connect Feynman paths with neural networks is reported

in Miranker 2006. Recent works (Dyer and GurAri 2019; J. Halverson, A.

Maiti, and K. Stoner 2021 and Yaida 2020) have developed a correspondence

between neural networks and quantum-field theory. We took inspiration from

the Wilsonian effective field theory (EFT) framework introduced in J. Halverson,

A. Maiti, and K. Stoner 2021. We summarize in this section the main findings

of J. Halverson, A. Maiti, and K. Stoner 2021 . According to that work, it is

possible to establish an analogy between a GP with mean µ = 0 and a class of

fully-connected randomly initialized neural networks in the infinite width limit

(N → ∞). This correspond to describing neural network outputs, evaluated on

fixed inputs, by draws from a multivariate Gaussian distribution. In particular,

consider a family of neural network architectures with discrete hyperparameter

N and learnable parameters θ initialized as θ ≈ P (θ)

fθ,N : Rdin → Rdout . (V.8)

The parameter distribution and the network architecture together induce an

implicit distribution P (f) on the function space from which the neural network

is drawn. In the limit N → ∞, neural network outputs {f(x1), ..., f(xk)}

evaluated on any fixed set of k inputs {x1, ..., xk} are drawn from a multivariate

Gaussian distribution N(µ = 0, Ξ−1). Correlation functions between n outputs
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are calculated as:

G(n)(x1, ..., xn) =
∫

dff(x1)...f(xn)e− 1
2 SGP

ZGP,0
=
∫

dff(x1)...f(xn)e− 1
2

∫
ddin xddout yf(x)Ξ(x,y)f(y)

ZGP,0
(V.9)

with ZGP,0 :=
∫

dfe−SGP .

Introducing a source term J(x) the partition function of the Gaussian process

ZGP, is defined as:

ZGP[J ] = exp

(
1
2

∫
ddinxddinyJ(x)K(x, y)J(y)

)
and the correlation functions can be written as:

G
(n)
GP(x1, ..., xn) =

[(
− δ

δJ(x1)

)
...

(
− δ

δJ(xn)

)
ZGP

]
J=0

.

The latter can be calculated using Wick contractions and the expression of

the kernel K(x1, x2), which depends on the specific activation function Φ(x) of

the neural network. The kernel is the analogous of the quantum-field theory

Feynman propagator that represents the probability or amplitude of propa-

gation of a particle from one point to another. From the basic properties of

Gaussian integrals it follows the possibility to diagrammatically represent G(n)

computation with the Feynman diagrams, and to introduce Feynman rules for

a diagrammatic-to-analytic mapping (Feynman rules are reported in Appendix

B). Due to the Gaussian nature of the ZGP, all diagrams in the diagrammatic

expressions for G
(n)
GP(x1, ..., xn) are simple connections of pairs of points in space.

Therefore, for a free theory, i.e., for the asymptotic limit of a neural network,

we have:

�x1 x2 = G(2)(x1, x2) = K(x1, x2)

�
x2

x1

x4

x3

+ �
x2

x1

x4

x3

+ �
x2

x1

x4

x3

= G
(4)
GP (x1, x2, x3, x4) =

= K(x1, x2)K(x3, x4) + K(x1, x3)K(x2, x4) + K(x1, x4)K(x2, x3)
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similarly we can calculate the G
(6)
GP (x1, x2, x3, x4, x5, x6) as:

G
(6)
GP (x1, x2, x3, x4, x5, x6) = K(x1, x2)K(x3, x4)K(x5, x6) + K(x1, x2)K(x3, x5)K(x4, x6)

+ K(x1, x2)K(x3, x6)K(x4, x5) + K(x1, x3)K(x2, x4)K(x5, x6)

+ K(x1, x3)K(x2, x5)K(x4, x6) + K(x1, x3)K(x2, x6)K(x4, x5)

+ K(x1, x4)K(x2, x3)K(x5, x6) + K(x1, x4)K(x2, x5)K(x3, x6)

+ K(x1, x4)K(x2, x6)K(x3, x5) + K(x1, x5)K(x2, x3)K(x4, x6)

+ K(x1, x5)K(x2, x4)K(x3, x6) + K(x1, x5)K(x2, x6)K(x3, x4)

+ K(x1, x6)K(x2, x3)K(x4, x5) + K(x1, x6)K(x2, x4)K(x3, x5)

+ K(x1, x6)K(x2, x5)K(x3, x4)

For any odd n, G
(n)
GP(x1, ..., xn) = 0 since in the analytic expression of G

(n)
GP an

odd n corresponds to a factor J in every term and after taking the functional

J-derivatives, J is set to zero.

