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Abstract

This work collects the four papers that best represent my PhD path.

Feature selection variable based on multicollinearity was my very first paper. Starting

from a measure born in the financial field and in particular referring to systemic risk, I

reinterpreted it in the statistical field, providing an endogenous criterion based on Ran-

dom Matrix Theory for choosing the fundamental parameter of the indicator. From this

reinvention then I readapted the measure to the financial context from which it came, in

a working paper that is not included here, where the modifications made to the original

indicator proved to be fruitful in predictive terms.

Deep Learning approaches to detect damaged smartphone screens was the first project I

worked on for Generali, and it introduced me deeply into Deep Learning topics. A partner

of the company had requested a model for the recognition of damaged screens dmartphone

from images. According to our knowledge, although the task seems to be quite common,

nothing particularly significant in this sense has been proposed in literature. The final

solution started from a well-known convolutional architecture, enriched and readapted for

the specifici problem. The results obtained were extremely good in terms of performance,

and the model went into production.

Invoices default forecasting for credit factoring was born from a project that I followed for

the company KEDA S.r.l. from the very first developments - personnel selection and team

training - up to the final production. The project aimed at enhancing the rich dataset

of an Italian company, made by the records of a lot of transactions in the Italian busi-

ness to business context. The idea was to propose a predictive model about the future

default of the invoices, so to favour the implementation and risk management of credit

factoring practices. This purpose required me - in addition to the aforementioned ones -

to model the problem, define its criticalities and a priori elaborate the desirable properties

of the solution, and finally to implement and test it. The results obtained were a marked

improvement over the benchmark model employed by the company and provided by a

well-known name in the fintech world, and the model passed the challenges of recognized

academics and practitioners.

Generalized non linear low Beta portfolio strategies through autoencoder neural networks

is the epitome of my PhD journey. In the short time hiatus following the project related

to the detection of smartphones with damaged screens that had introduced me to Deep
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Learning, it was very natural for me trying to experiment with these new techniques in the

financial field, given my background. In a short time I discovered that Financial Artificial

Intelligence was very different from simply applying AI algorithms on financial datasets.

The exploration of these new paradigms on one hand projected me into what would have

been my future research, on the other hand it also shed a precious retrospective light on

what had been my previous studies. The paper and its idea arose from the perhaps chaotic

but always constant jumble of research and ideas. In the work I examine an age-old prob-

lem of asset allocation and a widely documented winning anomaly on financial markets.

Then I propose a market model based on an autoencoder neural network that offers a

solution to the asset allocation problem by exploiting a data-driven generalization of the

aforementioned anomaly. The prototype version of this model convinced Generali that it

would be more fruitful to exploit the hybrid strangeness of my academic training, making

me work on Financial AI.



Part I

Financial Machine Learning.
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Chapter 1

Generalized non linear low Beta

portfolio strategies through

autoencoder neural networks.

In this paper we address the problem of asset allocation, trying to avoid the curse of di-

mensionality by selecting a small basket from a universe of securities, such that they can

guarantee true diversification and preserve good portfolio performances. The selection cri-

terion is based on a generalization of β anomaly. Starting from a universe of securities

and momentum indicators, a market model is built on the basis of the endogenous factors

obtained through the non linear structure of an autoencoder neural network. The securities

are then sorted according to their mean square error with respect to their observed value.

Low Generalized Beta stocks are therefore defined as those for which the mean square er-

ror is greater. The concept of low β proposed includes in this way securities that are at

the same time poorly correlated with each other and with the starting universe itself, on

the basis of the non-linear autoencoder model. The paper is then organized as follows:

section 1 proposes a literature review on asset allocation, β anomaly and Financial Ma-

chine Learning techniques; in the second section the basis structure of autoencoder neural

networks , the particular version used in the paper and the momentum indicators used

as stock characteristics are presented, then the portfolio selection models and covariance

estimation techniques across which the stock picking technique is tested are introduced; in

the third section a main empirical application and out-of-sample backtest are discussed and

analyzed from various perspectives, as well as some other applications; the fourth section

collects the conclusions and some suggestions for future research.

5
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1.1 Asset allocation, Beta anomalies and Financial Machine

Learning.

A truly rigorous study on the asset allocation problem comes with a certain delay com-

pared to the development of other branches of the economy. From the time of Adam Smith

to the neoclassical economists, there has been focus only on how consumers allocate their

resources by choosing between goods and services, in order to maximize their satisfaction

given a certain spendable budget. The other typical consumer decision, how to choose

investing between different activities, has been shrouded in nebulosity for years, based

only on intuition and common sense - and then arbitrariness, Then deterministic tools

through which we tried to explain the mechanism of decisions of the first type were unfit

to deal with it.

Except for some attempts like Bachelier’s [8] to find a probability measure of risk, or

Fisher’s 1906 [49] of constructing one distribution of expected returns, for a long time it

was not possible to converge to a a theory that intertwined the concept of risk with that of

yield. After Marschak’s 1938 studies [83], the true Big Bang of the asset allocation theory

was due to one of his students. A graduate in economics from the University of Chicago

was looking for a thesis topic for his PhD. The student met a broker who suggested him

to focus on the stock market. Harry Markowitz followed that advice, thus developing a

theory that became the basis of financial economics and a revolutionary investment prac-

tice [82], effectively marking the beginning of the discipline of Mathematical Finance, on

which about twenty years after Black, Scholes and Merton [22] would have placed another

fundamental piece, this time in the context of option pricing.

The work produced then earned Markowitz the Nobel Prize in Economics in 1990. At a

high level, what Markowitz did was to rationally identify and define the compromise that

the investor must face: risk and expected return.

The problem of how to allocate the investor’s wealth among a the securities on a given

universe is called Portfolio Selection; hence the title of the fundamental and pioneering

article by Markowitz, published in the March 1952 issue of the Journal of Finance.

In that article and in the subsequent works, Markowitz extends the techniques of linear

programming for the development of the critical line algorithm. The critical line algorithm

identifies all eligible portfolios that minimize risk, measured by variance or standard de-

viation, for a given level of expected return and, vice versa, they maximize the expected

return for a given level of risk. The graphical representation of the portfolios thus con-

structed constitutes the so-called efficient frontier.

Markowitz developed mean-variance analysis in the context of selecting a portfolio of or-

dinary shares but, in the last two decades, this approach has been used in practice in an

increasingly general sense, applying it to asset classes or to portfolios and ETFs. The

reason for this use is given by the fact that a similar approach allows diversification by

building the portfolio with a limited number of assets, thus mitigating one of the intrinsic
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problems of the model, which we will discuss later.

Markowitz’s main contribution was therefore to give a structure to a concept that until

then had remained on an intuitive and naive level: the diversification of one’s own invest-

ment portfolio.

Despite its simplicity, there is no single definition of diversification available in the litera-

ture, resulting in the production of many contributions on the subject. [115]

Beyond the definition, however, the idea behind diversification and the benefits it brings

are clear.

Take for example a toy market consisting of only A and B stocks, with volatility measured

by standard deviation σA and σB respectively, and with the correlation coefficient between

the two stocks equal to ρ. Furthermore, suppose that you invest in each of the securities

a percentage wA and wB respectively, and that these have expected returns µA and µB.

Then the return of this portfolio will be given by the weighted average of the two expected

returns:

muP = wAµA + wBµB

what is more interesting, however, is what happens to the standard deviation. Let’s take

the case in which the two stocks are perfectly correlated, that is ρ = 1, which means that

the stocks have the same type of behavior, going to deviate from their average return

moving on average in the same direction. By calculating in terms of variance, we will

therefore have:

σ2
P = w2

Aσ
2
A + w2

Bσ
2
B + 2wAwBσAσB = (wAσA + wBσB)2

hence the volatility will therefore be:

σP = wAσA + wBσB

that is, exactly as was the case for yields, the weighted average of the standard deviations

of the individual securities. If, however, we were in the much more general case of ρ < 1,

then the standard deviation of the new portfolio obtained would be lower by construction

than the simple combination of the two single volatilities:

σ2
P = w2

Aσ
2
A + w2

Bσ
2
B + 2wAwBσAσB > w2

Aσ
2
A + w2

Bσ
2
B + 2wAwBσAσBρ

Although extremely important for its pioneering nature in the problem of capital alloca-

tion, the Markowitz model presents several problems related to the assumptions underlying

the model, which have made it unattractive for practioners. Among others, three signifi-

cant problems of the model can be isolated.

Contrary to what is assumed in the hypotheses, the empirical analysis reveals that the

Gaussian distribution is not a good probability density function for financial returns. [84]

The latter in fact reveal a substantially different shape in distribution, with higher den-

sities concentrated around the average value, more drooping distribution shoulders and
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above all thicker distribution tails, compared to the Gaussian. Then we have basically

leptocuric distributions, which testify that the returns from the most extreme magnitude

are actually much more probable than those postulated by the Gaussian associated with

the given mean and variance. Therefore, since there is no Normality, the allocation prob-

lem cannot be based only on the first two moments of the distribution of returns. From

this it is inferred that the underlying utility function for the investor - which is implicit

in the Markowitz model - can no longer be quadratic. However, the limit of the Gaussian

distribution is not insurmountable, on the one hand it is in fact possible to reduce the

granularity of the returns by taking them for example on a monthly basis and on the other

hand generalizations of the model have been proposed in the literature that also take into

account the third-order moment [53] up to the moment of fourth order [122] linked to

leptocurtosis. The problem with both these approaches, however, is revealed in the fact

that they clash even more strongly than the Markowitz model with the other limitations

of the model, as for example the curse of dimensionality.

About this, the historical covariance matrix is not a good estimate of the true covariance

matrix, and this is problem number two. Once a certain number n of securities to be put

in the portfolio is fixed, then the number of parameters to be estimated for the covariance

matrix will be given by n(n+1)
2 [84]. The number of parameters to be estimated - and

which physiologically carries within an error and noise component - grows quadratically

with respect to the number of securities to be held in the portfolio. There are techniques

and methodologies to filter the covariance matrices from erratic components without sig-

nal [41], [74], [72], [40] as well as various dimensionality reduction techniques. From this

problem, it is easy to understand how the solutions offered for the non-Gaussianity of

returns generate an even greater problem in terms of covariance matrix estimation. In

fact, recording the returns on a monthly basis requires very long time series, which by

construction must be based on information that is probably obsolete with respect to the

time of the estimate; on the other hand, the generalizations proposed would require es-

timating the coasymmetry and cocurtosis matrixes, doubling the already hypertrophic

number of parameters to be estimated and sharpening the effects of the so-called curse of

dimensionality [122].

As happens for the covariance matrix, it can be shown that the average return recorded

by a security on a historical basis is not a good estimate of the expected return of that

security [87]. This is also somehow implicit in the very need to build a portfolio: if it were

easy to correctly estimate the expected return of the securities and the variance were on

the appropriate order of magnitude, then it would be known from time to time a priori on

which securities to invest. Furthermore, the methodology by which to choose the required

return for one’s portfolio is not clear.

That said, both literature and practice have tried to deal with these problems. We already

mentioned some covariance filtering techniques. For the non Gaussianity of returns, risk

management techniques have been proposed, in order to mitigate the heavy-tails related
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problems.

For the choice of the optimal portfolio among those on the efficient frontier - which basi-

cally is equivalent to ask for an ideal required return - the maximum Sharpe Ratio portfolio

have been proposed [107], [124]. This portfolio, even if is theoretically the best, in fact

leads to very unbalanced portfolio, especially if unconstrained in terms of short positions.

This is due to the fact that it relies on the expected returns even heavily than Markowitz.

Indeed in the classical Markowitz model the expected returns are just used to build a

constraint, while in the maximum Sharpe ratio portfolio they are part of the objective

function.

The Minimum Variance portfolio is a first and natural restriction to the Markowitz model

which allows in one fell swoop not having to choose a return required by the portfolio

and not having to estimate the expected returns of the assets involved. From the point of

view of optimization, the idea is to reformulate the problem by emancipating it from the

constraint linked to returns.

Several other methods which exclude expected returns calculations from the portfolio con-

struction and just focus on the risk part have then been proposed.

The Maximum Diversification portfolio [33] reinvents the allocation paradigm proposed

by Markowitz, explicitly disregarding the role - and therefore the estimate - of expected

returns. The immediate effect of such an approach is in the balancing of the weights

obtained. In fact, the Markowitz portfolio tends not only to result in extreme weights,

but often to allocate the largest part of the capital in a few stocks compared to those

available, selecting for the others negligible allocations, and effectively reducing the real

diversification obtained. On the other hand, the MD portfolio ensures that all the securi-

ties available rationally receive a non-negligible portion of the investor’s resources.

Risk parity portfolios [101] can be read as a generalization of the equally weighted port-

folio, but the purpose is no longer to allocate the same capital among the securities but

to equally distribute the risk among the securities available.

Another different approach is provided by the Black-Litterman portfolio model [65]. It can

be said that this other approach takes its roots precisely from the fact that, systematically,

it is very difficult for a portfolio to beat, for example, an index such as the SP500. In

light of this fact then, what the Black-Litterman model allows to start from a benchmark

portfolio - for example a portfolio weighted by market capitalization (as in fact it is the

SP500) or a naive portfolio, i.e. allocations that in history for one reason or another have

always proved more effective than more sophisticated approaches - and then to modify

these positions only on the base of specific and circumscribed beliefs and their confidence

level.

Strictly connected to portfolio theory - especially from an historical point of view - Sharpe

derived the CAPM model. Even if the model has deeper theoretical roots and conse-

quences, a widely accepted and simple interpretation among the practitioners is that the

risk of a stock can be entirely represented by a coefficient β which linearly relates the asset
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performance with the related market performance.

A first methodology to estimate this β coefficient was in the historical [46], while a first

well-known criticism was in [99], which highlights how the need of a proxy of the market

portfolio - such as, for example SP500 - stultifies the proposed methodology.

A natural while conceptually different extension to the CAPM was given by the multi-

factor risk analysis and so called Arbitrage Portfolio Theory, which was introduced in

[44], [43] [45], [99] and [100]. Furthermore, a lot of literature about the identification of

these factors have been proposed. [55] describes and analyzes the return predictive signals

(RPS) publicly identified in the period 1970–2010 and shows how more than 330 signals

have been reported and a lot of them show properties which are stable over time, as well

as highlights how RPS with higher mean returns have both larger standard deviations

and higher Sharpe ratios; [60] analyzes different factors, trying to discriminate them in a

lucky vs skill discriminant analysis; [120] explores the out-of-sample performance of a lot

of factors, finding that not a single one would have helped in outprediction.

One of the empirical facts that the CAPM struggles to explain is the so called Beta

anomaly, that is the low β stocks have better adjusted performance than the high β ones.

It’s clear that this empirical evidence conflicts with the well-known risk-reward relation-

ship. A lot of researches tried to explain this fact: in [31] the authors claims to have solved

the Beta anomaly by showing that the conditional beta for the high-minus-low beta port-

folio shows negative covariance with respect to the equity premium and a positive one with

respect to the market volatility; in [15] is suggested that investors’ demand for lottery-like

stocks is a non negligible driver for the beta anomaly, which is no longer detected when

portfolios ranked on the base of the Betas are neutralized to lottery demand or factor mod-

els including a lottery demand factor. This anomaly is then concentrated in stocks with

low levels of institutional ownership and it persists only when the price impact of lottery

demand is concentrated in high-beta stocks; [23] incorporates in a multifactor model the

agency effect for which the equilibrium relation between CAPM beta and expected stock

returns becomes flat, instead of linearly positive; [28] starts from the fact that the equity

of a levered firm can be modeled as a call option on firm assets and that option returns

are non-linearly related to underlying stock returns, and for this reason highlights how

for these cases the linear CAPM-type regressions are generally misspecified; [4] highlights

the well-known Beta anomaly by showing that stocks with recent past high idiosyncratic

volatility have low future average returns around the world, and then shows that there is a

strong covariation in the low returns to high-idiosyncratic-volatility stocks across countries,

suggesting that some not easily diversifiable factors lie behind the phenomenon; a more

general analysis about the implications in investing practices produced by the anomaly are

analyzed in [36]; [5] observes that safer assets must offer higher risk-adjusted returns than

riskier assets because the consumption of high risk-adjusted returns which characterize

safer assets requires leverage, then producing an opportunity for investors which apply

leverage, and furthermore highlight how Risk parity portfolios naturally exploit this fact
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by construction; in [6] The authors refute the idea that low-risk investing delivers high

returns because of industry bets that favor stable industries by showing that a strategy of

betting against beta has delivered positive returns both as an industry-neutral bet within

each industry and as a pure bet across industries; a further clue in this sense is provided

in [11], where the authors decomposes the anomaly into micro and macro components,

where the micro component comes from the selection of low-beta stocks, while the macro

ones from the selection of low-beta countries or industries, and both parts contribute to

the anomaly; in [12] the authors explain why leverage is inversely related to systematic

risk; [13] collects a comprehensive list of evidences which support the Beta anomaly; in [3]

the Beta is splitted in its two components - correlation and standard deviation ratio, and

the Beta anomaly is exploited to show how to construct interesting portfolio strategies by

relying on the aforementioned decomposition.

In the recent years, Machine Learning methodology strongly entered the asset allocation

problem and, more in general, financial markets, investing and trading related problems.

The usefulness and power of ML lie basically on two pillars strictly related: the possibility

to deal with high-dimensional data and the capacity to decouple the search for features

from the search for specification.

A lot of contributions in this sense have been provided by ML. Starting from penalized

regressions such as Lasso [52], [20], [113], [118], Ridge, Elastic Net [125], Group Lasso [79],

[7] to dimensionality reduction based techniques as PCR [9], [54] and PSR [68] to non

parametric techniques such Random Forests [25], [26] as well as the more recent XGboost

[32].

Last, also Deep Learning techniques based on Neural Networks have been tested and pro-

posed in financial context. Neural Networks, with their property of universal aproximators

[64] have shown huge potential in a lot of predictive tasks indeed.

A lot of these models, have been used in asset allocation, and in particular for asset pric-

ing. A very comprehensive review in this sense is provided in [56].

In this paper we address the problem of asset allocation. The idea is to reduce the prob-

lems related to the curse of dimensionality by selecting a small basket from a universe of

securities, such that they can guarantee real diversification and maintain good portfolio

performances while remaining in a small number. The selection criterion is based on the

mimesis of the strategies that exploit the β anomaly, based however on a more general

concept of β which we propose here.

Starting from a universe of securities and features obtained endogenously, a market model

is built on the basis of a handful of endogenous factors obtained through the non linear

structure of an autoencoder neural network. Based on these factors, the securities are

reproduced using linear models, and sorted according to their tracking error with respect

to their observed value. Low β stocks are therefore defined as those for which the tracking

error is greater. The concept of low β proposed includes securities that by construction

are at the same time poorly correlated with each other and with the market as a whole,
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on the basis of the proposed non-linear autoencoder model.

1.2 Autoencoder neural network for low Beta stock picking

and true diversification achievement

In this section the classic structure of the Autoencoders [80] is introduced, defining the

modified structure of the Autoencoder proposed and its interpretation as a market model,

as well as its use for stock picking procedure.

Neural network models characterized by a number L of hidden layers can be written in a

recursive way.

Let K l be the number of neurons which are in each layer l, with l = 1, ..., L, rl,kt the output

of neuron k in layer l as for a fixed observation t and the vector rlt = (rl,1t , ..., r
l,K(l)
t )′ which

collects all the outputs of the layer . At each hidden layer, on outputs from the previous

layer are applied nonlinear transformations - activation functions - g(•) and the obtained

result becomes the input for the next layer. To initialize the network, the input layer

is feeded with the cross section of returns rt0 = (r0,1t , ..., r0,nt )′, where n is the number of

securities in the investment universe. Then, for a layer l such that l > 0 the recursive

output formula is:

rlt = g
(︂
bl−1 + W l−1rl−1

t

)︂
(1.1)

where W l−1 is a K l ×K l−1 matrix of weight parameters, and bl−1 is a K l × 1 vector of

the so-called bias parameters. These are tipically called dense layers.

Usually, the neural network defined needs three conditions to be an Autoencoder.

First, for a certain intermediate layer l∗, such that 0 < l∗ < L, K l∗ << n. This condition

means that the number of neurons of an intermediate layer needs to be a lot smaller then

the number of initial input data, which in our case are the returns of the n assets.

Second, KL = n, the number of neurons in the final layer has to be equal to the number

of columns in initial input data.

Last, the neurons in the final layer try to aproximate the initial input data, that is that

the Autoencoder is looking for that set of parameters W,b such to find:

min
T∑︂
t=1

d(rLt , r
0
t ) (1.2)

where d is a generic distance measure.

An Autoencoder looks for a K l∗ dimensional representation of the n dimensions given

by the number of assets in the investment universe. The connection with the Principal

Component Analysis is clear: both are dimensionality reduction techniques, the PCA is

linear, and the Autoencoder is potentially non-linear due to the g(•) activation functions

[14].
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In fact, it can be easily proven that an Autoencoder model with a single hidden layer and

a linear activation function corresponds to the PCA method [57]. So that, by extension,

there is a clear connection among Autoencoders and latent factors for asset pricing models.

In our model, we have proposed a slightly modified version of a classic Autoencoder,

including additional starting features to the logarithmic returns. The dataset is given

then by a three-dimensional array (or tensor) R, of size T × n ×M , where T represents

the number of observations, i.e. the time period under consideration, n the number of

securities of the investment horizon and M the features considered for each security.

For a fixed time t and a given security i, let Ri
t to be the M × 1 vector of features

observations fo the i asset at times t. Then a linear combinations is applied to the features:

r0,it = w′
cR

i
t (1.3)

where wc has dimensions M × 1. Note that the weights of this linear combination are the

same for all the n assets in the investment universe. In practice, this is achieved with a

1×1 convolutional layer [73], which extract a unique feature from the M original features,

by applying the same combination for all the n stocks.

At this point, from r0t = (r0,1t , ..., r0,nt )′, the traditional Autoencoder part as previously

described starts. Thus the modified version of Autoencoder consists of a first convolutional

layer of size 1 × 1 and the rest of the standard structure, and then the parameters to be

estimated are W and b from the proper Autoencoder part plus the M parameters wc.

In particular, after a convolutional layer on top of which a ReLu activation function [1]

is applied - that is g(x) = max(0, x) - we have a single hidden layer with K neurons and

linear activation function. The final layer has a linear activation function, and n neurons

as the number of the securities in the investment universe.

Now, let the m-th among the M features to be that one corresponding to logarithmic

returns, so that Rm
t is the 1 × n vector which collects the n logarithmic returns at time

t, then the loss function to be minimized is given by the Mean Square Error between the

logarithmic returns and the final layer r2:

min
T∑︂
t=1

(︁
Rm

t − r2t
)︁2

(1.4)

which is equivalent to minimize the Frobenius norm of the difference among the T × n

matrix of returns and the matrix provided by the final layer. The parameters are updated

through Backpropagation [102], and the chosen optimization routine is Adam [69].
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Figure 1.1: Modified Autoencoder Structure

Then, to summarize, the input data is R with dimension T ×n×M . First, a convolutional

1 × 1 layer with ReLu activation function is applied to obtain r0, with dimension T × n.

Next, a dense layer with linear activation function compress the previous layer output

into r1 which has T × k dimension. Finally, another dense layer with linear activation is

applied, and r3 with dimensions T × n is obtained. The objective function is the mean

square error among the final layer r2 and the Rm
t which collects the logarithmic returns

for the T observations, across the n assets.

The neural network therefore linearly combines all the features for each security in the

universe of assets, looking for a unique representation for all stocks. At this point, the

ReLu function takes into account any non-linear relationships between the representations

of the individual securities, and from these composes K latent factors. Starting from these,

the model tries to reconstruct the series of returns of all n stocks.

The factors are then produced endogenously, starting from the non-linear representations

of the combination of features for each security. They are therefore implicitly induced by

the universe of assets considered.

The K latent factors must therefore reconstruct n series of logarithmic returns. For this

reason the neural network has to choose the K factors such to serve for as many stocks

as possible. In other words, each of the factors must be the basis from which reproducing

on average more than [n/K] series of returns.

The intuition is therefore that the logarithmic returns of those securities reproduced less

accurately (with greater Mean Square Error) by the neural network share less exposure to

implicit factors extracted from the investment universe, and are therefore less correlated.

The lower correlation is both with respect to the other securities that make up the initial

basket and within the group of securities with the greatest Mean Square Error. In fact,

if these, taken in a sufficiently large number, had been correlated with each other, the

Autoencoder would have been interested in producing factors capable of reconstructing

them more accurately.

This duality allows to get at the same time a basket of asset which permits to achieve

true diversification - through the fact that the securities are poorly correlated with each
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other - and at the same time poorly correlated with the market as a whole, encapsulating

in this way a low beta strategy.

1.2.1 Generalized Correlations

Let preserve our previous definitions, so that R is the tensor which collects T observations

for each of the M features across the n securities, and r2t represents the cross-sectional

logarithmic series, that is one of the M matrices feature-stacked to produce the tensor,

so that r2,jt is the same but for the particular security j. Define f(R) as a market model

which tries to approximate r2, i.e. the logarithmic returns of n stocks during the same

homogeneous T period. Last, let Ri to be the i matrix of observations and features for the

i-th asset and R\Ri is the T ×(n−1)×M matrix which collects features and observations

for all the securities except the i-th.

Then the following concepts are defined.

Definition 1.2.1 (ϵ(θ)-generalized pairwise correlation). Let ϵ(θ) to be a piece-wise con-

tinuous positive defined function of a generic set of parameters θ, then the asset i is

ϵ(θ)-generalized pairwise correlated to asset j if:⃓⃓
r2,j − fj(R \Ri)

⃓⃓
−
⃓⃓
r2,j − fj(R)

⃓⃓
> ϵ(θ)

where || represents here a generic distance measure or loss function.

Definition 1.2.2 (δ(ξ)-generalized correlation). Let δ(ξ) to be a piece-wise continuous

positive defined function of a generic set of parameters ξ, then the asset j is δ(ξ)-generalized

market correlated if: ⃓⃓
r2,j − fj(R)

⃓⃓
< δ(ξ)

where again || represents a generic distance measure or loss function.

Notice that the properties of the definitions here provided are depending on the market

model which is chosen by the researcher. Pairwise correlation for example, does not need

to be symmetric.

At the same time, θ and ξ may collect parameters or hyperparameters of the market model

itself. In our case for example, fix θ = ξ = nM
sKl∗ , where s is the number of securities to

be included in our investment. Suppose for simplicity ϵ and δ are both C1 functions, then

the following properties are desirable:⎧⎨⎩
dϵ(θ)
dθ ≤ 0

dδ(ξ)
dξ ≥ 0

In our case, all the choices in this sense are implicitely dictated by the choice of s, such

that s >>> n
Kl∗ , taking n, M , and K l∗ as given; at the same time, keep s sufficiently

small to avoid market correlations arising. After a certain treshold for s, then both market

and pairwise generalized correlations arise, until the maximum for both the correlations,

which is recorded for the naive case s = n.
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1.2.2 Connors RSI

In order to generate the features for each asset we chose to use the Connors Relative

Strength Index - from now CRSI - is used. CRSI is a momentum oscillator which gener-

alizes the well known Relative Strength Index - from now RSI.

Consider a series rt, with t ∈ [0, T ], then the CRSI is the average of three distinct compo-

nents which capture different momentum concepts with different memory lengths:

C(rt; p, q, k) =
1

3
R(rt, p) +

1

3
S(rt, q) +

1

3
P (rt, k) (1.5)

with R,S, P : R → [0, 1] ⊂ R, where p, q, k ∈ N+ are the time related parameters which

define the memory length for each component.

The R component represent the classic RSI with exponentially weighted moving average.

In particular, let r+t and r−t to be defined as:

r+t = max{rt, 0}, r−t = |min{rt, 0}| (1.6)

and ρ+t and ρ−t as:

ρ+t = αr+t + (1 − α)ρ+t (1.7)

ρ−t = αr−t + (1 − α)ρ−t (1.8)

with α = 2
p+1 , then:

R(rt, p) =
ρ+t

ρ+t + ρ−t
(1.9)

Let define the following indicators:

I+t =

⎧⎨⎩1 with rt ≥ 0

0 otherwise
I−t =

⎧⎨⎩−1 with rt < 0

0 otherwise
(1.10)

The indicator I+t is a vector of length T which at any time t highlights if the value rt is

non negative, while I−t is a signal for a negative value of rt. Then:

τ+t+1 = I+t+1(I
+
t+1 + τ+t ), τ−t+1 = |I−t+1|(I

−
t+1 + τ−t ) (1.11)

and finally:

S(rt, q) = R(τ+t + τ−t , q) (1.12)

so that S measures how much positive values consecutive days have been recorded from

the last negative value, updating the count each day.

P (rt, k) is the percentile score value of rt with respect to the values {rt−i}ki=0.

CRSI measures the series momentum from different perspectives. The first one is the

classic RSI, which informs if on average the positive values are dominating or not the

negative ones. The second component measures the dominance of the positive days on a

streak against the negative ones. While the first component is influenced by the magnitude

of the values, this second one captures how long the positive periods have last with respect

to the negative ones. The last term completely changes the perspective, by measuring the

how muche extreme the value is compared to the last k periods.
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1.2.3 Asset allocation models.

Markowitz Model.

Let S ⊂ RT×n to be the matrix which collects for T periods the price of n assets, with

T > n. Let X ⊂ R(t−1)×n to be the log-returns matrix, i.e. Xi,j = logSi+1,j − logSi,j ,

per i = 1, ..., t e j = 1, ..., n, with T − 1 ≡ T > n, then we define the vector of expected

returns r ⊂ Rn×1 as rj,1 = 1
t

∑︁t
i=1Xi,j , with j = 1, ..., n. Then we define the Covariance

Matrix as Ω = X∗′X∗ with X∗ equal to X demeaned, where ′ represents the transpose,

and suppose Ω is invertible.

Finally, the return required by the investor from its portfolio w is Rp and the risk associated

with it is σ2
p, and they are defined as follows:

Rp = w′r

σ2
p = w′Ω|w

In particular, Markowitz’s idea was to build a model that minimizes portfolio risk for a

given return or, conversely, maximizes the portfolio’s expected return for a given level of

risk. It is therefore a constrained optimization problem that can be formulated in two

specular ways:

Min σ2
p Max Rp

s.t s.t

w′1 = 1 w′1 = 1

w′r = Rp w′Ωw = σ2
p

We choose the first approach, which is the most used in practice. [34].

To find the variance that minimizes the risk of the portfolio, the above constrained opti-

mization problem can be solved by exploiting the Lagrange multiplier method, for which:

L = w′Ωw − λ1(w
′r−Rp) − λ2(w

′1− 1)

∂L

∂w
= 2Ωw − λ1r− λ21 = 0 (1.13)

∂L

∂λ1
= Rp − r′w = 0 (1.14)

∂L

∂λ2
= 1 −w′1 = 0 (1.15)

From the equation (1.13):

w =
1

2
Ω−1(λ1r + λ21) =

1

2
Ω−1

[︂
r 1

]︂ [︄λ1

λ2

]︄
(1.16)
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In the equation (1.16) we reported the term (λ1r+λ21) in matricial terms in order to get[︄
λ1

λ2

]︄
from (1.14) and (1.15). In this way (1.14) and (1.15) can be rewritten as:

[︂
r 1

]︂′
w =

[︄
Rp

1

]︄
(1.17)

For sake of simplicity we define:

A ≡
[︂
r 1

]︂′
Ω−1

[︂
r 1

]︂
(1.18)

the symmetric matrix 2 × 2 constitued by:[︄
a b

b c

]︄
=

[︄
r′Ω−1r r′Ω−11

r′Ω−11 1′Ω−11

]︄
(1.19)

Given that A is positive definite for each y1, y2 because of:[︂
y1 y2

]︂
A =

[︂
y1 y2

]︂ [︂
r 1

]︂′
Ω−1

[︂
r 1

]︂ [︄y1
y2

]︄
=

[︂
y1r + y21

]︂′
Ω−1

[︂
y1r + y21

]︂
> 0

we can write
1

2
A

[︄
λ1

λ2

]︄
=

[︄
Rp

1

]︄
Given that A is invertible, we can obtain the Lagrange multipliers:

1

2

[︄
λ1

λ2

]︄
= A−1

[︄
Rp

1

]︄
(1.20)

Thus the portfolio w which minimizes the portfolio risk for the given return is obtained

as:

w =
1

2
Ω−1

[︂
r 1

]︂ [︄λ1

λ2

]︄

= Ω−1
[︂
r 1

]︂
A−1

[︄
Rp

1

]︄

Then, by substituting the required return Rp, we can compute the minimal risk σ2
p of the

portfolio:

σ2
p = w′Ωw

=
[︂
Rp 1

]︂
A−1

[︂
r 1

]︂′
Ω−1ΩΩ−1

[︂
r 1

]︂
A−1

[︄
Rp

1

]︄

=
[︂
Rp 1

]︂
A−1

[︄
Rp

1

]︄
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Minimum Variance

The Minimum Variance portfolio is a first and natural restriction to the Markowitz model

which does not ask you to choose a required return from the portfolio and does not employ

the expected returns of the assets involved. From the point of view of optimization, the

idea is to reformulate the problem by emancipating it from the constraint linked to returns,

namely:

Min σ2
p such that ⟨w,1⟩ = 1 (1.21)

where σ2
p = w′|Ωw. The idea therefore is to simply find the Minimum Variance portfolio

without binding it to the behavior of the stock returns. The rationale behind such a

proposal is linked to various empirical analyzes that have shown that portfolios with low

variance tend to have more satisfactory long-term returns. From a formulistic point of

view, this paradigm shift can be trivially implemented in the formula by making the

following reasoning: to force the optimization to focus solely on the variance minimization

problem, it is sufficient to assume that the expected returns of the individual assets are

identical, so that the yield does not become a distinction, which is equivalent to writing:

r = 1

and:

Rp = 1,

from which we can immediately infer the resulting formula:

w = Ω−1
[︂
1 1

]︂
A−1

[︄
1

1

]︄

with the A suitably modified by making the aforementioned replacements in terms of the

vector of the expected returns and the required return.

