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Abstract

Name of the student: Claudio Sutrini

No: 482476

Degree for which submitted: PhD

Department: Physics Department

Thesis title: Processes and diagrams: an integrated and multidisciplinary

approach for the education of quantum information science
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The background to this thesis is the paidËia , the education. To educate is a dialectical

process that moves from an abstract line of thought, through scientifically designed tech-

niques, into concrete action; and vice versa. We believe that, in general, educating today

means enabling teachers first and their students second, to be able to read and interpret the

complexity of phenomena, to teach them a model for observing this complexity, describing

it, analyzing it and, finally, making it their own. In this thesis, we attempt to make sense

of these needs by describing an integrated and multidisciplinary pathway, whose diagram-

matic language pushes towards the search for a universal approach to science.

An initial educational contribution is thus made to the understanding of the dialectic

between disciplines: theoretical physics, experimental physics, computer science, mathe-

matics and mathematical logic are presented in their mutual influence, in an attempt to

clarify the informational viewpoint on modern physics. The search for this dialectic for

educational purposes is, in our opinion, the most significant contribution of the present

work.

To address this issue, we sought to build a community of practice on the topics of the

http://mjaykr.github.io
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second quantum revolution. Guided by the Model of Educational Reconstruction (MER),

we built a first course for teacher professional development that would enable teachers to

be introduced to quantum computation and quantum communication. The emergence and

development of quantum technologies provides the impetus for a deep conceptual change:

“a paradigm shift from quantum theory as a theory of microscopic matter to quantum

theory as a framework for technological applications and information processing”. This

shift is supported, theoretically, by the informational interpretation of the postulates of

quantum mechanics: preparation, transformation and measurement are reinterpreted com-

putationally as the encoding, processing and decoding of information; and vice versa. In

this interpretation, what changes between classical and quantum theory? From a logical

point of view, the transition from bit to qubit, from a physical point of view, the laws of

composition of systems. We therefore present monoidal categories as a natural theoretical

framework for the description of physical systems and processes for quantum and non-

quantum computation and communication, demonstrating how this language is suitable

for an integrated and multidisciplinary approach.

The cultural impact of the proposal, the fruitful interaction between researchers in physics

education and those in the area of theoretical research, and the passion of some teachers

made it possible to start a collaboration to build an educational sequence for students.

The result of this collaboration is a teaching leaning sequence on quantum technologies

for students, led by the MER and based on inquiry-based learning and the modelling-

based teaching. Supported by these methodological frameworks, we produced lessons and

worksheets all along the way that had the dual task of supporting teachers’ work and

students’ learning. They also made it possible to experimentally verify the positive and

critical e↵ects of the proposal. The instructional materials constructed, the data analysis

and the constant monitoring with the teachers involved, determined the development of a

second course for teacher professional development, inspired by the first, based entirely on

research. We hope that this attempt at integrated and multidisciplinary approach for the

education of quantum information science, based on the concept of compositionality and

the diagrammatic model, can be increased and provide inspiration for future educational

paths in other disciplines as well.
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Chapter 1

Introduction

I forgot the word that I wanted to say,

And thought, unembodied, returns to the hall of shadows.

O.E. Mandelshtam, The Swallow

In the last few years, the interest in education at all levels on quantum technologies, i.e.

technologies revolving on the manipulation and control of individual quantum systems, has

increased. Projects such as the National Quantum Initiative [2] in the US and the Quan-

tum Flagship in the EU [3], have also promoted improvements in education and outreach.

For this reason, the education research community has performed e↵orts to expand its

traditional goals. New objectives include teaching quantum technologies (i.e., applications

in computing, communication, simulation and sensors), and - one step further -, learning

how to teach quantum physics through quantum technologies. However, while research

on the teaching and learning of quantum physics is a well-developed field within physics

education ([4], [5]), Quantum Information Science (QIS) is a novelty from the point of view

of education. In particular, it is necessary to build programs and curricula for non-physics

students and, at a lower level, for high school students. Recently, 34 QIS experts from

both academia and industry signed an open letter [6] calling for an earlier start of QIS

education in the academic career and recommending the involvement of education experts

in curriculum development. An early introduction of QIS topics was also the subject of

a recent educational survey [7] in which interviewed QIS instructors expressed interest in

research-based instructional materials, while displaying a remarkably wide range of opin-

ions on the desirable content and prerequisites of future undergraduate QIS courses. In [8],

the authors identified the core ideas for QIS courses suitable for computer science students

with superposition and entanglement of qubits, quantum computer, quantum algorithms,

1
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and quantum cryptography. Research-based course proposals for di↵erent targets, ranging

from secondary school students [9] to undergraduates with little or no physics background

[10], have recently appeared in the educational literature. Here we present a research-based

course for teacher professional development and a TLS for secondary school students, that

resonates with most of the previously reported indications and advances but also proposes

significant innovations. Two elements characterize and di↵erentiate our work from others:

1. the educational reconstruction for instruction is based on the construction of a di-

agrammatic model ([11], [12]) whose theoretical framework (categorical approach)

has been developed in recent years in advanced research into both the fundamentals

of quantum theory and into several applications such as , for example, quantum

machine learning and quantum natural language processing;

2. our approach was to attempt, through a course providing common grounds and

motivation, the formation of a community of practice ([13]) motivated to longitudinal

and inter-disciplinary curriculum innovation.

Although in the case of high school students, the diagrammatic approach can only be

partially developed, it represents the most significant contribution to educational content

research for education, and we hope it can be adequately developed in the future to reach

a large population of students.

1.1 Informational approach for quantum education

The advent of the second quantum revolution and the new technologies that are emerging

has shed light on the possibility of changing the focus of the study on quantum mechanics

determining a paradigm shift from quantum theory as a theory of microscopic matter to

quantum theory as a framework for technological applications and information processing1.

Those who wish to promote the study of these topics among teachers and students at dif-

ferent levels (from high school to higher education) have to consider the problem of what

are, in this perspective, the elements that characterize the physical theory of computa-

tion and quantum information, possibly but not necessarily emphasizing by contrast what

distinguish them from the classical approach. This is in line with Bennett’s pioneering

work on the thermodynamics of computation [14], [15] and with the consequent analysis

1European Quantum Flagship (2020, February). Strategic Research Agenda. https://ec.europa.eu/
newsroom/dae/document.cfm?doc_id=65402

https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=65402
https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=65402
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of To↵oli and Fredkin on reversible logic [16] and with the problem of the simulation of

quantum physics by classic computers posed by Feynman [17]. These discussions laid the

problematic basis for formulating the concept of computing machine as D. Deutsch will

do a few years later in [18]. In this work D.Deutsch emphasizes that the aspect on which

attention has to be focused, when we choose an informational and computational approach

to introduce the key concepts of quantum physics, is the close link between physical infor-

mation, support systems and the theory to describe their use.

In this sense, the first problem around which the design process develops is that of cod-

ing, which concerns which properties of the physical support are used to express a certain

information by means of the state vector. The introduction of qubits is the consequence.

Given the problem of the properties ”owned” by a physical system that we describe through

the state vector, the question of how it is possible to manipulate the information encoded

in the state, that is, how this state evolves over time, is addressed. The evolution of

the quantum state exploits features of the theory that have no classical analogue: the

superposition principle, the nature of compound systems - in particular the concept of

entanglement - and quantum interference are an opportunity to develop algorithms and

protocols that are based on a logic of a di↵erent nature than the classical ones, allowing

us to solve known problems more e�ciently and to introduce new ones2. Although the

information is encoded on a quantum support with the properties that distinguish it, at

the end of any protocol the information that we can actually derive backs to be strictly

classical expressed by strings of bits: the measurement returns on the one hand to the

well-known values 0 and 1 of the classical Boolean logic, but does so through an operation

that is intrinsically probabilistic.

In conclusion, the approach that we propose for the study and teaching of quantum tech-

nologies involves a change of perspective on quantum mechanics: from an interpretative

model of real phenomena to a description of information processes based on properties

of quantum objects. The three main moments of this description are the encoding of

information, which coincides with the preparation of a state of qubits, the processing of

information, which coincides with the unitary transformations with which the state is

manipulated, and the reading of the output information, that is the measurement. This

approach manifests its algorithmic nature and reveals in a substantially necessary way

the traditional axiomatic quantum mechanics reinterpreted in informational terms. The

computer is the emblem of this approach, understood as an experiment, a machine whose

2Both superposition and interference are actually concepts that have analogues in classical physics as
well. To understand the relationship between the classical and quantum approaches from an educational
point of view, one can see [19]
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operation logic is deeply connected to the physics of the support on which the information

is encoded, manipulated, and measured.

1.2 Diagrammatic model: Compositionality and Functors

We have already mentioned that what distinguishes our approach to quantum computation

and information is a diagrammatic approach. There are two aspects that this approach

tends to emphasize: intrinsically the compositionality, extrinsically the interpretation by

functors between categories. As in [20] “compositionality describes and quantifies how

complex things can be assembled out of simpler parts”, i.e. the logic of interaction. In our

work, we present physical processes using diagrams. These diagrams are made up of wires

(physical systems) and boxes (transformations). We will see how the concept of sequential

and parallel composition of wires and boxes in these diagrams is fundamental to grasp the

di↵erence between classical and quantum physics in general and classical and quantum

computation in particular. The advantage of this type of approach is that it can be used,

potentially, in any discipline: physics, chemistry, music, computer science, neuroscience

et cetera. In its abstractness, the diagrammatic approach actually o↵ers currently unex-

plored perspectives on a profoundly interdisciplinary approach to teaching, even at the

undergraduated level.

While the compositional aspect concerns each discipline intrinsically, the functorial ap-

proach allows one diagram to be interpreted in another. This is one of the most important

aspects in our work: diagrammatic language is in itself totally abstract, it has a value that

we might say is merely syntactic. However, the existence of particular functors makes it

possible to interpret it (semantics) in logic, in the physical theory of computation and in

the physical theory of physical devices of linear optics. In a certain sense, functors are

a map of signification that supports us, on a theoretical level, in the transition between

mathematics, logic, theoretical physics and experimental physics. These signification maps

are the most innovative theoretical support for educational reconstruction that we present.

1.3 Design project and research questions

There were two goals of the research project as it developed over these three years: the first

was to build a course for teacher professional development about the topics of quantum

computation and quantum information with a high cultural impact. This course would

generate the conditions for shared work between researchers and teachers in order to bring
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the topics covered to high school students. The second was to construct the materials for

a research-based teaching and learning sequence to create the conditions for presenting

some of the topics within curricular pathways.

These objectives were pursued over the three years period according to a subdivided action

as in Fig.1.1

Study and analysis
of most recent

topics in quantum
information science 

Teachers
professional

development
courses

Teachers
professional

development 
 course 

Co-design to 
high-school 

First educational

reconstruction for

instruction

2019/2020 2020/2021

Analysis from the teachers

perspective

2021/2022

TLS for high school

students

Future results

STUDY DESIGN
 

Theoretical and

educational research

area

Summer schools 

First experimentation 

QTEdu project

 

Pre and post questionnaire and

semistructured interviews

 Educational 
experiments 

Analysis of worksheets 

Semi-structured interviews

 

Research results

Educational research area

2022/2023

Figure 1.1: Study design

As seen from the figure, within the physics department, the theoretical research area on

quantum computation and communication and the research area in physics education col-

laborated on the project. The outcome of the first year’s work was a course for teachers

on the topics of the second quantum revolution3. The data collected from pre-tests and

post-tests, exercises and semi-structured interviews provided the first data on which to

build subsequent actions. In particular, we took note of the teachers’ reflections, needs

and requests. Based on these, we organized a follow-up course on the approach to quan-

tum mechanics with polarization based on research in physics education. After doing this

and monitoring the teachers involved with a second step of interviews, it was possible to

divide the teachers into working groups on various educational paths not only dedicated

to the topics traditionally dealt with in the last year. In this way, it was possible to begin

3See Alain Aspect introduction in [21]
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Table 1.1: Research questions

Teachers research questions Students research questions
TRQ1: How is it possible to construct an
adequate content simplification process to
present the topics of the second quantum
revolution to teachers in a meaningful way
from very advanced theoretical aspects?

SRQ1: How is it possible to construct an
adequate content simplification process to
present the topics of the second quantum
revolution to students in a meaningful way
from very advanced theoretical aspects?

TRQ2: How to make the contents and
themes of the second quantum revolution
su�ciently fruitful to teachers to develop a
personal commitment to longitudinal, in-
terdisciplinary educational innovation di-
rected towards themes of quantum infor-
mation and computation?

SRQ2: How e↵ective is an integrated and
multidisciplinary approach in order to en-
able students to understand some topics of
quantum computation and quantum infor-
mation?

TRQ3: What are the most appropriate
environment and methods for building a
distributed, online community of practice
of teachers revolving around the themes of
the second quantum revolution?

SRQ3: Based on findings from the first
two research questions, what design prin-
ciples can be formulated for the develop-
ment of TLS resources in quantum com-
putation for high school students?

a process of strict collaboration between researchers and teachers to co-design research-

based teaching and learning sequences. In spring 2022, two curricular experiments were

carried out directly by two teachers with expert supervision. The material prepared for

both teachers and students allowed them to follow a clearly defined teaching trajectory.

The same materials, with some initial modifications, were used in September 2022 during

the Summer School on Quantum Technologies organised by the Physics Department of the

University of Pavia. The materials constructed and the data analysis contributed to the

realisation of a second 20-hour course for teachers held between October and December

2022, for which further development is planned in the coming months. These activities, all

within our department, were enriched by fruitful collaborations with other universities (in

particular, the University of Insubria in Como and the University of Bologna) for the real-

ization of Summer Schools in quantum technologies and two extracurricular online courses

on quantum physics concepts and quantum technologies applications for high school for a

total of around 500 students throughout Italy.

The results of the work carried out in these years can be summarized as answers to a few

general research questions that have emerged in progress and which are set out in the table

Tab.1.1.
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1.4 Organization of the Thesis

The first three chapters aim to introduce the quantum information theory that will later

be used in educational reconstruction. Chapter 2 introduces qubits, quantum logic gates

and the measurement problem before entering into the fundamental topic of compound

systems. Entanglement analysis is a key theme in the description of Deutsch-Jozsa and

Grover’s algorithm and, of course, the teleportation protocol. The study of entanglement

in algorithms allows us a first approach to topics strongly related to computer science. In

fact, we describe a line of research that we have begun to work on, on the use of hypergraph

states to solve isomorphism tests for hypergraphs that could be extremely useful for certain

aspects of machine learning. Chapter 3, supported by theoretical elements related to cat-

egory theory, also given in the appendix, is of fundamental importance for understanding

the role of diagrammatic representations in our path. We propose two examples in which

we use known approaches to describe classical sequential and combinatorial logic in a way

not found in the literature: in the first case, we define the concept of a finite-state machine

via the Grothendieck construction and use it to introduce universal classical computation.

The second example is inspired by a recent work that describes all moments of supervised

learning using the same categorical structure and constructs classical computation via the

concept of a neural network. Chapter 4 describes classical logic in its natural categorical

environment: the Set category. This category bridges with the physical description of the

devices that implement the computation. The diagrammatic interpretation of the physical

processes is contextualized in the case of both OPTs and the Categorical Quantum Theory.

Finally, we briefly describe how a similar diagrammatic calculation can be introduced to

describe the theory of linear optical devices. The dialectic between diagrammatic represen-

tation and logical, physical and experimental interpretations is realized using the functor

concept, thus supporting, from a theoretical point of view, the choice to use diagrams as

a model for the construction of the educational sequence.

The second part of the thesis is dedicated to educational aspects. Chapter 5 introduces

the theoretical and methodological frameworks used relating to physics education: the

MER, a theoretical framework designed to guide the researcher in the clarification and

analysis of science content; the Inquiry-Based Learning (IBL) and the Modelling-Based

Teaching (MBT) because in our educational proposal for secondary school students our

aim is to help students develop an organized knowledge structure concerning QIS em-

bedded in active and constant engagement in construction and reconstruction knowledge

through hands-on interactions. The last two chapters represent the core of the research.
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Chapter 6 describes the work done with high school teachers. We describe the professional

development course and the subsequent collaborative work. We then propose the data

analysis based on pre and post-tests and mainly semi-structured interviews. The research

work allows us to answer the three questions in Tab.1.1 and supports the choices made for

constructing of the teaching-learning sequence for students that is the subject of Chapter

7. Chapter 7 synthesizes all the work done. In the first part, we propose an important

contextualization concerning the design: following the indications of the MER reconstruc-

tion, we propose an analysis from the theoretical, teacher and student perspectives leading

to the reconstruction of content for instruction. Then we describe each sequence step in

detail: for each lesson, we briefly describe the content, learning goals, strategies, instru-

ments and methods; we then describe the lesson in detail, supported by the instructional

materials produced. We finish with the data analysis, the answers to the research ques-

tions and the design principles obtained ex post. The thesis concludes with a summary

and the possible future development directions.

With reference to the list of publications, we note that:

1. parts of Chapter 1 are taken from papers 3, 4 and 5;

2. many parts of Chapter 6 are taken from papers 1;

3. Chapter 7 is based on papers 2 for the coding construction part, paper 3 for the

elementarization part of the algorithms and 4 in the description of the online ex-

tracurricular course.



Chapter 2

Quantum computation and

quantum information from the

theoretical perspective

In this chapter, we introduce the theory of quantum computation and quantum communi-

cation used for educational reconstruction. We address these topics in the traditional way:

qubits, logic gates and standard circuit representation. We will attempt to do this both

in the theoretical description and in the aspects of the physical devices that implement

qubits, logic gate and measurement with linear optics.

2.1 The postulates of quantum mechanics

Before dealing specifically with the computational aspect, we want to introduce the basic

elements of quantum mechanics and then address the special case of qubits in detail. For

this purpose we briefly introduce and comment on the postulates in a manner similar to

that done in [22].

Postulate 1 Associated to any isolated physical system is an Hilbert space on the complex

field, called state space of the system. The system is completely described by its unit

state vector | i.

9
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This first postulate sets up the arena in which quantum mechanics take place1 and the

state of a quantum mechanical system includes all the information you can know about it

([23]).

Given n state vectors | ii, any their linear combination
P

i
↵i| ii is a superposition of the

states | ii with amplitude ↵i for the state | ii.
The second postulate gives a description of evolution of states:

Postulate 2 The evolution of a closed physical system is described by a unitary trans-

formation U so that

| 0i = U | i

if | i is the state of the system at the time t1 and | 0i is the state of the system at

the time t2.

The last postulate is devoted to the interaction of the system with the outside world, which

is crucial if we imagine that we want to perform experiments and determine probability

distributions relating to the occurrence of events.

Postulate 3 A projective measurement is described by an Hermitian operator on the

state space of the system being observed, the observable

M =
X

m

mPm

where Pm is the projector onto the eigenspace of M with the eigenvalue m. The

eigenvalues, m, of the observable are the possible outcomes of the measurement.

Moreover, the probability of getting m, is given by

p(m) = h |Pm| i

and the state of quantum system after the result m is

Pm| ip
p(m)

To conclude this brief exposition, it remains to present the fundamental postulate that de-

scribes the composition of systems and represents one of the features that most profoundly

distinguishes classical from quantum physics:

1See [22].
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Postulate 4 The state space of a composite physical system is the tensor product of the

state space of the component physical systems.

We will write the compound state as

| i = | 1i ⌦ | 2i ⌦ ...⌦ | ni

2.2 Qubit, quantum logic gates and measurements.

As we shall see, the fundamental idea that we want to bring from an educational point

of view is that, when we speak of bits, we mean a system that can exist in two distinct

information-carrying states. Therefore, when we introduce symbol as 0 and 1 for the

classical bit2, we are considering a physical system associated. We can therefore identify

the numerical value, traditionally {0, 1}, of the bit with the bit itself. Therefore, in classical

computation we should say a state of bit (existing in the space state S = {0,1}), but we
will use, with justified abuse of term, just the name bit. The only possible reversible

operations (gates) in such system are the identity and the not gate. If we associate with

0 and 1 two vectors as follows

0 �!
"
1

0

#
, 1 �!

"
0

1

#

the traditional boolean functions become

I =

"
1 0

0 1

#
, X =

"
0 1

1 0

#

By analogy with the classical computation, we can introduce a quantum bit - qubit - as a

two-level quantum system, a 2-dimensional complex Hilbert space. In this space we can

use the vector |0i and |1i as computational (orthonormal) basis. Thus, a generic state can

be written as3:

| i = ↵|0i+ �|1i (2.1)

where ↵,� 2 C. Any vector as 2.1 with the normalization condition

|↵|2 + |�|2 = 1 (2.2)

2Let us directly give a vector construction of bits.
3Physically, from the superposition principle!
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is called qubit. Similarly to what has already been done, we can associate a generic qubit

| i the vector whose components are the coe�cients of the elements of the computational

basis:

| i = ↵|0i+ �|1i �!
"
↵

�

#

We can introduce a geometrical representation of qubit: the Bloch sphere .

We know that a pure state is an entire equivalent class of vectors. In this way ([24]), the

space of pure qubit states is the complex projective space CP1. But CP1 = S2, the Bloch

sphere.

To express mathematically the link between a generic point on the spherical surface and the

corresponding qubit state, we consider that the four real parameters (two for each complex

number) actually become two due to the normalization condition and the possibility of

ignoring the global phase. In a simple way (see [25] or [26]) one can demonstrate the biuni-

vocal correspondence between a generic point on the Bloch sphere and the reparametrized

qubits with two real parameters:

| i = cos
✓

2
|0i+ ei�sin

✓

2
|1i, 0  ✓  ⇡, 0  � < 2⇡ (2.3)

as it’s possible to see in Fig. 2.1.

'

✓

x̂

ŷ

ẑ

|0i

|1i

| i

Figure 2.1: Bloch sphere qubit representation

As the qubit is defined, it is therefore evident that the information is then all stored in

the two complex numbers and it is potentially infinite. But the e↵ect of a measurement

in the computational basis is that obtain a classical bit of information with a probability

established by the Born rule:

p(0) = |h0| i|2, p(1) = |h1| i|2 (2.4)
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The intrinsically probabilistic aspect of measurement is “another important way a qubit is

di↵erent from a bit” ([27]). When a measurement is realized, the state | i collapses in |0i
or |1i4.

These considerations about measurement just made remind us (see [25]) that a two-level

system can be used in practice as a qubit if it is possible to

1. prepare a well-defined state (|0i);

2. transform any state of qubit into any other by means of unitary transformations;

3. measure the qubit state in the computational basis {|0i, |1i}.

This tripartition suggests a circuit model of computation that we will explore in more

detail in the next chapters, but which for clarity of exposition we prefer to anticipate (see

[22]):“a circuit is made of wires and gates, which carry information around, and perform

a simple computational task”. In the case of quantum circuits, it is usual to add a box

related to the measurement as well. The above can be found made explicit in 2.5:

| i U1 U2 (2.5)

In case the computation requires more than one qubit, the corresponding circuit will have

as many wires as there are qubit states.

It now remains to address the transformation issue: the single-qubit gates.

As in the classic case, we can develop our quantum computation introducing single-qubit

gates, some particular linear unitary transformations5 that we will use in our work:

X ⌘
"
0 1

1 0

#
, Y ⌘

"
0 �i
i 0

#
, Z ⌘

"
1 0

0 �1

#
, H ⌘ 1p

2

"
1 1

1 �1

#
(2.6)

We will refer to these gates as respectively X-gate or Not-gate, Y-gate, Z-gate or Flip-gate

and Hadamard-gate. The Z-gate is a particular case of the phase-shift gate defined as

Rz(�) =

"
1 0

0 ei�

#
(2.7)

4In reality, states (a/|a|)|0i and (bkb|)|1i are achieved. But we now that a unitary coe�cient can be
ignored.

5The need for unitarity arises from the necessity to preserve the norm. Moreover, in this way the
transformation is reversible
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whose e↵ect on a generic qubit is a counterclockwise rotation through an angle � about

the z-axis of the Bloch sphere:

Rz(✓)| i =
"
1 0

0 ei�

#"
cos ✓2

ei�sin ✓2

#
=

"
cos ✓2

ei(�+�)sin ✓2

#
(2.8)

If � = ⇡, we found the Z-gate.

We could demonstrate that any unitary operation on a single qubit can be constructed

with Hadamard and phase-shift gates (see [25]). In general, each single-qubit logic gate is

a linear combination of the Pauli operators {I, X, Y, Z}.

2.3 Compound system: bipartite quantum system

It is possible to grasp the profound di↵erence between classical and quantum computa-

tion when we step to consider multi-qubit quantum systems. As Horodecki in [28] “the

“e↵ect” of the replacement of the classical concept of phase space by the abstract Hilbert

space makes a gap in the description of composite systems”. If we consider a multipartite

system and its n subsystems we have two di↵erent ways to see the pure total state: in the

classical case the Cartesian product ensures that “the total state is always a product state

of the n separate systems”. But if we consider the tensor product between Hilbert spaces,

we soon realize that its nature and the superposition principle do not always allow us to

perform the same operation.

Consider a system of two qubits. Similarly to the case of one qubit, we can consider an

orthonormal basis {|00i, |01i, |10i, |11i} of C2 ⌦C2. Any two qubit state can be written,

therefore, as complex linear combination

| i = ↵|00i+ �|01i+ �|10i+ �|11i (2.9)

with the obvious normalization condition |↵|2+ |�|2+ |�|2+ |�|2 = 1. Classically we think

about this state as compounded by two di↵erent states

| i = | iA⌦| iB = (↵|0i+�|1i)⌦(�|0i+�|1i) = ↵�|00i+↵�|01i+��|10i+��|11i (2.10)
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However, it is straightforward to verify that there are states, the Bell’s states6 for example,

that cannot be written according to the 2.10. States that are not product states are called

entangled states.

We would now like to understand what particular features entangled states have. To do

this, we can consider the singlet state

| i = 1p
2
(|0i|1i � |1i|0i)7 (2.11)

First, we could imagine that the state 2.11 is the quantum state of two qubits shared by

Alice and Bob that are now in the same room or in di↵erent ones but able to communicate.

As we will see in detail in the chapter 48, we can represent this situation with the following

circuit9:

|1i H •

|0i

(2.12)

If Alice (first register) measures her qubit by projecting onto the computational basis

{|0iA, |1iA} and Bob (second register) measures his qubit by projecting onto the computa-

tional basis {|0iB, |1iB}, they find the outcomes of measurements perfectly anti- correlated.

It can be shown that this happens regardless of the choice of measurement basis.

To deeply understand what is hidden in the state 2.11, and entangled states in general,

let us introduce a di↵erent formalism from the one used so far: the density matrix.

2.3.1 The density operator

The traditional axiomatic description of quantum mechanics, which we have essentially

implied by introducing quantum computation, is such that “our axioms characterize the

quantum behavior of the entire universe” ([29]) or, similarly, we assume that we have

perfect knowledge of quantum systems in use. However, in most cases, we will be interested

in a very small part of the Universe, or for example, we have a quantum system whose

preparation is not completely under control [30]. In this case, we can consider the prepared

state as a statistical mixture of pure states {| i, pi} weighted with parameters representing

6Let us recall Bell’s four states:

| 00i =
1p
2
(|00i+ |11i), | 01i =

1p
2
(|01i+ |10i), | 10i =

1p
2
(|00i � |11i), | 11i =

1p
2
(|01i � |10i)

7|0i|0i and |00i are di↵erent ways to write the same state
8Briefly, the wires are the qubits and the boxes are the logic gates.
9The second gate is the CNOT-gate: CNOT (|xi|yi = |xi|x� yi)
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the respective probabilities pi and such that
P

i
pi = 1.

These considerations allow us to show ([25]) how probability in quantum physics takes on

two distinct roles. Indeed, given an observable A, the expectation value is

hAi =
lX

k=1

pk

nX

i=1

aih k|Pi| ki =
lX

k=1

pkh k|A| ki (2.13)

where Pi is the projector onto the subspace associated with the eigenvalue ai of A. In

the 2.13 we can recognize two probabilities: the first, the weights pk is an epistemic

probability; the second, characterizing the measurement process, h k|Pi| ki are intrinsic

(non epistemic [31]). Moreover, if we introduce the density operator

⇢ ⌘
X

k

pk| kih k| (2.14)

we obtain

hAi = Tr[⇢A] (2.15)

and

p(i) = Tr(⇢Pi) (2.16)

are the probabilities that a measurement of an observable A gives outcomes ai. The

equation 2.16 represents a generalized Born rule.

Therefore we use the density operator 2.14 to formalize the statistical mixture of pure

states {| i, pi} so it completely characterizes a system in a mixed-state configuration. In

the particular case of only one (pure) state the 2.14 becomes

⇢ = | ih | (2.17)

The formalism of the density operator allows us to focus our attention in a subsystem of a

compound quantum system. To do this we have to introduce the reduced density operator

(see [32] and [22]).

Let A and B be two any observable for two di↵erent systems. The compound system is

described by the density operator ⇢AB. We want describe a part, for example A of the

first system. In order to do this we want to demonstrate that the expectation value of A

is

hAi = hA⌦ Ii (2.18)
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In fact, if we consider the joint probability of measure an in the first system and bm in the

second, and PA, PB the corresponding projectors, we have from 2.16

pA,B(n,m) = hPA

n ⌦ PB

m i = Tr[(PA

n ⌦ PB

m )⇢AB] (2.19)

The marginal probability to obtain an regardless of the outcome of measurement on system

two is

pA(n) =
X

m

pA,B(n,m) =
X

m

hPA

n ⌦ PB

m i = hPA

n ⌦ Ii (2.20)

from which 2.18.

If we define the partial trace as

TrA[A⌦B] := Tr[A]B (2.21)

it follows that

hAi = Tr[⇢AB(A⌦ I)] = Tr[TrB[⇢
AB(A⌦ I)]] = Tr[TrB[⇢

AB]A] = Tr[⇢AA] (2.22)

where

⇢A = TrB[⇢
AB] (2.23)

is the reduced density operator (partial trace) or the marginal state of the first system of

the compound system ⇢AB. The partial trace “is the unique operation which gives rise to

the correct description of observable quantities for subsystems of a compound system”([22]).

Back to the singlet state 2.11 and using the density operator formalism, we can write

the state as

⇢| i =
1

2
(|01ih01i+ |10ih10|� |01ih10i � |10ih01i) (2.24)

and we immediately achieve the marginal state of the first system

⇢A = TrB[⇢| i] =
1

2
I (2.25)

which is themaximally mixed state10. This feature tells us that the best possible knowledge

of a whole does not necessary include the best possible knowledge of all its parts [33]:

“Thus one disposes provisionally until the entanglement is resolved by actual

observation of only a common description of the two in that space of higher

10For an equivalent demonstration with matrix calculation, see for example [25]
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dimension. This is the reason that knowledge of the individual systems can

decline to the scantiest, even to zero, while that of the combined system remains

continually maximal. The best possible knowledge of a whole does not include

the best possible knowledge of its parts—and this is what keeps coming back to

haunt us”.

In the case of the singlet, even maximum knowledge of the whole (the state is a pure state),

implies minimum knowledge when we ignore one of the two parts (whether measurements

have not been made on it or we are unaware of the results of those measurements).

The most important manifestation of the entanglement is the impossibility to reconcile

the statistics of joints measurement with local realism. We must abandon the idea that a

measurement on a system is only the “reading of the pre-existing quantity encoded on the

system” ([34]) or abandon relativistic causality. This is the result of Bell’s theorem ([35],

[36],[37]).

2.3.2 Universal quantum computation

We know that for irreversible classical computation (see [38]) the logic gates NAND and

COPY form a universal set of gates. Moreover the To↵oli or Fredkin gate are both

universal, since it is easily demonstrated that NAND-gate and COPY -gate can be obtained

from these (see [38]).

We have a similar result for quantum computing ([22], [25], [39]):

Theorem 2.1. Single-qubit gates and CNOT-gate are universal for quantum computation.

We now have all the elements to describe how it is possible to perform a quantum com-

putation in a real physical device:

1. prepare the quantum computer in well-defined initial state | ii, for example the

qubit state |0...00i;

2. process the qubit with any given unitary transormation U11, leading to | f i = U | ii;

3. measure, at the end of the algorithm, in a computational basis.
11Always decomposable with the universal gate set introduced!
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2.4 Quantum algorithms

In this section we will briefly introduce the two algorithms using in TLS for students and

presented also in the course for teacher professional development: Deutsch and Grover

algorithms. We will highlight its main features and describe the role of entanglement.

Deutsch’s algorithm Let us consider a boolean function f : {0, 1} �! {0, 1}. We say

that f is balanced if f(0) 6= f(1); constant, otherwise. We wish to find an algorithm

to determine whether the function is balanced or constant. It is clear thet we need

to requires two queries of the oracle12 in a classical computer.

In 1985 D. Deutsch [18] proposes a quantum algorithm solving more e�ciently the

problem. Here we present the circuit representation as in [40]:

|0i H
Uf

H

|1i H

| 0i | 1i | 2i | 3i

(2.26)

This algorithm combines three features characteristic of quantum computation: quan-

tum parallelism, the role of the phase factor in compound systems and the quantum

interference ([22], [25]).

The first part of the circuit (Hadamard gate and Oracle Uf
13) introduces the quan-

tum parallelism [22]. We use the superposition and the linearity of operator to

evaluate the function f for many di↵erent values of x simultaneously. The ancillary

qubit (second qubit) after the Hadamard gate introduces a phase that can be kicked

back ([40], [25]) in front of the qubit target (first qubit). Finally, the quantum inter-

ference allows us to answer the problem implementing the oracle once only.

Formally:

| 1i =

|0i+ |1ip

2

�
⌦

|0i � |1ip

2

�

After the function evaluation in Oracle if we pose x 2 {0, 1} we obtain

| 2i = Uf |xi ⌦

|0i � |1ip

2

�
= (�1)f(x)|xi ⌦


|0i � |1ip

2

�

12The oracle is a black-box evaluating f
13
Uf |xyi := |xi|y � f(x)i
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By expressing the values of x we achieve

| 2i =
1p
2

h
(�1)f(0)|0i+ (�1)f(1)|1i

i
⌦

|0i � |1ip

2

�

Finally, omitting the now useless second register, we obtain after the last Hadamard

gate (see[40])

| 3i = (�1)f(0)|f(0)� f(1)i =

8
<

:
±|1i if f(0) 6= f(1)

±|0i if f(0) = f(1)

The final measurement of the first qubit gives with probability p = 1 the answer to

the problem.

Deutsch-Jozsa algorithm In 1992 Deutsch and Jozsa [41] present the generalization of

the previous algorithm:

|0i / H⌦n

Uf

H⌦n

|1i H

| 0i | 1i | 2i | 3i

(2.27)

The quantum features used are the same of the previous one.

Formally, after the first Hadamard gates

| 1i =
1p
2n

2n�1X

x=0

|xi

|0i � |1ip

2

�

The operator Uf calculates f in all the values

| 2i =
1p
2n

2n�1X

x=0

|xi

|f(x)i � |1� f(x)ip

2

�

Using the phase kick back

| 2i =
1p
2n

2n�1X

x=0

(�1)f(x)|xi

|0i � |1ip

2

�

At this point the last qubit may be ignored and we apply the Hadamard transform

| 3i =
1p
2n

2n�1X

x=0

(�1)f(x)
"

1p
2n

2n�1X

z=0

(�1)x·z|zi
#
=

1

2n

2n�1X

z=0

"
2n�1X

x=0

(�1)f(x)+x·z

#
|zi
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The final measurement gives us

�����
1

2n

2n�1X

x=0

(�1)f(x)
�����

2

=

8
<

:
1 if f is constant

0 if f is balanced

for the probability to measure |0i⌦n14.

Grover’s algorithm In 1996 Lov Grover [42] introduces a quantum search algorithm that

can reduce the problem of searching for an element x0 in an unstructured database

of 2n elements, from O(2N ) number of calls of black-box to O(
p
2n). For n = 2 the

circuit representation of the algorithm is (see [22], [43])

|0i H

Uf

H
2| ih |� I

|0i H H

|1i H

| 0i | 1i | 2i | 3i | 4i

(2.28)

where

f(x) =

8
<

:
1 if x = x0

0 otherwise
(2.29)

and Uf (|xi|yi) = |xi|y � f(x)i. Since |xi 7�! (�1)f(x)|xi We can thus define an

Oracle

Uf := I� 2|x0ihx0| (2.30)

In this particular case the algorithm is deterministic and with one implementation

of circuit allows us to obtain the correct result 15. The algorithm has exactly the

same tripartition as Deutsch’s algorithm: quantum parallelism; the role of the oracle

that allows phase kick back (�1)f(x); and, finally, the last part that determines an

interference such that only the qubit encoding the searched element is achieved.

We can generalize this very simple case by considering the search for M elements in

a database of N = 2n > 4.

For this purpose we call G := (2| ih |� I)Uf the Grover operator and distinguish

between the elements we are looking for, xi, and those we are not looking for, xj .

14In this case, f is balanced if it is equal to 1 for exactly half of all the possible x, and 0 for the other
half.

15For explicit calculations see for example [22]; in matrix form [25]
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Defined normalized states as

|↵i = 1p
N �M

X

i

|xii, |�i = 1p
M

X

j

|xji (2.31)

the initial state | 0i is

| 0i =
r

N �M

N
|↵i+

r
M

N
|�i (2.32)

a vector in the plane defined by orthonormal |↵i and |�i. In this way, we have an

immediate geometric interpretation of the algorithm: G is a rotation in the plane of

✓ (see [22]). Since

Gk| i = cos

✓
2k + 1

2
✓

◆
|↵i+ sin

✓
2k + 1

2
✓

◆
|�i (2.33)

it is possible to prove ([22]) that the operator must be iterated

R 
"
⇡

4

r
N

M

#
(2.34)

times.

2.4.1 Entanglement in quantum algorithms: Hypergraph States

In this section we would like to describe the role of entanglement in these two quantum al-

gorithms. To do this, we will first introduce the concept of hypergraph states and show how

they appear in both algorithms. We will then briefly show what the role of entanglement

is. We will then indicate a possible line of development for the hypergraph isomorphism

test by generalising the graph case recently achieved in [44]. The solution of such a test

may have useful repercussions in some supervised learning cases such as graph matching.

In the even brief description of the algorithms, we have obtained after the oracle the state

| i = 1p
2n

2n�1X

x=0

(�1)f(x)|xi (2.35)

where |xi represent the computational basis states of n qubits and f is the boolean

function that needs to be evaluated. As in [45], we can call these states Real Equally
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Weighted (REW) pure state. The set of these states coincides (see [45]) with the set Gn

of hypergraph states ([46]).

Definition 2.2. Given a mathematical graph g = {V,E}, where V is the set of vertices

and E the set of edges, we can find the graph quantum state as follows:

1. assigning to each vertex a qubit |+i;

2. performing a controlled-Z operation16 between any two qubits that are connected

by an edge.

The qubit graph state is therefore written

|gi =
Y

{i1,i2}2E

C2Zi1,i2 |+i⌦n

where {i1, i2} 2 E means that the 2 vertices are connected by an edge.

Graphically:

Figure 2.2: Example of graph state

We can generalize this definition in case the underlying structure is a hypergraph:

Definition 2.3. Given a mathematical hypergraph g = {V,E}, where V is the set of

vertices and E the set of hyperedges, we can find the hypergraph quantum state as follows:

1. assigning to each vertex a qubit |+i;

2. performing a controlled-Z operation between all connected by hyperedges qubit.

The qubit hypergraph state is therefore written

|gi =
nY

k=1

Y

{i1,...,ik}2E

CkZi1,...,ik |+i
⌦n

16
CZ-gate is defined by C

2
Zi1,i2 = diag(1, 1, 1,�1)
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where {i1..., ik} 2 E means that the k vertices are connected by a k-hyperedge17.

Graphically:

Figure 2.3: Example of hypergraph state

In [47], the autors demostrated that, in Deutsch-Jozsa algorithm, if the function f is

constant the state 2.35 is separable, whereas in the case where f is balanced the state can

be either separable or entangled. Morover, as the number of qubits involved increases,

the presence of entangled states increases exponentially. The presence of the multipartite

entanglement within the first register “is needed to accomadate all of possible (balanced)

functions”.

More interesting is the analysis of Grover’s algorithm18 (see [48] and [49]). In the first of

these works, the authors study the entanglement properties of the state 2.35 as function of

the number of qubits for M = 1 and M = 2 solutions. Referring to the geometric measure

of entanglement ([50])

Eq(| i) = 1�max| i2Sq
|h |�i|2 (2.36)

where Sq represents the set of q-separable states, they demostrated that “the amount of

entanglement decreases for increasing number of qubits”. But ([49]) even for a very large

number of qubits n there is a genuine multipartite entanglement. The interpratation of

state 2.35 as a hypergraph state, makes this immediately obvious. If we consider the state

| M=1i (with a signus minus in front of the component |1...11i), it corresponds to the

hypergraph with the unique hyperedge of order n.

2.4.1.1 Graph and hypergraph states for quantum machine learning

We briefly present in this section a line of development on the use of hypergraph states

that we are currently working on and that fits in with the research work that has used the

17We denote by C
k
Zi1,...,ik the general controlled-Z gate acting on the k qubits.

18We discuss here only the case in which M = 1 as in the algorithm explained to students.
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concepts of graph and hypergraph states for quantum machine learning in recent years.

For example in [51], the authors use the weighted hypergraph19 to generalize the imple-

mentation of quantum artificial neuron to accept continuous- instead of discrete-valued

input vectors, without increasing the number of qubits,“ crucial step to allow for a direct

application of gradient descent based learning procedures, which would not be compatible

with binary-valued data encoding”. We would like to use hypergraph states to solve an-

other kind of problem, and generalise a part of the work presented in [44]. In this work

the authors use the ZX-calculus, equivalent to the traditional approach20.

Without entering into too much detail, one of the most important problems for super-

vised machine learning is isomorphism tests for graphs. Supervised learning on molecules

has incredible potential to be useful in quantum chemistry, drug discovery, and materials

science (see [52] for references). In [52] the authors emphasize the fact that neural net-

work models21 have already been introduced and the importance of the fact that they are

invariant under the symmetries of molecules. They reformulate existing models into a sin-

gle common framework called Message Passing Neural Networks (MPNN), highly e↵ective

class of graph neural networks (see [55]) that iteratively update the representations of each

vertex based on their local neighborhoods. As pointed out in [44], “one well-known lim-

itation of MPNNs is their expressive power which is upper bounded by the 1-dimensional

Weisfeiler-Lehman algorithm (1-WL) for graph isomorphism testing”. We briefly analyze

the line of reasoning ([56] and [57]).