Moving to finite networks corresponds to moving from a Gaussian process

(GP) to a Non-Gaussian Process (NGP), i.e, to turning on interactions. To

verify this through neural network simulation it is defined the quantity:

∆G(n)(x1, ..., xn) = G(n)(x1, ..., xn) − G
(n)
GP(x1, ..., xn). (V.10)

with G(n)(x1, ..., xn) the experimental evaluation, obtained through a feed-

forward neural network and expressed as:

G(n)(x1, ..., xn) = 1
nnets

nnets∑
α∈nets

fα(x1)...fα(xn).

Comparing the theoretical computation with the experiments, ∆G(2)(x1, x2) →

0,that means

G(2)(x1, x2) = K(x1, x2),

i.e., the kernel, calculated for each activation function, is an exact measure of

the 2-pt correlation function even away from the GP limit. For the 4-pt and

6-pt signals, GP prediction are still good for large network width but no longer
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correctly predict the experimental n-pt function at small width. This suggests

that finite neural networks can be obtained from an NGP. In the EFT framework

the NGP action is

S = SGP + ∆S (V.11)

with ∆S =
∫

ddin
∑

k gkOk and Ok the k- fields interaction expressed as

Ok := f(x)k, with the field f(x) : Rdin → Rdout describing in this case a neural

network. Since S must be invariant under the transformation f → −f , because

the randomly initialized neural nets f and −f should be on equal footing, the

∆S =
∫

ddin
[
λf(x)4 + κf(x)6], with k considered negligible as demonstrated

in Sec. 4 of J. Halverson, A. Maiti, and K. Stoner 2021.

Using this effective action for the NGP, one may compute correlation

functions in perturbation theory. The diagrammatic representation of these

correlation functions are the following Feynman diagrams at the first order in k

and λ in perturbation theory:

�x1 x2 − λ
[
12 �x1 x2

]
− k

[
90 �x1 x2

]
= G(2)(x1, x2)

3 �
x3

x1

x4

x2

− λ
[
24 �

x4

x1

x3

x2

+ 72 �
x3

x1

x4

x2 ]
+

−k
[
360 �

x4

x1

x3

x2

+ 540 �
x1

x4

x3

x2 ]
= G(4)(x1, x2, x3, x4)

15 	
x3

x1

x5

x4

x2

x6

− λ
[
540 


x4

x1

x5

x3

x2

x6

+ 360 �
x3

x1

x5

x4

x2

x6 ]
+

−k
[
720 �

x4

x1

x5

x3

x2

x6

+ 4050 
x1

x4

x5

x3

x2

x6

+ 5400 �
x1

x4

x5

x3

x2

x6 ]
= G(6)(x1, x2, x3, x4, x5, x6)
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for which it was demonstrated in J. Halverson, A. Maiti, and K. Stoner 2021

that G
(2)
NGP(x1, x2) = K(x1, x2) = G

(2)
GP(x1, x2), which means that K(x1, x2)

already taks into account the λ- and k- corrections for the G(2) expression.

V.4 Reproducing the behavior of a brain portion using a

neural network

Considering the similarity of the analytic expression of the action S associated

to Eq. (V.11), referring to neural network, and to Eq. (V.2) referring to a brain

portion field, we want to introduce a neural network that reproduce a brain

portion.

A portion of a brain that we are trying to describe in a quantum-field theory

framework can be thought of as a set of interconnected biological neurons.

On the other hand, a neural network, which according to J. Halverson, A.

Maiti, and K. Stoner 2021 can be described as a quantum field, is made by

weighted and interconnected computational units, the neurons. Starting from

this correspondence we want to investigate the possibility to construct a neural

network that reproduces the behavior of a brain portion. In particular, we

are not searching for a one-to-one correspondence between biological neurons

present in the brain portion and neurons of the neural network. What we aim

to find is a neural network, thought of as a function f : Rdin → Rdout , that

operates as a brain portion described by the field in the relation (V.1).

We consider a finite fully-connected feed-forward neural network with a

single hidden layer. This architecture, as underlined in Sec. V.3, is well

described by a NGP of the same kind of Eq. (V.2) and its behavior in the

asymptotic limit is a Gaussian process distribution on function space.

Crucial in the correspondence that we are trying to create is the choice of the

activation function. In fact, the latter generates a specific kernel expression,

or a Feynman propagator in a quantum field framework, and consequently

correlation functions, or rather a specific quantum-field theory.