Maximum Sharpe

The so-called Efficient Frontier of portfolios is made up of all those portfolios for which,

given a certain return, the minimum possible variance is associated with it and, conversely,

given a certain variance, the highest achievable return is coupled to it. The Efficient Fron-

tier is therefore defined by all those portfolios that solve the two optimization problems

posed by the Markowitz model, and assumes the formula of a parabola with axis of sym-

metry parallel to the abscissa axis, where this hosts the variances while the corresponding

ordinate axis records returns. However, it is worth asking whether, among this plethora

of efficient portfolios, there is one better than others. A natural answer may be to iden-

tify the portfolio with the best associated risk-reward ratio. The problem set up up to

now therefore changes form: the lowest possible variance is no longer sought, keeping the
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required yield fixed, for example, but a fruitful equilibrium is sought between the two

measures. This ratio is called the Sharpe Ratio, and therefore has the form:

SR =
w′r√
w′Σw

=
Rp

σp
. (1.22)

in the case in which the risk-free rate is set to be 0, as it will be considered in the present

work. In order to find the portfolio w wihch maximizes the Sharpe Ratio
Rp

σp
we have to

solve the following optimization problem:

argmaxw
w′r√
w′Ωw

(1.23)

with wT1 = 1. This is equivalent to minimizing the Lagrangian:

L = − w′r√
w′Ωw

− λ(w′1− 1) (1.24)

And by exploiting the power operations properties we can rewrite the Lagrangian in a

more useful way:

L = − w′r

(w′Ωw1/2)
− λ(w′1− 1) (1.25)

Then, the first order conditions are given by:⎧⎨⎩
∂L
∂w =

−r(w′Ωw)1/2+w′r 1
2
(w′Ωw)−1/2

(w′Ωw1/2)2
− λ1 = 0

∂L
∂λ = w′1− 1 = 0

(1.26)

The first of the two conditions can be rewritten by using the power properties:

∂L

∂w
=

−r(w′Ωw)1/2 + w′r1
2(w′Ωw)−1/2Ωw

w′Ωw
− λ1 =

= −r(w′Ωw)
1/2−1

+ w′r
1

2
(w′Ωw)−1/2−1Ωw − λ1 =

= −r(w′Ωw)
−1/2

+ w′r
1

2
(w′Ωw)−3/2Ωw − λ1 =

= − r

(w′Ωw)1/2
+

w′r
1
2(w′Ωw)3/2

Ωw − λ1

so that we have:

∂L

∂w
= − r

(w′Ωw)1/2
+

w′r

(w′Ωw)3/2
Ωw − λ1 = 0 (1.27)

where 1
2 vanished because the equivalence is invariant to it. Now, if we multiply from the

left by w′ we are able to obtain the value of λ:

− w′r

(w′Ωw)1/2
+

w′r

(w′Ωw)3/2
w′Ωw − λ1 = 0

λ1 = 0
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so that λ = 0 necessarily, and then by pluggin in the valute of λ the first condition becomes:

∂L

∂w
= − r

(w′Ωw)1/2
+

w′r

(w′Ωw)3/2
Ωw = 0 (1.28)

If we now premultiply it by Ω−1 we obtain the following equation:

− Ω−1r

(w′Ωw)1/2
+

w′r

(w′Ωw)3/2
Ω−1Ωw = 0

− Ω−1r

(w′Ωw)1/2
+

w′r

(w′Ωw)3/2
Iw = 0

− Ω−1r

(w′Ωw)1/2
+

w′r

(w′Ωw)3/2
w = 0

Now we express the solution w in its most natural implicit form, by rearranging the terms

and multiplying both sides by w′Ωw3/2

w′r :

w′r

(w′Ωw)3/2
w =

Ω−1r

(w′Ωw)1/2

w′Ωw3/2

w′r

w′r

(w′Ωw)3/2
w =

w′Ωw3/2

w′r

Ω−1r

(w′Ωw)1/2

from which we have:

w =
w′Ωw

w′r
Ω−1r =

(︃
w′r

w′Ωw

)︃−1

Ω−1r (1.29)

Now we multiply from left by 1′, so that we obtain:

1′w =

(︃
w′r

w′Ωw

)︃−1

1′Ω−1r

But now we can exploit the condition: 1w = 1, so that we get:

1 =

(︃
w′r

w′Ωw

)︃−1

1′Ω−1r (1.30)

Now we are almost done. The only thing left to do is to express the solution which was

in the implicit form by making use of this last equation:

w = 1
Ω−1r

1′Ωr
(1.31)

Which can be immediately verified by substituting the correspondent expression for 1

and check that we can go back to the solution in the implicit form. The portfolio thus

obtained has the advantage of freeing the investitor from the embarrassment of having to

set a certain level of return required as a side effect of a more complete and rational choice

criterion, on the other hand, however, differently from other models that will be addressed

here, it depends on somehow even more strongly by a sensible estimate of expected returns.

For this reason, Sharpe’s portfolio usually suffers as much and more than Markowitz from

a further shadow problem: the portfolio weights obtained are decidedly extreme and a

rational investor could hardly rely on them. For this reason, in the empirical application

we will restrict the model to positive weights only.
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Equally Weighted

The Equally Weighted portfolio, also called naive portfolio, is obtained by choosing w such

that wi = 1
n for each i = 1, ..., n. Surprising as it may be, such a portfolio proved to be a

difficult benchmark to beat for far more sophisticated and complex models, as well as some

of those presented here [39]. The reasons for this success, however, on closer inspection

are less obscure and more intuitive than it may seem. In fact, such a model totally

renounces any sophistication in the face of the factual problems of correctly estimating

expected returns and covariances. In a certain sense, in its brutality and rigidity, it has

the advantage of not offering the side in any way to errors of estimation and at the same

time offering - at least potentially - a certain diversification.

A further reason to include this model in this analysis, is that it is particularly useful to

assess a Stock Picking strategy, being free from estimation troubles.

Risk Parity

Portfolios at Equal Risk [101] can be read as a generalization of the Equally Weighted

portfolio, the purpose of which is no longer to allocate the same capital among the n

securities on which it is chosen to invest but instead of equally distributing the risk among

the securities available. And it is precisely this interpretation that provides the correct

formalization of the problem. In fact, let pi be defined as follows:

pi =
w2
i σ

2
i +

∑︁n
j,i̸=j wiwjσij

σp

where σ2
i is the variance of the i-th asset, σij is the i-th row and j-th column of Ω - that

is, the covariance among the i-th and j-th asset - and σ2
p the portfolio variance. It is

therefore evident that pi is the relative risk contribution brought by the i-th security to

the total portfolio risk. The Risk Parity portfolio is then obtained as that vector w such

for which it holds:

pi =
1

n

for each i = 1, ..., n. The Risk Parity portfolio therefore focuses exclusively on the risk

component and its balanced distribution, being moreover intrinsically constructed to re-

strict the possibilities of short selling.

Maximum Diversification Portfolio.

The Maximum Diversification portfolio [33] reinvents the allocation paradigm proposed

by Markowitz, explicitly disregarding the role - and therefore the estimate - of expected

returns. The immediate effect of such an approach is in the balancing of the weights

obtained. In fact, the Markowitz portfolio tends not only to result in extreme weights,

but often to allocate the largest part of the capital in a few stocks compared to those

available, deliberating for other decidedly negligible allocations, and effectively reducing
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the real diversification obtained. On the other hand, the MD portfolio ensures that all the

securities available rationally receive a non-negligible portion of the investor’s resources,

and in the reference paper it also consists of a constraint on short selling that will be

investigated more generally in the empirical section. In general, however, the w portfolio

of maximum diversification is the one obtained by maximizing the so-called diversification

ratio:

D =
w′σ√
w′Ωw

(1.32)

where σ collects the standard deviations of the n assets in portfolio.

Probabilistic Sharpe Ratio

Sharpe ratio Efficient Frontier permits the selection of optimal portfolios under non-

Gaussian and leveraged returns. The portfolio optimization differs from other higher-

moment methods because skewness and kurtosis are incorporated through the standard

deviation of the Sharpe ratio estimator. This avoids making arbitrary assumptions about

the relative weightings that higher moments have in the utility function.

SEF can be explained as that set of portfolios that maximizes the expected Sharpe Ratio

for different confidence levels. The maximum Sharpe ratio portfolio lies in the SEF, but

it may differ from the portfolio that maximizes the PSR. PSR is valid under stationary

and ergodic returns [85] and [92].

So, in PSR asset allocation model, the Sharpe Ratio is treated as an estimator and then

it is a random variable. The distribution of the Sharpe Ratio estimator ˆ︂SR(w,X) which

depends on the weights w and on the matrix of returns X is Gaussian even if the returns

X are far from Gaussianity, and the ˆ︂SR variance depends on the returns skewness and

kurtosis. So, what we are looking for is in fact:

w∗ = argmaxw
ˆ︂SR(w,X)

√
n− 1√︂

1 − γ3(w,X) ˆ︂SR(w,X) + γ4(w,X)−1
4

ˆ︂SR(w,X)
(1.33)

where γ3(w,X) and γ4(w,X) are respectively the skewness and the kurtosis of the portfolio

w on stocks with returns X.

For a detailed treatment of this model, see [10], and for a derivation of the Sharpe Ratio

estimator distribution see [78].

The optimization has to be numerical, and gradient descent based-algorithms are suitable

for the task.

Hierarchical Risk Parity

The condition number of a covariance (or correlation matrix) is lowest for a diagonal cor-

relation matrix, which is its own inverse. As add correlated investments are added, the

condition number grows. At some point, the condition number is so high that numerical

errors make the inverse matrix too unstable, that is a small change on any entry will lead to
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a very different inverse. This is another curse for portfolio models: the more correlated the

investments, the greater the need for diversification, and yet the more likely the solutions

will be unstable. The estimation erros totally dominate the benefits of diversification.

As already said by mentioning the curse of dimensionality, an increase the number of

assets will only jeopardize the problem, as each covariance coefficient is estimated with

fewer degrees of freedom.

Furthermore, correlation structures do not remain invariant over such long periods. A

clear clue in this direction is given by the overperformance of the Equally Weighted port-

folios with respect to th mean-variance models and risk-based optimization out-of-sample.

These instability concerns have received substantial attention in recent years as the several

proposed filtering techniques for covariance matrix testify.

One reason for the instability of quadratic optimizers is that the vector space is modelled

as a complete (fully connected) graph, where every node is a potential candidate to sub-

stitute another. In algorithmic terms, inverting the matrix means evaluating the partial

correlations across the complete graph. Small estimation errors are magnified, leading

to incorrect solutions. Intuitively it would be desirable to drop unnecessary edges, given

that some investments seem closer substitutes of one another, and other investments seem

complementary to one another.

And yet, to a correlation matrix, all investments are potential substitutes to each other.

In other words, correlation matrices lack the notion of hierarchy.

Let X to be the T × n matrix which collects the returns for T periods of n assets, and

let ρ to be its correlation matrix whith entries ρij with i, j ∈ {1, ..., n}. Then we define a

proper distance measure - for a proof that this is a proper distance measure see [38] -

d(Xi, Xj) =

√︃
1

2
(1 − ρij) (1.34)

with d that have values in [0, 1] by construction. In this way we can construct D, a N ×N

symmetric matrix which collects the correlation-based distances among the assets, which

entries are of course dij .

Now we need an Euclidean distance dd, which is applied this time to the columns of D,

and that has to be interpreted as a distance of distances:

dd(Di, Dj) =

⌜⃓⃓⎷ n∑︂
k=1

(dki − dkj)2 (1.35)

and that by construction take values in [0,
√
n]. Now, we know that each row and column

of the dymmetric matrix Dd which entries are dd(i,j), represents the Euclidean distance

between the column vectors define by the correlation-based distances for the securities i

and j, so that dd(ij) measures the difference between the correlation-based distance that

the asset i has with respect to all the other securities and the correlation-based distance

that the asset j has with all the other securities.
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From matrix D, we will form the clusters that will arise in a hierarchical structure, through

recursive bisection, so that each cluster can be constitued only by two elements: two

securities, one security and one cluster, two clusters.

We start by identifying the first cluster, which will be given by:

(i∗, j∗) = argminij,i̸=j(Dd(i,j)) (1.36)

so that (i∗, j∗) ∈ C(1) where C(1) is the first cluster we identified.

In the next step we need to find out the second cluster. This one can be given by two

other securities, of by one of the residual securities (so, nor i∗ or j∗) and the first cluster

C(1).

In order to do this, we have to update the matrix Dd, so that it includes not only the

distances between the assets but also the distances between the assets and the new cluster,

which have now to be thought as a new asset. This means that we have to choose a criteria

which provides a reference for the cluster from which a distance can be inferred. There

are several ways to do this, and we choose the so called nearest point algorithm, so that

as reference for the distances among a given security and the first cluster, we take the

distance among the security and each of the two assets in the cluster and then we choose

the minimum value:

mi,C(1) = min(dd(i,j)j∈C(1)
) (1.37)

so that i is the given security, and j iterate over the two assets which are in the first

cluster.

Now that we have a vector with a number of rows equal to the securities for which we

computed the distance from the first cluster, we add this column vector as last column of

Dd and its transpose as last row, and then we add a 0 along the diagonal which represents

the distance among the cluster and itself.

At this point we eliminate from Dd the i∗ and j∗ rows and columns, because we don’t

need anymore those securities, given that they are already in C(1).

At this point our Dd has been updated: it presents a new pseudo asset given by the first

cluster which has encapsulated i∗ and j∗ which are no more available now, so that we can

we can start again checking for the closest assets in Dd and repeat the procedure until

each security belongs to a cluster.

At this point everything is set in order to obtain the portfolio weights. We start from the

first cluster which collects two securities and compute some initial weights w̄ by selecting

the weights as the inverse variance of each assets (normalized to sum to 1). Please note

that this choice is equivalent to a Risk Parity subportfolio. This equivalence is clearly

given by the fact that we only have to assets. Then we compute the total variance of the

cluster, which is of course: σ2
C1 = w̄′ΩC1w̄.

Now we proceed in the same way for the remaining securities. If the next cluster is among

two other stocks, we repeat this procedure. If otherwise its among a stock and the first
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cluster, the variance from which to computer the weight is given by the total variance of

the cluster which we just defined. In this case this is equivalent to choose the Minimum

Variance portfolio.

1.2.4 Covariance estimation

We have already discussed the problems of historical estimation of the covariance matrix

and its inversion in asset allocation problems, detailing them in particular in 1.1 and 1.2.3.

In short, given a number of assets, the estimate of the covariance matrix needs a sufficiently

large number of observations so that the estimate is not distorted by the noise in the series.

However, as the length of the observations increases, the data used sink too far into the

past and the asset allocation models end up based on estimates that do not reflect the

current situation.

For each of these problems, several notable solutions have been proposed in the literature.

Here we will briefly explore two of them. The Exponentially Weighted Covariance Matrix

which tries to limit the impact of older observations on the estimation and a filtering

technique based on the Random Matrix Theory, which tries to reduce the impact of noise

on short series. However, it is possible to effectively merge these two techniques, to

obtain an estimation method that tries to tackle both problems jointly [93]. Since the

model proposed in this paper offers a technique for stock selection so as to reduce the

number of assets in the portfolio starting from a certain universe and thus contain the

problem of estimating covariances while preserving the effectiveness of the portfolio, we

have considered it appropriate to test it against alternative covariance estimation models,

to verify if the model was still able to improve performance. We introduce very shortly

these methods in the next two sections.

Exponentially weighted covariance matrix

While the sample covariance matrix attributes uniform weights to the co-deviations from

the mean during the computations, the Exponentially weighted covariance matrix gives

more weight to the last observations, and then the weight exponentially decreases with

observations getting older.

In this way, more importance is attributed to more recent observations, but the true length

of data is shortened, then making the estimation more prone to noise [93].

Covariance matrix with Random Matrix Theory based filtering

Let T to be the number of observations for n i.i.d. random variables, e.g. the T daily

log returns for the n contituents of a portfolio. Then let Q = T/n, taking a particular

limit for T, n → ∞ such that 1 < Q < ∞, the eigenvalues of the correlation matrix are

distributed according to the Marcenko-Pastur distribution [81], [121] as well as bounded
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between a minimum and maximum eigenvalue:

λ± =

(︃
1 ±

√︃
1

Q

)︃2

where λ− and λ+ are respectively the minimum and maximum theoretical eigenvalues.

In financial applications, the eigenvalues distribution has been widely used to deal with

some of the well-known covariance matrix related issues in asset allocation models and the

maximum theoretical eigenvalue has been used as treshold to clean covariance matrices

through various recipes [72, 71, 29, 96]. The main idea is to filter those eigenvalues which

are in the range among λ− and λ+, because they carry only noise, given that they are

basically the same obtained with randomly i.i.d. generated process.

In practice, also the eigenvalues which are lower than the minimum eigenvalue are filtered

out. This happens because usually there is not a clear separation among the last eigen-

values in the range and those smaller than λ−.

The filtering techniques are various. We will use in particular the approach proposed in

[96], for which all the eigenvalues lower than λ+ are set to be 0.

1.3 Empirical analyzes

In this section several empirical analyzes and backtests are proposed to verify the model

effectivness and if its underlying intuition is confirmed by data. Most of these validation

processes are performed across different datasets, asset allocation models - those presented

in ?? -, covariance estimation methods - introduced in 1.2.4 - and two different experi-

ments setups.

Crossing different estimation techniques of the covariance matrix with asset allocation

models helps to prove that the benefits of the stock-picking are novel and distinguished

from those provided by portfolio selection and covariance estimation. For the maximum

Sharpe Ratio model and the Maximum Diversification, only the case where short sales

were restricted were included, because the free of constraints cases produced totally ir-

realistic weights and equity lines. Furthermore, for any case on which was required the

risk-free rate, it has been considered as 0.

On the first setup the stock-picking is based on the MSE obtained by the securities on the

train set, while on the second one the stock-picking is done with regard to MSE recorded

on the validation set.

For each of these choices, two different kinds of backtests are presented.

In the first one, the portfolio models built on the basket of 40 securities obtained via

autoencoder are tested against the portfolios obtained with the remaining securities. The

first ones will be called portfolio 40, while those constructed on the residual assets will be

called portfolio n, where n is the number of remaining assets, varying across the datasets

employed.
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The second analysis compares the portfolios obtained on the basket of 40 securities against

other ones with the same number of assets. The ideal setting for this experiment would

have been to compare portfolios 40 against all the possible combinations with the same

number of stocks.

For the resources at our disposal, such an analysis would have been in fact not feasible

because of the huge number of combinations. It was therefore decided to sort the resid-

ual assets in descending order based on Mean Square Error produced by the autoencoder

model. Then the portfolios have been generated through 40 securities windows scrolled in

steps of 1, so that the portfolios obtained gradually changed from those built on securities

with highest MSE - excluding of course the 40 highest ones, selected through the autoen-

coder approach - up to those with smaller MSE values.

For this second analysis the employed asset allocation models have been restricted only to

those which have a closed form solution, with the only exception of the maximum Sharpe

ratio portfolio. This choice was again dictated by computational resources scarcity.

In order to measure the portfolios performances the following indicators have been used.

The first four statistical moments of returns distribution, maximum and average draw-

down, Value at Risk, conditional Value at Risk - both computed with historical method

and for a 95% confidence interval -, Sharpe Ratio, Probabilistic Sharpe Ratio, Information

Ratio, Sortino Ratio and Calmar Ratio.

In tables 1.1 and 1.2 the acronims used henceforth for asset allocation models and perfor-

mance indicators are reported.
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Abbreviation Indicator

maxD Maximum Drawdown

meanD Average Drawdown

VaR Value at Risk

cVaR Conditional Value at Risk

mean Mean Return

std Standard Deviation

skew Skewness

kurt Kurtosis

SR Sharpe Ratio

PSR Probabilistic Sharpe Ratio (Treshold: 1)

SoR Sortino Ratio

CR Calmar Ratio

Table 1.1: Abbreviations for performance indicators.

Abbreviation Portfolio

MAR Markowitz

SR Maximum Sharpe Ratio

MV Minimum Variance

RP Risk Parity

MD Maximum Diversification

EW Equally Weighted

PSR Probabilistic Sharpe Ratio

HRP Hierarchical Risk Parity

Table 1.2: Abbrevations for asset allocation models.

For the portfolio models, the suffix ”NS” stands for ”short sales are not allowed during

the optimization” while a capital a into parenthesis - (A) - indicates that the portfolio

have been constructed on the 40 securities selected through the Autoencoder approach. .

A negative value convention is used for the Drawdowns, Value at Risk and Conditional

Value at Risk (both computed with the historical method and at 95% level); the mean

return is multiplied by 100; the Probabilistic Sharpe Ratio has a treshold value equal to

1 if not differently specified.

Three other performance indicators were developed. Through the trend filtering algo-

rithm based on Lasso penalty proposed in [90], the test sample has been labeled into bull

market periods and bear market ones. Then the transition probabilities for the four pos-

sible combinations have been computed. On this basis the following indicators have been
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constructed:

• BullToBull/BearToBear: this indicator is the ratio between the transition prob-

ability from a bull market day to another and the transition from a bear market day

to another. Basically it compares the positive persistence of the equity lines with

the negative one.

• BearToBull/BullToBear: this indicator is the ratio between the transition prob-

ability from a bear market day to a bull one and the transition from a bull market

day to a bear one. Basically it compares the positive recovery of the equity lines

with the instability of positive performances.

• Bull period: this indicator is the percentage of bull market days along the entire

equity line.

Some last worlds on the methodology applied on the empirical analyzes and backtests.

Everything was built and performed first shoot and there was no fine-tuning. The Au-

toencoder was immediately constructed with its final form. The Validation and Test set

have not been explored in any way or form prior to their actual use. The same Train

dataset was not analyzed but immediately used in order to obtain the parameters of the

autoencoding neural network. The analysis proposed in 1.4.4 was carried out only at the

end of all the backtests that precede it in the discussion.

These measures were adopted in order to reduce the probability of a backtest overfitting.

Any potential bias present in the used datasets of which the author is aware has been

reported in the appropriate section.

Every difference among the setups presented here and those employed in the backtests

and experiments for each datasets will be disclosed in the proper sections.

Transaction costs, fees and taxation have not been considered. Given that the strategies

presented require to buy assets only ones, transactions and fees can be negligible. Taxa-

tion problems are no beyond the scope of the present work. Furthermore, given that any

issue related to taxation or other costs affect both the compared portfolios, they cancel

out.

1.3.1 Features engineering

Let Ot, At, Ht, Lt to be respectively the open, adjusted close, high, low price and Vt the

volume at day t for each asset, all of them strictly positive. We define furtherly Et, which

is the exponentially weighted moving average of the adjust closing price - henceforth we

will use close and adjusted close interchangeably - with a parameter α:

Et = αAt + (1 − α)Et−1
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with α = 2
m+1 where m ≡ 10 in our case.

Then we define the following returns:

rt = ln(At) − ln(At−1)

rOt = ln(Ot) − ln(Ot−1)

rHt = ln(Ht) − ln(Ht−1)

rLt = ln(Lt) − ln(Lt−1)

rVt = ln(Vt) − ln(Vt−1)

rHL
t = ln(Ht) − ln(Lt−1)

rAE
t = ln(At) − ln(Et−1)

Then we computed the following Connors RSI:

C(rt; p, q, k), C(rOt ; p, q, k), C(rLt ; p, q, k),

C(rHt ; p, q, k), C(rVt ; p, q, k),

with P ≡ 5, Q ≡ 7, k ≡ 90. Then the final features are all the returns previously computed

except for rHL
t and all the Connors RSI oscillators plus P (rHL

t , k), for a total of 12 features

obtained endogenously from the initial dataset.

The idea behind the choice of these features is to inform the algorithm for each time t in

which phase or cycle the security is, and how much it is supported by the volume trend.

All the provided features are stationary.

1.4 SP500: 25-04-2007 to 24-09-2021

The main dataset collects the daily series of open, close, high, low and adjusted close

prices, as well as the volumes of the 375 stocks of the SP500 that have been listed in the

index continuously over the period ranging from 25-04-2007 to 24-09-2021. Note that the

need to select these particular stocks includes a survival bias in the analysis, but in light

of the available data providers the choice was unavoidable.

The time period has been chosen so to include both extremely strong crisis periods and

very intense rally periods in the train, validation and test datasets, in order to make the

analysis robust across different market conditions.

The train dataset ranges from 25-04-2007 to 26-05-2017, then collecting 2541 observations

(70% of total), and it has been used to train the autoencoder neural network.

The validation set ranges from 30-05-2017 to 29-07-2019, then collecting 544 observations

(15% of total), and it has been used to assess the autoencoder hyperparameters and to

correctly stop its optimization, as well as to estimate the parameters for the portfolio

models and covariance estimation techniques employed in this analysis.
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The observations from 30-07-2019 to the last day are collected in the test dataset, for a

total of 546 observations, used to perform the backtests.

1.4.1 Stock-picking on train set

This analysis compares the portfolios obtained on the 40 stocks with highest MSE recorded

on the train set to those build on the remaining 335 stocks of the original universe.

The performance description is organized into sections based on the three methods for

covariance matrix estimation.

In each section, first of all, an overview of the performances of portfolio 40 against portfo-

lio 335 is presented, supported by the equity lines plots and a wide range of performance

indicators.

Then, a focus on pairs of equivalent asset allocation models is presented: Markowitz on

the 40 stocks with highest MSE is compared against Markowitz on the remaining 335,

and so on for all the other models. The analysis of the pairs of portfolios is supported by

the graphs of the equity lines and the QQ plot of returns. In the pairs comparisons, for

sake of brevity, it was decided to keep as performance indicators only the main statistical

moments of returns, maximum and average drawdown, Value at Risk, conditional Value

at Risk and Sharpe Ratio. Anyway, the complete range of indicators is still present in the

general overview.

Finally, a series of econometric tests seeks to assess whether or not there is a signifi-

cant difference between the distributions of returns of the pairs of portfolios using the

Kolmogorov-Smirnov test [18] and the k-sample Anderson-Darling test [104]. For the lat-

ter, p-value is capped at 25%, so that when this value is recorded it could be even higher

(an asterisk is used as reminder each time).

The second type of analysis compare portfolio 40 with other portfolios of 40 assets. This

procedure allows to rule out the hypothesys that portfolio 40 asset allocation models per-

form better just because the reduced number of assets, given that they are less prone to

curse of dimensionality.

As said, the ideal analysis would have been to compare portfolio 40 against all possible

combinations of 40 assets portfolios on the remaining 335 stocks. This operation is com-

putationally too expensive so that a different procedure has been implemented.

Given the 335 stocks of the homonymous portfolio sorted in descending order based on

the Mean Square Error, the stocks were selected in groups of 40, scrolling one security

at a time. The first of these portfolios was therefore composed of the 40 stocks with the

highest Mean Square Error among the 335 under examination. The second portfolio loses

the stock with maximum Mean Square Error and acquires the 41st stock, and so on.

With respect to each of these assets baskets, Markowitz, Minimum Variance, Sharpe, Risk

Parity and Equally Weighted weights only were calculated for the three methods of covari-
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ance matrix estimation. In this way the computational power required has been largerly

reduced..

For each basket of stocks and each allocation, the mean and variance of the returns were

calculated, as well as the Sharpe Ratio. The results of the indicators obtained by different

allocation models were averaged.

Three indicators are therefore associated with each basket of securities: the average mean

return, to average variance returns and the average Sharpe Ratios.

With respect to these indicators some comparisons between the original 40 portfolio and

its competitors were produced, as usual organized with respect to the covariance matrix

estimation methods.



34 CHAPTER 1. AUTOENCODER LOW BETA PORTFOLIOS

Historical Covariance Matrix

In this section the portfolios obtained through historical covariance matrix estimation are

examined.

Figure 1.2: Equity lines produced by the portfolios on 40 assets.

Figure 1.3: Equity lines produced by the portfolios on 335 assets.

The plots show a certain dominance of the portfolios based on 40 stocks. This is high-

lighted by the final equity level reached and from the mitigated reaction to the pandemic

crisis. The dominance of the first group is even more evident looking at the performance

indicators.
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maxD meanD VaR cVaR mean std skew kurt

Markowitz -0.30 -0.034 -0.020 -0.036 0.0381 0.015 -0.65 12.99

MarkowitzNS -0.38 -0.039 -0.024 -0.043 0.0876 0.017 -1.19 16.05

MV -0.38 -0.040 -0.026 -0.045 0.0996 0.018 -1.16 15.71

MVNS -0.31 -0.030 -0.018 -0.037 0.0659 0.015 -0.89 15.72

SharpeNS -0.35 -0.043 -0.023 -0.043 0.0931 0.017 -0.79 11.19

RP -0.37 -0.038 -0.023 -0.043 0.0849 0.016 -1.22 16.29

MDNS -0.37 -0.040 -0.022 -0.041 0.0832 0.016 -0.71 13.42

EW -0.38 -0.039 -0.025 -0.044 0.0914 0.017 -1.20 16.07

PSR -0.36 -0.046 -0.024 -0.044 0.0917 0.018 -0.75 10.55

HRP -0.37 -0.037 -0.022 -0.042 0.0792 0.016 -1.22 16.61

Table 1.3: Historical Covariance: risk indicators and mean returns for portfolios 40

SR PSR ISR SoR CR

Markowitz 0.401061 0.00 -0.57 0.575760 0.893176

MarkowitzNS 0.810342 1.79 0.48 1.048760 1.620289

MV 0.878966 10.03 0.75 1.148087 1.814349

MVNS 0.694543 0.01 -0.14 0.948660 1.480147

SharpeNS 0.825205 1.34 0.41 1.133741 1.834810

RP 0.803024 1.47 0.42 1.032308 1.594957

MDNS 0.795873 0.57 0.26 1.084583 1.564518

EW 0.836370 3.82 0.58 1.082632 1.687287

PSR 0.807292 0.58 0.36 1.114666 1.790694

HRP 0.757377 0.28 0.25 0.977133 1.504395

Table 1.4: Historical Covariance: performance indicators adjusted for risk for portfolios

40

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.006597 1.869464 0.735780

MarkowitzNS 1.081423 19.973684 0.930275

MV 1.083942 20.554054 0.932110

MVNS 1.027957 7.500000 0.882569

SharpeNS 1.039660 20.760000 0.954128

RP 1.106788 25.700000 0.944954

MDNS 1.082768 20.760000 0.954128

EW 1.081423 19.973684 0.930275

PSR 1.090323 15.000000 0.937615

HRP 1.106788 25.700000 0.944954

Table 1.5: Historical Covariance: bull/bear persistence, bull/bear recovery and bull dom-

inance for portfolios 40
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maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.45 -0.10 -0.025 -0.047 0.0381 0.019 -0.59 14.00

MarkowitzNS -0.36 -0.04 -0.020 -0.040 0.0448 0.016 -1.07 17.16

MV -0.39 -0.04 -0.025 -0.046 0.0854 0.018 -0.95 13.08

MVNS -0.37 -0.04 -0.019 -0.041 0.0440 0.016 -0.96 17.90

SharpeNS -0.33 -0.03 -0.021 -0.039 0.0733 0.016 -0.79 18.28

RP -0.37 -0.04 -0.022 -0.042 0.0629 0.016 -1.09 15.81

MDNS -0.31 -0.02 -0.016 -0.035 0.0699 0.014 -0.56 18.77

EW -0.38 -0.04 -0.023 -0.044 0.0738 0.017 -0.98 14.87

PSR -0.33 -0.03 -0.021 -0.039 0.0729 0.016 -0.82 18.40

HRP -0.36 -0.04 -0.021 -0.041 0.0596 0.016 -1.04 16.30

Table 1.6: Historical Covariance: risk indicators and mean returns for portfolios 335

SR PSR ISR SoR CR

Markowitz 0.306303 0.00 -0.37 0.432071 0.589488

MarkowitzNS 0.445047 0.00 -0.65 0.561285 0.875811

MV 0.736904 0.05 0.39 0.964208 1.523491

MVNS 0.424774 0.00 -0.56 0.544307 0.829478

SharpeNS 0.727181 0.06 0.04 0.940965 1.540999

RP 0.595316 0.00 -0.26 0.757018 1.183745

MDNS 0.761140 0.27 -0.03 0.998191 1.552187

EW 0.668725 0.00 0.07 0.852066 1.351297

PSR 0.721532 0.05 0.19 0.927101 1.522145

HRP 0.578651 0.00 -0.36 0.734309 1.142051

Table 1.7: Historical Covariance: performance indicators adjusted for risk for portfolios

335

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.007620 1.484018 0.598165

MarkowitzNS 1.051383 13.315789 0.930275

MV 1.059523 14.820000 0.908257

MVNS 1.054655 14.111111 0.933945

SharpeNS 1.051383 13.315789 0.930275

RP 1.058190 14.500000 0.906422

MDNS 1.035341 6.586667 0.906422

EW 1.062366 15.500000 0.911927

PSR 1.051383 13.315789 0.930275

HRP 1.049880 12.948718 0.928440

Table 1.8: Historical Covariance: bull/bear persistence, bull/bear recovery and bull dom-

inance for portfolios 335
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With the exception of the Markowitz portfolio, there are no major differences between

portfolios 40 and portfolios 335 in terms of risk indicators, although there is a slight pre-

dominance on average of the 40-securities group, especially as regards kurtosis.

The difference is remarkable as regards the Sharpe and Probabilistic Sharpe ratio, be-

coming even clearer on the Calmar ratio and Sortino ratio, proving that the risks due to

downward fluctuations affect the second group more. Furthermore the Information Sharpe

Ratio provides that only 4 models out of 10 overperform the benchmark for portfolio 335,

while this happens in 8 cases for portfolio 40, and in In 4 of these 8 models, ISR is larger

or equal to 0.4, while for portfolio 335 this never happens.

Finally, with respect to the stability and recovery indicators, still a slight dominance of

portfolio 40 has to be noted.

More details follow on the pairs comparison focus.

Figure 1.4: Markowitz Equity Lines. Figure 1.5: Markowitz QQ plot.

Markowitz model. The equity line shows a clear improvement provided by the stock-

picking procedure. Despite both portfolios reaching the same final profit, portfolio 40

has a much less risky trend and heavily contains losses in the pandemic period than its

counterpart. Then the dominance starts in the post-pandemic rally.

The QQ plot shows how the returns distributions deviate immediately after the shoulders

of the distributions.

maxD meanD VaR cVaR mean std skew kurt SR

mar(A) -0.30 -0.034 -0.020 -0.036 0.0381 0.015 -0.65 12.99 0.40

mar -0.45 -0.102 -0.025 -0.047 0.0381 0.019 -0.59 14.00 0.30

Table 1.9: Markowitz model: performance indicators.

The performances indicators provides a very strong dominance of the 40 portfolio under

every perspective except for the mean returns, especially for the extreme risk measures.
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Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.16 0.045

Table 1.10: Markowitz model: econometric tests.

The two tests confirm that if the two portfolios are generated from the same distribution

the observed returns for the pair would be unlikely.

Markowitz model, no short sales The improvement of portfolio 40 is strong even for

the Markowitz model with no short sales allowed.

Figure 1.6: Markowitz (NS) equity lines. Figure 1.7: Markowitz (NS) QQ plot.

In that case, the reaction to the pandemic has been basically the same for the two port-

folios, but the after-pandemic rally has been clearly stronger for portfolio 40, which per-

formed better than the 335 for a 28%.

