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Abstract

Image processing and computer vision are now part of our daily life and al-
low artificial intelligence systems to see and perceive the world similarly to
humans. Behind the remarkable results obtained by modern computer vision al-
gorithms, there are algorithms whose complexity, in some cases, requires the use
of dedicated hardware. However, especially in the industrial field for embedded
applications, it is not always possible to use hardware with sufficient computing
capacity to manage algorithms of high computational complexity with execution
times compatible with industrial needs. In this thesis, we develop computer
vision algorithms and methods with low computational complexity and high
performances. In the first approach presented, we study the relationship between
Fourier-based metrics and Wasserstein distances to propose alternative metrics
to the latter, considerably reducing the time required to obtain comparable
results. For the second case, instead, we start from an industrial problem and
develop a deep learning model for change detection called TinyCD, obtaining
state-of-the-art performance and reducing the computational complexity required
by at least a third compared to the existing literature.
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Chapter 1

Introduction

Image processing plays a fundamental role in our daily life. Our brain can process
images effortlessly, and these processed images represent a fundamental piece of
our perception of the surrounding environment. In a world in which artificial
intelligence is gaining ground, image processing becomes a fundamental element
for perceiving the world for artificial intelligence systems. Not surprisingly, image
processing and computer vision have been a fervent field of research since the
1960s when the advent of the first computers with sufficient computing power
allowed researchers at the American Jet Propulsion Laboratory to improve the
image quality of the lunar soil and thanks to other geometric correction and
registration techniques, reconstruct the entire lunar surface [1]. Since that time
numerous techniques have been developed not only to process and improve image
quality but also to extract as much information as possible to make artificial
intelligence algorithms able to perceive the world through artificial vision. Self-
driving cars and drones can recognize road signs and possible dangers to safely
navigate the surrounding world [2–6], you can unlock your phone using a front
camera and face recognition algorithms [7, 8]; computer vision is used as a tool
to help doctors making the diagnosis [9–11], and in the manufacturing industry,
automatic defect detection is employed [12–14]. And these are just a few of the
numerous applications of computer vision which have an impact on our everyday
life [15]. All this has been made possible also thanks to the technology that has
developed dedicated hardware such as GPUs, NPUs, FPGAs and TPUs.

However, the state-of-the-art models and algorithms in computer vision and
image processing have heavy computational costs [16]. High computational costs
and dedicated hardware can be a problem when we want to apply the research
results in industrial applications, which often imposes constraints in terms of
hardware and available computational resources.

The common thread of the research carried out in this thesis is the develop-
ment of algorithms with low computational cost but keeping the performances
unchanged, or whose results are comparable to those of the state-of-the-art
methods.

In Chapter 2, we follow a mathematical approach leveraging the concept of
equivalence between metrics on probability space. From a mathematical point
of view, typical problems from image processing and computer vision are always
described as a mathematical problem and then analyzed: the reconstruction
of images corrupted by noise can be formalized as a minimization problem
and, thanks to the calculus of variations, algorithms to find the minimum, i.e.
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the denoised image, are constructed [17–19]; segmentation problems can be
viewed as stochastic problems or graph problem and tackled with stochastic
method [20–22] or linear programming tools [23–25]; moving objects can be
modelled with partial differential equations and gradient flows [26–29].

It is fascinating to note how often the mathematical tools that are used to
tackle computer vision problems were not originally conceived for that purpose,
but thanks to the flexibility of mathematics they have been adopted. For
example, the Fourier transform was theorized by Jean Baptiste Joseph Fourier
in his treatise Théorie analytique de la chaleur [30]. Then the Fourier transform,
the Fourier series and the whole Fourier analysis became a very important field
of research in a lot of mathematical fields such as partial differential equations,
probability theory, complex analysis, and differential geometry [31]. Also, Fourier
analysis plays a crucial role in engineering since it is widely applied in signal
processing and image processing [32,33].

Similarly, Optimal Transport, born from the intuitions of Monge and for-
malized for the first time in his work Mémoire sur la théorie des déblais et
des remblais of 1781 [34], became a topic of great interest in various fields of
mathematics such as probability, partial differential equations, kinetic theory
and differential geometry [35,36]. More recently, optimal transport has also been
studied as a tool for image processing, finding applications in image retrieval,
colour transfer, image recognition, and image generation [37].

Fourier analysis and optimal transport are related from the point of view of
measure theory. In fact, through the Fourier transform it is possible to define a
family of distances which are topologically equivalent to the family of distances
induced by the optimal transport, the Wasserstein distances [35]. This link
turns out to be very useful for example in the field of kinetic theory where
weak convergence is used to study the asymptotic behaviour of the solutions of
kinetic equations such as Boltzmann’s equations [38–40]. Weak convergence is
usually studied through the Wasserstein distances but, in this case, the Fourier
distances turn out to be a more appropriate and manageable tool and, thanks
to the equivalence, the conclusions are the same. Despite these connections, the
relationship between Wasserstein distance and Fourier metrics has received little
attention in image processing.

For this reason, in Chapter 2 we study the link between these two distances
in a suitable setting for image processing. After a brief introduction to Optimal
Transport and Wasserstein distances conducted in Section 2.1, we introduce
the Fourier-based metrics in Section 2.2 and we extend in Section 2.3 the
equivalence result between Fourier-based metrics and Wasserstein distance of
order two in the general setting. Then, in Section 2.4 we analyze the Fourier-
based metrics in the discrete setting, and we derive for these cases explicit
equivalence constants with the Wasserstein distance. To cope with applications,
in Section 2.5 we review the properties of the discrete Fourier Transform and
then, in Section 2.6 we present our numerical results. In particular, Section 2.6.1
contains a benchmark between Fourier-based metrics and Wasserstein distances
showing the computational advantages of Fourier-based metrics and highlighting
that the relationships between these two families of metrics are, in practice,
stricter than the ones expressed by the formal equivalence results. To validate
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these claims, in Section 2.6.2, we do the same comparison in a realistic dataset
showing that the Fourier-based metrics could be successfully used in applications
where the Wasserstein distance is used to evaluate the goodness of fit between
reconstructed probability measures and ground truth probability measures.
Finally, in Section 2.6.3, we apply the Fourier-based metrics also in an anomaly
detection task to highlight its performances also on Optimal Transport non-
related applications.

Chapter 3, on the other hand, takes its cue from an industrial problem and
was a great opportunity to deepen and study image processing and computer
vision with Deep Learning tools. The history of deep learning in image processing
can be traced back to the late 1950s when neurophysiologists discovered through
experiments on animals that sight operates by layering knowledge [41]. Thus,
layered models began to come to life. However, we have to wait until the late 90s,
and early 2000s to see deep learning models in computer vision take root [42].
Unlike mathematical methods for image processing, deep learning models learn
directly from data and also need large computational capabilities or dedicated
hardware such as GPUs. When computers became powerful enough to support
these models, and appropriate datasets were introduced and standardized, deep
learning moved the performance even beyond human capabilities, and today
represents the state of the art in image processing and computer vision [43–45].

Even if computational resources and datasets are no longer an obstacle
in research today, they still represent a problem in the industrial field [16].
Collecting datasets for specific applications turns out to be a very time-consuming
task. Furthermore, dedicated hardware can cost several thousand euros, while
to keep production costs low, we would like to use low-cost devices with limited
computational resources, without sacrificing performance. To better understand
the industrial scenario that we are facing, we open Chapter 3 describing in
detail the Line Clearance, namely the problem of monitoring the production
line state and detecting possible hazards, pointing out limitations and particular
requirements imposed by the industrial setting. To overcome the difficulties
related to the creation of the dataset and develop a model, we decided to tackle
a problem similar to the industrial one, but coming from the world of change
detection for aerial images [46,47]. This workaround is also useful to validate
our model out of the particular industrial application, giving our model general
applicability. We introduce the change detection on aerial images in Section 3.1,
and we review the existing literature in Section 3.2. Section 3.4 contains the
description of TinyCD, our proposed model. The philosophy of our approach is
to develop a model that uses low-level local features to compare two different
images and track the unwanted changes. As reported in Section 3.5, the proposed
model has reduced the computational complexity to one-third and has at least
one-twelfth the number of parameters compared to the current state-of-the-art
models for aerial change detection. We discuss the results in Section 3.6, and
then we conclude the chapter with Section 3.7 showing how TinyCD performs
in the industrial scenario.
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Finally, we conclude our work in Chapter 4, giving perspectives on future
works.

Parts of the results presented in this thesis are contained in papers that have
been submitted by the author and coauthors in peer reviewed journals or peer
reviewed conferences:

Chapter 2

• Auricchio, G., Codegoni, A., Gualandi, S., Toscani, G., Veneroni, M.
(2020). The equivalence of Fourier-based and Wasserstein metrics on
imaging problems. Rendiconti Lincei, 31(3), 627-649.

• Auricchio, G., Codegoni, A., Gualandi, S., Zambon, L. (2021). The
Fourier Discrepancy Function. Communications in Mathematical Sci-
ences. Accepted on July 2022. https://intlpress.com/site/pub/
pages/journals/items/cms/_home/acceptedpapers/index.php

• Codegoni, A., Gualandi, S., Ricciato, F. (2022). On the Application
of the Fourier-based Distance to Spatial Statistics. Conference on
New Techniques and Technologies for Statistics, Eurostat. 7-9 March
2023, Bruxelles.

Chapter 3

• Carrioli, L., Codegoni, A., Lombardi, G. (2022). One-shot anomaly
segmentation for Line Clearance. CompMat 2022, Spring Workshop.
March, 16-17 2022, Pavia.

• Codegoni, A., Lombardi, G., Ferrari, A. (2022). TinyCD: A (Not So)
Deep Learning Model For Change Detection. Neural Computing and
Applications. Published Online December, 18 2022. https://link.
springer.com/article/10.1007/s00521-022-08122-3 Reproduced
with permission from Springer Nature. Code and datasets are avail-
able here: https://github.com/AndreaCodegoni/Tiny_model_4_
CD

https://intlpress.com/site/pub/pages/journals/items/cms/_home/acceptedpapers/index.php
https://intlpress.com/site/pub/pages/journals/items/cms/_home/acceptedpapers/index.php
https://link.springer.com/article/10.1007/s00521-022-08122-3
https://link.springer.com/article/10.1007/s00521-022-08122-3
https://github.com/AndreaCodegoni/Tiny_model_4_CD
https://github.com/AndreaCodegoni/Tiny_model_4_CD


5

Chapter 2

Fourier Based Metrics

The best way to introduce the idea behind Optimal Transport is to follow
the seminal work of Gaspar Monge, Mémoire sur la théorie des déblais et des
remblais [34]. Suppose you want to build a sandcastle, and you have at your
disposal a fixed amount of sand, stored in a pile with a specific shape. You have
to rearrange the initial pile of sand into the location you have chosen for your
sandcastle, and possibly in a form that resembles that of a castle. However, since
you are on holiday, you want to do this job in an efficient way using the least
amount of energy. The problem is: where do you transport every single grain
of sand to build the castle using the least amount of energy? Another effective
explanation of the Optimal Transport problem is the one proposed by Villani at
the beginning of his book [35]: “Consider a large number of bakeries, producing
loaves, that should be transported each morning to cafés where consumers will eat
them. The amount of bread that can be produced at each bakery and the amount
that will be consumed at each café are known in advance, and can be modelled
as probability measures (there is a “density of production” and a “density of
consumption”) on a certain space, which in our case would be Paris (equipped
with the natural metric such that the distance between two points is the length of
the shortest path joining them). The problem is to find in practice where each
unit of bread should go, in such a way as to minimize the total transport cost.”
These two stories highlight the essence of Optimal Transport: moving mass from
an initial configuration to a target one, where moving is regulated by a cost
which we want to keep low as possible.

Figure 2.1: The déblais and remblais problem by Monge. Picture from [35]

Monge’s initial version of the Optimal Transport is deterministic: a mass
unit (a single grain of sand or a unit of bread) must be transported from the
initial starting point to a specific target point. In other words, the Monge
problem is an assignment problem [48]. At the beginning of 1900, this problem
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was studied by a Russian mathematician, Leonid Vitaliyevich Kantorovich. In
his works, he introduced the Duality theory in Linear Programming [49, 50],
and then applied them to the original problem of Monge [51, 52]. One of
the main aspects of Kantorovich’s work was the introduction of the relaxed
version of the Monge’s assignment problem. Kantorovich admits that the mass
can be broken, or in another interpretation, he assigns a destination to each
quantity of mass with a certain probability. Monge, despite his great skills as a
mathematician, had never taken care of relaxing the problem by removing the
integrity constraints on the transported mass, probably because in applications
this relaxation can lead to impractical situations. For example, what would be
the point of carrying a seventy-second piece of a loaf from bakery A to cafés B.
From an abstract point of view, however, this relaxation leads to a much more
tractable problem. For example, for the relaxed problem, one can always prove
the existence of a solution, which is not guaranteed in the case of the non-relaxed
Monge problem [36]. Moreover, this change of paradigm allowed Kantorovich to
define a notion of distance between probability measures [53]. Because of these
fundamental contributions of Monge and Kantorovich, the problem of Optimal
Transport is also known as Monge–Kantorovich problem. The distance between
probability measures takes the name of Kantorovich–Rubinstein distance for
this historical reason, but is widely known also with the name of Wasserstein
distance [54], probably due to the terminology used in [55,56]. In this work we
have decided to use the name Wasserstein distance, but, as pointed out in [35,36],
other names in different areas have also been attributed to this distance. Inspired
by Monge’s original problem, it is known as Earth Mover’s Distance in the image
processing community [57], in Statistic is known as Mallows distance [58] and as
Tanaka distance in the field of partial differential equations [59,60].

Another milestone in the history of Optimal Transport was set by George
Dantzig. Dantzig, working in parallel with Kantorovich whose results were
kept secret by the Soviet government, in his work [61], developed during the
Second World War to cope with the logistics problems of the army, not only
made important theoretical contributions to linear programming, but proposed
and implemented the primal simplex algorithm. The primal simplex algorithm
had a great impact on logistics problems, allowing it to automate the solution
with great efficiency for the time it was developed and conceived, so much so
that it earned its inventor the National Medal of Science. The applications
of this algorithm go beyond logistical problems. In fact, the primal simplex
algorithm can be used for all linear programming problems. In particular, the
simplex algorithm represents the first numerical algorithm for the solution of the
Monge-Kantorovich problem [62]. This follows from the fact that the Optimal
Transport problem is equivalent, thanks to a result by Ford and Fulkerson [63],
to an important class of linear programs problems known as minimum cost
network flows [64].

In addition to the aforementioned logistic problems, the Wasserstein distance
is used in statistics in problems concerning limit theorems and in all cases in
which probability measures are to be compared [65–69]. In statistical mechanics,
the Wasserstein distance is used to study the propagation of chaos and the
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average behaviour of systems with many particles [70–73]. It is also useful for
the study of Markov chains [74–76], for the asymptotic behaviour of partial
differential equations [77–79], systems of particles [80].

In recent years, optimal transport has enjoyed enormous success in computer
vision, where is used for image registration [81, 82], to transport/transfer the
image style from a source image to a target one [83,84], to construct classifiers
that mimics the human eye perception [57, 85] and to compute barycenters
among images [86,87]. In computational biology, optimal transport shows the
ability to take into account the relationships between different genes in order to
classify cells by type or type of disease [88–90]. Also in machine learning, optimal
transport has been used in generative models [91–93], in supervised learning [94],
and in the context of domain adaptation, that is the task of transferring the
knowledge from a well-known domain to another, less known and accessible
domain [95, 96]. For the interested reader, that other applications of optimal
transport can be found in [37,97].

Given the large number of applications in which optimal transport is used,
the interest in having efficient computational methods for solving these problems
has grown. To speed up the simplex algorithm, in [98], the Optimal Transport
problem is solved using a sequence of the shortest path problems on networks,
while in [99] the authors exploit the structure of the problem to reduce the
computational complexity. The advantage of this approach is that one can always
attain the optimal value of the considered problem. In [100] the authors propose
a tree-based algorithm for a particular case of Optimal Transport problem with
quadratic complexity. Other researchers face the complexity of the LP problem
by reducing the number of arcs in the flow formulation using truncated cost
functions [85,101]. The Sinkhorn algorithm [102] solves a regularized problem
whose solution approximates the solution of the optimal transport, was recently
brought to the attention of researchers in [103] where it was shown how this
algorithm can be efficiently implemented as a matrix product on the GPU.
Furthermore, unlike the linear programming problem, using the approximate
problem, which makes us lose the optimal solution to the problem, allows us to
have an objective function that can be easily differentiated through automatic
differentiation algorithms.

In this chapter, guided by the need of efficient method linked to Optimal
Transport, we present a family of metrics based on the Fourier transform, and we
study the relationships between these metrics and the Wassertein distance. To
this extent, we start in Section 2.1 recalling basic concepts of Optimal Transport
more formally. In Section 2.2 we introduce the Fourier-based metrics. These
types of metrics are widely used in kinetic theory, but, despite their equivalence
with the Wasserstein metric, they have received little attention in the area of
computer vision and signal processing. One of the possible causes is the requests
to be made on moments of the distributions that are being compared to guarantee
the finiteness of these metrics. To cope with this limitation in Section 2.3 we
extend the classical Fourier-based metrics. Then, in Section 2.4 we study the
extended Fourier-based metrics in a discrete setting and show explicitly the
equivalence constants between Fourier-based metrics and Wasserstein distances.
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To show the computational advantages of using Fourier-based metrics we fully
describe their discrete form in Section 2.5 and in Section 2.6 we perform three
different experiments: in the first and second experiment we numerically show
that the results obtained with the Fourier-based metrics are numerically close or
linearly correlatable to the results obtained with exact Optimal Transport solvers,
but with several orders of magnitude more speed. Then in the last experiment,
we show that the Fourier-based metrics could be also extended to compare
generic vectors and not only probability measures with good performance in a
classification task.

2.1 Background on Optimal Transport

In this section, we recall the basic definition and notions of Optimal Transport. A
comprehensive introduction and theoretical advanced topics of Optimal Transport
can be found in [35–37,104,105].