A generic neural network with activation function Φ(x) and one hidden layer
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has the following output function (J. Halverson, A. Maiti, and K. Stoner 2021):

f(x) = W1Φ (W0x + b0) + b1

with W0, W1, b0, b1 i.i.d. and drawn from a Gaussian distribution with mean

0 and standard deviations σW0 , σW1 , σb0 , σb1 respectively. The kernel or 2-pt

function is calculated, according to Williams 1996, by

K(x, x′) = E[f(x), f(x′)] = σ2
b1

+ σ2
W1

V
′

Φ [Φ (W0x + b0) , Φ (W0x′ + b0)] (V.12)

with

V
′

Φ(x, x′) =
∫

Φ(W0x + b0)Φ(W0x′ + b0)e− 1
2 W T

0 σ−2
W0

W0− 1
2 bT

0 σ−2
b0

b0dW0db0∫
exp

(
− 1

2 W T
0 σ−2

W0
W0 − 1

2 bT
0 σ−2

b0
b0
)

dW0db0
(V.13)

To identify the activation function Φ we start modeling the membrane po-

tential of integrate-and-fire neuron (i.e.a neuron model where action potentials

are considered events completely characterized by an equation describing the

evolution of membrane potential and a mechanism to generate spike (Gerstner

et al. 2014)), and using a hardware circuit that consists of a resistance R and

a capacitor C. Inspired by the calculation reported in Amemori and Ishii 2001

we define the activation function as:

Φ(x) =
q
(
e−αx − e−βx

)√
K(x, x)

(V.14)

with α = 1
τm

, that according to Amemori and Ishii 2001 is set to 0.1( 1
ms ),

β = 1
τs

with τs the synaptic time constant, q = β
(β−α) ( we chose β = [1.2 − 1.8]

compatible with the range of values reported in Amemori and Ishii 2001) and

K(x, x) = q2
(

e2α2(σ2
b0

+σ2
W0 x2) + e2β2(σ2

b0
+σ2

W0 x2) − 2e
1
2 (α+β)2(σ2

b0
+σ2

W0 x2)
)

.

The numerator of the activation function defined in Eq. (V.14) is the

analogue in the 1D-space introduced in Sec. V.2, of the "spike response function"

defined in Amemori and Ishii 2001 that characterizes the biological neuron

membrane response to a single input spike.

Substituting the activation function of Eq. (V.14) in the expression (V.13) we

obtain
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V
′

Φ(x, x′) = e
1
2 α2
(

4σ2
b0

+(x+x′)2
σ2

W0

)
+ e

1
2 β2
(

4σ2
b0

+(x+x′)2
σ2

W0

)
AB

+ (V.15)

+ −e
1
2 (α+β)2σ2

b0
+(x′α+xβ)2σ2

W0 − e
1
2 (α+β)2σ2

b0
+(xα+x′β)2σ2

W0

AB
, (V.16)

with

A =

√
e

2α2
(

σ2
b0

+x2σ2
W0

)
+ e

2β2

(
σ2

b0
+x2σ2

W0
−2e

1
2 (α+β)

(
σ2

b0
+xσ2

W0

))
(V.17)

and

B =

√
e

2α2
(

σ2
b0

+x′2σ2
W0

)
+ e

2β2

(
σ2

b0
+x′2σ2

W0
−2e

1
2 (α+β)

(
σ2

b0
+x′σ2

W0

))
. (V.18)

The latter expression substituted in Eq.(V.12) gives the corresponding propa-

gator.

In order to investigate the possibility of a translation invariant theory, we

also studied the limit β → ∞ for which the activation function is:

Φ(x) = qe−αx√
K(x, x)

(V.19)

with q = 1 as reported in Amemori and Ishii 2001 and K(x, x) =

q2e2α2σ2
W0 x2+2α2σ2

b0 . Substituting the activation function of Eq. (V.19) in (V.13)

we have:

V
′

Φ(x, x′) = e− 1
2 α2σ2

W0(x−x′)2

(V.20)

and then putting the latter expression in (V.12) we obtain the propagator:

K(x, x′) = σ2
b1

+ σ2
W1

e− 1
2 α2σ2

W0 |x−x′|2

.

This expression turns also to be invariant under the translation map x → x + c,

x′ → x′ + c. Thus, the associated theory has also to show this symmetry.

The next step is to analyze the network behavior with the activation

functions defined in Eq.(V.19) and in Eq. (V.14). To do this, we need to
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find appropriate inputs for the network and to modify the open-source code

at https://github.com/keeganstoner/nn-qft (James Halverson, Anindita Maiti,

and Keegan Stoner 2021, James Halverson, Anindita Maiti, and Keegan Stoner

2020) introducing the definition of the new activation functions and of the

derived propagators.