The QQ plot shows how the deviation among the two distributions is concentrated on the

left shoulder and the right tail, while it lightens in the central part and in the left tail.

maxD meanD VaR cVaR mean std skew kurt SR

marNS(A) -0.38 -0.039 -0.024 -0.043 0.0876 0.017 -1.19 16.05 0.81

marNS -0.36 -0.047 -0.020 -0.040 0.0448 0.016 -1.07 17.16 0.44

Table 1.11: Markowitz model with no short sales: performance indicators.

The risk measures are pretty balanced, but the difference becomes great in terms of Sharpe

ratio, strongly driven by the very large difference in returns.
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Kolmogorov-Smirnov Anderson-Darling

ρ-value 0.14 0.096

Table 1.12: Markowitz model with no short sales: econometric tests.

Based on both the KS and the AD tests it is unlikely that the two series of returns source

from the same distribution, and then that probably the indicators performance differences

are significative.

Figure 1.8: MV equity lines. Figure 1.9: MV QQ plot.

Minimum Variance portfolio. In this case the differences are quite small. The 40

MV performs of course better in terms of final return and takes the lead when the rally

starts, but the difference coudl be considered negligible. The QQ plot shows how the only

meaningful deviation among the two distributions is at the end of the right shoulder.

maxD meanD VaR cVaR mean std skew kurt SR

mv(A) -0.38 -0.040 -0.026 -0.045 0.0996 0.018 -1.16 15.71 0.88

mv -0.39 -0.045 -0.025 -0.046 0.0854 0.018 -0.95 13.94 0.73

Table 1.13: Minimum Variance model: performance indicators.

In terms of risk measures there is on average a light improvement of the 40 portfolio

against its competitor, but basically the more clear difference is given by the Sharpe ratio,

driven by the mean return, showing how for the same amount of expected risk the 40

portfolio is more remunerative. The two tests confirm what already deduced through the

QQ plot and the analysis of the statistical moments and the other indicators. Even if the

portfolio 40 has not produced a significant improvement compared to the portfolio 335,
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Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.99 0.25*

Table 1.14: Minimum Variance model: econometric tests.

with a change of perspective we can also conclude that constructing the portfolio with

335 stocks does not bring any substantial benefit, and that indeed the overall risk of the

out-of-sample portfolio is slightly increased while losing a certain portion of return.

Minimum Variance model, no short sales Restricting the short sales in the MV

portfolio produces a stronger impact of the stock-picking procedure.

Figure 1.10: MV(NS) equity lines. Figure 1.11: MV(NS) QQ plot.

In this case the dominance of portfolio 40 starts before the pandemic, and during the

crisis the drawdown is strongly mitigated with respect to its competitor. Furthermore,

the market rally after the crisis is clearly more intense, even if a little bit unstable.

maxD meanD VaR cVaR mean std skew kurt SR

mvNS(A) -0.31 -0.030 -0.018 -0.037 0.0659 0.015 -0.89 15.72 0.69

mvNS -0.37 -0.049 -0.019 -0.041 0.0440 0.016 -0.96 17.90 0.42

Table 1.15: Minimum Variance model with no short sales: performance indicators.

The performance measures are strongly biased toward portfolio 40 which outperform its

competitor across all the indicators. In the extreme risk measures the dominance is clear,

especially on the drawdowns side.
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Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.71 0.25*

Table 1.16: Minimum Variance model with no short sales: econometric tests.

Even if the differences in terms of performance measures are quite clear, the tests struggle

to reject the null hypothesis that the two series of returns come from different distribu-

tions. This apparent contraddiction is probably due to the fact that the differences among

the two equity lines are produced in a few peculiar periods. However, it should be con-

sidered that the difference in improvement produced by portfolio 40 between the cases of

minimum variance and minimum variance with short sales not allowed is in any case not

negligible. This may be given by the fact that the constraint on shorts has subtracted

degrees of freedom useful to the optimization algorithm to build the ideal portfolio, and

that in this context the choice of stocks has had a more relevant impact.

Maximum Sharpe Ratio model. In the portfolio of maximum Sharpe ratio, the im-

provement produced by the stock-picking procedure is not very significant.

Figure 1.12: SR equity lines. Figure 1.13: SR QQ plot.

A clear dominance of portfolio 40 starts only in the second half of the last year. Further-

more, during the pandemic it performed slightly worse. The QQ plot shows that the two

portfolios returns distributions deviate from each other on the tails.

maxD meanD VaR cVaR mean std skew kurt SR

srNS(A) -0.35 -0.043 -0.023 -0.043 0.0931 0.017 -0.79 11.19 0.82

srNS -0.33 -0.031 -0.021 -0.039 0.0733 0.016 -0.79 18.28 0.72

Table 1.17: Maximum Sharpe Ratio model: performance indicators.



42 CHAPTER 1. AUTOENCODER LOW BETA PORTFOLIOS

In terms of performance measures, portfolio 40 performed slightly worse in terms of ex-

treme risk measures, except for the conditional Value at risk indicator and the kurtosis.

It improved the Sharpe Ratio with respect to its competitor due to an higher return that,

as already said, is concentrated on the last part of the test set.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.23 0.078

Table 1.18: Maximum Sharpe Ratio model: econometric tests.

The econometric tests assess that is reasonable to think that the two portfolios returns

source from different probability distributions.

Risk Parity model. The two portfolios are extremely similar during the first year of

the test set, then portfolio 40 starts a period of overperformance with respect to the its

competitor, and the dominance continues until the end of the test period.

Figure 1.14: Risk parity equity lines. Figure 1.15: Risk parity QQ plot.

The QQ shows some difference among the two distributions on the left shoulder and the

left tail.

maxD meanD VaR cVaR mean std skew kurt SR

rp(A) -0.37 -0.038 -0.023 -0.043 0.0849 0.016 -1.22 16.29 0.80

rp -0.37 -0.043 -0.022 -0.042 0.0629 0.016 -1.00 15.81 0.59

Table 1.19: Risk Parity model: performance indicators.

The performance measures are quite close except for the mean return and the Sharpe

Ratio, which shows an important improvement of 0.21.
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Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.66 0.25*

Table 1.20: Risk Parity model: econometric tests.

The tests agree on the fact that it is not unlikely to observe the two return series given

the null hypothesis that they are generated from the same process.

Maximum Diversification model. Even in the Maximum Diversification portfolio the

dominance of portfolio 40 starts only in the last part of the considered sample.

Figure 1.16: MD equity lines. Figure 1.17: MD QQ plot.

Something interesting to notice is that before the last two years portfolio 40 is dominated

by its competitor, especially during the pandemic and in the rally immediately after. In

the QQ plot it is noticeable a divergence on the right should and on the right tail.

maxD meanD VaR cVaR mean std skew kurt SR

md(A) -0.37 -0.040 -0.022 -0.041 0.0832 0.016 -0.71 13.42 0.79

md -0.31 -0.025 -0.016 -0.035 0.0699 0.014 -0.56 18.77 0.76

Table 1.21: Maximum Diversification model: performance indicators.

In terms of risk metrics, the larger portfolio entirely dominates its competitor. The situ-

ation is reversed with respect to returns and consequently to Sharpe Ratio, where in any

case the difference is negligible. A possible interpretation is that the MD portfolio, being

the model which more than others relies on diversification and which has a diversification

measure as objective function, intrinsecally benefits from a larger basket.
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Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.49 0.10

Table 1.22: Maximum Diversification model: econometric tests.

The KS and AD tests strongly disagree with respect to the null hypothesis that the two

returns series come from different generating data processes, but as already said the KS

test is by construction too conservative, and so this kind of behavior is expected.

Equally Weighted model. The Equally Weighted portfolio is useful in order to assess

if the stock picking have been successfull, given that it is agnostic to any asset allocation

model and covariance matrix estimation.

Figure 1.18: EW equity lines. Figure 1.19: EW QQ plot.

The equity lines show how the portfolio 40 have been superior especially during the rally

after the pandemic crisis. At the same time the QQ plot does not reveal significant

deviations among the two returns series distribution, except for the left tail.

maxD meanD VaR cVaR mean std skew kurt SR

ew(A) -0.38 -0.039 -0.025 -0.044 0.0914 0.017 -1.20 16.07 0.84

ew -0.38 -0.043 -0.023 -0.044 0.0738 0.017 -0.98 14.87 0.66

Table 1.23: Equally Weighted model: performance indicators.

In terms of risk measures, there are no evident differences. As in the other cases, the

dominance comes out on the mean return and then on the Sharpe Ratio, where a not

trivial 0.18 improvement has been recorded for portfolio 40. Probably the market trends

have been so massive in the test set period that influenced almost all the stocks accord-

ing to it. At the same time, the stock selection can reveal advantages when combined

with portfolio models, and in any case the overperformance is clear even for the Equally

Weighted portfolio.
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Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.92 0.25*

Table 1.24: Equally Weighted model: econometric tests.

As already deduced, standing to the econometrics tests seem to be no evidences to refuse

the idea the two portfolios’ returns are produced by the same probability distribution.

Probabilistic Sharpe Ratio model. The PSR shows a behavior which is quite similar

to what has been observed for maximum Sharpe Ratio portfolio, and the conclusions are

mostly the same.

Figure 1.20: PSR equity lines. Figure 1.21: PSR QQ plot.

The QQ plot shows a L figure at the start of the left tail, while the dominance of portfolio

40 starts only in the last period. During the initial rally the larger portfolio overperforms

its competitor.

maxD meanD VaR cVaR mean std skew kurt SR

psr(A) -0.36 -0.046 -0.024 -0.044 0.0917 0.018 -0.75 10.55 0.81

psr -0.33 -0.030 -0.021 -0.039 0.0729 0.016 -0.82 18.40 0.72

Table 1.25: Probabilistic Sharpe Ratio model: performance indicators.

On the risk perspective portfolio 40 is outperformed, except for the kurtosis. The domi-

nance is - as usual - with respect to the expected return and Sharpe Ratio.
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Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.16 0.05

Table 1.26: Probabilistic Sharpe Ratio model: econometric tests.

The tests show that it is reasonable to reject the null hypothesis, with the KS as usual

much more conservative in rejection.

Hierarchical Risk Parity model. The HRP portfolio performance analysis is quite

interesting, because the HRP already implements a Machine Learning approach in order

to achieve true diversification through clustering.

Figure 1.22: HRP equity lines. Figure 1.23: HRP QQ plot.

Even in this case the dominance of the portfolio based on stock-picking starts after the

pandemic, and becomes deeper in time. The QQ plot shows a divergence starting in the

left tail.

maxD meanD VaR cVaR mean std skew kurt SR

hrp(A) -0.37 -0.037 -0.022 -0.042 0.0792 0.016 -1.22 16.61 0.77

hrp -0.36 -0.042 -0.021 -0.041 0.0596 0.016 -1.04 16.30 0.57

Table 1.27: Hierarchical Risk Parity model: performance indicators.

The performance measures are very close for the risk part, while the portfolio 40 overper-

forms its competitor as regards expected return and Sharpe Ratio, which value is increased

by 0.20.
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Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.71 0.25*

Table 1.28: Hierarchical Risk Parity model: econometric tests.

Even if the difference in terms of Sharpe ratio is not negligible, the tests struggle to dis-

tinguish two different distributions for the returns of the two investments, even if the KS

test which is usually very punishing stops at 0.71.

Historical covariance: rolling portfolios analysis. As for the rolling portfolios anal-

ysis, the following results have been obtained.

Figure 1.24: Historical Covariance, Mean-Variance Space:

portfolio 40 against competitors.

Figure 1.25: Historical Covariance, Average Sharpe ratio:

portfolio 40 against competitors.

It can be seen that portfolio 40 is by far the riskiest in the space of average mean return

and and variance - with an abuse of notation, this space will be called Mean-Variance

Space. At the same time, however, it is the most profitable portfolio. In the dichotomy
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between the two measures, the profitability of the portfolio prevails, as can be seen from

the second plot, where the average Sharpe Ratio of the portfolio 40 is compared with

the their competitors corresponding. It can be seen that portfolio based on stock-picking

is able to outperform 82% of its competitors in terms of risk adjusted return. It is also

interesting to note how the trend of the competitors’ Sharpe Ratio seems to confirm the

theory underlying the model: a slightly downward trend can in fact be noticed, even if

the series is rather noisy.
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Exponentially Weighted Covariance Matrix

In this section the performances obtained by portfolio 40 and portfolio 335 are explored

across the allocation models with covariance matrix calculated according to the Eponen-

tially Weighted method.

Figure 1.26: Equity lines produced by the portfolios on 40 assets.

Figure 1.27: Equity lines produced by the portfolios on 335 assets.

The plots show how the models obtained on the 40 stocks dominated on average the

performance in terms of yield as well as of risk mitigation during the pandemic. The

resilience of the portfolio 40 Markowitz model is surprising, even if the rest of the path is

quite disappointing compared to the other models. Despite this, the dominance over its
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counterpart is stark.
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maxD meanD VaR cVaR mean std skew kurt

Markowitz -0.25 -0.040 -0.023 -0.038 0.0524 0.015 -0.09 8.75

MarkowitzNS -0.38 -0.039 -0.025 -0.044 0.0910 0.017 -1.20 16.08

MV -0.39 -0.042 -0.027 -0.047 0.1034 0.018 -1.15 15.80

MVNS -0.34 -0.039 -0.021 -0.040 0.0619 0.015 -1.16 15.40

SharpeNS -0.37 -0.041 -0.023 -0.043 0.0999 0.018 -0.73 11.50

RP -0.37 -0.037 -0.023 -0.042 0.0833 0.016 -1.23 16.08

MDNS -0.37 -0.040 -0.024 -0.042 0.0790 0.017 -0.86 15.38

EW -0.38 -0.039 -0.025 -0.044 0.0914 0.017 -1.20 16.07

PSR -0.39 -0.051 -0.026 -0.046 0.0801 0.018 -0.71 12.25

HRP -0.35 -0.035 -0.021 -0.040 0.0774 0.015 -1.30 16.21

Table 1.29: Exponentially Weighted Covariance: risk indicators and mean returns for

portfolios 40.

SR PSR ISR SoR CR

Markowitz 0.526354 0.00 -0.26 0.798897 1.462213

MarkowitzNS 0.833923 3.59 0.46 1.081416 1.681572

MV 0.885665 11.48 0.76 1.165472 1.834455

MVNS 0.618936 0.00 -0.27 0.804639 1.259394

SharpeNS 0.875299 6.41 0.51 1.221511 1.892302

RP 0.797905 1.22 0.39 1.027611 1.587008

MDNS 0.734157 0.05 0.19 0.991731 1.485826

EW 0.836370 3.82 0.58 1.084786 1.687287

PSR 0.673827 0.00 0.06 0.932760 1.434857

HRP 0.773416 0.54 0.20 0.995496 1.536042

Table 1.30: Exponentially Weighted Covariance: performance indicators adjusted for risk

for portfolios 40.

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.017677 2.400000 0.748624

MarkowitzNS 1.081423 19.973684 0.930275

MV 1.093400 15.151515 0.919266

MVNS 1.057369 9.880000 0.908257

SharpeNS 1.039660 20.760000 0.954128

RP 1.102827 24.822581 0.943119

MDNS 1.052973 13.702703 0.932110

EW 1.081423 19.973684 0.930275

PSR 1.049880 12.948718 0.928440

HRP 1.074836 36.857143 0.948624

Table 1.31: Exponentially Weighted Covariance: bull/bear persistence, bull/bear recovery

and bull dominance for portfolios 40.
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maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.44 -0.137 -0.032 -0.054259 -0.0016 0.023 -0.675936 9.41

MarkowitzNS -0.38 -0.055 -0.020 -0.041655 0.0446 0.016 -1.06 15.81

MV -0.40 -0.047 -0.025 -0.047105 0.0865 0.018 -0.91 13.58

MVNS -0.39 -0.059 -0.021 -0.043084 0.0483 0.017 -1.25 16.23

SharpeNS -0.38 -0.048 -0.023 -0.043953 0.0765 0.017 -1.27 18.70

RP -0.37 -0.043 -0.021 -0.042021 0.0627 0.016 -1.02 15.92

MDNS -0.34 -0.034 -0.019 -0.039119 0.0631 0.015 -0.85 13.29

EW -0.38 -0.043 -0.023 -0.044088 0.0738 0.017 -0.98 14.87

PSR -0.36 -0.036 -0.023 -0.041768 0.0821 0.016 -0.99 17.72

HRP -0.36 -0.040 -0.020 -0.040571 0.0607 0.016 -1.01 15.74

Table 1.32: Exponentially Weighted Covariance: risk indicators and mean returns for

portfolios 335

SR PSR ISR SoR CR

Markowitz -0.010631 0.00 -0.57 -0.015980 -0.024851

MarkowitzNS 0.424185 0.00 -0.63 0.533035 0.825828

MV 0.731259 0.03 0.39 0.956902 1.515160

MVNS 0.445363 0.00 -0.49 0.564927 0.866024

SharpeNS 0.706894 0.04 0.12 0.883197 1.400174

RP 0.595960 0.00 -0.27 0.747940 1.185207

MDNS 0.633871 0.00 -0.22 0.834802 1.279643

EW 0.668725 0.00 0.07 0.845635 1.351297

PSR 0.788575 0.93 0.25 0.997977 1.605234

HRP 0.600757 0.00 -0.35 0.752216 1.185406

Table 1.33: Exponentially Weighted Covariance: performance indicators adjusted for risk

for portfolios 335.

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.011970 2.073446 0.675229

MarkowitzNS 1.054655 14.111111 0.933945

MV 1.054502 13.611111 0.900917

MVNS 1.054655 14.111111 0.933945

SharpeNS 1.049880 12.948718 0.928440

RP 1.062366 15.500000 0.911927

MDNS 1.054655 14.111111 0.933945

EW 1.062366 15.500000 0.911927

PSR 1.051383 13.315789 0.930275

HRP 1.049880 12.948718 0.928440

Table 1.34: Exponentially Weighted Covariance: bull/bear persistence, bull/bear recovery

and bull dominance for portfolios 335.
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The performance measures confirm what could be inferred from the equity lines. Beyond

the Markowitz model, the overperformance of portfolio 40 across all the models and vari-

ous indicators can be noted.

Where short sales are not allowed on the Markowitz model, the stock-picking based port-

folio shows a more than double expected return with respect to its counterpart, and the

same holds true with respect to the Sharpe Ratio. The difference is even amplified when

the Sortino Ratio is taken in account. With respect to the extreme risk measures, the

two portfolios are balanced, except for the not negligible difference in terms of average

drawdown.

The same happens for all the other asset allocation models, with the only distinction being

the Probabilistic Sharpe Ratio, which also obtains the maximum result in terms of the

homonymous performance indicator. In general, the PSR reacts positively with a vast

universe of assets, where differences in terms of asymmetry and kurtosis can be better

exploited.

However, with regard to the PSR performance measure, it is quite significant the outcome

of such an accurate indicator in the comparison between the two portfolios blocks: while

in the 335 portfolio, with the only notable exception of the aforementioned model, the

probability values are all firmly anchored to zero, in portfolio 40 there are several models

that have non-zero probability of a true Sharpe Ratio greater than 1, and all of them have

a larger probability with respect to the best model in terms of PSR of the larger group. As

for ISR, results are basically unchanged with respect to the historical covariance matrix

estimation method.

As regards the bull persistence and bear resilience indicators, the dominance of portfolio

40 stocks concerns almost all the asset allocation models.

Figure 1.28: Markowitz equity lines. Figure 1.29: Markowitz QQ plot.

Markowitz model. For the Markowitz model portfolio 335, after a slow start, is hardly

hit during the pandemic period - the worst portfolio of all those analyzed in this paper

from this perspective. On the contrary, portfolio 40 has a bombastic start, thanks to which

it is able to strongly limit the damage due to the pandemic crisis, even if the continuation
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of the performance is rather fluctuating and betrays the expectations of the first period.

The QQ plot shows how the divergence between the distributions of the returns of the two

portfolios begins already in the final part of the shoulders, and then becomes clear and

unambiguous in the tails.

maxD meanD VaR cVaR mean std skew kurt SR

mar(A) -0.25 -0.043 -0.023 -0.038 0.0524 0.015 -0.09 8.75 0.52

mar -0.44 -0.137 -0.032 -0.054 -0.0016 0.023 -0.68 9.41 -0.01

Table 1.35: Markowitz model: performance indicators.

The difference in performance is clear across almost all indicators. On the risk side -

extreme and not - the dominance of the portfolio 40 is clear, as can be seen especially on

the drawdown side.

The difference remains equally evident on the expected return, and is consequently re-

flected together with the lower standard deviation on the Sharpe Ratio.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.05 0.01*

Table 1.36: Markowitz model: econometric tests.

Econometric tests confirm what emerged from the visual impression: it is quite reasonable

to infer that the two series of returns come from very distinct distributions.

Figure 1.30: Markowitz(NS) equity lines. Figure 1.31: Markowitz(NS) QQ plot.

Markowitz model, no short sales. When short sales are not allowed in the Markowitz

model, it can be seen how the two portfolios behave in a very similar way in the first period,

during the pandemic and for a very short period after the crisis. During the rest of the
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rally, however, the two equity lines diverge more and more markedly, with a net dominance

of portfolio 40.

The QQ plot shows how apart from the very central percentiles the two distributions

deviate strongly from each other in both directions, with a strong domain of portfolio 40.

maxD meanD VaR cVaR mean std skew kurt SR

marNS(A) -0.38 -0.039 -0.025 -0.044 0.0910 0.017 -1.20 16.08 0.83

marNS -0.38 -0.055 -0.020 -0.041 0.0446 0.016 -1.06 15.81 0.42

Table 1.37: Markowitz model with no short sales: performance indicators.

Based on the performance indicators, the two portfolios show quite similar results as

regards risk indicators, where portfolio 40 performs slightly worse albeit with the notable

exception of the mean drawdown. The difference is instead large as regards the average

return and consequently the Sharpe Ratio, with respect to which portfolio 40 achieves a

double performance compared to its competitor.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.10 0.19

Table 1.38: Markowitz model with no short sales: econometric tests.

Econometric tests confirm that it is less likely to have observed similar returns than the

opposite, assuming that the series of returns of the two portfolios come from the same

data generating process. Curiously, this is one of the very few cases where the rho -value

obtained from the KS test is less than the AD.

Minimum Variance model. Turning to the Minimum Variance portfolio, it can be

observed that also in this case the two investments behave similarly after all.
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Figure 1.32: MV equity lines. Figure 1.33: MV QQ plot.

After a very similar initial trend, portfolio 40 begins to detach from 335, with steeper

climbs and more contained descents. Towards the final part - after the 400-th trading day

- the autoencoder based portfolio exploits a rather intense rise in the same period during

which its competitor presents a drawdown.

However, the QQ plot shows how the distributions of the two portfolios diverge slightly

in terms of returns.

maxD meanD VaR cVaR mean std skew kurt SR

mv(A) -0.39 -0.042 -0.027 -0.047 0.1034 0.018 -1.15 15.80 0.88

mv -0.40 -0.047 -0.025 -0.047 0.0865 0.018 -0.91 13.58 0.73

Table 1.39: Minimum Variance model: performance indicators.

The risk indicators stand on similar values more or less for both portfolios. The difference

as already is in the expected returns, which lead to a non-trivial increase of 0.15 on the

Sharpe Ratio.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.97 0.25*

Table 1.40: Minimum Variance model: econometric tests.

Econometric tests confirm the visual impression: in probabilistic terms it is difficult to

distinguish the returns of one portfolio from the other.

Minimum variance model, no short sales. The differences between the two portfo-

lios become a little more substantial when short selling is inhibited.
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Figure 1.34: MV(NS) equity lines. Figure 1.35: MV(NS) QQ plot.

In this case, the dominance of portfolio 40 begins very soon, and persists during the

pandemic thanks to the advantage accumulated. The difference between the two equity

lines shows periods of expansion as well as contraction, but the preferability of the portfolio

40 is not in any case called into question. In general, this superiority is built above all

those periods for which the 335 portfolio is in a lateral trend.

The QQ plot shows how a really noticeable divergence starts at the beginning of the

distribution tails, with an advantageous structure for the portfolio 40.

maxD meanD VaR cVaR mean std skew kurt SR

mvNS(A) -0.34 -0.039 -0.021 -0.040 0.0619 0.015 -1.16 15.40 0.61

mvNS -0.39 -0.059 -0.021 -0.043084 0.0483 0.017 -1.25 16.23 0.44

Table 1.41: Minimum Variance model with no short sales: performance indicators.

Risk indicators, with the sole exception of Value at Risk, clearly reward portfolio 40,

especially as regards drawdowns. As almost always happened, however, it is once again

the expected return that clearly discriminates the two investments, reverberating once

again on the Sharpe Ratio, where there is a gain of 0.16 return units for each unit of risk

assumed.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.24 0.25*

Table 1.42: Minimum Variance model with no short sales: econometric tests.

The econometric tests reveal in this case an ambiguous result, but which nevertheless leads

to consider at least likely that the two series of returns come from different probability

distributions.
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Maximum Sharpe Ratio model. In the maximum Sharpe Ratio portfolio again there

is a dominance of portfolio 40, which becomes very substantial in the last year of test set

data.

Figure 1.36: SR equity lines. Figure 1.37: SR QQ plot.

After a better start for portfolio 40, the two equity lines end up collimating until the

pandemic crisis. In the immediately following bullish period, the difference in performance

immediately begins to be glimpsed, becoming more and more clear. In the final part,

portfolio 40 makes a leap as for performance that clearly distances its competitor.

The QQ plot then shows how dissimilarity between the two series of returns begins already

in the final part of the distributions shoulders and becomes glimpsed in some areas of the

tails.

maxD meanD VaR cVaR mean std skew kurt SR

srNS(A) -0.37 -0.041 -0.023 -0.043 0.0999 0.018 -0.73 11.50 0.87

srNS -0.38 -0.048 -0.023 -0.044 0.0765 0.017 -1.27 18.70 0.70

Table 1.43: Maximum Sharpe Ratio model: performance indicators.

Compared on the basis of the risk indicators, portfolio 40 performs better than 335. Once

again portfolio 40 is able to do better especially on the expected returns and consequently

the Sharpe Ratio, with an increase of 0.18 units of expected return adjusted for unit of

risk assumed.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.16 0.16

Table 1.44: Maximum Sharpe Ratio model: econometric tests.

The KS and AD tests agree in the ρ -value, which would allow to reject with a confidence

level of 84 % the hypothesis that the two series of returns were generated by the same
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process.

Risk Parity model. For the Risk Parity model, results are quite similar to those ob-

tained with historical covariance estimation.

Figure 1.38: RP equity lines. Figure 1.39: RP QQ plot.

Also in this case, the dominance of portfolio 40 takes shape towards the start of the post-

pandemic rally, while in the previous period the two portfolios were essentially the same.

The QQ plot shows a certain similarity between the distributions of the returns of the two

investment strategies, only partially broken at the beginning of the left tail.

maxD meanD VaR cVaR mean std skew kurt SR

rp(A) -0.37 -0.037 -0.023 -0.042 0.0833 0.016 -1.23 16.08 0.79

rp -0.37 -0.043 -0.021 -0.042 0.0627 0.016 -1.02 15.92 0.59

Table 1.45: Risk Parity model: performance indicators.

Even in this case, the risk indicators of the two portfolios are essentially the same, with

the exception of the average drawdown where portfolio 40 performs better. Also in this

case, the average yield discriminates the smaller basket portfolio from its competitor. This

contribution is reflected in the Sharpe Ratio, where portfolio 40 outperforms 335 by 0.20

units.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.77 0.25*

Table 1.46: Risk Parity model: econometric tests.

Econometric tests do not substantially allow us to reject the null hypothesis, according to

which the two series of returns come from the same probability distribution.



60 CHAPTER 1. AUTOENCODER LOW BETA PORTFOLIOS

Maximum Diversification model. The Maximum Diversification model is also in this

case the one where differences among two portfolios are blurred.

Figure 1.40: MD equity lines. Figure 1.41: MD QQ plot.

After a better start, the dominance of the portfolio 40 actually materializes only after

the post pandemic rally already started. During the critical period it shows a greater

resilience, and in the last part is able to still grow when its competitor starts a lateral

trend. The QQ plot shows a certain equivalence in the distributions around the central

area which then ends up breaking up closer to tails, especially the left one.

maxD meanD VaR cVaR mean std skew kurt SR

md(A) -0.37 -0.040 -0.024 -0.042 0.0790 0.017 -0.86 15.38 0.73

md -0.34 -0.034 -0.019 -0.039 0.0631 0.015 -0.85 13.29 0.63

Table 1.47: Maximum Diversification model: performance indicators.

In terms of risk indicators, the overperformance of the competitor portfolio is unquestion-

able. Again, portfolio 40 does better as for the expected return, and this is sufficient to

obtain a slightly higher Sharpe Ratio.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.14 0.25*

Table 1.48: Maximum Diversification model: econometric test.

Finally, the econometric tests would seem to suggest that the returns of the two invest-

ments are generated by different probability distributions, even if the verdict is not entirely

clear, given the discrepancy between the two tests, moreover in the opposite direction to

the usual one, i.e. the KS ρ-value is lower than the AD one.
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Probabilistic Sharpe Ratio model. The Probabilistic Sharpe Ratio model essentially

replicates what happened for the Maximum Diversification portfolio.

Figure 1.42: PSR equity lines. Figure 1.43: PSR QQ plot.

The auto-encoder strategy is totally dominated by the larger portfolio, as the QQ plot

also demonstrates. This is true especially in terms of risk, both in the pandemic period

and in some phases of the subsequent uptrend.

maxD meanD VaR cVaR mean std skew kurt SR

psr(A) -0.39 -0.051 -0.026 -0.046 0.0801 0.018 -0.71 12.25 0.71

psr -0.36 -0.036 -0.023 -0.0417 0.0821 0.016 -0.99 17.72 0.78

Table 1.49: Probabilistic Sharpe Ratio model: performance indicators.

The performance measures confirm the clear dominance of portfolio 335 with regard to

risk and expected return, with a resulting Sharpe Ratio improved by 0.07 with respect to

portfolio 40.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.09 0.06

Table 1.50: Probabilistic Sharpe Ratio model: econometric tests.

Econometric tests suggest that it would not be far-fetched to reject the null hypothesis, ac-

cording to which the returns of the two investments would come from the same probability

distribution.

Hierarchical Risk Parity model. Finally, the Hierarchical Risk Parity model main-

tains a behavior quite similar to its historical covariance-based counterpart.
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Figure 1.44: HRP equity lines. Figure 1.45: HRP QQ plot.

The dominance of portfolio 40 is not negligible. It is triggered immediately after the

pandemic and then gradually underlines in an increasingly evident manner. This overper-

formance is sometimes cumulated on those days on which portfolio 335 shows a lateral

trend while portfolio 40 takes advantage. The QQ plot shows how the best performance

of portfolio 40 was built also by partially limiting the collapses of the left tail compared

to the competing model.

maxD meanD VaR cVaR mean std skew kurt SR

hrp(A) -0.35 -0.035 -0.021 -0.040 0.0774 0.015 -1.30 16.21 0.77

hrp -0.36 -0.040 -0.020 -0.040 0.0607 0.016 -1.01 15.74 0.60

Table 1.51: Hierarchical Risk Parity model: performance indicators.

With respect to risk indicators, the ability of the autoencoder-based portfolio to contain

average drawdowns is highlighted. The difference in terms of average return, combined

with a slight overperformance in terms of standard deviation, allowed a substantial increase

in the Sharpe Ratio of 0.16.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.77 0.25*

Table 1.52: Hierarchical Risk Parity model: econometric tests.

The KS and AD tests agree in the impossibility of rejecting the null hypothesis, even if in

a not totally decisive way.

Exponentially weighted covariance: rolling portfolios analysis. Here the results

of the test carried out by Exponentially Weighting covariance estimation are summarized.
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Figure 1.46: Exponentially Weighted Covariance, Mean-

Variance Space: portfolio 40 against competitors.

Figure 1.47: Exponentially Weighted Covariance, Average

Sharpe Ratio: portfolio 40 against competitors.

In this case, the profitability and risk of the portfolio is much more balanced than in the

historical estimation case. It can be seen from the plot in the Mean-Variance Space how

portfolio 40 performs better than the vast majority of competitors in terms of profitability,

and the same happens to an even greater extent if the focus is shifted to variance.

The average Sharpe Ratio confirms the visual intuition: portfolio 40 outperforms 94 % of

its competitors in terms of return adjusted to standard risk.

Also in this case, the downward trend of the average Sharpe Ratio seems to corroborate

the theoretical intuition behind the proposed model.
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RMT Covariance Matrix

This section collects the performances obtained by the two portfolios, with covariance

matrix filtered according to Random Matrix Theory.

Figure 1.48: Equity lines produced by the portfolios on 40 assets.

Figure 1.49: Equity lines produced by the portfolios on 335 assets.

The plots show on average a certain overperformance of the models based on the au-

toencoder, which becomes clear both in the ability to slightly better resist the pandemic

crisis and in the total return achieved during the test period. The performance indicators

confirm the visual information.
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maxD meanD VaR cVaR mean std skew kurt

Markowitz -0.28 -0.053 -0.021 -0.035 0.0101 0.014 -0.69 10.95

MarkowitzNS -0.36 -0.036 -0.022 -0.041 0.0745 0.016 -1.30 16.32

MV -0.38 -0.040 -0.026 -0.045 0.0993 0.017 -1.16 15.72

MVNS -0.30 -0.032 -0.017 -0.036 0.0592 0.014 -0.91 15.40

SharpeNS -0.36 -0.043 -0.023 -0.044 0.0966 0.018 -0.83 11.04

RP -0.37 -0.037 -0.023 -0.043 0.0848 0.016 -1.22 16.32

MDNS -0.37 -0.039 -0.021 -0.041 0.0825 0.016 -0.75 13.74

EW -0.38 -0.039 -0.025 -0.044 0.0914 0.017 -1.20 16.07

PSR -0.36 -0.047 -0.023 -0.045 0.0947 0.018 -0.76 10.32

HRP -0.36 -0.034 -0.022 -0.041 0.0825 0.016 -1.25 16.70

Table 1.53: RMT based Covariance: risk indicators and mean returns for portfolios 40

SR PSR ISR SoR CR

Markowitz 0.109097 0.00 -0.57 0.156249 0.249848

MarkowitzNS 0.738809 0.12 0.48 0.947172 1.436648

MV 0.877123 9.66 0.77 1.138962 1.807828

MVNS 0.629733 0.00 -0.14 0.860329 1.372569

SharpeNS 0.849583 3.08 0.42 1.149506 1.890398

RP 0.803340 1.49 0.42 1.027373 1.596565

MDNS 0.796942 0.64 0.26 1.076381 1.565908

EW 0.836370 3.82 0.58 1.076245 1.687287

PSR 0.827163 1.25 0.37 1.129469 1.843023

HRP 0.809108 1.88 0.26 1.036695 1.611743

Table 1.54: RMT based Covariance: performance indicators adjusted for risk for portfolios

40.