We can consider a definition of graph whose vertexes are labelled:

Definition 2.4. A graph G is a triplet (V,E, l) where

1. V is the set of vertices;

2. E is the set of edges;

3. given an alphabet ⌃, l : V �! ⌃

Moreover, we define the neighbourhood

N (v) := {v0 2 V |(v, v0) 2 E}
19For definition see [45]
20We will introduce the ZX-calculus only in later chapters. Moreover, there is neither conceptual nor

practical gain in categorical description here.
21The concept of neural network will be introduced in the last chapter. For an introduction see [53], [54]
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We say G = (V,E, l) and G0 = (V 0, E0, l0) are isomorphic if there exist a permutation

⇡ 2 Sn that relabel the vertex of G to produce the graph G0.

1�WL algorithm The 1�WL algorithm is described by the following steps:

1. for i = 0, Mi(v) := l0 = l(v);

2. for i > 0, assign a multiset Mi(v) to each vertex in G and G0 consisting of the

multiset {{li�1(u)|u 2 N (v)}};

3. order the elements in Mi(v) in ascending order and we form string si(v);

4. add li�1(v) to si(v) and call the resulting string si(v);

5. order all of the strings si(v) to a new label, using a function f : ⌃⇤ �! ⌃ such

that

f(si(v)) = f(si(w)), si(v) = si(w)

6. li(v) := f(si(v)) for all v in G and G0.

The Weisfeiler-Lehman algorithm terminates if the sets of newly created labels are not

identical in G and G0. In this case the graphs are not isomorphic. If the sets are identical

after n iterations, the algorithm gives no answer (for a graphical example see [56] p.2548).

The problem of this algorithm is that it fails in some very simple cases, as, for exam-

ple, the two graphs in Fig. 2.4.

Figure 2.4: Two graphs indistinguishable by 1�WL

In [44] the authors introduce the concept of equivariant quantum graph circuit a simple

application of which makes it possible to pass the isomorphism test:

1. associate each vertex with the quantum state |+i;

2. apply an edge layer with a C2Z(↵) = diag(1, 1, 1, e�i↵);

3. apply a vertex layer with an H gate at each vertex;
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4. after a single measurement, measure k vertexes as a |1i state and 6 � k as |0i. For

each k, an appropriate aggregator can map this to a di↵erent prediction.

In [44] is shown as for ↵ = ±⇡ the distributions of the number of |1is measured do dif-

fer, and an accuracy of 0.625 is achievable. Moreover, “this would naturally get better

as we increase the number of qubits used”. It is evident from the first two steps above

that the variational circuit introduced is based on an encoding using weighted graph states.

The research proposal we are developing is based on three considerations:

1. in recent years, there has been a growing awareness of the need to use hypergraphs

to encode information for machine learning, for example in the case of relational

aspects of data to decision-making [58] of social network [59];

2. most research lines in this sense approximate hypergraphs as graphs, and simplifies

the problem above to the graph embedding framework (for example [60]);

3. in [61] the authors propose an unified framework (UniGNN) for graph and hyper-

graph neural networks. In this work they report a generalization of the isomorphism

test 1�WL for hypergraphs (1�GWL) and they prove that message-passing based

UniGNNs are at most as powerful as 1-dimensional Generalized Weisfeiler-Leman

(1�GWL) algorithm in terms of distinguishing non-isomorphic hypergraphs.

We are actually trying to evaluate whether quantum encoding via hypergraph states could

bring any advantages.

2.5 Linear optics for quantum computation and quantum

information

All that we have discussed up to this point has not posed the problem of a possible ex-

perimental realisation. The path we will describe in the chapter 7 has as its characteristic

element, the possibility of constructing optical circuits able, at least from an ideal point of

view, to realize encodings and quantum logic gates. We introduce in this section some of

the main elements of single-photon computation: the short description we present has as

references [62], [63], [64], [65], [66], [67], [68], [69]. Subsequently, we will show how some

very recent research work is constructing, on the level of optical devices, a diagrammatic
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language analogous to that used for the logical description of quantum computation ([70],

[71], [72]). The functors between categories will ultimately justify our educational choices

from an advanced theoretical point of view.

2.5.1 Photonic qubits

There are di↵erent ways to encode information in photonic qubits. First we could consider

the polarization. The basic idea is to consider the classical description of polarization

using the Jones vector ([73]):

!
J=

"
E0,Hei�H

E0,V ei�V

#
(2.37)

where E0,H and E0,V denote respectively the amplitude of the wave vector in the horizontal

and vertical direction, and �H and �V the corresponding phases. The operation on states

are descripted with the Jones matrix, defined as

!
J 0= M

!
J (2.38)

It is common to normalize it to 1 at the starting point of calculation for simplification. In

this way this definition is consistent of qubit and the Jones matrix is a single qubit logic

gate.

Once the qubit has been encoded in polarization, a generic logic gate can be realized

through the haf-wave plates. Indeed, we know that ([74]) the matrix

T (�) =

"
1 0

0 e�i�

#
(2.39)

transforms a wave with field components (E0,H , E0,V ) in (E0,H , e�i�E0,V ) thereby delaying

the V component by a phase � while leaving the H component unchanged. The H and

V axes are called the fast and slow axes of the retarder, respectively22. If the fast axis of

the wave plate is oriented along an arbitrary angle ✓ with respect to the horizontal axis,

the transformation matrix can be determined by applying R(✓):

T 0(�) = R(�)T (�)R(��) (2.40)

22We are assuming horizontal polarisation coinciding with the x-axis
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where R(�) is the rotation matrix.

In the case of half-wave plate (� = ⇡), the equation 2.40 becomes

UHWP (✓) =

"
cos(2✓) sin(2✓)

sin(2✓) � cos(2✓)

#
(2.41)

where overall phases are omitted ([75]). It is straightforward to demonstrate that for ✓ = 0,

✓ = ⇡/4 and ✓ = ⇡/8 the matrix in 2.42 represents respectively a Z-gate, a X-gate and a

H-gate. In this way, HWPs allow linear polarization states to be transformed into other

linear polarization states.

In the case of quarter-wave plate (� = ⇡/2), the equation 2.40 becomes

UQWP (✓) =

"
1 + i cos(2✓) i sin(2✓)

i sin(2✓) 1� i cos(2✓)

#
(2.42)

QWPs can create circularly polarized light from linearly polarized light.

Any general unitary transformation U can be achieved by using a combination of HWPs

and QWPs ([76]):

U = UQWP (✓1)UHWP (✓2)UQWP (✓3) (2.43)

The second way used in our work to encoded a qubit is with two spatial modes23 ([67]):

|0iL = |1i ⌦ |0i and |1iL = |0i ⌦ |1i. The optical device to realize this encoding is the

unpolarized beam splitter. A beam splitter is a semi-reflective mirror which splits an

incident beam into two parts: a transmitted part and a reflected part. We consider our

representation of beam splitter in the Fig. 2.5

Figure 2.5: Qubit encoded with two spatial modes

23In our first educational reconstruction, we used the expression dual-rail. In Chapter 7 we will rein-
troduce this term for consistency with what we have done. But in future worksheets and in 3 we have
abandoned this terminology.
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where the reflection with phase-shifting is the path 1.

Classically, we can describe the action of the beam splitter with the Jones formalism. We

have in input the electromagnetic field

!
J=

"
E0,0

E0,1ei�

#
(2.44)

where the vector components are the electromagnetic components on two paths. For

simplicity of notation, we can write

!
J= a

"
1

0

#
+ b

"
0

1

#
(2.45)

where

"
1

0

#
and

"
0

1

#
represent the path 0 and 1 in 2.5, and a2 + b2 = 1

In this way we can introduce the beam splitter matrix assuming

BS =

"
r t

t �r

#
(2.46)

where r and t are the reflection and transmission coe�cients, satisfying the condition

r2+ t2 = 1. The general description of the beam splitter action is obtained as in the figure

2.6:

Figure 2.6: Lossless general beam splitter

In the particolar case in which r = t, we obtain the 50-50 beam splitter . It is straight-

forward to see that the beam splitter matrix logically represents a H-gate. Indeed, the

single-photon interpretation is immediate: if the source is at the bottom, we encode the

qubit |0iL; if it is on the left the qubit |1iL. The quantum model of the interaction in the
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figure 2.6 produces the following Heisenberg evolution of the mode operators (see [64] pag.

104-105)

ba 7�! rba+ tbb

bb 7�! tba� rbb

with, for ba, [bai,ba†j ] = �i,j ; analogously for bb.
These equations imply the following qubit evolution

|10i 7�! r|10i+ t|01i

|01i 7�! t|10i � r|01i
(2.47)

The equations 2.47, describe, for r = t the H-gate action on the logical qubits |0iL and

|1iL.
Moreover, a simple phase shift of ⇡ to achieve the Z-Gate as well. The X-gate can be

considered a simple labelling change (for these two gates see 7).

It should be noted that in our algorithms dual-rail coding always has two H gates: one

at the beginning for superposition and the other at the end for interference: this from an

experimental point of view leads us to introduce a Mach-Zehnder interferometer, which is

a key element of our ideal designs with optical devices (see Fig. 2.7).

Figure 2.7: Mach-Zehnder interferometer

The last device we have to introduce is the polarizing beam splitter (PBS). A PBS

splits a beam depending on its polarizations, usually separating an input beam into two
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modes with orthogonal polarization. Light that is vertically polarized is reflected, whereas

horizontally polarized light is transmitted through a PBS. We will use this devise for

measurement in polarization.

2.6 Conclusions

We introduced quantum computation and quantum information theory related to the

theoretical and experimental elements that will be the object of educational reconstruction

for instruction. The approach given in this chapter follows the traditional one. However,

we use diagrammatic representations in a deeper way, so much so that we consider them as

a model. In order to understand the meaning of this approach, the following two chapters

present the topics from a categorical point of view.



Chapter 3

Categories for sciences

3.1 Introduction

In this chapter, we introduce the categorical language1 that aims to unify the several

levels of our educational reconstruction for instruction. In particular, we show how ca-

tegory theory is naturally suited to describe computation from both a logical-formal and

physical-experimental point of view. For this reason, we present two original examples

of computation using finite-state machines and neural networks: we hope in this way to

make the role of category theory for the description of sequential and parallel compositional

processes more evident. The detailed study of these two examples anticipates the link with

the physical theory of computation, whether classical or quantum.

3.2 The role of the category theory for the thesis

When category theory was born some eighty years ago, it represented a useful synthesis of

topology and algebraic approaches. It soon began to show its strength within mathematics,

first with Grothendieck’s approach to cohomology ([77]) and then with Lawvere, who posed

the problem of category theory as a foundation for mathematics ([78]):

“In the mathematical development of recent decades one sees clearly the rise of

the conviction that the relevant properties of mathematical objects are those

1The complete presentation of the category theory concepts used in the following chapters can be found
in Appendix C

33
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which can be stated in terms of their abstract structure rather than in terms

of the elements which the objects were thought to be made of. The ques-

tion thus naturally arises whether one can give a foundation for mathematics

which expresses wholeheartedly this conviction concerning what mathematics

is about.”

In the early 1980s, J.Lambek showed that the type and programs used in computer science

form a specific kind of category. Lambek himself later became one of the most important

supporters of the role of categories in the transition from linguistics to physics. This is

precisely one of the aspects that have most influenced this thesis from a general point of

view: it is evident from the work of the last few years that category theory is a natural

environment in which to describe the multidisciplinarity of our path. This approach takes

its cue, from an application point of view, from research work on, for instance, categorical

quantum mechanics applied to linguistics or machine learning. Lambek himself ([79]) de-

scribes the use of compact monoidal categories to link the Chomsky’s linguistics to physics.

Other works in this direction have been emerging in recent years (e.g. ([80], [81], [82], [83],

[84], [85], [86], [87], [88], [89], [90]).

More generally, a line of research related to applied categories is spreading, which aims

([20]) to integrate knowledge across disciplines. As the author points out, in recent years

category theory has developed in chemistry, neuroscience, biology, natural language pro-

cessing, database theory et cetera. This is with the intention of

“use of categorical concepts as a natural part of transferring and integrating

knowledge across disciplines. The restructuring employed in applied category

theory cuts through jargon, helping to elucidate common themes across dis-

ciplines. Indeed, the drive for a common language and comparison of similar

structures in algebra and topology is what led to the development category

theory in the first place, and recent hints show that this approach is not only

useful between mathematical disciplines, but between scientific ones as well.”

David Spivak himself in [91] describes the intention of the book as follows:

“This book is intended to create a bridge between the vast array of mathe-

matical concepts that are used daily by mathematicians to describe all manner

of phenomena that arise in our studies and the models and frameworks of

scientific disciplines such physics, computation, and neuroscience.”
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It is precisely in physics, and in fundamental of quantum theory in particular, that category

theory has become widespread over the last 15 to 20 years. If this is obvious for example in

([92], [93]), it is also evident in [32] [94] where the categorical framework is only mentioned.

In agreement with the previous considerations the chapter develops along the following

sequence: first, in section 3.3, we intuitively introduce the compositional approach typical

of category theory in a very concrete case, the preparation of a recipe. Then, in 3.4, we

describe in a totally abstract manner the basic mathematical structure that we will use in

the following chapters2: the monoidal categories and functors between categories. We will

interpret these structures from a diagrammatic point of view, emphasising that everything

that can be done in theory has a translation into diagrams and vice versa. Next, in 3.5, we

will give a more rigorous example of how these structures can be used to link linguistics to

quantum mechanics. The example begins to show the strength of the language introduced:

the possibility of linking similar structures born in di↵erent fields. Abstract language is

interpreted into specific categories and these are connected by functors. The final two

sections, 3.6 and 3.7, we develop with categorical methods known in the literature two

original examples of universal computation: the first, finite state machine, related to clas-

sical sequential logic, the second, neural network computer, to more traditional Boolean

logic.

3.3 A world of processes

In order to understand the diagrammatic approach in an intuitive and non-rigorous man-

ner, we will begin by describing the realisation of a recipe as some teachers proposed

during an hour-course on the relationship between logic and physics. During that lesson,

the teachers could construct classical logic using the Set category (the same one that allows

classical physics to be analysed). The example drew attention to the possibility of repre-

senting a process (in that case, the preparation of a recipe) that a diagram could describe.

This particular diagrammatic approach is at the heart of the path we are presenting and

has its origins in the concept of the monoidal category (see [95] for the foundation and for

example [96] for the graphical languages).

During a meeting with the teachers, they were asked to describe the preparation and re-

alisation of a recipe: the teachers proposed pasta alla carbonara.

In the description of the recipe, we focused our attention on the fundamental elements

2The complete presentation of the category theory concepts used in the following chapters can be found
in AppendixC
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that, when reread rigorously, allowed us to understand the nature and structure of the

monoidal category3:

Ingredients The objects of our recipe are, of course, the ingredients that are needed to

make it.

Preparation We are not interested in the history of these ingredients (where they were

bought, when, etc.), but we know that they are available to the cook in a certain

way.

Cooking, actions on ingredients etc. At this point, the cook begins to use di↵erent

ingredients for di↵erent procedures that can be carried out in sequence but also in

parallel to be combined at the end.

Final result Ultimately, we will have the pasta carbonara dish, and nothing else matters

(whether someone will eat it or it will be used as an example for a cooking video).

We show in Fig. 3.1 a useful representation of these processes.

Figure 3.1: Recipe of pasta alla carbonara

As we have said, the proposed example does not claim to be rigorous or exhaustive.

However, it is representative of the approach used to describe the physical processes of

3We will give the definition in the next section.
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computation and can be extended more generally to any kind of processes. The reason

why this is possible lies in the fact that the underlying mathematical structure is totally

abstract. And we like to say: “more abstract, more concrete”.

3.4 The model: symmetric monoidal category and diagram-

matic representations

In this section we give the essential definitions that are necessary for a first understanding

of the monoidal approach. These definitions will also always be presented in the form of

diagrams, diagrammatic representations being fundamental in our work. The works from

which we take our definitions and main results are the classic books on category theory

and some recent works with a more applied approach (see [97], [98], [99], [100], [93], [101],

[102], [91]). The approach will be essentially theoretical, but to make the reading more

usable we will use, whenever possible, the example of the recipe and a particular category:

Set .

3.4.1 Definition of category and diagrammatic representation

To start modelling our recipe, we need an environment to define the ingredients and

possible procedures on them. In addition, we need to consider the possibility of operating

several actions in succession: for example we can take the guanciale, dice it and then put

it in a pan. Mathematically, what we need is objects, transformations (including identity)

and sequential composition.

Definition 3.1. A Category C consists of the fallowing data:

• Objects: A,B,C, ..., constituting the collection Ob(C);

• Arrows or morphisms : f, g, h, ..., constituting the collection4 Ar(C);

• a pair of mapping dom, cod : Ar(C) �! Ob(C) which to each arrow f assign its

domain and codomain. If f : A �! B we call A = dom(f) and B = cod(f).

8A,B 2 Ob(C) we define

C(A,B) := {f 2 Ar(C)|f : A �! B}
4Regarding the need to refer to a collection and not to a set of objects and morphisms see [93] pag. 3

or [101] pag. 6
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This set is the hom-set ;

• for any object A 2 Ob(C), a identity morphism idA : A �! A is designated;

• for any pair of morphisms f 2 C(A,B) and g 2 C(B,C), there is an arrow h 2
C(A,C) composition of f and g:

h := g � f : A �! C

These data are required to satisfy the following axioms:

Unit: 8 f 2 C(A,B), f � idA = f = idB � f ;

Associativity: 8 f 2 C(A,B), 8 g 2 C(B,C), 8 h 2 C(C,D),

(h � g) � f = h � (g � f)

A more rigorous example is that of the category Set whose objects are the sets and mor-

phisms the functions between sets. We can introduce a diagrammatic language to represent

a generic category that will be extremely useful below and is a distinctive characteristic

of the work we present5.

Following the definition, we represent the data as in Fig. 3.2.

Figure 3.2: Diagrammatic representation of data in the category C definition

Similarly, the axioms in Fig. 3.3.

5The abstract representation has immediate interpretation both in our recipe and in the category Set
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Figure 3.3: Diagrammatic representation of axioms in the category C definition

Let us now introduce the concept of a functor, i.e. a map between categories.

Definition 3.2. A functor F : C �! D between categories C and D, consists in a

mapping of object to object and arrows to arrows in such a way that composition and

identities are preserved. This means that:

• F(f) : F(A) �! F(B), to every f 2 C(A,B);

• F(idA) = idF(A), to every A 2 Ob(C);

• F(g � f) = F(g) � F(f), to every f 2 C(A,B) and g 2 C(B,C).

A functor F represents a way of interpreting the category C in the category D. In this

regard, one of the most frequently used possibilities is to interpret a category in Set . We

shall see in 3.10 the usefulness of this approach.

Let us now continue with our recipe. So far we have focused on a single ingredient,

but it is clear that this is extremely limiting in cooking! It is clear that we want to use

several ingredients at the same time in our cooking and perform several procedures to-

gether. This is the sense of introducing parallel composition on objects (the ingredients)

and morphisms (the procedures). In Set this is equivalent to considering ordered pairs

of sets and ordered pairs of functions, i.e. in defining the Cartesian product. Let us now
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come to the general definition.

In the previous section, we defined a category basically as a quadruple C = (Ob(C), Ar(C), id, �).
This definition allows for the possibility of composing in morphisms sequentially. However,

for our purposes we also need to be able to compose objects and morphisms in parallel.

We therefore introduce the concept of monoidal category :

Definition 3.3. A monoidal category consists of the fallowing data:

• a category C;

• a functor ⌦ : C⇥C �! C called tensor product ;

• an object I 2 C, called unit object ;

• a family of natural isomorphisms ↵A,B,C : (A ⌦ B) ⌦ C �! A ⌦ (B ⌦ C) for any

triplet of objects A,B,C 2 C, called associators.

• a family of natural isomorphisms �A : I ⌦A �! A for each A 2 C, colled left unitor

;

• a family of natural isomorphisms ⇢A : A ⌦ I �! A for each object A 2 C, called

right unitor.

These data are required to satisfy the triangle equation and the pentagon equation (see

Appendix C).

As before, we introduce the corresponding diagrammatic language for strict6 monoidal

categories. Following the definition, we represent the data as in Fig. 3.4

Similarly, the axioms in Fig. 3.5 and Fig. 3.6

Here we would like to interpret some of the elements introduced in our preparation of a

recipe and in the category Set . The unit object is used to indicate a certain preparation,

a state in which an ingredient is: we are not interested in the previous history of the

ingredient (where it was bought, whether it was put in the fridge and the like), we are

only interested in saying that on our kitchen counter we have it. The same goes for the

final outcome of our recipe: when it is finished, we are not interested in knowing what will

happen to the dish of pasta carbonara: whether it will be served at the table and eaten

or used as a demonstration on a television programme.

6See AppendixC



Chapter 3. Categories for sciences 41

Figure 3.4: Data representation in the monoidal category definition

Figure 3.5: Axioms representation in the monoidal category definition

Figure 3.6: Interchange law representation in the monoidal category definition
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With regard to Set , the unit object is the singleton set {•}, used to indicate an element

of a set:

{•} �! A

In this way an element is a morphism. We will see the importance of this definition for

the introduction of the concepts of states and e↵ects.

To finish the presentation of what will be the main categorical framework, we need to

introduce the concept of the monoidal symmetric category:

Definition 3.4. A symmetric monoidal category C = (Ob(C), Ar(C), id, �,⌦, I,�) is a

monoidal category C with a natural isomorphism SWAP

� : Ob(C)⇥Ob(C) �! Ob(C)⇥Ob(C)

A⌦B 7�! B ⌦A

satisfying 8 A,B 2 Ob(C) the axioms:

• �B,A � �A,B = idA⌦B �A,I = idA;

• (g ⌦ f) � �A,C = �B,D � (f ⌦ g);

• (idB ⌦ �A,C) � (�A,B ⌦ idC) = �A,B⌦C .

Diagrammatically, the SWAP corresponds to a swap of wires and it is involutory.

In the more general case of isomorphism instead of identity in the definition we speak of

monoidal braided category.

Let’s go to see the most important result that accounts for the strength of diagrammatic

representation in relation to theory:

Theorem 3.5 (Correctness of graphical calculus for braided (symmetric) monoidal cate-

gories). A well-typed equation between morphisms in a braided monoidal category follows

from the axioms if and only if it holds in the graphical language up to spatial isotopy

(graphical equivalence).

Observation 3.6. We use the notion of isotopy because we assume the diagrams lie in

a cube in the three-dimensional space: the input wires terminate in the left face and

the output in the right face. This is also called spatial isotopy (We talk about graphical

equivalence if there is a spacial isotopy and �A,B = ��1
B,A

).
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What we have seen so far allows us to introduce diagrammatic representations such as

those in Fig. 3.7:

Figure 3.7: Circuit diagram with casual structure from left to right

The following examples refer to concepts introduced in the chapter and others that can

be found in the Appendix C

3.5 From linguistics to Physics

Let us briefly propose an example taken from linguistics itself that we hope will clarify

the approach that formed the background to our work and that will recall some of the

elements given in the preceding paragraphs and give an initial concrete interpretation.

In 1956, Chomsky [103] proposed the linguistic theory of types. According to this ap-

proach, the words of a language are characterised by their function. It became immediately

evident that this approach represented a computational view of the language problem. A

few years later, Lambek [104] mathematised Chomsky’s work. The idea is to assign as in

primitive types:

1. s, the type of sentences;

2. n, the type of names.

“From the primitive types we form compound types, by the recursive definition: If x and

y are types, then so are x/y (read x over y) and y\x (read y under x)”.

In this way, for example, a transitive verb is always preceded by a name (subject) and

followed by a name (’object’), whereas an adjective is preceded by a name. According to

the above definitions we can, as in [104], express the sentence “John likes fresh milk” in
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this way:

John (likes (fresh milk))

n (n/s\n (n/n n))

By simplifying algebraically we obtain a grammatically correct sentence:

n (n/s\n (n/n n)) �! n (n/s\n) n �! n n/s �! s

The mathematical structure recognised by Lambek forty years later ([105]) is that of the

pregroup, which from a categorical point of view is nothing more than a particular com-

pact closed monoidal category. The transition to a diagrammatic representation and the

study of natural language (meaning of a sentence) by means of diagrammatic quantum

computation would have been immediate ([82], [106]). Let us briefly discuss the idea.

Let us consider an even simpler example than the previous one: “Claudio loves choco-

late”. Our aim is to understand the meaning of this sentence, especially in relation to

grammatically correct and equivalent sentences such as “Cats love water”. First, we move

from syntax to semantics for individual words using the distributional model of meaning.

The idea is to associate a word with a vector, the components of which show how many

times that word in a given text is associated with certain words (chosen as a base). The

idea is that the meaning of a word depends on its context. From the category of pregroups,

we have moved in this way to the category of vector spaces and linears maps thanks to a

functor that reinterprets the first category in the second ([107], [20]):

sintax �! semantics

Preg(P,,⌦) �! FV ec(V (K), f,⌦)

Of course we cannot use the distributional model of meaning to determine the meaning

of a sentence. However, the compositionality aspect typical of the categorical approach

helps (see [108]): the meaning of a (syntactically complex) whole is a function only of

the meanings of its (syntactic) parts (object amd morphism) together with the manner in

which these parts were combined (parallel composition).

Using this principle, we can consider language in its two components, syntax and semantics,
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in the product category FV ec⇥ P :

language

FV ec FV ec⇥ P P

semantics sintax

⇡1 ⇡2

and thus the meaning of a sentence is a morphism in this category, i.e. “a sentence is a

process that alters the meanings of its words” ([107]).

If we use the category structure associated with quantum physics, the Choi–Jamio lkowski

isomorphism (compactness of category) allows morphisms (verbs) to be understood as

states (names). The diagrammatic representation is straightforward (Fig. 3.8).

Figure 3.8: An example of quantum circuit for natural language processing

If we were interested in the truth value of the sentence, we would carry out a measurement,

i.e. we would close the diagram and obtain a number (0 or 1, unless a scalar) (for details

see [107]).

To understand why, according to this line of research, it makes sense to describe natural

language by means of diagrams of a quantum nature, consider an extremely significant

sentence:

“This interaction logic is a very novel feature that in most sciences has never

been identified until recently. The reason being that exact sciences are still

highly reductionist, describing things by their make-up, rather than focusing

on interactions of systems. In the case of language it is clear that words

interact tremendously, as witnessed by the wire structures in our diagrams.

Similarly, the same diagrams appear when we represent quantum teleportation.

As Schrödinger pointed out, in quantum theory we simply can’t ignore the
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particular nature of how systems interact, and he even called it the defining

feature of quantum theory.”

and more:

“What quantum theory and natural language share at a fundamental level is

an interaction structure. This interaction structure, together with the spec-

ification of the spaces where the states live, determines the entire structure

of processes of a theory. So the fact that quantum theory and natural lan-

guage also share the use of vector spaces for describing states—albeit for very

di↵erent reasons—makes those two theories (essentially) coincide.”

This interaction logic is expressed in the already cited compositionality, which in this case

we can summarise with a slogan:

Grammar is all about how word meanings interact.

What we deduce is that the natural environment of language is to be found in a mathemat-

ical structure able of accounting for the relationships between elements and the possibility

of composing parts of speech and whole sentences. The closed and compact monoidal

category structure seems extremely suitable for this purpose. This structure is also used

in some approaches to quantum machine learning, as we will see in 3.7.

3.6 Finite state machines

This section aims to introduce the Finite State Machine (FSM) by giving some examples

and showing how the categorical language also provides a useful tool for formally defining

them. In particular, we will introduce classical logic gates by applying Grothendieck

construction to the concept of a finite-state machine. This is the first of two examples of

applications of the categorical language for describing classical computation.

As R. Feynman in [39], we can represent a FSM as a (black) box with wire in input

and output: inside the box we can represent, in analogy to what is done for example in

thermodynamics, the transition from a state Q to a state Q0:
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Figure 3.9: Finite state machine

We can interpret Fig. 3.9 from an compositional7 point of view in this way:

• the machine starts o↵ in a certain state, Q;

• it then receives an input I, a bit of information;

• the machine reacts to this input by changing to another state, Q0;

• it spits something out - a response O to the input I.

In order to develop classical computation, let us consider the following FSM:

Figure 3.10: NAND Finite state machine

implementing a NAND-gate in sequential logic8. We can describe the FSM in Fig. 3.10

with a table, known as the action table (see Tab. 3.1).

7We compose more processes in sequence if we think of an input state as a preparation and an output
as a observation!

8For an introduction to sequential logic see [109] or [110]
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Table 3.1: Action table of NAND � FSM

Action table

Id 0 1

State 0 State y State x

State x State 1 State 0

State y State 1 State 1

State 1 State y State x

In the Tab. 3.1 the first column represent the outcomes of the action of identity function

(no input), the other two the outcomes of the action of the inputs 0 and 1. Another way

to describe the Fig. 3.10 is as follows (Tab. 3.2)

Table 3.2: Truth-table of NAND gate resulting from the FSM in Fig. 3.10

Table of Fig. 3.10
Current state Input Input Final state
State 0 0 0 State 1
State 0 0 1 State 1
State 0 1 0 State 1
State 0 1 1 State 0
State 1 0 0 State 0
State 1 0 1 State 0
State 1 1 0 State 0
State 1 1 1 State 1

which expresses compositionally the truth table of the NAND logic gate (the first line, for

example, means that if we apply 0 twice to State 0 we get State 1).

The table Tab. 3.1 allows us to think about the action of a particular monoid on the set

of states S = {State 0, State x, State y, State 1}. The monoid must consider that once

we have fixed a state, it must be possible to apply the input 0 or 1, either once or in all

their possible combinations. For this reason we can represent the monoid as in Fig. 3.11.

Figure 3.11: Free monoid on {0, 1}

Fig. 3.11 is nothing more than the diagrammatic representation of what we already know

(see for example [97],[85]), namely that a monoid is a category with an object.
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To better understand the meaning of this representation, let us introduce the definition of

List of a set:

Definition 3.7. Let I be a set. A list in I is a pair (n, f) where n 2 N is the leght of the

list, and f : n �! I is a function. In this way a list

(n, f) = [f(1), f(2), ..., f(n)]

and List(I) is the set of lists in I.

The monoid of Fig. 3.11 is denoted by List({0, 1}), if we consider the notations [85].

The action represented in Tab. 3.2 is the action of List({0, 1}) on S and this action is

equivalent to give a function � : {0, 1}⇥ S �! S.

From this it immediately follows that we can interpret a finite state machine defining

the NAND-gate as the action of a free monoid on the set {0, 1}. This according to the

definition in [111]:

Definition 3.8. A finite state machine over the finite alphabet ⌃9 is a systemM(S, s0, �, F )

where:

• S 6= ; is the state set ;

• � : ⌃⇥ S �! S is the state-transition function;

• s0 2 S is the initial state;

• F ✓ S is the set of final states.

Since every action of a monoid coincides with a functor from the monoid M to the set

category10

F : M �! Set

we can exploit the Grothendieck construction (see [91], [112], [113]) to define finite state

machines on a high level of abstraction, and thus, as a special case, classical logic gates.

We recall here the Grothendieck construction, also known as the category of elements:

Definition 3.9. Let M be a category, and let F : M �! Set be a functor. The category

of elements of F
R
M

F , is the category in which:

9In our example ⌃ = {0, 1}
10The table 3.2 records the functor!
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objects Ob(
R
M

F ) := {(m,x) | m 2 Ob(M), x 2 F (M)};

arrows HomR
M

F ((m,x), (m0, x0)) := {f : m �! m0 | F (f)(x) = x0}

We can then give the abstract definition of a finite state machine:

Definition 3.10. A finite state machine is the category of elements of the functor F .

In the case of logic gates, we need only consider M = List({0, 1}). In this way the

Fig. 3.10 is a representation of the category defining the abstract concept of the NAND

state machine.

3.6.0.1 Summary and generalisation

If we consider the sequential logic as in [109], a logic gate is a FSM. In fact we can

introduce a set S, set of states, and two possible inputs in ⌃{0, 1}, functions that can

be implemented an arbitrary number of times, possibly even none, with any sequence.

This suggests considering a monoid structure, precisely the free monoid generated by ⌃,

M = (List(⌃), [ ], �), where � in this case is the lists concatenation. A monoid is a

category with an object and thus we can represent it by means of Fig. 3.11.

However, this is not enough because we do not know how the monoid acts (how inputs act

on states); therefore we introduce the action of the monoid as a functor

F : M �! Set

which is recorded by the action table 3.1.

A NAND-FSM is the functor F recorded by the previous table, i.e. it is the same as the

action of a free monoid M = (List(⌃), [ ], �) on S = {State 0, State x, Statey, State1}.
For a correct representation of such a FSM, we make use of the Grothendieck construc-

tion, i.e. we represent in the same diagram the objects and arrows of the category of the

element of the functor F . In this way, the Action table in Tab. 3.1 become Fig. 3.10.

Observation 3.11. The construction performed - Grothendieck construction - can not

only be trivially applied to any logic gate, but can be extended to any category, including

monoidal ones (see [114],[91] and [112]).
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Observation 3.12. The introduction to the logic gates of compositional logic shows one

of the two specific aspects of the categorical approach to computation: sequential compo-

sition. We shall now show another way of introducing classical logic, which allows, thanks

to parallel composition, the well-known logic circuits to be obtained.

3.7 Neural network computer

This section aims to introduce Classical Neural Network (CNN) by giving in particular

the construction of perceptron and showing how the categorical language also provides a

useful tool for formally defining them. As mentioned above, this example shows the need

to extend the category concept to the monoidal category to account for the combinational

logic.

In analogy with biological neurons (see [115], [116], [54], [53]), we can introduce a simple

artificial neuron. The fundamental unit is the perceptron, the artificial equivalent of

biological neurons. Synapses can be matched with weights, so that each input is multiplied

by a weight before being sent to the equivalent of the cell body. Here, the weighted signals

are summed together to supply a node activation (Fig. 3.12):

Figure 3.12: Simple artificial neuron: perceptron

The neuron’s output y - 0 or 1 - is determined by whether the weighted sum is less than

or greater than some threshold value T :

y =

8
<

:
0, if

P
n

i=1 xiwi  T

1, if
P

n

i=1 xiwi > T

Expressing in the Fig. 3.12 whether the neuron is activated or not, we obtain Fig. 3.13.
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Figure 3.13: Perceptron: complete description

Within the node, we can indicate the di�culty of activating it, what is called the percep-

tron’s bias : the higher the value, the easier it is for the neuron to be activated.

We observe that we can consider in Fig. 3.12 inputs as nodes with only outputs and thus

obtain a representation that for our purposes will be more interesting (Fig. 3.14):

Figure 3.14: Perceptron: advanced description

Similarly, we can interpreter outputs as nodes without outputs.

For example, we can consider for example the NAND-gate11 (Fig. 3.15):

Figure 3.15: NAND-gate with perceptron

Because NAND-gates are universal for computation, it follows that the perceptrons are

also universal for computation. Using the sequential and parallel composition of the per-

ceptrons, we obtain a neural network, in strict analogy with the biological one, realising

the binary sum algorithm.

11This example from [53] is very interesting because it shows what R. Feynman did in [39] with strips
and pebbles to introduce the binary sum algorithm.
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Figure 3.16: Binary addition with neural network

The neural network in Fig. 3.16 immediately shows the typical three-partition of any com-

putational process: information encoding, information processing, decodnig information

as can be seen in the following picture (Fig. 3.17):

Figure 3.17: Three-partition of binary addition

Knowing that each perceptron realises a Nand-gate, we can translate the representation

in Fig. 3.16 into the circuit representation in Fig. 3.18: it is easy to verify by means of

traditional truth tables that this representation is equivalent to the previous one.
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Figure 3.18: Circuital representation of binary sum.

As in the previous example, we will use this tool to perform classical computation and

show how this can be well described in the categorical language. The approach we fol-

low has proved so useful that an extension of it has made it possible to express the entire

supervised deep learning with the same mathematical structure12 (see [83], [84] ,[86], [87]).

We have seen in Fig. 3.15 the possibility to realise a Nand-gate with a perceptron and

in Fig. 3.16 the possibility to realise a computation with a neural network. The basic idea

is that artificial neurons can be sequentially composed in series and in parallel. This leads

us to introduce a monoidal category, Para(Smooth), the category of neural networks (see

[87]) (an artificial neuron is a special case) from a strictly symmetrical monoidal category,

the need for which is clear in order to define the concept of reparametrisation. We will

introduce this construction diagrammatically and only for computational case13, leaving

at the end the formal construction whose full description can be found in the references

already indicated.

First, we translate the perceptron representation into a diagrammatic representation more

similar to the one used in this work, which emphasises the parameter as somehow di↵erent

from the data (input): Fig. 3.19 shows how to construct the particular image from the

known representation, with the obvious requirement that x 2 {0, 1}n.

12The extension to the quantum case is close by means of working on monoidal categories that are not
necessarily Cartesian [117].

13We do not need the Para(Smooth) category entirely, because we do not have to implement the back-
propagation.
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Figure 3.19: Diagrammatical representation of Nand-gate with perceptron.

The representation above provides the basis for an obvious generalisation that allows se-

quential and parallel composition to be introduced graphically in a very simple way as in

Fig. 3.20

Figure 3.20: Diagrammatical representation of a any logic-gate with categorical descrip-
tion of the perceptron.

For example, the sequential composition of NAND and NOT logic gate becomes as in

Fig. 3.21.

Similarly, we can introduce the parallel composition as in Fig. 3.22.

What we have seen can be formalised, in the specific case of Boolean logic, in the following

way:

Definition 3.13. Let C=(Ob(C), Ar(C), id, �,⌦, I,�) be a strict symmetric monoidal

category, then we define the category Para(C) with:

• Ob(Para(C)):= Ob(C)

• Ar(Para(C)):={(P, f)|P 2 Ob(C), f : P ⌦A �! B, A,B 2 Ob(Para(C))}

• IdA:=(I, idA)

• (P, f) � (P 0, f 0) := (P ⌦ P 0, f 0 � (id⌦ f)), with (P, f) : A �! B and f 0 : B �! C.
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Figure 3.21: Diagrammatical representation of a sequential composition of Nand and
Not gates

Figure 3.22: Diagrammatical representation of a parallel composition of logic gates

Monoidal structure is inherited from C (see [86]).

If in Def. 3.13 we use (C) the category with

• Ob((C)) := N

• Ar(C):={(P, f)|P 2 Rp, f : {0, 1}n �! {0, 1}m}14

14In general it is useful to define morphisms es Ar(C):={(P, f)|P 2 Rp
, f : Rn �! Rm} to be able to

use di↵erential calculus for backpropagation.
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we obtain the category of the logic gates with their compositions introduced diagram-

matically in Fig. 3.20, 3.21 and Fig. 3.22. This allows, equivalently, a diagrammatic

representation by string diagram (see [96],[87]).

3.7.0.1 Summary and observations

Considering the traditional combinational logic, we can build the logic gates with a per-

ceptron and realise any computation with a neural network, a sequential and parallel

composition of artificial neurons.

We represented the perceptron in Fig. 3.14 and the binary addition with neural network

in Fig. 3.16. These representations suggest using the concept of monoidal category to

describe the computational approach (input, transformation, output) and a particular pa-

rameterization to take into account the weights. The mathematical structure that brings

these considerations together is Para(C), where C is a monoidal category. In this way

we can associate for instance to the neural network describing the XOR logical gate (Fig.

3.23).

Figure 3.23: Neural network computing XOR gate as parallel composition of OR and
NAND ; sequential composition with AND gate.

The corresponding diagrammatic representation based on Para(C) (Fig. 3.24)

Observation 3.14. The examples just introduced show once again how proper a compo-

sitional introduction to computation can be. It is also advantageous to consider our steps

to obtain the most abstract construction possible. First, we introduced a model of an

element of nature, the neuron. Then we built a network structure using sequential and

parallel compositions of perceptrons from this. We realised that it was then possible to use
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Figure 3.24: Diagrammatic representation of Fig. 3.23

more abstract object to describe this process: the category Para(C). Finally, we took ad-

vantage of diagrammatic representations to restore the pictures to their form throughout

this work.

Observation 3.15. The computation introduced through Para(C) sheds light on some

significant aspects if reread in the physical sphere: the monoidal category presented has

as its monoidal product the Cartesian product; this means that the nature of compound

systems is separable. Furthermore, the sequential composition is the function composition;

this computation is not necessarily invertible. Finally, as a probabilistic structure, we

have the trivial one that associates probability 1 of obtaining a specific outcome from the

computation, i.e. it certifies the pre-existing value of one particular physical property.

3.8 Conclusions

We have introduced the concept of a monoidal category in an abstract form and provided

a suitable diagrammatic representation. Furthermore, the theorem 3.5 ensures that ev-

erything that is proved by syntactic rules on diagrams is also proved theoretically and

vice versa. The abstract language was then interpreted in the natural language and logic-

computation field, providing the first original examples of how it can be used in the

sciences. The link with physics is currently only touched upon. It is the task of the

next chapter to provide a comprehensive picture of the connection between logic, physics

(classical and quantum) and diagrammatic language.



Chapter 4

Physics for computation: a

compositional approach

4.1 Introduction

This chapter builds on some of the considerations of early researchers in quantum compu-

tation to introduce the link between computation and physics according to a compositional

perspective, i.e. by exploiting the sequential and parallel composition intrinsic to monoidal

categories.

We have already introduced at the end of the previous chapter the concept of finite state

machine (3.6) and neural network (see 3.7), and we gave their categorical construction

to introduce classical computation. The two special cases are here generalized to the

environment best appropriate for the description of classical logic in 4.3, the Set topos.

Diagrammatic representations thus achieve an interpretation in the computational frame-

work.

The use of the compositional approach and the introduction of the Set category make the

transition from computation to physics natural: the logical actions of encoding, processing

and decoding information become the physical processes of preparation, transformation

and measurement of physical state for bit (4.4). In this way, a generic experiment (truth

value of a physical proposition) is reinterpreted from a computational point of view and

the isomorphism between Boolean algebra and the residues classes modulo 2 completes the

correspondence. The last sections are dedicated to the interpretation of the diagrammatic

mathematical elements introduced in the previous chapter from a physical point of view

59
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in the case of Operational Probabilistic Theories (4.5) and ZX-calculus (4.7). Finally, we

consider an equivalent diagrammatic language related to linear optics (4.8).