Let us start by fixing the notation. We work on the Euclidean space R
d,

endowed with the Borel ��algebra B(Rd). We use bold letters to denote vectors
of R

d. If x 2 R
d, then xi denotes its i-th coordinate. Given x,y 2 R

d,
x · y =

P
n

i=1 xiyi is their scalar product and |x| = (x · x)1/2 is the Euclidean
norm (or modulus) of x. The set of probability measures on R

d is denoted by
P(Rd). Given µ 2 P(Rd) and a Borel map f : Rd ! R

d, then the image measure
(or push-forward) of µ by f is f#µ 2 P(Rd), given by f#µ(A) = µ(f�1(A)) for
all A 2 B(Rd). Equivalently, for every continuous compactly supported function
� on R

d, it holds
Z

Rd

�(y) d(f#µ)(y) =

Z

Rd

�(f(x)) dµ(x).

In order to make a formal definition of the Monge-Kantorovich problem, we
need to introduce the concept of transport plan.

Definition 1 (Transport plan). Given two probability measures µ, ⌫ 2 P(Rd),
a measure ⇡ 2 P(Rd ⇥ R

d) is called a transport plan between µ and ⌫ if its
marginals coincide with µ and ⌫, that is

⇡(A⇥ R
d) = µ(A) 8A 2 B(Rd), (2.1.1)

⇡(Rd ⇥ B) = ⌫(B) 8B 2 B(Rd). (2.1.2)

We denote by ⇧(µ, ⌫) the set of all transport plans between µ and ⌫.

Now we can define the Monge-Kantorovich problem:

Definition 2 (Monge-Kantorovich problem). Given µ 2 P(Rd), ⌫ 2 P(Rd) and
c : Rd ⇥ R

d ! [0,+1], the Monge-Kantorovich problem is to find

inf
⇡2⇧(µ,⌫)

Z

Rd⇥Rd

c(x,y)d⇡(x,y). (2.1.3)
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The first thing we need to worry about is the existence of a minimizer (2.1.3).

Theorem 1. Given two probability distribution µ 2 P(Rd) and ⌫ 2 P(Rd), and
given a cost function c : Rd ⇥ R

d ! [0,+1], if c is lower semi-continuous, i.e.

c(x0,y0)  lim
(x,y)!(x0,y0)

c(x,y), 8(x0, y0) 2 R
d ⇥ R

d,

then the Monge-Kantorovich problem (2.1.3) admits a solution and the inf is a
minimum.

Theorem 1 can be proved by using the direct method in the calculus of
variation. The proof is out of the scope of this presentation and can be found
in [35, Chapter 4] or [36, Chapter 1].

In the introduction to this chapter, the Monge-Kantorovich problem is
presented as a linear programming problem. In fact, equation Equation (2)
represents the objective function which is linear in ⇡. Equation (2.1.1) and
Equation (2.1.2) represent the constraints, which are linear with respect to ⇡ as
they are marginalization. These two constraints means that the marginals of ⇡
must correspond to the two measures µ and ⌫. To make it even more explicit,
we rewrite (2.1.3) and (2.1.1-2.1.2) in the case where µ and ⌫ are two discrete
probability measures. To this extent, suppose that µ is supported on n points
{x1,x2, . . .xn} and ⌫ on m points {y1,y2, . . .ym}. This means that µ and ⌫
are combination of Dirac delta functions, namely

µ :=
nX

i=1

µi�xi , ⌫ :=
mX

j=1

⌫j�yj . (2.1.4)

In this case, the cost function can be identified as a matrix c 2 R
n⇥m

+ . The ci,j
entry represent the cost of moving mass from source xi to destination yj. The
Monge-Kantorovich problem can then be written as

min
⇡2Rn⇥m

+

nX

i=1

mX

j=1

ci,j⇡i,j (2.1.5)

s.t.
mX

j=0

⇡i,j = µi, 8i 2 {1, · · · , n} (2.1.6)

nX

i=0

⇡i,j = ⌫j, 8j 2 {1, · · · ,m} (2.1.7)

where ⇡i,j represents the mass (to be determined) that flows form xi to yj.
We show in the discrete setting an example were the solution ⇡ of the Monge-
Kantorovich problem is not unique.

Example 1. Let us take as a support space for µ and ⌫ the four vertex of a
unit square in R

2. We set

µ =
1

2
�[0,0] +

1

2
�[1,1], ⌫ =

1

2
�[1,0] +

1

2
�[0,1].
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As a cost function C we use the standard Euclidean distance in R
2. In this case,

we have

⇡1 :=

2

4
1
2 0

0 1
2

3

5 , ⇡2 :=

2

40
1
2

1
2 0

3

5

are both two optimal solutions to the Monge-Kantorovich problem with objective
function equals to 1. Moreover, any convex combination of ⇡1 and ⇡2 is an
optimal solution. Hence, we have an infinite set of optimal solutions.

The formal description of the Monge-Kantorovich problem allows us to
understand why this problem has been so successful. (2.1.3) and its discrete
counterpart (2.1.5), highlights how the formulation of the optimal transport
problem can take into account the geometry of the problem. In fact, the cost
function/matrix c can be chosen to adapt to the problem in question. For
example, in the scenario proposed by Villani [35] on the distribution of goods,
the cost matrix entries ci,j are the distances to be covered between bakeries and
cafés. In [88], one of the proposed solutions defines the cost matrix using the
correlations between genes, thus creating a matrix capable of taking into account
the mutual behaviour of genes. These two possibilities, therefore, make the
optimal transport formulation very flexible to tackle different types of problems
and, in our opinion, this is the characteristic that has made it so popular in the
application field.

It is worth noting that choosing properly the cost function c, leads to define
a distance between probability measures. In fact, if for all p 2 N we denote by
Pp(Rd) the set of probability measures with finite moments up to order p

Pp(R
d) :=

⇢
µ 2 P(Rd) :

Z

Rd

x� dµ(x) < +1, 8� 2 N
d, |�|  p

�
,

and if we choose as cost function a distance d : Rd ⇥ R
d ! R, we can define the

following distance.

Definition 3 (Wasserstein distance). Given p 2 N and µ, ⌫ 2 Pp(Rd), the
Wasserstein distance of order p between µ and ⌫ is defined as

Wp(µ, ⌫) := inf
⇡2⇧(µ,⌫)

⇢Z

Rd⇥Rd

d(x,y)p d⇡(x,y)

�1/p

, (2.1.8)

where d(·, ·) is a distance on R
d.

To check that Definition 3 is well-defined, we have to check the three axioms
of distances:

Symmetry : since d is a distance and hence symmetric, also (2.1.8) is symmet-
ric;

Degeneracy : d is a positive function and ⇡ is a positive measure and hence
Wp(µ, ⌫) � 0 for all µ, ⌫ 2 Pp(Rd). To see that Wp(µ, ⌫) = 0 if and only if
µ = ⌫, we note that d(x,y) = 0 if and only if x = y. Thus, if µ = ⌫ no flow
is needed and the optimal transport plan is concentrated on the diagonal
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x = y and we have
R
Rd⇥Rd 0p d⇡(x,y) = 0. For the other side, if ⇡ is not

fully concentrated along the diagonal x = y,
R
Rd⇥Rd d(x,y)p d⇡(x,y) > 0.

So ⇡ must be non 0 only on x = y, and this means that there is no
transport and hence µ = ⌫.

Triangular inequality : given µ, ⌫, ⇣ 2 Pp(Rd) we have to show that Wp(µ, ⌫) 
Wp(µ, ⇣)+Wp(µ, ⇣). To prove this inequality we can use the Gluing Lemma.
The Gluing Lemma and the proof of the triangular inequality can be found
in [35]. Here we show how to proceed in the case of discrete measures.
The Gluing Lemma says that one can construct a transport plan with a
prescribed structure. In particular, we are interested in a transport plan
obtained by gluing the optimal transport plan between µ and ⇣, that we
denote with ⇡1 2 R

d

+ ⇥R
d

+, and the optimal transport plan between ⇣ and
⌫, namely ⇡2 2 R

d

+⇥R
d

+. Now, to construct a transport plan ⇡g 2 R
d

+⇥R
d

+

between µ and ⌫, we can glue ⇡1 and ⇡2 along their common marginal ⇣.
To this extent we define

e⇣i :=
(
⇣i if ⇣i > 0

1 if ⇣i = 0,

and then we set
⇡g := ⇡1diag(

1
e⇣
)⇡2 2 R

d

+ ⇥ R
d

+,

where diag(1e⇣ ) is the diagonal matrix with entries 1
e⇣
. To verify that this is

a transport plan between µ and ⌫, if we set I
d and I

support(⇣) respectively
as

I
d

i
:= 1 8i 2 {1, . . . , d}, I

support(⇣)
i

:=

(
1 if ⇣i > 0,

0 if ⇣i = 0.

We can verify that

⇡g
I
d = ⇡1diag(

1
e⇣
)⇡2

I
d = ⇡1diag(

⇣
e⇣
) = ⇡1

I
support(⇣) = µ

where the second inequality holds thanks to the fact that ⇡2 is an optimal
transport plan between ⇣ and ⌫. Similarly, we obtain that (Id)T⇡g = ⌫.
Thus, ⇡g is a transport plan (not necessarily the optimal ones) between µ
and ⌫. For simplicity, we suppose that i, j, k are all included in the range
{1, · · · , N} which we will omit in order not to weigh down the notation.
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Now, we are ready for the triangular inequality

Wp(µ, ⌫) =

✓
min

⇡2⇧(µ,⌫)

X

i,k

⇡i,kd
p

i,k

◆1/p


✓X

i,k

⇡g

i,k
dp
i,k

◆1/p

(2.1.9)

=

✓X

i,k

dp
i,k

X

j

⇡1
i,j
⇡2
j,k

e⇣j

◆1/p


✓X

i,k,j

(di,j + dj,k)
p
⇡1
i,j
⇡2
j,k

e⇣j

◆1/p

(2.1.10)


✓X

i,k,j

dp
i,j

⇡1
i,j
⇡2
j,k

e⇣j

◆1/p

+

✓X

i,k,j

dp
j,k

⇡1
i,j
⇡2
j,k

e⇣j

◆1/p

(2.1.11)

=

✓X

i,j

dp
i,j
⇡1
i,j

X

k

⇡2
j,k

e⇣j

◆1/p

+

✓X

k,j

dp
j,k
⇡2
j,k

X

i

⇡1
i,j

e⇣j

◆1/p

(2.1.12)

=

✓X

i,j

dp
i,j
⇡1
i,j

◆1/p

+

✓X

k,j

dp
j,k
⇡2
j,k

◆1/p

(2.1.13)

= Wp(µ, ⇣) +Wp(⇣, ⌫),

where in (2.1.9) we have used the suboptimality of the transport plan
⇡g, in (2.1.10) the triangular inequality for the distance d, in (2.1.11) the
Minkowski inequality, and to pass from (2.1.12) to (2.1.13) the marginal-
ization of ⇡1 and ⇡2 and the definition of b⇣.

The Wasserstein distance (2.1.8) is not only of great interest in the application
field, but is also important from a theoretical point of view. In fact, the following
theorem [35, Theorem 6.9, p. 108] holds

Theorem 2. Let (µk)k2N a sequence of probability measures in Pm(Rd) and
µ 2 Pm(Rd) another measure. Then, the two following statements are equivalent

1. µk converges weakly to µ, that is for all bounded and continuous function
� : Rd ! R, we have that

Z

Rd

�dµk !
Z

Rd

�dµ

2.
Wp(µk, µ) ! 0

The weak convergence plays a central role for example proving the existence
of (weak) solution for partial differential equation [106–108]. However, this is not
the only distance that parametrizes the weak convergence. Other examples are
the Lévy-Prokhorov distance [109], the Fortet–Mourier distance [110] and the
Toscani distance [35, Capter 6, p. 110]. Among others, Toscani’s metrics caught
our attention. As we will see in the next paragraphs, the equivalence between
Toscani’s metric and his generalizations, which we will call Fourier-based Metrics,
will lead us to define equivalent metrics with the Wasserstein metric but which
can be calculated much more efficiently.
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In what follows, we focus on Wasserstein distances with exponents p = 1 and
p = 2 and choose the Euclidean distance d(x,y) := |x� y|, namely

W1(µ, ⌫) := inf
⇡2⇧(µ,⌫)

⇢Z

Rd⇥Rd

|x� y| d⇡(x,y)
�
, (2.1.14)

W2(µ, ⌫) := inf
⇡2⇧(µ,⌫)

⇢Z

Rd⇥Rd

|x� y|2 d⇡(x,y)
�1/2

. (2.1.15)

2.2 Fourier-based metrics

In [40] Fourier-based metrics were used for the study of the trend to equilibrium
for solutions of the spatially homogeneous Boltzmann equation for Maxwell
molecules. Since then, many applications of these metrics have followed in
both kinetic theory and probability [38, 39, 111–115]. All these problems deal
with functions supported on the whole space R

d, with d � 1, that exhibit a
suitable decay at infinity which guarantees the existence of a suitable number of
moments.

Given two probability measures µ, ⌫ 2 P(Rd), d � 1, and a real parameter
s > 0, the Fourier-based metrics ds considered in [40] are given by

ds(µ, ⌫) := sup
k2Rd\{0}

|bµ(k)� b⌫(k)|
|k|s , (2.2.16)

where bµ and b⌫ are the Fourier transforms of the measures µ and ⌫, respectively.
As usual, given a probability measure µ 2 P(Rd), the Fourier transform of µ is
defined by

µ̂(k) :=

Z

Rd

e�ik·xdµ(x).

These metrics, for s � 1, are well-defined under the further assumption of
boundedness and equality of moments of the probability measures. Indeed, a
necessary condition for ds to be finite, is that moments up to bsc (the integer
part of s) are equal for both measures [40].

In dimension d = 1, similar metrics were introduced a few years later
by Baringhaus and Grübel in connection with the characterization of convex
combinations of random variables [116]. Given two probability measures µ, ⌫ 2
P(Rd), d � 1, and two real parameters s > 0 and p � 1, the multi-dimensional
version of these Fourier-based metrics reads

Ds,p(µ, ⌫) :=

✓Z

Rd

|bµ(k)� b⌫(k)|p

|k|(ps+d)
dk

◆1/p

. (2.2.17)

A limitation related to the application of the previous Fourier-based distances
is related to its finiteness, which requires, for high values of s, a sufficiently high
number of equal moments for the underlying probability measures.

Proposition 1 (Proposition 2.6, [39]). Let bsc denote the integer part of s 2 R

with s � 1, and assume that the densities µ, ⌫ 2 Ps(Rd) possess equal moments
up to bsc if s /2 N, or equal moments up to s�1 if s 2 N. Then the Fourier-based
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distance ds(µ, ⌫) is well-defined. In particular, d2(µ, ⌫) is well-defined for two
densities with the same first moment.

In the context of kinetic equations of Boltzmann type, where conservation
of momentum and energy of the solution is a consequence of the microscopic
conservation laws of binary interactions among particles, this requirement on
ds, with 2 < s < 3, is clearly not restrictive. However, to apply the Fourier-
based metrics outside the context of kinetic equations, this requirement appears
unnatural. To clarify this point, let us consider the case in which we want to
compare the distance between two images. If we take two grayscale images
and model them as probability distributions, there is no reason why these
distributions possess the same expected value. The simplest example is given by
two images consisting of a black dot, each one centred at a different point of
the region, that can be modelled as two Dirac delta functions centred in two
different points. A real-world example of two images with different mean values
is reported in Figure 2.2.

Figure 2.2: Two Microscopy images from [117] with their respective mean value
highlighted with a red dot.

The interest in the d2 metric is related to its equivalence to the Euclidean
Wasserstein distance W2. A detailed proof in dimension d � 1 can be found in
the review paper [39].

Theorem 3 (Proposition 2.12 and Corollary 2.17, [39]). For any given pair of
probability densities µ, ⌫ 2 P2(Rd) such that

R
Rd xdµ(x) =

R
Rd xd⌫(x), the d2

metric is equivalent to the Euclidean Wasserstein distance W2, that is, there
exist two positive bounded constants c < C such that

cW2(µ, ⌫)  d2(µ, ⌫)  CW2(µ, ⌫). (2.2.18)

The proof in [39] does not provide in general the explicit expression of the
two constants c and C. The value of these constants is quite involved, and it is
strongly dependent on higher moments of the densities.

The lack of an explicit and tractable expression for the two equivalence
constants of Theorem 3 could be a problem for the computational side. In fact,
the quantification of these constants would tell us how much the value calculated
with d2 can be a good numerical approximation of the value calculated with W2.
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Despite the interesting and strong relation expressed in Theorem 3, which implies
that d2 and W2 parametrize both the weak topology, we have no guarantees that
the value computed with the two distances are the same or are well correlated.
If the value is the same or if we have that |c�C|  ✏ with small ✏ � 0, we could
use the d2 to compute an exact approximation of W2. On the contrary, if we do
not know the relation between c and C we have no information on how d2 and
W2 are correlated numerically.

In the following sections, we firstly extend the definition of the Fourier
Based metrics, and then we provide explicitly the two equivalence constant in a
particular setting which is of interest for practical applications.

2.3 Extension of Fourier-based metrics

This section provides an extension of the Fourier-based metrics (2.2.16) for the
case s = 2, which allows for a direct comparison between the Fourier-based
metrics and the Wasserstein metric W2.

In the previous section, we have seen that the Fourier-based metrics defined in
(2.2.16) need some requirements about the moments of the probability measures
we are considering. To overcome this limitation, we will make use of a property
possessed by both the Fourier transform and the Wasserstein metric regarding
the translations of the probability measures. Let us start by introducing the
concept of the center of a distribution.

Definition 4 (Center of a distribution). Given µ 2 P1(Rd), we say that

mµ =

Z

Rd

xdµ(x)

is the center of µ.

The center of a measure µ can be moved by resorting to a translation. Given
µ 2 P1(Rd) and ⌧ 2 R

d, we define the translated measure µ⌧ 2 P1(Rd) by

µ⌧ = S⌧
#µ, where S⌧ (x) = x+ ⌧ .