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.008345 1.784161 0.702752

MarkowitzNS 1.106788 25.700000 0.944954

MV 1.083942 20.554054 0.932110

MVNS 1.028493 7.634921 0.884404

SharpeNS 1.064798 16.548387 0.943119

RP 1.106788 25.700000 0.944954

MDNS 1.050180 6.805556 0.899083

EW 1.081423 19.973684 0.930275

PSR 1.093542 15.484848 0.939450

HRP 1.077911 38.296296 0.950459

Table 1.55: RMT based Covariance: bull/bear persistence, bull/bear recovery and bull

dominance for portfolios 40.
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maxD meanD VaR cVaR mean std skew kurt

Markowitz -0.39 -0.095 -0.021 -0.041825 0.0131 0.016 -1.28 13.47

MarkowitzNS -0.36 -0.045 -0.020 -0.040498 0.0423 0.016 -1.01 19.03

MV -0.40 -0.045 -0.025 -0.046322 0.0855 0.018 -0.95 13.94

MVNS -0.37 -0.047 -0.020 -0.040881 0.0421 0.016 -0.95 18.67

SharpeNS -0.33 -0.030 -0.021 -0.039799 0.0742 0.016 -0.77 18.31

RP -0.38 -0.044 -0.022 -0.042154 0.0629 0.017 -1.00 15.82

MDNS -0.32 -0.025 -0.017 -0.035159 0.0670 0.014 -0.60 18.98

EW -0.39 -0.044 -0.023 -0.044088 0.0738 0.018 -0.99 14.87

PSR -0.33 -0.030 -0.022 -0.039695 0.0729 0.016 -0.67 17.92

HRP -0.37 -0.043 -0.022 -0.041324 0.0593 0.016 -1.03 16.07

Table 1.56: RMT based Covariance: risk indicators and mean returns for portfolios 335.

SR PSR ISR SoR CR

Markowitz 0.127347 -0.90 -0.37 0.168047 0.234936

MarkowitzNS 0.416420 -0.65 -0.65 0.524960 0.818854

MV 0.737047 0.39 0.39 0.955335 1.523809

MVNS 0.412075 -0.63 -0.59 0.523595 0.809748

SharpeNS 0.736257 0.07 0.04 0.942732 1.576640

RP 0.595422 -0.25 -0.26 0.750927 1.183914

MDNS 0.734151 -0.10 -0.04 0.951963 1.496701

EW 0.668725 0.07 0.08 0.844050 1.351297

PSR 0.726195 0.04 0.19 0.936779 1.562913

HRP 0.575051 -0.37 -0.36 0.723566 1.137848

Table 1.57: RMT based Covariance: performance indicators adjusted for risk for portfolios

335.

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.028493 7.634921 0.884404

MarkowitzNS 1.054655 14.111111 0.933945

MV 1.059523 14.820000 0.908257

MVNS 1.054655 14.111111 0.933945

SharpeNS 1.051383 13.315789 0.930275

RP 1.058190 14.500000 0.906422

MDNS 1.054655 14.111111 0.933945

EW 1.062366 15.500000 0.911927

PSR 1.051383 13.315789 0.930275

HRP 1.049880 12.948718 0.928440

Table 1.58: RMT based Covariance: bull/bear persistence, bull/bear recovery and bull

dominance for portfolios 335.
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As for the maximum drawdown, there is an improvement of portfolio 40 compared to 335

as regards the Markowitz model and the two Minimum Variance portfolios, while for the

other allocation methods of the portfolio the results are quite mixed. The dominance

of the autoencoder-based portfolio is more evident for the average drawdown, where 335

records better results only for the Maximum Diversification and the Probabilistic Sharpe

Ratio models. Again, the differences between two portfolios sharpen when considering the

risk adjusted performance indicators. Furthermore, also in this case, the result of PSR

measure is rather indicative. While in fact for portfolio 40 different values are greater than

zero, for portfolio 335 this happens only three times and at a negligible level. Indeed with

regard to the PSR (to be intended as the allocation model) which is the method portfolio

335 comes closest to dominating its competitor, the probability that the Sharpe Ratio

is greater than 1 is 0.05%, while in portfolio 40 this same probability is 1.25%. As for

the ISR, the results are also slightly better than the previous ones for portfolio 40, which

shows this time 5 models with an ISR value greater than 0.4.

Finally, the indicators linked to the bullish and bearish periods also highlight a certain

dominance of portfolio 40, especially as regards the recover capacity from a bearish period.

Markowitz model. Going into the detail of the pairs of portfolios distinguished by asset

allocation techniques, we see how the Markowitz model has generated extremely violent

equity lines in both cases.

Figure 1.50: Markowitz equity lines. Figure 1.51: Markowitz QQ plot.

More specifically, portfolio 40 clearly shows greater resistance to pandemic stress, however

helped by the advantage gained up to a few days before the crisis. Furthermore, its equity

line has dominated for longer time. On the other aspects the performance is disappointing,

full of side trends with a lot of volatility inside the trend. The QQ plot shows how the link

between the distributions of the two series of returns tends to become vaguely sinusoidal,

and how these then diverge on both tails.
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maxD meanD VaR cVaR mean std skew kurt SR

mar(A) -0.28 -0.053 -0.021 -0.035 0.0101 0.014 -0.69 10.95 0.10

mar -0.39 -0.094 -0.021 -0.041 0.0131 0.016 -1.27 13.47 0.12

Table 1.59: Markowitz model: performance indicators.

The slightly better performance of the larger portfolio in terms of expected return impacts

the Sharpe Ratio enough for the portfolio to outperform its competitor by 0.02 units.

Given that neither of the two portfolios is even remotely close to any investor’s ideal, it is

true that portfolio 40’s absolute dominance in terms of risk profile cannot be overlooked.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.92 0.25*

Table 1.60: Markowitz model: econometric tests.

Last, the econometric tests are in agreement in not distinguishing the distributions gen-

erating the series of returns of the two portfolios.

Markowitz model, no short sales. Restricting short-selling strongly improves the the

results on both portfolios.

Figure 1.52: Markowitz(NS) equity lines. Figure 1.53: Markowitz(NS) QQ plot.

Portfolio 40 obtains a significantly better performance than its competitor. This overper-

formance is also in this case based on those periods where the larger one has a lateral

or tentatively upward trend. In fact, in these trading days, portfolio 40 shows significant

growth.

The QQ plot shows distortions in the percentiles of the returns for the two investment

strategies especially at the beginning of the tails.
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maxD meanD VaR cVaR mean std skew kurt SR

marNS(A) -0.36 -0.036 -0.022 -0.041 0.0745 0.016 -1.30 16.32 0.73

marNS -0.36 -0.044 -0.019 -0.040 0.0423 0.016 -1.00 19.02 0.41

Table 1.61: Markowitz model with no short sales: performance indicators.

The portfolios have similar risk profiles except for the average drawdown, where portfolio

40 presents a lower risk.

Its dominance then takes shape with respect to the average return, which entails a growth

in the Sharpe Ratio of 0.32.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.61 0.25*

Table 1.62: Markowitz model with no short sales: econometric tests.

Despite the very evident difference in performance between the two investments, the KS

and AD tests struggle enormously to distinguish the data generating processes that led to

the two portfolios returns.

Minimum Variance model. As in the case of the other two covariance estimation

methods, the Minimum Variance portfolio performs very well for both portfolios.

Figure 1.54: MV equity lines. Figure 1.55: MV QQ plot.

The two portfolios grow quite similarly, with a dominance of portfolio 40 starting imme-

diately after the pandemic and then gradually consolidating. The QQ plot shows a strong

similarity as regards the returns concentrated around the mean, which then disappears as

we approach to both tails.
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maxD meanD VaR cVaR mean std skew kurt SR

mv(A) -0.38 -0.040 -0.026 -0.045 0.0993 0.017 -1.16 15.72 0.87

mv -0.39 -0.045 -0.025 -0.046 0.0855 0.018 -0.95 13.93 0.73

Table 1.63: Minimum Variance model: performance indicators.

The risk indicators are fairly aligned for both portfolios, with portfolio 40 being slightly

preferable as for the drawdowns. In terms of performance, portfolio 40 manages to out-

perform its competitor, also recording a supplementar Sharpe Ratio of 0.14.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.99 0.25*

Table 1.64: Minimum Variance model: econometric tests.

The results of the econometric tests reflect the strong similarity in terms of returns of the

two portfolios, and the null hypothesis cannot possibly be rejected.

Minimum Variance model, no short sales. In the case of Minimum Variance port-

folio with short sales not allowed, the choice of the basket of 40 assets based on the

Autoencoder generates a significant improvement over the 335 portfolio.

Figure 1.56: MV(NS) equity lines. Figure 1.57: MV(NS) QQ plot.

The dominance of portfolio 40 starts already after the first quarter of trading and is con-

solidating over time. This also allows it to withstand the shock generated by the pandemic

much better than the its competitor. In the recovery phase, the investment based on the

autoencoder model is much more reactive and sensitive to the upward trend. Part of this

success is also due to the ability to preserve an upward trend even when its competitor

is characterized by lateral movements. After this phase, the smaller portfolio has a sig-

nificant drawdown where the difference in equity lines with the 335 tapers considerably.
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After this, the difference becomes significant again.

The QQ plot shows how around the beginning of the two tails, especially the right one,

there are small deviations between the distributions of the yields of the two portfolios.

maxD meanD VaR cVaR mean std skew kurt SR

mvNS(A) -0.30 -0.032 -0.017 -0.036 0.0592 0.014 -0.91 15.40 0.62

mvNS -0.36 -0.047 -0.019 -0.040 0.0421 0.016 -0.95 18.66 0.41

Table 1.65: Minimum Variance model with no short sales: performance indicators.

It can be inferred from the performance indicators that portfolio 40 is preferable to the

335 with respect to all risk indicators, in particular for the drawdowns. Compared to the

average return, the difference is less marked than in other cases, but sufficient to lead to

a difference in terms of Sharpe Ratio equal to 0.21 per unit of risk.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.56 0.07

Table 1.66: Minimum Variance model with no short sales: econometric tests.

The two econometric tests are in this case evidently at odds. This is not surprising, given

the structural characteristics of KS, which only examines the point of maximum diver-

gence of the two distributions.

Maximum Sharpe Ratio model. The maximum Sharpe Ratio portfolio, on the other

hand, is one of those where the superiority of the portfolio based on the Autoencoder

model is more questionable.

Figure 1.58: SR equity lines. Figure 1.59: SR QQ plot.

Portfolio 335 reacts slightly better to the systemic crisis linked to the pandemic event, and
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clearly better to the immediate subsequent recovery. The superiority of the stock-picking

procedure based portfolkio manifests only in the second half of the test set period, and is

really consolidated only in the last year of trading. The QQ plot shows deviations between

the two distributions starting from the beginning of both tails.

maxD meanD VaR cVaR mean std skew kurt SR

srNS(A) -0.36 -0.043 -0.023 -0.044 0.0966 0.018 -0.83 11.04 0.85

srNS -0.33 -0.030 -0.021 -0.039 0.0742 0.016 -0.77 18.31 0.73

Table 1.67: Maximum Sharpe Ratio model: performance indicators.

Across all the risk measures - including the average drawdown, where the 40 portfolio has

always done better - and with the exception of kurtosis, portfolio 335 overperforms its

competitor. Portfolio 40, on the other hand, dominates the average yield, thus registering

a Sharpe Ratio increased by 0.12.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.27 0.25*

Table 1.68: Maximum Sharpe Ratio model: econometric tests.

Econometric tests are in this case more oriented towards the hypothesis of returns sourcing

from different data generating processes.

Risk Parity model. With the Risk Parity asset allocation model, the two portfolios

show a similar trend, but also in this case with an undeniable dominance of the portfolio

40.

Figure 1.60: RP equity lines. Figure 1.61: RP QQ plot.

The dominance of the autoencoded portfolio begins immediately at the start of the bullish

market rally and improves more and more over time. Also in this case, part of the dom-
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inance is substantiated in some brief moments in which a side phase of portfolio 335 is

contrasted by a convinced bullish phase of portfolio 40. The QQ plot shows divergences

arising in the last part of the shoulders of the two distributions and starting from the tail

areas.

maxD meanD VaR cVaR mean std skew kurt SR

rp(A) -0.37 -0.037 -0.023 -0.043 0.0848 0.016 -1.22 16.32 0.80

rp -0.37 -0.043 -0.022 -0.042 0.0629 0.016 -1.00 15.81 0.59

Table 1.69: Risk Parity model: performance indicators.

The risk indicators are quite similar for both portfolio models, except for the average

drawdown where 40 portfolio does better. The performance, on the other hand, improves

considerably if we look at the average yield, and consequently at the Sharpe Ratio, where

an increase of 0.21 is recorded with respect to portfolio 335.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.71 0.10

Table 1.70: Risk Parity model: econometric tests.

The econometric tests shows a marked divergence between the KS and AD. For reasons

already mentioned, there is a tendency to give greater credit to the outcome of AD.

Maximum Diversification model. In the Maximum Diversification portfolio it is

more difficult to distinguish a clear predominance of one portfolio against the other.

Figure 1.62: MD equity lines. Figure 1.63: MD QQ plot.

After an initial period of slight overperformance, autoencoder-based portfolio reacts less

well than its competitor to the pandemic crisis and is also less reactive in terms of recovery.
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The overperfomance of portfolio 40 is substantiated above all in the last year of trading,

where for short intervals the two equity lines become anti-correlated. The QQ plot shows

clear deviations near both tails of the distributions, especially the right one.

maxD meanD VaR cVaR mean std skew kurt SR

mdNS(A) -0.37 -0.039 -0.021 -0.041 0.0825 0.016 -0.75 13.74 0.79

mdNS -0.31 -0.025 -0.016 -0.035 0.0670 0.014 -0.59 18.97 0.73

Table 1.71: Maximum Diversification model: performance indicators.

The dominance of the larger portfolio in terms of risk is total and clear. The higher

expected return brought by the 40 portfolio also struggles to compensate for the greater

volatility, from which the difference in Sharpe Ratio is reduced to a narrow 0.06.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.18 0.10

Table 1.72: Maximum Diversification model: econometric tests.

Econometric tests are quite in agreement in favoring the idea of two series of returns

produced by different data generating processes.

Probabilistic Sharpe Ratio model. The case of Probabilistic Sharpe Ratio strongly

retraces the footsteps of the maximum Sharpe Ratio.

Figure 1.64: PSR equity lines. Figure 1.65: PSR QQ plot.

Also in this case, the dominance of portfolio 40 takes shape only in the last part of the

data, where it consolidates markedly. For the rest, the portfolio is often dominated by

335, which also reacts a little better to the pandemic collapse. The QQ plot shows very

clear deviations in the tail area, where L-shaped patterns are shown.
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maxD meanD VaR cVaR mean std skew kurt SR

psr(A) -0.36 -0.047 -0.023 -0.045 0.0947 0.018 -0.76 10.32 0.82

psr -0.32 -0.030 -0.021 -0.039 0.0729 0.015 -0.67 17.91 0.72

Table 1.73: Probabilistic Sharpe Ratio model: performance indicators.

The dominance of portfolio 335 is clear in terms of performance indicators, and the only

truly significant parameters in which its competitor does better are the expected return

and the Sharpe Ratio.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.21 0.06

Table 1.74: Probabilistic Sharpe Ratio model: econometric tests.

Econometric tests are also in this case more likely to distinguish the probability distribu-

tions of the returns for the two investment strategies.

Hierarchical Risk Parity model. The hierarchical Risk Parity model explicitly re-

wards portfolio 40 in this case as well.

Figure 1.66: HRP equity lines. Figure 1.67: HRP QQ plot.

During the post-pandemic bullish rally in financial markets, portfolio 40 immediately

begins its dominance. This is gradually widening more and more, often exploiting lateral

periods of the competitor portfolio, to which it opposes markedly bullish periods. The

QQ plot shows a clear distortion between the two distributions on the left tail, to the

advantage of portfolio 40.
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maxD meanD VaR cVaR mean std skew kurt SR

hrp(A) -0.36 -0.034 -0.022 -0.041 0.0825 0.016 -1.25 16.70 0.80

hrp -0.36 -0.042 -0.021 -0.041 0.0593 0.016 -1.02 16.06 0.57

Table 1.75: Hierarchical Risk Parity model: performance indicators.

On the risk side, two portfolios have rather similar profiles, except for the average draw-

down where there is an overperformance of autoencoder-based portfolio. Instead the

supremacy of the latter strongly emerges with respect to the expected return and con-

sequently on the Sharpe Ratio, where there is an improvement over the competitor of

0.23.

Kolmogorov-Smirnov Anderson–Darling

ρ-value 0.51 0.25*

Table 1.76: Hierarchical Risk Parity model: econometric tests.

Econometric tests offer hesitant results on the eventual rejection of the null hypothesis,

however leaning towards the impossibility of rejecting it.

RMT Covariance: rolling portfolios analysis. Last, the results of rolling portfolio

experiment carried out on Random Matrix Theory tools are presented.
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Figure 1.68: RMT based Covariance, Mean-Variance

Space: portfolio 40 against competitors.

Figure 1.69: RMT based Covariance, Average Sharpe Ra-

tio: portfolio 40 against competitors.

Again, portfolio 40 has both the highest return and the highest risk in the entire mean-

variance space. However, the dominance in terms of returns is less marked than the

weakness in terms of risk.

The average Sharpe Ratio obtained allows the Autoencoder-based portfolio to overperform

68% of its competitors. The result is worse than in the other two cases, but it remains

significant.

The direct relationship among average Sharpe ratio and Mean Square Error is confirmed.
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1.4.2 Portfolio 40 vs Portfolio 335 vs SP500

In this section the SP500 index is included in the comparison, so to briefly investigate the

over or underperformance of the portfolios with respect to the index, even if the Informa-

tion Sharpe Ratio partially answered to this question.

For sake of brevity, this focus has been done only with respect to historical covariance

matrix estimation.

From the equity lines it can be immediately seen that, with the exception of the Markowitz

and Minimum Variance models (NS) portfolio 40 always beat the SP500 in terms of overall

performance, remaining dominant over the entire period considered.

On the other hand, portfolio 335 is overperformed by the SP500 with respect to Markowitz

(both versions), Minimum Variance (NS) and Risk Parity, while is more or less similar as

regards the Probabilistic Sharpe Ratio model and Hierarchical Risk Parity.

During the pandemic-related crash, the SP500 performed roughly in line with both port-

folios.
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Figure 1.70: Markowitz. Figure 1.71: Markowitz (NS).

Figure 1.72: Minimum Variance. Figure 1.73: Min Variance (NS).

Figure 1.74: Sharpe. Figure 1.75: Risk Parity.

Figure 1.76: MD. Figure 1.77: Equally Weighted.

Figure 1.78: PSR. Figure 1.79: HRP.

The performance indicators confirm the strength of autoencoder-based portfolios. While

for measures of extreme risk all the portfolios are roughly aligned, things dramatically

change as for pure and risk-adjusted performance indicators.
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maxD meanD VaR cVaR mean std skew kurt

Markowitz -0.30 -0.034 -0.020 -0.036 0.0381 0.015 -0.65 12.99

MarkowitzNS -0.38 -0.039 -0.024 -0.043 0.0876 0.017 -1.19 16.05

MV -0.38 -0.040 -0.026 -0.045 0.0996 0.018 -1.16 15.71

MVNS -0.31 -0.030 -0.018 -0.037 0.0659 0.015 -0.89 15.72

SharpeNS -0.35 -0.043 -0.023 -0.043 0.0931 0.017 -0.79 11.19

RP -0.37 -0.038 -0.023 -0.043 0.0849 0.016 -1.22 16.29

MDNS -0.37 -0.040 -0.022 -0.041 0.0832 0.016 -0.71 13.42

EW -0.38 -0.039 -0.025 -0.044 0.0914 0.017 -1.20 16.07

PSR -0.36 -0.046 -0.024 -0.044 0.0917 0.018 -0.75 10.55

HRP -0.37 -0.037 -0.022 -0.042 0.0792 0.016 -1.22 16.61

Table 1.77: Historical Covariance: risk indicators and mean returns for portfolios 40

SR PSR ISR SoR CR

Markowitz 0.401061 0.00 -0.57 0.575760 0.893176

MarkowitzNS 0.810342 1.79 0.48 1.048760 1.620289

MV 0.878966 10.03 0.75 1.148087 1.814349

MVNS 0.694543 0.01 -0.14 0.948660 1.480147

SharpeNS 0.825205 1.34 0.41 1.133741 1.834810

RP 0.803024 1.47 0.42 1.032308 1.594957

MDNS 0.795873 0.57 0.26 1.084583 1.564518

EW 0.836370 3.82 0.58 1.082632 1.687287

PSR 0.807292 0.58 0.36 1.114666 1.790694

HRP 0.757377 0.28 0.25 0.977133 1.504395

Table 1.78: Historical Covariance: performance indicators adjusted for risk for portfolios

40

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.006597 1.869464 0.735780

MarkowitzNS 1.081423 19.973684 0.930275

MV 1.083942 20.554054 0.932110

MVNS 1.027957 7.500000 0.882569

SharpeNS 1.039660 20.760000 0.954128

RP 1.106788 25.700000 0.944954

MDNS 1.082768 20.760000 0.954128

EW 1.081423 19.973684 0.930275

PSR 1.090323 15.000000 0.937615

HRP 1.106788 25.700000 0.944954

Table 1.79: Historical Covariance: bull/bear persistence, bull/bear recovery and bull dom-

inance for portfolios 40
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maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.45 -0.10 -0.025 -0.047 0.0381 0.019 -0.59 14.00

MarkowitzNS -0.36 -0.04 -0.020 -0.040 0.0448 0.016 -1.07 17.16

MV -0.39 -0.04 -0.025 -0.046 0.0854 0.018 -0.95 13.08

MVNS -0.37 -0.04 -0.019 -0.041 0.0440 0.016 -0.96 17.90

SharpeNS -0.33 -0.03 -0.021 -0.039 0.0733 0.016 -0.79 18.28

RP -0.37 -0.04 -0.022 -0.042 0.0629 0.016 -1.09 15.81

MDNS -0.31 -0.02 -0.016 -0.035 0.0699 0.014 -0.56 18.77

EW -0.38 -0.04 -0.023 -0.044 0.0738 0.017 -0.98 14.87

PSR -0.33 -0.03 -0.021 -0.039 0.0729 0.016 -0.82 18.40

HRP -0.36 -0.04 -0.021 -0.041 0.0596 0.016 -1.04 16.30

Table 1.80: Historical Covariance: risk indicators and mean returns for portfolios 335

SR PSR ISR SoR CR

Markowitz 0.306303 0.00 -0.37 0.432071 0.589488

MarkowitzNS 0.445047 0.00 -0.65 0.561285 0.875811

MV 0.736904 0.05 0.39 0.964208 1.523491

MVNS 0.424774 0.00 -0.56 0.544307 0.829478

SharpeNS 0.727181 0.06 0.04 0.940965 1.540999

RP 0.595316 0.00 -0.26 0.757018 1.183745

MDNS 0.761140 0.27 -0.03 0.998191 1.552187

EW 0.668725 0.00 0.07 0.852066 1.351297

PSR 0.721532 0.05 0.19 0.927101 1.522145

HRP 0.578651 0.00 -0.36 0.734309 1.142051

Table 1.81: Historical Covariance: performance indicators adjusted for risk for portfolios

335

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.007620 1.484018 0.598165

MarkowitzNS 1.051383 13.315789 0.930275

MV 1.059523 14.820000 0.908257

MVNS 1.054655 14.111111 0.933945

SharpeNS 1.051383 13.315789 0.930275

RP 1.058190 14.500000 0.906422

MDNS 1.035341 6.586667 0.906422

EW 1.062366 15.500000 0.911927

PSR 1.051383 13.315789 0.930275

HRP 1.049880 12.948718 0.928440

Table 1.82: Historical Covariance: bull/bear persistence, bull/bear recovery and bull dom-

inance for portfolios 335
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maxD meanD VaR cVaR mean std skew kurtosis

ˆSP500 -0.34 -0.038 -0.024 -0.041729 0.0709 0.016 -1.09 15.87

Table 1.83: SP500: risk indicators and mean returns

SR PSR ISR SoR CR

ˆSP500 0.704221 0.01 0.631739 0.942873 1.474809

Table 1.84: SP500: performance indicators adjusted for risk

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

ˆSP500 1.060913 15.153061 0.910092

Table 1.85: SP500: bull/bear persistence, bull/bear recovery and bull dominance

Eight out of ten asset allocation models in the Portfolio 40 group outperform the SP500

in terms of Sharpe Ratio and Probabilistic Sharpe Ratio. With regards to Information

Sharpe Ratio, Sortino and Calmar ratio the outperforming models rise to nine out of ten.

If the focus is shifted to portfolio 335 things are far worse. Only five out of ten models

outperform the SP500 in terms of Sharpe Ratio, only four if as regards Probabilistic

Sharpe Ratio, Information Sharpe Ratio and Calmar Ratio, and just two considering only

the downside risk through Sortino Ratio.

1.4.3 Stock picking on validation set

Stock-picking performed on the basis of the train set MSE on the one hand provides the

robustness of a very long period of time that includes different cycles, topical moments

and regimes, on the other side it is anchored to excessively old information.

In this section, both previous analyzes are repeated, but the 40 assets are picked on the

validation set MSE.

Experiments are still organized with respect to covariance matrix estimation techniques

and across the same asset allocation models.

Historical Covariance Matrix

As can be seen from the equity lines, the dominance of the 40 portfolio has on average

significantly increased.

The first thing to be noticed is that portfolio 40 overperforms the benchmark for 8 asset

allocation models out of 10, while portfolio 335 only in three cases, in terms of pure

performance.
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Figure 1.80: Markowitz. Figure 1.81: Markowitz (NS).

Figure 1.82: Minimum Variance. Figure 1.83: Min Variance (NS).

Figure 1.84: Sharpe. Figure 1.85: Risk Parity.

Figure 1.86: MD. Figure 1.87: Equally Weighted.

Figure 1.88: PSR. Figure 1.89: HRP.

The graphic intuition is fully confirmed by the performance metrics. The two groups of

portfolios tend to be equivalent for maximum drawdown, while for the mean drawdown,

portfolio 40 dominates, except for maximum Sharpe, maximum diversification and PSR.

Compared to VaR a slight but not negligible prevalence of portfolio 335 is recorded, while

for cVaR the two groups are on average equivalent. Things dramatically change for risk-

adjusted performance, in favor of portfolio 40.
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maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.34 -0.052 -0.020 -0.036026 0.0455 0.015 -0.63 11.98

MarkowitzNS -0.38 -0.040 -0.025 -0.043186 0.0991 0.017 -0.90 13.46

MV -0.39 -0.042 -0.027 -0.045393 0.1082 0.018 -0.90 13.68

MVNS -0.33 -0.039 -0.020 -0.036276 0.0583 0.015 -0.81 14.16

SharpeNS -0.39 -0.041 -0.026 -0.044261 0.1162 0.018 -0.31 15.20

RP -0.36 -0.038 -0.024 -0.041290 0.0904 0.016 -0.90 13.34

MDNS -0.34 -0.035 -0.020 -0.037422 0.0736 0.015 -0.76 13.65

EW -0.38 -0.040 -0.025 -0.043186 0.0991 0.017 -0.90 13.46

PSR -0.40 -0.043 -0.027 -0.044975 0.1091 0.018 -0.32 14.99

HRP -0.36 -0.039 -0.024 -0.040922 0.0888 0.016 -0.86 12.79

Table 1.86: Risk indicators and mean returns for portfolios 40

SR PSR ISR SoR CR

Markowitz 0.495529 0.00 -0.586259 0.701045 0.957634

MarkowitzNS 0.930931 22.49 0.717242 1.270438 1.860189

MV 0.965317 35.63 0.856362 1.322415 1.949844

MVNS 0.637336 0.00 -0.338095 0.863752 1.241241

SharpeNS 1.014559 56.06 0.787436 1.436505 2.087019

RP 0.888879 10.40 0.528155 1.205863 1.759570

MDNS 0.776819 0.27 0.059381 1.066253 1.525351

EW 0.930931 22.49 0.717242 1.270438 1.860189

PSR 0.947586 28.10 0.658163 1.342245 1.942064

HRP 0.879680 8.13 0.475333 1.195294 1.720440

Table 1.87: Performance indicators adjusted for risk for portfolios 40

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.006362 1.834483 0.732110

MarkowitzNS 1.070709 17.476744 0.921101

MV 1.070709 17.476744 0.921101

MVNS 1.053523 9.264151 0.902752

SharpeNS 1.022350 11.952381 0.922936

RP 1.074657 18.402439 0.924771

MDNS 1.036846 6.555556 0.867890

EW 1.070709 17.476744 0.921101

PSR 1.039660 20.760000 0.954128

HRP 1.074657 18.402439 0.924771

Table 1.88: Bull/bear persistence, bull/bear recovery and bull dominance for portfolios 40
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maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.42 -0.099 -0.021 -0.043566 0.0134 0.018 -0.43 11.87

MarkowitzNS -0.35 -0.042 -0.020 -0.039022 0.0449 0.016 -0.88 16.56

MV -0.40 -0.045 -0.025 -0.046483 0.0844 0.018 -0.99 14.23

MVNS -0.37 -0.045 -0.020 -0.040224 0.0451 0.016 -0.85 17.38

SharpeNS -0.32 -0.032 -0.021 -0.039681 0.0669 0.016 -0.87 17.86

RP -0.38 -0.044 -0.022 -0.042434 0.0621 0.017 -1.04 16.11

MDNS -0.34 -0.029 -0.018 -0.037239 0.0656 0.015 -0.68 18.72

EW -0.39 -0.044 -0.024 -0.044337 0.0728 0.018 -1.03 15.18

PSR -0.35 -0.031 -0.021 -0.040752 0.0774 0.016 -1.01 17.46

HRP -0.37 -0.042 -0.022 -0.041566 0.0609 0.016 -1.10 16.57

Table 1.89: Risk indicators and mean returns for portfolios 335

SR PSR ISR SoR CR

Markowitz 0.118370 0.00 -0.726115 0.168290 0.226532

MarkowitzNS 0.458296 0.00 -0.671223 0.572512 0.899792

MV 0.727055 0.03 0.374349 0.932410 1.505839

MVNS 0.446255 0.00 -0.585316 0.566083 0.870757

SharpeNS 0.666202 0.00 -0.107145 0.840897 1.459442

RP 0.585212 0.00 -0.285752 0.728003 1.163923

MDNS 0.685506 0.00 -0.141137 0.876941 1.345121

EW 0.657886 0.00 0.047422 0.826281 1.330298

PSR 0.758611 0.28 0.238899 0.946178 1.580979

HRP 0.588354 0.00 -0.331294 0.733006 1.163508

Table 1.90: Performance indicators adjusted for risk for portfolios 335

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.005213 1.407080 0.585321

MarkowitzNS 1.054655 14.111111 0.933945

MV 1.060913 15.153061 0.910092

MVNS 1.056439 14.542857 0.935780

SharpeNS 1.051383 13.315789 0.930275

RP 1.062366 15.500000 0.911927

MDNS 1.054655 14.111111 0.933945

EW 1.062366 15.500000 0.911927

PSR 1.072633 17.928571 0.922936

HRP 1.049880 12.948718 0.928440

Table 1.91: Bull/bear persistence, bull/bear recovery and bull dominance for portfolios

335
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As for Sharpe Ratio, all the models in portfolio 40 offer better performance and on average

the difference between the two groups of portfolios is around 0.28 return per unit of risk.

The difference in terms of PSR is evident, while as regards the Information Sharpe Ratio

it can be seen how the 335 portfolio offers a negative performance compared to the bench-

mark in 7 cases out of 10, and in none of the remaining 3 manages to touch the barrier of

0.4. On the other hand, portfolio 40 recorded only two cases of negative excess return -

Markowitz and Minimum Variance (both NS) - settling on a positive excess return in all

other cases, also exceeding the threshold of 0.4 in 7 cases out of 10. In terms of Sortino

and Calmar Ratio, portfolio 40 dominance becomes even more pronounced.

With respect to benchmark, the good overperformances recorded on the train set stock-

picking procedure are here largerly improved.

For the rolling portfolio analysis, the results are excellent. Indeed, in the pseudo mean-

variance space it can be observed that autoencoder-based portfolio overperforms almost

all the competitors both in terms of variance and return.

Figure 1.90: Mean-Variance Space: portfolio 40 against competitors.
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Figure 1.91: Average Sharpe Ratio: portfolio 40 against competitors.

The good balance among the average performance and risk is confirmed by the average

Sharpe ratio, with respect to which portfolio 40 overperforms the 100% of its competitors.

Please note that also in this case the decreasing trend of the average Sharpe ratios with

respect to the MSE is strongly confirmed.

Exponentially Weighted Covariance Matrix

Even for the covariance matrix estimated by exponentially weighting deviations from mean

returns, the dominance of portfolio 40 is undisputed.

Again it overpeforms the benchmark in 8 cases out of 10, against the 4 out of 10 of portfolio

335.



88 CHAPTER 1. AUTOENCODER LOW BETA PORTFOLIOS

Figure 1.92: Markowitz. Figure 1.93: Markowitz (NS).

Figure 1.94: Minimum Variance. Figure 1.95: Min Variance (NS).

Figure 1.96: Sharpe. Figure 1.97: Risk Parity.

Figure 1.98: MD. Figure 1.99: Equally Weighted.

Figure 1.100: PSR. Figure 1.101: HRP.