V.4.1 Input creation

The idea underlying the creation of inputs is that we are not interested in

reproducing spikes of individual neurons but in describing the response of

interconnected neuronal populations as a whole and even distributed in different

cortical layer, once the properties of each neurons’ population and the network

connectivity are known. A neuronal population has to be intended as an

homogeneous group of neurons with similar intrinsic properties and similar

receptive fields (Gerstner et al. 2014). More generally, the mathematical notion

of population does not necessarily imply a local group of neurons: a neuronal

assembly (Hebb 1949), in fact, is composed of a network of neurons involved in

the same stimuli response and which can even be distributed in several brain

areas. Neurons of a certain population can interact among themselves and with

neurons of different populations and of different cortical layers, even of different

brain areas.

To obtain the input, we refer to Bos, Diesmann, and Helias 2016 where a

combination of mean-field (Amit, Brunel, et al. 1997) and linear-response theory

is used to predict the spectra generated in a layered microcircuit. The latter

models a multi-layered spiking cortical network as composed of four layers of

excitatory and four layers of inhibitory neurons’ populations, according to the

balanced random network model introduced in Amit, Brunel, et al. 1997, with a

data-based cell-type specific connectivity as proposed by Potjans and Diesmann

2014. For a graphical representation see Fig. V.1.

We use the toolboox described in Layer et al. 2022 to obtain how the

layered microcircuit power signal is distributed across its different frequency
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Figure V.1: Example of cortical layered microcircuit consisting of four layers
of excitatory neurons’ population (E) and four layers of inhibitory neurons’
population (I). Image from Layer et al. 2022.

components. This toolbox implements mean-field approximation of neuronal

activity and the power spectra are obtained by studying the linear response of

the network activity to fluctuations caused by its spiking activity, as reported in

Bos, Diesmann, and Helias 2016. The numerical predictions obtained with this

toolbox reproduce the simulated data presented in Bos, Diesmann, and Helias

2016.

Once we obtain the power spectra of each population, we calculate the asso-

ciated signal intensity using the Parseval relation, which allows the calculation

of the norm of a Fourier series. Therefore the generated inputs, referring to the

signal intensity of the four layers of excitatory neurons’ population and of the

four layers of inhibitory neurons’ population, are:

{0.0143, 0.0702, 0.2028, 0.3972, 0.6535, 1.0201, 0.0335, 0.9587} (V.21)

V.4.2 Study of the network behavior

In this section we use the generated inputs to study the network behavior

considering the two defined activation functions, the activation function 1
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expressed by Eq. (V.19) and the activation function 2 by Eq. (V.14).

V.4.2.1 Study with activation function 1

Fig.V.2 shows the 2-pt, 4-pt and 6-pt deviation defined as mn = ∆G(n)

G
GP (n)

with

respect to a background signal, the average element-wise standard deviation

of the experimental mn as reported in J. Halverson, A. Maiti, and K. Stoner

2021. We can observe that the n-pt deviations are below the background level

and therefore consistent with ∆G(n) → 0 indicating that the kernel is an exact

measure of the n-pt correlation function even away from the infinite neural

network limit, or rather away from GP limit, as reported in J. Halverson,

A. Maiti, and K. Stoner 2021. This means that GP prediction still correctly

reproduce the experimental n-pt functions; thus the neural networks can be

considered as drawn from a GP or rather the neural network with the activation

function 1, approximating the behavior of a brain portion, can be described

as a Gaussian Process up to O(6). As a consequence, the network statistics

constructed in this way is entirely determined by Wick contractions of the kernel

K(x, x′) calculated in Sec.V.4.

V.4.2.2 Study with activation function 2

From Fig. V.3, related to inputs defined in (V.21), we can see that the

correlation function G(2) has some small fluctuations upon the level of the

background signal. However, considering correlation functions G(4) and G(6)

we can see that the behavior of the network with activation function 2 is well

approximated up to O(6) with a Gaussian process when β = [1.2, 1.8] (a range

compatible with values reported in Amemori and Ishii 2001). For different β

values (compatible with Amemori and Ishii 2001, e.g., in the range [2., 3.]) we

have the n-pt deviation signal above the background level. This means that GP

prediction no longer correctly predicts the experimental n-pt function or rather

the neural network is not drawn from a GP, but instead from an NGP.
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(a) 2 − pt deviation

(b) 4 − pt deviation

(c) 6 − pt deviation

Figure V.2: n-pt deviation calculated as(V.10) normalized for G
(n)
GP and

generated by the activation function 1. Signal represents element of the tensor
mn = ∆Gn

Gn
GP

and the background the average element-wise standard deviation.
The experiment is done with 103 networks for a run and inputs defined in (V.21).
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The theory framework is still valid also in this case, as reported in Appendix

A, and it will be further investigated in future works.