Lemma 1. Given µ, ⌫ 2 P1(Rd), there exists a unique vector ⌧ 2 R
d such that

mµ = m⌫⌧ .

Proof. Let ⌧ := mµ �m⌫ , then

m⌫⌧ =

Z

Rd

xd⌫⌧ (x) =

Z

Rd

(x+ ⌧ )d⌫(x) = m⌫ + ⌧ = mµ.

Now we recall that the W2 metric satisfies an explicit translation property [37,
Remark 2.19]. We give below a short proof of this property.
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Lemma 2. Let µ, ⌫ 2 P2(Rd), with centers mµ and m⌫, respectively. For any
given pair of vectors v,w 2 R

d we have

W2(µv, ⌫w)
2 = W2(µ, ⌫)

2 + |v �w|2 + 2hv �w,mµ �m⌫i. (2.3.19)

In addition, if we choose v = �mµ and w = �m⌫ it holds

W2(µ�mµ , ⌫�m⌫ )
2 = W2(µ, ⌫)

2 � |mµ �m⌫ |2. (2.3.20)

Proof. Given a transport plan ⇡ 2 ⇧(µ, ⌫), we consider the transport plan

⇡̃ := (Sv, Sw)#⇡,

where Sv(x) = x + v, Sw(y) = y + w. ⇡̃ is a transport plan between the
translated measures µv and ⌫w. Then, by definition of push-forward, we get

Z

Rd⇥Rd

|x� y|2d⇡̃(x,y)

=

Z

Rd⇥Rd

|(x+ v)� (y +w)|2d⇡(x,y)

=

Z

Rd⇥Rd

(|x� y|2 + |v �w|2 + 2hx� y,v �wi)d⇡(x,y)

=

Z

Rd⇥Rd

|x� y|2d⇡(x,y) + |v �w|2 + 2hmµ �m⌫ ,v �wi.

If ⇡ is an optimal transport plan between µ and ⌫, we have

W2(µv, ⌫w)
2 

Z

Rd⇥Rd

|x� y|2d⇡̃(x,y)

= W2(µ, ⌫)
2 + |v �w|2 + 2hv �w,mµ �m⌫i.

By repeating the previous argument with an optimal transport plan between
µv, ⌫w, we find

W2(µv, ⌫w)
2 =

Z

Rd⇥Rd

|x� y|2d⇡(x,y) + |v �w|2 + 2hv �w,mµ �m⌫i

� W2(µ, ⌫)
2 + |v �w|2 + 2hv �w,mµ �m⌫i.

Hence, we can conclude

W2(µv, ⌫w)
2 = W2(µ, ⌫)

2 + |v �w|2 + 2hv �w,mµ �m⌫i.

Following the property of Wasserstein distance W2 stated in Lemma 2,
we modify the Fourier-based metrics d2 and D2,p in such a way to allow for
probability measures with different centers of mass. We start by considering the
case of the metric d2.
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Definition 5 (Translated Fourier-based Metric). We define the function D2 :
P2(Rd)⇥ P2(Rd) ! R as:

D2(µ, ⌫) :=
q

d2(µ, ⌫mµ�m⌫ )2 + |mµ �m⌫ |2. (2.3.21)

Owing to Lemma 1 and Proposition 1, D2(µ, ⌫) is well-defined for each pair
of probability measures in P2(Rd), independently of their centers. Note that
⌫mµ�m⌫ , which is the translation of ⌫ by mµ �m⌫ , has the same center as µ.
One could give an equivalent definition of D2 by translating µ, instead of ⌫, or
by translating both centers to 0.

Lemma 3. Given µ, ⌫ 2 P2(Rd) and v,w 2 R
d, then

|cµv(k)�c⌫w(k)| = |µ̂(k)� [⌫w�v(k)| = |[µv�w(k)� ⌫̂(k)|.

Therefore,
d2(µv, ⌫w) = d2(µ, ⌫w�v) = d2(µv�w, ⌫).

In particular, the function (µ, ⌫) ! d2(µ, ⌫mµ�m⌫ ) is symmetric.

Proof. By the translation property of the Fourier Transform, for all v 2 R
d we

have the identity
cµv(k) = e�iv·kµ̂(k).

Therefore,

|e�iv·kµ̂(k)� e�iw·k⌫̂(k)| = |e�iw·k(e�i(v�w)·kµ̂(k)� ⌫̂(k))|
= |e�i(v�w)·kµ̂(k)� ⌫̂(k)|.

This shows that

sup
k2Rd\{0}

|e�iv·kµ̂(k)� e�iw·k⌫̂(k)|
|k|2 = sup

k2Rd\{0}

|e�i(v�w)·kµ̂(k)� ⌫̂(k)|
|k|2 .

Lemma 3 implies the following theorem.

Theorem 4. The function D2 defined in (2.3.21) is a distance over P2(Rd).

Proof. Clearly D2(µ, ⌫) � 0, 8µ, ⌫ 2 P2(Rd), and D2(µ, ⌫) = 0 if and only if
µ = ⌫. Symmetry follows from Lemma 3. Finally, in reason of the fact that both
d2(µ, ⌫) and |mµ �m⌫ | are distances, D2 satisfies the triangular inequality.

An analogous extension can be done for the metric D2,p defined in (2.2.17).

Definition 6. Given p � 1, we define D2,p : P2(Rd)⇥ P2(Rd) ! R by

D2,p(µ, ⌫) :=
q
D2,p(µ, ⌫mµ�m⌫ )2 + |mµ �m⌫ |2.

D2,p is a metric on P2(Rd).
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Using Definition 5 of D2 metric, we are able to extend the result of Theorem
3 also to probability measures with different centers:

Theorem 5. The function D2 defined in (2.3.21) is equivalent to the W2 distance.

Proof. Let µ, ⌫ 2 P2(Rd) and let µ⇤, ⌫⇤ denote the two corresponding translated
measures centered in 0. By Lemma 2, we have

W 2
2 (µ, ⌫) = W 2

2 (µ
⇤, ⌫⇤) + |mµ �m⌫ |2. (2.3.22)

Owing to Theorem 3, there exist two constants c, C 2 (0,1) such that

cd2(µ
⇤, ⌫⇤)  W2(µ

⇤, ⌫⇤)  Cd2(µ
⇤, ⌫⇤). (2.3.23)

Using (2.3.22) in (2.3.23), we get

cd2(µ
⇤, ⌫⇤)2 + |mµ �m⌫ |2  W2(µ, ⌫)

2  Cd2(µ
⇤, ⌫⇤)2 + |mµ �m⌫ |2,

which can be rewritten as

min{c, 1}
�
d2(µ

⇤, ⌫⇤)2 + |mµ �m⌫ |2
�
 W2(µ, ⌫)

2

 max{1, C}
�
d2(µ

⇤, ⌫⇤)2 + |mµ �m⌫ |2
�
.

Finally,
min{c, 1}D2

2(µ, ⌫)  W 2
2 (µ, ⌫)  max{1, C}D2

2(µ, ⌫).

2.4 The Periodic Fourier-based metrics

In this section, we introduce a family of (Discrete) Periodic Fourier-based metrics
suitable to measure the distance between discrete probability measures whose
support is restricted to a given set of points, and we discuss their equivalence
with the Wasserstein metrics. The main result is that in this case, one obtains a
precise estimation of the constants of equivalence.

Remark 1. When the space on which the measures are supported has finite
measure, talking about equivalence may seem trivial. In fact, as long as the total
measure of the support is included in the equivalence constants if necessary, all
distances are equivalent. However, the type of equivalence, and therefore how the
metrics behave, depends on whether the total measure of the space is present in
the equivalence constants or not. We will return to this observation later.

Definition 7 (Regular grid). For N 2 N \ {0}, we define the mono dimensional
regular grid

GN :=
�
0,

1

N
, . . . ,

N � 1

N

 

Note that GN ⇢ [0, 1). The 2-dimensional regular grid G2
N
⇢ [0, 1)2 is defined

through the Cartesian product GN ⇥GN , and similarly we can define Gd

N
, the

d-dimensional regular grid.
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Definition 8 (Discrete Measure over a grid). We say that µ is a discrete measure
over Gd

N
if its support is contained in Gd

N
, that is, if µ has the form

µ(x) =
X

y2Gd
N

µy�0(x� y), (2.4.24)

where µy 2 R, µy � 0 for all y 2 Gd

N
. The Discrete Fourier transform of a

discrete measure over Gd

N
is given by

µ̂(k) =
X

x2Gd
N

µxe
�ix·k. (2.4.25)

The periodicity of the complex exponential implies that µ̂ is 2⇡N -periodic over
all directions, so that it is sufficient to study µ̂ over a strict subset of Rd, e.g.,
over [0, 2⇡N ]d. For instance, the value of the Fourier-based metric (2.2.16) is
achieved by searching for the “sup” operator on the bounded set [0, 2⇡N ]d. Since

1

|k|2 � 1

|k0|2 , 8k 2 (0, 2⇡N ]d, 8k0 2 R
d

+\[0, 2⇡N ]d

and the function
k ! |µ̂(k)� ⌫̂(k)|

is 2⇡N -periodic, for any given constant s > 0 the Discrete Fourier-based metric
can be defined as

ds(µ, ⌫) = sup
k2[0,2⇡N ]d\{0}

|µ̂(k)� ⌫̂(k)|
|k|s . (2.4.26)

Definition 9 (Dilated Discrete Measures). Given a discrete measure µ over Gd

N

and � 2 R such that � > 0, the �-dilated measure µ� is

µ�(x) =
X

y2Gd
N

µy�0(�x� y).

The Fourier transform of µ� is

µ̂�(k) =
X

x2Gd
N

µxe
� i

� hk,xi = µ̂

✓
k

�

◆
. (2.4.27)

Therefore, if µ̂ is T -periodic, then µ̂� is �T -periodic. Like the original metrics
(2.2.16), the metric (2.4.26) satisfies the dilation property

ds(µ�, ⌫�) =
1

�s
ds(µ, ⌫). (2.4.28)

In particular, if we consider µ of the form (2.4.24), the Fourier transform of its
1
N

-dilation is 2⇡-periodic.
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We recall the definition of the metrics (2.2.17):

Ds,p(µ, ⌫) :=

✓Z

Rd

|bµ(k)� b⌫(k)|p

|k|(sp+d)
dk

◆ 1
p

,

where s > 0 and p � 1. As we did for the Fourier-Based Metrics ds, thanks to the
periodicity of the Fourier transform, we can restrict the domain of integration to
[0, T ]d. In this case, for any given choice of the parameters p and s, this distance
is well-defined any time the integrand is integrable in a neighbourhood of the
origin. This corresponds to requiring that 1

|k|� is integrable on the d-dimensional
ball B1(0) = {k 2 R

d : |k|  1}, that is, if and only if � < d. This consideration
suggests the following definition.

Definition 10 (The Periodic Fourier-based metric). Let µ and ⌫ be two proba-
bility measures over Gd

N
. The (s, p,↵)-Periodic Fourier-based metric between µ

and ⌫ is defined as

f (↵)
s,p

(µ, ⌫) :=

✓
1

|T |d

Z

[0,T ]d

|bµ(k)� b⌫(k)|p

|k|sp+↵
dk

◆ 1
p

, (2.4.29)

where p, s,↵ 2 R and T is the period of µ̂ and ⌫̂. When ↵ = 0 and s 2 N we
say that fs,p := f (0)

s,p is pure.

As discussed in Section 2.2, in dimension d = 1 the continuous version of
the metrics (2.4.29) has been considered in [116]. Recently, these metrics have
been considered in relation to the problem of convergence toward equilibrium
of a Fokker–Planck type equation modelling wealth distribution [118], where
various properties of these metrics have been studied. As pointed out in [118], if
µ and ⌫ have equal r-moments, the function |µ̂(k)� ⌫̂(k)| behaves like |k|r+1 as
k ! 0. As a consequence, the value of f (↵)

s,p (µ, ⌫) is finite only if the following
condition is verified

p(s� r � 1) + ↵ < d. (2.4.30)

If s, p and ↵ satisfy (2.4.30), and thus f (↵)
s,p < +1, we say that f (↵)

s,p is feasible.

Proposition 2. Let µ and ⌫ be two probability measures over Gd

N
. For any

given constant � > 0, the following dilation property holds

f (↵)
s,p

(µ�, ⌫�) =
1

|�|s+
↵
p
f (↵)
s,p

(µ, ⌫).
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Proof. Using relation (2.4.27) and the change of variables k = �k0, we get

f (↵)
s,p

(µ�, ⌫�) =

 
1

|�T |d

Z

[0,�T ]d

|µ̂�(k)� ⌫̂�(k)|p

|k|sp+↵
dk

! 1
p

=

 
1

|�T |d

Z

[0,�T ]d

|µ̂(k
�
)� ⌫̂(k

�
)|p

|k|sp+↵
dk

! 1
p

=

 
1

|�|d
1

|T |d

Z

[0,T ]d

|µ̂(k0)� ⌫̂(k0)|p

|�|sp+↵|k0|sp+↵
|�|ddk0

! 1
p

=
1

|�|s+
↵
p

 
1

|T |d

Z

[0,T ]d

|µ̂(k0)� ⌫̂(k0)|p

|k0|sp+↵
dk0

! 1
p

=
1

|�|s+
↵
p
f (↵)
s,p

(µ, ⌫).

It is important to remark that, differently from the metrics (2.2.17), the
analogous of the dilation property (2.4.28) is true only for ↵ = 0, that is only for
pure metrics. We show next that the f (↵)

s,p metrics satisfy various monotonicity
properties with respect to the parameters p and s.

Proposition 3. Let µ and ⌫ be two probability measures over Gd

N
, with moments

equal up to r. If t  s, then

f (↵)
t,p (µ, ⌫)  (

p
d|T |)(s�t)f (↵)

s,p
(µ, ⌫),

for any p and ↵ for which the metric is feasible, i.e., for p(s� r � 1) + ↵ < d.

Proof. We compute

f (↵)
t,p (µ, ⌫) =

 
1

|T |d

Z

[0,T ]d

|µ̂(k)� ⌫̂(k)|p

|k|tp+↵
dk

! 1
p

=

 
1

|T |d

Z

[0,T ]d

|k|p(s�t)

|k|p(s�t)

|µ̂(k)� ⌫̂(k)|p

|k|tp+↵
dk

! 1
p

=

 
1

|T |d

Z

[0,T ]d
|k|p(s�t) |µ̂(k)� ⌫̂(k)|p

|k|sp+↵
dk

! 1
p

 (
p
d|T |)(s�t)f (↵)

s,p
(µ, ⌫).

The last inequality is obtained resorting to the bound |k| 
p
d|T |.

Proposition 4. Let µ and ⌫ be two probability measures over Gd

N
. If ↵ = 0 and

p  q, then
fs,p(µ, ⌫)  fs,q(µ, ⌫).
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Proof. We have

fs,p(µ, ⌫) =

 
1

|T |d

Z

[0,T ]d

|µ̂(k)� ⌫̂(k)|p

|k|sp dk

! 1
p

=

  
1

|T |d

Z

[0,T ]d

|µ̂(k)� ⌫̂(k)|p

|k|sp dk

! q
p
! 1

q


 

1

|T |d

Z

[0,T ]d

 
|µ̂(k)� ⌫̂(k)|p

|k|sp

! q
p

dk

! 1
q

= fs,q(µ, ⌫).

The last inequality follows from Jensen’s inequality.

Remark 2. By letting p ! +1, we get

lim
p!1

fs,p(µ, ⌫) = fs,1(µ, ⌫) := ds(µ, ⌫).

Thanks to the Hölder inequality, for all p < +1 we have the bound

fs,p(µ, ⌫)  ds(µ, ⌫). (2.4.31)

The results of this subsection are preliminary to our main result, which deals
with the equivalence of the pure metrics, for p = 2, with the Wasserstein metrics.
For the sake of simplicity, and without loss of generality, in the next subsection
we consider measures in dimension d = 2.

2.4.1 Equivalence with the Wasserstein metric W1

We consider the two cases s = 1 and s = 2, in dimension d = 2, and we show
that f1,2 and f2,2 are equivalent to W1 and W2, respectively.

We start with the case s = 1. For any µ, ⌫ 2 P(Gd

N
), the Periodic Fourier-

based metrics is

f1,2(µ, ⌫) =

✓
1

|T |2

Z

[0,T ]2

|µ̂(k)� ⌫̂(k)|2

|k|2 dk

◆ 1
2

. (2.4.32)

We have the following

Theorem 6. For any pair of measures µ, ⌫ 2 P(Gd

N
), we have the inequality

f1,2(µ, ⌫)  W1(µ, ⌫).
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Proof. Let ⇡ be a transport plan between µ and ⌫. It holds

|µ̂(k)� ⌫̂(k)| =

����
X

x,y2Gd
N

e�ik·x⇡(x,y)�
X

x,y2Gd
N

e�ik·y⇡(x,y)

����

=

����
X

x,y2Gd
N

�
e�ik·x � e�ik·y�⇡(x,y)

����


X

x,y2Gd
N

��e�ik·x � e�ik·y��⇡(x,y)

=
X

x,y2Gd
N

��1� eik·(x�y)
��⇡(x,y)


X

x,y2Gd
N

��k · (x� y)
��⇡(x,y)

 |k|
X

x,y2Gd
N

|x� y|⇡(x,y).

Hence, if ⇡ is the optimal transport plan, we conclude with the inequality

|µ̂(k)� ⌫̂(k)|  |k|W1(µ, ⌫). (2.4.33)

Using inequality (2.4.33) into definition (2.4.32), we finally obtain the bound

f1,2(µ, ⌫) 
✓

1

|T |2

Z

[0,T ]2

�
|k|W1(µ, ⌫)

�2

|k|2 dk

◆ 1
2

= W1(µ, ⌫). (2.4.34)

Since W1(µ, ⌫) < +1 for every µ, ⌫ 2 P(Gd

N
), inequality (2.4.34) implies

that f1,2 is bounded in correspondence to any pair of probability measures over
the grid Gd

N
.