4.2 The physics of computation

The beginning of our discussion can be found by rereading D. Deutsch’s famous description

of what is meant by a computer [18]:

“Intuitively, a computing machine is any physical system whose dynamical

evolution takes it from one of a set of ’input’ states to one of a set of ’output’

states. The states are labelled in some canonical way, the machine is prepared

in a state with a given input label and then, following some motion, the output

state is measured. For a classical deterministic system the measured output

label is a definite function f of the prepared input label; moreover the value of

that label can in principle be measured by an outside observer (the ’user’) and

the machine is said to ’compute’ the function f. ”

and the assessments of Turing’s work in T. To↵oli and E. Fredkin’s 1982 article on reversible

logic [16]:

“The Turing machine embodies in a heuristic form the axioms of computabil-

ity theory. From Turing’s original discussion (Turing, 1936) it is clear that he

intended to capture certain general physical constraints to which all concrete

computing processes are subjected, as well as certain general physical mech-

anisms of which computing processes can undoubtedly avail themselves .At

the core of Turing’s arguments, or, more generally, of Church’s thesis, are the

following physical assumptions:

P1 The speed of propagation of information is bounded. (No ”action at a

distance”: causal e↵ects propagate through local interactions.)

P2 The amount of information which can be encoded in the state of a finite

system is bounded.

P3 It is possible to construct macroscopic, dissipative physical devices which

perform in a recognisable and reliable way the logical functions AND,

NOT, and FAN-OUT. ”
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And again on the role of physics and axioms:

“This paper deals with conservative logic, a new mathematical model of com-

putation which explicitly reflects in its axioms certain fundamental principles

of physics...

Computation - whether by man or by machine - is a physical activity, and is

ultimately governed by physical principles. An important role for mathemat-

ical theories of computation is to condense in their axioms, in a stylised way,

certain facts about the ultimate physical realisability of computing processes.

With this support, the user of the theory will be free to concentrate on the

abstract modelling of complex computing processes without having to verify

at every step the physical realisability of the model. Thus, for example, a cir-

cuit designer can systematically think in terms of Boolean logic (using, say, the

AND, Not, and FAN-OUT primitives) with the confidence that any network he

designs in this way is immediately translatable into a working circuit requiring

only well - understood, readily available components ( the ”gates ”, ”invert-

ers”, and ”bu↵ers” of any suitable digital- logic family). It is clear that for

most routine applications one need not even be aware of the physical meaning

of the axioms. However, in order to break new ground one of the first things

to do is find out what aspects of physics are reflected in the axioms. ”

By the physics of computation, we mean precisely the existing tense relationship between

the mathematical theory describing computation and the physical theory explaining the

nature of the devices to implement it. The mathematical framework for both descriptions

will be that of braided monoidal categories with a probabilistic structure: the di↵erence

between classical and quantum computation is manifested in particular by the role of

parallel composition and probability within the framework. Technically, this results in an

extension of the algebraic structure

4.3 From categorical classical computation to physics

After the last two examples described in the previous chapter, we will now deal with the

introduction of classical computation following what was done in [93] and [118] with the

Set category, restricted to the particular case where the sets are Boolean.
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We know that classically logic gates are boolean function

f : {0, 1}n �! {0, 1}m

We can construct the category of Boolean functions in this way:

Definition 4.1. Set = S is the braided monoidal categoryS = (Ob(S), Ar(S), id, �,⌦, I,�)
defined by:

• Ob(S) are the sets;

• Ar(S) are the functions f : A �! B, with 8A,B 2 S;

• id : A �! A, 8A 2 S, is the identity function;

• � : Ar(S)⇥Ar(S) �! Ar(S) is the composition of functions.

These elements trivially satisfy the unit and associativity conditions. The parallel com-

position is defined by the functor ⌦ : S⇥S �! S (the Cartesian product) and the unit

object I = {⇤}. These elements trivially satisfy the unitality and associativity on objects,

the unitality and associativity on arrows and the interchange law. Moreover, these make

it possible to construct logic gates. Finally, for braiding (symmetry) we can introduce

�A,B : A⇥B �! B ⇥A s.t. (a, b) ⇠ (b, a) .

The categorical approach to classical logic links computation as an abstract theory and

physics, meaning the study of the systems that implement this computation. For example

we can consider this traditional logical circuit:

Figure 4.1: Circuit representation of the Or -gate

In our representation it becomes:

Or
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From a strictly logical point of view, we divide the representation into three parts: input,

logic gate and output. From a physical point of view, i.e. the device to implement this

operation, the diagram is interpreted as follows: the first part refers to the preparation of

the initial states; the second to the transformation of the states; the third to their mea-

surement, which in classical deterministic computation is equivalent to the confirmation

of the properties possessed by the output states. The mathematical structure introduced

allows the introduction of initial state, e↵ects and scalars using the terminal object in Set :

States A state, a class of bitstring preparation, is a transformation without input {⇤} �!
{0, 1}n;

E↵ects An e↵ect, a class of bitstring observation, is a transformation without output

{0, 1}m �! {⇤};

Scalars A scalar is a transformation without any input and output {⇤} �! {⇤}.

In the physical context, we speak of preparing a state, transforming a state and measuring

a state. In this way, we can introduce our diagrammatic representation of classical com-

putation as in Fig. 4.2

Figure 4.2: Diagrammatic representation of diagram for classical computation.

and this diagram immediately implies a physical interpretation that describes a device

to implement it: we prepare the physical systems to realise two bits encoding the initial

information; therefore we have an experimental setup able to realise physical transforma-

tions on the state corresponding to the logical gates; finally we realise a measurement1.

This approach is illustrated in Fig. 4.3

But with this theoretical set-up, the problem arises that we cannot eliminate a non-trivial

notion of measurement. In Set = S the monoidal unit object is terminal, meaning

1We will see how useful this is in implementing quantum logic gates through optical devices.
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Figure 4.3: Physical interpretation of a classical logical circuit

Hom(A, I) has only a single element for any object A. We can say as [92], this com-

putation is boring. We can prevent this trouble, using the categorical logic described in

[118]. It is impossible to describe the entire construction here, but we will give the main

ideas with special attention to the logic of predicates that arises as necessary. We can also

emphasise that this approach can also be introduced in the case of quantum calculus, but

for reasons that will become clear later, we will not follow this way.

4.3.1 Predicates, tests and measurement instruments

We know that Set has terminal object {⇤} = 1 and coproduct the direct sum ([93]). We

repeat here the definition already given, but made more explicit in the context we are

analysing.

Definition 4.2. Given two objects A e B in a category, a product is an object A ⇥ B

with morphisms A⇥B
pA�! A and A⇥B

pB�! B, s.t. if X
f�! A and X

g�! B, exists only

one morphysm
�
f

g

�
: X �! A⇥B making both trinagles commute2:

X

A A⇥B B

f g(f
g
)

pA pB

2
pA �

�
f

g

�
= f and pB �

�
f

g

�
= g



Chapter 4. Physics for computation: a compositional approach 65

A coproduct is the dual notion.

X

A A⇥B B
k1

f (f
g
)

k2

g

We can define a 2�test on an object X as a map p : X �! 2·1 = 1+1 = {0, 1}. If we think
about the propositional logic this test is called predicate p and Pred(X) = Hom(X, 1+1).

In particular we can define the true predicate as

1X = (X
!X�! 1

k1�! 1 + 1)

and the false predicate as

1X = (X
!X�! 1

k2�! 1 + 1)

The predicates Pred(1) on the final object 1 2 play a special role and will be called scalars

(sometimes probabilities).

Set the 2-test give a partition on X in 2 subsets p�1(i) ✓ X, with i 2 {0, 1}. Obviously

in this case a predicate is a characteristic function X �! 2 and the probabilities are the

Booleans {0, 1}.
In this way, following [118], we can describe the whole logical-computational process as

the sequence of three foundamental moments3:

States The state is a class of preparation ! : 1 �! {0, 1}, called traditionally bit ;

Computations The computation is a class of transformation {0, 1}n �! {0, 1}m

Predicates A predicate is a map p : {0, 1}m �! {0, 1} showing the truth value.

The construction we have just seen, however, is not enough: it is used to observe that

there may be two di↵erent output options, but not which one in 1.

In Set we can introduce a measurement instrument for classical computation

instrp : {0, 1}m �! 2 · {0, 1}m

3For the role of the classes, we refer to [94]
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defined instrp(x) = kix i↵ p(x) = i, making the diagram commute

{0, 1}m 2 · 1

2 · {0, 1}m
instrp

p

n·!

Instrp allows us to carry out a non-trivial measurement by also providing outcomes.

4.3.2 A second approach: the topos Set

What is described in the previous paragraph describes what some might call categori-

cal classical logic. This approach arose precisely from the developments in the study of

category theory in the field of physics ([95], [119], [118], [120]). Traditionally, there is

another approach, again categorical in nature, which describes classical logic by means

of a higher-order structure, the topos theory4. For the purpose of completeness we also

briefly describe this approach5:

Definition 4.3. A topos is a category C such that:

1. C has all finite limits;

2. C has a subobject classifier;

3. C has all exponentials.

Without going into detail, the subobject classifier is the set

⌦Set := B = {true, false}

together with the morphism

true : 1 �! ⌦

and a iniective function

m : X �! Y

able to find a characteristic function pmq : Y �! ⌦ such that
4This approach has given rise to other works on the logic of quantum physics. These include that of A.

Doring and C. Isham [121]
5For the definition see [99]
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pmq(y) := f(x) =

8
<

:
true if m(x) = y for some x 2 X

false otherwise

This approach allow us to obtain the logic gates in a very simple manner (for details see

[102] last chapter) and introduce the characteristic function, fundamental as we shall see

in the next section6. This approach is more similar to the considerations that follow. The

cost is the renunciation of classical logic for an intuitionist logic ([118]).

4.4 Physical interpretation

We can translate the previous considerations of 4.3 in physics.

What means to find the truth value of a physical proposition? As Susskind in [122], we

have to prepare an experimental setup, prepare initial states, to evolve states and then

carry out a measurement to establish the truth value of the predicate. The approach

followed in the previous section makes it possible to translate into categorical language

what is already known and very clearly set out in [123] and which we outline here:

1. Let us consider a classical physical system, for example an object of mass m;

2. the State space is S = {(x(t), p(t)) ⇢ R2};

3. a physical quantity is a function f : S �! R ;

4. we talk about property if the physical quantity has a specific value f(s);

5. we can consider a statement about the properties of the system (true or false), i.e.

the value of a physical quantity lies in some � ✓ R, i.e. the system possesses this

property;

6. to each proposition we can associate a subset of S, E := f�1(�) ✓ S;

7. E realise a partition of S and with a characteristic function �, we obtain the true

value of proposition.

This can be summarised graphically as follows7

6For more on the di↵erences between the approaches in the last two paragraphs, see [118]
7The importance of this figure will be evident in the develop of the educational reconstruction for in

service teachers
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Figure 4.4: Representation of the formalisation of the truth value of a physical propo-
sition

Reread in the terms of the categorical language introduced earlier, it becomes:

a. Let us consider classical physical systems; an object A in Set;

b. we prepare the initial state coding the information on a physical quantity of a system,

i.e. we consider the morphisms from terminal object 1 in the object representing a

system 1 �! A;

c. we realise the experiment, i.d. we consider the transformations on the systems, the

morphisms in general between two di↵erent objects f : A �! B;

d. we read the result on a measurement device and then we obtain the true value of

proposition, i.e. we use the measurement instrument instrp : X �! 2 ·X to obtain

0 or 1, or the morphism linked to subobject classifier.

The well-known isomorphism between the Boole algebra (P(S),[,\, ;, S, (�)c) and
(Zn

2 ,+, ·, 0, 1, (1� (�))) allows you to think every classical physical proposition in compu-

tational terms in Set:

Figure 4.5: Representation of a particular implementation of XOR gate in Fig.3.24.

which in the circuit representations we will use later is represented as
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Figure 4.6: Circuit of a particular implementation of XOR gate in Fig.4.5

4.5 Monoidal category and probabilities: physical interpre-

tation in Operational Theories

We are finally ready to systematically interpret diagrams and the rules governing them

from a physical point of view. The references in this regard are of two kinds: OPT and

Categorical Quantum Theory (CQT). The framework common to both are the monoidal

braided categories with the addition of a probabilistic structure (which in the case of

CQT determines the extension of the categorical structure up to Hypergraph categories8).

Below we will follow the presentation of OPT given in [94] making explicit and precise the

links with the category theory introduced in the previous chapter. This approach is very

interesting from the point of view of operational interpretation, which suggests the fact

that diagrams, which abstractly are elements of a mathematical theory, are constructed as

a generalization of a scheme of an experimental protocol [125]. This approach supports,

from a theoretical point of view, the choice of designing an educational sequence in which

the diagrams will have multiple interpretations: theoretical from a computational point of

view, theoretical from a physical point of view, and theoretical from the point of view of

the physical devices (ideal and otherwise) used for their realization. These ideas are the

basis for the construction of the diagrammatic model, where the concept of model will be

discussed and explained in the next chapter.

An OPT is a theory that make “predictions about joint events depending on their reciprocal

connections” ([34]). In order to do this OPT “is a non-trivial extension of probability

theory, which in turn is an extension of logic” ([34], [126], [127]).

In the following, we will introduce the two elements that constitute the basis of OPT:

the operational structure and the probabilistic structure. The first is strictly related to the

concept of the monoidal symmetrical category; the second allows the linear structure of

the theory to be introduced.

In full correspondence to the tables C.1 and C.2 we present their physical interpretations

of category C = (Ob(C), Ar(C), id, �):
8For the relations between operational theories and CQT see [124]
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Figure 4.7: Physical interpretation of category data in OPT

and for the axioms

Figure 4.8: Physical interpretation of category axioms in OPT

As you can see from the first table, Sys(⇥), Test(⇥) and Event(⇥) that are respectively

the collection of systems, test and events of a theory ⇥, are the primitive entities.

Let us pay attention to the fact that in an experiment we see neither systems nor tests,

but they are outcomes that are the only real elements. For example we can think about

a Stern-Gerlach apparatus ([34]) as in Fig. 4.9: the experiment consists of an oven that

produced a beam of neutral atoms, a region of space with an inhomogeneous magnetic

field, and a detector for the atoms. We found that the beam was split into two in its

passage through the magnetic field. One beam was deflected upwards and one down-

wards in relation to the direction of the magnetic field gradient.

In this case we have two events associated with the test: the two possible transformations

corresponding to the particle passing through the upper or the lower pinhole. Up and down

are the two outcomes. The input and output systems are a particle spin. A particular

outcome space is the singleton: when you have only one element. Deterministic events are

those whose associated test is singleton.
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Figure 4.9: Stern-Gerlach device to measure the spin component of neutral particles
along the z-axis

What has just been introduced accounts for the sequential structure of physical processes,

but not for their composition: let us therefore add the monoidal structure (see Fig. 4.10)

C = (Ob(C), Ar(C), id, �,⌦, I)

Figure 4.10: Physical interpretation of monoidal category data in OPT

and for the axioms as in Fig. 4.12. The simmetry � in C = (Ob(C), Ar(C), id, �,⌦, I,�)

has the following physical meaning: two experimenters must be able to exchange their

respective systems.
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Figure 4.11: Physical interpretation of monoidal category axioms in OPT

Let us now introduce the probabilistic structure. We will introduce only the role of prob-

ability and probabilistic equivalence; for more details [94].

Probabilities We can say that “the general purpose of an operational theory is that of

predicting and accounting for the joint probability of events corresponding to a par-

ticular circuit connection”. Following this perspective, the diagrams in an OPT are

closed circuits (directed acyclic graphs) that correspond to a probability distribution:

Figure 4.12: Closed diagrams: a probabilistic interpretation.

Probabilistic equivalence The previous definition allows us to define an equivalence

relation:

Definition 4.4. Let ⇥ be an OPT.

8 A 2 Sys(⇥), 8 B 2 Sys(⇥)

8 T1 2 Event(A �! B), 8 T2 2 Event(A �! B)

T1 ⇠ T2
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if 8 E 2 Sys(⇥), 8 ⇢ 2 Event(I �! AE), 8 a 2 Event(BE �! I)

Figure 4.13: Probabilistic equivalence

This relation gives us the possibility to introduce the concept of state and e↵ect. Let

us see how.

Definition 4.5. We define transformation from a systemA to a system B a quotient

class of events

Transf(A �! B) := Event(A �! B)/ ⇠

Therefore, we can define

state as the member of the quotient class of preparations9

St(A) := Transf(I �! A)

e↵ects as the member of the quotient class of observations

Eff(A) := Transf(A �! I)

The sequential composition of states and e↵ects is a number in [0, 1].

Finally, we define

instruments as the member of the quotient class of Tests

Instr(⇥) = Tests(A �! B)/ ⇠

An OPT can be defined by specifying:

1. the systems Sys(⇥);

2. a parallel composition rule ⌦ for systems and states;

3. the instruments Instr(⇥) and their parallel composition
9The operational definition of state just given clearly implies the definition of a qubit (or a bit). For

the teleportation protocol, for example, we can use equivalently the polarization of a photon and the spin
of an electron, “which both correspond to the same quantum system, i.e. the qubit”([34])
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4.6 The purification postulate

An OPT has no classical or quantum interpretation, given its completely abstract nature.

It is the postulates inserted later that connote its character. In particular, this section

introduces the postulate of purification in a diagrammatic manner. This postulate is what

characterises quantum theory concerning classical theory ([128], [129], [130] [34]).

Definition 4.6 (Purification). A pure state  2 S1(AB) is a purification of ⇢ 2 S1(A)

if10 |⇢)
A
= (e|B| )AB. Diagrammatically,

⇢ A =  
A

B e
(4.1)

where the left-hand side of the equal is the diagrammatic representation of the partial

trace.

Without going into too much detail, “the purification principle states that every state has

a purification, unique modulo reversible transformations on the purifying system” ([130]).

This means that when we have a mixed state, our ignorance comes from the fact that the

system we are considering A is actually part of a larger AB system of which we have total

knowledge. From a foundational point of view, the purification principle is very important

because it links information theory to physical theory, making it a full-fledged a physical

theory of information ([34]):

“Information theory would not make sense without the notions of probability

and mixed state, for the whole point about information is that there are things

that we do not know in advance. But in the world of classical physics of Newton

and Laplace, every event is determined and there is no space for information

at the fundamental level. In principle, it does not make sense to toss a coin

or to play a game of chance, for the outcome is already determined and, with

su�cient technology and computational power, can always be predicted. In

contrast, purification tells us that “ignorance is physical.” Every mixed state

can be generated in a single shot by a reliable procedure, which consists in

putting two systems in a pure state and discarding one of them. As a result of

this procedure, the remaining system will be a physical token of our ignorance.”

Moreover, the postulate of purification is what distinguishes classical from quantum theory,

as can be seen from some of its fundamental implications: the existence of entangling gates,
10This is equivalent to ⇢A = TrB | iABh |.
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the No information without disturbance theorem and the teleportation protocol. These and

other results can be easily derived diagrammatically by using the categorical framework

we partially described in the previous chapter (see [128], [129] and [34]).

What we would like to emphasise, while not going into this description, is the importance

of the role of entanglement and the nature of compound systems on the one hand; on the

other hand, to show once again that the categorical approach allows the main results to

be achieved in a simple way thanks to the corresponding diagrammatic representations.

4.7 From circuits to diagrams: categorical approach.

In this section we will introduce the categorical approach, ZX-caluclus in particular ([131],

[132], [133], [134], [1]), to diagrammatic model of quantum computation. This categorical

approach arises from the early work first works realised at the Oxford University ([119],

[135], [98]) and has developed in recent years not only in physics (for example [92], [93])

but also and especially in computer science (for example [136], [80], [81], [82], [83], [84],

[85], [86], [87], [88], [89], [90]). This interdisciplinarity makes it extremely useful for

understanding the philosophy of our work. In this specific case, it will allow us to give a

high-level interpretation of the quantum teleportation protocol (see [119], [137] [1]).

The categorical framework for quantum computation in ZX-calculus is the concept of

Prop (see [138]).

Definition 4.7. A Prop is a symmetric strict monoidal category (C, 0,+) for which

1. Ob(C) = N, or equivalently the monoid Ob(C) is spanned by a unique object (1 is

the generating object);

2. the monoidal unit is 0 2 N;

3. the monoidal product is given by the addition

This means that give a Prop means to specify (see [102], [132]):

1. a sequential composition of morphisms

� : C(m,n)⇥ C(n, p) �! C(m, p)

(f : m �! n, g : n �! p) 7�! (g � f) : m �! p

satisfying the associativity axiom;
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2. a parallel composition

+ : C(m,n) + C(p, q) �! C(m+ p, n+ q)

(f : m �! n, g : p �! q) 7�! (f + g) : m+ p �! n+ q

satisfying the associativity and the interchange axioms;

3. 8n 2 N, the identity map

idn : n �! n

satisfiyng the unit axiom;

4. the unit object 0 satisfiyng the unit and associativity axioms;

5. a symmetry

�m,n : m+ n �! n+m

satisfiyng the relative axioms.

It is extremely intuitive to see how this mathematical structure is appropriate to describe

computation, classical and not just quantum.

Classical computation Let A be a set. In FunX , the Prop of sets and functions, the

set FunX [n,m] is the set of functions from Xn to Xm with the usual sequential

composition and the tensor product as parallel composition. If we choose X = {0, 1},
we obtain a framework suitable for the classical computation.

Quantum computation Let K be a field. We can define the Prop MatKd assuming

MatKd [n,m] := Mdn⇥dm(K)

the set of matrices of size dm⇥dn over the field K. The composition is the traditional

matrix product and the monoidal product is the Kronecker product. If we consider

K = C and d = 2, we obtain the category Qubits := MatC2 .

Similar to what we did abstractly in chapter 2, we can add structure and introduce the

concept of compact closed dagger Prop. Finally, we can add the concept of Frobenius

structure and bialgebra and achieve the complete structure defining the ZX-calculus. It is

not possible to describe the meaning of the whole construction in this work. However, we

show in the following table (Tab. 4.2) the connection between algebraic constructions and
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diagrammatic representations in relation to quantum theory. Next, we will introduce some

definitions and their corresponding diagrammatic representation so that we can discuss the

teleportation protocol and show how, by manipulating diagrams alone, it is possible to

prove its correctness.

Table 4.1: Diagrams

Symmetric monoidal

category

Compact closed †-SMC Hypergraph

category

Circuit diagram String diagram Spider diagram

1. Adjoint

2. Isometries and Uni-

taries

3. Positive processes

4. Born rule

1. Separability

2. Entanglement

3. Process-state duality

4. Traspose

1. Clonable states

2. ONB

3. Observables

4. Measurement (PVM)

5. Strong Complemen-

tary

Table 4.1: The table highlights respectively the characteristic elements of quantum
theory that are characteristic of each additional algebraic structure in the transition from
a monoidal category to a hypergraph category.



Chapter 4. Physics for computation: a compositional approach 78

4.7.1 ZX-calculus

In this section, we introduce ZX-diagrams and set out some rules of calculation. We

have no way of making a complete description (for a rigorous discussion for example [134],

[92], [1]), but the elements we will introduce will make it possible to present an advanced

approach to the teleportation protocol that exploits syntactic rules on diagrams to achieve

a demonstration without the need to develop calculations in the Dirac formalism nor with

matrix algebra.

In its complete definition, the ZX-calculus consists of two strongly complementary classical

structures of Frobenius in a compact dagger category, on an underlying object ([93]). Below

we introduce the fundamental elements for our purposes.

Definition 4.8. Given a Frobenius algebra (C, µ, ⌘, �, ✏), we call a family of morphisms

Sn,m := µn � �m : n �! m

spiders.

We are ready to introduce the two spider generators:

(a) Z-spider

(b) X-spider

From these two spiders, it is possible to achieve most of the useful tools for calculation:

Table 4.2: States, e↵ects and operators in ZX-calculus

Algebraic description Matrix description ZX-calculus
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(Continued from the previous page)

Table 4.2: States, e↵ects and operators in ZX-calculus

Here are the three rules necessary for the teleportation protocol (Table 4.3):

Table 4.3: ZX-calculus rules

Name ZX-calculus Description

Spider fusion

We can fuse adjacent spiders

with the same colour adding

the phases

Identity A 2k⇡ phase can be removed.

Hadamard colour change

Two spider of di↵erent colours

are related to each other by

Hadamard gates.

Table 4.3: ZX-calculus rules

Let us make a few comments on the elements introduced in the previous tables:

Remark 4.9. First we note that with spiders we can also introduce scalars ([139]). Let us

consider some examples in Fig. 4.14.

Figure 4.14: Some examples of scalar in ZX-calculus

In most works on the ZX-calculus, scalars are often eliminated: “A particular case where

non-zero scalar factors can be ignored is when dealing with ZX-diagrams representing

unitary quantum circuits.” ([1]). If we wanted, for example, to introduce a CNOT gate

correctly, we could do so in the two equivalent ways shown in Fig. 4.15
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Figure 4.15: Two diagrammatically equivalent variants of the CNOT gate

Remark 4.10. From the identity rule we obtain a simpler representation of Bell states that

we will use in the teleportation protocol (see Fig. 4.16 )

Figure 4.16: Cup state: Bell state

4.7.1.1 Teleportation protocol

We are now ready to discuss the quantum teleportation protocol and translate the tradi-

tional circuit description into a ZX diagram. The calculation rules will allow us to achieve

an extremely elegant and meaningful illustration.

Alice and Bob long ago generated and shared a maximally entangled state | 00i . Now

Alice and Bob are far apart and can only communicate via classical channels. Charlie

possesses a generic qubit state | i and asks Alice to deliver Charlie’s qubit to Bob. The

quantum circuit for teleporting a qubit is traditionally as in Fig. 4.17:

Figure 4.17: Traditional circuit representation of teleportation protocol.

We first convert this representation into a ZX-diagram (Fig. 4.18):
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Figure 4.18: From quantum circuit for teleporting qubit to ZX diagram

where “the usage of a variable11 to denote a measurement outcome is a simple ‘hack’ to

deal with classically controlled circuits”. For more details on measuring in ZX-calculus

see [134] and [140].

By means of the rules described in Tab. 4.3, we obtain the diagrammatic demonstration

(Fig. 4.19).

Figure 4.19: ZX calculus for quantum teleportation protocol (This figure is a develop-
ment of demonstration in [1]).

The last diagram in the demonstration shows the fact that information flowed from Alice

(Charlie) to Bob without being distorted. What allows this protocol to be successful is

to be found in the interpretation of entanglement in compact monoidal categories. The

11In the protocol a, b 2 {0, 1}



Chapter 4. Physics for computation: a compositional approach 83

presence of the concept of name and coname (see chapter 2) makes it possible to introduce

state-process duality (Choi–Jamio lkowski isomorphism) and makes the nature of telepor-

tation evident from a diagrammatic point of view (see [119], [141], [135] and [137]) as flow

of information. In particular, the information flow refers to the role of bipartite entan-

glement in the protocol itself. In this sense entanglement becomes synonymous with the

possibility of information flow.

4.8 Diagrammatical representation of quantum linear optics

We would like to finish this chapter by briefly introducing the categorical diagrammatic

language in the case of linear optics as well. Research work on this approach is extremely

recent ([71], [70] and [72]). As previously, the aim of this section is to show the links

between abstract diagrammatic representations and their interpretations: in this case, the

existence of a link (a functor!) between the ZX-calculus and a similar language defined to

describe the theory of optical devices used in quantum linear optics. We have no way of

exploring this construction in detail, but we do want to introduce a couple of elements that

should explain what is possible using a diagrammatic language to describe linear optics

for quantum computation. In summary, the idea is as follows:

1. We can introduce the monoidal category LO of optical circuits which are obtained

by sequential and parallel composition of the following diagram:

Figure 4.20: Beam splitter and phase shift diagrams

depicting the beam splitter and phase shifter devices. In this category Ob(LO) are

the optical modes and the transformation are the beam splitter

BS : a⌦ a �! a⌦ a

that acts on a pair of optical modes, and the phase shift

S(↵) : a �! a
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that acts on a single mode with a parameter ↵ 2 [0, 2⇡].

2. The immediate (classical) interpretation of LO category is given in Mat�, the cat-

egory of matrices over complex numbers, where � is the direct sum of vector spaces.

In fact we can consider the functor

U : LO �!Mat� (4.2)

defined by posing on objects

U(a) = C (4.3)

and on arrows

U(S(↵)) = (ei↵) (4.4)

U(BS) =
ei�0p
2

"
1 i

i 1

#
(4.5)

In the case of half-silvered mirrors, we obtain the matrix used above ([142])

U(BS) =
1p
2

"
1 1

1 �1

#

Two generators allow us to interpret the Mach-Zehnder interferometer as in Fig.

4.21

Figure 4.21: Mach-Zehnder interferometer diagram in LO

The classical interpretation of this diagram is then given by the traditional matrix

of beam splitter.

3. Not only we can give a classical interpretation of the linear optical circuits as

complex-valued matrices, but we can also give a graph-theoretic interpretation of

these circuits introducing Path, a Prop category generated by a bialgebra, for

counting paths. In this way we can interpret the previous diagrams by means of

the functor12

F : LO �! Path (4.6)

12For the diagrams see [71]
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In a similar way to the ZX-calculus, we can identify in this category (in the classical

case) six generators (see [71]): we thus build a diagrammatic calculation on classical

optical circuits (coherent light). It is not important here to go into details, but what

is important is that there is a categorical diagrammatic interpretation supported by

the existence of functorial correspondences. In fact, the following propositions hold:

Proposition 4.11. There is a monoidal functor

C : Path �!Mat� (4.7)

In this way makes sense the equation 4.6:

Proposition 4.12. The classical interpretation of linear optics factors through the

Path calculus, i.e. the functor F defined above satisfies U = F � C.

We can summarize the above by requiring it to commute the following diagram:

LO Mat�

Path

U

F
C

(4.8)

Following the representations given in [71] we can diagrammatically translate the

Mach-Zehnder interferometer into the Path-calculus as in Fig. 4.22

Figure 4.22: Mach-Zehnder interferometer diagram in Path-calculus

4. It is possible develop a quantized calculus QPath introducing the creation and

annihilation of particles as generators:

Figure 4.23: QPath generators in addition to those of Path
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With these two generators we can build the creation and annihilation operators on

a single modes as QPath diagrams (The Fig. 4.24 is build by analogy with the

example 4.1 in [71])

Figure 4.24: Creation and annihilation operators on a single modes as QPath diagrams

where the black nodes in QPath are mapped respectively to |ni and hn|, indicating
that the mode is occupied by n particles. This matching is made possible by the

bosonic Fock space functor

B : Mat� �! Hilb⌦ (4.9)

where Hilb⌦ is the monoidal category of Hilbert spaces and bounded linear maps

with the tensor product as monoidal product.

In analogy with 4.8 we can describe the above considerations with

LO Mat� Hilb⌦

QPath

U

F

B

C
Q

(4.10)

where the functor Q represents the diagrammatic quantum interpretation of the

optical circuits.

5. We can interpret the ZX-calculus in QPath constructing a functor between cate-

gories. We can introduce the dual-rail encoding of polarization is the map

|Hi �! |0, 1i , |V i �! |1, 0i

with which the dual-rail encoding consists in encoding a polarised mode of light as a

pair of spatial modes in LO. In this way, for example, the Z basis of dual rail qubit

may be expressed as a pair of QPath diagrams:

Figure 4.25: The Z basis in QPath
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Similarly, it is possible to construct a whole diagrammatic language for linear optics

for computation (see [71]).

Ultimately, we can realize diagrammatic computation even on optical circuits of

linear optics in the case of single-photon devices to realize quantum computation.

4.9 Conclusions

This chapter has allowed us to interpret the categorical structures introduced in the pre-

vious chapter and in Appendix C from a computational point of view first and a physical

point of view later. First, our attention has focused on the classical case, but what we have

seen represents a su�ciently developed framework for introducing quantum computation.

The second part developed the categorical approach to quantum theory (OPT) and cat-

egorical quantum computation (ZX-calculus), both from a theoretical point of view and

in terms of its possible implementation by optical devices. The last section, in particular,

seems to be able to theoretically support the choice of an equivalent diagrammatic lan-

guage in terms of theory and experimental device theory linked to linear optics.

The presentation, from a logical point of view, is thus concluded: thanks to the presence

of functors between categories, the abstract diagrammatic presentation can be interpreted

from a logical, physical-computational and physical-experimental point of view. If from

a theoretical point of view this is the correct approach, didactically we have to reverse

the construction: it will be our task to design a TLS for students in such a way that the

construction and the use of the diagrammatic model is their task. Only in this way can

we ensure the correct understanding of the proposed approach.



Chapter 5

Theoretical and methodological

framework

This chapter begins the second part of the thesis. We introduces the theoretical and

methodological frameworks used relating to physics education: the MER, a theoretical

framework designed that guided us in the clarification and analysis of science content, and

in the design of educational pathways; the IBL and the MBT because in our educational

proposal for secondary school students our aim is to help students develop an organized

knowledge structure concerning QIS embedded in active and constant engagement in con-

struction and reconstruction knowledge through hands-on interactions.

The next two chapters will describe the research conducted with teachers and students.

5.1 Introduction

The research questions presented in the introductory chapter are simultaneously posed on

two distinct and connected levels: those relating to the work of teachers and that of stu-

dents. In particular, this work aims to guide an educational reconstruction of the content

that ultimately allows the topics of the second quantum revolution to be brought into the

curriculum of secondary schools. The point of view expressed is that this reconstruction

should take place through the work of teachers and researchers. Appropriate theoretical

88
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and methodological tools must support such work from the perspective of answering re-

search questions1.

The first part of the chapter addresses two fundamental issues: the educational recon-

struction of content and the relationship between mathematics and physics. The first one

is presented within the framework of the MER[144], a theoretical framework that addresses

the problem of reconstructing science content so that it can become instructional content.

We describe this framework in section 4.1. The second focuses on the approach related

to the physical theory of information, and especially a computational approach such as

the one presented here o↵ers insights into the dialectic between mathematics and physics.

Some research results concerning these topics are then described, as well as the model of

mathematical reasoning in physics in [143] already used in the introductory part of QP

introducing our TLS for secondary school students. To these will be added specific consid-

erations on constructivism and category theory, characterising the approach used in this

work. In particular, it will be shown how the abstract nature of category theory o↵ers,

in practice, an extremely concrete tool for interpreting physical and other processes. The

high conceptual value of the proposal, therefore, shifts from the algebraic-formal plane to

the conceptual plane of processes and their composition, resulting in a shift of focus from

algebraic calculus to structure in a much more modern perspective of mathematics. The

structural aspect will merit permitting the exact conceptual representation of both the-

ory and experimental implementations, seen as interpretations of the same mathematical

framework through specially constructed diagrammatic representations.

The second part of the chapter is completely dedicated to the presentation of research

tools and methods used in both the teacher professional development course and the TLS

for students. As far as teachers are concerned, we will focus on the data analysis resulting

carried out through qualitative methods and how these aspects influenced the design work

for the TLS. As far as students are concerned, we will focus on the teaching strategies

adopted and the tools used to implement them: inquiry-based learning and modelling-

based teaching. Finally, we will focus on the role of worksheets as working materials and

data analysis from the perspective of Designed Based Research (DBR) ([145], [146], [147]).

1It should be noted that the decision to include the pathway in continuity with the approach to QP
through polarisation (see [143]) also requires a form of continuity in terms of the methodology and instru-
ments used. The part that follows is basically a confirmation of this and an extension of it in terms of the
aspects that more appropriately refer to the physical theory of computation and information.



Chapter 5. Theoretical and methodological framework 90

5.2 The model of educational reconstruction

The MER ([144],[148]) is a theoretical framework for research and development in science

education. As the authors underline in [144]

“The key message of the model is that science subject matter content (including

concepts and principles as well as conceptions about science and the scientific

inquiry processes) may not be presented in a somewhat reduced or simplified

manner in science instruction. The science content structure for instruction is

somewhat more elementary (from the science point of view) on the one hand

but richer, on the other hand, as the elements of science content of a certain

topic need to be put into contexts that make sense to the students and may

be understood by them.”

The model draws on the position of epistemological constructivism on the one hand [149],

and on the other hand on the European tradition, German above all, of European Didak-

tik and Bildung (formation). The Bildung draws its specificity from the need to build the

individual in his or her entirety, in this case to transform a student into a citizen; in this

way the interdisciplinary nature of the science of education is expressed ([150]).

Two major conceptions of German Didaktik are the Didaktische Analyse and the Elemen-

tarisierung. According to this approach, content should not be regarded as given, but will

be the result of a reconstruction process that takes into account both of the content to be

learnt and the students’ cognitive and a↵ective variables [144].

“The science content is not viewed as “given” but has to undergo certain recon-

struction processes. The science content structure (e.g. for the force concept)

has to be transformed into a content structure for instruction.”

As regards the Elementarisierung in MER, we must take into account three issues that help

to explain its meaning. The first aspect to consider is the identification of first elements,

fundamental entities, of a certain content to have to be addressed for instruction. This

search is a function of the objectives and aims of teaching so that they are also clear to

the students. The second aspect is the need to reduce the elements of complexity of a

particular science so that the topics are accessible to the learners. This involves finding

a way to introduce to students those elementary entities described in the first part. The

di�culty in this second task consists in finding a strict compromise between scientific
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rigour and accessibility for students. All this must be done in order not to interpret it

in terms of merely simplifying science content. Finally, it is necessary to consider the

students’ learning processes in relation to teaching methods able to make the transition

from the pre-instructional conceptions implicit in each student into scientific concepts.

5.3 Three components of MER

Based on what has been presented in the previous paragraphs, we can now accurately

describe the three components that characterise the MER:

Clarification and Analysis of Science Content The aim of this first component is to

transform a certain science content structure into a content structure for instruction.

This is well illustrated by Fig. 5.1 from [144]

Figure 5.1: Steps towards a content structure for instruction

This first component consists of two processes: the elementarization and the con-

struction of the content structure for instruction. The first, which we have already

discussed, is therefore a fundamental step for the construction of content structure

for instruction. In order to implement this first part of the model, the research

methods refer to the qualitative analysis of the manuals and scientific papers, to be

conducted from the science education perspective. This aspect is crucial for several

reasons. Firstly, textbooks address experts and express knowledge in an abstract

and highly condensed manner. Furthermore, working on the most recent research
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articles can avoid using terms that have fallen into disuse and conceptualisations that

have been shown to be wrong later on. There is also an exciting linguistic aspect to

be addressed, namely the semantic area of words used in science instead of the com-

mon usage of the same. In parallel, content analysis can benefit considerably from

research into students’ ideas on the specific topic in question (both pre-instruction

and post-instruction [144]).

Research on Teaching and Learning The second step identified by the method re-

quires the first step to be based on empirical research on teaching and learning.

This research focuses on students’ pre-instructional conceptions, a↵ective variables

and the role of instructional methods, experiments, etc. Furthermore, it is hugely

significant to research teachers’ beliefs about scientific concepts, how their students

learn and how they can support the learning process. Also of great interest for our

work (see [144])

“However, for a number of new and also traditional topics little to no

research at all is available. In these cases, research on teaching and learning

and the process of educational reconstruction are closely interrelated. Here

qualitative methods like interviews or small scale learning process studies

prevail.”

Design and Evaluation of Teaching and Learning Environments The third com-

ponent includes the design of teaching materials, learning development activities

and actual teaching-learning sequences. The design of these elements is subordinate

to the research on students’ perspectives on the one hand and the results of the

elementarisation of topics on the other.

The components described above should not be regarded as static, but in their dialectical

exchange. This is why the procedure must be repeated step by step recursively ([148]).

5.4 Dialectic between Mathematics and Physics

As we have already emphasised, one of the distinctive aspects of the work we are present-

ing here is the special relationship between mathematics and physics. This relationship

is expressed in the fact that the approach that allows us to introduce the themes of the

second quantum revolution is that of the physical theory of information. In this section,
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we will first describe some of the results in literature on the role of mathematics in quan-

tum physics. We will focuse on the informational approach to physics. Finally, we will

anticipate some considerations regarding the role that a categorical description play in our

work in creating a unique model for describing the computational theory, the underlying

quantum physics and the operation of physical devices to realise experimental setups.

The reference article in the literature is mainly [143] because the introductory part of the

QP2 was based on it, and [151] whose subject of the semiotic resource system fits well

with the particular focus on the problem of language in our work.

In the first perspective we followed the approach of [152] according to which

“One important reason for the power granted to the physical science might

be due to the deep relationship between physics and mathematics. Several

historical and philosophical studies show that mathematics and physics are

strongly interrelated in a fruitful and multifaceted manner. The description

of physical processes by mathematical means is one of the most characteristic

traits of physics itself. If analysed more precisely, the role of mathematics in

physics has multiple aspects: it serves as a tool (pragmatic perspective), it

acts as a language (communicative function) and it provides a way of logical

deductive reasoning (structural function).”

In this work, the authors identify two main roles of mathematics in physics: one technical

and the other structural, the latter referring to the role of maths in structuring physical

entities and situations emerging from the processes of interpretation and formalization.

From ad educational perspective, the structural role creates traditionally more di�culties

since it consists of both mathematization and interpretation [152]. About the second

work [151], the use of diagrammatic representations of categorical origin and the dialectic

with other types of representations is one of the most significant aspects not only from a

theoretical but also from a educational point of view.

The evolution of the TLS and the diagrammatic representation fit into this educational

context and is compared with it in an attempt to extend it.

5.4.1 Mathematics for teaching quantum physics

In [143] the authors review several approaches to the education of quantum physics in

secondary schools to examine the respective mathematical structures used to make the

2The relevant part in this regard is that of paragraph 4 of [143] concerning an implementation in the
context of polarisation
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theory’s conceptual aspects more comprehensible. This aspect is intrinsic to developing

the most recent physical theories and QP among them. However, it is also relevant from an

educational point of view: the conceptual di�culty of QP can also be solved didactically

to some extent by a formal as well as a conceptual approach3. The authors seek a synthesis

between the purely formal attitude (see [4]) and the purely logical-conceptual attitude that

can be an obstacle to e↵ective learning.

From an educational point of view, many representations are used to represent physical

processes, laws or relationships, but the authors note that each representation can only

highlight one aspect. As they suggest , the interaction between representations is a possible

way forward. In [154] for example, the author highlight some aspects that can benefit from

multiple representation:

1. Multiple representations can support learning by allowing for complementary infor-

mation or complementary roles.

2. Secondly, multiple representations can be used so that one representation constrains

interpretations of another one.

3. Multiple representations can support the construction of deeper understanding when

learners relate those representations to identify what are shared invariant features of

a domain and what are properties of individual representations.

These aspects can all together or partially contribute to a deeper understanding4.

There are, however, two considerations to be made: the first concerns the fact that,

given the advanced tools required to introduce the mathematical model of QP, an ele-

mentarization process is necessary, including a conscious transition between the di↵erent

representations. The second is that the use of representations must not create an excessive

cognitive load and must therefore be wisely utilised and carefully developed [151].