V.4.3 Stability studies of the network behavior

To study the stability of the network behavior, we also consider the inputs

related to the sub-circuit, or the so-called minimal circuit described in Bos,

Diesmann, and Helias 2016. The minimal circuit corresponds to the anatomical

circuit underlying the generation of low (64 Hz)- and high- γ oscillations. These

oscillations are present in neural population signals, like multi-unit recordings

EEG/MEG.

With reference to Fig. V.1 and as reported in Bos, Diesmann, and Helias

2016, the low- and high- γ oscillation turns out to be generated in a sub-circuit

located in layer 2/3E and 4E and 4I.

Power spectra associated to the tree populations in sub-circuit are derived

with toolbox Layer et al. 2022 and, using again the Parseval identity, the

associated signal intensity are obtained. Inputs generated in this way are:

{0.0143, 0.2028, 0.3972}. (V.22)

The obtained results for the activation function 1 are reported in Fig. V.4,

whereas the results for the activation function 2 are shown Fig. V.5. They all

confirm that the neural network with the activation functions 1 and 2, can be

described as a Gaussian Process up to O(6). Besides, the obtained behaviors

are further supported by the results generated considering 10 runs for each of

the 103 models (different network initialization) and inputs given by Eq. (V.21)

and Eq. (V.22) for activation function 1 (Fig. V.6 and Fig. V.7 ) and for

activation function 2 (Fig.V.8 and Fig. V.9).

From the studies presented, we can conclude that, unlike the finite neural

networks with different activation functions presented in J. Halverson, A. Maiti,

and K. Stoner 2021, the neural network f(x) : Rdin → Rdout constructed to

behave as a brain portion can be described up to the O(6) as a Gaussian

process. More in detail, we are referring to a neural network with one of the
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(a) 2 − pt deviation

(b) 4 − pt deviation

(c) 6 − pt deviation

Figure V.3: n-pt deviation calculated as(V.10) normalized for G
(n)
GP and

generated by the activation function 2. Signal represents element of the tensor
mn = ∆Gn

Gn
GP

and the background the average element-wise standard deviation.
The experiment is done with 103 networks for a run and inputs defined in (V.21)
and β = 1.8.
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(a) 2 − pt deviation

(b) 4 − pt deviation

(c) 6 − pt deviation

Figure V.4: n-pt deviation calculated as(V.10) normalized for G
(n)
GP and

generated by the activation function 1. Signal represents element of the tensor
mn = ∆Gn

Gn
GP

and the background the average element-wise standard deviation.
The experiment is done with 103 networks for a run and inputs defined in (V.22).
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(a) 2 − pt deviation

(b) 4 − pt deviation

(c) 6 − pt deviation

Figure V.5: n-pt deviation calculated as(V.10) normalized for G
(n)
GP and

generated by the activation function 2. Signal represents element of the tensor
mn = ∆Gn

Gn
GP

and the background the average element-wise standard deviation.
The experiment is done with 103 networks for a run and inputs defined in (V.22)
and β = 1.8.
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(a) 2 − pt deviation

(b) 4 − pt deviation

(c) 6 − pt deviation

Figure V.6: n-pt deviation calculated as(V.10) normalized for G
(n)
GP and

generated by the activation function 1. Signal represents element of the tensor
mn = ∆Gn

Gn
GP

and the background the average element-wise standard deviation.
The experiment is done with 103 networks for 10 run and inputs defined in
(V.21)
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(a) 2 − pt deviation

(b) 4 − pt deviation

(c) 6 − pt deviation

Figure V.7: n-pt deviation calculated as(V.10) normalized for G
(n)
GP and

generated by the activation function 1. Signal represents element of the tensor
mn = ∆Gn

Gn
GP

and the background the average element-wise standard deviation.
The experiment is done with 103 networks for 10 run and inputs defined in
(V.22).
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(a) 2 − pt deviation

(b) 4 − pt deviation

(c) 6 − pt deviation

Figure V.8: n-pt deviation calculated as(V.10) normalized for G
(n)
GP and

generated by the activation function 2. Signal represents element of the tensor
mn = ∆Gn

Gn
GP

and the background the average element-wise standard deviation.
The experiment is done with 103 networks for 10 run and inputs defined in
(V.21).
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(a) 2 − pt deviation

(b) 4 − pt deviation

(c) 6 − pt deviation

Figure V.9: n-pt deviation calculated as(V.10) normalized for G
(n)
GP and

generated by the activation function 2. Signal represents element of the tensor
mn = ∆Gn

Gn
GP

and the background the average element-wise standard deviation.
The experiment is done with 103 networks for 10 run and inputs defined in
(V.22).
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defined activation functions of the type 1, 2 and receiving as inputs the vectors

designed to reproduce the signal associated to the mean field power spectra

approximation of the neural excitation and inhibition populations of the cortical

layer. Therefore, a brain portion field expressed in (V.1) can be considered as

a Gaussian Process on function space.