In terms of pure risk there is however a certain balance between the two groups of portfo-

lios. Compared to the maximum and average drawdown, a slight preference for portfolio

40 is shown, while for the Value at Risk measures the situation is totally balanced.
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maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.31 -0.045 -0.023 -0.038321 0.0574 0.016 -0.40 8.46

MarkowitzNS -0.38 -0.040 -0.025 -0.043186 0.0991 0.017 -0.90 13.46

MV -0.41 -0.045 -0.028 -0.047224 0.1116 0.019 -0.87 13.78

MVNS -0.29 -0.034 -0.020 -0.035428 0.0666 0.014 -0.91 13.38

SharpeNS -0.40 -0.049 -0.029 -0.046134 0.1086 0.019 -0.19 13.24

RP -0.35 -0.036 -0.024 -0.039906 0.0887 0.016 -0.93 13.29

MDNS -0.30 -0.031 -0.019 -0.036201 0.0752 0.015 -0.72 11.87

EW -0.38 -0.040 -0.025 -0.043186 0.0991 0.017 -0.90 13.46

PSR -0.41 -0.051 -0.028 -0.046765 0.0900 0.019 -0.46 13.18

HRP -0.33 -0.034 -0.023 -0.037784 0.0794 0.015 -0.88 13.06

Table 1.92: Risk indicators and mean returns for portfolios 40

SR PSR ISR SoR CR

Markowitz 0.581885 0.0 -0.238201 0.872397 1.326639

MarkowitzNS 0.930931 22.49 0.717242 1.267843 1.860189

MV 0.953836 31.04 0.850133 1.309355 1.935063

MVNS 0.735252 0.04 -0.106779 1.027315 1.600079

SharpeNS 0.927553 19.04 0.600445 1.344564 1.898665

RP 0.897927 12.57 0.495313 1.213650 1.798490

MDNS 0.807161 0.70 0.086108 1.146729 1.774548

EW 0.930931 22.49 0.717242 1.267843 1.860189

PSR 0.758636 0.07 0.292974 1.066798 1.563707

HRP 0.839844 2.87 0.231120 1.147746 1.694192

Table 1.93: Performance indicators adjusted for risk for portfolios 40

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.012451 2.787302 0.805505

MarkowitzNS 1.070709 17.476744 0.921101

MV 1.070709 17.476744 0.921101

MVNS 1.023810 4.666667 0.873394

SharpeNS 1.036594 9.666667 0.906422

RP 1.074657 18.402439 0.924771

MDNS 1.005896 2.304124 0.820183

EW 1.070709 17.476744 0.921101

PSR 1.043557 5.800000 0.853211

HRP 1.079043 19.423077 0.928440

Table 1.94: Bull/bear persistence, bull/bear recovery and bull dominance for portfolios 40
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maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.33 -0.136 -0.029 -0.046325 -0.0299 0.019 -0.54 4.27

MarkowitzNS -0.37 -0.046 -0.021 -0.041203 0.0509 0.016 -1.16 16.89

MV -0.40 -0.047 -0.026 -0.047195 0.0853 0.019 -0.96 13.90

MVNS -0.41 -0.066 -0.022 -0.044304 0.0496 0.018 -1.19 15.53

SharpeNS -0.38 -0.049 -0.023 -0.043981 0.0676 0.017 -1.61 20.02

RP -0.38 -0.044 -0.022 -0.042393 0.0622 0.017 -1.06 16.16

MDNS -0.39 -0.053 -0.022 -0.042821 0.0523 0.017 -0.85 13.03

EW -0.39 -0.044 -0.024 -0.044337 0.0728 0.018 -1.03 15.18

PSR -0.35 -0.036 -0.022 -0.041583 0.0737 0.016 -1.30 18.40

HRP -0.37 -0.042 -0.021 -0.041540 0.0602 0.016 -1.13 16.43

Table 1.95: Risk indicators and mean returns for portfolios 335

SR PSR ISR SoR CR

Markowitz -0.246957 0.00 -0.847837 -0.385266 -0.649424

MarkowitzNS 0.493656 0.00 -0.595970 0.609688 0.967485

MV 0.721623 0.02 0.371111 0.936753 1.499354

MVNS 0.449092 0.00 -0.438826 0.567942 0.859886

SharpeNS 0.615441 0.00 -0.083528 0.746932 1.267748

RP 0.586721 0.00 -0.287502 0.731176 1.165575

MDNS 0.479709 0.00 -0.396674 0.631881 0.935752

EW 0.657886 0.00 0.047422 0.827821 1.330298

PSR 0.712625 0.05 0.074586 0.875162 1.467682

HRP 0.583273 0.00 -0.357036 0.722682 1.147922

Table 1.96: Performance indicators adjusted for risk for portfolios 335

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.000111 1.005405 0.456881

MarkowitzNS 1.054655 14.111111 0.933945

MV 1.059523 14.820000 0.908257

MVNS 1.054655 14.111111 0.933945

SharpeNS 1.051383 13.315789 0.930275

RP 1.062366 15.500000 0.911927

MDNS 1.062366 15.500000 0.911927

EW 1.062366 15.500000 0.911927

PSR 1.051383 13.315789 0.930275

HRP 1.049880 12.948718 0.928440

Table 1.97: Bull/bear persistence, bull/bear recovery and bull dominance for portfolios

335
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In terms of risk-adjusted performance, the domination of portfolio 40 is clear, with an

average increase in the Sharpe ratio that is around 0.30 and which is heavily reflected in

the PSR. What was deduced with respect to the benchmark is confirmed by the ISR, where

only three times portfolio 335 generates an excess return, and there are no cases where

Information Sharpe Ratio reach the threshold of 0.4. On the other hand, portfolio 40, in

addition to generating excess returns in 8 out of 10 cases as already mentioned, exceeds

the 0.4 threshold in 8 of them. The other indicators furtherly confirm the preferability of

portfolio 40.

Also in this case the analysis on rolling portfolios confirms the excellent positioning of

portfolio 40.

Figure 1.102: Mean-Variance Space: portfolio 40 against competitors.

In the pseudo mean-variance space portfolio 40 is highly competitive in terms of both

return and risk.
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Figure 1.103: Average Sharpe Ratio: portfolio 40 against competitors.

The confirmation comes from the the average Sharpe ratios plots, where the autoencoder-

based portfolio outperforms over 98% of the competitors. Also in this case the descending

pattern is strongly confirmed.

RMT Covariance Matrix

The portfolios obtained through Random Matrix Theory based covariance estimation make

no exception and again portfolio 40 is clearly superior on average in terms of pure perfor-

mance.

In this case the benchmark is overperformed on 7 out of 10 cases, against the 3 out of 10

of portfolio 335.
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Figure 1.104: Markowitz. Figure 1.105: Markowitz (NS).

Figure 1.106: Minimum Vari-

ance.

Figure 1.107: Min Variance

(NS).

Figure 1.108: Sharpe. Figure 1.109: Risk Parity.

Figure 1.110: MD. Figure 1.111: Equally Weighted.

Figure 1.112: PSR. Figure 1.113: HRP.

Talking about the extreme risk measures, portfolio 335 is slightly better for what regards

the maximum drawdown, while portfolio 40 presents more convenient average drawdowns.

As for Value at Risk portfolio 335 is slightly better, while for the conditional Value at Risk

the two portfolios are quite balanced.
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maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.30 -0.045 -0.018 -0.032940 0.0445 0.014 -0.31 9.95

MarkowitzNS -0.38 -0.040 -0.025 -0.043186 0.0991 0.017 -0.90 13.46

MV -0.39 -0.042 -0.027 -0.045347 0.1082 0.018 -0.90 13.70

MVNS -0.32 -0.034 -0.019 -0.034620 0.0581 0.014 -0.63 12.78

SharpeNS -0.40 -0.043 -0.027 -0.044732 0.1169 0.018 -0.25 14.73

RP -0.36 -0.038 -0.024 -0.041197 0.0903 0.016 -0.90 13.30

MDNS -0.33 -0.035 -0.020 -0.036061 0.0672 0.015 -0.68 12.29

EW -0.38 -0.040 -0.025 -0.043186 0.0991 0.017 -0.90 13.46

PSR -0.40 -0.044 -0.028 -0.045191 0.1106 0.018 -0.30 14.59

HRP -0.36 -0.039 -0.024 -0.041314 0.0878 0.016 -0.92 13.94

Table 1.98: Risk indicators and mean returns for portfolios 40

SR PSR ISR SoR CR

Markowitz 0.520500 0.0 -0.518243 0.763414 1.053666

MarkowitzNS 0.930931 22.49 0.717242 1.257618 1.860189

MV 0.966139 35.97 0.858280 1.311625 1.951513

MVNS 0.658451 0.0 -0.310531 0.908933 1.299892

SharpeNS 1.013090 55.55 0.772592 1.436000 2.082105

RP 0.889744 10.57 0.526049 1.192010 1.760154

MDNS 0.734239 0.02 -0.098782 1.010515 1.435836

EW 0.930931 22.49 0.717242 1.257618 1.860189

PSR 0.958758 32.34 0.672497 1.345111 1.962699

HRP 0.861037 5.67 0.464368 1.149241 1.702705

Table 1.99: Performance indicators adjusted for risk for portfolios 40

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.006283 1.568182 0.675229

MarkowitzNS 1.070709 17.476744 0.921101

MV 1.070709 17.476744 0.921101

MVNS 1.070487 11.952381 0.922936

SharpeNS 1.054655 14.111111 0.933945

RP 1.074657 18.402439 0.924771

MDNS 1.045192 7.918033 0.888073

EW 1.070709 17.476744 0.921101

PSR 1.034983 9.264151 0.902752

HRP 1.074657 18.402439 0.924771

Table 1.100: Bull/bear persistence, bull/bear recovery and bull dominance for portfolios

40
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maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.38 -0.087 -0.019 -0.040144 0.0120 0.016 -1.16 12.94

MarkowitzNS -0.35 -0.041 -0.019 -0.039203 0.0454 0.016 -0.98 17.27

MV -0.40 -0.045 -0.025 -0.046478 0.0844 0.018 -0.99 14.23

MVNS -0.35 -0.040 -0.019 -0.039051 0.0443 0.016 -0.80 17.90

SharpeNS -0.32 -0.030 -0.020 -0.039696 0.0707 0.016 -0.88 17.70

RP -0.38 -0.044 -0.022 -0.042441 0.0622 0.017 -1.04 16.11

MDNS -0.34 -0.027 -0.018 -0.036997 0.0666 0.015 -0.68 19.48

EW -0.39 -0.044 -0.024 -0.044337 0.0728 0.018 -1.03 15.18

PSR -0.33 -0.029 -0.021 -0.039304 0.0721 0.016 -1.00 18.54

HRP -0.37 -0.042 -0.022 -0.041456 0.0586 0.016 -1.12 16.45

Table 1.101: Risk indicators and mean returns for portfolios 335

SR PSR ISR SoR CR

Markowitz 0.120019 0.00 -0.945205 0.160721 0.223593

MarkowitzNS 0.461001 0.00 -0.663707 0.580239 0.904801

MV 0.727194 0.03 0.374682 0.939592 1.506150

MVNS 0.449648 0.00 -0.600588 0.579713 0.893303

SharpeNS 0.702960 0.02 -0.014318 0.894596 1.547341

RP 0.585347 0.00 -0.284927 0.733663 1.164179

MDNS 0.700994 0.02 -0.114231 0.902457 1.403435

EW 0.657886 0.00 0.047422 0.832494 1.330298

PSR 0.726345 0.07 0.027112 0.910988 1.527840

HRP 0.568319 0.00 -0.402500 0.712209 1.123053

Table 1.102: Performance indicators adjusted for risk for portfolios 335

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.028493 7.634921 0.884404

MarkowitzNS 1.054655 14.111111 0.933945

MV 1.060913 15.153061 0.910092

MVNS 1.054655 14.111111 0.933945

SharpeNS 1.051383 13.315789 0.930275

RP 1.062366 15.500000 0.911927

MDNS 1.054655 14.111111 0.933945

EW 1.062366 15.500000 0.911927

PSR 1.041472 21.666667 0.955963

HRP 1.049880 12.948718 0.928440

Table 1.103: Bull/bear persistence, bull/bear recovery and bull dominance for portfolios

335
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In terms of Sharpe Ratio portfolio 40 averaged more than 0.25 units higher than its

competitor. This dominance is reflected unchanged in terms of PSR. For the Information

Sharpe Ratio, the larger portfolio shows results similar to those obtained with previous

covariance estimation methods. For portfolio 40, on the other hand, all 7 positive values

are also greater than 0.4. Sortino and Calmar Ratio just make the difference even sharper.

The rolling analysis strongly confirms the goodness of the autoencoder based portfolio.

Figure 1.114: Mean-Variance Space: portfolio 40 against its competitors.

The position in the mean-variance space is even better than in the other cases, with

portfolio 40 recording one of the highest average returns and one of the lowest average

variance.
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Figure 1.115: Average Sharpe Ratio: portfolio 40 against its competitors.

The average Sharpe ratio confirms the excellent return-risk combination, and portfolio 40

outperforms by a margin all the other portfolios. Also this time the decreasing trend is

clearly observed.

1.4.4 Autoencoder implied investment style.

In this section some factors impacted on the autoencoder-based stock-picking. Specifically,

first of all is investigated whether the proposed model isolates poorly correlated assets as

well as the relationship with β, broken down into its components as on [3]. Secondly, it

will be explored whether there are factors related to past performance in the autoencoder

cryterium.

Ideally, the Mean Square Error must capture at least part of the information contained in

the correlation matrix, possibly enriching it with non-linear components.

Something similar should happen for the β that connects the yield of the individual stocks

to that of the reference market: it would be natural that the stock picking naturally ex-

ploits the classic β anomaly, but also in this case enriched by non-linear components and

implicit factors.

It is interesting to compare the correlation matrix of the 40 stocks selected by the model

with the 40 assets that instead have the lowest Mean Square Error. This experiment is

run both for train set picking and for validation set picking procedures.
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Figure 1.116: Train picking, Train dataset:

correlation heatmap of 40 stocks with high-

est Mean Square Error.

Figure 1.117: Train Picking, Train dataset:

correlation heatmap of 40 stocks with lowest

Mean Square Error.

Figure 1.118: Train picking, Validation

dataset: correlation heatmap of 40 stocks

with highest Mean Square Error.

Figure 1.119: Train picking, Validation

dataset: correlation heatmap of 40 stocks

with lowest Mean Square Error.

Figure 1.120: Train picking, Test dataset:

correlation heatmap of 40 stocks with high-

est Mean Square Error.

Figure 1.121: Train picking, Test dataset:

correlation heatmap of 40 stocks with lowest

Mean Square Error.
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It clearly emerges that the group of 40 securities that recorded the highest Mean Square

Error have on average much weaker correlations against the 40 assets that are in the

lowest decile. This behavior remains unchanged over the various periods and datasets,

also showing a certain stability about the relationship extracted by the Autoencoder.

It is also worthy of attention how the correlations increase on average a lot for both groups

of stocks in the test set, where the pandemic crisis occurred, testifying that during systemic

collapses correlations rise strongly by construction.

The experiment replicated for the Validation set picking shows very similar results.

Figure 1.122: Validation picking, Validation

dataset: correlation heatmap of 40 stocks

with highest Mean Square Error.

Figure 1.123: Validation picking, Validation

dataset: correlation heatmap of 40 stocks

with lowest Mean Square Error.

Figure 1.124: Validation picking, Test

dataset: correlation heatmap of 40 stocks

with highest Mean Square Error.

Figure 1.125: Validation, Test dataset: cor-

relation heatmap of 40 stocks with lowest

Mean Square Error.

For β and its components as in [3] it has been analyzed the ranking of the stocks selected

by the autoencoder among the whole universe of assets.

In particular, stocks have been ranked on the basis of the percentile recorded with respect

to the β, the correlation between the yield of the stock and that of the SP500 index ρr,rm
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and with respect to the ratio between the standard deviation of the single stock and the

standard deviation of the SP550 σr
σrm

.

Ideally, we expect the stocks in portfolio 40 to register on average on first half of percentiles

for the three measurements. Even in this case, the experiment is repeated for both the

stock-picking procedures.

As for the Train set stock-picking, the average ranking and the standard deviation ranking

(in parenthesis) obtained by the 40 securities with regard to β is 45%(21%), 60%(14%)

and 47%(24%) respectively for Train, Validation and Test datasets.

Compared to ρr,rm the average ranking and standard deviations amount to 27%(21%),

47%(24%) and 39%(25%), while in reference to σr
σrm

values of 60%(14%), 65%(23%) and

56%(26%) were recorded.

For the stock-picking made on the Validation set, we have for β average and standard

deviation rankings 50%(24%) and 44%(30%) respectively for the Validation and the Test

set. For ρr,rm we recorded 24%(14%) and 27%(22%), while for σr
σrm

we have 86%(9%) and

59%(28%).

Please notice that it has been found a partially different evidence from [3]: the autoencoder

choose stocks which are in a low ranking in terms of index correlation and in a high ranking

as it regards volatility. It has to be said that the β computation adopted here is much more

straightforward than that provided in the aforementioned paper, and that high standard

deviations in our basket of secuirities in terms of ranking suggest that the autoencoder

relies on this strategy just for a small part.

That said, also some insights on the selection logic implied by the autoencoder have been

investigated. For both Train and Validation stock-picking, the rank of the basket of 40

asset has been computed, in both in-sample and out-of-sample perspective.
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mean std min 25% 50% 75% max

maxD 0.425667 0.247777 0.069333 0.201333 0.372000 0.640000 0.893333

meanD 0.401533 0.231107 0.042667 0.190667 0.406667 0.576667 0.917333

VaR 0.453533 0.194261 0.098667 0.308667 0.465333 0.590000 0.968000

cVaR 0.443800 0.152003 0.101333 0.365333 0.446667 0.535333 0.770667

Mean 0.545000 0.301794 0.018667 0.259333 0.597333 0.800667 0.968000

Std 0.603533 0.146420 0.320000 0.492000 0.593333 0.708667 0.938667

Skew 0.407867 0.343937 0.002667 0.086000 0.312000 0.674000 1.000000

Kurt 0.641600 0.279518 0.037333 0.475333 0.641333 0.908667 1.000000

SR 0.503467 0.286112 0.016000 0.273333 0.478667 0.762000 0.986667

ISR 0.525200 0.285062 0.021333 0.278667 0.546667 0.756667 0.968000

SoR 0.501667 0.286010 0.013333 0.272000 0.489333 0.751333 0.978667

CR 0.515733 0.294630 0.018667 0.256000 0.481333 0.809333 0.997333

Table 1.104: Train set stock-picking: characteristics of the 40 stocks during the Train

period.

There doesn’t seem to be an obvious criterion in the selection made by the autoencoder.

In fact, the average ranking across all the measures almost always remains in the range of

40-60, with the sole exception of kurtosis. Furthermore, for all measures with the exception

of VaR, cVaR and standard deviation, the volatility of portfolio rankings is close to 30%.

Risk-adjusted performance indicators in particular are all anchored around 50%. However,

it should be noted that, cVaR aside, there is for each measure at least one stock in the

portfolio that reaches 90% ranking, and many are particularly close to 100%.
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mean std min 25% 50% 75% max

maxD 0.461667 0.270094 0.002667 0.278667 0.444000 0.692000 0.901333

meanD 0.450800 0.232135 0.002667 0.278667 0.436000 0.600667 0.938667

VaR 0.433467 0.239153 0.005333 0.199333 0.510667 0.582667 0.893333

cVaR 0.425933 0.255562 0.008000 0.226667 0.417333 0.612667 0.981333

Mean 0.555800 0.282585 0.010667 0.357333 0.574667 0.785333 0.997333

Std 0.569133 0.269313 0.013333 0.362000 0.573333 0.792667 0.997333

Skew 0.429000 0.292450 0.002667 0.209333 0.368000 0.656000 1.000000

Kurt 0.516400 0.291008 0.010667 0.297333 0.530667 0.746667 1.000000

SR 0.532333 0.268799 0.021333 0.317333 0.574667 0.759333 0.960000

ISR 0.548467 0.275269 0.018667 0.327333 0.572000 0.777333 0.978667

SoR 0.529200 0.267625 0.018667 0.322000 0.576000 0.739333 0.941333

CR 0.533067 0.269108 0.024000 0.336667 0.574667 0.740667 0.997333

Table 1.105: Train set stock-picking: characteristics of the 40 stocks during the Test

period.

The ranking of the securities selected on the Train set seems to substantially preserve the

same properties on the Test set. Notable the reduction in average kurtosis. Therefore,

a precise pattern does not seem to emerge as regards the stock picking produced on the

Train set.

On the opposite, looking at the selection done on the Validation set, the investment style

becomes clearer.
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mean std min 25% 50% 75% max

maxD 0.207800 0.185432 0.002667 0.068667 0.153333 0.343333 0.709333

meanD 0.218133 0.227116 0.002667 0.039333 0.154667 0.272667 0.858667

VaR 0.268200 0.220540 0.013333 0.080667 0.184000 0.412000 0.733333

cVaR 0.166867 0.165031 0.008000 0.065333 0.108000 0.206667 0.669333

Mean 0.331600 0.351003 0.002667 0.044667 0.152000 0.614000 1.000000

Std 0.863267 0.093332 0.661333 0.817333 0.884000 0.930000 0.992000

Skew 0.349267 0.373444 0.002667 0.036000 0.154667 0.634667 1.000000

Kurt 0.798000 0.241497 0.240000 0.730000 0.914667 0.963333 1.000000

SR 0.298600 0.304279 0.002667 0.046667 0.165333 0.492667 0.997333

ISR 0.344667 0.315299 0.010667 0.058000 0.240000 0.592000 0.992000

SoR 0.301267 0.303192 0.002667 0.052000 0.169333 0.482667 0.989333

CR 0.300133 0.310270 0.002667 0.042000 0.164000 0.524667 0.968000

Table 1.106: Validation set stock-picking: characteristics of the 40 stocks.

The autoencoder selected stocks with a very high standard deviation (an average ranking

of 86%, with a variability of 9%, very low if compared to the other measures), a very

high kurtosis (79%) and pronounced extreme risk measures. On the opposite, the selected

assets are on low levels in terms of performance and risk-adjusted performance, being

aroung 31% rank.
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mean std min 25% 50% 75% max

maxD 0.465867 0.305050 0.002667 0.182667 0.452000 0.722667 1.000000

meanD 0.444667 0.294621 0.037333 0.158667 0.441333 0.723333 0.933333

VaR 0.414067 0.288154 0.005333 0.172667 0.361333 0.638000 0.997333

cVaR 0.427133 0.292076 0.008000 0.160667 0.396000 0.688667 0.989333

Mean 0.561467 0.313856 0.021333 0.340000 0.574667 0.846000 0.997333

Std 0.593867 0.285591 0.008000 0.359333 0.606667 0.863333 0.997333

Skew 0.529067 0.296112 0.002667 0.285333 0.580000 0.746000 1.000000

Kurt 0.420133 0.324698 0.008000 0.105333 0.374667 0.714667 1.000000

SR 0.541800 0.304162 0.024000 0.317333 0.586667 0.792000 0.968000

ISR 0.572867 0.283611 0.021333 0.350000 0.586667 0.841333 0.944000

SoR 0.549467 0.308981 0.024000 0.314667 0.580000 0.849333 0.968000

Calmar Ratio 0.554600 0.305451 0.032000 0.336667 0.548000 0.831333 0.994667

Table 1.107: Validation set stock-picking: characteristics of the 40 stocks during the Test

period.

During the test period, the average rankings settle down to more ambiguous values, and

the reduction of kurtosis is particularly striking. At the same time, the variability of the

rankings themselves increases, and the portfolio rationale becomes again more difficult to

identify.

Noteworthy, however, is the fact that even on the Test set there are no metrics related

to individual stocks that justify the excellent portfolio performance achieved. This means

that the goodness of the results obtained is to be ascribed not so much to the individual

stocks, but to their combination in the portfolio. This suggests that the autoencoder has

actually enhanced diversification possibilities.

1.4.5 Other comparisons

In addition to the experiments proposed up to now, other analyzes have been carried out.

For sake of space they are not reported but briefly mentioned in this section. All the

experiments have been compiled with stock-picking made on the train set (because it is

the worse version of the proposed model), and, if not differently specified, across the three

covariance matrix estimation techniques, and they are available upon request.

• Portfolio 40 vs Portfolio 375: The entire main analysis was reproposed, but

contrasting portfolio 40 with portfolio 375, that is by including in the competitor

portfolio also the 40 stocks in portfolio 40. The results showed an improvement in

portfolio 375 compared to 335, but the dominance of portfolio 40 was nevertheless
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undisputed. This result also confirms the applicative goodness of the model, since

reinserting the 40 securities with the greatest Mean Square Error has benefited the

portfolio.

• Validation and test set unified:Validation and test datasets have been unified to

have a longer and richer test dataset, calculating the weights of the allocation mod-

els on the Training set where the Autoencoder model was estimated. Such a choice

ignores the fact that the validation dataset was used to ensure the model generaliza-

tion power, so that is affected by a bias given by the certainty that the Autoencoder

adapts sufficiently good to the validation dataset, which now flows into the test one.

Anyway, the analysis was performed to provide further experiments possibilities.

Portfolio 335 dominates portfolio 40 substantially in all the risk components. It

is interesting to observe that in this case, portfolio 40 almost always reacts much

worse than its competitor to the pandemic crisis, while in the main analysis the two

portfolios were roughly similar in this aspect. Since the stocks in the portfolio are

the same as in the train stock-picking case, it can be understood that the reason for

this greater sensitivity is to be attributed to very different covariances estimation,

performed over an extremely long period of time and with historical method, thus

strongly mitigating the effects of a very large number of assets, and making greater

use of the data snooping implicit in the choice of the dataset.

The only parameter against which portfolio 40 models almost always dominates is

the expected return. This overperformance is sufficient for the portfolio to record

a higher Sharpe Ratio for each model, with the exception of the Maximum Sharpe

Ratio, the Maximum Diversification and the Probabilistic Sharpe Ratio allocation

models.

This analysis shows that over a broader period and without portfolio rebalancing,

having the entire basket of securities effectively serves to reduce risk, but returns are

affected. However, the behavior of the Equally Weight portfolio, where no further

parameter estimates are required, is interesting, because it shows how the choice of

40 stocks using the Autoencoder was more effective than the 335 remaining stocks.

As for the 40 stocks rolling portfolios, portfolio 40 outperforms a large number of

competitors in terms of average expected return, and as many in terms of average

variance. It is also significant that no competitor portfolio is able to overperform it

at the same time in terms of average risk and return. This result then produces a

very competitive average Sharpe Ratio: portfolio 40 record a Sharpe Ratio greater

than 96% of all other competing portfolios. The decreasing trend of the average

Sharpe Ratio is again verified.

• Inverse Proportional Beta portfolio: Portfolio 40 and 335 have been compared
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against a stratey which allocates to an asset i the weight given by 1/βi∑︁375
i=1 1/βi

, i.e.

assets with a lower Beta had a proportionately greater weight in the investment.

Betas have been estimated on daily log-returns and with respect to the SP500 index.

This experiment served to show whether the autoencoder-based model improved

performance beyond the exploitation of a standard Beta anomaly strategy. In all

asset allocation models, portfolio 40 outperformed the β portfolio. The results of

the comparison between the 335 portfolio and the β portfolio instead gave mixed

results, with a slight advantage of the β portfolio.

• Beta stock-picking: Portfolio 40-based asset allocation models were tested against

those obtained on the 40 stocks with lowest Beta, which has been calculated as in

the previous experiment. Autoencoder-based portfolio performs better in terms of

return than that based on the classic Beta, with the only exception represented by

the Markowitz portfolio. The difference becomes enormous especially looking at the

case of Markowitz (NS), Minimum Variance, Risk Parity, Equally Weighted and Hi-

erarchical Risk Parity. On the other hand, in most cases - Markowitz, Minimum

Variance (NS), Risk Parity, Maximum Diversification, Equally Weighted and Hier-

archical Risk Parity - the portfolio based on classic Beta is better able to withstand

the impact of the pandemic crisis than its antagonist. With the exception of kurto-

sis, classic Beta-based portfolios quite clearly dominate their competitors in terms

of extreme risk measures. Apart from the Markowitz portfolio case, in terms of

Drawdowns (maximum and average), VaR and cVaR, the portfolios based on classic

Beta are decidedly more attractive.

The situation is completely reversed as for performance. With the exception also

in this case of the Markowitz model, the Autoencoder-based portfolios are strongly

preferable to their competitors. Considering the Sharpe Ratio, on average Autoencoder-

based portfolios provide for an incremental 0.18 return for a single unit of risk. The

difference is then further increased in all cases by looking at the Probabilistic Sharpe

Ratio and the Sortino Ratio. On the other hand, the improvement in Calmar Ratio

was slightly milder, thanks to the contained Drawdowns of the classic Beta-based

portfolios.

1.5 Analyzes on different datasets

In this section similar analyzes have been collected on other datasets. These ones present

different problems which affect the reliability of the results obtained.

Anyway, they were included in the analysis to extend the empirical proposal of the model

as far as possible.

The first dataset is again on SP500 universe but data were collected in a previous period.

The second one is on the FTSE350 universe, in a period similar to that chosen for the
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main analysis.

For each dataset, the criticalities are reported at the opening of the proper section, along

with how this can overshadow the reliability of the results obtained.

Theese analyzes are more condensed: pairs comparisons are not included and only the his-

torical covariance matrix results has been included for sake of brevity. Anyway, the other

two estimation methods provided very similar results which are available upon request.

1.5.1 SP500: 08/07/1992 to 22/09/2006

The dataset runs from 08/07/1992 to 22/09/2006, where the train dataset records data

from the first day until 10/07/2002, the validation dataset from 11/07/2002 to 18/08/2004

and finally the test set from 19/08/2004 until the end of the overall period.

There are only 237 stocks surviving within the index over the period - as well as to date,

by construction -, that is, less than half of those required. So the stocks considered are

those able to enter the most capitalized index in the world and remain there continuously

for about 30 years, given that the list of tickers considered has to be the current one.

The data snooping problem is obvious and huge, and from one side it undermines the

performance reliability but from the other side makes stock-picking much more difficult,

in the sense that it is very difficult to correctly select the best securities in a small subset

that already collects by construction the best stocks in the world for the last thirty years.

Stock picking on Train set.

In fact, it can be observed from the performance indicators how from a risk profile portfolio

197 dominates portfolio 40 with respect to all asset allocation models.

In terms of return, the situation is partly reversed in favor of portfolio 40, except for three

very notable cases: maximum Sharpe Ratio, Probabilistic Sharpe Ratio and Maximum

Diversification. These models built on the 197 residual stocks are in fact the ones that

result in the highest possible performance, in particular the Maximum Diversification

portfolio which also shows a very good risk profile.

This result should not come as a surprise: knowing a priori that the stocks on which the

portfolio has been built will perform well, it makes sense to choose a model that maximizes

diversification.
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maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.10 -0.028 -0.013 -0.015839 0.0689 0.007 -0.12 0.53

MarkowitzNS -0.10 -0.024 -0.011 -0.014847 0.0596 0.008 0.06 0.34

MV -0.11 -0.028 -0.012 -0.015833 0.0551 0.008 0.07 0.33

MVNS -0.09 -0.021 -0.012 -0.015793 0.0849 0.008 -0.16 0.51

SharpeNS -0.17 -0.036 -0.015 -0.018730 0.0891 0.010 0.08 0.68

RP -0.09 -0.021 -0.010 -0.014046 0.0641 0.007 0.05 0.34

MDNS -0.08 -0.014 -0.010 -0.013240 0.0821 0.007 0.15 0.60

EW -0.10 -0.024 -0.011 -0.014847 0.0596 0.008 0.06 0.34

PSR -0.12 -0.027 -0.012 -0.015441 0.0721 0.008 0.03 0.28

HRP -0.09 -0.020 -0.010 -0.013491 0.0681 0.007 0.04 0.25

Table 1.108: SP500 92-2006: risk indicators and mean returns for portfolios 40.

SR PSR ISR SoR CR

Markowitz 1.467783 100.00 1.142131 2.817996 5.022597

MarkowitzNS 1.262553 100.00 0.931830 2.632235 4.226776

MV 1.098535 99.63 0.789339 2.293688 3.505228

MVNS 1.778693 100.00 1.452687 3.518666 6.821322

SharpeNS 1.477820 100.00 1.221764 3.096844 3.624100

RP 1.430275 100.00 1.079711 2.991970 4.929661

MDNS 1.881277 100.00 1.517560 4.232669 7.379091

EW 1.262553 100.00 0.931830 2.632235 4.226776

PSR 1.466049 100.00 1.148003 3.071426 4.317418

HRP 1.571101 100.00 1.207177 3.365372 5.634195

Table 1.109: SP500 92-2006: performance indicators adjusted for risk for portfolios 40.

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.015854 2.584034 0.773585

MarkowitzNS 1.018827 2.778571 0.735849

MV 1.022246 3.165354 0.760377

MVNS 1.032652 8.446429 0.894340

SharpeNS 1.017208 2.598639 0.722642

RP 1.025346 3.521368 0.779245

MDNS 1.037948 6.557143 0.867925

EW 1.018827 2.778571 0.735849

PSR 1.017884 3.371901 0.771698

HRP 1.021242 3.898148 0.796226

Table 1.110: SP500 92-2006: bull/bear persistence, bull/bear recovery and bull dominance

for portfolios 40.
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maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.06 -0.018 -0.009 -0.012081 0.0431 0.006 0.12 0.41

MarkowitzNS -0.07 -0.017 -0.010 -0.013760 0.0631 0.007 0.05 0.21

MV -0.09 -0.021 -0.012 -0.014703 0.0640 0.007 0.06 0.17

MVNS -0.05 -0.013 -0.010 -0.012517 0.0685 0.006 0.09 0.30

SharpeNS -0.14 -0.028 -0.016 -0.020532 0.1250 0.011 0.06 0.50

RP -0.06 -0.014 -0.010 -0.013199 0.0662 0.007 0.04 0.20

MDNS -0.08 -0.015 -0.013 -0.015934 0.1027 0.008 0.06 0.39

EW -0.07 -0.017 -0.010 -0.013760 0.0631 0.007 0.05 0.21

PSR -0.13 -0.027 -0.016 -0.019670 0.1191 0.010 0.07 0.47

HRP -0.06 -0.013 -0.010 -0.012384 0.0596 0.006 0.06 0.27

Table 1.111: SP500 92-2006: risk indicators and mean returns for portfolios 197.

SR PSR ISR SoR CR

Markowitz 1.100893 99.74 0.677138 2.249783 4.960098

MarkowitzNS 1.443325 100.00 1.063785 2.876687 6.152128

MV 1.362011 100.00 1.010214 2.720955 5.176207

MVNS 1.694353 100.00 1.281562 3.313615 9.456874

SharpeNS 1.860806 100.00 1.611583 3.740149 6.296796

RP 1.576464 100.00 1.180167 3.107065 7.285725

MDNS 1.991670 100.00 1.674715 3.966957 9.180567

EW 1.443325 100.00 1.063785 2.876687 6.152128

PSR 1.842203 100.00 1.583481 3.741657 6.389969

HRP 1.503295 100.00 1.083996 2.975798 7.406497

Table 1.112: SP500 92-2006: performance indicators adjusted for risk for portfolios 197.

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.022128 4.038095 0.801887

MarkowitzNS 1.035357 4.688172 0.824528

MV 1.037618 4.038095 0.801887

MVNS 1.053319 8.981132 0.900000

SharpeNS 1.028595 3.898148 0.796226

RP 1.033082 5.782051 0.852830

MDNS 1.035639 9.173077 0.901887

EW 1.035357 4.688172 0.824528

PSR 1.028595 3.898148 0.796226

HRP 1.033634 5.870130 0.854717

Table 1.113: SP500 92-2006: bull/bear persistence, null/bear recovery and bull dominance

for portfolios 197.
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However, the analysis on rolling portfolios 40 reveals a certain effectiveness of the proposed

stock-picking model.