The ability to consciously use and combine multiple representations to shed light on the

mathematical structures from a physics perspective is defined as “visualisation”by the au-

thors. This visualisation is to be accomplished in a dialectical synthesis of physics and

mathematics that acts in three stages as shown in the Fig. 5.2.

This dialectic is made explicit in [143]:

1 physical processes are mapped onto mathematical elements;

3An interesting review in this regard can be found in [153]
4See also [155] and [156]
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Figure 5.2: Relationship between Physics and Mathematics

2 an attempt is made to give a physical interpretation of mathematical operations;

3 The previous two points will find synthesis in physical theory and retroactively explain

the previous ones.

Due to the conceptual di�culty of QP, it is necessary to find appropriate representations

that reflect the mathematical formalism5.

5.4.2 Two-State Systems Representations and Its Mathematical Struc-

ture

The representation of two-state systems in relation with the mathematical structure de-

serves special attention for our design. In generale we can consider the various types of

representation of two-state systems and their characterisation: experimental, model of

experiment, pictorial, symbolic, graphical and algebraic (see [143]). This several represen-

tations for the same object6 have the virtue of supporting the understanding of character-

istic features of quantum physics: the superposition, the time evolution and the measuring

process, the uncertainty and the probability. We are interested in observing the approach

taken by the authors: representations contribute to a disciplinary discourse and, if used

wisely, can contribute significantly to a comprehensive understanding of these concepts.

Some aspects of the educational reconstruction resulting from [143] and [157] will be made

5We will see that diagrammatic manipulation rules on circuits and quantum computation rules live in
the same mathematical structure: that is their power! Everything that is done in theory can be done in
diagrams and vice versa. Proofs are equi-valent !

6In this case the object is the two-state system. In this thesis the discussion about the term object,
there will be later.
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explicit in the chapter on the construction of the TLS for students.

We would now like to focus on the concept of disciplinary discourse, aiming to prob-

lematize the dialectic (morphism) between experiment, physical theory and mathematical

model. We want to express this dialectic in a mapping of meaning between the various

representations.

5.4.3 Disciplinary discourse: a semiotic approach to Physics

In [151] the authors place themselves in a Foucoltian semiotic perspective of signification

(see [158],) when they argue the need to link a discipline - physics in our case - but for them,

the discourse is entirely general, to the discourse about the discipline. To be more faithful

to what the authors claim, what characterises a discipline is the possibility for a community

to share knowledge that is encoded by the system of semiotic resources that are developed

to represent this knowledge. As argued by Lemke (see [156]) verbal language as well as

mathematics or visual representation (semiotic resources), bring together a typological and

a topological aspect. The first concerns category issues, such as categories of processes or

relations. In this aspect, the distinction is clear: belonging to a category is defined. Either

an entity belongs or does not belong to a given category. However, the second aspect, the

topological aspect, is the one that best suits science education, which is why it can be

called topological semiotics. In this case, the meaning of an element requires the change

by even infinitesimal degrees and, thus, a language capable of expressing quantitative

elements. For these purposes, languages of visual representation are much more powerful

than natural language. However, science envisages the appropriation of a language that

has characteristics of both types ([156]):

“To characterize material processes and their relationships we need both cate-

gorial descriptions and quantitative reasoning, and this fact created a historical

pressure that gradually built a bridge between the linguistic and the visual-

gestural: the result was mathematics, built out from the linguistic as the al-

gebraic extension of the semantics of natural language in matters of quantity,

ratio, and continuous variation, and built out from the visual-gestural side as

geometric diagram and eventually Cartesian coordinate graph. The ability in

mathematics first to create correspondences between algebraic and geometric

representations, and eventually to construct complete equivalences between

them provided the missing link that enabled science to reason both verbally
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and quantitatively, both typologically and topologically, about material phe-

nomena and processes.”

According to Lemke ([156]), scientific concepts are strictly related to experimental actions:

on the one hand, therefore, a constellation of multiple signs of natural language, mathe-

matics and visual representation; on the other hand, the actual operations of experimental

manipulation of apparatus and measurement (See Fig. 5.3)

Figure 5.3: Dialectic Experiment - Language: An operational definition of a scientific
quantity is not just a material procedure, it is also a meaningful sequence of actions,
which is connectable logically to our verbal definition of the quantity and to its mathemat-
ical relationships to other quantities in a theory or model for which we can give verbal
justifications in relation to the kinds of human problems these quantities and relations are
useful in solving.

Following these kinds of considerations, in [151] the authors introduce the concept of Disci-

plinary Discourse. Disciplinary discourse must take into account words, symbols, gestures,

diagrams, formulas etc. of a particular discipline; but also the artefacts, pieces of appara-

tus, measuring devices, etc. and the actions, practices and methods. Thus, there are three

components of disciplinary discourse: representations, tools and activities.

Representations This first aspect is what we addressed in our analysis of Lemke’s work.

Tools Traditionally the relationship between mathematics and physics is defined by the

representations. However, our approach requires, as will become clear later on, that

tools should also be included in this perspective. Tools have the merit of being able

to achieve a condensation of meaning. In our case, the mathematics and syntactic

representation of the theory is the same as that of the theory of experimental devices.

Then the mediation of meaning operated by the devices, moves into the mathematical

domain and vice versa.

Activities Finally, the last key element is the activities: the laboratory as an operational

practice becomes fundamental. Here too, an operational approach emphasises that
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the practice of constructing a particular experimental device becomes itself, once it

has been formalised through an algorithmic procedure, the carrier of meaning within

the mathematical discourse in physics.

In conclusion, one wants to emphasise the semiotic value of a disciplinary discourse that,

if appropriated by students, should result in integrated knowledge, possibly enabling stu-

dents autonomously to determine further facets of meaning. In particular, this is true in

the discourse in mathematics and that between mathematics and physics. In our work,

di↵erent representations and tools will be placed within the same theory, even if not explic-

itly for students. Thus we hope to allow a deeper network of meanings to be constructed

through the study of transition maps7.

5.5 Educational strategies

Let us now turn our attention to two fundamental aspects that define the methodologies

adopted for the implementation of TLS for students and, consequently, for the thinking

work done together with the teachers who implemented them in the classrooms: IBL and

MBT.

5.5.1 Inquiry-Based Learning

As we shall see, the TLS for students and the teaching-learning materials constructed for

classroom work are deeply inquiry-based.

Like the MER, the IBL is also based on theories related to constructivism, understood as

theory or philosophy about how an individual learns, one in which the student is embedded

in active engagement and is constantly constructing and reconstructing knowledge through

hands-on interactions ([159]). This approach in particular di↵ers from others such as

behaviourism and subjectivism in that it considers learning to be self-regulated and socially

mediated, as the student actively engages, interacts and operates within the boundaries of

his or her environment. This means taking a di↵erent perspective from that of the mind

as a tabula rasa ([160]): students bring their own social, cultural and educational history.

This history cannot be ignored; otherwise there is a risk that the student will accept new

concepts only for the immediate purpose of evaluation ([161])

7We saw at the conclusion of the theoretical chapters how the abstract diagrammatic representation can
then be interpreted through functors such as computational logic, underlying physical theory and physical
theory of experimental devices.
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“...students come into the classroom with preconceptions about how the world

works. If their initial understanding is not engaged, they may fail to grasp

the new concepts and information that are taught, or they may learn for the

purposes of a test but revert to their preconceptions outside the classroom.”

In this regard, a brief history of some constructivist approaches who have brought sig-

nificant insights into how students learn is given in [159]. Here are the most significant

aspects for us:

1. The stimulus from prior knowledge: According to J. Dewey’s approach ([162]), posing

a significant problem from the perspective of the student’s prior knowledge activates

the learning process. Here is the entire statement from ([162]):

“Education may be conceived either retrospectively or prospectively. That

is to say, it may be treated as process of accommodating the future to the

past, or as an utilization of the past for a resource in a developing future.

The former finds its standards and patterns in what has gone before. The

mind may be regarded as a group of contents resulting from having certain

things presented. In this case, the earlier presentations constitute the ma-

terial to which the later are to be assimilated. Emphasis upon the value

of the early experiences of immature beings is most important, especially

because of the tendency to regard them as of little account. But these

experiences do not consist of externally presented material, but of interac-

tion of native activities with the environment which progressively modifies

both the activities and the environment.”

It is clear, therefore, that in this perspective, a teaching proposal must be able to

start from elements known to the students in order to determine in them an activation

that introduces a construction perspective for the future. For the student to accept

the e↵ort of modifying his conceptions, he must start from a problem to which his

own experience can relate.

2. The transformation of previous conceptions into new ones is what Piaget called

adaptation ([163]). This adaptation occurs through two processes: assimilation and

accommodation. With the first, the learner uses new information and transforms the

new knowledge in order to adapt it to existing mental models. The mental models

are altered with the second to accept the new knowledge. Adaptation is significant

because it occurs when a student encounters phenomena contrary to the knowledge
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possessed. According to Piaget, there must be a balance between assimilation and

accommodation. If this is not the case, we speak of cognitive dissonance, which, if

wisely measured, can be extremely useful from an educational point of view. How-

ever, care (see [159])

“When a new event doesn’t fit an individual’s presently held belief system,

it can possibly be discarded because it doesn’t fit with the person’s cogni-

tive model of understanding. Assimilation, accommodation, and disequi-

librium are the basis for constructivist thinking, with conceptual change

constantly at work.”

This conceptual change, which we will also discuss later, must arise spontaneously for

each individual when the previous model is unsatisfactory with current conceptions.

3. Finally, according to social constructivism, Vygotsky focuses on two fundamental el-

ements in his Thought and Language ([164]): language and social interaction. From

this point of view, it is not only the interaction with physical objects that are consid-

ered but also the social mediation e↵ect in which the learner is involved. Regarding

our work, in particular, two elements interest us: the first, more immediate, is the

fact that the student needs a teacher to develop the skills in which he or she is

deficient. The second, less obvious and more profound, refers to the study that Vy-

gotskian psychology has made of the relationship between thought and speech. What

is required of the student is to translate language, the external discourse presented

by the teacher, into thought. This thought is mediated by the individual heritage of

each student, who then proceeds in the most complex process: the reconstruction of

discourse from his or her thought. To do this, the inquiry performs a fundamental

function8.

According to the constructivist approach (see [159])

“Most traditional teaching is focused more closely on what students can

achieve independently, but a constructivist teacher teaches to the upper

zone by providing assistance to students’ performance through prompts,

leading questions, hints and clues, or asking students to clarify their thoughts

about the phenomenon being studied.”

Summarising in [159], the author describes a constructivist approach as being based on a

few fundamental elements:
8We will return to these aspects in a section devoted to them
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1. new knowledge can be fostered by activating the senses;

2. the acceptance or non-acceptance of new situations is determined by the students’

current knowledge;

3. how current processes are interpreted depends on prior knowledge;

4. knowledge is constructed by the learner trying to build connections between old and

new knowledge mediated by language;

5. links between knowledge are the basis for the construction of new knowledge and

conceptual change;

6. understanding of concepts is determined by the learner through a continuous process

of construction and reconstruction;

7. learning is an individual and social process;

8. enquiry is a teaching strategy that allows the learner to test their own theories

and scientific knowledge for adherence to new knowledge. This strategy ultimately

enables conceptual change to be realised.

These characteristics are summarised in what is called a learning cycle. Actually, there

are several in the literature (for example [165], [166]), but their common denominator

is expressed by certain fundamental moments that allow the teacher to focus on certain

aspects and the student to proceed, supported, in learning:

Engagement The foundations of learning are laid through the teacher’s strong engage-

ment. The teacher grabs the students’ attention by emphasising the lesson’s purpose

and discrepant aspects that create cognitive dissonance. This dissonance should im-

mediately activate the students concerning their previous experience.

Exploration The exploration stage allows students to experience hands-on learning and

helps to level the class.

Explanation The teacher puts into logic using appropriate language, reconciling prior

knowledge and new information, the new concepts being formed in the form of (in-

dividual and social) experience.

Elaboration The new meaning, constructed as a synthesis of prior experience and con-

ceptual change, can be reinforced through guided investigations in which students

are supported to defend their finding and justify them through logic and concrete

evidence.
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Evaluation The teacher resumes the entire lesson and summarizes what has been done

by asking higher-order questions.

In the stages now presented, a typical feature of enquiry begins by structuring the lesson

in such a way as to activate inquiry. In [159] are summarized the four levels of instruction.

The table 5.1 represents these levels: As can be deduced from the table, the greater the

Table 5.1: Invitation to Inquiry Grid

Demonstrated
Inquiry

Structured
Inquiry

Guided or
Teacher-
Initiated
Inquiry

Self-Directed
or Student-
Initiated
Inquiry

Posing the
Question

Teacher Teacher Teacher Student

Planning the
Procedure

Teacher Teacher Student Student

Communicating
the Results

Teacher Student Student Student

student’s activity, the less the teacher’s intervention. We describe the four levels below:

Demonstrated Inquiry The purpose of this type of investigation is to elicit further

questions in order to extend the initial investigation. The teacher asks questions, ex-

plains the procedure, and informs the students of the results. It is usually extremely

interesting, especially if the conclusions are counterintuitive. For this reason, it can

be used to introduce a topic and activate student engagement through the astonish-

ment that is realised.

Structured Inquiry This time it which the students have to give an explanation based

on the evidence collected and shown by the teacher. In this case, the responsibility

for designing tables with the data, analysing them and determining the consequences

is given to the students. This is traditionally used in high school workshops where

the teacher provides an initial question and gives the materials and directions on

how to use them. Then the students do the work, collect the data, draw conclusions

and communicate them. This activity usually acts as a bridge to gaining confidence

in activities where the degree of responsibility increases. However, if, in doing so, the

students discover discrepancies with what they expect, then this type of work can

become an inquiry in its own right. Furthermore, the data design aspect is crucial

and reveals the autonomous characteristic of this investigation.
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Guided or Teacher-Initiated Inquiry The investigation design is also left to the stu-

dents. The teacher is left with the task of providing the research questions or hy-

potheses and actively participating in the student’s work to organise their work,

showing any inconsistencies with the questions asked. In this third case, the re-

sponsibility shifts from the teacher to the student. This is normally followed by

a structured investigation that lays the foundations for a higher-level investigation

that would otherwise be seen as excessively di�cult.

Self-Directed or Student-Initiated Inquiry It is the highest level of investigation.

The teacher only has the role of facilitating the investigation and nothing else. To do

this, he or she goes around the desks, asking ancillary questions to allow the students

to obtain answers independently and find reliable sources from which to obtain any

information. At the moment of communication, the teacher plays the role of the

organiser by facilitating the discussion. The three moments of the investigation are

all the student’s responsibility, including the research questions and the choice of

hypotheses to be tested.

We will see how the building of TLS and materials fits into this classification and how, for

the most part, these will be guided or structured investigations.

5.5.1.1 Conceptual Change

One of the most significant aspects of the learning process is that of conceptual change:

“When a new situation arises that is inconsistent with a child’s present schema

(such as the data from the mass experiment), the student may either disregard

the new information because it doesn’t fit with the presently held notion, or

he or she may change or give up the previously held notion and accept a new

notion based on new evidence.”

This occurs through a continuous alternation of assimilation and accommodation: in the

first moment, students become aware of stimuli, concepts and elements of the external

world about existing models, while the second is the modification and adaptation of cogni-

tive structures to new situations ([159]) This way, the cognitive balance is achieved without

conceptual change developing. This happens in teaching practice just as it has happened

in the history of science. In the particular case of the transition to quantum physics, this

aspect was dealt with by Malgieri and Zuccarini in ([19]): we report here only the most
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significant aspects of this work while emphasising that the whole introductory part of QM

presented to students is based on these aspects.

First of all, it must be emphasised that the Conceptual Change (CC), in the case of

quantum theory, is extremely special since it involves several domains of knowledge: while

it first concerned physics and chemistry, today, with the physical theory of information,

it poses the problem of conceptual changes in logic, computer science, information and

communication theory. All this, if it is to be taught through CC,

“requires the gradual elaboration and revision of complex knowledge systems

consisting of many interrelated elements. It is a di�cult process whose pro-

motion requires the interplay of multiple instructional strategies. In addition,

it may involve not only changes in learners’ cognition, but also in metacogni-

tion, epistemic beliefs, beliefs about learning and other factors (e.g., interest,

attitudes). Finally, an extensive sociocultural support is needed for achieving

all these kinds of change.”

According to the authors, change occurs on three distinct levels: “quasi-qualitative”,

“mathematical” and “visual”:

1. The first of these levels requires a revision of the basic terms of classical theory

through discipline-specific language. The changes involve two aspects: the defini-

tional (physical quantity, measurement, state) and the metaphorical. Studies on

both have been addressed in the literature in recent years (see [167]).

2. Classical mechanics, indeed, uses an advanced mathematical language that students

are familiar with by the fifth year. They are basically expected to be able to master

mathematics and interpret it consistently from a physical point of view. The changes

between Classical Physics (CP) and QP are identified in four types: conceptualisation

of a construct and its referent; the role of its constituents; notable instances of the

construct and the physical situations of its interest; and the structural role of the

construct. These aspects are significant in constructing the introductory path to QP

and will also be contextualised concerning the mathematical objects used in our TLS

on computation.
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3. Finally, and this is undoubtedly one of the most relevant aspects for us, the authors

identify three elements that can be visualised in QP: experimental setups, simulations

and mathematical constructs9.

5.5.1.2 Thought and Word

Concluding the section on Inquiry, let us focus on one of the main aspects of construc-

tivism: the role that language, and in particular the relationship between language and

thought, plays in learning. Vygotsky’s work in this regard remains fundamental today in

several aspects. We will only address those that seem to us most relevant for the contin-

uation of the work.

The structuralism’s perspective emphasizes a dialectical relationship between speech and

thought. Vygotsky ([164]) laments that previous studies have considered the two elements

separately and linked them either in functional relations or from a structural point of view.

However, the two starting objects, thought and speech, are perceived as independent and

isolated in each case. The approach of constructivism is to consider them in their dialecti-

cal. This can be clearly seen when the question of meaning arises. As Vygotsky suggests,

the word never refers to a single object, but to an entire class of objects. Hence it rep-

resents a form of generalisation. Meaning, inherent in the word itself, is thus a process

of generalisation that occurs from sensation to thought. So it would seem that thought

is the leading actor in this process. However meaning is not separable from the word: it

lives with it. However, then does the word mean speech or thought? Vigotsky’s answer is

clear: dynamism.

“It is both at one and the same time; it is a unit of verbal thinking. It is obvious,

then, that our method must be that of semantic analysis. Our method must

rely on the analysis of the meaningful aspect of speech; it must be a method

for studying verbal meaning.”

However, speech plays a fundamental role in the discussion because of a less obvious but

equally interesting aspect: it is a means of social communication. Such social interaction is

impossible not only without a common alphabet of signs but also without a shared mean-

ing. Verbal meaning becomes how humans communicate; dialectically, communication

9Our path will allow a unified approach to the first and third.
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develops shared meaning and reflects on the world in a generalised way. It is, therefore,

simultaneously a means of understanding and communication:

“The word is almost always ready when the concept is. Therefore, it may be

appropriate to view word meaning not only as a unity of thinking and speech

but as a unity of generalization and social interaction, a unity of thinking and

communication.”

The inevitable conclusion of these considerations is that understanding discourse begins

with understanding speech and thought and that even this is not enough if one does not

grasp the motivational aspects for which such thoughts are expressed. In total agreement

with these considerations, we designed the worksheets that accompanied the entire TLS

for students and the subsequent course of the lessons.

5.5.2 Modelling-Based Teaching

We have introduced the MER, and described the inquiry-based learning; it remains to

describe the MBT tool that will be used for students to construct the quantum model

of the light and the models for polarization and dual-rail implementations. The ultimate

model, however, will be the diagrammatic representation in all its meaning (computational

logical and physical-experimental)

The reference work for the MBT can be found in [168]. In the first part, the authors

emphasise one aspect that characterises our project and underpins the relationship be-

tween science, teachers and students. Indeed, it seems that the development of cultural

material on science depends on the level of mental activity of individuals on the subjects.

However, this high level leads to a high emotional engagement conditioned critically by

the teacher’s leadership ([169]):

“Attitudes and achievement among students can be improved through frequent

use of student-centred teaching methods and degraded through frequent use of

teacher-centred methods... in spite of extensive data to the contrary, teachers

continue to implement teacher- centred practice in their science classes.”

It is therefore essential in the first instance to provide teacher training based on three main

elements:
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1. awareness of the di↵erence between disciplinary competences and teaching tasks;

2. the need for pedagogic content knowledge;

3. critical review of their personal beliefs based on own educational experience.

According to the authors, modelling favours the possibility of teachers going in the direc-

tions described above and, at the same time, should help students to scientific literacy and

raise their awareness of scientific research’s nature and socio-cultural importance.

5.5.2.1 From models to modelling

In order to fully understand the meaning of modelling, we must briefly highlight in what

sense the concept of model is used both from a cognitive psychology point of view and from

philosophy born as a critique of the semantic approach to the concept of model ([168]).

From the perspective of cognitive psychology, a model (mental model) makes it possible to

explain and make predictions about a phenomenon and solve problems involving it. What

is interesting is the construction phase of the model and the subsequent utilization step.

More extensive and detailed is the contribution of philosophy. We will only focus on the

aspects that interest us that are related to the work of Knuuttila (see [11], [12]).

The concept of the epistemic artefact described in these works follows some fundamental

characteristics:

1. models turn out to be concretely constructed objects so that this construction enables

and constrains scientific reasoning. This approach of external aid is closely linked

to that of sca↵olding: they represent a support for identifying the most significant

aspects of the object of study and thus making use of them;

2. models have an evolutionary nature. This implies that their epistemic value is defined

by our interaction with them. As a synthesis of all parts of its development, the model

synthesises empirical, theoretical and conceptual components;

3. the artefactual approach is linked to instrumentalism and operationalism: the epis-

temic value refers to the functional, not the representational aspect of the model

itself;

4. models are artefacts created to solve scientific problems in practice.
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These few considerations are enough to make the process, called modelling-based teach-

ing, fundamental and which in the light of the considerations made we are now going to

describe.

According to the authors, modelling is a cyclic process of knowledge construction that

takes place in four mutually forming and supporting phases. In the first phase, the cre-

ation of the proto-model, three elements are identified: purposes, experiences and sources.

Concerning purposes, the modeller must define an initial purpose for the model; then he or

she acquires from the experience, the study of related literature or the analysis of empirical

data the elements to support the creation of the proto-model; finally, he or she draws on

the mathematical tools used to connect the elements of experience to support and develop

it. The second moment is the expression of the proto-model: in any mode of representation

or combination of these (visual, virtual, gestural, mathematical, verbal, etc.). The choice

of mode of representation is fundamental and is guided by four elements: the purpose of

the process, the nature of the elements to be modelled, epistemic practices and, finally,

the target. At this time or later, it is also necessary to define the representation codes,

i.e. the meaning of the artefact details. The third stage is the testing of the model10.

The model is accepted and acceptable if it can pass tests certifying its validity. If there

are problems in the validations, the model can be modified or replaced as a last resort.

Finally, in the evaluation of the model, one must understand the scope and limits of the

model itself. Such reflection can lead back to the initial phase, and the cycle can resume.

5.6 Instruments and Methods: the role of worksheets

The worksheets that are used in our work have multiple uses. First and foremost, they are

designed to get students to work independently to become personally active in constructing

knowledge. The possibility of peer discussion inherent in this type of tool also makes it

possible to overcome any di�culties. The worksheets are in total agreement with the

work of the University of Washington([171]). A common trait is the constant presence

of questions that force students to reason independently and justify their reasoning. In

particular (see [171])

“The structure is provided by tutorial worksheets that have been designed to

help students confront and resolve specific di�culties. The worksheets contain

10A test can also be carried out by means of a qualitative exploration or thought experiment, as the
overall aim is to develop and refine a scientific explanation in the form of a model ([170]).



Chapter 5. Theoretical and methodological framework 109

questions that try to break the reasoning process into steps of just the right

size for students to become actively involved. If the steps are too small, little

thinking may be necessary. If the steps are too large, the students may become

lost unless an instructor is by their side. The tutorial homework assignments

help students reinforce and extend what they have learned.”

Since the worksheets are carried out in the classroom, it is the teacher’s task to support

the work, and their use also allows teachers to understand the di�culties their students

may be having. In particular, the micro-steps in which the worksheets are structured

allow them to grasp specifically where the significant di�culties lie. The third use of these

worksheets is closely linked to the data collection and analysis we propose in this research.

Thanks to the collection of the worksheets and their analysis, it is possible to monitor

the students’ learning, propose changes to the worksheets themselves and possibly modify

one or more parts of the TLS. Finally, they constitute a useful working tool in teachers’

professional development activities ([172]).

The importance of these tools combined with the inquiry method has also been emphasised

in recent works: for example [173] and [174] . Particularly in the first of these works, it is

emphasised that learning is more practical and time-e�cient. Furthermore, the activities

in the worksheet maximize understanding and are necessary for the learning process. As

in [174]

“It shows that the availability of student worksheet is one of the factors that

can improve students’ understanding and skills so that they can improve their

competence. ”

If this is then combined with the inquiry stages, it becomes a very powerful tool: “It aims

to make students active in building knowledge and developing attitudes and skills through

direct activities that their do”.

We will see that the entire TLS is built with worksheets that also take on di↵erent pur-

poses at various times. Furthermore, the answers to the research questions on the student

path will be generated and obtained from the analysis of these tools.

In the chapter on teacher course of professional development, we will introduce the quali-

tative analysis methods used.



Chapter 6

Quantum technologies: course(s)

for teacher professional

development

In this chapter, we describe the teacher professional development that arises from the four

steps designed for teachers:

1. A teacher professional development course on quantum technologies;

2. the follow-up course about QP in the context of linear polarization of the photon

3. the co-design and action research projects;

4. the second course.

First, we provide in Section 6.1 an overview of current research on teaching quantum tech-

nologies and quantum information science, a highly active research area, and discuss the

connections of such research with our own. Next, we report on a professional development

course based on this longitudinal and interdisciplinary approach that was organized in

the context of the Italian PLS-Piano Lauree Scentifiche (Plan for Science Degrees) and

the education section of the Quantum Flagship. The course was structured into three

parts: a first sequence of 20 hours on the fundamental topics of quantum computation

and communication, whose outcomes are discussed in Section 6.3.2; a follow-up part of 10

hours, attended only by teachers interested in starting action research projects, focusing

on the educational challenges in teaching-learning quantum technologies, the design of

110
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active-learning strategies for overcoming these challenges, and the introduction of a physi-

cal context suitable to describe quantum systems and devices that can encode and process

information (Section 6.3.3); finally, the ongoing co-design sessions and action research

projects with teachers are discussed in Section 6.4. Being aware that asking teachers to

discuss quantum information and communication topics directly in the regular curriculum

would require a profound cultural revision and a steep learning trajectory, we instead di-

rected their e↵orts on the design of teaching-learning sequences based on an exploration

of the connections between physics concepts and the problem of computation at di↵er-

ent school grade levels. Due to the restrictions imposed in response to the COVID-19

pandemic, all lessons, although initially planned as a traditional classroom course, were

performed in synchronous distance learning. Interaction between teachers was limited,

and the means of delivery were approximately 80% frontal lesson, 10% group discussion

and 10% of teachers performing individual activities such as exercises or answering ques-

tions, which were discussed immediately afterwards. Finally, the last part (Section 6.6) is

addressed to a brief description of the course for teachers proposed between October and

December 2022 and implemented in light of the educational experiments carried out with

students.

6.1 Previous research on teaching-learning quantum tech-

nologies and information science

In recent works, a number of authors have proposed courses, tools and strategies in an

e↵ort to advance the scope of education to quantum mechanics (QM) in secondary school

to include topics related to the “second quantum revolution” [3]. For example, Walsh et al.

[175] have designed and tested a one year high school course on quantum computing based

on classical wave optics, with a focus on hands-on experiments and simulation activities

adopting an inquiry-based approach, and the contextual introduction of new topics and

competencies (such as the matrix formalism, or Python programming skills) when needed

for the completion of students’ inquiry projects. Satanassi et al. [9] developed a quantum

computing course for high school students based on the general idea of leading students

to follow the evolution of computational thinking in human history, from the most primi-

tive computing machines, and ending with quantum computers and algorithms. The final

part of their course uses a spin first approach, with the re-interpretation of Stern-Gerlach

experiments in terms of information input (the state preparation), information processing

(the state evolution) and information output (the measurement) playing a central role as
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a bridge from basic QM to quantum computation. Pospiech [176] proposes a course on

QM for the German high school, in which quantum computing and quantum cryptography

are introduced as rich technological contexts in which the fundamental concepts of quan-

tum theory (e.g. superposition, entanglement, incompatibility, measurement) find their

full development and application. According to the author, teaching QM in the context

of quantum technologies has positive reflexes on conceptual understanding, on students’

ability to construct consistent mental models, and on the epistemological acceptance of

QM as an ordinary physical theory. Research-based course proposals based on a hands-on

approach for di↵erent targets, ranging from secondary school students [177] to under-

graduates with little or no physics background [10] have very recently appeared in the

educational literature. However, while research on the teaching and the learning of quan-

tum physics is a well-developed field within physics education [4],[5] and student di�culties

at di↵erent levels, both in general and in connection with di↵erent teaching approaches,

have undergone significant clarification, quantum technology and information science rep-

resents still a largely uncharted territory. There is a need to build e↵ective programs and

to design curricula for diverse student populations and educational levels, identifying goals

and challenges according to the context at hand. Recently, quantum computation experts

from both academia and industry signed an open letter [6] calling for an earlier start of

education in quantum computer science in the academic career and recommending the

involvement of education experts in curriculum development. An early introduction of

such topics was also the subject of a recent educational survey [7] in which interviewed

instructors in quantum information science expressed interest in research-based instruc-

tional materials, while displaying a remarkably wide range of opinions on the desirable

content and prerequisites of future undergraduate courses. In [8], the authors identified

the core ideas for quantum computing courses suitable for computer science students with

superposition and entanglement of qubits, quantum computer, quantum algorithm, and

quantum cryptography. The course for teacher professional development represents part of

a larger program, which will be pursued in future works, aimed at defining the contours of

a possible educational reconstruction of quantum computation and communication topics

suitable for secondary school students. Since we believe that any such project is doomed

to failure if it is not grounded on a community of motivated teachers, our work has started

from the attempt to build such community, and most importantly, listen to teachers’ per-

spectives and needs concerning the content. Although there are obvious similarities and

parallelisms with some of the proposals in the literature, in particular [9], [176], our work,

as described in [178] originated mainly for a deep analysis of the subject matter, the search
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for an historical-epistemological route to make the content in principle accessible to sec-

ondary school students, and the attempt to exploit as much as possible the educational

connections of the topic, both in a longitudinal sense, within the physics curriculum (e.g.

connecting the debate on the second principle of thermodynamics, through the Szilard

analysis of a single-molecule heat engine [179] to the discovery of Landauer’s principle)

and in an interdisciplinary sense, mainly, but not exclusively, with the mathematics cur-

riculum on themes related to logic and probability ([126],[127]).

6.2 Teachers professional development course

The first course, realized between October 2020 and March 2021, took place in light of a

research activity on the topics of the second quantum revolution. We first identified topics

characteristic of quantum computation and communication that could be presented to

teachers and then taken to their students (For an in-depth description see 7.2.1). The work

carried out at a distance due to the special conditions associated with the dissemination of

Covid-19 had two fundamental goals that we can identify in the following three research

questions (Teacher Research Question (TRQ)):

TRQ1: How is it possible to construct an adequate content simplification process to

present the topics of the second quantum revolution to teachers in a meaningful way from

very advanced theoretical aspects?

TRQ2: How to make the contents and themes of the second quantum revolution

su�ciently fruitful to teachers to develop a personal commitment to longitudinal,

interdisciplinary educational innovation directed towards themes of quantum information

and computation?

TRQ3: What are the most appropriate environments and methods for building a

distributed, online community of practice of teachers revolving around the themes of the

second quantum revolution?

Here are some brief comments on these three questions:

TRQ1 According to the MER, the process of elementarization starts with the analysis

of scientific content, which, of course, cannot be directly transferred to teachers or
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students. The advanced texts present a language that is probably too laborious for

the teachers. Therefore, a first revision of the contents was necessary to present

them to the course participants partly from the perspective of possible applicability

in the classroom. This first adaptation process will be modified and improved from

the teachers’ observations and experience. The subsequent study process on teaching

and learning sequences (TLS) can rely on educational paths already present in the

literature, in particularly on the spin-first approach. It is more di�cult to find

TLS about topics such as entanglement, quantum information, and computation

theory, which are still only minimally introduced in secondary schools (often only as

extracurricular interventions).

TRQ2 The new topics would stimulate teachers to a high-level reorganization of the

physics content ([180]), di↵erent grouping topics in the physics and mathematics

curriculum under the common perspective of representing instances of overlap and

interplay between the discourse of physics and the problem of computation and in-

formation. In this way, we thought that teachers could be motivated to introduce

quantum information and computation topics, not as one di↵erent subject of the

physics curriculum, but as the culmination point of a longitudinal and interdisci-

plinary path they could have developed through the course of several years.

TRQ3 One of our final goals is to construct a community of practice ([13]) whose common

purpose is to perform curriculum innovation towards topics related to the second

quantum revolution. The shared content is meant to be elaborated by the teachers

and researchers within the community of practice into several di↵erent types of

educational intervention, distributed along the curriculum, also depending on the

classes each of the participant teachers currently works in. A central aim of the course

is to have teachers develop some degree of personal commitment to the objectives of

curriculum innovation.

6.2.1 Structure of the educational path

The Educational path1 has a total duration of about 20 hours and is structured according

to the following steps summarized in Tab. 6.1: 1) introduction to physics problem of clas-

sical computation; 2) building the quantum logical language and the origin of quantum

algorithms; 3) introduction to entanglement and development of quantum protocols

1The pdf of the lessons can be found in http://www-5.unipv.it/dida-pls/Materiali.htm. The lessons
refer to the first implementation of the course. Many integrations have been made in the second imple-
mentation, which we will briefly describe at the end of the chapter.

http://www-5.unipv.it/dida-pls/Materiali.htm
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Table 6.1: Structure of the educational path.

Introduction Building Development
Physics problem of
computation

QP with Stern-
Gerlach device

Entanglement

From bit to qubit -
Quantum circuits

Bell’s inequalities - No-
cloning theorem

Quantum algorithms Quantum protocols:
dense coding and tele-
portation
Cryptography

6.2.1.1 Physics problem of computation

The first reflections on the thermodynamics of computation, related to Bennett’s works

[14], allow to introduce and develop reversible logic and reflect on the relationship between

logic gates and entropy. Bennett’s plan [181] requires to demonstrate the thermodynamic

reversibility of the calculation by following a very precise path, which we have retraced

during the lesson:

“A proof of the thermodynamic reversibility of computation requires not only

showing that logically irreversible operations can be avoided, but also showing

that, once the computation has been rendered into the logically reversible for-

mat, some actual hardware, or some physically reasonable theoretical model,

can perform the resulting chain of logically reversible operations in a thermo-

dynamically reversible fashion. ”

From the start, logical operations can be described in terms of physical systems, as Feyn-

man did in [39] by representing the ”and” and “or” operations in terms of the rules of

binary addition on rows of pebbles. The relationship between physics, logic and compu-

tation, discovered through this simple example, allows us to introduce the classical logic

gates, along with a new circuital language that will be used in all the following lessons (see

Fig. 6.1), while maintaining a connection between logical operations and physical systems.

The next step in reinforcing the connection between physics and computation is the demon-

stration that reversible logic does not require a necessary theoretical minimum of energy
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Figure 6.1: (Left) Boolean function, truth table and circuital representation of AND
logic gate. (Right) Reversible circuit of binary addition.

dissipation, since theoretically the only thermodynamically irreversible operation is the

erasure of information (Landauer’s principle). The birth of reversible logic and the cor-

responding operators [16] is the first formal step towards an extension, both necessary

and intuitive, from classical logic to what we may improperly call ”quantum logic”. This

passage, although touching less known authors and topics in physics and computation, is

historically well founded, essential to the consistency of the teaching sequence, and implies

a profound reflection on the link between computation and the physical support used to

perform it. Through the introduction of reversible logic it can be shown how the division

into preparation, transformation and measurement begins to manifest itself, and while

classically its consequences are not deep, it will become fundamental in the quantum field.

Bennett’s demonstration of the in principle reversibility of the process of copying a bit

using the example of a one-domain ferromagnet [14] is also very interesting, both (as it

was originally presented) as a concrete example of application of Landauer’s principle,

and for the possibility to link it to the quantum no-cloning theorem. At the end of this

first meeting, teachers should begin to become aware of the possibility to establish a close

relationship between physics, logic and computation [123], and perhaps of the educational

possibilities implied by problematizing and exploiting such link. In fact, the topics dis-

cussed can be an interesting starting point for reflecting on educational paths in physics

and mathematics to be implemented in the first three years of high school (insights into

classical logic, thermodynamics, computation, matrix algebra).

6.2.1.2 Quantum Physics with Stern-Gerlach device

The second meeting is organized in collaboration with the educational research area of

Insubria University (see [182]) whom we worked with for a Summer School on quantum

computation for high school students. With the aid of the Quvis simulations [183] of

the Stern-Gerlach device, it was possible to bring the concept of preparation of states,

evolution and measurement into the quantum context by means of the appropriate formal

language, both in the Dirac notation (which is introduced contextually to the analysis of
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two level systems) and in matrix computation. This aspect is a very important tool for

the subsequent use in the computational and informational field. In particular, the use of

two-level systems [23] – which implies the adoption of a spin first approach well established

in PER – allows to perform the transition from the concept of a bit to a quantum bit - the

qubit - and to introduce logical operators acting on them. In the last part of the lesson,

it was possible to explore more in depth the role of probability in quantum measurement,

the issue of incompatible observables, and the concept of quantum interference with the

analogy of the Stern-Gerlach device and the double-slit experiment with photons.

6.2.1.3 From bit to qubit - Quantum circuits

This third lesson allows us to extend the physical problem of computation to quantum

systems. The initial motivation arises from R. Feynman’s considerations about the simu-

lation of physical systems [17]: “What kind of computer are we going to use to simulate

physics?”and even before that “what kind of physics are we going to imitate?”. The route

we explore with teachers, is that if we want to imitate quantum physics, the natural choice

is to renounce both classical logic and classical probability. To understand this fundamen-

tal aspect, we have first described using the language of set theory the basic structure

of classical physics, and then shown how propositional logic and probability can be con-

structed as theories concerning subsets of the set S of possible states of classical physics

[123]. Thus, in this sense, classical physics carries in itself a necessary structure for the im-

age in Fig. 6.2 can be read equivalently in the three disciplines with simple terminological

substitutions: a proposition, in fact, is a true or false (1 or 0) statement about a certain

property, i.e. whether or not the value of a physical quantity satisfies certain conditions;

similarly, a random variable on event space can take one of the experimental outcomes. It

should be evident how much this description can allow for multidisciplinary educational

paths well before the fifth year of study. Awareness of this unit emphasizes even more

the fact that the spin properties and the double-slit photons experiment need a critical

review of both logical connectives and probability theory. The existence of incompatible

properties in quantum physics raises for example, the problem of the truth value of the

conjunction of propositions about the spin values for a single quantum object on di↵er-

ent axes, and quantum interference experiments suggest the addition of an interference

term in the computation of probabilities for events which can realize through mutually

exclusive paths, which cannot be explained by classical probability theory. Furthermore,

one possible educational advantage in using this approach, is that based on our previous

experience [184] the sudden realization by students that quantum mechanics may be at
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Figure 6.2: In
physics, a proposi-
tion is a true or false
statement about a
certain property, i.e.
whether or not the
value of a quantity (a
function fA from the
phase space S to R)
satisfies certain con-
ditions. Similarly, in
probability theory, a
proposition is a true
or false statement
about the value of
a random variable,
and the possibility
of constructing prob-
abilities is granted
by the existence
of a measure on
S. The link with
propositional logic is
thus immediate if we
consider the charac-
teristic function �A

able to establish the
truth values.

odds with classical proposition logic and ordinary probability theory may cause them to

reject the theory as absurd and wrong, since they typically perceive proposition logic to

be hierarchically superior to physics. However, the gradual construction of an intertwined

link between classical mechanics, proposition logic and probability, puts these theories at

least on equal grounds from an epistemological point of view, and may help students more

easily accept the consequences of adopting quantum mechanics as a fundamental physical

theory.

By using two-level systems, we can then generalize the concept of the classic bit to quan-

tum bit - a qubit - and study some logical operators that act on them (see Fig. 6.3). The

generalization allows us to establish a correspondence between Boolean functions, describ-

ing classical connectives, and unitary operators describing the evolution of a system in

quantum physics. All the objects involved in the formalism used also have a simple circuit

representation, which may be seen as one of the distinctive features of our approach. The

possibility of working on new and strongly decontextualized symbolic representations al-

lows the development of an autonomous and complete language that we believe can be of

great interest and help for the more in-depth exploration characterizing the second part
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of the educational path.

Figure 6.3: From classical to quantum computation.

The probabilistic interpretation of qubits makes it possible to introduce composite sys-

tems and the tensor product fairly and introduce multi-qubit logic gates. The action of

logic gates has been described both in Dirac notation and with matrices. An in-depth

understanding of the correspondence between circuit element, the Dirac and the matrix

formalism, and the physical systems that implement them, is an essential part of learn-

ing and grasping the concepts introduced. Some exercises were left for the teachers to

familiarize with the new language introduced. The teachers’ answers were put into the

prepared folder and corrected in the next lesson.
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6.2.1.4 Quantum algorithms

The last lesson of the first part is devoted to the introduction of two quantum algorithms:

Deutsch’ and Grover’s algorithm [18], [42]. The algorithm concept in our educational path

is used not only as a mere symbolic manipulation but also in the close connection it may

have with the physical world [185]. This allows the proposed algorithms to be studied

on three decreasing levels of abstractness: the circuit-representational level, the formal

algebraic level and, finally, their ultimate interpretation on the level of physical theory (in

Fig. 6.4 we can see a representation combining the first and last levels above described).

Figure 6.4: Deutsch algorithm circuit

The generalization of the Deutsch-Jozsa algorithm has been presented in the form of a

”Bank Robbery” problem by translating the example described in the book “Q is for

Quantum” of Terry Rudolph (see https://www.qisforquantum.org ) into formal and

circuit language. This last meeting concludes the first part of the course. The two algo-

rithms contain most of the concepts covered and allow the use of quantum superposition

and quantum interference so that the advantage in quantum computation becomes evident.