We now show that f1,2 and W1 satisfy a reverse inequality, thus concluding
that the two metrics are equivalent.

Theorem 7. For any pair of measures µ, ⌫ 2 P(Gd

N
) it holds

W1(µ, ⌫) 
T 2

2⇡
f1,2(µ, ⌫). (2.4.35)

Proof. Owing to the dual characterization of the W1 distance (see [35], Chapter
5), there exists a 1-Lipschitz function � such that

W1(µ, ⌫) =

Z

R2

�(x)dµ(x)�
Z

R2

�(x)d⌫(x).

Since µ and ⌫ are discrete and supported on a subset of [0, 1]2, we can write

W1(µ, ⌫) =
X

x2Gd
N

�(x)
�
µx � ⌫x

�
.
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Therefore, resorting to the fact that both the measures have the same mass, for
any given constant c 2 R we have

W1(µ, ⌫) =
X

x2Gd
N

�
�(x) + c

��
µx � ⌫x

�
.

The last identity permits choosing � such that �(N2 ,
N

2 ) = 0. Since � is 1-
Lipschitz, we conclude that

|�(x)| 
p
2

2
, 8x 2 Gd

N
. (2.4.36)

By the Hölder inequality we obtain

W1(µ, ⌫) 
✓ X

x2Gd
N

|�(x)|2
◆ 1

2
✓ X

x2Gd
N

|µx � ⌫x|2
◆ 1

2

.

Since X

x2Gd
N

|µx � ⌫x|2 =
1

|T |2

Z

[0,T ]2
A(k)B(k)dk

where

A(k) =
X

x2Gd
N

(µx � ⌫x)e
�i<x,k>

B(k) =
X

y2Gd
N

(µy � ⌫y)e
+i<y,k>

we have X

x2Gd
N

|µx � ⌫x|2 =
1

|T |2

Z

[0,T ]2

��µ̂(k)� ⌫̂(k)
��2dk.

Now using (2.4.36) we obtain

W1(µ, ⌫) 
p
2N

2

✓
1

|T |2

Z

[0,T ]2

��µ̂(k)� ⌫̂(k)
��2dk

◆ 1
2

=

p
2N

2

✓
1

|T |2

Z

[0,T ]2
|k|2 |µ̂(k)� ⌫̂(k)|2

|k|2 dk

◆ 1
2

.

Since |k|2  2T 2 and T = 2⇡N , we can finally conclude that

W1(µ, ⌫) 
T 2

2⇡

✓
1

|T |2

Z

[0,T ]2

|µ̂(k)� ⌫̂(k)|2

|k|2 dk

◆ 1
2

=
T 2

2⇡
f1,2(µ, ⌫).

In consequence of the previous estimates, it is immediate to show that the
metrics ds and W1 are equivalent. This is proven in the following
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Corollary 1. For any pair of measures µ, ⌫ 2 P(Gd

N
)

d1(µ, ⌫)  W1(µ, ⌫) 
T 2

2⇡
d1(µ, ⌫).

Proof. The first inequality is a consequence of bound (2.4.33). The second one
follows from inequality (2.4.31).

2.4.2 Equivalence with the Wasserstein metric W2

The aim of this Section is to show the equivalence of the Fourier-based metric
f2,2 and the Wasserstein metric W2. Let s = 2. In this case, the Periodic
Fourier-based metrics takes the form

f2,2(µ, ⌫) =

✓
1

|T |2

Z

[0,T ]2

|µ̂(k)� ⌫̂(k)|2

|k|4 dk

◆ 1
2

. (2.4.37)

The distance between the two probability measures is well-defined only when µ
and ⌫ possess the same expected value. Since, in general, this is not the case,
we start by translating the measures, as done in Section 2.3, to satisfy this
condition. The following proposition shows that, for probability measures with
the same centre, the topology induced by f2,2 is not stronger than the topology
induced by W2.

Theorem 8. For any pair of measures µ, ⌫ 2 P(Gd

N
) such that mµ = m⌫, it

holds
f2,2(µ, ⌫)  2

p
2W2(µ, ⌫). (2.4.38)

In particular, f2,2(µ, ⌫) < 1.

Proof. For any given pair of probability measures µ and ⌫ in P(Gd

N
), with

centers mµ = m⌫ , we have

ik
X

x2Gd
N

xµx = ik
X

y2Gd
N

y⌫y.

For any transport plan ⇡ between µ and ⌫, we can rewrite the previous relations
in the form

ik
X

x,y2Gd
N

(x� y)⇡x,y = 0. (2.4.39)
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Using identity (2.4.39) we obtain

µ̂(k)� ⌫̂(k) =
X

x2Gd
N

µxe
�ik·x �

X

y2Gd
N

⌫ye
�ik·y

=
X

x,y2Gd
N

✓
e�ik·x � e�ik·y � ik · (x� y)

◆
⇡x,y

=
X

x,y2Gd
N

e�ik·y�e�ik·(x�y) � 1� ik · (x� y)
�
⇡x,y

+
X

x,y2Gd
N

ik · (x� y)(e�ik·y � 1)⇡x,y.

Using that for all ✓ 2 R

|ei✓ � 1|  |✓|,

|ei✓ � 1� i✓|  ✓2

2

we obtain

|µ̂(k)� ⌫̂(k)|  |k|2

2

X

x,y2Gd
N

|x� y|2⇡x,y + |k|2
X

x,y2Gd
N

|x� y||y|⇡x,y

 |k|2

2

X

x,y2Gd
N

|x� y|2⇡x,y

+|k|2
✓ X

x,y2Gd
N

|y|2⇡x,y

◆ 1
2
✓ X

x,y2Gd
N

|x� y|2⇡x,y

◆ 1
2

.

In particular, if we take ⇡ as the optimal transportation plan between µ and ⌫
for the cost |x� y|2 we get

|µ̂(k)� ⌫̂(k)|
|k|2  W 2

2 (µ, ⌫)

2
+

✓ X

y2Gd
N

|y|2⌫y
◆ 1

2

W2(µ, ⌫)

= W2(µ, ⌫)

0

B@
W2(µ, ⌫)

2
+

0

@
X

y2Gd
N

|y|2⌫y

1

A

1
2

1

CA .

Since

W2(µ, ⌫)  W2(µ, �0) +W2(�0, ⌫) 

0

@
X

x2Gd
N

|x|2µx

1

A

1
2

+

0

@
X

y2Gd
N

|y|2⌫y

1

A

1
2

,
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and, as µ and ⌫ are supported in [0, 1]2,
sX

x2Gd
N

|x|2µx 
p
2,

sX

y2Gd
N

|y|2⌫y 
p
2,

and finally, we obtain (2.4.38):

|µ̂(k)� ⌫̂(k)|
|k|2  2

p
2W2(µ, ⌫).

We conclude by showing the validity of a reverse inequality, thus proving the
equivalence between f2,2 and W2.

Theorem 9. For any pair of measures µ, ⌫ 2 P(Gd

N
), we have the inequality

W 2
2 (µ, ⌫) 

T 3

⇡
f2,2(µ, ⌫).

Proof. Let ⇡ be the optimal transportation plan between µ and ⌫ for the cost
|x� y|, since |x� y| 

p
2 for all x,y 2 Gd

N
⇢ [0, 1]2, it holds

W 2
2 (µ, ⌫) 

X

x,y2Gd
N

|x� y|2⇡x,y 
X

x,y2Gd
N

p
2|x� y|⇡x,y =

p
2W1(µ, ⌫).

Then, by Theorem 7 and Proposition 3 with t = 1 and p = s = 2, we get

p
2W1(µ, ⌫) 

p
2T 2

2⇡
f1,2(µ, ⌫) 

T 3

⇡
f2,2(µ, ⌫),

which, together with the last inequality, concludes the proof.

The previous bounds hold provided that µ and ⌫ are centred in the same
point. However, when mµ �m⌫ 6= 0, we can resort, as in Section 2.3, to the
new metric

F2,2(µ, ⌫) :=
q�

f2,2(µ, ⌫mµ�m⌫ )2 + |mµ �m⌫ |2
�
,

which is well-defined also for probability measures having different centres. This
shows that we can generalize, similarly to Theorem 4 and Theorem 5, the
equivalence of F2,2 and W2 to measures which are not centred in the same point.

Remark 3. Let us go back to what was said in Remark 1. From Equation
(2.4.34) and Equation (2.4.38) we see that between W1 and f1,2 and W2 and
f2,2 there are relations in which there is no numerical constant depending on
the measure of the support space. These relationships tell us that these metrics
are also able to take into account the geometric aspects of the measures under
consideration. In Figure 2.3, we take as reference distribution a Dirac Delta
centered in 0, �0, and we study how Total Variation distance (TV), f1,2 (F) and
W1 vary by taking as comparison measure a Dirac Delta centred in the integers
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from -20 to 20. As we can see, the TV is equal to 1 except when the comparison
measure is equal to �0. Conversely, f1,2 and W1 have a V shape that mimics the
fact that the comparison measure is approaching or leaving the reference measure
in a geometrical/spatial sense.

Figure 2.3: Behavior of W1, F and TV metrics when comparing Dirac delta distri-
butions. Results are re-scaled for visual convenience.

2.4.3 Connections with other distances
As discussed in [118], the case in which s  0 leads to stronger metrics. In this
case, we lose relations like (2.4.38), that link from above the Wasserstein metric
with the Fourier-based metric. An interesting case is furnished by choosing s = 0
into (2.4.29). The metric, in this case, is defined by

f0,2(µ, ⌫) =

✓
1

|T |d

Z

[0,T ]d
|µ̂(k)� ⌫̂(k)|2dk

◆ 1
2

=

✓X

x2G

|µ(x)� ⌫(x)|2
◆ 1

2

,

which defines the Total Variation distance between the probability measures µ
and ⌫.

We remark that the distance above corresponds to the choice ↵ = 0, which
does not require the measures to possess the same mass. In alternative one can
choose a value ↵ 2 [0, 2). However, if ↵ > 0, one obtains a distance between
measures that requires that the two measures have the same mass. Note however
that the choice of values of ↵ > 0 allows obtaining a sequence of metrics that
interpolate between the Total Variation distance and the W1 distance, namely a
family of measures that move from a strong metric to a weaker one.
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In the case s < 0 the Fourier-based metric (2.4.29) becomes

fs,2(µ, ⌫) =

✓
1

|T |d

Z

[0,T ]d
|k|2|s||µ̂(k)� ⌫̂(k)|2dk

◆ 1
2

.

In particular, when �s = n 2 N+, we find that

f�n,2(µ, ⌫) =

✓
1

|T |d

Z

[0,T ]d
|k|2n|µ̂(k)� ⌫̂(k)|2dk

◆ 1
2

.

This metric, by Fourier identity, controls the n-th derivative of the measures µ
and ⌫.

2.5 Discretization of the Periodic Fourier-based

metrics

When it comes to applications such as Image or signal processing, to compute
the Fourier Transform, we rely on the Discrete Fourier Transform [119, 120].
In what follows, to simplify the notation, we consider one-dimensional discrete
probability measures.

Definition 11 (Discrete Fourier Transform). The Discrete Fourier Transform
of µ 2 P(GN) is the N-dimensional vector µ̂ := (µ̂0, . . . , µ̂N�1) defined as

µ̂k :=
N�1X

j=0

µje
�2⇡i j

N k, k 2 {0, . . . , N � 1}. (2.5.40)

The Discrete Fourier Transform of a discrete measure can be expressed as a
linear map:

(µ̂0, . . . , µ̂N�1) = ⌦ · (µ0, . . . , µN�1), (2.5.41)

where ⌦ is the N ⇥N matrix defined as

⌦ :=

2

6666664

!0,0 !0,1 . . . !0,N�1

!1,0 !1,1 . . . !1,N�1

...
... . . . ...

!N�1,0 !N�1,1 . . . !N�1,N�1

3

7777775
, (2.5.42)

and !k,j := e�2⇡i j
N k. Since the matrix ⌦ is invertible, the Discrete Fourier

Transform is a bijective function.

Remark 4. Since the complex exponential function k ! e�2⇡i j
N k is an N�periodic

function for any integer j, we set µ̂k := µ̂modN (k) for any k 2 Z, where modN (k) is
the N�modulo operation. In particular, µ̂�k = µ̂N�k for any k 2 {0, . . . , N � 1}.
In order not to burden the notation by dividing the cases with N even and N odd
each time, we choose to fix N even from now on. For the N odd, all the results
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are valid, as long as you arrange the indices following what has been said in this
remark

Remark 5. If we consider the case of µ 2 P(GN) with GN ⇢ [0, 1)2, and if we
denote µj,l as the (j, l) entry of the 2-dimensional tensor representing µ, (2.5.40)
becomes:

µ̂k,r :=
N�1X

l=0

N�1X

j=0

µj,le
�2⇡i j

N k+�2⇡i l
N r

=
N�1X

l=0

⇢N�1X

j=0

µj,le
�2⇡i j

N k

�
e2⇡i

l
N r (k, r) 2 {0, . . . , N � 1}2.

This means that all the results and definitions for the one-dimensional case can
be extended to the 2 or d-dimensional case considering each dimension separately.

We can now define the discrete counterparts of Periodic Fourier-based metric

Definition 12 (The Discrete Periodic Fourier-based Metric). Given µ and ⌫ be
two 1-dimensional probability measures over GN , we define as

Df (↵)
s,p

(µ, ⌫) :=
2

|N |

N
2X

k=1

|µ̂k � ⌫̂k|2

|k|sp+↵
(2.5.43)

the (s, p,↵)-Discrete Periodic Fourier-based Metric between µ and ⌫, where
p, s,↵ 2 R and N

2 is the period of µ̂ and ⌫̂.

Recalling (2.4.32) and (2.4.37) we have

Df 0
1,2(µ, ⌫) :=

2

|N |

N
2X

k=1

|µ̂k � ⌫̂k|2

|k|2 (2.5.44)

and

Df 0
2,2(µ, ⌫) :=

2

|N |

N
2X

k=1

|µ̂k � ⌫̂k|2

|k|4 (2.5.45)

Finally, using (2.5.45), we define

DF2,2(µ, ⌫) :=
q�

Df2,2(µ, ⌫mµ�m⌫ )2 + |mµ �m⌫ |2
�
, (2.5.46)

where in this case mµ is calculated as

mµ =
N�1X

k=0

kµk.

Using the matrix representation of the Discrete Fourier Transform of (2.5.42),
we can cast our Discrete Periodic Fourier-based metric in a matrix representation.
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To this extent we introduce the N ⇥N matrix K
↵

s,p
:= diag(ksp+↵

z
), where

kz :=

8
>><

>>:

1 z = 0
1
|z| z = {1, 2, . . . , N2 }

1
N
2 �(N�1�z)

z = {N

2 + 1, . . . , N � 1}

Now, considering Remark 4, (2.5.43) read as

Df (↵)
s,p

(µ, ⌫) :=
1

N
(µ̂� ⌫̂)TK↵

s,p
(µ̂� ⌫̂) =

1

N
(µ� ⌫)T⌦T

K
↵

s,p
⌦(µ� ⌫) (2.5.47)

In this expression, we have incorporated the elements µ̂0 and ⌫̂0. However,
µ 2 P(GN), and hence:

µ̂0 =
N�1X

j=0

µje
�2⇡i j

N 0 =
N�1X

j=0

µj = 1 (2.5.48)

Since the same argument holds for ⌫, we have |µ̂0 � ⌫̂0| = 0.
Note that H

↵

s,p
:= ⌦T

K
↵

s,p
⌦ is a symmetric and circulant matrix, since

(H↵

s,p
)i,j = Re((k̂sp+↵

z
)i�j). Therefore, its eigenvalues can be explicitly computed

[121], leading us to the following result.

Lemma 4. For any p � 1, the matrix Hp is positive definite and its eigenvalues
are given by

�i = N · (ksp+↵

z
)i, i = 0, . . . , N � 1.

Now recalling that every symmetric and positive definite matrix induce a
norm [122], we can state that

Corollary 2. Given µ, ⌫ 2 R
N two N-dimensional vectors. Then

Df (↵)
s,p

(µ, ⌫) :=
1

N
(µ̂� ⌫̂)TK↵

s,p
(µ̂� ⌫̂) =

1

N
(µ� ⌫)TH↵

s,p
(µ� ⌫)

is a distance on R
N . In particular, this also hold for all pair of vectors µ 2 P(GN )

and ⌫ 2 P(GN).

Remark 6. Corollary 2 tells us that when we discretize the Fourier Transform,
Equation (2.5.44) and Equation (2.5.45) define a distance on the whole R

N and
not only on the restricted subset of vectors representing probability distribution.
This is an interesting result since now we can apply these types of distances
correlated to Optimal Transport out of the probability setting, reaching a broader
horizon of applications.

2.6 Numerical Results

In this section, we run three numerical experiments. The first two experiments
are devoted to compare the Wasserstein metrics W1 and W2 with the corre-
sponding Periodic Fourier-based metrics f 0

1,2 and f 0
2,2. We aim to highlight the
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computational advantages in terms of the runtime of the f 0
1,2 and f 0

2,2 and show
how these distances numerically relate to W1 and W2 respectively. The third
experiment is conducted to show how f 0

1,2 can be applied to the general case of
R

d vectors.

Implementation details. We implemented our algorithms in Python 3.7,
using the Fast Fourier Transform implemented in the NumPy library [123].
To compute the Wasserstein distances, we use the Python Optimal Transport
(POT) library [124] in the first experiment, while in the second one we use the
Spatial-KWD library [125]. All the tests are executed on a MacBook Pro 13
equipped with a 2.5 GHz Intel Core i7 dual-core and 16 GB of Ram.

2.6.1 Experiment on DOTmark benchmark
The first experiment is devoted to extensively compare the numerical relations
between Wasserstein metrics and Periodic Fourier-based metric. As problem
instances, we use the DOTmark benchmark [117], which is a standard benchmark
dataset for optimal transport problems in 2D. The DOTmark benchmark
contains 10 classes of grayscale images, each containing 10 different images.
Every image is given in the data set at the following pixel resolutions: 32 ⇥
32, 64⇥ 64, 128⇥ 128, 256⇥ 256, and 512⇥ 512. Figure 2.4 shows the Classic,
Microscopy, and Shapes images, respectively, (one class for each row), at the
highest pixel resolution.