Figure 1.126: SP500 92-2006, Mean-Variance Space: port-

folio 40 against competitors.

Figure 1.127: SP500 92-2006, Average Sharpe Ratio:

portfolio 40 against competitors.

In fact, there are many competitors on which the 40 portfolio dominates in terms of

expected return, while maintaining an average competitive risk profile.

In terms of average Sharpe Ratio, the 40 portfolio performs better than 71% of its potential

competitors. It should be noted that in this case the downward trend observed so far does

not emerge clearly, and indeed the maximum average Sharpe Ratio in absolute is obtained

on average on stocks with the lowest MSE. The problem of data snooping may have

produced this result.

Stock picking on Validation set.

By operating stock picking on the Validation set, the performance of portfolio 40 improves

considerably. In terms of pure returns, portfolio 40 tends to be superior to portfolio 197,

with the mild exceptions represented by maximum Sharpe and PSR, and the notable

exception of Maximum Diversification, which in the 197 version is the best portfolio in



1.5. ANALYZES ON DIFFERENT DATASETS 111

terms of performance among all those analysed.

That said, please notice how the data snooping mechanism crearly triggers in this example:

both the portfolios overperform the benchmark by a large amount. This is obviously due

to the fact that by construction the best possible securities have been pre-selected.

Figure 1.128: Markowitz. Figure 1.129: Markowitz (NS).

Figure 1.130: Minimum Vari-

ance.

Figure 1.131: Min Variance

(NS).

Figure 1.132: Sharpe. Figure 1.133: Risk Parity.

Figure 1.134: MD. Figure 1.135: Equally Weighted.

Figure 1.136: PSR. Figure 1.137: HRP.
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With respect to the extreme risk measures the two portfolios are pretty aligned, preserving

very good and balanced values. On the risk-adjusted performance perspective, portfolio

40 on average does better, with some notable exceptions.
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maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.08 -0.016 -0.011 -0.014717 0.0769 0.007 0.07 0.87

MarkowitzNS -0.08 -0.017 -0.012 -0.013910 0.0725 0.007 0.10 0.33

MV -0.08 -0.019 -0.013 -0.014981 0.0738 0.008 0.05 0.33

MVNS -0.08 -0.014 -0.011 -0.014872 0.0868 0.007 0.08 0.95

SharpeNS -0.11 -0.025 -0.017 -0.023789 0.1237 0.011 -0.06 0.42

RP -0.07 -0.016 -0.011 -0.013520 0.0738 0.007 0.11 0.39

MDNS -0.06 -0.013 -0.011 -0.013933 0.0780 0.007 0.12 0.63

EW -0.08 -0.017 -0.012 -0.013910 0.0725 0.007 0.10 0.33

PSR -0.11 -0.025 -0.017 -0.023656 0.1248 0.012 -0.05 0.39

HRP -0.07 -0.015 -0.011 -0.013758 0.0759 0.007 0.12 0.54

Table 1.114: Risk indicators and mean returns for portfolios 40

SR PSR ISR SoR CR

Markowitz 1.638575 99.98 1.373699 3.351668 6.614666

MarkowitzNS 1.576885 99.66 2.066152 3.353291 6.737503

MV 1.535148 86.55 1.860167 3.189944 6.445923

MVNS 1.856229 100.00 2.039027 3.802252 8.157040

SharpeNS 1.708971 100.00 1.653447 3.528423 7.944421

RP 1.636964 100.00 2.181378 3.509638 7.142288

MDNS 1.715270 100.00 1.798833 3.629992 8.785716

EW 1.576885 99.66 2.066152 3.353291 6.737503

PSR 1.721712 100.00 1.678670 3.578090 8.191081

HRP 1.676024 100.00 2.150789 3.567443 7.341950

Table 1.115: Performance indicators adjusted for risk for portfolios 40

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.050446 6.450704 0.866038

MarkowitzNS 1.029389 3.990566 0.800000

MV 1.034334 4.568421 0.820755

MVNS 1.046974 11.902439 0.922642

SharpeNS 1.021836 2.726667 0.771698

RP 1.029389 3.990566 0.800000

MDNS 1.066533 11.022727 0.916981

EW 1.029389 3.990566 0.800000

PSR 1.021836 2.726667 0.771698

HRP 1.039929 5.223529 0.839623

Table 1.116: Bull/bear persistence, bull/bear recovery and bull dominance for portfolios

40
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maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.08 -0.018 -0.010 -0.012803 0.0704 0.007 0.08 0.37

MarkowitzNS -0.08 -0.019 -0.011 -0.013999 0.0604 0.007 0.05 0.23

MV -0.10 -0.024 -0.011 -0.015052 0.0599 0.008 0.06 0.21

MVNS -0.06 -0.013 -0.011 -0.012716 0.0759 0.007 0.03 0.21

SharpeNS -0.13 -0.026 -0.016 -0.020015 0.1299 0.010 0.02 0.37

RP -0.07 -0.016 -0.011 -0.013302 0.0645 0.007 0.03 0.21

MDNS -0.08 -0.017 -0.012 -0.016117 0.1033 0.008 -0.02 0.43

EW -0.08 -0.019 -0.011 -0.013999 0.0604 0.007 0.05 0.23

PSR -0.12 -0.025 -0.016 -0.019118 0.1226 0.010 0.02 0.25

HRP -0.06 -0.015 -0.010 -0.012440 0.0566 0.006 0.03 0.26

Table 1.117: Risk indicators and mean returns for portfolios 197

SR PSR ISR SoR CR

Markowitz 1.655807 100.0 0.851964 3.565143 5.873334

MarkowitzNS 1.374715 100.0 2.491214 2.798940 5.529950

MV 1.259001 100.0 1.808931 2.598472 4.317272

MVNS 1.836550 100.0 1.582818 3.722501 9.327454

SharpeNS 1.999811 100.0 2.127472 4.170880 6.919232

RP 1.537985 100.0 2.670559 3.125837 6.653851

MDNS 2.025581 100.0 2.158964 4.060154 8.655417

EW 1.374715 100.0 2.491214 2.798940 5.529950

PSR 1.973347 100.0 2.093503 4.137112 7.088051

HRP 1.440157 100.0 1.806861 2.929890 6.624504

Table 1.118: Performance indicators adjusted for risk for portfolios 197

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.019603 3.640351 0.784906

MarkowitzNS 1.021242 3.898148 0.796226

MV 1.024960 2.889706 0.743396

MVNS 1.045460 5.870130 0.854717

SharpeNS 1.029536 3.300813 0.767925

RP 1.022434 4.086538 0.803774

MDNS 1.043970 5.696203 0.850943

EW 1.021242 3.898148 0.796226

PSR 1.029152 3.266129 0.766038

HRP 1.021532 3.943925 0.798113

Table 1.119: Bull/bear persistence, bull/bear recovery and bull dominance for portfolios

197
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In terms of Sharpe ratio, portfolio 40 overperforms its competitor in 6 cases out of 10,

but 2 of the 4 remaining models - Sharpe and MD - are also the best ones overall in

terms of Sharpe ratio. The situation is basically the same across the other risk-adjusted

performance indicators.

Rolling 40 portfolios analysis furtherly proves the goodness of our approach.

Figure 1.138: SP500 92-2006, Mean-Variance Space: port-

folio 40 against competitors.

In the pseudo mean-variance space, the autoencoder portfolio has an incredibly good

positioning in terms of return but low-medium one in terms of variance. Despite that,

as for average Sharpe ratio, the portfolio performs very good, exceeding the 100% of

competing portfolios.

Figure 1.139: SP500 92-2006, Average Sharpe Ratio:

portfolio 40 against competitors.

1.5.2 FTSE350: 27/08/2009 to 08/12/2021

This further analysis was carried out on the securities of the FTSE350, in the period from

27/08/2009 to 08/12/2021. Of the total of 350 stocks that currently make up the index,

only 185 were continuously listed over the entire period. This leads to another strong data
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snooping problem. Furthermore, it has been chosen to not include the subprime mortgage

period because the number of assets would have dropped below a hundred in that case.

That said, the train dataset runs from the beginning of the period to 29/05/2009, the

validation set from 30/05/2019 to 02/09/2020, finally the test set from 03/09/2020 until

the end of the period.
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Stock picking on Train set

maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.13 -0.040 -0.013 -0.018 0.0176 0.008 0.01 0.90

MarkowitzNS -0.12 -0.023 -0.013 -0.020 0.1056 0.009 -0.02 3.47

MV -0.12 -0.025 -0.014 -0.022 0.1258 0.011312 0.12 5.26

MVNS -0.15 -0.03 -0.013 -0.016 0.0339 0.007 -0.07 0.60

SharpeNS -0.22 -0.049 -0.020 -0.026 0.0251 0.013 0.26 0.85

RP -0.12 -0.022 -0.012 -0.018 0.0892 0.008 -0.10 2.05

MDNS -0.14 -0.024 -0.015 -0.017 0.0773 0.008 -0.13 0.39

EW -0.12 -0.02 -0.013 -0.020 0.1056 0.009 -0.026 3.47

PSR -0.19 -0.038 -0.016 -0.021 0.0455 0.011 0.17 0.47

HRP -0.12 -0.022 -0.012 -0.017 0.0745 0.008 -0.131 1.23

Table 1.120: FTSE350: risk indicators and mean returns for portfolios 40.

SR PSR ISR SoR CR

Markowitz 0.311395 0.00 0.108836 0.659431 0.908293

MarkowitzNS 1.698178 98.26 1.503859 3.377253 6.119748

MV 1.767603 99.10 1.596817 3.499250 7.287153

MVNS 0.689973 0.00 0.454096 1.405436 1.587445

SharpeNS 0.301862 0.00 0.164205 0.674175 0.790426

RP 1.599462 90.53 1.384187 3.216284 5.173521

MDNS 1.454447 19.11 1.233701 2.993505 3.756131

EW 1.698178 98.26 1.503859 3.377253 6.119748

PSR 0.634420 0.00 0.472901 1.439142 1.640240

HRP 1.418669 10.10 1.191672 2.898762 4.239710

Table 1.121: FTSE350: performance indicators adjusted for risk for portfolios 40.

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 0.997366 0.887755 0.540373

MarkowitzNS 1.032921 3.422222 0.720497

MV 1.023405 2.593272 0.661491

MVNS 1.014292 1.697479 0.630435

SharpeNS 1.020071 1.587010 0.577640

RP 1.029042 3.079038 0.698758

MDNS 1.018251 3.168831 0.760870

EW 1.032921 3.422222 0.720497

PSR 1.020408 1.960000 0.611801

HRP 1.029042 3.079038 0.698758

Table 1.122: FTSE350: bull/bear persistence, bull/bear recovery and bull dominance for

portfolios 40.
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maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.11 -0.031 -0.009 -0.013776 0.0223 0.007 -0.06 2.55

MarkowitzNS -0.06 -0.015 -0.011 -0.017019 0.0766 0.008 0.02 4.04

MV -0.08 -0.021 -0.015 -0.023850 0.1094 0.012 1.06 11.40

MVNS -0.04 -0.011 -0.008 -0.011219 0.0420 0.005 -0.27 3.06

SharpeNS -0.16 -0.066 -0.022 -0.035011 -0.0148 0.013 -1.01 3.04

RP -0.06 -0.015 -0.012 -0.018246 0.0837 0.009 0.29 5.90

MDNS -0.09 -0.024 -0.013 -0.017339 0.0605 0.009 0.15 0.92

EW -0.06 -0.017 -0.013 -0.020800 0.0965 0.010 0.66 8.55

PSR -0.12 -0.029 -0.013 -0.021710 0.0293 0.009 -0.84 3.61

HRP -0.06 -0.014 -0.011 -0.016460 0.0770 0.008 0.05 4.25

Table 1.123: FTSE350: risk indicators and mean returns for portfolios 135.

SR PSR ISR SoR CR

Markowitz 0.540759 0.00 0.226550 1.124112 1.453398

MarkowitzNS 1.552997 71.47 1.275733 2.959242 8.511888

MV 1.463482 38.52 1.282022 3.077307 9.567263

MVNS 1.292679 0.63 0.877043 2.456068 7.254291

SharpeNS -0.180690 0.00 -0.335513 -0.286902 -0.642646

RP 1.552725 69.33 1.298750 3.011718 9.549168

MDNS 1.107067 0.00 0.862019 2.487509 4.886124

EW 1.525709 58.71 1.310291 3.069603 10.583928

PSR 0.505914 0.00 0.283848 0.869902 1.708347

HRP 1.627650 90.38 1.336746 3.072718 9.318329

Table 1.124: FTSE350: performance indicators adjusted for risk for portfolios 135.

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.010386 1.914894 0.562112

MarkowitzNS 1.057296 3.041199 0.723602

MV 1.030688 2.208850 0.649068

MVNS 1.013896 1.675000 0.627329

SharpeNS 0.989564 0.725806 0.419255

RP 1.053154 3.331765 0.736025

MDNS 1.004710 1.276596 0.559006

EW 1.032629 2.301818 0.658385

PSR 1.007603 1.213793 0.549689

HRP 1.051901 2.817376 0.708075

Table 1.125: FTSE350: bull/bear persistence, bull/bear recovery and bull dominance for

portfolios 135.
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Portfolio 135 beats Portfolio 40 in terms of extreme risk, i.e. with respect to drawdowns

and Value at Risks. As regards the standard risk represented by the standard deviation,

the comparison is balanced, with a slight dominance of portfolio 40. Then portfolio 40

outperforms its competitor with respect to the return. This dominance is reflected in the

Sharpe Ratio, where with the exception of the Markowitz model and Minimum Variance

(NS), the stock-picked portfolio shows increasingly better results. The predominance in

this sense is confirmed by the Probabilistic Sharpe Ratio, with respect to which portfolio

40 records significantly higher values. The differences are then further amplified if looking

at the Sortino Ratio.

The performance of the Equally Weight model is always interesting, particularly useful in

evaluating pure stock picking, and it reveals a dominance of portfolio 40.

Figure 1.140: FTSE350, Mean-Variance space: portfolio

40 against competitors.

Figure 1.141: FTSE350, Average Sharpe Ratio: portfolio

40 against competitors.

As for the rolling portfolios analysis, portfolio 40 is better than half of its competitors in

terms of return and outperforms another half in terms of risk.

Its average Sharpe Ratio is then better than 85% of the othe 40 assets portfolios.

Even in this case, there is no clear downtrend in the average Sharpe ratios with respect
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to the decreasing Mean Square Error. Again, the dataset reduced from 350 to 185 total

assets may have affected the results.

Stock picking on Validation set

Also in this case, performing the stock selection procedure on the validation setstrongly

improves portfolio 40, as it can be seen immediately from the equity lines. In fact, in

terms of pure performance, the different among the two grops of portfolios is huge.
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Figure 1.142: Markowitz. Figure 1.143: Markowitz (NS).

Figure 1.144: Minimum Vari-

ance.

Figure 1.145: Min Variance

(NS).

Figure 1.146: Sharpe. Figure 1.147: Risk Parity.

Figure 1.148: MD. Figure 1.149: Equally Weighted.

Figure 1.150: PSR. Figure 1.151: HRP.

From the other side, portfolio 135 provides a more controlled extreme risk profile, domi-

nating portfolios 40 for most of the asset allocation models. But putting together risk and

return, the results are again extremely skewed in favor of portfolio 40.
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maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.08 -0.026 -0.013 -0.018165 0.0890 0.009 -0.03 1.41

MarkowitzNS -0.10 -0.025 -0.018 -0.026769 0.1538 0.014 1.52 14.78

MV -0.13 -0.033 -0.022 -0.032290 0.1668 0.018 1.82 17.29

MVNS -0.11 -0.027 -0.014 -0.017103 0.0789 0.008 -0.05 0.37

SharpeNS -0.17 -0.048 -0.023 -0.030119 0.0415 0.013 0.09 3.78

RP -0.08 -0.021 -0.015 -0.022354 0.1378 0.012 1.09 10.73

MDNS -0.11 -0.024 -0.014 -0.018270 0.1057 0.010 0.11 1.37

EW -0.10 -0.025 -0.018 -0.026769 0.1538 0.014 1.52 14.78

PSR -0.09 -0.021 -0.016 -0.021641 0.1193 0.011 -0.09 2.26

HRP -0.08 -0.021 -0.015 -0.020254 0.1258 0.010 0.73 7.14

Table 1.126: FTSE350: risk indicators and mean returns for portfolios 40.

SR PSR ISR SoR CR

Markowitz 1.610935 95.84 - 3.412764 7.714492

MarkowitzNS 1.697368 88.95 - 3.916708 10.357184

MV 1.514414 53.73 - 3.588232 8.817139

MVNS 1.506986 55.86 - 3.296977 5.271374

SharpeNS 0.500060 0.00 - 0.967146 1.691766

RP 1.854617 99.04 - 4.192744 12.542093

MDNS 1.767909 100.00 - 3.982542 7.009792

EW 1.697368 88.95 - 3.916708 10.357184

PSR 1.793635 99.98 - 3.772392 9.563285

HRP 1.922756 99.95 - 4.296215 11.088478

Table 1.127: FTSE350: performance indicators adjusted for risk for portfolios 40.

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.019881 2.028302 0.670807

MarkowitzNS 1.031195 3.268817 0.711180

MV 1.028528 3.034014 0.695652

MVNS 1.039000 3.111413 0.714286

SharpeNS 1.008224 1.445887 0.521739

RP 1.031195 3.268817 0.711180

MDNS 1.017794 1.812977 0.593168

EW 1.031195 3.268817 0.711180

PSR 1.044654 2.897872 0.708075

HRP 1.026559 2.862745 0.683230

Table 1.128: FTSE350: bull/bear persistence, bull/bear recovery and bull dominance for

portfolios 40.
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maxD meanD VaR cVaR mean std skew kurtosis

Markowitz -0.06 -0.017 -0.009 -0.013398 0.0480 0.006 0.02 2.36

MarkowitzNS -0.07 -0.016 -0.011 -0.016323 0.0660 0.007 -0.16 2.64

MV -0.07 -0.020 -0.014 -0.021143 0.0920 0.010 0.21 5.49

MVNS -0.04 -0.011 -0.008 -0.011195 0.0449 0.005 -0.24 3.17

SharpeNS -0.18 -0.068 -0.020 -0.033776 -0.0293 0.013 -0.69 2.63

RP -0.07 -0.017 -0.011 -0.017377 0.0733 0.008 -0.08 3.48

MDNS -0.11 -0.024 -0.012 -0.016761 0.0653 0.009 0.16 0.71

EW -0.07 -0.018 -0.012 -0.019252 0.0827 0.009 0.07 4.56

PSR -0.14 -0.060 -0.020 -0.033751 -0.0175 0.013 -0.69 2.16

HRP -0.06 -0.015 -0.010 -0.015837 0.0692 0.007 -0.19 2.68

Table 1.129: FTSE350: risk indicators and mean returns for portfolios 135.

SR PSR ISR SoR CR

Markowitz 1.189279 0.00 - 2.496175 5.392221

MarkowitzNS 1.400349 10.52 - 2.732904 6.949571

MV 1.469170 37.71 - 2.955808 9.094857

MVNS 1.379201 7.93 - 2.684742 7.340206

SharpeNS -0.347151 0.00 - -0.624375 -1.176076

RP 1.454195 29.90 - 2.855941 7.745495

MDNS 1.206689 0.00 - 2.899220 4.212077

EW 1.465946 35.80 - 2.909125 8.410411

PSR -0.210459 0.00 - -0.378057 -0.864151

HRP 1.525144 61.76 - 2.956681 7.874297

Table 1.130: FTSE350: performance indicators adjusted for risk for portfolios 135.

BullToBull/BearToBear BearToBull/BullToBear Bull Periods

Markowitz 1.028172 2.178218 0.683230

MarkowitzNS 1.059615 3.137931 0.729814

MV 1.032629 2.301818 0.658385

MVNS 1.035137 2.527473 0.717391

SharpeNS 1.007310 1.188679 0.506211

RP 1.051901 2.817376 0.708075

MDNS 1.000915 1.059140 0.611801

EW 1.035349 2.433962 0.670807

PSR 1.008908 1.233974 0.515528

HRP 1.059615 3.137931 0.729814

Table 1.131: FTSE350: bull/bear persistence, bull/bear recovery and bull dominance for

portfolios 135.
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Indeed, portfolio 40 dominates portfolio 135 by a large average amount across all risk-

adjusted performance measures and with respect to all the portfolio models which have

been implemented. For example, as regarding the Sharpe ratios, portfolios 40 models

overperforms on average its competitor by more than 0.50 units of return for one unit of

risk. The PSR, which is this time computed with respect to the 1.5 treshold, underlines

the dominance of portfolio 40. The ISR has not been computed because our data provider

incredibly does not have the historical data for the FTSE350 index.

As for the rolling portfolios analysis, the model performs not bad. The positioning in

the mean-space is very extreme: portfolio 40 has the highest return but also the highest

variance, and in both cases by a large margin.

Figure 1.152: FTSE350, Mean-Variance Space: portfolio 40 against competitors.

In the compromise among performance and risk, the overall positioning is very good.

Indeed, in terms of average Sharpe Ratio, portfolio 40 outperforms 93% of its competitors.
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Figure 1.153: FTSE350, Average Sharpe Ratio: portfolio 40 against competitors.

1.6 Conclusions

In this paper the curse of dimensionality problem have been adressed.

The proposed solution seeks to select a small basket of assets from an investment universe,

such those have two characteristics: they must be poorly correlated with each other and

poorly correlated with the market. In this way, true diversification can be achieved and a

generalized Beta anomaly strategy can be exploited.

For this purpose, an Autoencoding neural network was produced, modified to leave room

for features that capture the momentum of the individual assets. The Autoencoder is

therefore configured as a market model, which, starting from a reduced number of latent

factors, tries to reconstruct the series of returns of the individual assets. The less accu-

rately reconstructed stocks are by construction poorly correlated to each other and poorly

correlated to the market as a whole, where the correlation concept is to be understood in

this case in a more general sense, given the non-linearity of the Autoencoder.

To confirm the validity of the intuitions, various empirical analyzes and backtests have

been proposed, supported by performance indicators, applying several asset allocation

models crossed with various methods of estimating the covariance matrix. In almost all

the many experiments proposed, it was shown how the portfolio built on the securities

selected by the Autoencoder has strongly overperformed its competitors, and therefore

the benefits provided by the model are real and none of the asset allocation models or

covariance estimation methods are able to absorb them.

The numerous empirical tests brought in favor of the goodness of the model are how-

ever partially affected by some problems in the datasets, in particular by data snooping
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mechanics and survivor biases. The proposed framework essentially looks for deviant be-

havior in a universe of securities, given the hypotheses of the experiment, i.e. the chosen

model, network structure, input data, etc. At this point, a doubt can be raised about the

reliability of the results, based on the following reasoning. Deviant behavior with respect

to the market can be essentially of two types: virtuous, whereby the securities tend to do

much better than the reference market, or negative, whereby the securities tend instead to

do strongly worse. Knowing that securities in the datasets have been listed in the SP500

- for instance - continuously in a certain range, it is clear that part of the problematic

deviant behaviors are discarded a priori, because securities that have performed too badly

over time have evidently left the SP500. Then the residual deviant behaviors are neces-

sarily virtuous.

To mitigate in part this legit critique, the stocks selected through the neural network have

been selected in order to find some patterns in the selection logic. At this prpose, the

average ranking of the basket of 40 stocks was analyzed across several performance mea-

sures. At the same time the relationships between the generalized correlations and Betas

implied in the autoencoding neural network and the classic linear correlation and CAPM

Beta have been empirically investigated, proving how the model implicitly captures a large

part of them, but enriched with non-linear and complex relationships that allow for an

additional investment edge. It has been found that the model tended to select for high

risk stocks, and indeed this is somewhat understandable as we are effectively looking for

outliers. However, it is also true that these stocks do not stand out with respect to any of

the performance metrics in the strict sense, and that they show very low rankings in terms

of correlation with the reference index. This suggests that the model did not necessarily

select the best stocks, but the best stocks to fit together in a portfolio, thus suggesting

that the outcome is affected by data snooping and survivor biases more tangentially than

one might think.



Chapter 2

Invoices default forecasting for

credit factoring.

In the present work we propose a machine learning based model in order to forecast invoices

default. The context is the business to business Italian market, and the dataset has been

provided by Credit Service, an Italian company whose business is based on and invoice

trading. Given the commitment of the company, our model performs very well, and largerly

outperforms the benchmark model used by the company and several credit institutions in

Italy, allowing then for arbitrage opportunities.

2.1 Invoices default prediction.

Credit Service is an Italian company whose business is focused on invoice trading. During

the last years of activity, the company collected a very large dataset invoices between

SMEs in the Italian context. Credit Service relies on the credit rating calculated by Mode

Finance for its activities. This represents a standard for the pricing policies in credit

factoring and invoice trading of most of the Italian credit institutions. Mode Finance’s

company rating is used as a proxy in order to measure the credit risk for single invoices

as well.

In literature, a lot of Machine Learning and Deep Learning prediction models and feature

selection techniques have been employed for companies or individuals credit scoring.

Tslking about data filtering and selection, among the others deserve attention the F-Score

which measures some kind of distance among two sets of real numbers [?], [110]; rough set

theory based measures [95], [119], [123].

In the class of so called wrapper methods, we have for example the stepwise feature selec-

tion which is composed from two steps: forward feature selection and backward feature

elimination and is based on linear regression and the use of the p − value as filter mea-

127
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sure [108], [116]; then a more moderne class of wrapper methods is given by the genetic

algorithms [88], [70], [37], [76].

Then, in the set of embedding methods, we find penalized regression based models such

as the LASSO method [114].

Other more invasive methods work on the provided variables to form new features. These

ones are the feature engineering techniques. They are really powerful, but at the same

time some loss of interpretability is produced. The most famous one is the PCA, which

linearly combines initial variables in new orthogonal features ranked according to a degree

of information explained by each feature [105]; then we have Autoencoders derived from

neural networks structures, which basically respects the PCA idea but also accounts for

any kind of non linearity and Linear Discriminant Analysis introduced by Fisher [50], [?].

Talking instead of prediction models, a large plethora of ML and DL techniques have been

proposed. Starting from logistic regression, LDA [97], the kNN classifier [63] and the naive

Bayes classifier [59] to Deep Learning models as Artificial Neural Networks [112], [89], [16],

[116], [117], [91], passing through Support Vector Machines [35] and Trees based models,

which we will see in details.

That said, nothing standing to our knowledge has been proposed in order to predict in-

voice payment default in a Business to Business context.

Credit Service’s idea is in fact to exploit their internal database in order to gain better

insight into the credit rating of single invoices. Indeed, a more accurate result could lead

to statistical arbitrage opportunities by pricing invoices based on Mode Finance rating

while composing a more competitive portfolio by exploiting more accurately estimated

probabilities.

In this document we propose a simple Random Forest approach which provides good re-

sults. This work is organized as follows: in section 2 the dataset is presented and accurately

analyzed, in order to capture any apparent relation (e.g. the pandemic impact); in section

3 the preprocessing steps are detailed; section 4 shows the model construction, estimation

and fine tuning; finally, section 5 presents the results, which are accurately tested in terms

of robustness.

Please notice that, standing to our current knowledge, there are not literature proposals

about this precise task.

2.2 Credit Service database analysis.

The initial database is composed of over 800000 invoices, for which amount, issue date,

expiry date, payment method and the registry of debtors and creditors are recorded among

other data. However, all these invoices were issued by just 18 creditors. In particular: there

are on average 47743 invoices and 2522 debtors per creditor. On the contrary, the number

of debtors is very large (45403) and the credit history for each of them is very limited.
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Creditor Invoices per creditor % of total

A 169456 19.72%

B 152870 17.79%

C 118364 13.77%

D 69584 8.10%

E 64727 7.53%

F 50047 5.82%

G 43961 5.12%

H 43609 5.07%

I 30992 3.61%

J 30918 3.60%

K 24880 2.90%

L 17125 1.99%

M 16201 1.89%

N 9103 1.06%

O 8267 0.96%

P 3903 0.45%

Q 3395 0.40%

R 1965 0.23%

Table 2.1: Invoices number for each creditor.

There are on average 19 invoices per debtor and in most cases debtors have invoices with

respect to only one creditor. This unbalance makes it impossible to face the problem

through a time series approach.

Figure 2.1: Invoices distribution through debtors. The y axis has been truncated at 4000

in order to make the plot readable.

Then, it’s interesting to see if there is some kind of evolution in the payment behaviour

during the years. In particular, we want to investigate the impact of time-related phe-
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nomena on the dataset such as the pandemic or economic cycles. In our model, we will

distinguish among invoices paid On time, Default and Strong Default. The default of an

invoice is defined as those cases in which the invoice has not been paid or has been paid

with more than 7 days of delay, while the Strong Default is defined as the scenario with

90 or more days of dealy. In the following analysis we focused on Default case, because

the Strong Default provides as it will be seen a very low number of observations. The

percentage of default has been computed as the number of defaults over the total number

of invoices recorded during the given year. Lastly, we calculated the percentage of realized

delay, a measure strictly related to the composition of the database. This has been com-

puted as the number of days of delay the invoice has recorded divided by the total time

elapsed since emission. This aims at taking into account the fact that by construction

older invoices can realize larger delays than those recorded more recently.

Year Defaults % default Average delay % realized delay

2021 33588 20% 24 21%

2020 65871 30% 62 14%

2019 71174 25% 126 16%

2018 65149 44% 82 7%

2017 21648 74% 329 22%

2016 4836 70% 972 51%

2015 7598 85% 1396 62%

Table 2.2: Defaults analysis

Apparently, there seems to be no major impact on defaults directly caused by time-related

phenomena.

Anyway, this kind of information is not very reliable because the data collection during the

first years of Credit Service’s activities are prone to several errors, and later maintenance

of the database also resulted in potential loss of older data. This was confirmed directly

from the company representatives.

Another interesting analysis related to the database concerns the correlation between the

amount of the invoice and the payment’s delay. The following table shows that the delay

seems not to be linearly affected by the invoice amount.

Finally, the last kind of information which seems interesting to investigate is related to

the payment methods. Indeed, some of them naturally discourage delays in payments

and defaults, as for example the RiBa or the RID method. We provide some analysis

on the contribution of this feature to potentially discriminate payment behaviours. We

disclose the analysis for two different datasets: the first one collects all the invoices while

the second one includes only those invoices starting from 2018. This is to mitigate the
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Average delay—Invoice amount

Amount Count Mean Max

[0, 250) 110008 62 364

[250, 500) 36022 55 364

[500, 750) 20443 56 364

[750, 1000) 11877 55 363

[1’000, 10’000) 48090 55 364

[10’000, 100’000) 9089 59 364

[100’000, 1’000’000) 272 47 349

Table 2.3: Average delay conditioned on the amount of money due.

potential unreliability of older data and to furtherly check this hypothesis.

Payment Method % Default Count n° Creditors Avg Delay

Legale 100% 33 1 199.50

Assegno Bancario 78% 4038 3 62.85

Contrassegno / contante 72% 6877 10 33.18

Rimessa Diretta 71% 53607 8 263.05

Bollettino postale 57% 37337 1 96.99

Bonifico bancario 48% 324598 17 31.12

Esattore 42% 63457 1 60.89

Bonifico estero 35% 13770 1 7.85

Altro tipo 34% 78606 7 63.30

RiBa 16% 190760 13 -30.32

RID 8% 69274 2 -13.12

Pagamento SDD 7% 17010 2 -6.36

Table 2.4: Relationship between payment delay and payment method over the entire

dataset.
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Payment Method % Default Count n° Creditors Avg Delay

Altro tipo 87% 87 5 88.72

Assegno Bancario 81% 289 2 79.45

Bollettino postale 62% 303 1 88.37

Rimessa Diretta 43% 9964 8 0.96

Bonifico bancario 38% 102738 17 13.59

Esattore 36% 3436 1 15.72

Contrassegno / contante 18% 1481 7 -10.93

RiBa 10% 91812 13 -33.90

RID 5% 22546 2 -18.85

Pagamento SDD 4% 6456 2 -9.54

Table 2.5: Relationship between payment delay and payment method for the invoices

collected starting from 2018.

Our hypotheses have been confirmed by this analysis.

Lastly, the comparison emphasizes and confirms the differences among the invoices col-

lected before 2018 and the recent ones. This is especially clear looking at the average

delay statistics.

2.3 Data preprocessing and final datasets.

In order to construct our final dataset, we enriched the set of variables through the balance

sheet and financial data of the debtors, using the Aida database. In particular, we associ-

ated the financial data of year N to each invoice emitted from June 1st of year N to May

31st of year N + 1. This is due to the fact that balance sheets are usually published with

some months of delay with respect to the period which they are referring to. Furthermore,

revisions are also provided in the following months.

Long story short, we ensured not to use data which in a live forecasting application would

not be in fact available.

Then we constructed three further variables: the invoice emission month, the invoice pay-

ment month and the number of interactions. Given a particular invoice, the number of

interactions is the number of past invoices between that particular debtor and that partic-

ular creditor (standing to the database). Please note that for the emission and payment

months, we represented them as ordinal values ranging from 0 to 11. Indeed, the one-

hot-encoding representation suggested by literature is not very suitable for the Random

Forest algorithm we chose to implement, even if it does not represent a strong obstacle.

So, the final list of features for our problem modelling is the following, organized by

sources:
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• Database data: balance divided by total cost, (i.e. the amount of money to be paid

for the single invoice divided by the total cost computed from the balance sheet data),

maturity, emission month, payment month, ateco code (Classification of Economic

Activity), payment method, number of interactions

• Balance sheet data: EBITDA, EBITDA/sales, Liquidity Index, number of employ-

ees, debt, net income, ROE, Working capital, net worth, short term debt, current

assets, Total value of production.

We then selected for our final dataset those invoices whose debtors’ balance sheet data

was available in the Aida database, as well as filtering these invoices by emission date from

2018 onwards. This allowed us to to clean the dataset from missing data and from the old

unreliable invoices as per the informations provided by the company.

We emphasize the fact that the features provided don’t imply any information about the

ID of the companies involved in each invoice, so there is no way for the algorithm to deduce

any temporal structure or history among the invoices. Furthermore, the vast majority of

the debtors in our dataset only have a few invoices recorded, with most of these consisting

of one-off transactions.

This fact allows us to safely shuffle the invoices during the dataset split into train and test

datasets - with a ratio 80/20 - providing different economic periods, cycles and regimes to

the algorithm. This is particularly important in order to provide the model with a sufficient

plethora of scenarios, especially given the pandemic situation and its impact on companies’

balance sheets, also due to government choices in order to mitigate the negative pandemic

effects. Then the shuffle option provides the required informativity to the dataset but

does not affect the performance in any fraudulent way. Further experiments in order to

rule out this hypothesis have been computed and are provided upon request.