6.2.1.5 Entanglement - No cloning theorem

The second part begins with the analysis of entanglement, which, as J. Preskill indicated in

[29], “The deep ways that quantum information di↵ers from classical information involve

the properties, implications, and uses of quantum entanglement”. These considerations

led us to shift the emphasis from entanglement as a problem (see Schroedinger in [33]) to

entanglement as an opportunity.

https://www.qisforquantum.org
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Formally, the di↵erence between tensor and Cartesian products is what characterizes quan-

tum systems compared to classical systems. With Horodecki in [28]

“According to the classical description the total (pure) state space of the system

is the Cartesian product of the n subsystem spaces, implying that the total

state is always a product state of the n separate systems; in contrast, according

to the quantum formalism, the total Hilbert space H is a tensor product of the

subsystem spaces H = ⌦n

l=1Hl. Then the superposition principle allows us to

write the total state of the system in the form

| i =
X

i1,...,in

ci1,...,in |i1i ⌦ |i2i ⌦ ...⌦ |ini

which cannot in general be described as a product of states of individual sub-

systems | i 6= | 1i ⌦ | 2i ⌦ ...⌦ | ni.”

The focus was, therefore, on the concept of separable states and the distinction between

classical and quantum correlation.

Following Ghirardi’s arguments in [186] and in [187], we can introduce classical correlations

due to our ignorance about the system (see Fig. 6.5)

Figure 6.5: Slide of the course about the classical composite systems

But as J. Bell wonderfully explains in [36], these correlations are of a deeply di↵erent

nature from quantum ones
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“The philosopher in the street, who has not su↵ered a course in quantum

mechanics, is quite unimpressed by Einstein—Podolsky—Rosen correlations’.

He can point to many examples of similar correlations in everyday life. The

case of Bertlmann’s socks is often cited. Dr. Bertlmann likes to wear two socks

of di↵erent colours. Which colour he will have on a given foot on a given day

is quite unpredictable. But when you see that the first sock is pink you can

be already sure that the second sock will not be pink. Observation of the first,

and experience of Bertlmann, gives immediate information about the second.

There is no accounting for tastes, but apart from that there is no mystery here.

And is not the EPR business just the same?”

The answer is of course, no!

The following description focuses on analyzing of pure and mixed classical and quantum

states. This is to distinguish between determinism, epistemic probability and non-epistemic

probability [187].

The considerations made about spin allow for a discussion of both the case of separability

and entangled states (see Fig. 6.6). Similar considerations have been made using polar-

ization.

Figure 6.6: Slide of the course about separable states

If a source emits two identical particles whose initial state2 is | i = |0i1 ⌦ |1i2, Alice and

Bob are certain that they can operate on the two particles without their action changing

the state of the other’s particle in any way. This means that each of the two qubits still

2In this case we are associating with the state |0i the state | "i and the state |1i the state | #i.
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possesses at least one defined property, and, from a probabilistic point of view, correlations

between measurements on the two systems characterise independent events.

We could even admit that Alice and Bob prepared their qubits separately in two su�-

ciently distant laboratories. It follows, in general, that the generic state prepared by Alice

and Bob is of the type

| iAB = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i (6.1)

if Alice prepares | iA = ↵|0i+ �|1i and Bob | iB = �|0i+ �|1i.
However, theory tells us that there could also be other states since, in general,

| iAB = a|00i+ b|01i+ c|10i+ d|11i, a⇤a+ b⇤b+ c⇤c+ d⇤d = 1 (6.2)

The possibility of introducing entangled states becomes immediate thanks to circuit rep-

resentations and is an immediate consequence of quantum computation. In fact, Bell’s

states can quickly be introduced with the following circuit representation (Fig. 6.7)

Figure 6.7: Sequence of logic gate to obtain the Bell’s states

However, what really di↵ers an entangled state from a generic classical state?

If we consider an electron-emitting source in the state | i = 1p
2
(|0i1|1i2 � |1i1|0i2) the

probability distribution is

P (0, 0) = P (1, 1) = 0 P (0, 1) = P (1, 0) =
1

2
(6.3)

This distribution is also fully compatible with the mixed-state hypothesis (like the Dr.

Bertlmann’ socks). But if that were the case, we could not get

P (+,+) = P (�,�) = 0 P (+,�) = P (�,+) =
1

2
(6.4)

as obtained experimentally and as theory predicts by admitting the state | i.
What we have seen leads to the possibility of explaining, through simple matrix accounts of

operators, the characteristic that Schroedinger already identified as the most problematic
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of entangled states in [33]. In fact, if we consider the pure state | i = 1p
2
(|0i1|1i2�|1i1|0i2),

the expectation values on all three spin components are zero

hZi = hXi = hY i = 0 (6.5)

This means that although we have the most information about the compound system, we

have no information about its components ([28], [188]).

After some historical considerations on the extent to which entanglement has created

disputes within the physics community, we have provide a rigorous and accessible proof of

Bell’s theorem following [37]:

Theorem 6.1. Quantum mechanics cannot be both locally and counterfactual-definite.

To prove this theorem, Bell provided an inequality (referring to correlations of measure-

ment results) that is satisfied by all local and counterfactual-defined theories. He then

showed that quantum mechanics violates this inequality and thus cannot be both local

and counterfactual-defined.

In [37] the Bell inequality is demonstrated using the area to represent probabilities

To conclude, we have introduced three quantum states that do not satisfy the inequality.

6.2.1.6 No-cloning theorem

As G. Ghirardi in [31]

“As already anticipated, after the clear cut proof by J.S. Bell of the fundamen-

tally nonlocal nature of physical processes involving far away constituents in

an entangled state, many proposals have been put forward, either in private

correspondence or in scientific papers, suggesting how to put into evidence

superluminal e↵ects. We will begin by reviewing a series of proposal whose

rebuttal did require only to resort to the standard formalism or to well es-

tablished facts, such as those put into evidence by the Wigner-Araki-Yanase

theorems.”

Before addressing the topic, let us recall the statement of the theorem:

Theorem 6.2. It is impossible to build a machine operating unitary transformations and

being able to clone the generic state of a qubit.
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The story of the non-cloning theorem was an opportunity to discuss some aspects of the

role of science and scientific publications that might be of interest when brought to young

students. Indeed, re-reading the words of N. Herbert in [189]

“The theorem of Bell guarantees that two quantum systems which have inter-

acted in the past can no longer be regarded as independent systems. 1) The

mathematical inseparability of the quantum theoretical representation is an

essential part of nature, not a mere accident of the formalism. These once

interacting systems - which in general may be space-like separated, hence truly

isolated according to special relativity - remain in some sense connected in

a manner unmediated, unmitigated, and immediate. If this instant quantum

connection were directly observable - rather than indirectly verified via Bell’s

argument - it would put quantum mechanics into conflict with special relativity

by permitting faster-than-light signaling.”

and the comment by G. Ghirardi in [31]

“The FLASH paper3 was sent for refereeing to A. Peres and to me. Peres’ an-

swer was rather peculiar: I recommended to the editor that this paper should

be published. I wrote that it was obviously wrong, but I expected that it would

elicit considerable interest and that finding the error would lead to significant

progress in our understanding of physics. I also was rather worried for various

reasons. I was not an expert on Lasers and I was informed that A. Gozzini

and R. Peierls were trying to disprove Herbert’s conclusion by invoking the

unavoidable noise a↵ecting the Laser which would inhibit its desired function-

ing. On the other hand, I was convinced that quantum theory in its general

formulation and not due to limitations of practical nature would make unviable

Herbert’s proposal. After worrying for some days about this problem I got the

general answer: while it is possible to devise an ideal apparatus which clones

two orthogonal states with 100% e�ciency, the same apparatus, if the linear

quantum theory governs its functioning, cannot clone states which are linear

combination of the previous ones. Here is my argument, on the basis of which

I recommended rejection of Herbert’s paper.”

The Herbert’s paper will be published, and the simplicity of the proposed demonstration

of theorem shows how di�cult it was to understand the deeper meaning of Bell’s theorem
3In this work Hebert had proposed an ideal polarization-based experimental apparatus capable, accord-

ing to the American physicist, of realizing superluminal communications ([189]).
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and the implications it implied4 (see Fig. 6.8).

Figure 6.8: Proof of the non-cloning theorem presented in a slide of course

6.2.1.7 Entanglement for quantum information protocols

The two whole meeting required to deal with entanglement in-depth clarify because “the

deep ways that quantum information di↵ers from classical information involve the proper-

ties, implications, and uses of quantum entanglement” [29].

6.2.1.8 Dense-coding protocol

The proposed protocol allows two bits of classical information to be transmitted via a

single qubit with a quantum channel. The circuit representation introduced makes it pos-

sible to e↵ectively explain the protocol by translating the hypothetical physical actions

performed by Alice and Bob into immediately clear logic gates (see Fig. 6.9)

The protocol is straightforward from a formal point of view, making it possible to empha-

size certain aspects that make it highly meaningful:

1. the dense coding is not possible in classical physics, since a classical bit also has a

well-defined value prior to its measurement;

4See [190] for the picture in Fig.6.8
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Figure 6.9: Explanation of dense-coding protocol in a slide of the course

2. the message is highly confidential; “ The transmitted qubit has density matrix ⇢A =
1
2IA, and so carries no information at all.” ([29]);

3. Alice could send the first qubit to Bob long before she knew what his message would

be.

Already from this first protocol, the change of perspective from entanglement as a problem

to entanglement and non-locality as a resource should be clear [191]:

“Entanglement and non-locality are now understood to figure prominently in

the microphysical world, a realm into in which technology is rapidly hurtling.”

6.2.1.9 Quantum teleportation protocol

In the case of teleportation, too, the circuit approach allowed us to develop the protocol

in a conceptually and formally rigorous way5. In this case, however, it was preferred to

complete the calculations only at the end, focusing initially only on the most significant

aspects (Fig. 6.10).

Further considerations were made at the end of the demonstration:

1. Classical communication ensures that the protocol does not involve superluminal

communication;

5Essentially following the approach given in [9]
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Figure 6.10: Significant conceptual elements of teleportation protocol

2. the information is teleported, not the physical system whose state it is encoded on;

3. there is no violation of the non-cloning theorem since the state | i possessed by Alice

disappears in the act of measurement to reappear after the correction made by Bob.

The words in [29] p.164 exemplify the singularity of the protocol.

6.2.1.10 Cryptography

The discussion on cryptographic protocols closes the track. It was left for last because

it is possible to introduce it either by talking about entanglement or without it. The

ideal construction of a secure cryptographic key is undoubtedly one of the most exciting

aspects of the properties of quantum states and is also one of the most significant fields of

research at present. For this reason, we have presented a historical path showing the three

significant moments in the encryption theory: the linguistic approach, the mathematical

approach and the physical approach.

We have described the BB84, BBM92 and E91 protocols concerning spin; the first two

using St. Andrews simulations (see Fig. 6.11).

6.3 Quantum technologies course: first implementations,

follow-up course. Context, data and results

We organized the course in the context of the Italian PLS-Piano Lauree Scentifiche (Plan

for Science Degrees) and the education section of the Quantum Flagship. We divided
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Figure 6.11: The BBM92 protocol with St. Andrews simulation

the twenty hours planned into two parts: the first 10 hours in October and November

and the second in February and March. We preferred to divide the course in two to al-

low teachers to complete their study on the first lessons before addressing entanglement.

Due to the restrictions imposed in response to the COVID-19 pandemic, all lessons, al-

though initially planned as a traditional classroom course, were performed in synchronous

distance learning. Interaction between teachers was limited, and the means of delivery

were approximately 80% frontal lesson, 10% group discussion, and 10% teachers perform-

ing individual activities such as exercises or answering questions, which were discussed

immediately afterwards.

6.3.1 Initial context

The teachers are equally divided between graduates in physics and mathematics; almost all

of them work in science-oriented high schools, and in their schools, students are required

to develop basic computer skills at most. Almost all of them teach following the textbook

approach: photons and the photoelectric e↵ect, the Compton e↵ect, Bohr’s model of the

atom and interpretation of atomic spectra, De Broglie’s hypothesis and wave-corpuscle

dualism, wave-particle dualism, Schrödinger’s equation, energy levels, wave functions and

probability waves, Heisenberg’s uncertainty principle; this can also be seen in part from

the topics addressed (See Fig. 6.12).



Chapter 6. Quantum technologies: course(s) for teacher professional development 130

Figure 6.12: Topics traditionally treated by teachers in their school curriculum

Moreover, they had almost no knowledge of topics such as the thermodynamics of compu-

tation, quantum computers, algorithms, cryptography and quantum teleportation. Even

the questions about the photon’s polarization showed little prior knowledge.

On the other hand, it was evident that teachers considered the topics that would be covered

to be very significant for their professional development (Fig. 6.136),

6From here on in each image we consider 1 not at all; 2 very little; 3 a little; 4 quite a lot; 5 much; 6
very much
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Figure 6.13: Answers on the professional development of teachers in the pre-test

but they are much more doubtful about whether it will be of interest to students (Fig.

6.14).

Figure 6.14: Answers on the possible relevance for their students of the topics addressed

6.3.2 Data analysis

At the end, we collected data by several means:
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1. 23 pre-questionnaires and 14 post-questionnaire completed touching both disciplinary

aspects and items related to personal engagement and involvement;

2. Semi-structured interviews with volunteering teachers.

6.3.2.1 Post-course questionnaire

As shown in Fig. 6.15, in general, teachers displayed a strong appreciation for the topics

covered, particularly on the second part about entanglement, which using the formalism

of logic gates, can be treated in a formally rigorous and conceptually meaningful way.

Figure 6.15: Interest level about topics introduced

We note positive answers about having dealt with the course topics and the importance

they could potentially have for the students7. On the other hand, we also note a significant

degree of scepticism about introducing them into the curriculum, either just in principle

or adopting a longitudinal and multidisciplinary perspective (See Fig. 6.16 and 6.17).

6.3.2.2 Semi-structured interviews during and after the course

We created a matrix for mapping interview questions onto research questions [192]. After

the initial questions, we divided the interview protocol matrix into four parts:

• specific questions about the topics;

• didactic feasibility of the proposed topics, multidisciplinarity and cultural impact;

7This is extremely interesting especially in relation to the pre-test where there was more scepticism
about it.
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Figure 6.16: Teachers’ opinion on whether themselves and students can benefit from
instruction in quantum technologies

Figure 6.17: Propensity to introduce the topics of the second quantum revolution into
the curriculum in general, and from the perspective of a longitudinal and multidisciplinary
approach

• questions about the formalism used and circuital language;

• questions related to lessons and materials;

• questions related to the school context.

Each section has general questions to arrive at key questions that interested these first

interviews. The transcription of interviews has been included in the matrix for analysis

and comparison. A priori coding scheme [193] is developed out of course goals and two

of our assumptions: the topics covered would have been interesting, especially for mathe-

matics graduates; the possibility of introducing the topics before the final year would have

made them more practically usable in teaching. As the interview ended, we allowed the

participant to raise any issues not addressed.

Specific questions about the topics treated Regarding mathematical logic, everyone

acknowledges that it is not taught in great depth and is only linked to set theory
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and propositional calculus in the first year. Teachers after the course believe it

would be appropriate to expand the weight of the topic, but this seems not easy

in a school context that seems to progressively assign lesser and lesser importance

to it. The cultural importance of introducing non- classical logics is recognized.

The strong link proposed between logic and the thermodynamics of computation

has caused surprise and di�culty, in particular to the two teachers with a degree

in mathematics. All teachers recognize the e↵ectiveness of the introduction to QP

through the Stern- Gerlach device, but some would prefer to use polarization because

it is a topic already known to students. The formalism used for the introduction to

quantum computation is considered suitable for high school students if appropri-

ately trained, and it is seen to be very positive especially by the two mathematics

graduates. The abstractness of language, however, raises the problem of immediate

physical interpretation.

“I always struggle (with physical interpretation) but it (circuit language)

is an absolutely interesting tool to use.”

This aspect is even more evident in the study of the two proposed algorithms, whose

computational aspect seem, in part because of their complexity, to be prevailing on

its physical aspects.

Didactic feasibility, multidisciplinarity and cultural impact The interviewees gen-

erally agree on the high cultural value of the proposal, and the importance of a multi-

disciplinary approach for the education of future scientists. However, they recognize

the introduction of these topics into the traditional curriculum as problematic, unless

some of the content is deeply revised from the early years. The possibility of intro-

ducing topics linked to very recent technological developments is viewed as a likely

source of students’ engagement. Particular importance was attached to the cultural

impact of the course, and that the two teachers with a degree in mathematics, in

their free final remarks, stressed the great impact that the topics covered had had

on their desire to study and explore QP and on a new vision of the world arising

from it. Here are the words of a teacher:

“I was pleased to have attended the course because it allowed me to see a

new way of thinking that I did not know, and it made me aware of the

need for me to be trained in this regard, and that the students also need

to be stimulated because contemporary physics is working on these things.

It made me realize how much I don’t know and that I need to be trained

in this area. This unfortunately comes in a year when there are so many
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other problems. I don’t think I can do that in my class. I’m sorry. For

the future, however, I think it’s something I should definitely consider.”

Formalism and circuit language Teachers were able to see the concepts introduced

with both matrix algebra and Dirac notation. They showed no di�culty in accepting

both and in thinking that they can also be introduced to their students from the

early years of high school. Finally, the value of circuit representations is recognized,

although the references to physics are not always explicit. Doubts remain as to how

long it will take for all students to achieve satisfactory results.

“It seemed to me a very interesting way of setting up the problem. Simple

formalism with matrices even without Dirac notation. The idea of being

able to use acceptable formalism even to do di�cult topics from a formal

point of view (entanglement) is very interesting.”

However, some teachers also point out the aspects of di�culty that the mathematical

formalism of the course implies:

“Interesting, it opened me up to a world. It made me want to pick up

on some topics and go deeper into the computation part. Tiring course.

The students should be used to concepts and not formalism. Or rather, the

students should be made to understand how formalism arises. Very formal

approach that I found very di�cult: I have a more critical view today.”

Lessons and materials The interviewees complained about the di�culty of following

two and a half hours in the afternoon after teaching in distance learning in the

morning. The particular condition due to the pandemic seems to make the course

more di�cult to follow. Nevertheless, the demands are adequate for a course that

certainly has the claim of not being superficial.

Context In general, teachers complain of the di�culty in implementing serious shared

teaching design for both individual reasons of individual colleagues and contextual

reasons.

“Multidisciplinarity is di�cult because of the connection between colleagues

and the very restricted curriculum. We are monads as teachers. We have

no co-presence hours. Between colleagues there is also appreciation, but in

the end there are no opportunities: in most cases the links between topics

are all left to the students.”
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6.3.3 Follow-up course

After the initial sequence, we asked teachers who were available and willing to continue

their professional development how work could be most profitably organized in the coming

months with the aim of bringing some of the topics covered in class. The teachers’ requests

we report were the basis for the subsequent actions taken by the research team to continue

the collaboration.

1. Teachers requested time to review and study the materials introduced, and the or-

ganization of further meetings devoted to questions, clarifications and additional

information.

“I would need to review everything from the beginning to try to understand

what is proposed. Meetings would be useful to understand and dissolve

doubts.”

2. All teachers asked for further help in the reconstruction of the content for instruction

based on preliminary teaching-learning sequences already designed by our group, but

so far tested only with self-selected, motivated secondary school students.

“Some meeting to share the didactic experiences carried out after the course

could be useful”

3. Teachers were interested in preparing simplified materials trying to identify at least

minimal learning paths to propose to students, taking into account the heterogeneity

of classes.

“It would be interesting to prepare simplified materials trying to identify

an at least minimal path to propose to students, taking into account het-

erogeneous classes in which there are potentially few students interested

regardless”

6.3.3.1 Organization of the follow-up course

The follow-up part of the course was organized into five meetings and with some specific

aims:

1. clarifying the educational issues and challenges behind the design of a teaching-

learning sequence, in particular those related to the progressive acquisition, during
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the secondary school curriculum, of the prerequisites needed for quantum technolo-

gies;

2. exemplifying the implementation of these principles of design in terms of active-

learning strategies that are feasible at high school level;

3. developing more in detail a physical context suitable to describe quantum systems

and devices that can possibly encode and process information (photon polarization).

In the first meeting, we discussed the results of research on student understanding of quan-

tum physics, highlighting three di↵erent kinds of learning challenges that need to be taken

into account: interpretive di�culties, conceptual fragmentation, and epistemic challenges.

In theory change from classical to quantum physics, basic terms of the former, such as

’measurement’ and ’state’, undergo a shift in meaning, giving rise to interpretive di�cul-

ties (see [194] for di�culties with quantum measurement). In addition, students struggle

to overcome knowledge fragmentation on the quantum model, as attested by the strong

context-dependence of their reasoning even after long periods of instruction on the topic

[195]. Last, learning quantum physics requires students to renounce a set of basic beliefs

about nature at a time, depriving them of important resources in building a plausible

mental model of quantum systems and processes [196].

We explained to teachers that an awareness of research findings about domain-specific

learning challenges can provide them with reliable guidelines in the design of instructional

materials on the topic. In the second and third meeting, we presented a teaching-learning

sequence designed to help students overcome these di↵erent challenges. For this purpose,

we revised an educational path presented in Pospiech et al., Section 4 [176]. The sequence

is set in the context of the linear polarization of light, involving a repeated alternation

of empirical explorations of the phenomenon and related devices (polarizing filters, bire-

fringent crystals, etc.) at a macroscopic level, and model building activities at the level

of single photons. We illustrated how the challenges were addressed by means of vari-

ous kind of active-learning strategies grouped as knowledge revision activities, knowledge

integration activities, and exploration of epistemic practices. The first set involves the

revision of basic terms of classical physics such as physical quantity, measurement, state,

vector, superposition, interference, whose quantum versions represent the conceptual and

mathematical tools needed to cope with a course on quantum technology. The second

introduces and develops the framework of the ‘relations between properties’, i.e., the rules

that determine the acquisition, the loss and the retention of definite values of observables
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in the measurement process. The knowledge of these relations allows students to analyze

measurement not only in the context of photon polarization, but also in other physical

situations (e.g., the hydrogen atom), by means of already known instruments, in order

to help students overcome fragmentation without introducing sophisticated mathematical

constructs. The third is the operationalization of historically significant practices of the

theoretical physicist - e.g., thought experiments, interpretation of known laws within new

models, etc. - in terms of inquiry-based activities. These activities are used for helping

students accept the quantum description of the world as a plausible and reliable prod-

uct of their own inquiry.In these meetings, we showed several examples of ways in which

basic design needs can be translated into concrete activities that can be experienced in

the classroom. In the last two meetings, we put the work done in the context of photon

polarization at the service of quantum technologies, describing how to use already known

experimental tools (birefringent crystals) and new ones (phase shifters) to build logic gates

acting on a polarization encoded qubit (fourth lesson). In the fifth lesson, we introduced

the last device (non-polarizing beam-splitter), which allowed us to discuss dual-rail en-

coding. Finally, we showed how this set of tools can be used to realize two-qubit gates,

circuits and algorithms such as Deutsch’s and Grover’s, and, as a result, how mathematics,

physics and the concrete realization of technological networks can be integrated into an

interdisciplinary perspective.

6.3.3.2 Significance and role of the follow-up course

The five meetings following the course were essential to enable teachers to revise the

concepts learned in terms of teaching methods that can be implemented in the classroom.

The following is an interesting commentary by one of the teachers:

“The first course was a very significant, complex course: a course for teachers

that was held at a higher level so that we could then reconstruct the concepts

for the students. Translating into a educational sequence requires confronting

with others, reflecting and concretely preparing the activities: you can’t do it

alone.”

Teachers also underlined that a decisive step for them was to start reflecting autonomously

on possible educational paths to bring in class part of the topics discussed. Synthetically,

some distinctive features of the second part of the course which contributed to its perceived

productivity were as follows:
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1. Each meeting was attended by 5 or 6 teachers, and based each time on their needs

and requests;

2. since topics had already been introduced it was possible to focus on more specific

parts making the approach more accurate;

3. the topics introduced were presented in the light of an educational reconstruction

for teaching;

4. each topic was treated with the continual prospect of evolving into a teaching exper-

iment the following year.

These features led to more participation during the meetings, more questions and more

observations made by the teachers even though they were still carried out in distance

learning. All this allowed a qualitative leap in the relationship between the researchers

and the teachers, as a prelude to the activities in action research projects.

6.3.3.3 Semi-structured interviews after the follow-up course

Similar to what we did during the course, at the end of the follow-up course we conducted

some semi-structured interviews. We have divided the interview protocol matrix into three

parts:

• specific course questions;

• questions on the reasons for the future experimentation;

• questions related to the school context.

We present the most significant aspects that emerged accompanied by some sentences from

the teachers.

Specific course questions The in-depth course was not seen as necessary for the clar-

ification of topics nor for the decision to present them in classes (except in one

case). However, all the teachers recognize the importance of having clarified possible

teaching strategies for presenting topics seen as fundamental but complex:

“Starting with knowledge of a topic then requires a reworking for the stu-

dents a channel between the topic, what I have understood and what key
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concepts need to be proposed that can be meaningful to the students. Trans-

lating this into a teaching proposal requires discussion, reflection and ac-

tually preparing the activities: it cannot be done alone.”

and the importance of the more experimental approach:

“I would say that the discussion on polarization was very important. The

experimental part is always crucial.”

Questions on the reasons for the future experimentation The reasons given by the

teachers for choosing to bring specific topics into the classroom reflect the cultural

value of the proposal. In particular, they emphasize the possibility of introducing

very recent topics rigorously, enabling everyone to benefit from them:

“The topics are very topical. The world around them can be explained by

this course. They can glimpse possible future professions, new horizons for

the children to see.”

“Important path and I hope one day it will become part of the standard

proposal within our classrooms. It is part of today and our future. The

children must get to know it.”

“It will not reach everyone in the same way, but I hope that for some, it

will create passions and curiosity that can influence future choices.”

Questions related to the school context Teachers feel involved in the school’s activ-

ities but highlight that their proposals for in-depth studies or experiments are often

not followed up. This is mainly due to the numerous administrative commitments

and the fact that sometimes directors, families and colleagues get in the way of such

activities.

“In the first years, there was restraint, especially in colleagues, while fam-

ilies did not. Management tends not to leak anything.”

“Colleagues do not have the time and therefore tend to pull down. The

level has to be the same, so better to pull down. However, only because

they do not have the time, they have family situations, et cetera. It is

di�cult to find time for self-training.”

“I don’t know if mathematicians will be willing to follow this path. It is

exhausting. They have a reverential fear of quantum physics. You can
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see the link between physical mathematics and computer science very well

here. I would have to do training within the school on this path. They

would hardly be able to do training on the course because we are very busy

with school administration.”

Further on the relationship between context and support from academics:

“School context is very important (this makes the support of the university

world even more important), although I left because I thought things were

right for my students to do. If you don’t have support, nothing gets done.

There is no opposition, but no support either.”

6.4 Co-design TLSs and implementation in classroom

At the end of the follow-up course, those teachers who intended to start autonomous

experimentations based on the course materials were divided into thematic groups and

started discussing between themselves and with tutors in the perspective of planning and

performing didactic proposals in the context of their classrooms. Considerations related to

the dynamics of the various class groups and the teachers’ level of interest and appropria-

tion of the course materials guided each teacher in choosing the target classroom and the

general theme for their first experimentation. From the start, participants were encour-

aged to work within a proper action research perspective, i.e. the well-known phases of

planning, execution, observation, reflection and evaluation [197]; and were introduced to

the basics of the Model of Educational Reconstruction (MER) [148] as a general guideline

for the design of teaching-learning sequences. It is, however, emphasized that, from the

perspective of action research, the primary goal is not the production of new knowledge,

not even knowledge in education research (although it may be gained as a byproduct in

some cases), but self-development and the improvement of one’s educational practice [198].

Three groups were formed to work on proposals concerning respectively a) quantum com-

putation and communication; b) the thermodynamics of computation and the Landauer

principle; and c) the connection between classical logic, probability and experimental out-

comes. Such proposals are intended for the fifth, third, and first year of high school, respec-

tively. In the preparatory phase for educational planning, the guiding role of researchers

is arranging on the table the various elements contributing to the design (historical and

epistemological analysis of the science content, relevant research literature, possible di�-

culties which students could encounter) and the instruments for evaluation of the sequence
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was still relevant with a progressively higher level of autonomy by the teachers.

We allowed a great deal of autonomy in the pathways concerning topics at least partly

traditionally addressed in the curriculum. On the other hand, more intervention took

place in the design of the computation and quantum information teaching-learning se-

quences: in the latter case, the design and realization of lecture materials were conducted

in collaboration with the teachers but realised by the researchers8.

6.4.1 Quantum algorithms and quantum teleportation

The two teachers involved in the experiments with their classes expressed a desire to follow

two paths: one on quantum algorithms and the other on entanglement and teleportation.

This choice was due to two particularities of their classes: the first teacher had an applied

science high school class in which the students did two hours a week of computer science

for five years; the second teacher, on the other hand, had a traditional science high school

class and preferred to bring them some cultural aspects of the debate on EPR states.

As already mentioned, in the next chapter, we will clearly describe the entire teaching-

learning sequence; here, we will include how the work with the teachers contributed to the

design.

The two teachers wanted an introductory course on polarization that would enable students

to introduce the main elements of QM through simple experiments with poor materials

(filters and calcite crystals); furthermore, both favoured introducing polarisation encod-

ings and paths for the description of algorithms or quantum protocols. This necessitated a

restructuring of the original QM path so that the elements chosen were consistent for the

presentation of subsequent topics. For these reasons, we have assumed a part common to

both paths and one that di↵ers, as shown in the table Tab. 6.2. We produced the materi-

als in close cooperation with the teachers who contributed by defining the areas that the

students had already done in previous years, the elements that should have been focused

on more than expected, and any parts that were not entirely clear among those prepared

by the researchers. In addition, when studying the lessons for preparation, they could

point out some aspects that were unclear in their training and needed to be improved in

explanation.

The reference to the Inquiry-Based Learning and Modelling-Based Teaching model was

evident and continuous during this phase of material construction. This was with the dual

8We report on each aspect of this specifically in the next chapter. In the following paragraphs we will
only give a brief description
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Table 6.2: Structure of the educational experiments

Introduction to
QP

Quantum computa-
tion and quantum
information

Development

The quantum state
and its vector

From classical to
quantum computation
- Logical circuits

Quantum algorithms

Quantum superposi-
tion

Polarisation encoding -
Optical circuits

Quantum teleportation

Propagation and en-
tanglement

Dual-rail encoding -
Optical circuits

Introduction to quan-
tum measurement
and observables

Computation with two
qubits - Optical imple-
mentation circuits

intent of training the teachers involved in constructing teaching paths and, simultaneously,

of seeing these practices developed directly in the teaching materials created.

The two teachers carried out both teaching experiments with only the non-active presence

of the researcher who was writing.

In the end, we conducted two interviews to reflect on the entire training experience and,

precisely, on the educational experimentation in the classrooms.

6.4.1.1 Final interviews

We have divided the interview protocol matrix into six parts:

1. questions about the perception of their students;

2. question about the lessons and materials used;

3. questions about their role as teachers and how they prepared for the lessons;

4. questions about the entire professional development course, including the experimen-

tation work;

5. questions about the role of the researchers in relation to the experimentation;

6. questions about the context.

Here are the characteristics and common traits resulting from the interviews.
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1) The teachers are generally satisfied with the participation of their students. They

highlight the e↵ort put in during the course. However, they highlight that some

students were much more active than usual.

“From some, I would not have expected involvement; instead, they followed

very closely, and I think it was excellent, especially since they usually had

di�culties studying physics.”

And more

“The students all showed interest, even those who did not want to continue

scientific studies. Even those who participate little usually participated

more than usual.”

2) Conflicting aspects emerge about lessons and worksheets: Concerning the worksheets,

they would have the merit of activating the students, but also the constraint of

resulting in a strict lecture; this aspect is further intensified by the lecture delivered

with slides.

“I am not used to handling lectures via slides; it was arduous. I would have

preferred to write on the blackboard the way I am used to. Constructing

the individual conceptual or calculation steps with them. I found it a bit

di�cult that way. Perhaps a second time I will be more confident and

free.”

“For the worksheets, they have the merit of activating many more students

even if they were struggling a lot.”

And more

“I appreciate this kind of work: I sometimes try it myself. I think it is

beneficial for the activation of the students. Sometimes I think the rigidity

of the worksheet is to the detriment of the rhythm that has to be adapted to

the student’s ability to follow. It is a suitable method that should be made

more flexible.”

“For a very advanced proposal, there needs to be very definite material to

support the lesson. The teacher’s creative process will come in a few years.

These are concepts not used daily and are part of research beyond what I

studied at university. The probability of saying wrong things is minimized.”
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3) Teachers emphasise the importance of the theoretical lessons carried out in the first

teacher professional development course, especially the formal aspect of theory con-

cerning calculation:

“I re-read the lecture notes taken during the meetings and studied the slides

before the lectures...

The calculus part was crucial: reviewing the lectures was the part I needed

most. Even a deeper calculus than the one brought to the students.”

However, the aspect of collaboration with researchers is also emphasised already in

these questions:

“Collaboration is crucial. On my own, I couldn’t have done it. The meet-

ings we had after deciding that we would do the experiment were crucial. I

reviewed all the lectures, reworked the calculations, and attended the meet-

ings asking for a teaching proposal, and from there, with the help of the

researchers, we were able to prepare the course.”

And most of all

“Until you get to prepare to present them in class, you don’t fully under-

stand everything. When you have to share with your students, you have

to go deep: how do I explain it to them, how do I let them know. Without

the help of those who do research in education, you might do something

halfway, something not so meaningful.”

About the teacher’s role in experiments, enthusiasm in presenting new topics is

highlighted and supported by prepared learning materials:

“The fact that I have new topics to present is, for me, a source of enthu-

siasm and not of di�culty.”

“Sometimes a little insecurity, but no big di↵erence. I was looking for

your (researcher present) approval. She was happy when you were present

because she was more relieved. If you weren’t there, I was afraid I wouldn’t

be able to answer some questions, which didn’t happen. When I did Deutsch

without you, I was excited: I got into the lesson and went straight through,

also thanks to the learning materials provided.”

4) One of the two teachers reflects on the whole experience and how the increased under-

standing of the topic coincided with the awareness and desire to share it with their

students:
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“I enrolled for the in-depth study on Stern-Gerlach to make a meaningful

modern physics proposal. Then I realized it was something very di↵erent.

E↵ort: I remember it at first. But it was something I didn’t know and

interested me more. I had to understand. I studied: once I understood,

I became convinced of its importance and the need to bring it into the

classroom. It did not seem easy, but now I know it can be done. It takes

much work, but it is worth it.”

Both agreed that the key moment of their educational path was to bring the topics

into the classroom:

“A key moment is to have brought it into the classroom to understand some

of the critical issues in how I brought certain aspects into the classroom,

the time spent, et cetera.”

5) Regarding the role of researchers, both teachers emphasise the importance of working

in collaboration with those carrying out research in physics education, in particular

for the o�cial nature of the teaching proposal:

“Important to make the educational pathway o�cial: in collaboration with

the university. Research pathway in physics education that justifies and

supports the choice. If I did it again, I would ask for it again. Everything

went as I thought. Your presence gave me security. It’s nice working

together.”

“It is important to stimulate the students, to make them see that it is not

just something of their teacher but that there is a larger structure behind it:

the university, researchers, etc. It would have made their approach more

serious. It is not just teaching but there is experimental work behind it.”

6) The last questions were once again about context. The importance of the work car-

ried out in collaboration with university researchers emerges from the two teachers’

considerations:

“It justifies having an institution behind it to take away criticism from

students, colleagues, parents, etc. If a university does not support you, it

is less acceptable.”

The perspective on the influence of the work performed on colleagues is di↵erent9:

9As we will explain further, in fact in the schools where the researchers went there was in fact an
involvement of other teachers who are now contributing to the formation of pathways in the first classes.
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“I missed the support of my colleagues and their understanding. I expected

them to be more present. The computer science colleague was absent,

and the maths colleague had other things to think about.It could have been

interesting to do it more transversally.”

“In my opinion, the perception has changed in the school because I have

seen teachers who normally do not want to innovate in physics didactic but

prefer in pedagogy etc., participate. They participated constructively. Then

the fact that others want to experiment with logic, physics and probability

is di↵erent from what happened in previous years. I hope it was a way of

changing things. I would like to have a uniquely dedicated school to these

activities.”

6.4.2 Maxwell’s demon and the second principle of thermodynamics

A group of five teachers worked for several months on the possibility of introducing some

aspects of the thermodynamics of computation into their classrooms. The researchers

presented an approach to thermodynamics that they had dealt with before and that was

particularly adapted to computational development (see [199], [200]). Then, together with

the teachers, they studied some work on the solution of Maxwell’s demon paradox, up to

its solution linked to information theory (see [201]). The outcome of this shared work was

a path that ended with Landauer’s solution exposed in computational terms. Without

entering into detail, what is important to emphasize is that some of the teachers shared

the idea of anticipating the relationship between physics and computation following one

of the goals of our research approach.

6.4.3 Physics, logic and probability

In June 2022, at the explicit request of some teachers, three two-hour meetings were held

on a possible introduction to the link between physics, logic and probability in the first

year of high school. Five teachers who had already attended the first training course

and some of their colleagues interested in the topics discussed for possible educational

experimentation attended the meetings. In these meetings, the diagrammatic approach

was explained in depth. The fundamental topic was the possibility of introducing the

circuit language concerning Boolean logic and the physics of computation from the first

year. The teacher of the educational experiment in Castel San Giovanni (which we will
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discuss in the next chapter) and one of her colleagues designed an 18-hour course for

their students. The course involves the students’ construction of a water computer and

progressive abstraction at the circuit level up to the link between propositional and Boolean

logic. The goal for the fifth year is to introduce quantum algorithms so that their students

have been on a path to the diagrammatic model since the first year.

6.5 Results and research questions

From the questionnaires, the interviews and the work done with the teachers, we drew

many indications that not only made it possible to answer the initial research questions

but also contributed (as will be seen in the next chapter) to the design of the pathways for

the students. The outcome of all this is the second training course, which we will briefly

discuss in the next section.

TRQ1 How is it possible to construct an adequate content simplification process to present

the topics of the second quantum revolution to teachers in a meaningful way from

very advanced theoretical aspects?

Given the innovation of the topics proposed, a process of elementarization must

consider the need to present the topics with great depth and precision; this from

both a formal and conceptual point of view. The formalism used is considered ap-

propriate for both teachers and their students. This simplification must constantly

live up to two aspects: the presentation of the educational materials and the con-

tinuous comparison with the experimental aspects. The diagrammatic model as a

common framework for computational and physics topics seems to be a useful tool.

TRQ2 How make the contents and themes of the second quantum revolution su�ciently

fruitful to teachers to develop a personal commitment to longitudinal, interdisci-

plinary educational innovation directed towards themes of quantum information and

computation?

The teachers immediately agreed on the strong cultural impact for themselves and

their students of teaching proposal. The main doubts revolved around the possibility

of presenting the topics in their classrooms. However, the results of the follow-up

course, of the shared design, and in general of the path shared between researchers

and teachers, was to make concrete the intention of some teachers to present these
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topics to their students. Moreover, to do so not only in teaching experiments in the

fifth year, where it is more natural to deal with these topics, but also in the first,

third and fourth classes. The interdisciplinary and integrated approach with a high

cultural impact, the record of lessons and the materials for lessons, all supported

by continuous work and discussions with researchers, have activated some teachers

to develop a personal commitment to longitudinal, interdisciplinary educational in-

novation directed towards themes of quantum information and computation. Some

criticalities emerge from the use of worksheets linked to slides; however, for a first

explanation, they also have the merit of reducing possible errors to a minimum.

TRQ3 What are the most appropriate environment and methods for building a distributed,

online community of practice of teachers revolving around the themes of the second

quantum revolution?

This seemed the most critical aspect at the beginning of the path with the teachers.

Despite the activation of a forum to collect projects, questions and curiosity, we

seemed unable to create the conditions for building a distributed, online community

of practice of teachers. However, two aspects seem to have changed this situation:

1. Some teachers are also attending meetings of the new vocational training course.

These also include a couple of teachers who carried out the experimentations

in their classrooms last year. Their presence is now constant in the training

activities we o↵er on these topics, and some teachers have started to share

experiences and materials: they are beginning to become a reference.

2. However, a second aspect must be emphasized. During the experiments, one

of the researchers was often present in the respective schools, also conducting

meetings for all mathematics and physics in-service teachers. This made it

possible to get to know the environment, including school directors and to

activate a shared and extensive collaboration. The result is the participation

of other teachers from the same school in the training meetings. In this way,

a reference figure, a kind of expert teacher, who coordinates, supported by

the researchers, small working groups on the topics of the second quantum

revolution has been established in the individual schools. The aim is to share

these experiences in specially organized meetings.

Not being able to count on in-person participation (at least in recent years) seems to

require time and direct intervention in schools to generate a community of practice.
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In particular, the presence in schools seems to allow for overcoming specific con-

textual di�culties that emerged in the interviews. We are not able to give further

indications at the moment.

6.6 Quantum technologies course: second implementation.

Considering the results of the research carried out during the first course of teacher pro-

fessional development and the educational experiments with students (see 7), a second

course was designed and implemented. Here are the main new elements.

1. An extra meeting was devoted to an introduction to quantum mechanics with polar-

ization, which was necessary in order to be able to use the teaching materials during

the lectures.

2. The lessons were revised to allow an initial approach to the worksheets used dur-

ing the teaching experiments. In particular, the elementarization elements of the

algorithms and the teleportation protocol, and the modelling of polarization and

dual-rail models, were carefully addressed.

3. Great importance was given to implementations with optical devices.

4. The importance of the diagrammatic model was posed early on. The possibility of

interpreting diagrams logically and physically was the constant interpretative key.

Examples from the worksheets designed for the students supported the meetings on

coding, logic gates, quantum algorithms and teleportation.

5. An advanced course on educational materials and data analysis of experiments is

planned for teachers who would like to introduce a course in their classrooms.

This second course is the high point of the whole project. We will examine what impact

it will have in the coming months.