V.5 From the signal space to physical space

As shown in the previous section the behavior of a brain portion, represented

through a finite neural network, can be modeled as a Gaussian process on

function space ϕ : R → R. This means that the neural-signal intensity is

drawn from a multivariate Gaussian distribution N (µ, Ξ−1) (J. Halverson, A.

Maiti, and K. Stoner 2021). For assumption in the model construction µ = 0

whereas the covariance Ξ is the inverse of the Kernel function K(x, x′) which, in

turn, incorporate the biological information of the neuronal model. Therefore,

we have:

ϕ(x) ∼ e− 1
2 xΞ−1x (V.23)

with x ∈ R, the signal intensity space and Ξ−1 the propagator. To pass

from the signal space to physical space r ∈ R, we can take advantage of the

Fourier transform. A Fourier transform of a Gaussian field is still a Gaussian

field. Thus, in the physical space we have:

ϕ(r) ∼ e− r2
2Ξ−1

∫ +∞

−∞
e−

(
√

Ξ−1x+ ir√
Ξ−1

)2

2 dx = e− r2
2Ξ−1 C(Ξ−1) (V.24)

with C(Ξ−1) =
√

π
2Ξ−1 a coefficient that depends on Ξ and so on the propagator.

The derived distribution can be thought as the field describing the spatial

influence of a brain portion centered in the position r.

An approach to experimentally obtain a high temporal-resolution signal of

the neural activity in a certain region of the brain immediately surrounding

the recording surface of an electrode, is the electroencephalography (EEG)

technique. However, as reported in Owen et al. 2020, brain regions that are

distant from the recording surface of the electrode also contribute to the recorded
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signal, due to brain volume conduction but also to direct and indirect anatomical

connections. In Owen et al. 2020 the behavior of how much a small volume of

brain tissue at the location z contribute to the recording from an electrode at

location η is approximated by a Gaussian radial-basis function (rbf):

rbf = e
||x−η||2

λ (V.25)

with λ a parameter that governs the level of spatial smoothing. The estimated

values of the rbf at any brain location z can be used as a rough estimate of how

much structures around z contribute to the recording from the location η. Thus,

the rbf can take into account how informative the recordings at each electrode

location is in reconstructing activity at each other brain position. In this way,

as reported in Owen et al. 2020, one can construct a matrix to be used as a

weight for the observed interelectrode correlation matrix of a certain patients

and then to aggregate these estimates across all the available patient to obtain

a single full-brain correlation matrix. By doing so, the authors of Owen et al.

2020 were able to estimate the voltage from different patients in different brain

locations.

In this context, we can recognize that the rbf has the same role of the

field distribution in (V.24), in which r is interpreted as the spatial distance

||z − η||. We can take advantage of this connection to experimentally calibrate

the constants value in the expression of the propagator K, which incorporate

the model biological information. In particular, we can match

e− r2
2Ξ−1

√
π

2Ξ = e− r2
λ (V.26)

with λ obtained from healthy control EEG data through an optimization

problem on EEG similar to the one reported in Owen et al. 2020. We can

then solve for Ξ−1 that is:

K = Ξ−1 = − 1
W (−e−A) (V.27)

with A = − 1
λ + ln 1√

π
and W is the Lambert function (Mező and Keady 2016).

The biological implication of this result will be the object of future investigation.
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V.6 Conclusion and future perspectives

We introduced an attempt to describe a brain portion through a quantum-

field theory. Thanks to the connection between quantum-field theory and

neural network pointed out in Halverson et. al. J. Halverson, A. Maiti, and

K. Stoner 2021, we constructed a finite neural network characterized by an

activation function inspired to a biological neuron model response function with

the aim to simulate the brain portion. We studied the behavior of the defined

neural network considering as input the mean field approximation of the power

spectra associated to the multi-layered spiking cortical neurons’ populations.