As a result, our train set presents 146560 invoices correctly paid and 44729 invoices labeled

as Default, while the test set is composed by 35365 invoices paid on time and 10887 Default

occurrences.

Then, for the Default vs Strong Default model we have for the test set respectively 8837

and 2029 observations.

2.4 The Random Forest model

In our work, we tried to face a main classification task and a derived regression task. For

the classification part, we have in particular three interconnected problems:

• Classify invoices between those paid with at most 7 days of delay and those which

are paid after 7 days of delay (On time vs Default), i.e. estimate P (D > 7). We call

this one Default Model.

• Classify invoices which have been paid with more than 7 days of delay between those
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paid within 90 days of delay and those paid after (Default vs Strong Default), i.e.

estimate P (D ≥ 90|D > 7). We call this one Default vs Strong Default Model.

• Classify invoices between those paid with at most 89 days of delay and those which

are paid after (On Time & Default vs Strong Default). This last one is made on the

basis of the previous tasks. In particular, by exploiting the fact that P (D ≥ 90) =

P (D > 7, D ≥ 90), then we used the Bayes formula P (D > 7, D ≥ 90) = P (D ≥
90|D > 7)P (D > 7). This choice was due to the fact that the direct estimation

of P (D ≥ 90) was made really difficult by a very unbalanced dataset. In this way,

we reduce the unbalance among by running the training on a model focused on the

second problem. We call this last one Strong Default Model.

Instead the regression part just tries to predict in how many days the invoice will be paid

after it is send.

The model we chose for both tasks is the Random Forest. We also tried different models

- Bagging, Gradient Boosting and Support Vector Machines - but the performance of the

first was not as good as the Random Forest and the second one was computationally too

heavy for our virtual machine. [61], [66], [21].

The Random Forest is an ensemble learning algorithm, based on Decision Trees. Given a

space S ⊆ Rn where n ∈ N is the number of features provided to the model, a Decision

Tree splits up this space S in different sub-regions, trying to maximize the purity of each

sub-region with respect to the label, which in our case is a binary one corresponding to

On time and Default.

Tree-based models partition the feature space into a set of subspaces, in particular rectan-

gles, and fit a trivial model - usually a constant - in each subregion. They are conceptually

intuitive but really powerful, allowing to decipher any kind of pattern relationship among

the features and the output variable. The method we chose for the tree-based regression

and classification called CART. Xi, each taking values in the unit interval. Then we split

the space through recursive binary partitions. First we split it into two regions, and get

the response by the mean of Y in each region. We choose the feature and split-point to

achieve the best fit. Then one or both of these regions are split into two more regions,

and this process is iterated, until some stopping rule is applied.

Now suppose than after the iterations M subregions Rm of the original subspace S have

been produced, then the prediction is given by:

f̂(X) =
N∑︂

m=1

cmI{(X1, ..., Xn) ∈ Rm} (2.1)

where cm is the Y mean or mode - depending on the task - in the subspace Rm. Ob-

servations satisfying the condition at each junction are assigned to the left branch, and

the others to the right one. The terminal nodes (or leaves) of the tree correspond to the

regions R1, R2, ..., RM .
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A great advantage of the recursive binary tree - in particular for our circumstances - is its

interpretability. The feature space partition is fully described by a single tree. Given this

general idea, let’s deep dive in the Regression Trees.

2.4.1 Regression Trees

We start with the regression task, where we assume a continuous response Y and n features.

Our data consists of n inputs and an output variable, for each of T observations. So we have

(xi, yi) for i = 1, 2, ..., T , with xi = (xi1 , xi2 , ..., xip). The algorithm has to automatically

produce a decision on the splitting variables as well as regarding the split points, and also

which topology the tree should take. As already said, given the M subregions Ri, we

model the output as a constant cm in each region:

f(x) =
M∑︂

m=1

cmI(x ∈ Rm) (2.2)

With a sum of squares as loss function, i.e.
∑︁

i (yi − f(xi))
2, it is immediate to see that

the best cm is the average of yi in region Rm:

ĉm = µ(yi|xi ∈ Rm) (2.3)

The problem is that finding the best binary partition under a minimum sum of squares

cryterion is generally computationally devastating. thus the choice is to proceed with a

greedy algorithm that, starting with the entire dataset, considers a splitting feature j and

a split point s that is s ∈ Xj , and extracts the pair of half-planes:

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s} (2.4)

Then we are looking for the splitting variable j and split point s that solve:

min
j,s

⎡⎣minc1

∑︂
xi∈R1(j,s)

(yi − c1)
2 + minc1

∑︂
xi∈R2(j,s)

(yi − c2)
2

⎤⎦ (2.5)

where clearly c1 and c2 which solves the inner minimization are given by:

ĉm = µ(yi|xi ∈ Rm) (2.6)

with i = 1, 2. For each possible splitting feature, the determination of the split point s

can be produced very fast, so that by scanning through all of the variables, determination

of the best pair (j, s) is doable.

Once found the best split, we partition the data into the two resulting regions and iterate

the splitting process on each of the two regions. Then this process is repeated again on

all of the resulting regions.

Then the next problem is related to how large should we grow the tree. Obviously a very
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large tree is prone to overfit the data, and of course a tree that is left free to grow can

produce a single prediction for each observation, in the more extreme case. On the other

side, a small tree might not capture some important patterns in the structure.

Tree size is a tuning parameter - or hyperparameter - which governs the model’s complexity,

so that the optimal tree size should be adaptively chosen from the data. One possible

approach is to split tree nodes only if the decrease in sum-of-squares due to the split

exceeds some threshold. However, this strategy is too short-sighted because a seemingly

worthless split might allow for a very good split in the next steps.

So, the preferred strategy is to first grow a large tree T0, stopping the splitting process

only when a given minimum node size is reached. Then ex-post this large tree is pruned

through cost-complexity techniques.

We define a subtree τ ⊂ T0 to be any tree that we can get by pruning T0, i.e. collapsing

any number of its internal - that is non-terminal - nodes. Then we index the terminal

nodes by m, with node m that represents the region Rm. Let |τ | denote the number of

terminal nodes in τ . Letting:

Nm = #{xi ∈ Rm}

cm =
1

Nm

∑︂
xi∈Rm

yi

Qm(τ) =
1

Nm

∑︂
xi∈Rm

(yi − cm)2

then we can finally define the so called cost complexity criteryon:

Cα(τ) =

|τ |∑︂
m=1

NmQm(τ) + α|τ | (2.7)

The idea is to find, for each α, that subtree τα ⊆ T0 which minimizes Cα(τ). The

hyperparameter α ≥ 0 rules the tradeoff between tree size and its goodness of fit to the

data. Large values of α result of course in smaller trees τα, and conversely for small values

of α. With α = 0 the solution is the entire tree T0.

For each α it can be shown that there exists a unique smallest subtree τα that minimizes

Calpha(τ). In order to find τα weakest link pruning is used: we collapse in succession the

internal node that produces the smallest per-node increase in
∑︁

mNmQm(τ), and continue

until the single-node (root) tree is produced. This provides a sequence of subtrees, and

it can be shown this sequence must contain τα. See [?] or [98] for details. Then the

estimation of α is achieved by k-fold cross-validation, that is we choose the value α̂ that

minimizes the cross-validated sum of squares. Our final tree is τα̂.

2.4.2 Classification Trees

Consider a node m, representing the region Rm which collects Nm observations, let:

pmk =
1

Nm

∑︂
xi∈Rm

I(yi = k) (2.8)
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where k represents the classes, that in our cases are just two. Then pmk is the proportion of

observations pertaining to class k in node m. So the observations in node m are classified

to class:

k(m) = argmaxk(p̂mk (2.9)

that is the majority class in node m. For the Qm(T ) function, which in the classification

tasks represent the node impurity, we have different measures. The most used are the

following:
1

Nm

∑︂
xi∈Rm

I(yi ̸= k(m)) = 1 − p̂mk(m) (2.10)

∑︂
k ̸=k′

p̂mkp̂mk′ =

K∑︂
k=1

p̂mk(1 − p̂mk) (2.11)

−
K∑︂
k=1

p̂mk ln(p̂mk) (2.12)

which are respectively the Missclassification Error, Gini Index and the Crossentropy.

In a two classes task such those here proposed, consider p to be the proportion of obser-

vations pertaining to the second class, then these measures are respectively:

1 − max(p, 1 − p) (2.13)

2p(1 − p) (2.14)

−p ln p− (1 − p) ln(1 − p) (2.15)

Those three measures are of course similar, but crossentropy and the Gini index are

differentiable and this makes them more suited for numerical optimization. Comparing

them, we note the need to weight the node impurity measures by the quantities NmL and

NmR of observations in the two child nodes created by splitting node m. Furhermore,

crossentropy and the Gini index are more sensitive to variations in the node probabilities

than the misclassification rate. A classic example in this sense: we have a two-class

problem with 400 observations in each class - call it (400, 400), suppose a split generated

the two child nodes (300, 100) and (100, 300), while the other created nodes (200, 400)

and (200, 0). Both splits will produce a misclassification error of 0.25, but the second one

generates a pure node and for this reason is preferable. Gini index and crossentropy are

both lower for the second split. This is the reason why either the Gini index or cross-

entropy should be used when growing the tree. For the cost-complexity pruning, any of

the three measures can be used, but typically the misclassification error is preferred.

2.4.3 Other details on Trees Algorithms

In this subsection we provide some other details about the Decision Trees based algorithms.
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How to treat missing values

Often data has some missing predictor values in some feature. A possible way is to

discard observations with missing values, but depending on the case this could bring

serious depauperation of the training set. Other approaches includes filling the missing

values with the mean of that predictor over the nonmissing observations.

But for tree-based models, there are two better ways. The first one is good for categorical

predictors: simply a new category for missing is created. Notice that with this choice

we might discover that observations which presentmissing values for some variable behave

differently than those with nonmissing values.

A second more general approach is the creation of surrogate features. When a predictor is

considered for a split, only the observations for which that predictor is not missing are used.

After we choose the best (primary) predictor and split point, a list of surrogate predictors

and split points is produced. The first surrogate is the predictor and corresponding split

point that best fits the split of the training data achieved through the primary split. The

second surrogate is the predictor and corresponding split point that provides second best,

and so forth.

When sending observations down the tree both in the training phase or during prediction,

the surrogate splits are used in order, provided that the primary splitting predictor is

missing. Surrogate splits use correlations among predictors in order lighten the effect of

missing data. The higher the correlation between the missing predictor and the other

predictors, the smaller the loss of information due to the missing value.

Binary splits

Instead of splitting each node into just two groups at each step, we may consider multiway

splits into more than two groups. In general this is not a good idea, even if in some cases

it could be useful. Multiway splits divide the data too fast, then leaving insufficient data

for the next level down. Furthermore multiway splits can be achieved by a series of binary

splits, the latter are preferred.

Linear combinations of features

Rather than constraining the splits to be only in the form Xj ≤ s, one can allow splits with

respect to linear combinations
∑︁

j ajXj ≤ s. The weights aj and split point s are then

optimized to minimize the provided relevant criterion. On one side this could improve the

predictive power of the tree but on the other hand it can cause loss of interpretability.

Furthermore, because of the discreteness of the split point search, it is difficult to optimize

for the weights.

Notice that a similar result, even if not identical, can be achieved by applying a PCA
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decomposition on the original feature space. The difference is that the Decision Tree

process and the linear combination of the features are decoupled.

Instability

As it can be deduced, trees present high variance. Even a small change in the data can

produce a very different series of splits, then making interpretation precarious. One of

the reasons for this issue is the hierarchical nature of the process: the effect of an error in

the top split is propagated down to all of the splits below it. This can be lighten to some

level by trying to use a more stable split criterion, but the physiological instability still

persists. Random Forest averages many trees to reduce the variance.

Additive structure problem

Another problem with trees is that it is difficult for them to model additive structure. In

a regression, suppose for instance that

Y = c1I(X1 < t1) + c2I(X2 < t2) + ϵ

with ϵ as noise. Then what a binary tree can do is to first split on X1 near t1. Then at the

next level it has to split both nodes on X2 at t2 in order to detect and reflect the additive

structure. This might happen with a sufficiently large dataset, but there is no guarantees

in general that the model will find such a structure. This problem is clearly amplified

when the number of addictive effects increases, and in that case it would require many

fortuitous splits to recreate the structure, also making it difficult to recognize ex-post.

This problem is related to the binary tre recursive algorithm.

2.4.4 Random Forest

Random forests [27] is similar to bagging given that a large group of uncorrelated decision

trees results are averaged, but with some important differences. The idea in bagging

is to average many noisy but approximately unbiased models so to reduce the variance.

Trees are very suited candidates for bagging, since they can detect complex interaction

structures in the data, and with a potentially low bias. At the same time they are really

noisy, and that makes them benefit a lot from the averaging mechanism.

Furthermore, provided that each tree produced in bagging is identically distributed, the

expectation of an average of the trees is the same as the that of each of the trees. So the

only room for improvement is related to variance reduction.

Now let B to be the number of some i.i.d. random variables, each of them with variance

σ2, then the variance of the average of the B r.v.’s is given of course vy:

1

B
σ2
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This is due to the independent condition. But if the independency is removed, and we

suppose a correlation ρ, let’s say a positive one, then it is easy to see that the variance

will be:

ρσ2 − 1 − ρ

B
σ2 (2.16)

Now if we take the limit for B → ∞ of the two different cases, we get respectively:

lim
B→∞

1

B
σ2 = 0 (2.17)

lim
B→∞

ρσ2 − 1 − ρ

B
σ2 = ρσ2 (2.18)

So it is evident that correlation of pairs of bagged trees limits the benefits of the average

mechanism. The intuition behind the random forests is precisely to remove as possible

the correlation among the trees, without icreasing too much the variance.

In order to pursue this purpose, the idea is to random select a subset of the features at

each step of the tree-growing process.

Then, the prediction is obtained through a voting mechanism, inducing a natural proba-

bility measure: each Decision Tree provides its own prediction, and the label which collects

the majority of votes becomes the predicted one.

Talking about the features importance, at each split and for each tree, the improvement

in the split-criterion provides the importance measure related to the splitting feature, cu-

mulated over all the trees in the forest, for each variable.

The random forest seems to fit well with the required tasks and the available dataset.

The hierarchical structure of trees in the first place is a welcome feature in the problems

we face.

To better understand the importance of a hierarchical structure, keep in mind the classic

example of the dataset of people on the Titanic. In this basic ML problem, the predictors

are the characteristics of the people on board, such as gender, social class, etc., and the

variable to be predicted is whether the given member survived or not.

In such a context - as applied modeling later demonstrated - the social class was a feature

of capital importance in the modeling of the problem, and the rest of the variables showed

predictive utility only once the contribution of the social class had been filtered.

Furthermore, given this hierarchical nature combined with the ensembling mechanism of

random forests, the models are robust to collinearity issues.

Talking about the missing data, we just eliminated the rows and did not use any metdhod

to handle the problem. We made this choice because our original dataset was really large,

and the observations with missing data presented a lot of missing data.

That said, we consider an invoice as Default when the payment happens after 7 or more

days from the expiration date. The functions which capture purity are the Gini index and

the Entropy function.

On the train set, we selected the best hyperparameters for the Random Forest through a

k-fold validation with k = 5. In particular, we got 460 decision trees and a max depth of
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25 for each tree. The chosen objective function is the entropy function. Then we computed

the feature importance, which allows some degree of transparency and interpretation:

Feature Impact Aggregated

Interactions 14%

56%

Payment method 11%

Maturity 7%

Expiration month 7%

Ateco code 6%

Emission month 6%

Balance/costs 5%

EBITDA 4%

44%

Short term credit 4%

Short term debt 4%

Total value of production 4%

Working capital 4%

Net income 3%

EBITDA/sales 3%

Number of employees 3%

Current assets 3%

Net worth 3%

Net income/losses 3%

Liquidity index 3%

ROE 3%

Long term debt 2%

Table 2.6: Feature importance for the model On Time vs Default.

As it can be seen, the number of interactions was the most important single feature in

our model, accounting for 14% in the entire decision process. This is expected and easily

interpretable: a company which has a long business history with a partner is far more

prone to pay the related invoices on time.

In second place we find the payment method, which affects payment behaviour in the

aforementioned ways with an impact measured at 11% on the decision process.

Then we have time related features, such as the maturity and the emission and expiration

month, which account respectively for 7%, 7% and 6% of the prediction. These features

work well together, allowing for example to capture payment behaviours in particular

periods of the year, such as those close to holidays or vacations. Furthermore, these

features can partially detect the periods in which the pandemic situation was particularly

impacting.

Next the Ateco code comes in place, whose influence has been assessed at 6%. The Ateco
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code is an indicator of the main area of business of the debtor company, and it may be

particularly useful when some kind of shock has affected a specific business area as a whole.

During the pandemic period its importance is easily interpreted.

Then, we have the balance over costs feature with 5% impact, which measures how much

the particular invoice is affecting the debtor total costs.

Finally we have the balance sheet features, which partly influence the balance over costs

feature as well, given that the costs were computed from the balance sheet data. Even if

there is not any balance sheet item which clearly dominates the others as importance and

impact, it has to be said that their aggregate impacts for 44% on the decision process.

The feature importance analysis for the case Default vs Strong Default is quite similar

and available upon request.

Please notice that also different approaches were proposed. In particular, we applied

dimensionality reduction techniques such as PCA and Autoencoder Neural Networks, in

order to extract a compact feature space representation. These attempts - especially the

autoencoders - provided a slight improvement in the performance measures (about a 3%

accuracy increment) but we discarded them because the loss of interpretability was too

strong for such a small improvement.

2.5 Model performance analysis

In this section we report and deeply analyze the performance recorded by the models on

the test set. The following table summarizes some important metrics used to formally

capture how good the prediction is. In particular we have:

• Accuracy: the percentage of correct predictions. Even if it helps to get a picture

of the whole performance, the accuracy metric is far from being sufficient when the

dataset is unbalanced with respect to the labels. This is exactly our case, because

the ratio between the invoices paid on time and those considered in default is 3/1

circa. To better understand why the accuracy is a misleading measure in these

cases, consider a toy scenario where we have 200 invoices. 160 of them are labeled as

correctly paid while the remaining 40 are defaulted. A trivial model which always

predicts a correct payment would meet an 80% accuracy, despite not capturing any

of the invoices in default. This is only an apparently a good result. For this reason,

the next metrics are very important to get the full picture.

• Precision: given a target class of the problem and taking into account all the

occurences in which that class is predicted, precision measures the percentage of

cases in which the prediction was correct. The more strict the prediction cryterium

for a given class - which in our case is just the probability treshold 0.5 - the higher

the precision.
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• Recall: given a target class of the problem, recall measures the percentage of oc-

currences of that class that are captured by the model. The less strict the prediction

cryterium for a given class, the higher the recall.

It is then clear that precision and recall are antagonist measures. That said, there are

some ways in which these measures can be combined in order to provide a unique value

which captures the total performance, as well as basic averaging techniques which try to

merge the measures across the different classes.

• F1-score: let tp, fp and fn to be respectively the number of true positives, false

positives and false negatives, than the F1-score is given by

tp

tp + 1
2(fp + fn)

• Macro average: this measure is just the simple average of the different measures

across the two classes

• Weighted average: it’s the same as the previous measure but the average is

weighted with respect to the support, i.e. the number of occurences for each class.

2.5.1 Default Model

Here are presented the results for the Default Model :

Precision Recall F1 - Score Support

On time 95% 96% 96% 35365

Default 87% 84% 85% 10887

Accuracy 93% 46252

Macro Average 91% 90% 91% 46252

Weighted Average 93% 93% 93% 46252

Table 2.7: Test set performance measures

As it can be seen from the table, the model has good precision measures. When the model

predicts an invoice will be paid on time, the prediction is correct in 95% of the cases. This

is also because the model captures 84% of the invoices in default.

Since the model shows a very high recall for the On Time class, we are prone to sacri-

fice some of this recall in favor of more precision, considering that in general a missed

opportunity is better than a realized loss. So, after the train phase, we chose to lower the

treshold of our model for the default prediction from a 50% to a 40% probability. In the

next table the new results are summarized.
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Precision Recall F1 - Score Support

On time 96% 94% 95% 35365

Default 83% 89% 86% 10887

Accuracy 93% 46252

Macro Average 90% 91% 90% 46252

Weighted Average 93% 93% 93% 46252

In addition to these metrics, it’s interesting to check how the probabilities predicted by

the Random Forest through the voting mechanism are distributed, in order to investigate

the model’s confidence in its predictions. In the ideal scenario, we want the following:

when the model correctly predicts on time payments, we want the default probabilities of

the output to be particularly concentrated on very low values; when the model correctly

predicts a default, we want the probabilities to be concentrated on very high values; for

the wrong predictions we want the probabilities to be more oriented on values around

50% (or 40%, depending on the chosen treshold) from one side or the other, depending on

whether the errors are false positives or false negatives.

This kind of distribution would ensure that the model is very confident with respect to its

correct predictions but doubtful when it comes to being wrong. In the next figures these

distributions are plotted, with respect to the 40% treshold, but of course with the natural

treshold of 50% the sense of the results is the same.

Figure 2.2: True negatives Figure 2.3: False positives
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Figure 2.4: False negatives Figure 2.5: True positives

These plots show that the model behaves in the correct way: it is really confident for

correct predictions and tends to be doubtful for wrong decisions. This behaviour is even

more pronounced when the true label is On time. This is probably because the dataset

presents more invoices paid before due date than after it, but could also be related to a

more general fact: paraphrasing Tolstoj, all the solvent debtors are similar to each other,

while each insolvent debtor is insolvent in a peculiar way.

In conclusion, given the final application area of the proposed model, it’s worth to analyze

the risk associated with the prediction of false positives and, even more, the prediction of

false negatives. In our case, the risk is given by the balance and delay. Here we show some

statistics with respect to these two measures of risk for the 40% treshold, but the results

are quite similar for the natural treshold as well. 1 is the label for Default, 0 is the label

for On time.

T = True Balance Delay

P = Predicted Mean Std. Dev Median Mean Std. Dev Median

T = 1 3078 32972 366 66 107 26

T = 1, P = 1 2786 13699 359 65.49 106 26

T = 1, P = 0 5376 90322 417 68 114 24

T = 0 1736 7860 354 — — —

T = 0, P = 0 1683 7345 349 — — —

T = 0, P = 1 2601 13762 441 — — —

Table 2.8: Risk analysis for 40% probability treshold

As it can be seen, the model could be improved from this perspective. In particular, the

true positives captured by the model (T = 1, P = 1 ) show a lower balance with respect

both to the sub-dataset of true defaults (T = 1 ) and to the one of false negatives (T =

1, P = 0 ). At the same time, the true positives show a lower payment delay with respect
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the other subdatasets. This means that our model is more prone to capture insolvent

behaviours which have to do with lower balance and payment delays, i.e. the less risky

ones.

Something similar happens with the invoices correctly paid (T = 0, P = 0 ) and their

balance. Future improvements can be oriented at trying to penalize the incorrect classifi-

cations which are related to higher delay and higher balance.

Anyway, the weakness in terms of risk seems to be related to the presence of outliers. In

fact, the risk associated problems of the model can be mitigated if we consider the median

values instead of the mean ones, which are more prone to the distortive action of outliers.

Then, in order to check for the robustness of the proposed model and its ability to gener-

alize, two experiments have been performed:

1. We excluded from the test set each row which was identical in terms of balance sheet

data to any row in the train set.

2. We excluded from the test set each row which was related to a debtor which was in

the train set.

Precision Recall F1 - Score Support

On time 84% 81% 82%% 511

Default 75% 76% 75% 385

Accuracy 79% 881

Macro Average 82% 75% 79% 881

Weighted Average 81% 78% 80% 881

Table 2.9: Test set results after excluding rows with identical balance sheet with respect

to any observation in the train set.

As it can be seen, the results get obviously worse with respect to the base case. Still the

obtained results guarantees that the model has in fact learnt robust patterns in order to

recognize the Defaults.

Precision Recall F1 - Score Support

On time 85% 89% 87%% 1004

Default 77% 70% 73% 526

Accuracy 82% 1530

Macro Average 81% 79% 80% 1530

Weighted Average 82% 82% 82% 1530

Table 2.10: Test set results after excluding rows related to debtors which already appeared

in the train set.
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Of course even in this case the results get worse with respect to the base analysis, but at

the same time we can see that the model is good enough to generalize its predictions with

respect to the debtors which were not in the training set.

Further analysis with respect to these particular subsets of the test set such for example

distribution of predicted probabilities are available upon request.

At last, we compared our results with those obtained by exploiting Mode Finance ratings.

We did that by predicting as Default an invoice which debtor rating was lower than CCC

an On Time for the residual ratings.

Precision Recall F1 - Score Support

On time 77% 95% 84%% 20934

Default 29% 7% 73% 6417

Accuracy 73% 27351

Macro Average 53% 51% 53% 27351

Weighted Average 65% 68% 65% 27351

Table 2.11: Mode Finance Default Model.

As it can be seen the model extracted from Mode Finance ratings is far from good in

predicting invoices Defaults. In fact, this kind of prediction is really close to a naive

prediction, i.e. the model based on Mode tend to predict an on time payment in almost

any case. Furthermore, it is interesting to check if there is any correlation among the

predictions of the models - the Random Forest and the Mode Finance one - and the

percentage of realized Defaults:

Figure 2.6: Mode Finance Figure 2.7: Random Forest

It is then clear that there is no correlation among the ratings predicted by Mode and

the realized Defaults while there is a clear one among the probabilities predicted by the

Random Forest and the Defaults. Please notice that the test dataset employed for the
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Random Forest performance assesment and for the Mode Finance model are not identical,

even if we tried to preserve the most similarity we could. This was due to economical

reasons, which constrained us to preserve the Mode Finance test set as compact as we

could.

2.5.2 Default vs Strong Default Model

In this section we analyze the results for the Default vs Strong Default Model, where the

aim is to classify if an invoice have been paid in the (7, 90) interval of delay or in the

[90, ...) one. The results on the test set are the following:

Precision Recall F1 - Score Support

On time 96% 97% 96%% 8837

Default 87% 80% 83% 1897

Accuracy 95% 10734

Macro Average 92% 88% 90% 10734

Weighted Average 94% 94% 94% 10734

Table 2.12: Default vs Strong Default Model.

In order to check for the model robustness, we excluded again from the test set all those

rows which were identical in terms of balance sheet data to any observation in the train

set.

Precision Recall F1 - Score Support

On time 86% 97% 91% 689

Default 36% 20% 28% 118

Accuracy 85% 807

Macro Average 61% 58% 60% 807

Weighted Average 68% 65% 68% 807

Table 2.13: Test set results after excluding rows with identical balance sheet with respect

to any observation in the train set.

In that case, not only the results get worse but at the same time there seems to be evidences

of the difficulty of the model to generalize its findings. In our opinion, even if the result

is a warning signal which suggests to deepens the approach for this kind of prediction,

the output produced is not very reliable given a very low number of observations for the

Strong Default class.

Further analysis are available upon request.
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2.5.3 Strong Default Model.

In this section we analyze the results for the Strong Default Model, where the aim is to

classify if an invoice have been paid in the (..., 90) interval of delay or in the [90, ...) one.

The results on the test set are the following:

Precision Recall F1 - Score Support

On time 99% 99% 99%% 44337

Default 80% 73% 77% 2047

Accuracy 98% 46384

Macro Average 90% 86% 88% 46384

Weighted Average 94% 94% 94% 46384

Table 2.14: Strong Default Model.

In order to check for the model robustness, we excluded again from the test set all those

rows which were identical in terms of balance sheet data to any observation in the train

set.

Precision Recall F1 - Score Support

On time 93% 99% 97% 812

Default 59% 10% 40% 69

Accuracy 96% 881

Macro Average 76% 55% 69% 881

Weighted Average 81% 65% 77% 881

Table 2.15: Test set results after excluding rows with identical balance sheet with respect

to any observation in the train set.

In that case, not only the results get worse but at the same time there seems to be evidences

of the difficulty of the model to generalize its findings. In our opinion, even if the result

is a warning signal which suggests to deepens the approach for this kind of prediction,

the output produced is not very reliable given a very low number of observations for the

Strong Default class.

Further analysis are available upon request.

Even in this case, we present here the results we get by basing the prediction on Mode

Finance ratings.
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Precision Recall F1 - Score Support

On time 96% 93% 95%% 44377

Default 8% 13% 10% 2047

Accuracy 90% 46424

Macro Average 52% 53% 53% 46424

Weighted Average 65% 68% 65% 46424

Table 2.16: Mode Finance Strong Default Model.

As it can be seen the model extracted from Mode Finance ratings is far from good in

predicting invoices Defaults. In fact, also in this case the prediction is really close to a

naive prediction, i.e. the model based on Mode tend to predict an on time payment in

almost any case. Furthermore, it is interesting to check if there is any correlation among

the predictions of the models - the Random Forest and the Mode Finance one - and the

percentage of realized StrongDefaults:

Figure 2.8: Mode Finance Figure 2.9: Random Forest

It is then clear that even in this case there is no correlation among the ratings predicted by

Mode and the realized Strong Defaults while there is a clear one among the probabilities

predicted by the Random Forest and the Strong Defaults.

2.5.4 Regression Model

Given that our classification tasks were based indirectly - through labeling - to the payment

delay, we also tried to directly regress the payment delay.

The model structure and hyperparameters are identical to the classification model. On

the response variable we applied two cut-offs in order to preserve a suitable range. Indeed

delays in the order of thousands days which are not so rare in our dataset, just tends to

polarize the predictions and to fictiously increase error. Even if they cannot be considered

outliers in a strict statistical sense, they just distort the predictions in an unuseful way.

The same happens for the negative delays, which are those cases on which the company
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paid before the expiration date.

That said, we set a low cut-off to 0 - that is: all negative delays are set to be 0 - and the

high cut-off to 480 - that is: all values higher than 480 are set to be equal to 480.

Here we present the results for the regression prediction on the entire datasets. In the

following plots are the real delay vs predicted delay for the first 800 observations. Being

the the test dataset very large - about 50000 observations - a complete plot would have

been infeasible.

Figure 2.10: Payment Delay: Prediction vs Real - first 200 invoices

Figure 2.11: Payment Delay: Prediction vs Real - from 201 to 400 invoice
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Figure 2.12: Payment Delay: Prediction vs Real - from 401 to 600 invoice

Figure 2.13: Payment Delay: Prediction vs Real - from 601 to 800 invoice

In metrics terms:

• MAE: 6.45

• MSE: 333

• RMSE: 18

• Pseudo R2 score: 77%

As it can be seen, the results are really good, especially looking at MAE and to R2.

The problem is that things dramatically change if we include on the test set only those
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observations which balance sheet data are quite different from anything seen in the training

set.

Figure 2.14: Payment Delay: Prediction vs Real - first 200 invoices

Figure 2.15: Payment Delay: Prediction vs Real - from 201 to 400 invoice
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Figure 2.16: Payment Delay: Prediction vs Real - from 401 to 600 invoice

Figure 2.17: Payment Delay: Prediction vs Real - from 601 to 800 invoice

In metrics terms:

• MAE: 20

• MSE: 1203

• RMSE: 35

• Pseudo R2 score: 18%

As it can be seen the metrics dramatically got worse, especially the R2. However, the

MAE is more than acceptable, and looking at the dataset this result seems more related
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to some poverty in the dataset - to be intended as variance in the variables.

However, the regression model is still useful as a monitoring risk tool.

2.6 Future research.

The room for possible improvements and experiments is vast, and it spans several areas.

First of all, it will be useful to compare our model’s results with more baseline and/or

traditional models. First of all, a comparison with the Altman Z-score and Altman Z-score

plus models [2] would be interesting. These models are very popular among the practition-

ers, and over years and across markets have shown a very good prediction power. They

are based on a bunch of financial ratios linearly combined so to provide the best possible

discrimination among solvent and bankrupted companies.

Another noticeable contribution has been provided in [19], where has been proposed and

tested a Distance from Default formula extracted through the Merton bond pricing model

proposed in [86], proving its forecasting power in default prediction.

These attempts has not been already produced for two reasons, both related to the busi-

ness needs: the only important comparison was with respect to the Mode Finance model

and the solution we proposed needed to be Machine Learning based. As for improvements

room, feature engineering based on domain expertise could be a first idea. We experienced

the improvement produced by the creation of the interactions feature as well as the ratio

among invoice balance and total costs faced by the given company. Also better search in

this direction through ML techniques as PCA and Autoencoders deserves attention in the

future. Furthermore, it could be interesting to provide as input in the Machine Learning

model the output produced by classical models such those aforementioned, then using the

Machine Learning algorithm as a standard model aggregator and optimizator.

Another important issue is that related to the dataset unbalance, both in the predictor

variables as well as in the output one - especially in the last case when we are facing the

prediction of Strong Defaults. For this problem, it could be useful to group the invoices

paid on time in n clusters according to some features, and then to train n classifiers on n

different datasets which are constitued of the i cluster of invoiced paid on time plus the

invoices which exhibited Strong Default. Then a final model would be composed from a

clustering part which assign the observation t to its pertaining model i, trained on the

dataset produced by the invoices paid on time which are in the i cluster and the invoices

labeled as Strong Default, which are fixed. This approach not only resizes the unbalance

problem, but also provides a different and more informative point of view. The invoices

paid on time are no more a monolithic group, but they are clustered according to some

peculiarities, so that the classification models learn to specialize on different features lead-

ing to virtuous behaviors.

Talking about unbalance in the predictors part, we observed that we have for a single

company more than 5000 invoices. This fact of course provides to the company combi-
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nation of features and output a huge weight in the optimization scheme and so in the

model learning. In the future, some research on how to capture the main information

related to this company history hence reducing its presence - which is a delicate manner

- in observations could be useful.

The last direction is strictly related to the computational power at use. For example we

could not experiment with Support Vector Machines because it required too much power.

Last, what would be interesting is a shift of paradigm, from a naive approach related

to classification to a more business oriented purpose. The idea is then reformulate the

problem by associating to the different invoices payment behaviors, the financial output

faced by the company, summarized in a loss function, and then trying to optimize it with

Machine Learning based approaches.
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Chapter 3

Deep Learning approaches to

detect damaged smartphone

screens

This work aims to classify smartphone images based on whether the smartphone screen is

damaged or not. The problem is divided into two complementary tasks: classify whether

the image represents a smartphone or not and classify whether the smartphone’s screen

is damaged or not. To tackle the problem, several famous convolutional architectures are

tested, and on the basis of these preliminary results an adapted architecture is obtaineden

which proves to be a powerful and effective solution to the proposed problem.