Figure 2.4: DOTmark benchmark: Classic, Microscopy, and
Shapes images.

Results. For each pair of images of the DOTmark dataset, we have computed
the reciprocal distance using the W1,W2, f 0

1,2 and f 0
2,2 distances, and the runtime

in seconds.
The scatter plot in Figure 2.5 shows the relation between the W2 and the f 0

2,2

distances for each pairs of images at pixel resolution 32⇥ 32. That plot shows
that the two metrics are not only theoretically equivalent, as shown in Theorem
8 and Theorem 9, but also they return similar values in practice. The only
exception is the Shape class, which, however, contains artificial shape images.
On the more (application-wise) interesting Classic images, the two metrics return
very close values.
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Figure 2.5: Wasserstein metric W2 versus Periodic Fourier-based metric f0
2,2: Com-

parison of distance values for 450 pairs of images of size 32⇥ 32.

Figure 2.6: Wasserstein metric W1 versus Periodic Fourier-based metric f0
1,2: Com-

parison of distance values for 450 pairs of images of size 32⇥ 32.

Figure 2.6 reports the comparison between W1 and the f 0
1,2. Even if in this

case we do have not the good relation between the numerical value of the two
computed distances as before, the two distances have a nice linear correlation.
This suggests that the f 0

1,2 can be used as an alternative to the W1 in classification
or clustering tasks since it preserves similar mutual relations between samples.
To highlight the linear dependence that exists in both cases we have reported
the linear regression line.

Table 2.1 reports the averages and the standard deviations of the runtime,
measured in seconds, at different image sizes. For each row and each metric, the
averages are computed over 450 instances. The numerical results clearly show
that the Periodic Fourier-based metric metrics are orders of magnitude faster,
and permit evaluate the distance even for the largest 512⇥ 512 images in around



34 Chapter 2. Fourier Based Metrics

10 seconds. Note that using the POT library, we were unable to compute the
W1 and W2 distances for images of size 256⇥ 256 and 512⇥ 512, due to memory
issues.

Table 2.1: Runtime vs. Image size for different metrics: The
runtime is measured in seconds and reported as “Mean (Std-
Dev)”. Each row gives the averages over 450 instances of pairwise

distances.

Averages Runtime in seconds
Dimension W1 W2 f 0

1,2 f 0
2,2

32⇥ 32 0.84 (0.30) 1.06 (0.32) 0.002 (10�4) 0.006 (10�4)

64⇥ 64 21.9 (7.96) 23.41 (8.49) 0.01 (10�3) 0.02 (10�3)

128⇥ 128 205.0 (45.9) 199.0 (45.0) 0.28 (0.07) 0.63 (0.16)

256⇥ 256 1.21 (0.40) 2.96 (0.94)

512⇥ 512 4.74 (1.32) 11.55 (2.84)

2.6.2 Comparison with KWD library
To confirm that the Fourier-based metric metrics well behave with respect to
the Wasserstein metrics, we have decided to use another implementation of the
Wasserstein distance and another dataset. The Spatial-Kantorovich Wasserstein
Distance (Spatial-KWD) library [125] has been developed in C++ for [126] to
compare true distributions and reconstructed distributions of density mobile
phone maps starting from Mobile Network Operator (MNO) data. In this work,

Figure 2.7: Original and Reconstructed spatial density of mobile phone distribution

we will not compare the various reconstruction methods, but we will compare
the results obtained through the Spatial-KWD library and the Fourier-based
metric f 0

1,2. To perform this comparison we have at our disposal 9 instances
for each of the 4 different types of spatial resolution. The 4 spatial resolution
are 267 ⇥ 228, 534 ⇥ 455, 1068 ⇥ 910, 2134 ⇥ 1819. Although 36 instances
may seem few, they were carefully created to test the Spatial-KWD library
during the software development phase. Testing on these instances therefore
gives us reliable results on the behavior of the Fourier-based metric in relation
to the Spatial-KWD library. As we can see from Figure 2.7, these densities
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are very sparse. The Spatial-KWD library was optimized to gain advantages
from the geometric configuration of these types of problems. For what concern
the Fourier-based metric implementation, we do not perform any type of code
optimization to leverage the sparsity and the geometry of the problem to speed
up the calculation of the proposed Fourier-based metric.

As we can see from Figure 2.8, the correlation between the values calculated
with the Spatial-KWD library and the values calculated with the Fourier-based
metric f 0

1,2 are close to being linear in the two low resolution, while in the two
high-resolution cases seem to be of quadratic type. This means that if we are
using the Spatial-KWD library to estimate the goodness of fit between a real
density and two different reconstructed densities, the two methods are equivalent
as the order is maintained. However, we have a great advantage in terms of run
time if we decide to use the Fourier-based metric. In fact for the instances with
higher resolutions 2134⇥ 1819, the Fourier-based metric is calculated in around
17.5 seconds, while the runtime of the Spatial-KWD is in the range between
2746 and 33195 seconds, that is at least half an hour for a single comparison.

Figure 2.8: Correlation between Spatial-KWD and f0
1,2.

2.6.3 Experiment on ECG5000
Since the Fourier-based metric can be extended also to vectors outside the
probability simplex (see Remark 6), we have decided to evaluate the performance
of the f 0

1,2 metric as a classification tool. Since the Fourier transform is widely
used in signal processing, we have implemented a k-Nearest Neighbor (k-NN)
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Table 2.2: Comparison between f0
1,2 and L2 distance on anomaly

detection with different values of k. F1 score and Accuracy are
reported in percentage.

metric k=1

F1/Acc

k=3

F1/Acc

k=5

F1/Acc

k=7

F1/Acc

k=9

F1/Acc

f 0
1,2 0.959/0.966 0.963/0.970 0.965/0.972 0.967/0.973 0.968/0.974

L2 0.793/0.835 0.853/0.887 0.877/0.905 0.887/0.913 0.891/0.916

classifier to detect anomalies on the ECG5000 dataset [127]. This dataset
is composed of 5000 earth beats (500/4500 train/test split) labelled in five
classes: Normal (N), R-on-T Premature Ventricular Contraction (R-on-T PVC),
Premature Ventricular Contraction (PVC), Supra-ventricular Premature or
Ectopic Beat (SP or EB) and Unclassified Beat (UB). The dataset is highly
unbalanced. The prevalent class is the normal one with 292/2627 samples in
the train/test split, followed by Ron-T PVC with 177/1590 samples, then SP
with 19/175 and finally PVC with 10/86 samples. Since our goal is to classify
normal vs anomaly heartbeats, we have dropped the UB class (2/22 samples),
since we do not know the nature of the samples in this class. To classify each
beat in the test set we evaluate the distance between the beat and all the beats
in the training set. Then we have assigned the most present label among the
k-elements with the smallest distance from the sample in question. We selected
as k the values 1,3,5,7,9 and run the same experiment comparing f 0

1,2 with the
standard L2 distance.

Figure 2.9: Samples of the four classes in the ECG5000 datset.

Results. In Table 2.2 we have reported F1 score and Accuracy as k varies:

F1 score F1 :=
TP

2TP + FN + FP
,

Accuracy Acc :=
TP + TN

FN + FP + TP + TN
,
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where TP , TN , FP , FN are computed on the change class and represent the
true positives, true negatives, false positives, and false negatives respectively.

From these results, it is straightforward to see that f 0
1,2 over performs the L2

distance. This is an interesting result if we recall that, thanks to the Parseval
theorem, we have

Z

[0,T ]d
|µ(x)� ⌫(x)|2dx /

Z

[0,T ]d
|µ̂(k)� ⌫̂(k)|2dk.

This means that weighting the frequency is not only crucial in the abstract
setting to gain equivalence with the W1, but also has an important role in the
application scenario. In this case, we have weighted the frequency according to
the (2.4.29). Since in this case the two vectors representing the two ECGs are
not probability measures, we have assigned a weight of 1 to the first entry of
the Fourier Transformed vector.

We also compared the best results obtained with k=9 with results reported
in [128]. In [128–130] the authors have trained a Neural Network composed
with Long Short-Term Memory (LSTM) [131] blocks and convolution to classify
time series. In particular, in [128] the authors propose both a supervised and
unsupervised model, coupling in the first case, the LSTM network with a Support
Vector Machine (SVM) [132] and in the second case with a clustering algorithm.
An architecture that incorporates both LSTM and convolution blocks is proposed
in [129], but only in the supervised scenario. Also in [130] the LSTM blocks
are used, but in this case in an Encoder-Decoder model to perform anomaly
detection using reconstruction error as anomaly score. A Dynamic Time Warping
(DWT) [133] distance clustering method is presented in [134].

Table 2.3: Comparison between f0
1,2 k-NN anomaly detector

with the results reported in [128].

Model Acc F1

VRAE+SVM [128] 0.984 0.984

VRAE+Clust/W [128] 0.959 0.952

F-t ALSTM-FCN [129] 0.949 -

SAE-C [130] 0.934 -

oFCMdd [134] - 0.808

f 0
1,2 k-NN 0.974 0.968

As we can see from Table 2.3, our k-NN approach attains competitive
results with other state-of-the-art methods in the two class settings (Normal vs
Anomaly). Comparing our results with [134], another method explicitly using a
distance to directly compare time series, we can conclude that the f 0

1,2 could be
an interesting metric alternative to the well-known and used DWT. With respect
to [128–130], our anomaly detector has comparable performance, but does not
require any training phase. This makes our pure metric approach a suitable
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alternative to the learning-based approach in the context of a scarce number
of samples or imbalanced datasets, which is a common scenario in industrial or
healthcare scenarios.
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Chapter 3

TinyCD

In this chapter, we introduce the Line Clearance problem, and we introduce
TinyCD, a (not so) deep learning model, developed to deal with this problem in an
industrial scenario. As the name suggests, Line Clearance consists in monitoring
the cleanliness of a production line, in particular during the packaging and
quality control of drugs in the pharmaceutical sector. Typically, the production
line is composed of different machines, each of which has a specific task. Some of
them are: positioning the tablets inside the blisters, labelling vials, and checking
that the product belongs to the correct batch. Especially in the pharmaceutical
field, the packaging process must follow strict protocols to ensure the integrity
of the products. It is therefore necessary that all the machines are checked at
the very end of a production lot, and at the very beginning of the next one;
this is needed to prevent, for example, the mixing of different products. In
addition, it is possible that a dangerous object, due to machinery vibrations
or other accidental causes, gets stuck or is mistakenly left on a machine after
maintenance. In these cases, starting the machinery could lead to a breakdown.
To avoid this, the cleanliness and integrity of the machinery are checked regularly
by specialized operators. These checks require the production line to be stopped
until the operator has completed the inspection. Given the size and complexity
of these machines, the inspection phase can take several tens of minutes, during
which the production is stopped, resulting in a loss of efficiency.

To overcome most of these drawbacks, a computer vision system could be
adopted. The use of micro-cameras on the machines, coupled with a segmentation
or object detection model, can monitor the crucial parts of the machinery in
dramatically reducing the inspection times, thus saving production efficiency. To
solve this task, several challenges must be faced, most of which are related to the
specific nature of the problem. In addition to the classic environmental variables
such as variations of lighting conditions and the presence of casted shadows, in
this scenario, our model must be able to recognize potentially harmful objects
without knowing them a priori. As an example, it is possible that a pad or screw
gets stuck on the production line, or that a screwdriver is inadvertently left on
a conveyor belt. Moreover, considering that the machines can be scpecifically
configured according to the product they must work on, checking that the
configuration is the correct one allows to reduce the erroneous production of
compromised batches. Finally, notice that production machines have moving
parts, thus on an opposite side the model must be robust to admissible changes
related to them.

In the world of machine-learning, models are trained to accomplish tasks
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by means of training examples, generally collected in datasets. Collecting a
dataset containing all the needed cases for each machine is, at least from a
business point of view, a solution to be avoided as it is very expensive in
terms of time and resources. A standard should also be defined for categorizing
dangerous objects and under what conditions they must be considered dangerous.
Moreover, the model must work in (almost) real-time on devices with limited
computational capacity, eventually processing dozens of image streams acquired
by many cameras from the production line.

Figure 3.1: Example of a machine to be monitored. Left: clean machine. Right:
machine with two cases interlocked in line. We have highlighted the cases with two

red bounding boxes. Images are juxtapposed to highlight the spatial shift.

To takle this problem, we decided to adopt the tools offered by the Change
Detection field. The peculiarity of this kind of models is that they are able to
highlight changes between two inputs. To teach the model which changes are
important and which should be ignored, during the training phase, pairs of images
with and without the changes are shown to the model under different conditions.
It will therefore be sufficient to couple images with different conditions, considered
acceptable changes, to force the model to not track those types of variations.
From an industry point of view, directly comparing two images also has another
advantage: it is possible to decide from time to time what is the normal state of
the machine, without the need to re-train the model.

Change Detection is one of the main research topics in the Remote Sensing
community. Also, in applications of the aerial imaging, the Change Detection
models can compare two co-registered images I1 and I2 acquired at times t1 and
t2 [46,135,136]. In this scenario, some relevant changes are: urban expansion,
deforestation, or post-disaster damage assessment [137–143]. On the other
side, some irrelevant changes are: lighting conditions, shadows, and seasonal
variations. Since a lot of research work has been devoted by the Remote Sensing
community to this field, we decided to start from the existing models to validate
the approach also on our industrial project. In our work, not only we faced
the problem from a qualitative point of view, but we taked care also of the
computational complexity exposed by the designed model. Notice that, as
reported in [144], the state-of-the-art models count several million parameters,
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and at least 4 GigaFlops for the processing of a single image, which badly fits
our production requirements.

To present our ideas, and to fairly test our model by comparing it to the
other state-of-the-art ones, we compared our results in the context of Change
Detection on aerial images. To this extent, in Section 3.1 we introduce in detail
the Change Detection problem in the aerial images’ context, and we discuss
the relevant literature in Section 3.2. In Section 3.4 we present our model and
in Section 3.5 we show the obtained results with a detailed comparison with
other state-of-the-art models and the ablation study on our model. Finally,
in Section 3.6, we discuss the obtained results, and in Section 3.7 we present
preliminary results in the industrial scenario.

3.1 Change Detection on Aerial Images

Thanks to the increasing number of available high resolution aerial imaging
datasets, such as [137,141,142], data driven methods like deep Convolutional
Neural Networks found successful applicability [145]. The well known ability of
deep Convolutional Neural Networks to extract complex and relevant features
from images is the key factor for their early promising results [146]. In the
Change Detection scenario, complex features are not sufficient to accomplish
the task. To detect the occurred changes, it is in fact crucial to model the
spatio-temporal dependencies between the two images. Unfortunately, plain
Convolutional Neural Networks have a limited receptive field due to the usage
of fixed kernels in convolutions. To overcome this issue, recent works focused
their attention to enlarging the receptive fields by employing different kernel
types [147], or by adding attention mechanisms [137, 141, 148, 149, 149–151].
However, most of them failed to explicitly relate data in the temporal domain,
since attention mechanisms are applied separately on the two images. The
self attention mechanism adopted in [137,151] shows promising results relating
images in the spatio-temporal domain. More recently, Transformers have been
introduced in Change Detection because of their receptive fields spatially covering
the whole image [144, 152]. Notice that, by applying multi-headed attention
layers in the decoder part of the network, the receptive field covers the temporal
domain too. Unfortunately, the resulting models are computationally very
inefficient.

The Change Detection field finds applicability also outside the remote sensing
world. As an example, in [143,153] two models are discussed in order to be used
on drones or other autonomous vehicles to implement smart city monitoring
functions. In our case, the change detection model has been developed for an
industrial application. In our application field, the need for real-time perfor-
mances adds a model complexity constraint. Unfortunately, the majority of
state-of-the-art models are millions-parameters-sized, so that their applicability
is not possible. Another issue with those big models is related to the training
time clearly affected by the size of the model. With large models, the Hyper-
Parameters-Optimization task requires resources that are usually not available
to medium-small companies. Moreover, big networks require dedicated hardware
also at inference time. This is in contrast with production requirements and
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project budgets. The search for models having both small size and performances
comparable to the current state-of-the-art can be considered an open problem.

A possible strategy to cope with both model size and complexity that, to the
best of our knowledge, has not been studied in the literature, is to use low-level
features to compare the two images under examination. Another underestimated
aspect, in our opinion, is that a Siamese type backbone produces two tensors
containing channels arranged semantically in the same order. This observation
could be used to design strategies for merging features more efficiently.

The main purpose of our work is to investigate the aforementioned issues,
developing a neural network that requires lower computational complexity with
respect to the state-of-the-art Change Detection models, reaching at the same
time comparable performances.

The major contributions of our work are the following:

• We explore the effectiveness of using low-level features in the problem of
comparing images. The results validate our intuition that in this context
the low-level features are sufficiently expressive. Moreover, this allowed us
to significantly limit the number of model parameters.

• We introduce a novel strategy to mix the features between the two images.
This strategy allows the computation of a spatio-temporal correlation
between the input images keeping a low computational complexity.

• A fast attention mechanism is introduced with a block called MAMB. It
uses features localized in space to compute attention masks needed in the
up-sampling phase to refine the low-resolution results.

• We propose to use a pixel-wise classifier to generate the final mask. In our
tests, this proved to be very effective.

Our architecture exploits the information contained in the channels of the fea-
ture vectors generated by the backbone. For this reason, it can effectively exploit
low level features such that a relatively small backbone can be adopted. Being
the backbone the most time-consuming and parameter-demanding component in
the architecture, especially in Siamese architectures where it is evaluated twice,
maintaining it as small as possible allows us to achieve our goal. In particular,
we are able to maintain the total number of parameters below 300000.

Finally, we compare the quality of the model with state-of-the-art architec-
tures, and we demonstrate that it has performances comparable if not even
superior to other state-of-the-art models in the Change Detection field. We have
extensively tested our model on public and proprietary datasets. In this chapter
we highlight the results obtained in the field of aerial images on public datasets.