Chapter 7

Quantum technologies for

students: design, implementations

and results

This chapter describes the TLS for students that we designed, realized and implemented,

based on the considerations made in the previous chapters. Unlike chapter six, where we

wanted to give a chronological dimension of the work done with teachers, here we aim

to express the work in its logical perspective1. We will consider the following line of de-

velopment. First, we will briefly return to some general considerations outlined in the

first chapter, representing the historical-cultural and conceptual framework we intend to

move. We will then describe the general aims of the proposed work by making explicit

the research questions. Moreover, we will develop the fundamental moments of the MER:

first, to build the content structure for instruction, we will approach the analysis from

a theoretical point of view. By the general learning aims, we present an analysis of the

theory exposed in Chapters 3 and 4. In the second step, we will focus on the perspectives

of students and teachers. In the end, we will present the reconstruction of the key ideas

and development of physical information theory into a content structure for instruction.

In order to understand whether the designed reconstruction is congruent with the men-

tioned general goals, we will carefully describe a hypothetical learning trajectory in such

a way as to bring to light the succession of tasks and activities. This will be the most

substantial part as we will have to describe in detail the materials built in relation to the

1To do this we will briefly return to some of the concepts expressed in previous chapters. Although they
are already present in the thesis, we prefer to bring them back into this chapter to support understanding
and argumentation.
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goals and methodology exposed in Chapter 5. The final part, then, will be spent on data

analysis and evaluation with regard to the design hypothesis and the research questions:

at the conclusion, it will then be possible to identify the design principles that, ex-post,

will define the TLS.

7.1 Introduction

Industrial policies in the EU and US in the past six years have fostered a fast and in-

creasing interest in quantum mechanics as a pivotal area for the development of future

technological and societal advancements [202]. In particular, quantum mechanics is at the

heart of innovations that include intelligent sensors, networking, communication, comput-

ing hardware, algorithms, and other facilitating technologies. Such interest has led to the

launch of far-reaching institutional programs such as the National Quantum Initiative Act

[203], [2] in the US and the Quantum Flagship in the EU [3]. Also in the perspective of

these projects, there has been a rise of worldwide interest in expanding education at all

levels on technological applications revolving on the manipulation and control of individual

quantum systems, the so called second quantum revolution. However, this interest vividly

clashes with physics education research evidence according to which quantum mechan-

ics is perceived as a di�cult and demanding subject area, whose concepts are considered

too abstract and di�cult ([204],[205],[206],[207],[208],[209]). Many studies also show that

students hold a variety of misconceptions in quantum mechanics ([195],[4],[5]) due, for

instance, about the need to reconsider the key concepts of classical physics and to bridge

physics and chemistry concepts ([210],[211],[212]). Although there have been attempts to

use quantum computation as a context for the initial introduction of quantum physics [8-

10], these are intended mostly for the undergraduate level: proposals for secondary school

have used a more traditional sequential approach, that starts with an introduction of quan-

tum physics as a preliminary step to address quantum computation ([10],[213],[214]). To

make the pathway feasible at the curricular level, we prefer to follow the second solution.

This is also to highlight any traits of the pathway that can be brought forward to the years

prior to the fifth, with a view to redesigning the curriculum from the first year.

But beyond the cultural-historical motivations related to the technological development of

the present, the work we propose is also based on motivations intrinsic to the disciplines

involved. Indeed, we believe that the proposed interdisciplinary approach can profoundly

bring out the dialectic between physics, mathematics and computer science. In this way

we seek to enhance topics that are too often isolated (think, for example, of the role of

probability calculus and propositional logic in secondary school, as described by teachers
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themselves) or undervalued in their interaction (think, for example, of new math textbooks

in which physics is used as exercises on a particular topic). Despite the little research on

these topics, especially at the curricular level, the considerations led us to refer to the

MER for pathway design. We have, in addition, exploited, where possible, the existing

literature, the work done with teachers and exposed in the previous chapter, the first on-

line experiments carried out with the Galilei high school in Voghera, the Summer schools

and PCTO work done at a distance learning in collaboration mainly with the University

of Insubria and Bologna.

So the purpose of this chapter is to describe and propose an educational reconstruction of

the themes of the second quantum revolution based on the structure of science content and

the relevant published literature on teaching and learning about it, supplemented by our

empirical results. The educational reconstruction for instruction that we present attempts

to answer the following research questions:

SRQ1 : How is it possible to construct an adequate content simplification process to

present the topics of the second quantum revolution to students in a meaningful way

from very advanced theoretical aspects?

SRQ2 : How e↵ective is an integrated and multidisciplinary approach in order to enable

students to understand some topics of quantum computation and quantum informa-

tion?

SRQ3 Based on findings from the first two research questions, what design principles can

be formulated for the development of TLS resources in quantum computation for high

school students?

We wonder, then, how we can support students toward the deepest possible understanding

of both the computational aspects understood from a logical-formal point of view and the

characteristics of quantum physics that underlie them and enable experimental implemen-

tations, at least from an ideal point of view. For clarity, we anticipate that the proposed

TLS consists of three separate steps:

1. introduction to QP;

2. from classical to quantum computation;
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3. applications: quantum algorithms and teleportation protocol2

7.2 Educational reconstruction

7.2.1 Analysis from the Theoretical Perspective

In this section, we present an analysis of the theory from the perspective of the general

goal of our research and respect to national indications for high schools in Italy. We will

emphasize some aspects of indications especially relevant to our educational path. We will

underline any critical issues with respect to established teaching practice. These critical

issues emerge from interviews conducted with teachers and experiences with students in

the project already mentioned.

We will di↵erentiate, like the guidelines, between general lines and competences on the

one hand, and specific learning goals on the other. We will do this for the three main

disciplines of the TLS: physics, mathematics, computer science3.

Remaining, for the moment, in the general context of the scientific domain, the student is

asked to know:

1. understand the specific formal language of mathematics, know how to use the typical

procedures of mathematical thinking, know the fundamental contents of the theories

underlying the mathematical description of reality ;

2. master the fundamental contents of the physics and natural sciences (chemistry,

biology, earth sciences, astronomy), mastering their own procedures and methods of

investigation, also in order to be able to orientate themselves in the field of applied

sciences;

3. to be able to use informatics and telematics tools critically in study and research

activities; to understand the methodological value of informatics in the formalization

and modelling of complex processes and in the identification of solution procedures.

By analysing these three points in their mutual influence, we can find the overall aim of

our work: to enable students to grasp the dialectic between physics, mathematics and

computer science.

2We will speak about the quantum cryptography, but we don’t introduce in the two experiments carried
out with students.

3Computer science is not separate from mathematics in the traditional address; for clarity we will
separate the two subjects.
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From a university teaching perspective, these issues have been recently addressed by 34

QIS experts from both academia and industry who signed an open letter providing indi-

cations on a range of aspects ([6]). In particular, they called for an earlier start of QIS

education in the academic career, recommending to establish introductory-level science

and engineering classes that introduce students to the foundations of the subject-matter.

Such courses should be designed for non-physicists and have pre-requisites commensurate

with students from any technical field. Education in QIS should also promote the develop-

ment of high-level experimental skills including, e.g., experimental and engineering design

or modelling of experiments, which are challenging to attain in existing traditional pro-

grams. For all these purposes, they argue for the early involvement of education experts

in curriculum development.

The general aim outlined above also naturally arises in the light of the historical devel-

opment that led to the first formulations of the physical theory of quantum information.

Let’s think of the pioneering work of C. Bennett ( see [14], [181]) and that of To↵oli and

Fredkin [16]. They show precisely the connection between computation and thermody-

namics. Linking this to the problem of the reversibility of classical logic gates, the role of

the physical problem of computation becomes evident. It is no coincidence that R. Feyn-

man, between 1983 and 1986, gave a course at the California Institute of Technology that

was published posthumously in the famous Lectures on computation ([39]), which were

strongly influenced by these works. In this sense, what we would like to emphasise is that

the need to bring computation back to a physical (thermodynamic) dimension was as far

from the horizon of scientists in the 1970s as it probably is from secondary school students

(and as we have seen from their teachers as well). However, it represents a fundamental

point in the birth of the theory of quantum computation. It is the light in which many

statements by early scholars that highlight their views on the nascent discipline should

be seen. The first is certainly that in [16], which links Turing’s work to certain implied

physical assumptions according to the authors (see the beginning of chapter 3) and also

those from Deutsch [18] and Ekert [215], which we quote below:

“Intuitively, a computing machine is any physical system whose dynamical

evolution takes it from one of a set of ’input’ states to one of a set of ’output’

states. The states are labelled in some canonical way, the machine is prepared

in a state with a given input label and then, following some motion, the output

state is measured. For a classical deterministic system the measured output

label is a definite function f of the prepared input label; moreover the value of
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that label can in principle be measured by an outside observer (the ’user’) and

the machine is said to ’compute’ the function f .”

“Today, one can briefly define cryptography as a mathematical system of trans-

forming information so that it is unintelligible and therefore useless to those

who are not meant to have access to it. However, as the computational process

associated with transforming the information is always performed by physical

means, one cannot separate the mathematical structure from the underlying

laws of physics that govern the process of computation.”

Here, then, our TLS can find in the history of computation and quantum information the

first conceptually relevant element4: the semantic shift (extension) of the word computa-

tion from the area of logic-mathematics to that of physics. Or rather: what is brought to

light is, we might say, the need to consistently problematize, when talking about compu-

tation, whether we are referring to hardware or software, to physics or logic. But following

Vygotsky’s teaching in [164], we want to consider the two elements not as separate but

to study their dialectic: only the study of reciprocal influences, of the transition of the

first into the second and vice versa, both from a formal and conceptual point of view, will

allow them to define themselves more clearly and allow us to achieve an integrated model

of computation. Therefore, we need a language that can do this as deeply as possible. And

to do it in the same way whether we are dealing with classical or quantum computation:

the diagrammatic language described in Chapters 2 and 3 serves this purpose5.

In some of the more recent axiomatic formulations of quantum theory, the use of cat-

egory theory and its possible diagrammatic circuit representations is deeply embedded

even when not explicitly decried ([217], [32], [92], [94], [93]). We also find its use in several

more application-oriented works, especially, but not only, in computer sciences ([80], [81],

[82], [83], [84], [85], [86], [87], [88], [89], [90]), but also in the field of physical of com-

putation ([70], [71], [72]). What these works show is the possibility of using appropriate

monoidal categories to describe processes: be they physical processes, linguistic (texts),

musical (compositions), chemical or other. The attempt is to construct a unifying lan-

guage even when, as in the machine learning we saw in Chapter 4, what we are studying is

characterised by apparently very di↵erent processes. The unifying attempt of these works

translates in our research into the use of a language able to create a unified model for logic,

4The importance of the history and philosophy of physics for the construction of routes is well known
([148]and [216].

5It should be noted that, in principle, it allows generalisation far beyond simple physics
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the physical theory of computation, and the corresponding experimental realizations in the

quantum case using optical devices ([70], [71], [72]). Therefore, we have introduced use-

ful categorical tools appropriate for defining a language bringing together computational

theory, physical theory and implementation using optical devices6. This integrated and

multidisciplinary approach to the theory of computation and information, first mediated

and then described through circuit representation, leads us to ask what conceptual changes

are necessary and possible for high school students. Consider summarise these changes in

the table 7.1:

Table 7.1: Conceptual changes

Changes Key features

Perspective

change

from quantum

theory as a the-

ory of microscopic

matter

to quantum

physics as a

framework for

technological

applications and

information pro-

cessing

Coding, process-

ing, decoding in-

formation

Physics change from classical

physics

to quantum

physics

Randomness, un-

certainty and en-

tanglement

Logic change from classical

logic

to quantum pro-

cessing

Quantum paral-

lelism, linearity

of Oracle, nature

of compound

system, computa-

tional interference

Probability

change

From epistemic,

classical or ax-

iomatic

to intrinsic,

Bayesian

Nature of State

and Measure-

ment. Probability

as extension of

logic

For clarity, we consider briefly, as in Chapter 2, how the elements introduced in the table

6The operational approach in this sense is a great help ([32], [94]) because it builds theory precisely
from the idea that transformations are equivalence classes of operations performed in a laboratory.
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arise from considerations intrinsic to quantum algorithms and quantum communication

protocols such as teleportation and key generation and sharing in quantum cryptography.

Quantum algorithms We first analysed quantum algorithms, having to make the choice

of presenting only the simplest but no less significant ones. The algorithms of

Deutsch, Deutsch-Jozsa and Grover ([18], [41], [42]) were the main objects of our

study. It was clear from the beginning that some distinctive elements of quantum

physics allowed for a deeply di↵erent kind of computation: the superposition princi-

ple, the linearity of the unitary operators, the particular nature of compound systems

expressed mathematically by the tensor product, and quantum interference are the

elements underlying the advantage that Quantum Computation (QC) o↵ers over

classical computation (cc). In particular, the superposition principle makes it pos-

sible to switch from an exponential number of coding bits to a polynomial number

of qubits; through the linearity of Quantum Gates (QG) the classical functions act

simultaneously on all coding states. The presence of an ancilla makes it clear how the

phase combined with the nature of the tensor product allows for special encodings

even on signs that can be exploited to create interference and achieve the solution

to a problem posed more e�ciently. However, it has become clear from later work

([40], [47]) that entanglement plays a crucial role in both algorithms: in the first

case, “multipartite entanglement within the first register is needed to accommodate

all possible (balanced) functions”; in the second, the authors shown that “the entan-

glement properties of the initial state of the first register depend on the number of

solutions, and we have demonstrated that such a state is also typically multipartite

entangled when a small number of items is searched for”. The circuit representation

using Hypergraph category (ZX calculus) allows these algorithms to be reinterpreted

from the point of view of information flow and the topological structure of quantum

algorithms ([218], [219]). This approach introduces a higher-level interpretative key

that is extremely useful in the case of quantum teleportation.

References to the physical aspects of quantum computation are clarified by studying

some experimental realisations of algorithms based on optical devices and linear op-

tics. The concern in this study was not so much about the actual exploitation of such

devices from a quantum technology perspective. However, they have two fundamen-

tal merits: they are based on linear optics, and thus not too complex to implement;

moreover, the strict link between circuit description and the experimental setup is

evident from this work ([220], [221], [69], [222], [223], [224]). The importance of

the possibility of an integrated perspective of computation capable of constructing a

model that takes into account the physical theory of computation and its realisation
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in experimental setups strongly conditioned by the diagrammatic approach is imme-

diately apparent. As a definitive confirmation of the latter, we cite the three papers

published in spring 2022 that shed light on the link between high-level (software)

and lower-level (hardware) circuit representations ([70], [71], [72]).

Quantum teleportation From the point of view of quantum communication, the tele-

portation protocol ([225]), which was just before Grover’s algorithm, is of extreme

relevance. Here the role of entanglement as a resource is emphasised: ”Maximal

entanglement is necessary and su�cient for faithful teleportation”. The discussion

of the role of EPR states is an important historical element, not so much from the

point of view of the current approach to quantum communication, but above all to

highlight the di�culty that a physicist like Einstein had in accepting certain conse-

quences, at the time only theoretical, of quantum theory. The change of perspective

from entanglement seen as a problem to a resource is one of the most significant

aspects of the path that ideally linked the German scientist’s 1935 article ([226])

with the recently awarded Nobel Prize in Physics. The change of perspective o↵ered

by Bell’s theorem ([35]), had the merit of moving a possible demonstration from the

theoretical to the experimental point of view. John Clauser, Alain Aspect and An-

ton Zeilinger were recently awarded the Nobel Prize for their work. And these works

have achieved definitively observed violations of Bell’s inequality precisely through

studying entangled photons and optical devices. Back to the protocol, it is evident

that it highlights one of the most significant features of quantum behaviour: non-

local correlations. It further emphasizes the need to refer to measurement outcomes

as correlated and not to quantum systems in conceptual terms. The approach using

circuit representations has the merit of making the introduction of entangled states

extremely simple from a logical point of view. The case of a possible experimental

setup involving entangled photon emission by means of parametric-down conversion

is di↵erent. But once again, developing a higher diagrammatic register makes it pos-

sible, as we have seen, to achieve the protocol. Using simple syntactic manipulations

of diagrams at the end, we will obtain a single line connecting Alice and Bob: the

information has been transported ([137],[1])!

Quantum cryptography One of the aspects that most determines the study and fund-

ing of quantum technologies is the distribution of keys for encrypting and decrypting

a message. Since the publication of Shor’s algorithm in 1999 ([227]), the classical

RSA encryption protocol was potentially much more attackable. It was based on the

di�culty of factoring prime numbers, and the quantum algorithm undermined its re-

liability. First in 1984 and then in 1991 ([228], [215]), two ideally secure key creation
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and distribution protocols were introduced that were much more straightforward

than the attackable RSA. Whereas the RSA protocol was based on the di�culty

of inverting modular functions, the two quantum cryptographic protocols are based

on constituent elements of the reality of quantum systems: the superposition state

in the first case and entanglement in the second. The possibility of replacing an

articulate mathematical protocol with a simple physical one is the most culturally

significant aspect of this last part. But not only for this, we want to point it out. It

is emblematic of the informational approach to quantum physics. For this reason, al-

though it was not actually used in the paths we will discuss in this chapter, it seemed

appropriate to include it in our discussion. We will make no further comments on

this.

Lastly, it should be noted that the proposed topics were chosen primarily based on their

analysis and not with reference to any particular indications. In this regard, it should be

noted that there is no uniformity of opinion as to what topics are necessary for proper

training in this respect. It is also interesting to note as they do in [229] that “each

course is intended by its instructor to tell a slightly di↵erent story about QIS even if the

course topics are ostensibly similar”. However, the importance is emphazised that any

canonical course does not come at the expense of the interdisciplinary approach: “Yet

it is important to make sure that canonicalization does not come at the expense of the

discipline’s interdisciplinary perspective, which is arguably among the greatest strengths

of QIS as a research area”. If this is true at university level, the considerations can be

extended to high school education.

7.2.2 Analysis from the students perspective

Only in the last years, TLS have begun to be suggested for secondary school students on

the topics of the second quantum revolution and quantum technologies7 ([175], [176], [9],

[230]). We focus in some detail on [230] to which we actively contributed.

Introducing quantum technologies: Online Extracurricular Course The activity,

carried out in spring 2021, was the result of the joint e↵orts of the Italian commu-

nities of researchers. We decided to use the context of quantum technologies to

convey the concepts of quantum mechanics. Our basic assumption is that quantum

technologies may reduce the students’ perceived abstractness of quantum mechanics,

7See also section 6.1
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which often comes from limited access to suitable experimental and mathematical

literacies.

The basic idea of the educational path is to describe the logic of quantum physics

by establishing a parallelism with the logic circuits of information theory ([9], [231]).

The axioms of quantum mechanics describe the preparation of a state, its evolu-

tion/manipulation, and its measurement, which can be interpreted as information

input, information processing, and information output, respectively. This parallelism

makes it possible to introduce the fundamental properties of quantum states (super-

position and entanglement) and to introduce the “qubit,” the quantum extension

of the classical “bit,” and the elementary transformation of the qubit in terms of

quantum gates. Simulations and descriptions of experiments with spin and polariza-

tion are used to discuss the physical implementation of qubits. The radical novelty

introduced by quantum theory becomes clear from the analysis of the superposition

state, the meaning of probability, and the role of measurement.

The activities of our learning path were structured in the following steps: four intro-

ductory lectures (one hour each), an in-depth course of three lectures (one and a half

hours each) on specific aspects of quantum technologies, and a closing lecture (one

and a half hour); see Fig.7.18 This study has a twofold aim: (1) to evaluate whether

Figure 7.1: Overview of the educational path activities.

the designed path helped the students to grasp a basic knowledge of fundamental

quantum physics; (2) to evaluate whether the designed didactical path improved

students’ views about quantum technologies. Thus, we posit the following research

questions:

8For details of meetings see [230]
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RQ1 To what extent was the educational path on quantum technologies e↵ective

in improving the students’ knowledge about fundamental quantum mechanics

concepts?

RQ2 To what extent was the educational path on quantum technologies e↵ective in

improving the students’ views about quantum technologies?

The study was carried out in the context of the Italian plan called Paths for Transver-

sal Competencies and Orientation (PCTO). The PCTO activities are mandatory for

students and include either career orientation or vocational practice. The sample

consisted of N = 279 Italian high-school students (females: 24.4%; males: 73.8%;

prefer not to say: 1.8%) from 16 di↵erent schools distributed across Italy. The

course was restricted to students attending the 12th (N = 101, average age: 18.0

± 0.4 s.d. (standard deviation)) and 13th grades (N = 178; average age: 19.0 ±
0.5 s.d.). The great majority (82%) of the students attended the Liceo Scientifico

(mathematically-oriented high school), about 12% attended an applied science course

(natural sciences-oriented high school), and about 6% attended a technical school.

For the present study, we developed a short questionnaire (QTI) featuring eight

items on the topics addressed during the educational path. The questionnaire (see

[230] appendix B) was built on our prior studies ([232],[233],[234],[235]). The table

in Fig. 7.2 summarizes the concepts and topics addressed in the questionnaire Five

Figure 7.2: The main topics addressed in the quantum technologies inventory (QTI).

elements were used to measure students’ views about quantum technologies (VAQT):

1. Assuming to use ideal measuring instruments, in physics I must describe the

results of measurements probabilistically only if I have incomplete information

about the system;



Chapter 7. Quantum technologies for students: design, implementations and results 163

2. It is possible for physicists to carefully perform the same experiment and get

two very di↵erent results that are both correct;

3. Quantum computers will never work, because it is impossible to build an hard-

ware that is accurate enough;

4. Scientists say that quantum communication makes it possible to teleport a

particle from one place to another;

5. Scientists say that quantum communication does not make possible the tele-

portation of a particle from one place to another, but only the transfer of its

characteristics.

Overall, 176 students responded to the QTI after the didactical path, while 162 com-

pleted the VAQT instrument before and after the out-of-school activities.

The distribution of the students’ scores is shown is in Fig.7.3 The average pre-

Figure 7.3: Distribution of students’ scores in the quantum technologies inventory
(QTI).

instruction score in the VAQT items about general epistemic aspects was 3.04 ±.85

s.d., while the average post-instruction score was 3.40 ± 0.91 s.d. To better un-

derstand this trend, we divided the sample into four groups according to their per-

formance and then calculated the e↵ect size of the di↵erence between the post and

pre-test for the VAQT items for each group. Fig.7.4 and Fig.7.5 show the average

pre-instruction and post-instruction scores for each group.

The analysis of the students’ answers to the QTI shows that, on average, the educa-

tional path was useful to familiarize students with fundamental aspects of quantum

mechanics. From the analysis of the students’ responses to the VAQT, it emerges

that, on average, the proposed path was e↵ective in letting students acquire more

informed views about general epistemic aspects of quantum mechanics and quantum
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Figure 7.4: Pre-instruction vs. post-instruction average scores of the views about quan-
tum technologies (VAQT) instrument (general epistemic views) according to the perfor-
mance in the QTI for four groups.

Figure 7.5: Pre-instruction vs. post-instruction average scores of the VAQT instrument
(applications of quantum technologies) according to the performance in the QTI for four
groups.

technology applications. Limitations of the study include the involvement of a small

sample and the remote distance modality of the didactical activities. Results are

also limited by the use of instruments not yet validated.

On the other hand, the literature, especially concerning courses designed and implemented

in curricular contexts, is extremely scarce. This is why we consider it most appropriate to

once again begin with a few selected objectives within the national indications and, this

time, broken down by the individual subjects included in the constructed multidisciplinary

pathway:
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Physics, general guidelines: the student, at the end of the course, must have learnt the

fundamental concepts in their historical and philosophical context. In terms of skills,

among others, he/she must be able to construct and validate models and understand

the scientific and technological choices a↵ecting the society in which he/she lives.

Physics, specific learning goals: in the guidelines on quantum physics, an essentially

quasi-historical framework is outlined, strongly linked to the macroscopic-microscopic

relationship. Furthermore, it is left to the student to investigate topics of interest to

him/her on the relationship between science and technology.

Mathematics, general guidelines: at the end of the course, the student must be famil-

iar with concepts and methods of the discipline both in their intrinsic development

and relevant to the description and prediction of physical phenomena. The math-

ematization of the physical world refers to the infinitesimal calculus resulting from

the scientific revolution of the 17th century. He must also be able to construct a

mathematical model of a set of phenomena.

Mathematics, specific learning goals: in the first two years, the student is expected

to study linear algebra at least in its simplest forms related to the concept of vector,

matrix and the operations between them. In the fifth year, the student must learn

the characteristics of discrete and continuous probability distributions. Furthermore,

he/she will deepen the concept of mathematical model and must be able to construct

and analyse examples of them.

Computer science, specific learning goals: according to the guidelines, one of the

elements to be developed is the concept of the algorithm and the elaboration of

algorithmic problem-solving strategies for simple and easily modelled problems; in

addition, the concept of a calculable function and calculable problems will be given

with examples.

Bringing these considerations together, it seems evident that there is a hope that students

will actually be able to build an integrated model of the three disciplines. Such a wish

is undoubtedly commendable, but as is evident from informal interviews with students,

from personal experience as a teacher and above all from the interviews carried out in the

professional development course for teachers, such indications do not find their way into

teaching practice. Moreover, an analysis of the most used manual in Italy, shows how they

are not yet ready for an integrated proposal, except in the most trivial manner of the word.

The construction of physical exercises in the mathematics book and a few worksheets with
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Geogebra or Python to carry out simple projects are not concretely included in construct-

ing a teaching-learning sequence. What is needed in the field of quantum physics, but not

only there, is an approach that aims to develop a sense of the transition between the single

disciplines, to show how they mutually support and justify each other despite their funda-

mental peculiarities: only in this way can one actually speak of an integrated perspective.

In accordance with the categorical approach we have seen in the previous chapters, we

could say that an integrated perspective must focus on the morphisms between disciplines

in a much deeper way.

Consider now proceed to some critical issues that need to be addressed for an e↵ective

educational reconstruction for instruction.

Firstly, as can be deduced from the pretest data on 23 teachers on the course, half intro-

duce logical connectives and do so in a traditional manner linked to propositional logic,

and only seven introduce the problem of algorithmic translation of a problem. The inter-

views then show that the logical aspects almost always remain isolated to the single course

in the first year, are no longer used later, and above all, are seldom contextualized to the

physics of the devices used to realize them. Even from the pretest of the course in Voghera,

of the 11 students, only three had studied logical connectives, and they were all from the

course of study with additional computing hours. In any case, a mainly logical-formal

perspective of the TLS in its part relating to algorithms, teleportation and cryptography

needed a significant redesign for at least a couple of solid reasons. The first is about all the

aspects that research in education and physics education has pointed out concerning the

role of experiments, which we have described in chapter 5. The second was the evidence

of several students from the Voghera course who, despite having demonstrated a very high

level of understanding of the topics proposed in the final test, complained of too much

abstractness and too little attention to the experimental aspects. This was because the

teaching content had not yet been definitively reconstructed and to objective problems

related to the fact that that course was taught at a distance, e↵ectively limiting the pos-

sibility of being able to act with students in the laboratory.

Possible solutions to the abstractness of mathematical logic and its algorithmic calcula-

tion are to be sought in an interdisciplinary approach that integrates the most significant

aspects of the relationship between physics, mathematics and computer science into a

coherent path. We can achieve this from the perspective of the previous section, with par-

ticular attention to the construction of the diagrammatic model from the classical case.

And we have to do this with the main idea already expressed that the information encoded

in a bit corresponds, from a physical point of view, to a vector representing the state of
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a property, classical or quantum, of a given physical entity. Awareness of this dialectic

between disciplines and a presentation of QP based on two-state systems should naturally

lead to the question of what happens if we change the encoding of information, i.e. if we

encode information with the state of a quantum system. The construction of the concept of

the quantum state and its main properties within the theory becomes fundamental at this

point. We know how many and what problems this element has. In fact the very concept

of quantum state gives rise to learning di�culties in the context of photon polarization,

where students show a reluctance to think about the polarization states of a photon as a

two-state system ([5]) or interpret the state vector as the mathematical representation of a

physical quantity ([176]). In the context of spin-half particles, instead, the main challenge

is discriminating between entities of the lab space and of the state space, with students

mixing-up features of both spaces ([5]). In order to promote a deeper understanding of

the information encoding procedure, there is a need to help students overcome di�culties

with the concept of state and state space. Students must therefore be supported to encode

information in di↵erent physical properties, examining how they are linked to the vectors

of the abstract two-dimensional Hilbert space according to the property at hand, with the

aim to build a global knowledge structure on the relation between physical properties and

state space in the encoding procedure [19].

The analyses made on the integrated perspective also remain the same for the applica-

tions such as quantum algorithms, teleportation and cryptography on which the literature

concerning the conceptual understanding of students in curricular paths is almost totally

absent. Applications can thus become a confirmation and test of the constructed model.

Such a confirmation makes it clear what advantages such a conceptual change can bring

from both a formal logical and experimental perspective.

7.2.3 Analysis from the teachers perspective

In our discussion, defining teachers’ perspectives for an educational reconstruction of con-

tent is also useful. In Italy, mathematics and physics teachers can have a degree in math-

ematics or physics. In both cases, however, it is infrequent for them to know about the

topics of the second quantum revolution. In this case, therefore, we refer specifically to

the data collected in the first course of professional development.

pre-test most of the teachers teach both mathematics and physics; the knowledge re-

quired for students graduating from their institution on computer science is basic or

less; almost all of them follow a quasi-historical reconstruction of quantum physics
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education regarding textbooks; none of the teachers involved had even su�cient

knowledge of quantum computation and quantum information;

post-test the topics proposed were highly appreciated; they found it di�cult to propose

them in the classroom; they found a multidisciplinary pathway hardly feasible; in

general they found the circuit approach very useful to show the dialectic between

the disciplines involved;

interviews teachers either do not deal with logic at all or only address the topic of propo-

sitional logic; the link between logic and thermodynamics also caused di�culties for

teachers; preference on the part of teachers for an approach with polarisation (be-

cause many do not know spin, and because it is a topic that is at least classically

dealt with); they consider formalism suitable for students, but some pose the prob-

lem of an adequate physical interpretation; all recognise the high cultural value of

the proposal, but emphasise the di�culty of implementing it in the curriculum in

practice.

To conclude, the teachers found many interested stimuli; but equally critical seems to be

the position regarding topics that are basically not addressed in the curriculum, and the

risk that it remains too theoretical and di�cult to interpret on a physical level.

From the even partial data reported, it seems evident that there is a need to build a

polarisation-based TLS that can o↵er a concrete integrated and disciplinary perspective

that is able to express not only the logic of quantum physics (expressed in algorithms or

communication protocols), but also how it can be concretely implemented at least in ideal

experimental setups, obviously based on optical devices.

7.2.4 Reconstructing content for secondary school

We have identified the most significant conceptual changes inherent in quantum compu-

tation and information theory and incorporated them into the Tab. 7.1 In light of these,

we have researched several topics that we consider particularly illustrative that can be

introduced at the high school level. Furthermore, we have analyzed the challenges that

such a reconstruction requires from the perspective of the existing literature and data from

our own experiences. We now show how these considerations and their mutual relation-

ship guided our transformation of the science content structure on the physical theory of

computation and quantum information into a content structure for education following

the MER framework. This reformulation of content for education is thus at the heart
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of the student learning environment (and a large part of the second course for teacher

professional development).

We, therefore, aim to build a synthesis between content and design requirements to achieve

a successful educational reconstruction. To do this, in accordance with [236], we propose

a reconstruction that takes into account both content and design characteristics. We,

therefore, include in the table Tab. 7.2 the learning goals supplemented by some design

hypotheses9:

Table 7.2: Learning goals in relation to content

Content Learning goals

Introduction to QP Introducing quantum physical quantity, mea-

surement, state, vector, superposition, interfer-

ence; develop the framework of the ‘relations be-

tween properties’, i.e., the rules that determine

the acquisition, the loss and the retention of def-

inite values of observables in the measurement

process

Computational approach to prob-

lems: classical computation

Interpreting a problem and its solution from a

logic-computational point of view. Linking log-

ical to physical aspects (software to hardware).

From bit to qubit (1): one qubit

computation

Introducing and developing quantum computa-

tion from the new perspectives characteristic of

quantum systems: quantum state, superposition

and phase. Using Dirac’s vector formalism and

its geometric interpretation for new single-qubit

computation.

From wave model to Single-photon

model for computation (1): encode

information.

Describing the transition from the known wave

model of polarization via Jones vectors and use

it to build the polarization qubit.

(Continued on the next page)

9As already mentioned, we have replaced the expression dual-rail with spatial mode.
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(Continued from the previous page)

Single-photon model for computa-

tion (2): preparation, transforma-

tion and measurement to encode,

process and decode information.

Optical circuit representation and

ideal experimental setup.

Building the single-photon model of

polarization-encoded computation.

Dual-rail model: preparation, trans-

formation and measurement to en-

code, process and decode informa-

tion. Optical circuit representation

and ideal experimental setup.

Building the single-photon model based on the

dual-rail in an interferometer.

From bit to qubit (2): two qubit

computation.

Introducing and developing quantum computa-

tion from the new perspectives characteristic of

quantum systems: quantum state, superposi-

tion, phase and entanglement. Using the Dirac

vector formalism for new two-qubit computa-

tion. Di↵erentiating separable states from en-

tangled states.

Two-qubit computation: complete

model. Logic and optical circuits.

Correctly solve logic circuits and, transformed

into optical circuits, propose correct ideal ex-

perimental setups.

Deutsch Algorithm. Using the quantum computational model to

solve a particular problem. Using the model to

understand quantum advantage by recognising

which quantum properties determine it.

Grover Algorithm. Using the quantum computational model to

solve a particular problem. Using the model to

understand quantum advantage by recognising

which quantum properties determine it.

Teleportation Protocol. Using the quantum computational model to

solve a particular problem. Using the model to

understand quantum advantage by recognising

which quantum properties determine it.

Table 7.2: Learning goals in relation to content



Chapter 7. Quantum technologies for students: design, implementations and results 171

The learning goals are intended to specify step by step better the general aim that we

have set out and seen emerge from the national indications. The design hypotheses serve

to guide the teaching and learning of the theory of quantum information physics:

DH1 Students can master mathematical formalism if supported by multiple representa-

tions (algebraic, geometric, diagrammatic).

DH2 Constantly explaining the relationship between classical and quantum elements

helps to exceed the classical approach and grasp the quantum characteristics proper.

DH3 Students, if properly guided through specially designed materials, can construct the

computational model using optical devices (half wave plates, phase shifters, beam

splitters, polarising beam splitters).

DH4 The presentation of algorithms and protocols focused on a concrete problem to solve,

engaging students and inviting even less competent students to comprehension.

DH5 References to a concrete problem in the algorithms and protocols enable the advan-

tages of quantum computation to be grasped.

DH6 The diagrammatic model can appears to the students in its entirety.

7.2.5 Instruments and Methods

We refer to what has already been said in 5.6.

7.3 Learning path outline

In this section we will describe in deep the sequence of learning with respect to table 7.2.

We will do this reasonably schematically to allow the reader to focus on the significant

aspects following the design logic. Further, necessary comments will be added from time

to time for the clarifications we think necessary. References to the theoretical and method-

ological framework will also be indicated but not overemphasised, as further analysis is

deemed unnecessary, having already been carried out in Chapter 5. However, we will

always try to clarify which aspects of the framework are present.
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7.3.1 Introduction to QP

It is not the task of this thesis to describe a pathway that is already present in the literature

([143], [19]). We only briefly mention the main elements and bibliographical references10.

To introduce quantum mechanics, we adopted and revised a teaching/learning sequence

presented in Pospiech et al., section 4 [143]. The basic features of the quantum description

and its mathematical representation in terms of ket vectors emerge in a modelling activity

starting with an exploration of the interaction of macroscopic light beams with polarizing

filters and calcite crystals followed by the discussion of related quantitative experiments

and laws on a purely empirical basis. After examining evidence on the detection and

polarization of single light quanta, the development of a photon model of the physical sit-

uation takes place within an idealized environment for thought experiments and computer

simulations including sources of photons on demand in a known polarization mode, active

filters, non-absorbing birefringent crystals, and ideal detectors. Students are led to re-

vise basic terms of classical physics such as physical quantity, measurement, state, vector,

superposition, interference (Fig. 7.6), for developing an understanding of their quantum

counterparts [19].

Figure 7.6: Interference (only ket vectors): the probability that a photon prepared in
the polarization state |✓i passes the filter with axis at �, thus changing its state to |�i
to be collected by the detector, is equal to the probability that the photon reaches the
detector after passing through the crystals with only the 0� path open (a|0�i · |�i)2 plus
the probability that it reaches the detector after passing through the crystals with only
the 90� path open (b|90�i · |�i)2 plus an interference term: 2a(|0�i · |�i)b(|90�i · |�i), with
a, b 2 R.

7.3.2 The computational approach to problems: classical computation

Consider the main features of this first part of TLS:

10For further consideration, we have already discussed this briefly in 6.3.3
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Content Introduction to classical logic as a method to allow a computer to solve a prob-

lem.

Learning Goals Interpreting a problem and its solution from a logic-computational point

of view. Beginning to link this logical approach to physical aspects of computation

in the same circuit representation (software - hardware). Understanding the role of

the database. Understanding the role of status in encoding information.

Changes Change of perspective. From the theory of computation as mathematical theory

to the physical theory of computation.

Strategies We first adopt a strategy to leave the ingenuous relationship with the physical

world; having done so, we adopt another to return to the real world in a more precise

and rigorous manner:

1. strategy to progressively shift attention from an object to one of its properties

and finally to the state that encodes the information related to that property,

also in the classical case;

2. strategy to return from an apparently abstract concept of state (bit) to the

preparation of the physical system in that state related to one of its properties.

Instruments We do not use any particular instrument in this first meeting.

Methods Inquiry-Based learning. Structured Inquiry.

Description In the first part of the lesson (Engagement), the teacher places a previously

prepared coin on the desk and asks the students to define a procedure to determine

whether the coin is genuine (two di↵erent images on the two sides) or counterfeit.

The teacher supports the discussion by understanding that the procedure should be

rough as follows: I observe the first side and note the image; I turn the coin over and

note the image; if they are di↵erent, the coin is genuine; otherwise, it is counterfeit.

After doing so, the teacher introduces a similar problem, but one that shifts the

focus from the coin object to a database containing information about coins. Below

there is the text of the Coins problem we constructed:

A mint has a machine that produces a unique series of coins, with one

silver (A-side) and one gold (B-side) face and engraves on each face an

image that can be a head (H) or cross (C). The machine has a software

that, on output stores of each coin:

1. a number (e.g. coin 130 is expressed by the string (1000001) (if we

start with all zeros for the number 1!!!));
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2. a pair whose first element expresses the image printed on side A, the

second on side B.

If a coin is correctly made, the machine stores a pair of the type (H,C)

or (C,H) at the output; if, on the other hand, there has been some man-

ufacturing defect, a pair of the type (C,C) or (H,H). The mint needs to

eliminate counterfeit (defective) coins and asks a programmer to create an

algorithm that interrogates the available database to recognise the counter-

feit coins that can then be eliminated.

Presented and explained the problem, the teacher supports the students through

the mathematization of the problem and its solution (Exploration). He continuously

underlines the links to what has been done before to verify the coin’s authenticity

on the desk. In particular, he emphasises the role of the database and the function

that carries the information. In the end, he presents a first classical diagrammatic

form of solution as in Fig. 7.7:

Figure 7.7: The circuit representation of the coins problem classical solution

After resuming the logic of solving the problem (Explanation), the teacher asks a

question for the second part of the lesson, the part that will allow us to return, now

more aware, to the physics of the systems required to implement the calculation:

What does it mean to solve a problem for a computing machine?.

The teacher stimulates the students’ answers and leads them to identify three key

actions for a problem to be solved in machine language (second Exploration):

1. coding the information related to the problem;
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2. process the information;

3. answer (yes - no) to the problem (Decoding).

The instructor uses the remainder of the lesson to support students in moving from

an approach to computation from a mathematical, if not strictly Boolean (software),

point of view to one closely linked to physically realisable implementations. At this

point, it is crucial to show that a bit is not a particular classical two-valued state,

but a class. This semantic shift is achieved by supporting the translation of actions

and elements from software to hardware as shown in the following table11:

Actions Elements

Software Coding, Processing, Decoding Bit, States of bit, Gates,

Readout

Hardware Preparation, Transformation ,

Measurement

Systems, States, Physical De-

vices, Measurement Instru-

ments

These considerations therefore become an opportunity to introduce a set of universal

Boolean logic gates, beyond CNOT, including their circuit representation. What was

previously developed is then revised by interpreting the circuits from both from a

logical and a physical point of view (explanation) Fig. 7.8.

In the end (Elaboration and Evaluation), the teacher asks the students to read the

logic circuit relating to the solution of the coin problem and interpret the compu-

tational approach to coins problem step by step from, both a logical and a physical

point of view (concerning a possible calculating machine among those seen during

the lesson: traditional computer, water computer, abacus). At the end of this first

part, it should be natural to use a language that semantically takes into account

both the logical and physical aspects: preparing, processing and measuring bits.

Conclusions The first part of our TLS is designed to be presented at the level of ed-

ucation structured inquiry and, although still at an introductory level, it takes us

through the significant stages of Inquiry. The students come to a new awareness:

when talking about calculation, information, or communication, it will always be

necessary to reflect on the state of the physical system on which the related infor-

mation is encoded. However, it will be necessary to abstract from the particular

11We also wanted to pose the aspect of measurement from a classical point of view, even though, in the
deterministic case, at least, it is redundant.
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Figure 7.8: The circuit representation of classical computation: this circuit can be
interpreted both from a logical and physical point of view.

physical system used, as it is at best only an expression of a particular implementa-

tion and not conceptually significant. The tool that embodies this need is the circuit

representation. At this stage, it is an intuitive representation of the formal logical

and physical processes in a computer at the software and hardware level.

Observation 7.1. By designing this TLS directly for the last year of high school, we are

forced to introduce circuit representation and interpret it directly. But the work that some

teachers are planning in their first classes, which we have discussed in Chapter 6 , allows

us to realise how important a longitudinal perspective on these topics is for us.

7.3.3 From bit to qubit. From classical to quantum computation

Consider the main features of this second and fifth part of TLS12:

Content From classical bit to quantum bit : qubit, one-qubit and two-qubit quantum

gates and quantum measurement for computation. Compound states: separable

states and entangled states. Entangling gates. Circuit representations.

12We prefer to put them together for the sake of homogeneity, but in the TLS, two-qubit computation
is introduced only after the single-qubit model has been fully developed.
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Learning Goals Introducing and developing quantum physics from the new perspectives

of quantum bit: quantum state, superposition, phase, entanglement. Using Dirac’s

vector formalism and its geometric interpretation for a new one- and two-qubit com-

putation. Distinguishing separable from entangled states. Interpreting the results

obtained, using circuits, from the point of view of the encoding, processing and

decoding information.

Changes Change of perspective, change of physics, and change of the role of probability.