3.1 Damaged smartphone screens recognition

On the basis of a real business problem, this paper proposes a novel approach to detect

damaged smartphones screens. An insurance company is interested to provide for its cus-

tomers a new insurance policy, which triggers when the smartphone screen get damaged.

More precisely, the company asks to propose both in terms of methodology and compu-

tation an algorithm which automatically recognizes from a picture if the smartphone is

damaged or not.

Very good results in this kind of problem can be obtained, as will be shown, by adapting

only the final classification layer of pre-trained popular convolutional neural networks. The

results thus obtained - in the case of our dataset around 90% accuracy on average - may

however not be high enough for an implementation involving a real business initiative.

About 10% of errors, although on paper it is an excellent result, can in fact lead to prob-

lems and compromise the success of a product. In fact, such a result, translated into

concrete terms, means that in 10% of cases either the customer who subscribes to the

159
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insurance is dissatisfied or that the Insurance Company will have to guarantee further

checks that will extend the time, however leading to a certain degree of dissatisfaction

with the customer.

This percentage, depending on the customer base, can result in huge numbers, which in

addition to direct losses can affect the long-term success of the insurance plan. Negative

reviews or word of mouth from such a percentage of people can result in poor appeal to

other potential insurance plan customers.

For these reasons, the approach proposed here focuses on obtaining the most excellent

results possible in terms of accuracy as well as guaranteeing the robustness of the model

with respect to a large and varied dataset.

Different approaches are available in the literature and a very natural solution was provided

in [67], through Edge Detection Algorithm (i.s. Canny Detection Algorithm) [30]. Since

the type of damage in a smartphone could be given by scratches, scrapes, cracks and so

on, Edge Detection oriented solution is quite effective. That said, this approach was in

general outmoded by the Convolutional Neural Networks (CNN) algorithms [73]. In fact

a CNN, even if not specifically addressed for an edge detection task, spontaneously learns

to capture the edges with a sufficient accuracy to pursue classification purposes, especially

in the first layers. CNN have been widely used for similar problems as for example in [75]

and [77], as well as in [42]. The paper is organized as follows: Section 2 describes how the

datasets have been constructed and what kind of images have been used; Section 3 shows

how the model has been constructed and improved and how the datasets evolved in order

to better train the model; finally Section 4 reports conclusions.

3.2 The methodological approach

Two different classification models, based on Convolutional Neural Networks architectures

have been trained. The first one recognizes if a given image depicts a smartphone or not

and this is Model 1; then the second one classifies the image as Broken if the smartphone

screen is damaged or Unbroken viceversa and this is Model 2. The Dataset is made out

of 3122 images, collected within a priori defined categories: Broken Back, Broken Screen,

Unbroken Back, Unbroken Screen, Other and Other Tricky. Other Tricky category collects

images of that kind of objects which could typically decept the algorithm by inducing it

to classify them as smartphones. Emblematic instances of these objects are MP4, Tablet,

TVs, e-readers and Notebooks. This first taxonomy is relevant to understand how the

categories are represented in the dataset.
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Model 1 Model 2

Phone Other Broken Unbroken

Broken Screen 901 0 901 0

Unbroken Screen 768 0 0 768

Broken Back 12 0 0 12

Unbroken Back 82 0 0 82

Other 0 857 - -

Other Tricky 0 492 - -

Percentage 56% 44% 51% 49%

Table 3.1: A priori distribution across the two models and their respective classes.

Figure 3.1: Picture istances respectively from Broken Back, Broken Screen, Unbroken back

and Unbroken screen a priori categories.

Figure 3.2: Picture istances respectively from Other and Other Tricky a priori categories.

Table 1 depicts the image distribution across the a priori subclasses. At this point the

images were distributed homogeneously with respect to their a priori subclasses in the

Train, Validation and Test datasets, which collected respectively 75%, 15% and 10% of

the observations.

Model 1 is characterized by a binary target variable with value equal to 1 if a smartphone
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is in the picture and 0 if not. For Model 1, the a priori categories Broken Back, Broken

Screen, Unbroken Back and Unbroken Screen were obviously collected in the class 1 or

Phone class, while the Other and the Other Tricky subclasses were labeled as 0 or Other

class.

Model 2 classifies as 0 or Broken the images belonging to the Broken Screen cathegory,

while the subclasses Broken Back, Unbroken Back and Unbroken Screen were assigned to

1 or Unbroken label.

3.2.1 Model 1

For Model 1 some well known CNN architectures have been selected, to test their per-

formance. We briefly describe these deep neural networks, to highlight their peculiarities

and the relative importance in image recognition problem.

The VGG16 CNN is a standard CNN firstly presented in [109] and recognized in Large

Scale Visual Recognition Challenge 2014. VGG16 represents a very good starting point

for image recognition. VGG16 is made up of 16 weights layers with ReLu as activation

functions. It adopts only convolutional and max pooling layers and it uses (3 × 3) con-

volutional kernels with 1 stride and (2 × 2) max pooling layers, for a total of about 134

million of trainable parameters.

The Residual Net 50 [62] is a direct answer to some well known issues related to the

VGG16 architecture and more generally with the so called very deep neural networks.

Since neural networks can be looked as universal functions approximations, it is clear that

deeper architectures provide a better performance in these terms. The issue with such

deep networks is the so called vanishing gradient problem, which is related to the opti-

mization part. The fact is that, through the back-propagation algorithm [102] the gradient

decays too much quickly, and then the information aquired by the first layers results to be

poor. There have been several attempts to deal with this issue but none of them provided

a real improvement. The Residual Net architecture provides a very natural solution to

this problem through the Residual Block implementation, also known as Identity Block,

because the mapping function is in fact the identity function. This approach consists in

adding a shortcut (also called skip connection) to allow information to flow more easily

from one layer to the next’s layer, in this way preserving the information. Through this

technique, the stacked layers try to fit a residual mapping instead of the desired underly-

ing mapping. In this way, adding additional layers will not affect the model performance,

because the related weigths will be setted to zero in the case in which the additional

layers are not useful. At the same time, if the new layers learn useful information their

training will be no affected by the new Residual block, given the linear relation which

connects the Identity block with the feature map obtained through the layers. Residual

Net is then another natural attempt for the problem we present here, and the Residual

Block innovation has been preserved as a good solution to the highlighted problems even
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in more recent architectures. Moreover, the kind of issue the Residual Net deal with could

be important for our particular problem. In fact our algorithm needs to learn basic figures

and patterns - at least for the first stage problem - given that smartphones are with an

excellent approximation rectangular. These are exactly the kind of patterns which are

learnt by the first architecture layers, i.e. the most affected ones by the gradient vanishing

problem.

The Residual Net 152 [62] represents an improvement in term of deepness of the already

mentioned Residual Net 50. Its characteristics are almost the same as the Residual Net

50, and the main difference is that the Net exploit the power of Residual Blocks to achieve

a greater deepness. Indeed when the architecture was published, it was the deepest net of

its time. Then the reasons behind this choice are the same as Residual Net 50, but with

far greater number of layers.

The Residual Inception architecture [?], combines in an optimal way the peculiarities

of the Residual Net which we already discussed with the structure and flexibility of the

Inception networks. The main contribution of the Inception modules, is that they drop

some degrees of freedom in choosing the network structure and layers, by allowing in such

a sense the net itself to choose the most fitting layers. Instead of choosing for each layer the

kind of layer (e.g. convolutional layer, pooling layer, etc.)as well as the hyper-parameters

such as convolutional kernel dimensions, kernels, etc., the Inception module allows to use

all of them and then concatenate the outputs along the depth dimension. In order to put

together these different outputs, usually you need them to share the same dimension. In

order to pursue this aim, some tricks are adopted, as for instance using the same type

convolutions.

Training and Error Analysis

For each network, only the last block of layers have been trained and the other blocks’

weights have been kept freezed, pretrained on the ImageNet dataset. This is a common

technique known as transfer learning [94], which allows both to make the training faster

and to avoid overfitting. Indeed the transfer learning technique simulates in such a sense

a much more large datasets, returning nets basically trained for very general tasks which

can then be specialized on the addressed problem. Here the results obtained for the pro-

posed neural networks are summarized. The optimization has been performed through

The AdAm algorithm for all the proposed architectures [69].
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Train Validation Test

Loss Accuracy Loss Accuracy Loss Accuracy Epochs

ResNet50 0.0014 100% 0.027 96% 0.049 93.66% 14

ResNet152 0.0081 100% 0.77 78% 0.67 68% 31

VGG16 0.00049 100% 0.42 90.49% 0.36 91.22% 31

ResInception 0.55 75.31% 0.55 74.14% 0.59 72.20% 31

Table 3.2: Loss and Accuracy metrics for the CNNs

As it can be seen, the Residual Net 50 is the most performing architecture. The Residual

Inception seems to struggle to get good results even in the train dataset.

The Residual Net 50 architecture is clearly the most promising one, even if the divergence

among Train and Validation sets suggests that it may be some overfitting which we will

have to deal with.

That said, the most important thing is that all the networks tested have shown great dif-

ficulties to correctly classify those kind of images which we called tricky, and this confirms

that a peculiar work has to be done in order to have a production model.

Modified Residual Net 50 and final results

For the final version of Model 1 two parallel directions have been pursued. Well known

augmentation techniques have been implemented. This kind of methodology belongs to a

family of the more general preprocessing techniques which allow to artificially increase the

size of the dataset by allowing to generate from each image a new one obtained through

some transformations. These kind of transformations range from zoom intensity to shear

range and horizontal flips. In this way the algorithm learns that the same object - let’s

say - rotated is in fact the same object, belonging to the same class, so to mitigate the

overfitting problems.

At the same time some more layers have been added to the Residual Net 50 architecture,

so to better adapt it to our task. In particular, after a Flatten Layer, we added a sequence

of three blocks composed by respectively a Batch Normalization Layer, a Dense Layer

with a ReLu activation function and a Dropout Layer [111] with 0.5 probability. The

Dense Layers took respectively 256, 128 and 64 neurons. Then we applied a final Batch

Normalization Layer before the prediction one, for which we chose a logistic function.
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Figure 3.3: Model 1: training

With these last improvements, Model 1 reached very satisfying results in term of metrics:

Besides the metrics, there are different perspectives from which the goodness of a model

can be evaluated, especially for effective real life business implementations. A particular

example in this sense will be discussed in the next section.

Figure 3.4: Misclassified images from the test set.
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Confusion Matrix

Train Validation Test

No Phone (T) 99.61% 0.39% 94.30% 5.70% 95.07% 4.93%

Phone (T) 0.28% 99.72% 1.32% 98.68% 3.51% 96.49%

No Phone (P) Phone (P) No Phone (P) Phone (P) No Phone (P) Phone (P)

Table 3.3: Confusion Matrices for the Train, Validation and Test datasets. Where T and

P respectively stay for True and Predicted. The overall accuracies are 99.57%, 96.98%

and 95.95% for Train, Validation and Test.

Probability distributions and possible thresholds

In order to further investigate the quality of our model, i.e. how much the model is robust

with respect to its predictions, the distribution of the probabilities that our architecture

assigns to the images are analyzed.

Across the train, validation and test datasets the probabilities occurrences are quite con-

centrated to the extreme probabilities for the two classes, and at the same time the ma-

jority of error probabilities are sparse on more central values.

Figure 3.5: Model 1: correctly predicted probabilities distribution for Test set

The probability occurrences distribution is particularly good for a company which aims to

face this kind of problem, because it allows to effectively choose two probability thresholds

so that within this range the ambiguous images can be collected. Indeed the probability

we obtained are particularly well suited to construct an a priori ambiguous range for prac-

tical implementation, to further increase the model precision. To highlight this applied

perspective three different thresholds have been chosen heuristically for each of the two

classes, i.e. three different maximum probability values to be classified as No Phone and
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three different minimum probability values to be classified as Phone, and analyzed how

recall and precision vary according to the ambiguity range.

Treshold No Phone: 10% No Phone: 20% No Phone: 25%

Treshold Phone: 70%

Precision: 99.81%

Recall: 99.53%

Ambiguous: 2.25%

Precision: 99.81%

Recall: 99.53%

Ambiguous: 0.81%

Precision: 99.81%

Recall: 99.53%

Ambiguous: 0.56%

Treshold Phone: 80%

Precision: 99.91%

Recall: 99.25%

Ambiguous: 2.44%

Precision: 99.91%

Recall: 99.25%

Ambiguous: 1%

Precision: 99.91%

Recall: 99.25%

Ambiguous: 0.72%

Treshold Phone: 90%

Precision: 99.90%

Recall: 97%

Ambiguous: 3.59%

Precision: 99.90%

Recall: 97%

Ambiguous: 2.15%

Precision: 99.90%

Recall: 97%

Ambiguous: 1.87%

Table 3.4: Training Set tresholds analysis

Treshold No Phone: 10% No Phone: 20% No Phone: 25%

Treshold Phone: 70%

Precision: 97.07%

Recall: 98.03%

Ambiguous: 8.16%

Precision: 97.07%

Recall: 98.03%

Ambiguous: 2.04%

Precision: 97.07%

Recall: 98.03%

Ambiguous: 0.82%

Treshold Phone: 80%

Precision: 97.36%

Recall: 97.04%

Ambiguous: 8.98%

Precision: 97.36%

Recall: 97.04%

Ambiguous: 2.86%

Precision: 97.36%

Recall: 97.04%

Ambiguous: 1.63%

Treshold Phone: 90%

Precision: 97.13%

Recall: 89.14%

Ambiguous: 13.88%

Precision: 97.13%

Recall: 89.14%

Ambiguous: 7.76%

Precision: 97.13%

Recall: 89.14%

Ambiguous: 6.53%

Table 3.5: Validation Set tresholds analysis

Treshold No Phone: 10% No Phone: 20% No Phone: 25%

Treshold Phone: 70%

Precision: 97.73%

Recall: 94.30%

Ambiguous: 8.38%

Precision: 97.73%

Recall: 94.30%

Ambiguous: 5.68%

Precision: 97.73%

Recall: 94.30%

Ambiguous: 5.14%

Treshold Phone: 80%

Precision: 98.12%

Recall: 91.67%

Ambiguous: 10.27%

Precision: 98.12%

Recall: 91.67%

Ambiguous: 7.57%

Precision: 98.12%

Recall: 91.67%

Ambiguous: 7.03%

Treshold Phone: 90%

Precision: 98.98%

Recall: 85.53%

Ambiguous: 14.59%

Precision: 98.98%

Recall: 85.53%

Ambiguous: 11.89%

Precision: 98.98%

Recall: 85.53%

Ambiguous: 11.53%

Table 3.6: Test Set tresholds analysis

If a balance among precision and recall is considered and at the same time the company

wants to keep the ambiguous observations as low as possible, the combination (70%, 25%)

is probably the best. But given the business context for which this kind of analysis has been

performed, there could be more adapted criteria. Without going into a business analysis,

we can for example consider that, being this one a new policy and in a certain sense a new

area of business for the company, in the first times it will be not yet a large customers

base. Then it could be better for the company to prefer a larger precision. In this way

the product may guarantee some degree of customer satisfaction, and even with relatively
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large percentages of ambiguous classified images will still remain manageable given the

customer base. With the business increasing, then new images could be collected and

use to refine the algorithm, so to gain with time higher robustness. Then this company

may prefer a very conservative couple of thresholds as (90%, 10%) based on this kind of

cryterium.

3.2.2 Model 2

As already said, Model 2 aims at classifying smartphone images in order to distinguish

broken or damaged smartphones from the unbroken ones. The detailed last version of the

dataset used for Model 2 follows:

Train Validation Test

Broken Ubroken Broken Ubroken Broken Ubroken

Percentage 41.63% 58.47% 56.60% 43.40% 81.73% 18.27%

Number 438 614 150 115 170 38

Table 3.7: Final Datasets

This last training has been done through the modified Residual Net 50 and in this fi-

nal version also augmentation techniques have been used, choosing the same parameters

already proposed for Model 1.

Confusion Matrix

Train Validation Test

Broken (T) 99.77% 0.23% 99.33% 0.67% 98.82% 1.18%

Unbroken (T) 0.00% 100% 0.00% 100% 0.00% 100%

Broken (P) Unbroken (P) Broken (P) Unbroken (P) Broken (P) Unbroken (P)

Table 3.8: Confusion Matrices for the Train, Validation and Test datasets. Where T and

P respectively stay for True and Predicted. The overall accuracies are 99.90%, 99.62%

and 99.04% for Train, Validation and Test.
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Figure 3.6: Mislcassified images from the test set.

As it can be seen, the results are very good. In order to assess the robustness of a so

apparently good model we ran the same kind of probability occurrences analysis as done

for Model 1. In the Model 2 case, even more concentrated distributions for the predicted

probabilities have been obtained.

Figure 3.7: Model 2: correctly predicted probabilities distribution for Test set

As for Model 1, this kind of analysis reveals how strong and safe the model predictions

are, and allows to possibly construct a range of probabilities within the predictions are

considered ambiguous, which could be useful for business applications as already discussed

for Model 1. The probability occurrences are strongly concentrated in the extreme prob-

ability values, and the few errors are quite sparsed in more soft values. With few errors,

the kind of threshold analysis proposed for Model 1 does not really make sense. The

thresholds to construct the ambiguous probability range can in this case be chosen freely

by the company uniquely based on its needs and business ideas.
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Grad-Cam analysis

Grad-Cam is an algorithm that allows to evaluate with a good approximation what the

machine has learned [106]. In particular, for each image it highlights through a heat-

map the pixels which have most stressed the neural network and influenced it in making

the prediction. This type of control allows to check whether some unwanted correlation

occurs by unfortunate coincidence in the selection of datasets and in particular within the

classes. A classic example in that case could be that the machine has learned that there

is a high probability for a smartphone to be broken if fingers are holding it. This kind of

problems, which can occur even in much more unpredictable and sneaky patterns than the

example provided here, are really dangerous and often discriminate between what model

works in laboratory and what in real business applications. Here some instances from the

Grad-Cam algorithm based analysis are shown:

Figure 3.8: Instances from the GRAD-CAM algorithm.

As it can be noted, Model 2 worked well, and the Net looked almost always where it has

to look. We analized all the Grad-Cam images, and no spurious correlations have been

spotted, and Model 2 always concentrate where it has to.



3.3. CONCLUSION 171

3.3 Conclusion

In this paper we provided an effective solution to a concrete business problem which

required a Deep Learning approach. We split the task in two different problems, Model 1

and Model 2. For Model 1, first we selected and tested some well known architecture on an

initial dataset. Then we chose the most performing architecture and through some error

analysis we improved the initial dataset, and added some further layers to te architecture

to better fit our problem. The results were extremely good, especially for Model 2.
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Chapter 4

Feature selection variable based on

multicollinearity.

This paper introduces a novel approach to perform variables selection in predictive models.

Starting from a generalization of the conditioning number, a new index is derived to detect

multicollinearity and the select the most relevant variables in predictive modeling. The

contribution of this paper is two folds: in terms of methodological development, the paper

introduces a new approach for future selection; in terms of computational innovation a

new algorithm is provided to implement our proposal. Empirical evidence achieved on

simulated and real data set.

4.1 Introduction

Variables and feature selection have become the focus of much research in terms of method-

ological and computational development. The objective of variables selection is three-fold:

improving the prediction performance of the predictors, providing faster and more cost-

effective predictors, and providing a better understanding of the underlying process that

generated the data (see e.g. Guyon et al. 2003) [58].

Collinearity, or excessive correlation among explanatory variables, can affect the iden-

tification of an optimal set of explanatory variables for a statistical model, producing

inconsistent results, first of all providing a poor precision in the estimates due to high

variances in the parameters. More precisely, parameters estimates may be unstable, stan-

dard errors on estimates inflated and consequently inference statistics biased.

In variables selection is crucial to look at the intercorrelation or multi-collinearity: the

existence of predictor variables that are (highly) correlated among themselves.

The problem of multicollinearity is well known in the literature as described in Farrar

et al (1967) [47]. Multicollinearity can be a good criterion for selecting the best set of

n−k variables out of n possible regressive variables in a linear model, taking into account

stability and forecasting.

173
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The methods proposed in the literature vary according to the perspective from which the

problem is approached, whether statistical, algebraic or numerical. There are well-known

tests for multicollinearity, as well as approaches based on indices of algebraic and numer-

ical sources, applied relying on heuristically accepted threshold values.

The VIF (Variance Inflation Factor) quantifies the severity of multicollinearity in an or-

dinary least squares regression analysis, providing an index that measures how much the

variance of an estimated regression coefficient is increased because of collinearity.

VIF calculations are straightforward and easily comprehensible: the higher the value, the

higher the collinearity. A VIF for a single explanatory variable is obtained using the

r-squared value of the regression of that variable against all other explanatory variables:

V IFj =
1

1 −R2
j

, (4.1)

where the VIF for variable j is the reciprocal of the inverse of ”R2 from the regression. A

VIF is calculated for each explanatory variable and those with high values are removed.

The definition of high is somewhat arbitrary but values in the range of 5 − 10 are com-

monly used. Removing individual variables with high VIF values is insufficient in the

initial comparison using the full set of explanatory variables. The VIF values will change

after each variable is removed. Accordingly, a more thorough implementation of the VIF

function is to use a stepwise approach until all VIF values are below a desired threshold.

For example, using the full set of explanatory variables, calculate a VIF for each vari-

able, remove the variable with the single highest value, recalculate all VIF values with the

new set of variables, remove the variable with the next highest value, and so on, until all

values are below the threshold. The statistical literature offers several quantifications of

collinearity, with the most common being the pairwise correlation coefficient, the condition

index (the square root of the ratio of each eigenvalue to the square root of the smallest

eigenvalue of X), the variance inflation factor (VIF) and its generalized version [51], and

the variance decomposition proportions (VD, which gives more specific information on the

eigenvectors’ contribution to collinearity: Belsley et al. 1980 [17], Brauner and Shacham

1998) [24]. There are also approaches that estimate a single value to describe the degree

of collinearity in the full dataset (variable set indices). Most commonly used are the de-

terminant of the correlation matrix and the condition number.

The condition number, which is the ratio among the maximum and the minimum square

root eigenvalue (i.e. the singular value) of a generic correlation matrix quantifies multi-

collinearity. An eigenvalue close to zero indicates that in the original data some variable

is approximately a linear combination of some of the other ones. Indeed a high value

in the conditioning number highlights multicollinearity. A solid comparison between the

condition number and the VIF approach can be found in Salmerón et al. (2017) [103].

The conditioning number generally fails to treat some cases that may arise in a variable

selection problem. Indeed a proper example can be shown in which the conditioning num-

ber struggles to capture the presence of more than one multicollinear vector.
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Suppose for example to have two N rank matrices which are equally ”close” to the space

of N − 1 rank matrices: the condition number does not discriminate which of these two

matrices is ”closer” to the space of N − k rank matrices (with k > 1).

The conditioning number does not take into account situations where more than one vari-

able is approximately a linear combination of some other variables in the data. A proper

example will be constructed in order to highlight this structural weakness.

The most useful class of indices depends on the complexity of the dataset. Variable-set

indices are preferable when quickly checking for collinearity in datasets with large numbers

of explanatory variables. Per-variable-indices give a more detailed picture of the number of

variables involved and the degree of collinearity. Sometimes the per-variable-indices may

indicate collinearity although the variable-set indices miss it. This paper proposes a new

contribution in collinearity detection and it is organized as follows: Section 2 describes

our methodological proposal; Section 3 focus on the choice of the parameter k and then

Section 4 shows an application both on simulated data and real data at hand. Conclusions

and further idea of research are reported in Section 5.

4.2 Our proposal: A multicollinearity detection index

Consider the following (T × 1) random column vectors:

x1 ∼ N(0, 1) × 10(−2), x2 ∼ N(0, 1) × 10(−2),

x3 = x1 + ϵ1 × 10(−5), x4 = x1 + ϵ2 × 10(−4)

with ϵ1 and ϵ2 standard normal random vectors.

Then derive the following sub-datasets:

X = [x1 x2 x3]

X ′ = [x1 x2 x4]

Y = [x1 x3 x4]

Detecting multicollinearity, the best dataset is X ′, followed by X and Y . The condition

number works well to capture the relationship between X ′ and X; X ′ and Y , but it fails

to detect X and Y . In order to overcome this weakness, a generalization of the condition

number is proposed, which accounts for the last k singular values corresponding to k

possibly multicollinear variables [48].

Let X be a T×N matrix, with T > N normalized column vectors, such that Xi,j ∼ D(0, 1),

∀i ∈ [1, T ] ∩N and ∀j ∈ [1, N ] ∩N. Let C be the correlation matrix:

C = X ′X.
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Let L = {λn}n with 1 ≤ n ≤ N where λn are the eigenvalues of C, i.e. λn ≥ λn+1; the

singular values of X are σn =
√
λn, ∀n = 1, ..., N . Define Lk = {λk} with 1 ≤ k < N ,

such that λk ≥ λk+1.

Our index is:

sk(X) =
σ1
σN

, with Lk empty set

and:
σ1(︂∏︁N

i=k σi

)︂ 1
k

, otherwise

Our proposal satisfies the following properties:

1. The index is invariant with respect to the scale transformations, i.e. ∀X ⊂ RT×N

with T > N and ∀α ∈ R,

sk(αX) = sk(X)

Proof: A linear scale transformation in the original matrix is reflected on the sin-

gular values:

sk(αX) =
ασ1(︂∏︁N

i=k ασi

)︂ 1
k

then:

sk(αX) =
ασ1(︂

αk 1
k
∏︁N

i=k σi

)︂ 1
k

=
σ1(︂∏︁N

i=k σi

)︂ 1
k

2. sk(X) is non-increasing with respect to k, i.e. 1 ≤ sk+1(X) ≤ sk(X).

Proof The index depends on k through the denominator, which is constructed as a

geometric mean of the last k terms. Since the singular values are ranked in decreas-

ing order, then the property is naturally satisfied. Notice that 1 ≤ sk(X) ≤ k(X),

where k(X) is the conditioning number.

4.3 The choice of k

The index depends on a parameter k which reflects the dimensions considered at risk of loss

(i.e. how many variables are over a threshold of redundancy in explaining the variability

of the data).

From a different perspective, the choice of k means assessing a range of proximity to zero

regarding the eigenvalues, i.e. establishing how close to zero an eigenvalue must be to

consider the matrix potentially singular. This perspective converts the solution of the

problem by resorting to a numerical approach.

Several methods can be proposed whose effectiveness may differ depending on the scope

of the index and the practical meaning of the variables involved. For example, considering

redundant all eigenvalues exceeding a treshold or choosing a threshold for the singular
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values. Depending on the context, the choice of the threshold value can be linked to

exogenous variables.

In this contribution, a statistical asymptotic approach was chosen, which relies on well-

known results on Random Matrix Theory [81]. We underline how k can be linked to

Random Matrix Theory [72], [71], [121], [29], [96].

Let X be a T ×N matrix, with T number of observations and N number of standardized

variables; let E be the empirical correlation Matrix:

E = X ′X

Using RMT, E is unbiased with respect to the true correlation matrix C.

λi for i = 1, ..., N are the eigenvalues of a correlation matrix E, with Λ defined as:

Λλ = {λi : λi < λ}

and:

µ(λ) =
1

N
#(Λλ)

with # the counting measure; the eigenvalue density function for the correlation Matrix

E is given by:

ρE(λ) =
dµ(λ)

dλ
.

It can be shown that for limT,N→∞ T/N = Q with Q > 1, if the correlation matrix E was

generated by a T ×N matrix whose entries were i.i.d. and standardized, then [?]:

ρE(λ) =
Q

2π

√︁
(λmax − λ)(λ− λmin)

λ

where λmin/λmax is:

λmax
min =

(︃
1 ±

√︃
1

Q

)︃2

In this paper, λmin represents a threshold beyond that the eigenvalues of the correlation

matrix will be considered closed to zero. It will be shown in the empirical analysis that this

approach allowed to capture a good estimate of the correct number of correlated variables

considering all the possible cases.

4.4 Empirical analysis - Simulated datasets

The simulated dataset is made up of i = 100 observations and j = 10 variables.

X is a data matrix created as follows:
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⎧⎨⎩Xi,j ∼ N(0, 1), j = 1, ..., 6

Xi,j = Xi,1 + Xi,2 + 10−j+6ϵi,j , j = 7, ..., 10

with ϵi,j ∼ N(0, 1) and i = 1, ..., 100. 100 data sets with this structure has been simu-

lated. The simulation data at hand has 4 multicollinear variables. In order to translate

our methodological proposal described in Section 3, an algorithm has been implemented

and it is composed of the following steps:

• Detect the number k̄ of potentially multicollinear variables through the RMT ap-

proach.

• Single out all the possible combinations of M ≡ N − k̄ random variables. Obviously,

since they are potentially k̄ redundant variables out of the initial N it is meaningful

to deal just with N − k̄ of them.

• Derive k as k = min{M−1, k̄}, i.e. the maximum number of multicollinear variables

which can occur in a combination of M variables. In particular, k = k̄ if N ≥ 2k̄+1.

• Compute the index for all the possible N !
(N−k̄)!(k̄)!

combinations.

On the basis of the data at hand, λmin = 0.4675.

For all the simulated matrices, the random matrix approach provides k̄ = 4. Fixing k = 4,

210 possible combinations of 6 variables are analyzed. In order to assess the validity of

the RMT approach to detect multicollinear variables, the number of predicted redundant

terms were computed for each possible combination. Figure 1 depicts the number of pre-

dicted multicollinear variables against the real number of multicollinear variables. As we

can see, the RMT approach provides the correct number for each combination.
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Figure 4.1: Index conditional distribution with respect to

the correlated vectors number, across the 100 simulated

datasets

The RMT method seems to work well on simulated data. It is interesting to show how the

index is distributed across the 100simulated datasets changing the number of multicollinear

variables. For each case the less multicollinear vectors have been chosen.

Figure 4.2: Conditional distributions with

respect to the zero and one multicollinear

variables case

Figure 4.3: Conditional distributions with

respect to the two and three multicollinear

variables case



180CHAPTER 4. FEATURE SELECTION VARIABLE BASEDONMULTICOLLINEARITY.

Figure 4.4: Conditional distributions with

respect to the four multicollinear variables

case

Figure 4.5: The index with fixed k is in-

creasing with respect to the number of po-

tentially lost dimensions predicted by RMT

in each six variables combination

In the simulated data the index seems to well separate the different cases obtained ac-

cording to the number of multicollinear variables, as it depicted from the conditional

distributions.

Mean St. Dev. Skewness Kurtosis

X0 1.21 0.04 0.18 2.83

X1 2.66 0.11 0.15 2.88

X2 9.04 0.45 0.24 2.76

X3 45.74 2.76 0.24 2.47

X4 353.92 25.44 0.17 2.33

Table 4.1: Conditional moments.

µ Σ s

X0,1 1.44 0.32 1.12

X1,2 6.38 1.14 5.24

X2,3 36.70 6.42 30.27

X3,4 308.18 56.40 251.77

Table 4.2: Conditional distributions comparison.

Let Xi be one of the datasets, with 1 = 1, ..., 4 the number of multicollinear vectors, let

m(Xi) be the mean of the index distribution conditioned on the dataset with i multi-

collinear vectors, and σi be its standard deviation. Then µi,i+1 = |m(Xi+1) − m(Xi)|
is the distance among the i and i + 1 conditional distributions first moments. Finally,

Σi,i+1 = 2(σi + σi+1) and si,i+1 = µi,i+1 − Σi,i+1, provides a measure of separation be-

tween the different spaces. Figure 4 plots the index against the number of multicollinear
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variables for the six variables combination with respect to the first of the 100 simulated

datasets. The index increases with respect to the number of multicollinear variables.

4.5 Empirical analysis - Inclusive Internet dataset

In this section the Inclusive Internet dataset is considered. The variables considered are:

Electricity access, Literacy, Urban population percentage, Peace index, Democracy Index,

Corruption Index, Relevant Content, Internet Quality, Infrastructure, Policy, Mobile Gen-

der Gap, Trust and safety. The dataset is composed of 100 observations which account

for the 96% of global GDP and for the 91% of global population. Running our algorithm,

we obtain λmin = 0.5408 and k = k̄ = 5. The index has been computed across all the

combinations of 7 variables out of 12. For sake of comparison, we have derived: the

predicted number of multicollinear variables using RMT for each combination, the condi-

tioning number, VIFs euclidean norms and the proposed index, MCI. Figure 3 depicts the

results.

Figure 4.6: Conditioning number against

predicted number of multicollinear variables

Figure 4.7: VIFs norms against predicted

number of multicollinear variables
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Figure 4.8: MCI against predicted number

of multicollinear variables

It seems that RMT is a parsimonious criteria to identify the number of redundant vectors.

Furthermore, the number of predicted multicollinear vectors show a direct relationship

with respect to the VIFs euclidean norm and the conditioning number. More precisely,

the proposed index shows as expected a stronger increasing relationship and the results

obtained are concordant with VIF and the condition number.

Figure 4.9: MCI against condition number Figure 4.10: MCI against VIFs norms

4.6 Conclusions

In this paper a new approach is proposed to deal with multicollinearity.

The results obtained on simulated and real data underline that the new indicator seems

a robust approach to detect correlation among variables, reducing collinearity and redun-

dancy. The validity of the approach does not depend on the explained variable and it is

self-consistent with respect to the application context.
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[93] Szilárd Pafka, Marc Potters, and Imre Kondor. Exponential weighting and random-

matrix-theory-based filtering of financial covariance matrices for portfolio optimiza-

tion. arXiv preprint cond-mat/0402573, 2004.

[94] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions

on knowledge and data engineering, 22(10):1345–1359, 2009.

[95] Zdzislaw Pawlak. Rough set approach to knowledge-based decision support. Euro-

pean journal of operational research, 99(1):48–57, 1997.

[96] Vasiliki Plerou, Parameswaran Gopikrishnan, Bernd Rosenow, Luis A Nunes Ama-

ral, Thomas Guhr, and H Eugene Stanley. Random matrix approach to cross corre-

lations in financial data. Physical Review E, 65(6):066126, 2002.

[97] C Radhakrishna Rao. The utilization of multiple measurements in problems of

biological classification. Journal of the Royal Statistical Society. Series B (Method-

ological), 10(2):159–203, 1948.



202 BIBLIOGRAPHY

[98] Brian D Ripley. Pattern recognition and neural networks. Cambridge university

press, 2007.

[99] Richard Roll. A critique of the asset pricing theory’s tests part i: On past and

potential testability of the theory. Journal of financial economics, 4(2):129–176,

1977.

[100] Richard Roll and Stephen A Ross. An empirical investigation of the arbitrage pricing

theory. The journal of finance, 35(5):1073–1103, 1980.

[101] Thierry Roncalli. Introduction to risk parity and budgeting. CRC Press, 2013.

[102] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-

tations by back-propagating errors. nature, 323(6088):533–536, 1986.
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