3.2. Related works 43

3.2 Related works

3.2.1 Early deep neural network works on Change Detec-
tion

Deep Learning models, and in particular Convolutional Neural Networks, have
been applied with great success in image comparison tasks [154–156], in pixel-
level image classification [11, 157,158], and they represent the state-of-the-art in
many other Computer Vision fields [159].

Models in the context of the Change Detection must manage two inputs:
one image I1 acquired at time t1, and another one I2 acquired at time t2. The
correct use of these two inputs, and the features extracted from them, are
extremely important for the well behavior of the Change Detection model. One
of the first works that applies deep learning techniques to the field of Change
Detection is [160]. This work highlights how deep neural networks, in particular
Deep Belief Networks obtained by stratifying Restricted Boltzmann Machines,
are a very effective tool to compare and highlight the changes between the
two images under examination. To the best of our knowledge, the first work
that applies Convolutional Neural Networks to the Change Detection problem
is [146]. The authors propose two different approaches. In the first case they
use a U-Net [11] type network with the Early Fusion Strategy (FC-EF), i.e.
they concatenate the images I1 and I2, and then they feed the U-Net with
the resulting tensor. In the second case, they investigate the Feature Fusion
Strategy. To this aim, they employ a Siamese U-Net type network [155,158,161]
where the two images are processed separately, and subsequently the features
are fused in two different ways: concatenation (FC-Siam-conc) and subtraction
(FC-Siam-diff). These fused features are then used as skip connections in
the decoder. After this seminal work, an entire research line investigated
both the Early Fusion Strategy [138, 149, 162, 163], and the Feature Fusion
Strategy [137,141,147,148,150,151,164–169].

To take full advantage of the large amount of spatial information, deeper
Convolutional Neural Networks such as ResNet [45] or VGG16 [170] have been
used [137,141,147,151] in order to extract spatial information and group them
in a hierarchical way. Unfortunately, standard convolution has a fixed receptive
field that limits the capacity of modelling the context of the image. To face
this issue, atrous convolutions [171] have been experimented [147]: they are able
to enlarge the receptive field of convolutional kernels without increasing the
number of parameters.

3.2.2 Attention based Convolutional Neural Network
To definitively overcome the problem of fixed receptive field, attention mech-
anisms, in the forms of spatial attention [141, 148, 149], channel wise atten-
tion [141, 148–150], and also self-attention [137, 151], have been introduced.
In [141], the attention mechanisms are used in the decoder part: the channel
wise attention is used to re-weight each pixel after the fusion with the skip
connections, while the spatial attention is adopted to spatially re-weight the
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pixels containing misleading information due to the up sampling step. To further
exploit the interconnection between spatial and channel information, in [148] a
dual attention module has been introduced. The co-attention module introduced
in [150] tries to leverage correlation between features extracted from both images.
Also in [150] a co-layer aggregation and a pyramid structure is used to fully
exploit the features extracted at each level and with different receptive fields.
In [137], the non-local self attention introduced in [172], have been applied to
Change Detection. This mechanism consists in stacking the features extracted
from a Siamese backbone, and to apply both a basic spatial attention mecha-
nism, and a pyramidal attention mechanism. Since these two attention blocks
are applied to stacked features obtained from I1 and I2, these are correlated
in a non-local spatio-temporal way. Another interesting approach is the one
presented in [173]. In this paper, the authors decided to combine Convolutional
Neural Networks with Object Image Analysis (OBIA) mitigating the limited
receptive field problem. In a first preprocessing phase, they segment the image
and extract the patches containing objects to be compared. Subsequently, the
extracted patches are compared using a Convolutional Neural Network which
then works on small patches containing more specific and detailed information.

In [153], the authors propose a temporal attention mechanism. They exploit
the features extracted from I2 to generate a query matrix which is then compared
with the features extracted from I1. This mechanism is made dynamic by
reducing the receptive field as tensors’ spatial dimension diminishes. Finally, the
authors also use attention mechanisms capable of emphasizing some horizontal
and vertical dependencies of recurring objects in their scenario.

Convolutional block attention modules (CBAMs), composed by a channel
attention block and a spatial attention block, are staked and integrated in the
features’ extraction block of [174]. These blocks are connected with the residual
outputs of every block of the ResNet18 based siamese backbone, in order to fully
capture the effective information in multi-scale features. An interesting feature
of [174] is the coupling of the Change Detection network with a GAN based
super resolution module, thus extending the Change Detection applicability to
images with different resolutions.

3.2.3 Transformers in Change Detection
The global attention mechanisms introduced with Transformers [175,176] have
also been applied to the Change Detection problem. In [144] the authors employ
a modified ResNet18 as Siamese backbone to extract features. Then, to better
justify the use of Transformer blocks, they follow a parallelism between the
natural language processing field, and the image processing one, by introducing
the semantic tokens. Roughly speaking, semantic tokens are the pixels of the
last feature tensor extracted by the backbone. The authors use this concept to
illustrate that concatenating single pixels and then processing them with a trans-
former encoder-decoder, a pair of feature-tensors can be obtained incorporating
both global spatial information, and global temporal information. On the other
side, in [152] the authors replace the Convolutional Neural Network backbone
with a transformer in order to exploit the global information contained in the
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images right from the start. In this model, the temporal aggregation is done
only in the final multilayer perceptron decoder.

3.2.4 Relations between our work and existing models
Our work is inspired by [144]. As reported in Section 3.2.3, in that work the
authors introduce the concept of semantic tokens, which are basically single
pixels of the tensor obtained by the backbone. Then, they use a transformer in
order to process these tokens and extract global spatio-temporal information.
In agreement with [144], we believe that the information contained in the
pixel/semantic token is crucial to obtain a good result. However, we prefer to
apply channel-wise local feature comparison, limiting the semantic complexity
and aggregation of adopted features to the first few backbone layers; whilst
in [144] the comparison is global, being it obtained by means of transformers.
Moreover, we adopt Multi Layer Perceptrons (MLPs) to compute both the
spatial attention maps and the final mask, actually facing the problem as a
pixel-wise classification one. Recently, MLP blocks have received great attention
in computer vision community [177–183]. These architectures divide the images
into patches and then process them with MLP blocks. Different structures of
MLP blocks have been proposed to incorporate as much spatial information
as possible. For example, in [178, 183] a spatial shift operator is applied in
order to obtain information from different axial directions. The CycleMLP block
proposed in [177] follows a similar idea but instead of applying the spatial shift
operator to the features’ tensor, it composes several MLP steps capable of mimic
the shift. A more refined version of these concepts is proposed in [179] were
the authors employ a block which dynamically learns the spatial offset used in
CycleMLP. In our model, the MLP blocks work exclusively along the channel
dimension to both compute the spatio-temporal attention maps, and produce
the final pixel-wise classification.
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3.3 Backgrounds on Convolution and Attention

In Section 3.2, reviewing the literature on Change Detection, we have repeatedly
mentioned the Convolution operator and the Attention mechanism. In this
section, we give an introduction to these two operations as they are two of the
fundamental building blocks of deep learning models for computer vision. A
more detailed discussion of these topics can be found in [42].

3.3.1 The Convolution operator
The notion of convolution sounds very familiar to those with a mathematical
background. We start from the formal definition of the convolution. Indicating
with Lp(RN ) the space of functions modulo p integrable in the sense of Lebesgue,
that is g 2 Lp(RN) ,

�R
RN |g(x)|pdx

� 1
p  +1, we define

Definition 13. Given f 2 L1(RN ) and k 2 Lp(RN ), with 1  p  +1, we can
define the function f ⇤ k 2 Lp(RN) as

(f ⇤ k)(x) :=
Z

RN

f(x� y)k(y)dy (3.3.1)

To be more formal, Definition 13 should actually be stated and proved as
a theorem. However, this is not the place to go into the details of Lebesgue’s
measure theory, and we refer the reader to [184] for a more precise and formal
treatment of measure theory and integration.

What interests us in this discussion is understanding the meaning of (3.3.1).
What (3.3.1) tells us is that the convolution operator f ⇤ k is calculating a
weighted average of the function f using the function k, which from now on we
will call kernel, as the weight function. This weighted average operation has
several applications in mathematics and is a very powerful tool. For example,
in functional analysis, the convolution between Lp functions, which have no
regularity from the point of view of the derivatives, with kernels with high
regularity and compact support, called mollifiers, allows proving density results
of spaces of regular functions in Lp spaces [184, Theorem IV.23].

To see how it works in the discrete context of image processing and to get
an even clearer idea of how convolution works, let us use Figure 3.2. What
is called Input in the Figure 3.2 is our f of (3.3.1) and can be interpreted as
a single channel image, for example, a grayscale image. If we interpret the
convolution as a dynamic process, we can think that the kernel k starts acting on
the first 4 pixels of the image and through (3.3.1) returns the weighted average
of those pixels. After that, in the following steps, the kernel moves on the image
returning the weighted averages of the other parts of the image.

Let us immediately make a couple of observations regarding on how convolu-
tion works and is implemented. The attentive reader will have noticed that what
is reported in Figure 3.2 is not the discretization of (3.3.1). In fact, in (3.3.1)
the function f is flipped with respect to the kernel k in the argument y (f(x� y)
vs. k(y)). In other words, what is shown in the figure is the discretization of the
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Figure 3.2: Visual explanation of convolution operator on 2 dimensional discrete
domain.

cross correlation, which can be expressed as
Z

RN

f(x+ y)k(y)dy. (3.3.2)

From a mathematical point of view, the main difference is that convolution
satisfies commutativity, i.e. f ⇤ g = g ⇤ f , and cross correlation does not
satisfy this property, which is a very useful property for example when writing
proofs. Since, apart from this distinction on the sign, convolution and cross-
correlation implement the same type of operation, and given that commutativity
does not play a relevant role in computer vision, computer vision and machine
learning libraries usually implement the operation of cross-correlation, calling it
convolution by convention, probably to associate the operation at least intuitively
with the better known mathematical convolution. The second thing we want
to notice is the size difference between the input f and the result f ⇤ k. In
the case shown in Figure 3.2, we start from a 5 ⇥ 5 input and obtain a 3 ⇥ 3
output. This is because the kernel, 3 ⇥ 3 in size, in this case, is scrolled over
the image by superimposing it as shown without ever exceeding the edges of
the image. In computer vision libraries, convolution is implemented by adding
two parameters, called padding and stride, through which this behaviour can be
changed. Padding consists of inserting values, usually 0, around or inside the
image so that the final result has the same, or even greater, spatial dimensions as
the input. Stride on the other hand controls how much the kernel shifts on the
image and can be used instead to decrease the spatial dimensions. Combining
kernel size, padding and stride we can get combinations suitable for every need.
In the case of multi-channel images, for example RGB images, the convolution is
calculated using kernels with a spatial dimension chosen by the user and many
channels equal to that of the image, in this case, 3. The situation remains similar
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when the input has C channels: we will use kernels with C channels. With
this choice, the output has spatial dimensions according to the kernel spatial
dimensions, padding and stride choices, but whose number of channels is 1. In
other words, each kernel calculates the weighted average of the input not only
spatially but also to all channels. For this reason, convolutional layers in neural
networks implement in parallel the action of many kernels on the input equal to
the number of desired channels on the output. In this way, different information
obtained by making different weighted averages of the information contained
therein is simultaneously extracted from an image or a tensor of features. For
clarity, we underline that the strategy just described is only the simplest one
and historically the first to be used. Over the last few years, new strategies for
implementing convolutional layers have been explored. We will see for example
in Section 3.4.3 the use of grouped convolutions.

So far, we have described the idea behind convolution and its implementation.
What remains for us to understand is why convolutional networks have been so
successful. We could think that the kernels for convolution operations can be
implemented by an expert user. However, finding the kernel for each feature we
want to extract can be a long and tedious job and automating this process is one
of the reasons for the success of deep learning. Deep learning not only automates
the process but can learn kernels that are effective for various tasks directly from
data. This is made possible by the revolutionary design of convolutional neural
networks, which mimic the way our own visual cortex processes information.
Thanks to groundbreaking research on the brain of cats [41], scientists discovered
that the brain breaks down visual information into layers, gradually building up
complexity from simple lines and points to more advanced shapes and objects.
Similarly, convolutional neural networks stack layers upon layers of convolutions,
creating networks that can handle an extraordinary amount of information with
ease. As stated in [42], convolutional neural networks can be considered as “the
greatest success story of biologically inspired artificial intelligence.”

Since the spatial dimension of the kernel affects the computational complexity,
to maintain a good trade-off between performance and execution speed, we
choose to use kernels with limited spatial dimensions. However, this choice
means that the convolutional layers fail to model long-range dependencies within
the image/tensor. Using the convolution operator we can reduce the spatial
dimension of the image/tensor by concatenating several convolutional layers
and hence aggregate information. Several variants of the classical convolution
have also been developed, such as the atrous convolution [171] which consists
in using a 0-padding inside the kernel by increasing its receptive field without
increasing the computational complexity. However, even these solutions fail to
extract global information. In the next section, we see the attention mechanism
whose intent is to incorporate information from the whole image/tensor.
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3.3.2 Attention mechanism
The attention mechanism was introduced in [185] in a neural encoder-decoder
architecture for language translation. In the context of natural language pro-
cessing (NLP), it is clear how important it is to have a mechanism capable of
taking into account long-range dependencies within one or more words. The idea
from which the attention mechanism was born is precisely that of developing a
layer capable of focusing on the important regions within a context. In [176]
Transformers architectures, composed of attention blocks interspersed with fully
connected layers, were introduced. Transformers currently represent the state
of the art in NLP, confirming the validity of the attention mechanism. Driven
by the excellent results obtained in NLP, the researchers then exported the
same ideas in other fields such as computer vision. To give a formal idea of the
attention mechanism in computer vision, we follow [172,186]. For a complete
overview of all the attention mechanisms developed in computer vision, we refer
the reader to [187].

Consider a tensor X 2 R
C⇥H⇥W , where C is the number of channels, H and

W stand for height and width. We call pixel the element xC,i,j , that is the vector
at position i, j with length C. Where it is not necessary, we omit the reference
to the channel dimension for the ease of notation. Let us fix a neighborhood Nd

of pixel xi,j of height and width equal to d. The same dimension for height and
width is set for convenience only. Now we can introduce the three fundamental
elements of the attention layer:

Query qi,j := WQxi,j . This is the reference vector for which we want to calculate
the output value according to the attention mechanism, processed through
the WQ matrix;

Keys K 2 R
C

0⇥d⇥d where each element kr,s := QKxr,s for all xr,s 2 Nd;

Values V 2 R
C

0⇥d⇥d where each element vr,s := QV xr,s for all xr,s 2 Nd.

The learnable weights of the attention layer are the three matrices WQ,WK ,WV 2
R

C
0⇥C , where C 0 is set by the user.
Then, the output vector yi,j 2 R

C
0 is obtained by

yi,j =
X

(r,s)2Nd

Softmax(r,s)(q
T

i,j
kr,s)vr,s, (3.3.3)

where, with a little abuse of notation, we have used (r, s) 2 Nd to indicate that
the operation is made for all the element that comes from the neighborhood Nd.
This process is repeated for all pairs of indices i,j, obtaining Y 2 R

C
0⇥H⇥W . In

words, for each vector of the tensor the corresponding processed vector called
Query is calculated, and for each element of its neighborhood the matrices of
Keys and Values are calculated. All these elements are then combined following
(3.3.3). We can actually generalize (3.3.3) by writing

yi,j =
X

(r,s)2Nd

f(xi,j, xr,s)g(xr,s), (3.3.4)
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where f : RC⇥R
C ! R is a function that computes a scalar relationship between

xi,j and xr,s, and g : RC ! R
C

0 . Figure 3.3 illustrates the attention mechanism
described so far.

Figure 3.3: Representation of the attention mechanism described in (3.3.3). Image
taken from [186].

At first sight, the fact that the attention mechanism is a global mechanism
unlike that of convolution may not be immediately clear. In fact, even in
the description just made, we used a fixed neighborhood of the pixel whose
output we want to calculate. If we fix the dimensions of this neighborhood
similarly to those of a convolutional kernel, we are replacing the interaction of
the pixel of our interest with its neighboring pixels by passing from (3.3.1) to
(3.3.4). What makes the attention mechanism global is the opportunity of fixing
the neighborhood Nd of a much larger dimension than would be possible for
a convolutional kernel, even up to the spatial dimension of the image/tensor
under consideration. In fact, in the case of the attention described in this
paragraph, the operations are those of vector-matrix products with the matrices
WQ,WK ,WV , depending only on the number of input and output channels, while
the spatial dependence is due only to the number of times these operations must
be repeated for each pixel of the neighborhood. However, this spatial dependence
is easily to parallelize as each vector-matrix product does not depend on the
others. On the contrary, the convolutional kernel has a complexity closely linked
to the size of the neighborhood, which becomes the spatial dimension of the
kernel. Hence, the convolution operator requires a tensor-tensor product, that is
less parallelizable than attention. In fact, it is rare to find convolutional kernels
larger than 7⇥ 7⇥C, while the neighborhoods of the attention mechanisms also
have dimensions of 32⇥ 32 and beyond.

The attention mechanism described in this section is the simplest one in-
troduced in NLP works. Recent developments led to generalizing the concept



3.4. Proposed model 51

of assigning a weight to a particular pixel based on information deriving from
the entire context. For a complete overview of all the attention mechanisms
developed in computer vision, we refer the reader to [187]. Anticipating what we
will describe in Section 3.4.3, in our work we developed a concept of attention,
capable of weighting the pixels during the reconstruction phase of the binary
mask, using both spatial and temporal information.

3.4 Proposed model

In this section, we describe and motivate the structure of our model. We use a
model resembling a Siamese U-Net consisting of 4 main components:

• Siamese encoders constituted by a pre-trained backbone (see Section 3.4.2).

• Mix and Attention Mask Block (MAMB) and bottleneck mixing block to
compose backbone results (see Section 3.4.3).

• Up-sample decoder to refine low resolution results incorporating higher
resolution data from the skip connections (see Section 3.4.4).