We obtained that the brain portion activity can be approximated up to O(6),

i.e., six fields interaction, as a Gaussian Process. A quantum-field theory

description is also possible in the case in which the network behavior could

results in a non-Gaussian Process as reported in the Appendix A. This quantum

description of the brain can pave the way for a future study on quantum effects

in the brain. It also gives the possibility to simulate the behavior of a brain

portion incorporating the biological modeling of a neuron 1 and in addition, in

theory, having available many fMRI data or EEG data, to train the network to

reproduce neural data. In this context, we can also consider that different brain

portions can be simulated separately and then connected, with a connectivity

determined by correlation matrix as usual in connectomics (Behrens and Sporns

2012), to reproduce the full-brain activity.

As a future application, we plan to extend this model in more dimensions,

e.g., a 3D space, by considering not just real scalar bosons but complex scalar

bosons or even some analogue of the particles with spin.

1A potential advantage of the proposed brain simulator based on QFT and NN respect
to other brain simulators is that it is no longer necessary to distinguish between the top-
down and bottom-up approach. In fact, the brain model based on QFT and NN directly
incorporates the biological information at microscopic level in the chosen activation function.
The QFT-NN model is also easily adaptable to different biological modeling of a single neuron,
which is translatable into a change of activation function and of the corresponding Feynman
propagator. Computationally speaking, the NN approach is also fast, once the models with a
defined activation function and associated propagator are generated.
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Appendix A

The developed theory is still valid in the case in which the constructed neural

network with a particular activation function, modeling the response of the

biological neuron, behaves as a non-Gaussian Process. In this case, we have

an action SNGP of the type reported in Eq. (V.2) and to calculate the n-pt

correlation function we need to consider, as reported in J. Halverson, A. Maiti,

and K. Stoner 2021, that:

G(2)(x1, x2) ̸= K(x1, x2) = G
(2)
GP (x1, x2) (V.28)

and so

G(2)(x1, x2) = K(x1, x2) + λ−, k−corrections (V.29)

and therefore:

�x1 x2 − λ
[
12 �x1 x2

]
− k

[
90 �x1 x2

]
= G(2)(x1, x2)

3 �
x3

x1

x4

x2

− λ
[
24 �

x4

x1

x3

x2

+ 72 �
x3

x1

x4

x2 ]
+

−k
[
360 �

x4

x1

x3

x2

+ 540 �
x1

x4

x3

x2 ]
= G(4)(x1, x2, x3, x4)

15 	
x3

x1

x5

x4

x2

x6

− λ
[
540 


x4

x1

x5

x3

x2

x6

+ 360 �
x3

x1

x5

x4

x2

x6 ]
+

−k
[
720 �

x4

x1

x5

x3

x2

x6

+ 4050 
x1

x4

x5

x3

x2

x6

+ 5400 �
x1

x4

x5

x3

x2

x6 ]
= G(6)(x1, x2, x3, x4, x5, x6)
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Proceeding as in J. Halverson, A. Maiti, and K. Stoner 2021 we consider

that the kernels associated to a class of neural network architectures can be

expressed in terms of a model independent (within the architecture class) term

α and a model dependent term ξ:

K(x, x′) = α + ξ(x, x′) (V.30)

where it is assumed that the first and the second terms are input independent

and dependent, respectively in deep fully-connceted networks (J. Halverson, A.

Maiti, and K. Stoner 2021). Substituting the kernel expressed by the Eq.(V.30)

in the mathematical transcription of the Feynman graph for G(4) and G(6) we

obtain

G(4)(x1, x2, x3, x4) = γ4,0+ρ4,0−λ

∫ Λ

−Λ
ddinx (γ4,λ + ρ4,λ)−k

∫ Λ

−Λ
ddin

x (λ4,k + ρ4,k)

(V.31)

and similarly for G(6):

G(6)(x1, x2, x3, x4, x5, x6) = γ6,0+ρ6,0−λ

∫ Λ

−Λ
ddinx (γ6,λ + ρ6,λ)−k

∫ Λ

−Λ
ddin

x (λ6,k + ρ6,k)

(V.32)

with the subscripts 4 and 6 representing the order of the corresponding

correlation function. Terms λ6,0 and ρ6,0 are indipendent of the integration

variable x and of any interaction vertices. The renormalization group equations

(RGs) are :
∂G(4)(x1, x2, x3, x4)

∂logΛ = 0

and
∂G(6)(x1, x2, x3, x4, x5, x6)

∂logΛ = 0

and in the limit of large Λ , k term is negligible.

In this case we can estimate the parameter λ as:

λ = N

D
(V.33)

where N is defined as:

�

x1 x2 − G(2)(x1, x2) = K(x1, x2)
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with G(2)(x1, x2) the experimental evaluation of the 2-pt function according to

the relation in Eq. (V.3), whereas D is:

[
12
�

x1 x2
]

.