The problem of compound quantum systems.

Strategies Make the classical construction of the physical theory of computation and, by

conceptual and representational parallelism, build the quantum one:

1. the diagrammatic representation is the same (wires and boxes and double in-

terpretation): states, logic gates and measurements will generally have to be

redefined;

2. just as the bit (state of bit) is constructed from a classical state (an equivalent

class) relative to classical physical quantities (electric potential state, water

device state), the state of qubit is defined from the polarisation state;

3. new operators that process qubits are introduced on the basis of physical ne-

cessity;

4. decoding is a↵ected by the quantum measurement problem.

Instruments We do not use any particular instrument in this first meeting.

Methods Inquiry-Based learning. Structured Inquiry. Exercises in small groups.

Description First, the teacher draws on the link between computation and classical

physics presented in the first part of TLS. He then asks a question that is the

key passage 13:

Classical computation is based on the principles of classical physics. What happens

if we change physics? What happens if the systems whose states we use to encode

information have non-classical behaviour?

The discussion and the answer to the question (If physics changes, computation

changes!) allow us to introduce a fundamental aspect: the diagrammatic represen-

tation introduced does not change. We will again use the formalism of quantum

physics (see Fig. 7.9). The answer given by the students allows the teacher to

13He may also refer to Feynman’s 1981 lecture to introduce culturally significant elements
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Figure 7.9: The circuit representation of quantum computation: this circuit can be
interpreted both from a logical and physical point of view.

introduce the qubits of the computational basis linked to the corresponding polari-

sation states. However, we can speak of a generic qubit thanks to the superposition

principle. The quantum logic gates are introduced from the physical characteristics

seen in the introductory course: quantum superposition justifies the introduction of

the Hadamard gate H; phase that of the Z. Using only some logic gates (X,H,Z)

we can introduce superpositions states to real values and to give a clear geometric

meaning to the qubits and logic gates: the former are seen as orthogonal vectors in

a plane, the latter as axial symmetries (see Fig. 7.10).

Figure 7.10: Summary table: one-qubit logic gates in geometric, algebraic and circuit
description
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Students, to the teacher’s questions, spontaneously identify symmetry as a trans-

formation associated with the proposed quantum operators. They also identify the

specific symmetries for each logic gate. At the end of this first part of the one-qubit

computation, the teacher assigned some logic circuits to be solved in small groups

and then corrected them. As we will specify more in the section on exercises, it is

very important that the teacher during group work and corrections constantly em-

phasises the reference to the language used. In particular, distinguishing between the

logical algebraic approach, the geometric approach and the physical approach. As

we will specify more in the exercise section, the teacher must constantly emphazise

the reference to the language used during group work and corrections. In particular,

distinguishing the logical algebraic approach from the geometric one, never forget

the connection to the physics of the physical systems involved (polarization) (see

Fig. 7.11).

Figure 7.11: An example of single qubit logical circuit

The fifth part of TLS introduces multi-qubit computation.

The teacher anticipates that precisely in the multi-qubit composition lies the heart of

the opportunities o↵ered by quantum computation. This opportunity is due to the

profound di↵erence between the nature of classical and quantum compound systems.

Students know from the classical case that a multi-bit computation (a computation

that takes parallel composition into account) is based on the Cartesian product

because n-tuples of bits are used. The link now established with physical systems

allows the following question to be asked:

What kind of states do we get from compound systems

related to multiple photons?

The state construction is taken by formal extension from single-qubit computation

as in Fig. 7.12
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Figure 7.12: Introduction to two-qubit computation

The extension is not perfectly natural, especially since students cannot justify the

orthonormality of vectors from a mathematical point of view. However, the clas-

sification of observables made in the introductory course allows us to explain the

orthogonality of base qubits from a physical point of view: mutually exclusive states.

The unitary norm condition creates no problems, given the established probabilistic

interpretation. Once this generalisation has been achieved, the teacher must clearly

express the fact that from this point on, what is realised from a informational point

of view does not depend on the particular experimental realisation (i.e. it does not

depend on the particular physical system under consideration: all two-state quantum

systems will behave in this way).

However, it is also clear from Fig. 7.12. that the state of two 0�-polarised photons

is introduced. The teacher follows a very strict line of reasoning here, which can be

made explicit by the following question:

What means polarisation state of two photons polarised at 0�?

We can help students give two possible answers:

1. Alice and Bob are in two separate laboratories and separately prepare two

photons with polarisation states |0�i;

2. Alice and Bob are in the same laboratory and carry out a preparation emitting

two photons whose compound system is a polarisation state |0�0�i.

Reasoning classically, there is no di↵erence between the two answers. Thanks to an

integrated model between physics and algebra of state spaces, it is possible to verify

the validity of the classical approach in a simple and clear way (see Fig. 7.13). With

a simple circuit example, the characteristic aspect of separable states is emphasised:
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Figure 7.13: Introduction to compound systems: entangled states

the evolution of the compound system is the composition of the evolutions of the

individual systems. This is also expressed formally with an algebraic identity that

is its direct translation (see Fig. 7.14)

Figure 7.14: Evolution of separable states

Conclusions At the end of the construction of quantum computation, turning the discus-

sion on its head, the teacher will have to explain that the informational approach is

a way of describing physical processes in which one does not dwell on the particular

process relating to the specific system. The qubit is an abstract state that, from an

informational point of view, carries information about a probability distribution of

the outcomes of class of experiments. But never mind the particular experiment per-

formed or the specific physical system. Thanks to the reference to photon physics,

the students were able to support the construction of the qubit concept and study

its characteristics. Now, they are ready to abandon their particular implementation

of them. However, in doing so, the educational risk lies in the purely syntactic learn-

ing of quantum computation. For this reason, we devise a concrete implementation

of qubits and their logic gates and measurement in two properties of the photon:

polarisation state and spatial state.
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7.3.4 “Ideal ”physical devices for quantum computation

From a formal point of view, the construction of the algebraic language is su�cient to

describe quantum algorithms and protocols and to understand their significant aspects.

However, we have introduced the circuit representation with its double interpretation to

have another reference to support the students’ understanding: the experimental element.

How important this is for conceptual change has already been indicated in Chapter 5.

Furthermore, following the description of the concept of model and modelling given in the

same chapter, the third and fourth parts of the TLS are aimed precisely at the final con-

struction of the quantum computational model. The worksheets can be found in Appendix

B.

Content Polarization qubit. Dual-rail qubit. Quantum gate and circuit with one polar-

ization qubit and one dual-rail qubit.

Learning goals Describe the transition from the known wave model of polarisation via

Jones vectors and use it to construct the polarisation qubit. Construct the single-

photon model of computation. Construct the single-photon model based on the

paths in an interferometer. Correctly interpret logic circuits and, transforming them

into optical circuits, propose correct ideal experimental setups.

Strategies Using the students’ prior knowledge of plane electromagnetic waves to present

phase shifting devices, which are the fundamental tools needed to build polarization-

based logic gates by means of already familiar materials (i.e., birefringent crystals).

Furthermore, we construct a reasonable simplification that allows us to introduce the

notation with Jones vectors. The formal analogy with a generic polarisation state,

and hence qubits, is discussed in detail. We focus in particular on the relation be-

tween physical properties and state vectors, and of the features of the corresponding

spaces. We then use the optical devices described in the previous parts to have stu-

dents construct an ideal physical model of computation. Similarly for the dual-rail

computation.

Instruments Summary table and worksheets.

Methods Inquiry-Based learning: guided inquiry. Modelling-Based teaching.

Description At the beginnig, the goal must be set: to construct a computation based on

two properties of the photon. These two properties will be the polarisation property

and the spatial property (electric field modes).
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Polarization: In the unit on quantum physics, light polarization has been examined

in purely empirical terms, without any reference to the classical wave interpretation

of the phenomenon. Now, in order to present phase shifting devices, which are

the fundamental tools needed to build polarization-based logic gates by means of

already familiar materials (i.e., birefringent crystals), we introduce the electromag-

netic description of light in a simple form. For this purpose, we limit ourselves to

plane electromagnetic waves, assuming to work only with waves of the same chosen

frequency for the rest of the course. Since the direction of the linear polarization

of light is identified by the electric field vector, we focus only on its mathematical

expression. After recalling the concepts of global phase, of phase di↵erence and its

role in wave interference, we present students with linear isotropic dielectrics, i.e.

for our purpose, phase shifting materials that do not change the direction of the po-

larization. In the course, we only work with real numbers. Therefore, the refractive

index and the thickness of the material is chosen to obtain a phase shift of ⇡ (see

Fig. 7.15).

Figure 7.15: Representation of the phase shift, the mirror and the phase-free mirror

The following step is expressing the electric field vector in a form analogous to

a polarization ket vector. Since we are interested only in the direction of linear

polarization and the relative phase of the orthogonal components of the wave, we use

a representation in terms of Jones vectors i.e. we omit the spatiotemporal elements

from the cosine, normalize the amplitude of the vector and set the global phase to

zero. For a field oscillating in an arbitrary direction, the result is a normalized Jones

vector (see Fig. 7.16)
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Figure 7.16: From the classical description of polarisation to the state vector of a
photon.

Since we restrict us to linear polarization, the coe�cients of the Jones vector are

real; if the value of only one coe�cient is negative, this corresponds to a phase dif-

ference of ⇡ between the two components. The mathematical expression is identical

to that of a generic quantum state of linear polarization of a photon. However, their

physical interpretation is hardly the same. Although we previously in the course

(in the introductory unit on quantum mechanics,) stressed the di↵erences between

classical vectors representing physical quantities and quantum state vectors (as well

as between their spaces), we seize the occasion o↵ered by the mathematical identity

between a classical Jones vector and the quantum vector of polarization for rein-

forcing this process of revision (see Tab. 7.3). The plane formed by all possible

directions of the linear polarization of a classical light wave can be seen as a plane in

ordinary physical space. The coe�cients of the Jones vector describe the amplitudes

of the components of a normalized physical quantity - the electric field vector - and

their phase di↵erence, while their square is proportional to the fraction of energy

associated to each component. The state plane of the linear polarization of a pho-

ton is instead an abstract vector space. The squares of the coe�cients represent

the probabilities that, in a polarization measurement, the polarization of the photon

is measured in one of two perpendicular directions. We also specify that only in

the case of linear polarization the angles between two polarization vectors and the

corresponding state vectors are the same (students will directly experience a di↵er-

ent situation in the next unit on dual-rail encoding). In order to enhance student

engagement in this task, the discussion has been converted into interpretive activities.
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Table 7.3: Comparison of classical-ondulatory and quantum description

Polarisation of the clas-
sical plane electromag-
netic wave E = ai+ bj

Photon polarization
| i = a|0�i+ b|90�i

Physical interpretation
and unit of measure of
the vector in the left-
hand side of the equa-
tion
Space to which vector
belongs
Interpretation of coe�-
cients and their square
Physical interpretation
of the superposition
sign

After introducing polarisation coding, two aspects remain to be addressed for the

model to be complete: evolution and measurement. However, at this point, all

the conceptual instruments required to build logic gates acting on one polarization-

encoded qubit are available. We accompany the students’ construction with a work-

sheet and some oral questions to be asked by the teacher. The role of modelling-based

teaching and inquiry-based learning express their full value here. The ideal physical

implementation of the gates is quite simple. If we adopt the convention of encoding

the horizontal state of polarization as |0i and the vertical one as |1i, we only need

to insert a phase shifter in the extraordinary ray of the two-crystal system already

shown in Fig. 7.17 to obtain a Z logic gate

Figure 7.17: Ideal implementation of Z gate on a polarization qubit

Actually, this setup can be used for implementing an infinite number of gates. As a

matter of fact, by rotating a birefringent crystal around its ordinary axis, we obtain

a beam separation on di↵erent couples of perpendicular directions of polarization. It

follows that every gate which can be described as an axial symmetry of the state plane

is realizable in this way by rotating the system at an appropriate angle relative to the
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photon propagation line. In particular, if ✓ = 45�, we obtain a X gate; if ✓ = 22, 5�, a

Hadamard gate. We now describe the pathway designed for the students in relation

to the specially constructed worksheet:

1. The first question requires to determine the action of a phase shifter of ⇡ on

the state vector of photons prepared in |1i and |0i�|1ip
2

. An explanation of the

answer is also requested. The student should retrace the conceptual path from

the classical polarisation to the qubit in the following way: a phase change of

⇡ of the classical wave is equivalent to a�xing a minus sign to the field vector.

Given the formal identity between the relative amplitudes of the electric field

and the coe�cients of the photon’s polarization state vector, inserting a phase

shifter ⇡ in the path of the photon is equivalent to a�xing a minus sign to its

state vector.

2. At this point, there is a question in which the students, in small groups, try to

construct the Z port with the optical devices introduced (Fig. 7.18)

Figure 7.18: Worksheet question about the implementation of the Z-gate

3. The question is solved and commented on. The construction of the other logic

gates follows from the correspondence between the geometric interpretation

of the logic gates and the role of the ordinary propagation path. Students

are asked which of the two paths corresponds to the axis of symmetry of the

Z-gate. Identified the ordinary path as the physical correspondent of the sym-

metry axis, students are asked to design the X and H gates. Now, the teacher

present students with half-wave plates, a more realistic device producing the

same transformation which can also be interpreted as an axial symmetry around

the slow axis. The circuit representation given is of a box indicating the angle
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of rotation of half-wave plate. The red color identifies the fact that they are

devices that act on the state of polarization.

4. Polarization measurements are performed by using an additional tool, that is

already available to students since the introductory unit on quantum mechanics:

the calcite crystal. However, in order to reconcile its visualization with that of

a beam-splitter - which represents the basic device used for implementing logic

gates with a dual-rail-encoded qubit - we slightly modify the setup by adding a

mirror coated with a ⇡ phase shifting material. In this way, the two components

of a classical light beam (or the entangled components of the photon state in

the spatial and polarization modes) propagate in perpendicular directions. The

setup of Fig. 7.19 plays a role analogous to that of a polarizing beam-splitter.

Figure 7.19: Idealized realization of a polarizing beam-splitter and its circuit represen-
tation

The computation realised in polarisation is finally expressed through its complete

optical circuit representation (Fig. 7.20)

Figure 7.20: Idealized implementation of the circuit with one polarization encoded
qubit on an optical bench. We denote as “optical circuit” the visual representation of the
experimental design of a circuit diagram by encoding properties of one photon.
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Dual-rail: The basic device that is needed to prepare a qubit and act as logic gate in

a dual-rail encoding is a non-polarizing beam-splitter, that we present in an idealized

simple form. We describe a cube beam splitter as made of two triangular glass prisms

glued together, either applying a dielectric and a adhesive semi-reflective coating on

one of their diagonal faces before gluing. One wishes:

1. incident rays from the adhesive side and incident rays on the dielectric side are

reflected exclusively by it;

2. ensure alignment between incident and transmitted rays and phase relationship

between emitting rays: same phase for the same path unless there are phase

shifts in reflection.

Respectively, the beam-splitter is made so that:

1. internal anti-reflection coatings are added to the interface to prevent unwanted

reflections;

2. adhesive, dielectric and coatings of marginal thickness in relation to the � of

the wave and/or materials with n, n1, n2 indices of close values.

The corresponding iconography used with the students follows (Fig. 7.21):

Figure 7.21: Cubic beam-splitter with dielectric and adhesive.

The encoding of the paths may be performed so that those two corresponding to a

reflection without phase shift are labeled as 0 and the other two as 1. The beam-

splitter can be rotated to invert the position of the two prisms and, as a result,

the encoding of the paths. This flexibility will allow us to implement various logic

circuits with generalized Mach-Zehnder setups without resorting to waveguides, only

by choosing the orientation of the beam- splitters. In the color code, elements,
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devices and vectors pertaining to the dual-rail encoding will be colored in blue (see

Fig. 7.22).

Figure 7.22: Beam-splitters: phase shift and encoding of the paths depending on the
orientation of the prisms.

As a first step, students are asked to identify which side of the interface the glue is

on and which side the dielectric is on and report on the corresponding ray whether

or not reflection occurs (see Fig. 7.23).

Figure 7.23: First question on dual-rail coding

The analysis of the action of a beam-splitter on a classical light beam starts with a

50:50 device (half of the light is transmitted, half reflected). Since we are interested

only in the fraction of amplitude of the two outgoing beams and in their relative

phases, we simplify the expression of the field vector similarly to what is done in the

phasor representation of electromagnetic waves [237]: in such simplified representa-

tion we keep the amplitude of the field, normalized with respect to the amplitude
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of the input beam, and the relative phase between the two outgoing beams (which

in our case can only be 0 or ⇡). These quantities could be represented by the two

components of a column vector whose rows correspond to the two di↵erent paths.

Since in a 50:50 beam-splitter energy is equally divided between the two paths, we

obtain the results shown in Fig. 7.24, on the left. Of course, after the beam-splitter

the relative phase of the two components will, in general, depend also on their di↵er-

ence in path length, but since in the dual-rail case we are always considering beams

whose optical paths have the same physical length, we ignore such consideration with

students at this point.

Figure 7.24: The action of a 50:50 beam-splitter: mathematical analogy between the
classical and the quantum description.

As in the case of polarization, the transition to a quantum description involves a

mathematical analogy and strong di↵erences in the physical interpretation, which

are explained to students, by leveraging the knowledge of quantum superposition.

Again, students are asked to complete a special table (Tab. 7.4). The teacher

provides a shared correction comparing the di↵erent student answers. The two-

component phasor-like description of the field vector still represents a physical quan-

tity propagating on the optical bench of the lab, and the coe�cients of the two paths

are the relative amplitudes of the outgoing beams. The dual-rail state of a photon,

instead, is an abstract vector whose components describe the probability that, plac-

ing a photon counter on each path, the photon is collected on the path labeled as

0 or 1. One advantage however is that while in the case of polarization students

may confuse polarization and state vectors, especially since the angle formed by

two polarization vectors is equal to the one formed by the corresponding states, for

the encoding of which-path information in the dual-rail, the choice of representing

the classical amplitudes associated to di↵erent paths as orthogonal components of

a vector is only due to mathematical convenience (it is a synthetic representation

of two di↵erent vectors originating at di↵erent points in space), thus facilitating the

di↵erentiation between vectors representing physical quantities and state vectors. In
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Table 7.4: Comparison of classical-ondulatory and quantum description of dual rail

Description of the
relative amplitude and
phase of the field on the
two paths (a, b)

Description of the spa-
tial state of the pho-
ton on the two paths
| i = a|0i+ b|1i

Interpretation of coe�-
cients and their square
Physical interpretation
of the superposition
sign
Is the angle between the
components fixed? If
yes, specify its physical
interpretation, if no, ex-
plain why
Does it make sense to
talk about superposi-
tion components? If
yes, specify its meaning,
if no, explain why

the quantum case, the choice of |0i and |1i as orthogonal basis states becomes in-

stead necessary, and can be motivated by the fact that they correspond to mutually

exclusive outcomes of measurement.

In the dual-rail context, the construction of the qubit is not as immediate as in the

case of polarization. As a matter of fact, identifying physical properties that can

correspond to the states |0i and |1i is a necessary but not su�cient condition to

encode information in a qubit. We must be capable of preparing arbitrary super-

positions of the basis states on which devices implementing logic gates can act. In

our unit on polarization-encoded qubits, the problem has been solved in advance,

as we assume to use sources emitting photons on demand in an arbitrary state of

polarization. Here, this trick is not available. The key to the solution is preparing

quantum states by means of a custom-designed beam-splitter, with transmission and

reflection coe�cients chosen in accordance with the goals of the designer. In this

case, the sign of the superposition can be established in two ways: either by choosing

the incoming path (0 or 1), or by placing a phase shifter in one outgoing path. This

part is constructed with a series of oral questions that students answer during the

lesson.

The construction of a model is only complete if it is such that it can be used in other
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contexts. Thus if the polarization is a suitable context for promoting an understand-

ing of fundamental features of the quantum picture of the world and an intuitive

situation for the initial construction of a qubit, only the addition of a di↵erent con-

text makes it possible for students to build a sophisticated understanding of the

demands involved in a quantum encoding procedure and of the variety of relations

that can be established between physical properties and state space in this process.

On the one hand, therefore, we are defining the last degree of construction of the

photon computation model. On the other, we are contributing to the formation of

a more general model, which is the circuit model.

As the polarization, after introducing dual-rail coding, two aspects remain to be

addressed for the model to be complete: evolution and measurement.

The Hadamard gate is immediately introduced by the points raised about the 50-50

beam-splitter. The Z-gate is introduced by the students in the form of a design

question as seen in Fig. 7.25.

Figure 7.25: An example of question in worksheets: Z-gate in dual-rail

The X gate is conceptually more sophisticated: it corresponds to swapping the labels

of the two paths from a certain point forward (Fig. 7.26). Since putting a label on

a path is a conventional choice, its change is not associated per sé to any physical

process. This apparent paradox is resolved by observing that the addition of a X

gate a↵ects the configuration of the devices placed beyond the gate. You may need

to change the orientation of a beam-splitter or - as we will see in Grover’s algorithm

- the realization of a CX gate. Again, we have constructed a special question (Fig.
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Figure 7.26: Idealized design of Z and X gates on a dual-rail-encoded qubit. In order to
avoid a confusion between this representation and a two-qubit circuit - where the parallel
lines stand for di↵erent registers -, in the first example we added the beam-splitter and
two outgoing beams (dashed lines).

Figure 7.27: The use of X-gate in the circuits.

7.27): A circuit formed by two H gates and a measurement device corresponds to

the basic setup of a Mach-Zehnder interferometer (Fig. 7.28): a source (omitted in

the figure), two 50:50 beam-splitters, two mirrors with no phase shift and photon

counters. As for polarization, students are asked to represent the implementation

of single-qubit circuits in a dual-rail encoding. In accordance with current lines of

research on quantum information processing based on linear optics [238], in the rest

of the course we present students with generalized versions of the Mach-Zehnder

interferometer as the setup for implementing algorithms and protocols.
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Figure 7.28: An example of logic circuit and the corresponding optical circuit using
dual-rail encoding.

Conclusion The students’ construction of a physical model of computation ends with

these observations. Furthermore, this ends three of the four phases of the modelling

we analyzed in Chapter 5. The circuit model now appears in almost all its strength

as an epistemic artefact. The students built their model through a qualitative de-

scription where there was already dual theoretical and experimental value. Then

they focused on the formal logical aspect and finally constructed an implementation

based on ideal optical devices. At this point, we identified two characteristics that

would e↵ectively complete the building of the model: the first was the possibility of

working on exercises that would allow the model to be defined in all its extension.

These exercises focused the student’s attention on transitioning from one interpreta-

tion of circuits to another: maps rather than objects. Above all, it was missing the

concrete realization of an experimental setup that could also introduce those aspects

of body language that are so important in learning and building a model. The first

enables a meta-reflection on what the students have done so far. The second, with

the work on algorithms and protocols, will allow a final evaluation of the model.

Exercises Consider as an example one of the proposed exercises14 (Fig. 7.29) and give

some indications on the aspects that need to be followed when conducting it in class

with students. We present the worksheet designed for the students and teachers

with comments. The teacher formulates the aim of the exercise: to use the model to

make explicit the links between the computational and physical aspects. The first

three items serve to take up the formal description: be it algebraic or geometric; at

single separate qubits or considering the compound system (Fig. 7.30). One must

14For the complete materials, in Italian, see https://drive.google.com/drive/u/0/folders/1Lg3_

YmxUkTX2HvbI3PLx0995Dz6CZogo

https://drive.google.com/drive/u/0/folders/1Lg3_YmxUkTX2HvbI3PLx0995Dz6CZogo
https://drive.google.com/drive/u/0/folders/1Lg3_YmxUkTX2HvbI3PLx0995Dz6CZogo
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Figure 7.29: Worksheet designed as an introduction to solving recapitulation exercises
on the circuit model: first item

Figure 7.30: Worksheet designed as an introduction to solving recapitulation exercises
on the circuit model: second and third items
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be very careful in the third item to use the language of compound systems to distin-

guish it with the first. Moreover, it would be important first to use an exclusively

mathematical language and then extend the semantics beyond algebra or geometry:

prepare, transform and measure a qubit. The semantic extension allows the bridge

to be built to the second part, which relates to optical circuits.

The second part is dedicated to optical circuits in which four possible implementa-

tions are analyzed that take into account the possible two encodings (first dual-rail

register and second in polarization or vice versa) and the order of the logic gates15.

Below are two images showing the di↵erence between the setups in the case of dif-

ferent order and coding choices. The items are the same, proposed in the work sheet

in all cases analyzed (Fig. 7.31 and Fig. 7.32).

Figure 7.31: Worksheet designed as an introduction to solving recapitulation exercises
on the circuit model: optical circuits

15This is an extremely interesting aspect that the teacher must point out: from a logical-formal point
of view, the order does not matter; when we interpret the circuit as a possible experimental setup, even if
ideal, the order of implementation can change and even a lot the setup.
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Figure 7.32: Worksheet designed as an introduction to solving recapitulation exercises
on the circuit model: optical circuits with di↵erent encoding.

The guided exercise greatly simplifies the task of students who have the opportunity,

guided by the teacher, to capture all the most important aspects of the two codes

before. Furthermore, developing algebraic calculus parallel to the appearance of op-

tical devices is fundamental for the work that students will have to carry out in the

algorithms and protocol of teleportation: connecting the algebra of Hilbert spaces,

information processing and physical characteristics underlying that special transfor-

mation. The exercises proposed are the occasion for a final comparison between the

implementation of separable logic gates and non-separable gates (see Fig. 7.33 and

Fig. 7.34)
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Figure 7.33: Oral questions on devices in the case of polarization separable gates in an
interferometer

Figure 7.34: Oral questions on devices in the case of polarization non-separable gates
in an interferometer. The correct answer is present in the circuit on the right.

7.3.5 Quantum algorithms

Students should at this point be able to approach the study of quantum algorithms from

a formal, conceptual point of view and in relation to an ideal physical implementation.

We propose a reconstruction that focuses on a concrete problem to be solved. Then an

elementarization of information processing and finally a physical implementation with ideal

devices (and more!). As before, we guide the students with specially designed worksheets

(see Appendix B). Given the complexity of the topic, we have constructed the worksheet

for the students following a detailed design sheet that we comment on.

Content Quantum algorithms: Deutsch and Grover algorithm.

Learning goals Using the quantum computational model to solve a particular problem.

Use the model to understand quantum advantage by recognizing which own quantum

properties determine it. Completing the cycle of circuit model building.
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Strategies First, the coin problem already described in the introduction to classical com-

putation is reintroduced. Students construct their understanding of the algorithm

by means of an elementarization scheme described by three processes: enabling of

parallelism, transfer of the whole information to the target and enabling of interfer-

ence.

Instruments Highly structured worksheet

Methods Inquiry-Based learning: guided inquiry.

Description For the work sheet in its entirety, please refer to the Appendix B. Following

are the main aspects of the design sheet with reference to the proposed questions

and the development of the algorithm.

Items A and B: quantum parallelism The concept of quantum parallelism is

introduced with questions A1 and A2 to one qubit and then extending the

considerations to two or more qubits. Furthermore, it is shown to the students

that the linearity of quantum operators allows simultaneous process over all

states of the computational basis (B1).

Learning goals Deducing the possibility of implementing f in parallel on all

base states due to the superposition principle and linearity of operators.

Knowing how to interpret domain coding (side A and side B) in the case

of coins

Prerequisites Understanding classical (bits) and quantum (qubits) coding,

classical logic gates (Boolean functions) and quantum (linear operators);

superposition principle; coin problem: classical coding; algorithm circuit

visualisation.

Activities and Questions The teacher again introduces the coin problem by

repeating the classical solution. He then introduces the Deutsch algorithm

circuit, anticipating that the properties of quantum computation will allow

the problem to be solved more e�ciently.

First, quantum parallelism is introduced from a formal point of view. Then

students are asked to interpret it in relation to the coin problem by focus-

ing on the encoding of a piece of information (in this case the coin side).

To finish this first step, question B1 introduces a thought that it is only

the co-presence of the superposition principle and the linearity of operators

that makes it possible to benefit fully from coding on quantum states. The
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generalisation to the case of multiple qubits is needed both for the exten-

sion of the algorithm to the Deutsch-Jozsa algorithm and for the encoding

necessary for the Grover algorithm.

Item C: oracle and compound systems To encode the output information ex-

clusively on the target register, associating each side of the coin (silver and

gold) with the corresponding image (heads or tails) we use the sign: + heads, -

tails. To do this we introduce an auxiliary register (qubit ancilla) and define the

oracle. We support students in understanding the coding on signs and states

through a special case. It is then up to the teacher to derive the general case.

Learning goals Recognise the operator U as CNOT in the particular case

examined; recognise the property of compound quantum systems (or, in

terms of formal representation, the tensor product) that allows the transfer

of information from the ancilla to the target: the possibility of moving a co-

e�cient (�1) from one component state to another; interpreting codomain

coding (Head and Tails) on the first register in the case of the coin; pre-

dicting information from a hypothetical measurement.

Prerequisites Classical and quantum compound systems (Cartesian product

and tensor product); CNOT truth table (classical and quantum); f Boolean

function of the coin problem; algorithm circuit visualisation.

Activities and Questions The teacher explains the need to introduce an

auxiliary qubit and describes the behaviour of the oracle. The students

are then asked to determine the behaviour of the oracle in a particular case

(C1). It then becomes clear that the whole information encoded in the

Boolean function is transferred from the ancilla to the target in the form

of a positive or negative sign attached to each basis vector. Questions C2

and C3 are used to recognize the properties of compound systems exploited

here. Question C4 relates the considerations made to the concrete problem

posed and thus to the information process. The teacher then shows the

students that the oracle’s output state includes all the coin information.

However, we are not yet able to use it (C5). The impossibility of recon-

structing the state through measurement and the role of probability are

emphasised.

Items D and E: computational interference Before the third part, the teacher

must perform the calculations necessary to express the generic output state of

the oracle in a compact form: 1p
2
[(�1)f(0)|0i + (�1)f(1)|1i]. This shows that
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the sign depends on the action of f . The last part describes the third process

peculiar to the quantum algorithms presented: enabling of interference.

Learning goals Understanding the role of interference in the general case.

Prerequisites Quantum computation

Activities and Questions After generalising the output state of the oracle,

students must compile a table (D1) expressing the state after the last

Hadamard gate and the corresponding classical information bit. In this

way they have all the information to interpret the outcome of the mea-

surement according to the coin problem (D2). The last question (E1),

asks students to reflect on the advantage of the quantum solution to the

problem. The final part (F1 and F2) asks the students to interpret the

ideal experimental setup in order to realise the algorithm according to the

logical development: the circuit language is finally a complete model able

to express the deep links between all languages introduced in the TLS:

logical-algebraic, informational and physical. The quantum advantage is

then described in the case of the generalised Deutsch-Jozsa algorithm.

Conclusions The developed worksheet is designed to follow the hypothetical learning

trajectory in all its parts. Students study Deutsch’s algorithm through an elemen-

tarization that divides information processing into three fundamental processes: en-

abling of parallelism, transfer of the complete information to the target and enabling

of interference. Understanding this first algorithm should allow them to approach

Grover’s algorithm with the proper awareness. In addition, the construction of the

circuit model is almost final: what is still missing is an actual experimental reali-

sation and comparison with what has been done from the perspective of logic and

optical circuits. Below is a picture of a purpose-built experimental setup for the

Summer School organised in September 2022 (Fig. 7.35) and the relationship with

the logic and optical circuit16 (Fig. 7.36).

16For further details see paper 3
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Figure 7.35: Experimental setup for the implementation of Deutsch’s algorithm

Figure 7.36: Circuit model: the dialectic between theory and experiment is identified by
the coloured boxes. Students can finally gain an integrated perspective on the quantum
computing problem.

7.3.5.1 Grover’s algorithm

The lesson on Grover’s algorithm was designed in a very similar way to that for Deutsch’s

algorithm. We only propose the problem to the students here, and refer to Appendix B
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for the worksheet. We will only make a few additional remarks.

Bank robbery Inspired by “Q is for Quantum” of T. Rudolph17, we propose to the

students a bank robbery based on the idea of protecting the caveau with a quantum

computer:

“A famous bank has just equipped itself with a new control system that uses

quantum computers to check the authenticity of gold bars in the national

reserve. The new control system is very expensive, but the board of direc-

tors justified the purchase by saying that this way it is possible to carry out

checks on the vaults at a speed and accuracy that cannot be compared to

other systems.

Moreover, a surveillance microchip has been inserted into some bars to de-

ter possible thieves. For additional security, the insertion of the national

reserve bars into the caveau is fully computerised thanks to state-of-the-

art quantum computers that insert the bars by exploiting the randomness

of random number generators (non-first numbers bars without microchip

coding 0, first numbers with microchip coding 1). Anyone stealing a mi-

crochipped bars would be traceable within a short time.

What appeared to be an unbreakable system soon turns out to have a serious

flaw: the gang boss is in fact an expert in quantum computing and knows

how to exploit the bank’s quantum computers to gain access (remotely) in

a short time to the information needed to avoid stealing the microchipped

bars and being traced.”

Classically, we have to implement f on average 2n/2 times to determine whether

or not a bar has the microchip. With the students, at first, we deal with the case

where there are four bars and the third is the one with the microchip (this is only

for clarity in the calculations).

The line of development is similar to that of Deutch’s algorithm as can be understood

from the worksheet in the Appendix B.

Remark 7.2. As we can see, we gave more weight to the implementation part with optical

devices. This was for two reasons: on the one hand, to allow the students to think more

about the design of an ideal experimental setup; on the other hand, it was possible to

17
https://www.qisforquantum.org

https://www.qisforquantum.org
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gather further data on the students’ actual ability to design optical setups implement

specific sequences of logic gates.

7.3.6 Quantum teleportation

Students should at this point be able to approach the study of quantum teleportation

protocol from a formal, conceptual point of view and in relation to an ideal physical im-

plementation. As before, we propose an elementarization to grasp the role of the entangled

qubits shared by Alice and Bob. The designed worksheet can be found in Appendix B.

Content Teleportation protocol.

Learning goals Using the quantum computational model to solve a particular problem.

Use the model to understand quantum advantage by recognizing which own quantum

properties determine it. Completing the cycle of circuit model building.

Strategies We begin the explanation with a preparatory activity in case Alice does not

share entangled photons. By comparing the protocol with this first part, we support

the students in reflecting on the role of the entangled photon pair shared by Alice

and Bob. Given the di�culty of the calculation, we support the entire explanation

with the help of optical devices.

Instruments Highly structured worksheet

Methods Inquiry-Based learning: guided inquiry

Description First, it is possible to introduce the problem from a narrative point of view,

e.g. with a spy-story similar to what they do in [22]. Then by means of the worksheet

he develops the teleportation protocol (see Appendix B).

Item A: Preparatory activity: Charlie and Alice The first questions introduce

the problem where Alice’s qubit is not entangled with Bob’s qubit. Students

have the opportunity to carry out calculations, make measurements and imple-

ment an experimental setup in the simplest case of separate states. The role of

the specific questions becomes clear with the development of the next part.

Learning goals Solve the circuit with respect to a generic state and recognise

whether the final state is separable or entangled. Construct the respective

optical circuit.
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Prerequisites Separable and entangled states. Preparation of general state in

dual-rail (generic beam-splitter device).

Activities and Questions The teacher presents the preparatory circuit and

poses the first question A1. The students develop the calculation and the

teacher corrects all the steps. Once this is done, the students answer ques-

tions A2 and A3 in order to identify the state as separable and obtain the

bits of classical information obtained by measuring. Then, they design the

corresponding optical circuit.

Item B: Alice and Bob share an entangled state The teacher takes up the pro-

tocol circuit and makes it clear that Alice and Bob share two entangled qubits.

The questions allow students to understand the role of this entangled state in

relation to the previous case.

Learning goals Understand what is the e↵ect of Alice and Bob sharing two

entangled qubits.

Prerequisites Compound systems: separable and entangled states.

Activities and Questions Questions B1 and B2 allow through formal paral-

lelism with the previous part to show that this time the qubit states shared

between Alice and Charlie are entangled. This consideration opens up ques-

tion B2’ which shows the weirder side of the protocol as well described by

J.Preskill in [29]

“Initially, Bob’s qubit is completely unentangled with the unknown

qubit C , but Alice’s Bell measurement establishes a correlation be-

tween A and C”

Items C and D: measurement and error correction The last part of the pro-

tocol shows how by knowing the outcome of the measurements Bob can recon-

struct the initial state owned by Charlie. This part is left almost entirely for

the students to carry out and only corrected at the end by the teacher.

Learning goals Understanding that what is actually being teleported is in-

formation and not the system on whose state that information is encoded.

Understand that the laws of Einsteinian relativity are not violated.

Prerequisites Role of measurement in quantum computation and state col-

lapse.

Activities and Questions The teacher, at his or her discretion, proposes the

calculation required to obtain the state before measurement on the first

two registers. In each case the state is given to the students and the tables
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in C1 and D1 allow the students to reconstruct Charlie’s initial state. A

question D2 is then posed that is of deep importance from a conceptual

and historical perspective. In fact, there have been quite a few testimonies

to an interpretation of the protocol as synonymous with superluminal com-

munication.

Finally, the ideal setup, which encodes Charlie and Bob’s qubit on two dif-

ferent properties of two di↵erent systems, is aimed at making it easier to

answer the E2 question and understand how it is that information is not

teleported.

Conclusions The developed worksheet is designed to follow the hypothetical learning

trajectory in all its parts. Two main aspects characterize this work: elementarization

and the interpretive support provided by optical circuits. Thanks to the former in

fact, we try to highlight the role of the entangled pair of qubits shared by Alice and

Bob in giving rise to the further entanglement between Alice’s qubit and Charlie’s

qubit. The second should clarify without doubt that it is information and not a

physical system that is being teleported.
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7.4 The educational experiments: context, data and results

7.4.1 Data analysis

We carried out a qualitative analysis of the worksheets proposed during the TLS. We

divided the answers into correct, deviant (incorrect) and blank or insignificant. A detailed

analysis of the explanations follows this. The analysis is carried out for the dual purpose

of assessing the impact on student learning and evaluating any changes needed to improve

the results. What we report here are the possible lines of thought of the students and the

most significant elements that emerged from studying the answers given by the students.

We use the answers of the summer school students only to support particular lines of

interpretation on deviations from the hypothetical learning trajectory. In Appendix A we

have included the worksheets (except for S1 and S418) labelled with S.

S1 (CSG): Comparison of classical-ondulatory and quantum description

This sheet (see 7.3) was assigned at home and only 9 students did the homework.

The first interesting aspect that arises seems to be the overlap between the mathe-

matical plane and the physical plane of the laboratory. No one refers to the plane

of the physical space of the laboratory but speaks generically of the real plane, “the

real Cartesian plane”. It is possible, but not certain, that the word real refers to

the fact that it is not abstract as in the quantum case19. Only one student answers

correctly from the quantum point of view. For three others, there is no di↵erence

between the two cases.

There are many incomplete answers regarding the physical interpretation of the

coe�cients and their squares. In the classical case, the role of the coe�cients is

identified, but there is seldom any reference to the energy in relation to the squares.

In the quantum case, conversely, squares are correctly interpreted as probabilities,

but there is never any reference to probability amplitudes.

Regarding the physical interpretation of the superposition sign, three students iden-

tified the change of direction of the electric field. Three spoke generically of phase

change without specifying whether global or local phase. It is unclear whether this

last answer is due to the clarity of the question. No one refers to polarization, but

only to electric field considerations. Finally, one student answers by remaining lin-

guistically in the strictly mathematical sphere and does not physically interpret the

18S1 and S4 are, respectively, the tables 7.3 and 7.4 and are not included in the appendix.
19The words real and Cartesian form an oxymoron, the words real and Cartesian form an oxymoron,

unless one means real because it is formed by the straight lines of real numbers
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considerations made. Concerning the change of sign of the superposition in the state

vector, four students answered as fallows: ”with the change of sign the result does

not change but the process to reach the result changes” although it is not explained

what is meant by a process, it seems that students grasp the point that the state is

di↵erent but upon measurement provides the same probability distribution.

S1 (Fi): Comparison of classical-ondulatory and quantum description

This sheet (see 7.3) was assigned at home and 15 students did the homework.

About the Physical interpretation and unit of measure of the vector in the left-hand

side of the equation, all students answered correctly in the classical case. In contrast,

only a few responded entirely in the quantum case. Several students referred to the

state vector without making explicit the abstract nature and consequent absence of

units. Note that some students confused the word dimension with units, attributing

no dimension to the state vector.

About the plane to which vector belongs, almost all students referred to the physical

space of the laboratory; some used a sentence such as “maths laboratory space”.Two

students spoke of mathematical space from a quantum perspective, probably refer-

ring to abstractness. Half referred to Hilbert space or state space without further

specification about the units of measure.

About the interpretation of coe�cients and their square, half answered the first part

of the question correctly, but only one student referred to energy in the classical case.

About the quantum case, most identified the role of probabilities, but none distin-

guished between probability amplitude and probability. Usually, only the role of the

squares of the coe�cients is discussed. In 13 out of 15 answers the word probability

appeared. Three students emphasized the formal analogy between a2+ b2 = E2 and

a2 + b2 = 1

Regarding the last item, half spoke about the direction on the electric field. But

most of all, referred to the fact that in the act of measurement, the sign is not mea-

surable: “the sign in quantum is not observable”; “It does not influence because it is

not observable”.

S1 (SS) We observe that even in the case of the self-selected Summer School students, few

specify that state vectors are abstract and, therefore, without units. Furthermore,

in the third item, no one referred to the probability amplitudes of the observables

but only to the role of the coe�cient squares. Finally, the answers given in the last

item show the misunderstanding between the global and local phase20 (as already

20Despite a change made between the first two versions and this one.
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seen in the two curricular experiments):

“The minus sign indicates a ⇡ shift by changing the sign to both a and b”

and more

“The sign indicates the direction of displacement from the equilibrium po-

sition. If it changes, crests and troughs exchange”

S1: Observations and first proposals for new design There are three elements we

would like to focus on. First, it is evident that students struggle to discuss the phys-

ical interpretation aspect. This leads students, for example, to recognize Hilbert’s

space of states but not to feel the need to emphasise its abstractness with respect

to laboratory space. Secondly, it is very di�cult to distinguish between coe�cients

and their squares in the quantum case. Finally, there is often confusion between the

global and local phase. It would probably be helpful to divide the questions into two

to force students to think about each part of the question. In addition, it should

be better emphasised that a formal analogy should be discussed in depth and criti-

cally. Leaving the worksheets to be done at home in the case of the two curricular

experiments was a necessity due to the time available. It would be appropriate to

carry out the worksheet at school under the teacher’s guide. We also have to consider

that some students who had answered similar questions correctly in the introductory

course made mistakes in this form. This could be due to the short time spent on it

or the limited time students spend reviewing the topics introduced in the classroom.