• Pixel level classifier (see Section 3.4.5).

Figure 3.4: Siamese U-Net architecture including MAMB.

In what follows, we denote with X 2 R
(C⇥H⇥W ) the reference tensor (image

at time t1) and with Y 2 R
(C⇥H⇥W ) the comparison tensor (image at time t2).

C is the number of channels, H is the height, and W the width of the tensors.
We omit the batch dimension for the ease of notation. We denote with Conv the
convolution operator, with PReLU the Parametric Rectified Linear Unit [188],
with IN2d the Instance Normalization [189], and with Sigmoid the sigmoidal
activation function.
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3.4.1 Model overview
Indicating with fk the composition of the backbone blocks up to the kth one,
the high-level features Xk = fk(X) and Yk = fk(Y ) are extracted from each
level k of the backbone. These features are used both to compute the resulting
output at each level of the U-Net encoder, and to estimate the attention masks.
The last backbone block produces the embeddings Xe and Ye representing the
bottleneck inputs.

Every backbone intermediate output pair (Xk, Yk) is processed by means
of the MAMB, producing spatial attention masks Mk. These masks are used
as skip-connections and composed in the decoder. The last mixed tensor is
obtained by composing (Xe, Ye).

The decoder consists of a series of up-layers, one for each block of the
backbone. Each up-layer increases the spatial dimensions of the tensor received
from the previous layer to reach the same resolution of the corresponding skip-
connection. Furthermore, the up sampled tensors and the skip-connections are
composed to generate the next layer inputs. This composition is the attention
mask application to the features obtained from the previous layer.

Finally, the last block of our model classifies each pixel of the obtained
tensor through a Pixel-Wise Multi-Layer Perceptron (PW-MLP). The PW-MLP
associates to each pixel the probability that it belongs to the anomaly class.
Applying a threshold to this tensor we obtain the binary mask of changes.
Figure 3.4 depicts the whole architecture of the proposed model.

In the following sections, we describe each component separately.

3.4.2 Siamese encoders with pre-trained backbone
The purpose of the Siamese encoder is to extract features simultaneously from
both images in a semantic coherent way. In deep neural networks, training the
first layers of the model is sometimes difficult due to the well-known phenomenon
of vanishing gradients [131,190]. To overcome this problem, several tricks have
been introduced such as the residual connections of ResNet [45], or the skip
connections of the U-Net [11]. However, training deep backbones remains a
difficult, time-consuming, or even impossible task to accomplish if the dataset is
too small.

For these reasons, pre-trained backbones are often preferred, even in Change
Detection problems [137,141,144,147,151]. The disadvantage of this approach is
that the backbones are not always trained on images that are similar to the ones
we are dealing with. However, Convolutional Neural Network backbones work
by layering information. Low-level features, such as lines, black/white spots,
points, edges, can be considered general-purpose being common to all images.

In our intuition, the faced task, that is the comparison between two images I1
and I2, can be accomplished by using just the low-level features extracted from
the first few layers of a pre-trained backbone. We therefore experimented our
architecture with different backbones sliced at different levels, ending up with
the EfficientNet backbone [191] pre-trained on the ImageNet dataset [192]. We
allowed the training phase to tune also the totality of the backbone parameters.
Guided by experiments on our industrial dataset, the EfficientNet backbone
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family have been selected due to both its efficacy and its efficiency. Moreover,
the resolution reduction in the first EfficientNet layers is sufficiently slow in
order to create skip connections of different spatial dimensions.

For completeness, in section 3.5.6 we compare the performances of other
backbones.

3.4.3 Mix and Attention Mask Block (MAMB) and bot-
tleneck mixing block

The purpose of this block is to merge the features (Xk, Yk) extracted from one
of the blocks of the Siamese encoder. It creates a mask Mk that is then used
as skip connection to refine the information obtained during the up-sampling
phase.

The mask we create can also be understood as a pixel-level attention mecha-
nism. The idea of pixel-wise attention has been already studied in [193]. Here
we specifically designed a pixel-wise attention mechanism exploiting both spatial
and temporal information.

The MAMB can be divided into two sub-blocks: the Mixing block (see
Section 3.4.3), and the Pixel level mask generator (see Section 3.4.3).

Mixing block

As the name suggests, in this sub-block we compose the features generated by
the kth backbone blocks (Xk, Yk). To this aim, we observe that the features Xk

and Yk, share both the same shape Ck, Hk, Wk, and the same arrangement in
terms of features. This means that the features in channel c of Xk have the
same semantic meaning with respect to the corresponding features in channel c
of Yk, being the Siamese encoder weights shared. In view of this observation, we
decided to concatenate the tensors Xk and Yk in the tensor Zk 2 R

2Ck⇥Hk⇥Wk

using the following rule:

Zc

k
:=

(
Xc/2

k
c even

Y (c�1)/2
k

c odd
8c 2 {0, ..., 2Ck � 1}. (3.4.5)

To mix the features coming from Xk and Yk both spatially and temporally,
we used a group convolution. By choosing the number of groups equal to Ck we
obtain Ck kernels of depth 2 which process the tensor Zk in pairs of channels.
These kernels perform at the same time both spatial and temporal convolution
using the cross-correlation between semantically similar features.

The new tensor Z 0
k
2 R

Ck⇥Hk⇥Wk is defined as:

Z 0
k
= Mix(Xk, Yk) := PReLU[ IN2d[Conv(Zk, chin = 2Ck,

chout = Ck, groups = Ck)]].
(3.4.6)

An illustration of our concatenation strategy, and the following grouped
convolution, is reported in Figure 3.5.
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Figure 3.5: Visual representation of our mixing strategy and the full MAMB block.
In the inner dashed block we highlight the concatenation strategy (3.4.5) and the
grouped convolution (3.4.6). These two blocks, when coupled with the PW-MLP, form

the MAMB block.

Pixel-level mask generator

By considering fixed the spatial coordinates of a single pixel, it can be seen that
the Ck values in the tensor Z 0

k
contain spatial information related to both times

t1 and t2. Our idea is to use the PW-MLP in order to process these informations
and generate a score that acts as a spatio-temporal attention. To this aim, the
PW-MLP is designed to produce a mask tensor Mk 2 R

H⇥W .

PW-MLP

To implement a Pixel-Wise Multi-Layer Perceptron, that is an MLP working
on all the channels of one single pixel at a time, we use convolutions with
1 ⇥ 1 kernels. The MLP is composed by N blocks each containing one 1 ⇥ 1
convolution and one activation function. As activation, we used the PReLU,
being this able to propagate gradients also on the negative side of the real axis.
The last convolution contains just one filter, thus producing a tensor Mk with
dimensions 1, Hk, Wk.

The use of 1 ⇥ 1 convolutions to implement an MLP has been already
investigated. In [194] this strategy has been used to substitute layers such as
convolutions with small, trainable, networks. As pointed out in [194], we have
very poor prior information on the latent concepts in pixel vectors. Hence, we
have decided to use this universal function approximator to separate different
semantic concepts.

The bottleneck mixing block

We applied the tensor mixing strategy reported in Section 3.4.3 to compute
the bottleneck of the U-Net like network. More precisely, we compute: Ue =
Mix(Xe, Ye).

Ue represents the output of the encoder and the input to be processed by
the decoder. Ue contains the spatially and temporarily correlated higher level
features computed by the backbone. Given that, our intuition is that Ue contains
enough information in order to classify each pixel at the bottleneck resolution.
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3.4.4 Up-sampling decoder with skip connections
The general k�th decoder block takes as input the tensor Uk+1 of shape
Ck+1, Hk+1,Wk+1 and a mask Mk of shape 1, Hk,Wk. Firstly, an up-sampling
operation is performed in order to transform Uk+1 so that its shape matches the
one of Mk. We call the up-sampled tensor U 0

k
. Then, we define Uk with:

Uk := PReLU [IN2d [Conv(U 0
k
�Mk)]] ,

where we have denoted with the symbol � the Hadamard product. This
represents the skip connection attention mechanism at the pixel level.

As we already mentioned in Section 3.4.3, Ue contains enough information
to classify each pixel at its spatial resolution. By multiplying the mask Mk,
we are re-weighting each pixel in order to alleviate the misleading information
generated by up sampling.

Notice that, in this Up block we employ the depth-wise separable convolution
[195,196].

3.4.5 Pixel-level classifier
Finally, since the change detection problem is a binary classification problem, we
decided to use as last layer a PW-MLP with output classes {0, 1} representing
respectively normal and changed pixels. With respect to what reported in
Section 3.4.3, in this case we used as the last activation layer a Sigmoid function
instead of the PReLU, thus enforcing the result of the network to contain values
in [0, 1]. In this case, the PW-MLP is used as a non-linear classifier which
separates pixels in normal and changed classes respectively.
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3.5 Experiment Settings and Results

In this section, we present the settings used in our experiments, the achieved
results, and the performed ablation study.

3.5.1 Datasets
In order to fairly evaluate our model, and to compare it with other works in
the Change Detection field, we used the public aerial building images datasets:
LEVIR-CD [137] and WHU-CD [142]. Notice that the task defined by these
datasets is particularly close to the task faced by our industrial research. More
precisely, in these two datasets the model has to track some specific patters,
those corresponding to buildings, and carefully segments the eventually occurred
changes.

LEVIR-CD contains 637 pairs of high resolution aerial images. Starting from
these images, patch pairs of size 256⇥ 256 each have been extracted. After that,
the pair instances have been partitioned accordingly to the authors’ original
indications. This step produced 7120, 1024, and 2048 pair instances for the
train, validation, and test dataset, respectively.

WHU-CD contains just one pair of images having resolution 32507⇥ 15354
as a crop of a wider geographic area. Following [197], the images have been split
into non overlapping patches with resolution 256⇥ 256. After that, a randomly
partitioning of the dataset have been performed obtaining 5947, 743, and 744
pairs for train, validation, and test respectively.

3.5.2 Loss function and evaluation metrics
As stated in Section 3.4.5, we cast the Change Detection problem in a pixel-wise
binary classification setting. In fact, the role of the final PW-MLP block is to
output the per-pixel change probability.

Since the reference mask is a binary mask (0 for unchanged pixels, 1 for
changed pixels), and since we are comparing probabilities, one loss function that
can be used is the Binary Cross Entropy (BCE). It is defined as:

L(G,P ) := � 1

|H| · |W |
X

h2H,w2W

gh,w log(ph,w)+

(1� gh,w) log(1� ph,w),

where we denoted with G the ground truth mask, with P the model prediction,
and with H and W the set of indices relative to height and width.

Notice that the BCE loss function is widely used in other state-of-the-art
models such as [144, 152]. In contrast, other researchers implemented more
sophisticated loss functions like the one presented in [137]. We decided to use
the simpler BCE in order to attribute the improvement in performances to
the model and not to an ad hoc built-in loss function. For completeness, in
Section 3.5.7 we report additional experiments with other loss functions.
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To evaluate the performances achieved by our model, we calculated the
Precision (PR), Recall (RC), F1 score (F1), Intersection over Union (IoU) and
Overall Accuracy (OA) with respect to the change class, as defined below:

Pr :=
TP

TP + FP
,

Rc :=
TP

TP + FN
,

F1 :=
1

Pr�1 +Rc�1
,

IoU :=
TP

FN + FP + TP
,

OA :=
TP + TN

FN + FP + TP + TN
,

where TP , TN , FP , FN are computed on the change class, and represent the
true positives, true negatives, false positives, and false negatives respectively.
To retrieve the change mask we applied a 0.5 threshold to the output mask.

3.5.3 Implementation details
We implemented our model using PyTorch [198], and we trained it on an NVIDIA
GeForce RTX 2060 6 GB GPU. As described in Section 3.4.2, we selected the first
four blocks of the EfficientNet version b4 backbone pretrained on the ImageNet
dataset. All other weights of the model have been initialized randomly.

As optimization algorithm, we adopted AdamW [199]. To optimize its
hyperparameters, i.e. learning rate, weight decay, and amsgrad variant, and
also to verify the robustness of our model with respect to the choice of these
parameters, we firstly run a Hyper-Parameters-Optimization task for each dataset
using the package Neural Network Intelligence (NNI) [200]. After this, we fixed
the learning rate to 3 · 10�3, and the weight decay to 9 · 10�3, for the LEVIR-CD
dataset. Moreover, we fixed the learning rate to 2 · 10�3, and the weight decay
to 8 · 10�3, for the WHU-CD dataset. For both datasets, amsgrad have been
set to False. An example of the HPO procedure is reported in section 3.5.7.
Due to computational resource limitations, no other hyperparameters have been
tuned. We left as future work the exploration of network architecture search
techniques (NAS) applied to Change Detection tasks.

To dynamically adjust the learning rate during the training, we adopted the
cosine annealing strategy as described in [201], but avoiding the warm restart.

Since aerial images are spatially registered, we applied the geometric data
augmentation operators simultaneously to the reference/comparison images and
their associated ground-truth mask. Also, non-geometric augmentations have
been applied independently on the reference and the comparison images.

The applied geometric augmentations are Random Flip on both X and Y axes,
and Random Rotation with free degree. Moreover, the applied non-geometric
augmentations are Gaussian Blur and Random Brightness/Contrast change. To
achieve all the adopted augmentations, we used the Albumentations library [202].
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Finally, due to the limited GPU memory capacity and computational power,
we fixed the batch size to 8, and trained for just 100 epochs.

3.5.4 Comparison with state-of-the-art models
To demonstrate the effectiveness of our approach, we compared our results with
those reported in [144, 152]. As baseline, we used the three models presented
in [146]. Moreover, to compare our model with other works adopting both spatial
and channel attention mechanisms, we dealt with [137, 141, 148, 168]. Finally,
given the success achieved by the Transformers applied to the computer vision
field, we also compared our results with those obtained in [144,152].

The results reported in Table 3.1 and Table 3.2 show the superior perfor-
mance of our model on the LEVIR-CD and WHU-CD building change detection
datasets.

Table 3.1: Performance metrics on the LEVIR-CD dataset. To
improve results readability, we adopted a color ranking convention
to represent the First, Second, and Third results respectively. The

metrics are reported in percentage.

LEVIR-CD

Model Pr Rc F1 IoU OA

FC-EF [146] 86.91 80.17 83.40 71.53 98.39

FC-Siam-diff [146] 89.53 83.31 86.31 75.92 98.67

FC-Siam-conc [146] 91.99 76.77 83.69 71.96 98.49

DTCDSCN [148] 88.53 86.83 87.67 78.05 98.77

STANet [137] 83.81 91.00 87.26 77.40 98.66

IFNet [141] 94.02 82.93 88.13 78.77 98.87

SNUNet [168] 89.18 87.17 88.16 78.83 98.82

BIT [144] 89.24 89.37 89.31 80.68 98.92

Changeformer [152] 92.05 88.80 90.40 82.48 99.04

TinyCD 92.68 89.47 91.05 83.57 99.10

The baseline models FC-Siam-diff and FC-Siam-conc [146] are the archi-
tectures most similar to ours. With respect to these two baseline models, we
increased the F1 score by 4.73 points on LEVIR-CD, and by more than 20 points
on the WHU-CD. With respect to the best model we found in the literature [152],
our performance increment on the LEVIR-CD dataset is more limited. However,
as we can see from Table 3.3, our model is 146 times smaller.

In view of these results, we can conclude that our model, despite the lower
complexity and the lower number of employed parameters, is very effective on the
buildings Change Detection task. Moreover, having not used any global attention



3.5. Experiment Settings and Results 59

Table 3.2: Performance metrics on the WHU-CD dataset. To
improve results readability, we adopted a color ranking convention
to represent the First, Second, and Third results respectively. The

metrics are reported in percentage.

WHU-CD

Model Pr Rc F1 IoU OA

FC-EF [146] 71.63 67.25 69.37 53.11 97.61

FC-Siam-diff [146] 47.33 77.66 58.81 41.66 95.63

FC-Siam-conc [146] 60.88 73.58 66.63 49.95 97.04

DTCDSCN [148] 63.92 82.30 71.95 56.19 97.42

STANet [137] 79.37 85.50 82.32 69.95 98.52

IFNet [141] 96.91 73.19 83.40 71.52 98.83

SNUNet [168] 85.60 81.49 83.50 71.67 98.71

BIT [144] 86.64 81.48 83.98 72.39 98.75

TinyCD 91.72 91.76 91.74 84.74 99.34

Table 3.3: Parameters, complexity, and performance compar-
ison. The metrics are reported in percentage, parameters in

Millions (M), and complexity in GFLOPs (G).

Model Param (M) Param

ratio
FLOPs (G) LEVIR-CD

F1

WHU-CD

F1

DTCDSCN [148] 41.07 146.67 7.21 87.67 71.95

STANet [137] 16.93 60.46 6.58 87.26 82.32

IFNet [141] 50.71 181.10 41.18 88.13 83.40

SNUNet [168] 12.03 42.96 27.44 88.16 83.50

BIT [144] 3.55 12.67 4.35 89.31 83.98

Changeformer [152] 41.02 146.50 N.D. 90.40 N.D.

TinyCD 0.28 1 1.45 91.05 91.74

mechanism, we have a confirmation of our intuitions: in the faced Change
Detection task, low level information is sufficient to reach high-quality results.
Also, the information contained in each single pixel at different resolutions, is
very rich and can be exploited to effectively classify changes.

In Figure 3.6, a visual/qualitative comparison between the masks created
by our model, and those created by BIT [144] on the LEVIR-CD test dataset,
is reported. Both models perform well, and we end up our analysis by con-
jecturing that the performance difference reported in Table 3.1 and Table 3.2
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Figure 3.6: Visual comparison between outputs obtained by our model and BIT. We
highlighted with red bounding boxes those regions containing significant differences

between the ground-truth and the generated masks.

are more related to missing or hallucinated objects, than region quality issues.
Nevertheless, we can find some examples were there are significant differences
between the ground truth masks (GT) and those created by the two models. In
Figure 3.6, it is interesting to note that there are examples where both models
fail similarly in the same regions, despite the two models being based on very
different approaches (local versus global).