We can use then the derived λ to make prediction in G(4) and G(6).

Appendix B

We report, according to J. Halverson, A. Maiti, and K. Stoner 2021, the more

general Feynman rules, whose particular expression depend on the action S:

1) For each of the n external points xi, draw:

�

x1

2) for each interaction vertices yj and zm, draw respectively:

�

and

�

3) Determine all ways to pair up the loose ends associated to x′
is, y′

js and

z′
ks. This will yield some number of topologically distant diagrams.

4) Write a sum over the diagrams with an appropriate combinatorial factor

out front, which is the number of ways to form that diagram. Each diagram

corresponds to an analytic term in the sum.
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5) For each diagram, write −
∫

ddinyjλ for each

�

, and −
∫

ddinzkk for each

�

.

6) Write K(u, v) for each

�

u v

7) Throw away any terms containing vacuum bubbles (or rather a diagram

that is not connected to any external points.)
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Conclusion

This thesis deals with the necessity to support the clinical decision making pro-

cess providing mathematical, statistical and computational tools to describe,

understand and predict disease patterns and its time evolution, with special

focus on neurology and neuroradiology fields. The thesis is divided into three

parts.

Part1 is related to the development of a Radiomic workflow combined with

ML algorithms that allows the prediction of neuromuscular biomarkers, Fat

Fraction and water T2, from MRI images in order to quantify muscle fat re-

placement and muscle inflammation, respectively. These parameters are able

to foster the quantitative detection of anatomical changes of muscles that

characterize neuromuscular diseases, with special focus on FSHD. The main

contribution of these studies is that the developed workflow relies on conven-

tional MRI sequences, such as gradient-echo, spin-echo and STIR imaging, most

likely available in the greatest part of neuromuscular centers, thus it constitutes

a non-invasive tool to monitor even the fine change in neuromuscular disorders

and to evaluate longitudinal progression over time. Besides, in dealing with the

time-consuming segmentation problem, we provided an automated tool based

on convolutional neural networks that classifies the MRI images in input as

thigh or calf and then it also returns the associated muscle-wise segmentation

maps as output.

Part 2 is about the description of a kinetic model for tumor growth by means

of classical tools of statistical mechanics for many-agent systems also taking

into account the effects of clinical uncertainties related to patient variability in

199



tumor progression.

From a theoretical point of view the main contribution of this work is the intro-

duction of a statistical approach based on kinetic theory to describe the growth

of tumor cells in terms of the evolution of distribution function whose temporal

variation is related to elementary transitions occurring at the cellular level and

incorporating environmental cues and random fluctuations. The large time

behavior of the system is obtained as a solution of the associated Fokker-Planck

equation and it depends on the nature of microscopic transitions. The action

of therapeutic protocols is modeled as feedback control at the microscopic level

with the aim to steer the volume of the tumors toward a smaller target volume.

The implementation of suitable control selective strategies results in modifying

the nature of the emerging distribution of tumor sizes. From a computational

point of view, the main contribution is the introduction of suitable numerical

methods, based on stochastic Galerkin formulation of the derived kinetic equa-

tions, to deal with uncertainties. We also showed how the control protocols are

capable of dampening the variability of the tumor dynamics due to the presence

of uncertainties.

Part 3 refers to a still-on going project that attempts to describe a brain

portion through a quantum field theory and, due to the connection between

quantum field theory and neural network highlighted in Halverson, Maiti, and

Stoner 2021, to simulate its behavior through the implementation of a neural

network. To this end, we construct a suitable activation function mimicking the

biological neuron model response function. From a theoretical point of view,

the main contribution is the creation of a quantum field theory framework for

a brain portion description that may eventually pave the way for future study

on quantum effects in the brain. From a computational point of view, the main

contribution is the identification of a fully-connected neural network with an

ad-hoc defined activation function and inputs to simulate a brain portion. We

come out with the conclusion that, under the considered conditions, the brain

portion activity can be expressed up to O(6), i.e., up to six fields interaction, as
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a Gaussian Process. The defined framework is still valid in the case of a resulting

Non-Gaussian Process but further studies are necessary. An additional planned

work is the extension of this model in more dimensions, e.g., a 3D space, by

considering not just real scalar bosons but complex scalar bosons or even some

analogue of the particles with spin. Besides, provided the data availability such

as EEG or fMRI data, another future work is to train the introduced network to

reproduce neural data of a certain brain portion. A further future perspective

is to simulate different brain portions and to connect them with a connectivity

map determined by correlation matrix, as usual in connectomics, in order to

reproduce the full-brain activity.
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