3.5.5 Ablation study
In this section we describe the adopted ablation study steps and the achieved
results.

Backbone dimension and final PW-MLP

The first ablation study we conducted concerns the size of the backbone and
the use of the final MLP. Regarding the backbone size, we considered both
the whole EfficientNet-b4 except the final classifier, and a sliced version of the
EfficientNet-b4 network including just the first 3 blocks. Moreover, to assess
the effectiveness of the final classification PW-MLP block, we considered both
the architecture including it, and the one that produces its output directly from
the last up-sampling block by forcing it to output just one channel. The results
shown in Table 3.4 confirm our intuition on low-level features. In fact, our
solution with the sliced backbone and final PW-MLP, turns out to be the one
with the best performances on both datasets. Furthermore, we note that, to
get the best performances, the backbone slicing and PW-MLP classifier must
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be coupled. In fact, on LEVIR-CD the model containing just the backbone
slicing shows poor performances, while the use of the PW-MLP classifier helps
the full backbone architecture to improve the quality of the segmentations.
In contrast, on the WHU-CD the architecture with sliced backbone and the
PW-MLP classifier obtains better scores than the one with full backbone but
without PW-MLP, remaining the performances of the latter still unsatisfactory
and far from those obtained by our model.

Table 3.4: Performance comparison between versions of our
model including and excluding the backbone slicing and the

PW-MLP classifier.

LEVIR-CD

Model Precision Recall F1 score IoU Accuracy Params

Full w/o MLP 83.05 94.00 88.19 78.88 98.71 17740598

Full w MLP 92.65 89.26 90.92 83.36 99.09 17743288

Sliced w/o MLP 46.15 94.52 62.02 44.95 94.10 282438

Sliced w MLP 92.68 89.47 91.05 83.57 99.10 285128

WHU-CD

Model Precision Recall F1 score IoU Accuracy Params

Full w/o MLP 43.08 88.12 57.87 40.72 94.91 17740598

Full w MLP 91.00 92.14 91.57 84.45 99.32 17743288

Sliced w/o MLP 76.16 89.05 82.10 69.64 98.84 282438

Sliced w MLP 91.72 91.76 91.74 84.74 99.34 285128

Comparison with other simple mixing strategy

In Table 3.5, we compare our mixing strategy, described in Section 3.4.3, with
other widely used feature fusion blocks. We tested the following alternatives:

• subtraction, both in the bottleneck and in skip connections;

• concatenation + convolution, both in the bottleneck and in skip connec-
tions.

We selected these two alternatives since our mixing strategy can be seen as a
generalization of the pixel-wise subtraction. In fact, if we initialize all of our
2-depth kernels with the "central" weights to 1 and �1, and all the rest to 0,
we have the standard subtraction. However, our mixing block Section 3.4.3 is
fully trainable with the spirit of feature re-use [203]. Moreover, concatenation
+ convolution can be seen as generalization of our mixing block. However, the
number of trainable parameters to be tuned for this mixing block is much bigger
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than ours. More precisely, the number of parameters in our mixing block is
c(2 · kh · kw), where c is the number of channels, kh, kw are the convolutional
kernel sizes. By comparison, a convolution working on the concatenated feature
tensors contains c(2c · kh · kw) parameters. The parentheses are highlighting the
size of each kernel and the number of kernels.

Table 3.5: Performance comparison between the model with our
mixing strategy, subtraction, and concatenation + convolution

(C+C) respectively.

LEVIR-CD

Model type Pr Rc F1 IoU OA Param. tot. GFLOPs ±

Subtraction 92.13 89.41 90.75 83.07 99.07 282939 1.43 (�1.4%)

C+C 92.55 89.61 91.06 83.59 99.10 368468 1.75 (+20.7%)

TinyCD 92.68 89.47 91.05 83.57 99.10 285128 1.45

WHU-CD

Model type Pr Rc F1 IoU OA Param. tot. GFLOPs ±

Subtraction 90.10 91.55 90.82 83.19 99.26 282939 1.43 (�1.4%)

C+C 92.19 91.25 91.72 84.71 99.34 368468 1.75 (+20.7%)

TinyCD 91.72 91.76 91.74 84.74 99.34 285128 1.45

In Table 3.6 the results of a more detailed study on mixing strategies are
reported. We alternated the use of subtraction/concatenation + convolution with
our respective proposal to mix the features in the bottleneck/skip connections.

Table 3.6: Evaluation of subtraction and concatenation + con-
volution mixing strategies. We reported F1 score for the two
datasets LEVIR-CD (F1-L) and WHU-CD (F1-W). We used 7to
indicate where we changed our proposed option with subtraction
or concatenation + convolution. In contrast, 3represents our

bottleneck mixing block or MAMB.

(a) Subtraction

Mix Skip F1-L F1-W Param

7 7 90.75 90.82 282939

3 7 90.75 91.51 284004

7 3 90.71 89.58 284063

3 3 91.05 91.74 285128

(b) Concatenation+Convolution

Mix Skip F1-L F1-W Param

7 7 91.06 91.72 368468

3 7 91.06 91.08 313028

7 3 90.90 91.71 340568

3 3 91.05 91.74 285128

The obtained results confirm that our proposal can be considered an effective
generalization of the subtraction, with little impact on the size and complexity
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of the model. On the other hand, the overhead introduced by the concatenation
+ convolution mixing strategy, seems to produce little differences in terms of
performance.

Impact of skip connection with MAMB

To quantitatively confirm the usefulness of the skip connections, we trained a
model without them and compared the achieved results in Table 3.7.

Table 3.7: Performance comparison between the model
with/without skip connections on both datasets LEVIR-CD and

WHU-CD.

LEVIR-CD

Model type Pr Rc F1 IoU OA

No Skip 92.35 88.50 90.38 82.45 99.04

Skip 92.68 89.47 91.05 83.57 99.10

WHU-CD

Model type Pr Rc F1 IoU OA

No Skip 90.56 89.77 90.16 82.09 99.22

Skip 91.72 91.76 91.74 84.74 99.34

All the metrics confirm the beneficial effects of skip connections in the model.
Figure 3.7 we reports an example of the intermediate masks that our model
creates in the skip-connections.

The mask created with the MAMB block at resolution 64 highlights the
objects that must be tracked (red pixels). The intermediate mask at resolution
128 acts more like an edge detector. Finally, the mask at resolution 256, obtained
applying the MAMB block directly to the original images I1 and I2, distinguishes
between object classes like buildings and street (dark blue), vegetation (light
green), and shadows (red). The ability to highlight shadows is very effective
since it helps the model to detect objects and to refine their edges.

Channel-wise MLP vs CycleMLP

As reported in Section 3.2.4, several MLP blocks have recently been studied
with the intent of incorporating both spatial and channel-specific information.
As previously described, we used the MLPs only along the channels in the final
classifier, and coupled to our mixing strategy in the MAMB blocks to obtain
space-time correlation. We then decided to deal with the CycleMLP block
proposed in [177]. The results reported in Table 3.8 suggest the superiority of
our proposed use of MLPs compared to that proposed in [177]. A heuristic
explanation for these results can be the following: the MLP blocks proposed
in [177] have shown to obtain excellent performances when they are used to
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Figure 3.7: Visualization of the intermediate masks at different resolutions and the
final binary mask for one example image pair.

construct a hierarchical architecture to generate pyramidal features. This makes
us think that the advantage of CycleMLPs may be more significant when the
features are more refined than the low-level features we use.

3.5.6 Backbones comparison
We report the results obtained by varying the backbone adopted in the model.
In each backbone we decided to select all the initial blocks up to the first having
spatial resolution 32x32. Due to the different compositions of the considered
networks, the final size of the model changes in the range starting from a
minimum of 32 thousands parameters up to 1.3 millions.

Table 3.9 shows that the results obtained are stable from the performances
point of view. The backbones of the EfficientNet family appear to be, in accor-
dance with the experiments on our proprietary dataset, those that achieve the
best performances. However, the other backbone types also produce comparable
results making our approach:

• robust with respect to the backbone used;

• flexible with respect to the required size and computational complexity.

In this comparison we have not considered Transformer-type backbones such
as [204,205]. The reason for this choice lies in the fact that the philosophy of
the Transformers is a global philosophy, as opposed to the blocks we propose
which are instead local. An integration of these two philosophies will be the
subject of future works.
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Table 3.8: Performance comparison between MLP and Cy-
cleMLP [177] on LEVIR-CD and WHU-CD. We used 7to indi-
cate experiments where we changed our proposed block with a
CycleMLP one, while 3represents our proposed architecture.

LEVIR-CD

Skip Class. Pr Rc F1 IoU OA Param. tot.

7 3 92.47 88.48 90.43 82.53 99.04 309300

7 7 92.45 88.49 90.42 82.52 99.04 314542

3 7 92.58 88.96 90.73 83.04 99.07 290370

3 3 92.68 89.47 91.05 83.57 99.10 285128

WHU-CD

Skip Class. Pr Rc F1 IoU OA Param. tot.

7 3 89.76 89.06 89.41 80.85 99.16 309300

7 7 92.25 90.51 91.37 84.12 99.32 314542

3 7 90.20 85.84 87.96 78.52 99.06 290370

3 3 91.72 91.76 91.74 84.74 99.34 285128

Table 3.9: Comparison of different backbones on LEVIR-CD
dataset

LEVIR-CD

Backbone Precision Recall F1 score IoU Accuracy Params

mobilenetv2 90.95 86.43 88.63 79.59 98.87 38798

mobilenetv3large 90.56 85.98 88.21 78.91 98.82 32886

resnet18 92.15 87.43 89.72 81.37 98.98 707894

efficientnetb0 92.18 87.96 90.02 81.85 99.00 79480

efficientnetb1 92.17 88.92 90.51 82.67 99.05 122092

efficientnetb2 92.13 89.26 90.68 82.94 99.06 148040

efficientnetb3 92.40 89.54 90.95 83.40 99.09 178716

efficientnetb4 92.68 89.47 91.05 83.57 99.10 285128

mnasnet13 91.95 88.17 90.02 81.86 99.00 97262

densenet121 92.13 87.97 90.00 81.83 99.00 1364790
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3.5.7 Hyperparameters’ tuning
One of the advantages of using limited computational complexity models, is
being able to fine-tune hyperparameters using relatively few computational
resources, and in a reasonable time, from an industrial point of view. In our
experiments we tune the learning rate, the weight decay, and the usage of the
amsgrad strategy. The framework used to run the experiments and optimize the
hyperparameters is NNI [200].

Since we execute only 100 epochs per run, we chose a higher learning rate
range (10�3, 4 ·10�3), in order to explore whether a higher than standard learning
rate leads to faster model convergence. As for the weight decay, we follow a
conservative choice by setting the range between 10�2 and 8 · 10�3. We also
test other simple loss functions for model training such as Mean Square Error
(MSE), Intersection over Union (IoU) and a combination of IoU and BCE.

In Figure 3.8 we show the various combinations of hyperparameters explored
in a batch of 30 experiments, and the relative performances on the LEVIR-CD
validation set. Analyzing the results, we note that BCE and MSE, regardless
of the other parameters, obtain superior performance compared to the IoU. In
addition, the BCE + IoU combination, although better than IoU, also scores
lower than the BCE and MSE. Regarding the other hyperparameters, as can be
seen in particular from Figure 3.9, our model obtains robust performances with
respect to all the tested combinations. Finally, we note that in the conducted
experiments, BCE has lower variance in terms of F1 score with respect to the
choices of the other hyperparameters. This represents another motivation for us
to chose BCE as loss function.

Figure 3.8: Different combination of parameters and their impact on the F1 score
on the LEVIR-CD dataset.
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Figure 3.9: Behavior of the final F1 score in the different experiments conducted to
tune the hyperparameters. The drop in the F1 score is due to the use of IoU as loss

function.

3.6 Discussion

In CD problems, the model must be able to compare two input images, highlight-
ing the changes that occurred. The model we presented in this work, TinyCD,
exploits low-level features by comparing them and classifying pixels to obtain a
binary map of detected changes. Despite the lower computational complexity
and the reduced number of parameters, the results achieved place TinyCD
among the CD state-of-the-art models.

Among others, the adoption of low-level features also allows to reduce the
depth of the included backbone part, thus reducing the overall depth of the
model. In this way, the resulting network is wider than deeper, and this allows to
reduce the gradient confusion, improving the training efficiency [206]. Moreover,
smaller models are easier and faster to train, allowing a more effective and
affordable HPO phase. In industrial applications this is a desirable feature, since
the model can be retrained according to the necessity of the costumers.

We have shown that an effective way to generate the output mask is to
process low-level backbone features with a PW-MLP block, facing the change-
detection task as a per-pixel classification problem. Moreover, the results of the
ablation study reported in Table 3.4, show that low-level backbone features, and
the final PW-MLP classifier, perform best when coupled.

The mixing strategy that we have introduced, and the MAMBs derived
from it, leverage the structure of the Siamese networks. Indeed, the features
extracted from the two branches of the network share the semantics associated
to the single channels/filters. Our mixing strategy takes this as an advantage,
efficiently comparing those corresponding features in a spatio-temporal manner.
In the case of MAMBs, the low-level features are exploited to form the attention
masks. These masks show how the low level features are able, at different levels,
to help the model to pay attention to details of different meanings.
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3.7 Experimental Results on Industry Machines

In this section, we show the application of TinyCD on industrial machines.
Notice that the results presented here must be considered just a proof of concepts
regarding the applicability of TinyCD to the original industrial scenario. It is
simplistic to reduce the solution to the problem presented in the introduction of
Chapter 3 to the application of TinyCD to a specific dataset.

The dataset for this experiment have been collected by placing cameras di-
rectly on working machines. Figure 3.10 reports examples of different acquisition
points.

Figure 3.10: Examples of different points of view of an industrial machine used in
this experiment.

To simulate anomalous and unwanted objects in the scene, objects like
pills, pharma packages, pipettes, and mechanical tools, have been collected
and then used to create augmented images containing anomalies. To evaluate
the ability of the model to track unwanted changes also caused by objects not
included in the training set, we used different classes of objects for training and
testing. Other augmentations have been adopted to address image variations
like light conditions, perspective, rotation, deformations and colour changes;
these have been employed to mimic the working conditions, and to improve the
generalization ability of the model.

The results reported in Figure 3.11 and Figure 3.12 confirm the effectiveness
of TinyCD also in the industrial context. Since the sets of objects used during
training and testing are disjointed, we can also affirm that our model has
successfully learned to highlight unadmitted changes by comparing the two
images without using specific patterns of unwanted objects.
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Figure 3.11: Qualitative results on industrial machines.
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Figure 3.12: Qualitative results on industrial machines.



71

Chapter 4

Conclusions and future works

In Chapter 2 we have introduced and studied the family of Fourier-based metrics
in the context of image processing. In this setting, we have extended the
definition of this family to deal with measures that do not satisfy the moment
equality requirement. Moreover, we have explicitly derived the equivalence
constants that relate the Fourier-based metrics and the Wasserstein distance on
the discrete setting. We have computed the equivalence constants in the general
case without imposing restrictions on the family of measures we are considering,
and hence they are influenced by the periodicity of the Fourier transform which
determines the dependency from the measure of the support of the probability
measures. The first line of research could be a characterization of the family
of measures on which Fourier-based metrics and Wasserstein metrics that have
support space-free equivalence constants.

The numerical results we have presented show that in applications the
relationship between Fourier-based and Wasserstein metrics is stricter than the
theoretical one. This means that Fourier-based metrics can be used in a wide
range of applications with similar results, especially where fast computations are
needed, for example, in Clustering algorithms. Typically, these algorithms require
to calculate the reciprocal distances of numerous samples, and each sample could
have large spatial dimensions. The statistical study of the results obtained with
Wasserstein and Fourier-based metrics, together with a theoretical study of the
guarantees that Fourier-based metrics could provide, would have a considerable
impact on real applications on large datasets, drastically reducing computational
times while maintaining statistically consistent results. Even in the field of
Deep Learning, where models are trained to match probability measures, the
equivalence between Fourier-based metrics and Wasserstein distances could
make interesting contributions. In fact, given the greater ease of use, both
computationally and theoretically, Fourier-based metrics can be the right tool to
investigate how the weak topology leads Deep Learning models to have better
results.

In Chapter 3, guided by our industrial needs, we have proposed TinyCD,
a convolutional change-detection Siamese U-Net-like model. TinyCD exploits
low-level features by comparing and classifying them to obtain a binary map of
detected changes. We investigate the ability of PW-MLP blocks in extracting
features and propose a new spatio-temporal features fusion strategy. Combining
these two elements, we introduce MAMB, a mixing and attention mask block
that we employ to create skip connection masks. The resulting architecture
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meets our industrial requirements in terms of computational complexity and
deployable on-edge devices.

We tested our model on public change detection datasets containing aerial
images acquired at two different times. Furthermore, we compared the achieved
results with state-of-the-art models proposed in the change detection literature.
Our tests demonstrated that our model performs comparably or better than
the current state-of-the-art models, remaining at the same time the smaller and
faster one.

Notice that the ideas employed in this work can be also applied to other
application domains. For this reason, we will investigate the application of
MAMB and PW-MLP blocks to tasks such as anomaly detection, surveillance,
and semantic segmentation.

In all the experiments we performed, we observed our model learning some
domain-specific patterns. Despite being this an advantage allowing the model
to better deal with the faced task, this is also a limitation because it reduces
the model’s ability to adapt to new scenarios using fine-tuning. Furthermore, in
the two datasets taken into consideration, and also in our industrial case study,
the images I1 and I2 are spatially registered. This allowed the successful usage
of low-level features without assessing global feature relationships. In different
contexts, where the images undergo large spatial shifts, this local approach can
show worse performances with respect to more global approaches like vision
transformers [144, 152]. In future works, we plan to investigate solutions to
those limitations to extend the applicability of TinyCD. We also left as a future
work an extensive study on how our low-level local approach can be beneficial
for training and performances in other areas besides that of Change Detection.
Moreover, to be able to extend our approach even in those contexts where global
features play a fundamental role, we would like to explore multibranch models
in which one branch works on local features and one on global features.
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