S2 (CSG): Polarization gates At this meeting, 22 students were present. We consider

each item on the worksheet.

A1 14 students answered the entire question correctly. There are a variety of expla-

nations. We show in the following table some examples of these explanations

in which algebraic, geometric and CP words appear in each answer in order to

examine the field of explanations (Tab. 7.5):
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Table 7.5: Example of A1 item explanations (CSG)

CP Algebra Geometry Explanation

x x x “The maxima become the minima of the

wave: it is equivalent to changing signs in

the state vectors”. Adds geometric expla-

nation on the unit circle and the algebraic

results.

x x x “Minus sign of the field vector: makes a

half turn”. Adds the algebraic results.

x x “A minus sign is added”. Adds the geo-

metric and algebraic results

x “If you shift by ⇡ the result is always the

opposite.” Adds the algebraic results.

x x

“A phase shifter of ⇡ puts a minus sign at

the value.”

Table 7.5: Example of A1 item explanations (CSG)

The full analysis shows that: 10 integrated a geometric explanation with a

geometric one; 2 explicitly referred to the strictly physical context of the wave

or electromagnetic field. 6 students described the transformation in the plane

of states as a rotation of ⇡.

A2 10 students correctly represented the device. 6 try to give an explicit expla-

nation. We show in the following table some examples of representations and

explanations (Tab. 7.6):
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Table 7.6: Example of A2 item representations and explanations (CSG)

Devices representation Explanations

“The first crystal splits the

photons into states |0�i and

|90�i the phase shifter trans-

forms state |1i into �|1i; the
inverse crystal recombines the

two states”

“Considering |0i + |1i and

|0i � |1i respectively with

|0�i + |90�i and |0�i � |90�i
and since a phase shifter ap-

plies a negative sign, it should

su�ce to apply a phase shifter

on the 90� polarized channel

the phase shifter beyond the

calcite crystal and use another

crystal”

“The first crystal divides the

photon in |0i and |1i. The

phase shifter acts on |1i and
makes it �|1i. The second

crystal brings the two states

together.”

Table 7.6: Example of A2 item representations and explanations (CSG)

It should be noted that half of those who explain the device indicated the split

of the photon or its state.

A3 6 students answered substantially correct. The other answers are very vague

with no apparent logical line of development. Most, however, seem to realise

that the same devices are needed, without giving further explanation. Three of

them thought that the solution to the problem in the role of the phase shifter

should change from the previous case.
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S2 (Fi): Polarization gates At this meeting, 18 students were present. We consider

each item on the worksheet.

A1 16 students answered the entire question correctly. The full analysis shows that:

4 integrated a algebraic explanation with a geometric one; 5 only algebraic

and 5 only geometric. 1 explicitly referred to the classical physical context of

electromagnetic field. 6 students described the transformation in the plane of

states as a rotation of ⇡.

We present a table (Tab. 7.7) similar to the previous one.

Table 7.7: Example of A1 item explanations (CSG)

CP Algebra Geometry Explanation

x x

“The phase shifter leads to a change of

sign of the initial state vector.”

x

“Phase shift of ⇡”

x x

“The phase shifter ⇡ inverts sign to the

field vector”
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Table 7.7: Example of A1 item explanations (CSG)

A2 17 students correctly represented the device. 10 tried to give an explicit expla-

nation. We show in the following table some examples of representations and

explanations (Tab. 7.8):

Table 7.8: Example of A2 item representations and explanations (Fi)

Devices representation Explanations

No explanation

“With the crystal, the photon

is divided at 0� and 90�; at

this point by 90�, the phase

shift is made and results a|0i�
b|1i.”

Table 7.8: Example of A2 item representations and explanations (Fi)

Very few students represented classical trajectories. 6 students described the

e↵ect of the first crystal with a separation (division) either from a classical point

of view (beam) or even of the single photon. The second crystal then has the

task of bringing the beams together. This problematic aspect, however, allowed

students, at least those who explain, to grasp well the link between ordinary

and extraordinary channels, polarization and encoding with qubits.

A3 Although 10 students answered and justified question A2, only 4 are able to

design logic gates X and H. Three students used the rotated crystals, but do not

inserted the phase shifter. Two other students used only the first rotated crystal.

Two students inserted a filter between the two crystals with polarization angle

45� and 22, 5�.
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S2 (SS): Polarization gates The self-selected students all answered question A1 cor-

rectly. Interestingly, again, many identified the phase shift as a rotation of ⇡ (some

even justified it with supplementary arcs). But it is above all question A2 that points

to the issue of the separation of the beams. The analysis of these students’ answers

allows us to identify some possible lines of interpretation. We classify them in the

following table (Tab. 7.9) whose columns are organized by keyword:

Table 7.9: Classification of A2 item (SS).

Ray Flow Light beam Photon

“The first crystal

divides the ray

in two; we then

place a phase

shifter only for

the 90� ray to

phase it and bring

it to the end with

a negative sign as

required.”

“The first crys-

tal separates the

flows: on flow |1i
we put a phase

shifter so that |1i
becomes �|1i.”

“With calcite

(first) we have

a 0�-polarized

beam that re-

mains unchanged

and a 90�-

polarized beam

(extraordinary)

modified by the

phase shifter;

with a last calcite

the beams come

together.”

“The crystal tem-

porarily separat-

ing the photons

at 0� and 90�

makes it possible

to phase only the

photons at 90� by

⇡.

Table 7.9: Classification of A2 item (SS).

It is thus clear that there are two kind of problems. The first concerns an essentially

classical approach: there is no di↵erence in the description of light as a electromag-

netic field (despite the construction work and continuous comparison between the

classical and quantum cases). The second concerns the confirmation of the interpre-

tation of the state a|0i+ b|1i not as a superposition but as a mixture.

Here is one of the answers considered correct

“I use two calcite crystals, direct and reverse, and at the 90�-channel I

would place a phase shifter to change only b|1i and leaving a|0i the same.”

Only half of the students manage to design X and H gates. However, for the most

part it is clear that a rotation of the two crystals is necessary.
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S2: Observations and first proposals for new design Consider focusing on some el-

ements that emerged from the analysis of Sheet S2, some of which are also evident

from the images and answers we highlighted above.

The answers to item A1, and also in many cases A2, show that the possibility of de-

scribing the system’s evolution using multiple representations can be advantageous.

The algebraic and geometric approach included in the representations of physical

devices shows how it is possible to combine visual representation with more formal

aspects. However, it is evident that most students have a deeply classical vision, and

this manifests itself when asked for an explanation. It is possible that students are

building the model and that it is still too constrained by the language of classical

physics. This can possibly be evaluated as the TLS continues. Somewhat di↵erent

is the case with the interpretation of the state as mixing and not superposition. In

this case, one actually focuses on the single photon and not on light as a wave, but

once again, the classical interpretation regarding the trajectory seems evident.

A more detailed discussion is needed on the fact that few students, far fewer even

in the case of SS, can construct the logic gates X and H once they recognize the

correspondence between the ordinary propagation path and the axis of symmetry in

the plane of states. The answer to this apparent inconsistency could be derived from

the many explicit indications that the phase shifter realises a rotation in question

A1. The whole e↵ect of the crystal and phase-shifting system on the extraordinary

path is to realize symmetry in the space of states. This aspect probably needs to be

emphasised by a further question, also oral, in which students are asked to explain

the link between the geometric interpretation of the Z-gate and the set of devices

used for its realisation. The possibility of confusing the role of the two geometric

transformations introduced could be the cause of the failure to answer item A3 cor-

rectly. A simple algebraic demonstration might also be helpful.

If, as in the case of the Summer School, access to university laboratories was possible,

the process of modelling polarization computation could be concluded realizing of

special worksheets to translate ideal optical circuits on a real optical bench. In this

way, it could become evident how optical circuits represent an operational description

of what is to be done during an experiment.

Learning goals With reference to the supposed learning goals, we can say that the po-

larization coding only partially achieved them. The greatest di�culties have been

in the interpretation of the qubit in polarization rather than in its use. Further-

more, the construction of the logic gates as an extension of the Z gate was not as

straightforward as we had hypothesized.
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S3 (CSG): Dual-rail encoding At this meeting, 21 students were present. We consider

each item on the worksheet21.

B1 16 students answered the entire question correctly; 3, partially; 2 blanks.

B2.1 14 students answered the entire question correctly of which 10 indicate the

refractive index; 1 blank; two incomplete.

B2.2 15 students answeres that does not depend on the sense in which the light

beam travels. Below are some of the explanations:

“The value does not change depending on the sense of travel but only

on the orientation of N and n.”

And more

“No, because they have the same phase shift since they reflect on the

same surface”

The 11 students who give an explanation, give it substantially correctly.

S3 (Fi): Dual-rail encoding At this meeting, 18 students were present. We consider

each item on the worksheet22.

B1 16 students answered the entire question correctly; 2, partially.

B2.1 15 students answered the entire question correctly and indicate the refractive

index; two partially correct.

B2.2 14 students answered that does not depend on the sense in which the light

beam travels. Below are some of the explanations:

“No because it always a↵ects the same crystal.”

And more

“No. It depends on the prism and not the sense.”

The 6 students who give an explanation, give it substantially correctly.
21In this teaching experiment, we modelled the beam splitters in a di↵erent way than previously de-

scribed. In order to explain the presence or the lack of a phase shift between the incident and the reflected
beam, we present to students an even more stylized physical situation in which we ignore the presence
of the interposed film and consider only two prisms, one of which has a higher refractive index (N) and
the other a lower one (n). At the diagonal interface of such an object, partial transmission and partial
reflection will still happen, although control of their respective weight would not be practicable. In this
setting, Fresnel laws prescribe that the reflection of beams that travel from the prism with lower refractive
index to the other involves a phase shift of ⇡. While the reflection of beams travelling in the opposite
direction does not produce a phase shift. The encoding of the paths may be performed so that those two
corresponding to a reflection without phase shift are labeled as 0 and the other two as 1.

22The same considerations made for CSG apply to this educational experiment
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S3 (SS): Dual-rail encoding In this case we have used the worksheet presented in

7.3.4.

B1 10 students answered the entire question correctly; 2, partially.

B2.1 10 students answered the entire question correctly of which 4 indicate the

refractive index.

B2.2 9 students answered that does not depend on the sense in which the light

beam travels. Below is one of the incorrect explanations:

“It only depends on whether they are reflected/transmitted by the ad-

hesive/dielectric”

And one of the correct

“The ray will be reflected by the same material with the same index of

refraction.”

S3: Observations and first proposals for new design This part concerning dual-rail

coding did not create any substantial problems. The impact of the beam-splitters

more in-depth representation of the process remains to be evaluated: having created

some di�culties in the SS, it could give more in curricular experiments.

If, as in the case of the Summer School, access to university laboratories was possible,

the process of modelling dual-rail computation could be concluded realizing of spe-

cial worksheets to translate ideal optical circuits on a real optical bench. In this way,

it could become evident how optical circuits represent an operational description of

what is to be done during an experiment.

S4 (CSG): Comparison of classical-ondulatory and quantum description for

dual rail. This sheet (see Tab. 7.4) was assigned at home and 20 students did

the homework. First, we observe a significant increase in homework, demonstrating

a gradual improvement in attention to the proposed educational path.We then dis-

cuss the specific questions. About the classical interpretation in the first question

(Interpretation of coe�cients and their square), we observe that only two students

answered correctly and completely even though they identified the reflection and

transmission coe�cients with a and b and not with their squares. Many more stu-

dents recognize (7 students) the role of the square of coe�cients in the quantum

case. Regarding the sign of the superposition, as in S1, many students spoke of

global phase. Precisely because of this, we modified the question. In the CSG ex-

periment, the question was probably less clear: “Physical interpretation of the sign
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of the superposition (coe�cients a and b of opposite sign23)”. 7 students, moreover,

spoke of probability in the classical case and of these five also in the quantum case,

without explaining how the minus sign should be interpreted from a probabilistic

point of view. The third question asked whether the angle between the components

was fixed. The answers in the classical case are of extreme interest: 7 students,

indeed, stated that the components are fixed since the directions have an angle of

90�. 8 students answered correctly in the quantum case.

Regarding the possibility of speaking of superposition in the two cases classical and

quantum, only four students answered correctly in the classical case, but without

adequate justification. Approximately half answered correctly in the quantum case.

S4 (Fi): Comparison of classical-ondulatory and quantum description for

dual rail. This sheet (see Tab. 7.4) was assigned at home and 17 students did the

homework. About the classical interpretation in the first question (Interpretation

of coe�cients and their square), we observe that 9 students answered correctly, at

least partially, in the classical case; only 6 in the quantum case. However, it should

be noted that most students refer to the probability of finding a photon on a path,

but without further considerations. Regarding the sign of the superposition, as in

CSG, many students talked about global phase, but in the case of this class there

is a significant aspect: 5 students felt the need to add that sign-related aspects are

not measurable. Even when it is evident from the answer that it is the local phase.

About the possibility of speaking of superposition in the two cases classical and

quantum, we prefer not to analyse the answers as many identical answers can be

seen.

S4 (SS): Comparison of classical-ondulatory and quantum description for

dual rail. This sheet (see Tab. 7.4) was assigned at home and all students did the

homework. We would like to emphasize only one aspect: regarding the sign in the

superposition, despite the change in the questions, half of the students seem to have

referred to the global phase.

Observations and first proposal for new design In general, similar considerations

apply to those made in comment on the worksheet S1. However, one begins to

see an increase in the ability to motivate answers. About the answers, we would like

to emphasize two more aspects: manifestly, the di↵erence in the vector on the paths

whose components identify fields acting at di↵erent points in space, while the one

23We will see in the next analysis that despite this change there were some students who misunderstood
the question.
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in polarization has components relating to the same field, is complicated to grasp;

this tells us how di�cult it is to understand the concept of superposition (classi-

cal or quantum) in its totality. But above all, we want to emphasize how classic

notions that students should know adequately are instead full of errors, misunder-

standings and overlaps. In a TLS based on the conceptual change that refers to prior

knowledge, this aspect is fundamental.

S5(CSG): Dual-rail gates At this meeting, 17 students were present. We consider each

item on the worksheet.

A1 11 students answered question correctly. Almost no one feels the need to explain

their choices. Tree students insert tools already used in the case of polarisation,

such as plates or birefringent crystals. Some also set the phase shifter to |0i.

A2 8 students answered question correctly. A student indicates that paths should

be renamed without indicating any symbols. 3 question blank.

A3 8 students answered two sub-questions correctly. 5 students leave blank at least

one of the two sub-questions. 2 students realize the ideal optical device correctly,

but but they do not answer the first question. Below is a table (Tab. 7.10) with

some examples and some considerations (Larger pictures can be found in the

Appendix D).

Table 7.10: Examples of A3 item representations and explanations (CSG).

Answers Observations

The logic circuit is carried out correctly.

The student uses logic gates in polarisa-

tion even where encoding was required to

be in dual-rail. At the end it inserts a

birefringent crystal to bring the two paths

together. Draw the beam-splitter 50-50

correctly.

(Continued on the next page)
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(Continued from the previous page)

The logic circuit is carried out correctly.

The representation of the beam-splitter

seems to be correct. Uses dual-rail logic

gates correctly. Does not develop step-

by-step algebraic calculations in relation

to experimental devices. At the end it in-

serts a birefringent crystal to bring the two

paths together. He is the only one to give

an explanation: “The BS splits the path

of the photon into two; I exchange the two

paths to achieve the e↵ect of an X and in-

sert a phase shifter to achieve the e↵ect of

a Z gate”.

Answers both sub-questions correctly.

Table 7.10: Examples of A3 item representations and explanations (CSG).

A4 5 question blank. The others, correct.

S5(Fi): Dual-rail gates At this meeting, 18 students were present. We consider each

item on the worksheet.

A1 All students answered question correctly.

A2 All students answered question correctly.

A3 In the case (see Fig. 7.37) of the educational experiment in Florence, this third

question was slightly di↵erent to prepare them for the teleportation protocol:

15 students answered two sub-questions basically correctly. Of these, 6 do not
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Figure 7.37: Item A3 of educational experiment in Florence

make the preparatory beam splitter explicit. All students answer correctly at

the first sub-section. Below is a table (Tab. 7.11) with some examples and

some considerations (Larger pictures can be found in the Appendix D).

Table 7.11: Examples of A3 item representations and explanations (Fi).

Answers Observations

One of the typical errors in this design

was to consider the iconography of a 50-50

beam-splitter. Furthermore, positioned as

in the image it should have created a phase

shift of ⇡ at |1i.

The output of the not-gate is not made

explicit in the algebraic part. The mirror

representation is not accurate. Otherwise

all correct.

Table 7.11: Examples of A3 item representations and explanations (Fi).
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A4 5 question blank. The others, correct.

S5(SS): Dual-rail gates We analyze each item on the worksheet.

A1 All but one of the students answered question correctly. Many include explicit

explanations in contrast to the two previous situations. For example Fig. 7.38,

7.39 and 7.40:

Figure 7.38: “Z gate sends 0 in 0 so no instrument is needed”.

Figure 7.39: “Z gate sends 1 to -1 so I have to operate a phase shift of ⇡ which allows
me to change the sign”.

Figure 7.40: “In the case shown, I must place a phase shifter in the channel 1/
p
2 so

that I can change the sign of the coe�cient”.

A2 All students answered question correctly.

A3 8 students answered two sub-questions basically correctly. 11 only at the first.

Here, too, there are a few cases in which designs feature elements of polar-

ization coding. Below is a table (Tab. 7.12) with some examples and some

considerations (Larger pictures can be found in the Appendix D).
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Table 7.12: Examples of A3 item representations and explanations (SS).

Answers Observations

The overlapping of linguistic registers can

be seen in this picture: in the same im-

age there is a logical representation of a

Hadamard gate, a device in polarization

and one in dual-rail.

In this case, a precise explanation is given:

“|1i is reflected from the dielectric side

and arrives at a mirror that is �|1i/
p
2

then the X-gate changes the name of the

vector and the phase shifter changes its

sign. Similar process below. In this case,

we realise that the phase shift is attributed

to the mirror and not to the beam-splitter;

moreover, the phase shifter is erroneously

placed on both paths. Finally, there is

some confusion in the linguistic registers.

Table 7.12: Examples of A3 item representations and explanations (SS).

A4 5 question blank. The others, correct.

S5: Observations and first proposals for new design The construction of dual-rail

logic gates was also tackled with good results. The critical aspect is partly the design

of the optical circuits. This, from now on, will prove to be the most problematic

aspect of the computational model. The exercises carried out together to support

the design of optical circuits have only partly helped the students.

Learning goals With reference to the supposed learning goals, we can say that dual-rail

coding has largely achieved them.

S6(CSG): Deutsch algorithm At this meeting, 16 students were present. We analyze

each item on the worksheet. In this case, given the length and complexity of the
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worksheet on Deutsch’s algorithm, we prefer to report the various items directly

below to facilitate the reading of the data analysis. The complete worksheet can be

found in the Appendix B.

Quantum parallelism:

A1: In relation to the coin problem: which side(s) of the coin is/are encoded in

the output state of the first Hadamard? (Remember that according to the database

encoding silver face = 0; gold face = 1).

15 students answered correctly and 7 made explicit reference to the superposition.

The explanations refer either to superposition or to the role of probability. Here are

some examples:

Superposition :

“There is superposition and there is information on both”

Probability :

“They are coded with a probability of 0.5 for both”

Superposition and Probability :

“50% gold |0i, 50% silver |1i, H = superposition therefore equiproba-

ble.”

A2: Establish whether we gain an advantage over the classical case by using the H

gate. If yes, in what does it consist? If not, why?

10 students answered as we would have expected that there is an advantage in

double coding that has no classical correspondent. But as many as three students

say that this is not an advantage because you have a 50% of probability of achieving

one of the two. Consider give an example:

“In this case, no; we have to verify the properties of the coin so we have

to be sure of the measured bit.”

B1 What property of the operators ensures that the quantum advantage of being able

to act simultaneously on both qubits of the computational base can actually be ex-

ploited? Justify your answer.

We have not analysed the answers because the teacher anticipates it during the

explanation.
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Oracle and compoud systems:

C1: The operator U is a logical gate with two inputs and two outputs. Writing

the truth table (the behaviour of the operator on |00i, |01i, |10i, |11i) of the logical

gate in case f(0) = 0 ^ f(1) = 1.

Are there any logic gates of your knowledge that operate in this way? If yes, please

specify which. If no, explain why.

13 students completed the table correctly and 11 recognized the CNOT gate.

C2: The sign minus can be transferred from the ancilla to the target. What fea-

ture of quantum physical systems is exploited?

Only four students recognized the role of the tensor product. 9 referred to su-

perposition. Some spoke generically of a translation of the minus sign and mention

phase.

C324: To which state vector does the minus sign in the compound state belong?

Explain.

9 students answered correctly. 7 said that the sign belongs only to the ancilla.

C4: What image(s) on the face of the coin tell us about the status of the target

coming out of the oracle? Explain.

14 students answered correctly many of whom justified their answer with the su-

perposition.

C5: If we implemented the circuit a large number of times in the same initial con-

dition and measured the target, could we know whether the coin was genuine or

counterfeit?

7 students answered correctly and explained the role of the minus sign in the mea-

surement:
24The two questions C2 and C3 were proposed together and corrected only when the students had

answered both of them.
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“No, we could not distinguish the superposition sign.”

4 students justified the negative answer by linking it to probabilistic aspects of

equiprobability between the two classical bits obtained by measurement:

“No because doing the measurement I would still have a 50% chance.”

Interference and final conclusions:

D1: Knowing that the final state before the last Hadamard is

| i = 1p
2
((�1)f(0)|0i+ (�1)f(1)|1i)

complete the table

Figure 7.41: D1 item table

D2: By observing the table above, establish what relationship there is between the

authenticity of the coin and the outcome of the measurement. Explain.

Most students (13) correctly completed the table and identified (12) the correla-

tion between output bits and coin authenticity.

Some explanations still show di�culty in distinguishing between the state and out-

come of a measurement:

“Every time we measure ±|1i out, we find a genuine coin”

E1: How many times does the quantum operator Uf have to be implemented to de-

termine whether a coin among those in the database is genuine or counterfeit? What

is the advantage over classical computation?

12 students answered correctly. We observe that three students referred to the

advantage from a timing point of view and not from a logical point of view.



Chapter 7. Quantum technologies for students: design, implementations and results 227

There was no time to carry out the last part of the worksheet, the one on im-

plementations with optical devices. Four students did it at home and handed it in

at a later date (see Fig. 7.43 for the optical circuit.). Fig. 7.42 shows one of the

answers. The algebraic part in relation to optical devices is carried out correctly

and the student also uses colour codes appropriately. More di�culties are noted in

the description of the devices, in particular on the function of the half-wave plate at

22, 5�. The connection between the development of the logic of the algorithm and

the role of the devices is obtained only with the comparison of the logic and optical

circuit. There are no comments on the description of the coin problem given during

the lesson.

Figure 7.42: Worksheet submitted by a student: “At the beginning we find a half-wave
plate at 22, 5� which acts on polarization. Then a 50:50 beam splitter without phase shift
which acts on the path and divides it into two paths. On path 1 there is a half-wave plate
at 45� which is equivalent to an X-gate that inverts the labels. Finally a new 50:50 beam
splitter which realises the Hadamard gate on the path. Finally a photon detector.”

S6(SS): Deutsch algorithm : Two elements should be emphazised that di↵erentiate

the work on Deutsch’s algorithm done during the SS: firstly, it was possible to carry

out the board in its entirety; furthermore, three lab hours were dedicated to the

study of real devices for the implementation of logic gates and Deutsch’s algorithm

with linear optics. Consider analyze only the item on the worksheet which show

significative di↵erences from CSG or allow some misleading lines of reasoning to be

better determined.

Quantum parallelism:

A1: In relation to the coin problem: which side(s) of the coin is/are encoded in

the output state of the first Hadamard? (Remember that according to the database

encoding silver face = 0; gold face = 1).
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Again, there are some (7) students who referred to the superposition principle, oth-

ers only to probability, not allowing one to understand whether there is underlying

misunderstanding with mixed states. Here are some examples:

Probability :

“50% probability of the golden face coming out e 50% of the silver face

coming out”

Superposition and Probability :

“Both are detected with p = 50%. Superposition state.”

A2: Establish whether we gain an advantage over the classical case by using the H

gate. If yes, in what does it consist? If not, why?

An interesting aspect is that some students explained by anticipating the fact the

next question:

“Yes, because it is as if we could make calculations on two states at the

same time.”

B1 What property of the operators ensures that the quantum advantage of being able

to act simultaneously on both qubits of the computational base can actually be ex-

ploited? Justify your answer.

11 students answered correctly; some justify their response:

“The advantage is to operate on one and the other at the same time.”

Oracle and compound systems:

C2: The sign minus can be transferred from the ancilla to the target. What fea-

ture of quantum physical systems is exploited?

10 students answered correctly; 5 refer to tensor product and 4 refer to quantum

compound systems; one wrote, not entirely correctly, the algebraic steps that allow

the sign to be transferred25.

25|1i|� 1i = �|1i|1i = |� 1i|1i
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C326: To which state vector does the minus sign in the compound state belong?

Explain.

10 students answered correctly. Only one say that the sign belongs only to the

ancilla.

C5: If we implemented the circuit a large number of times in the same initial con-

dition and measured the target, could we know whether the coin was genuine or

counterfeit?

Only 4 students referred to the problem of sign. Most justify by saying that the

measurement is stochastic.

F1: Describe the optical devices used to realize the optical circuit of Deutsch’s al-

gorithm (in the case under consideration described by the figure in the table below)

in the order in which they are encountered in the circuit. Explain their function in

relation to the logical development of the algorithm.

Figure 7.43: Optical circuit of Deutsch algorithm.

F2: Enter in the grey boxes the corresponding state in Dirac notation consistent with

the action of the individual optical devices (including the device used for measure-

ment). Also express the classical information bit obtained and its probability27.

Half of the students completed question F2 completely correctly; some do not con-

sider only the sign changing after the half-wave plate �/2 at 45�. Almost all tried

to give a description of the link between logic and optical devices. They always

did this by comparing logic and optical circuits; they never referred to the coin

problem described during the lesson. Here is an example in which, apart from an

26The two questions C2 and C3 were proposed together and corrected only when the students had
answered both of them.

27See Fig. 7.42
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error on the phase shift, the approach of total reconciliation between the two circuit

representations, the logical and the optical, is evident:

“The first Hadamard acts on the polarisation which is represented (in the

optical circuit) by an �/2 at 22.5�, the axis of symmetry. We therefore

have a 50-50 beam splitter with a phase shift on the paths: the transmitted

path is shifted by ⇡ and this corresponds to the second Hadamard gate.

The oracle in the logic circuit is realised with an �/2 at 45� which acts as

a CNOT. The last beamsplitter acts on the paths and represents the last

Hadamard on the paths. We therefore have the measurement made by two

detectors.”

S6: Observation and first proposal for new design Two critical factors emerge

from the analysis of the item responses: the role of superposition in respect to the

mixture of states (a problem that has emerged previously); the nature of compound

systems, in particular the role of the minus sign in the compound states.

To be precise, answers that explicitly use the word probability in items A1 and A2

do not always make the mistake between superposition and mixture of states obvious.

However, previous worksheets have already pointed this out and it is reasonable to

assume that the same problem exists here. It would be appropriate to construct a

small task to solve with an algorithm and show what changes in the two cases. For

example, we could exploit the coin flipping game ([239]) to describe the state in the

classical case and in the quantum one. Imagine that Alice and Bob are playing as

in [239]. Imagine that Charlie has access to the moves of both. In this case the

classical state would be deterministic and the introduction of probability would only

be due to an epistemic problem. In the quantum case Charlie would describe the

state after the Hadamard used by Alice as 1p
2
(|0i+|1i) which intrinsically introduces

probability. A circuit translation exercise of the game with Charlie’s introduction

might be interesting. By playing a one hand at time (single bit or qubit), it may

become clearer to students what it means in relation to an encoding problem such as

the coin in Deutsch’s algorithm. We summarize in a table (Tab. 7.13) the description

of the state after Alice’s preparation according to Alice Bob and Charlie in the

classical case and in the quantum case:
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Table 7.13: Coin flipping game after Alice preparation.

Classical computer Quantum computer

Alice Identity: 0 Hadamard: 1p
2
(|0i+ |1i)

Bob 0 or 1 with p = 0.5 ?

Charlie 0 1p
2
(|0i+ |1i)

Table 7.13: Coin flipping game.

If we imagine that Charlie has access to information about the transformations made

by Alice and Bob, in the classical case this is equivalent to having a deterministic

state, in the quantum case it remains a superposition. Here, then, Charlie shows the

di↵erence between epistemic (Bob state) and intrinsic probability.

The problem of the tensor product algebra, on the other hand, is more tricky. In

e↵ect, we have imposed the properties of the tensor product. It might make it clearer

to you the vector construction of the tensor product with which you could actually

show that

�(| i ⌦ |�i) = (�| i)⌦ |�i = | i ⌦ (�|�i)

However, students should learn the tensor product between vectors axiomatically. It

is certainly a real possibility if linear algebra has been covered in the school curricu-

lum.

S7(CSG): Grover algorithm At this meeting, 18 students were present. We analyze

each item on the worksheet. In this case, given the length and complexity of the

worksheet of Grover’s algorithm, we prefer to report the various items directly below

to facilitate the reading of the data analysis. The complete worksheet can be found

in the Appendix B.

Quantum parallelism:

A1: In relation to the microchip bar problem: which bar(s) is/are encoded in the



Chapter 7. Quantum technologies for students: design, implementations and results 232

output state by the two Hadamards on the target register? Explain.

11 students answered correctly and 4 worksheets are blank.

A2: Coming out of the Hadamard gate on the ancilla the state is |yi = |0i�|1ip
2

Denoted |y � f(x)i the output status of the oracle on the ancilla, complete the fol-

lowing table (see Fig. 7.44)

Figure 7.44: A2 item table in the Grover’s Algorithm.

All students completed table correctly.

A3: In the oracle step, how does the status of the ancilla corresponding to |10i
(qubit related to the bar with microchip)?

16 students answered correctly to question A3 (3 spoke of phase shifting).

A4.1: How many times is it necessary to implement the oracle to complete the

previous table? Explain.

A4.2: Do we gain an advantage over the classical case? Explain.

17 students answered correctly to A1 justifying in a personal way:

“Once, because thanks to the superposition property it analyses all 4 cases.”

“Once because it sees all the states of the computational base.”

13 students recognized the advantage but in general they talked about fewer steps

without specifying.

Oracle and compound systems:

B1: What feature of quantum systems allows us to go from
1
2(|00i⌦|1

0i+|01i⌦|10i+|10i⌦(�|10i)+|11i⌦|10i) to 1
2(|00i+|01i�|10i+|11i)⌦|10i?

B2: To which register does the minus sign in the compound state belong?
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7 students indicated the properties of the tensor product. Still 4 students indi-

cated the superposition; others the linearity. Almost everyone recognised that the

minus sign belongs to the compound state target ⌦ ancilla.

B3: Which bar(s) in the caveau tells us the status of the target register coming

out of the oracle? What information does it give us? Explain.

B4: If we implemented the circuit a large number of times in the same initial con-

dition and measured the target, could we know which bar is microchipped? Explain.

Most students recognized that the minus sign indicates the microchip bar, but not

everyone answered the question specifically about the others bars. 14 students an-

swered correctly, providing di↵erent justifications:

“The measurement is still a↵ected by the probability coming out of the

oracle (0.5).”

“You cannot distinguish the sign of superposition.”

Interference:

C1: By inserting the detectors at the end of the circuit, what pair of classical bits

would we obtain? How does this allow us to solve the problem of determining the bar

with microchips? Explain.

C2: How many times does the quantum operator have to be implemented to find the

microchip bar among those in the database? What is the advantage over classical

computation?

11 correct answers and 4 blank. 4 students specified that the output bit pair is

found with probability p = 1. Almost everyone recognized the quantum advantage.

Implementation with optical devices:

D1: Half of the students design the first two Hadamard gates completely correctly.

Of the remainder, almost all of them design at least partially correctly. Below are

some pictures and comments (Tab. 7.16):
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Table 7.14: Examples of D1 item representations (CSG).

Designs Observations

In this image, we can see how the

student has begun to correctly mas-

ter the colour codes, the attention

shown in designing the beam split-

ter and the state correction to alge-

braically identify the part on path 1

and the part on path 0.

In this case, however, the student

inserted the two devices correctly,

but did not indicate the angle of the

half-wave plate, nor did he specify

the orientation of the beam split-

ter. The development of the alge-

braic calculation is correct.

Table 7.14: Examples of D1 item representations (CSG).

D2: 8 students answered correctly. Many others with some errors but showing some

confidence with optical circuits (Tab. 7.15):
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Table 7.15: Examples of D2 item representations (CSG).

Designs Observations

Although the student did not use

colours, he demonstrated a good un-

derstanding of the relationship be-

tween the logic and optical circuit.

He recognised the unknown logic

gate and its e↵ect was well evi-

denced by the fact that he has made

the state explicit after the first half-

wave plate.

In this case, however, we can see a

mistake that some students made:

as they did not make the state |00i
explicit, they were unable to write

the e↵ect of the second half-wave

plate correctly.

Table 7.15: Examples of D2 item representations (CSG).

D3: This question was asked in the last minutes of the lesson. 8 sheets are blank.

Respondents also often inverted the role of half-wave plates in relation to paths, as

can be seen in Fig. 7.45.

Figure 7.45: Example of D3 item representation (CSG).
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S7(SS): Grover algorithm We will focus below on just a few items of particular sig-

nificance in relation to the CSG pathway and with a view to a possible revision of

the educational sequence.

Basically, all students answered the items in part A on quantum parallelism cor-

rectly and explained with attention.

Oracle and compound systems:

B1: What feature of quantum systems allows us to go from
1
2(|00i⌦|1

0i+|01i⌦|10i+|10i⌦(�|10i)+|11i⌦|10i) to 1
2(|00i+|01i�|10i+|11i)⌦|10i?

Half of the students correctly stated the tensor product or the nature of quantum

compound systems, but half stated linearity as the motivation.

Interference and final conclusions

C2: How many times does the quantum operator have to be implemented to find the

microchip bar among those in the database? What is the advantage over classical

computation?

10 students (only 4 in Deutsch) explicitly mentioned the sign in their answer. The

remainder only referred to the probabilistic aspect.

Implementation with optical devices:

In this case we also have information about items D3 and D4 which are performed

correctly by essentially all students.

Observation and first proposal for new design Despite the undoubted improve-

ment in the data compared to Deutsch’s algorithm, the phase problem in compound

systems remains widespread, especially in curricular experimentation (see observa-

tion in Deutsch algorithm analysis).

Most students, however, manage to follow the reasoning during the sequences of the

worksheet and show mastery of both the algebraic and implementation aspects with

optical devices. These are most problematic when students are asked to design them

ex novo, while the ability to grasp the link between logic circuit elements and ideal

devices is evident when the circuit is already shown to them. However, several stu-

dents were able to design correctly by also including the related algebraic part. The
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link between concrete problem, algorithmic solution and ideal experimental realiza-

tion, although with some di�culties, seems to have achieved most of the students

in the case of the curricular experimentation, almost all in the case of the Summer

School students.

Learning goals With respect to the learning goals, we feel it is appropriate to emphasize

that at the end of the two algorithms, it emerges from the data that a large proportion

of the students (half in the curricular experimentation) know how to move between

the registers proposed by the diagrammatic model: in particular, the ability to link

the logical-formal aspect to the informational process relating to specific problems

seems consolidated; furthermore, although to a less consistent degree, the students

begin to know how to translate logical circuits into optical circuits by developing

the corresponding algebraic calculation. Although there is still a lack of an adequate

part in the TLS concerning laboratories with optical devices, the diagrammatic model

seems to have been consolidated. Naturally not for all the students, but, given the

di�culty and the innovation of the proposed project, we consider this part significant.

S8(Fi): Teleportation protocol At this meeting, 20 students were present. We analyze

each item on the worksheet. In this case, given the length and complexity of the

worksheet of quantum teleportation, we prefer to report the various items directly

below to facilitate the reading of the data analysis. The complete worksheet can be

found in the Appendix B.

Preparatory activity: Alice and Charlie:

A1: Develop in the box below both registers together in Dirac notation (preserving

the colours as in the figure) showing that

|0i ⌦ |0i+ |1ip
2
7�! ... 7�! (a+ b)|0i+ (a� b)|1ip

2
⌦ |0i+ |1ip

2

17 students performed the calculations correctly. Many show an advanced use of

colour codes as can be seen in Fig. 7.46

Figure 7.46: Example of A1 item calculation (Fi).
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A2: Establish whether the state composed immediately before the Hadamard is sep-

arable or entangled.

A3: Establish, when measuring, which classical bits are obtained on each register,

and with what probability.

Almost all students answered correctly and many also added correct reasons and

explicit calculations.

A4: Design the corresponding optical circuit starting from the left, with particu-

lar attention to the orientation of any beam-splitters. Help yourself with the explicit

calculation in which the encodings are expressed.

On this design question, students showed much more di�culty. Here are some ex-

amples with their considerations in the Tab. 7.16 (Larger pictures can be found in

the Appendix D).

Table 7.16: Examples of D4 item representations (Fi).

Designs Observations

The picture shows many errors and

imprecisions: the two arms of the in-

terferometer have di↵erent lengths,

the algebraic calculation is not prop-

erly introduced, the orientation of

the second beam splitter is not spec-

ified and the measurement part is

completely missing.

The design is much more accurate

than the previous one, but it seems

that the only relevant aspect is the

dual-rail encoding: the measuring

apparatus only detects the bit cor-

responding to that encoding consis-

tent with the partial algebraic de-

velopment.

(Continued on the next page)
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(Continued from the previous page)

In this latter case, the progression

on the two registers up to the mea-

surement is more rigorous. Miss-

ing is the orientation of the second

beam splitter and comments on the

di↵erent nature of the beam splitter

in the measurement.

Table 7.16: Examples of D4 item representations (Fi).

In general, the most common errors were the insertion of the half-wave plate on the

wrong arm, the absence of a precise orientation of the second beam splitter and the

absence of measuring equipment or its partial use.

Entanglement: Alice and Bob share an entangled state:

B1: The di↵erence in the preparation is that the state |00i+|11ip
2

held by Alice is en-

tangled with Bob’s. Complete the second row of the table by highlighting the formal

analogy with the case discussed above in the first row.

B2: Is the obtained state a separable state? If yes, write it as a state product. If

not, explain why.

B2’: So what is the e↵ect of Alice and Bob sharing two entangled qubits?

12 students answered correctly and presented the factorized state. Many have cor-

rectly justified the fact that the state is entangled. 13 correctly understood and

explained the e↵ect of Alice and Bob sharing an entangled state; the others left the

answer blank.

B3: Insert the optical device that generates |00i+|11ip
2

the entangled state used by

Alice and Bob in the teleportation protocol

Almost all students inserted a half-wave plate, but only 7 specified the angle.

Measurement:

C1: The state immediately before the two detectors (after even the last Hadamard
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gate) is therefore

| 1i =
1

2
[|00i (a|0i+ b|1i) + |01i (a|1i+ b|0i) + |10i (a|0i � b|1i) + |11i (a|1i � b|0i)]

Complete the following table (Fig. 7.47)

Figure 7.47: table of C1 item

17 students have completed the table correctly.

Correction:

D1: The result of Alice’s measurement is to collapse Bob’s state into one of the

four states in the last column of the table above. At this point, Alice communicates

the measurement result to Bob via a classical communication channel. Depending

on Alice’s communication, Bob can correct his qubit to reconstruct the initial state

shared by Charlie with Alice. Complete the following table (Fig. 7.48).

Figure 7.48: table of D1 item

D2: A student in another class said: “Bob can get information about | i instantly”.
Do you agree? Explain why.

18 students complete the table correctly. But above all, 15 students explain the rea-

sons why superluminal communication is not possible. Many make explicit reference

to the limit in classical communication between Alice and Bob. Others impose the
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limits of relativity without contextualising them in the specific case.

Implementation with optical devices:

E1: In each of the four cases (Fig. 7.49), express the state possessed by Bob af-

ter Alice’s measurement and insert, if necessary, one or more devices to realize the

corrections (U)

Figure 7.49: Picture of E1 item

E2: Bob’s reconstructed state is encoded in polarization while Charlie’s original state

was encoded in dual-rail. Do we deduce from this is that he was teleported? Explain.

15 students answered correctly at item E1; 3 reverse the order of the logic gates

in the last correction; 2 blank.

For reasons of time, the last question was asked orally. The students seem to under-

stand that it is the information and not the qubit that is being teleported.

S8(SS): Teleportation protocol There are two most obvious di↵erences from the data

collected in the curricular experiment: more errors in item A1 and greater precision

in the design of item A4. Actually, the calculation errors were not confirmed in

item B1, which was performed largely correctly. It is remarkable, from this point of

view, that a lot of time was spent on calculation during the Florence experiment, as

confirmed by the interview with the teacher. In the summer school, the work done in

the laboratory and the focus on the design of optical circuits seems to have favoured

design skills. The other items were carried out correctly with very high percentages

and correct justifications. It is noted that it is more di�cult to identify the role of

entanglement in the protocol (item B2’).

S8: Observation and first proposal for new design In view of the results
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obtained, it seems important to be able to introduce the experimental part into the

TLS. This aspect is crucial for the final construction of the diagrammatic model.

The di�culties and possible solutions will be discussed in the conclusions.

Learning goals With respect to the learning goals, many students comprehensively un-

derstand the role of entanglement and classical communication in the protocol. The

algebraic aspect, if properly supported, is more easily internalised than implemen-

tations with optical devices. This makes it all the more important to introduce real

experimental practice into TLS.

7.5 Evaluation of design hypotheses

We comment, in the light of the data analysis carried out, the interviews with the teachers

involved in the experiments, the exercises solved in classroom and the notes taken by the

researcher, on the design hypotheses. We report each design hypothesis, the items used

for the evaluation and the final evaluation of each.

DH1 Students can master mathematical formalism if supported by multiple representa-

tions (algebraic, geometric, diagrammatic).

It is evident that most students manage to master the formalism with the help

of one or more representations (see S2 item A1, S5 item A3.1, S6 items C1 and D1,

S7 item A2, S8 items A1, A3, B1, C1, D1). In general, the aspect of mathematical

formalism was the one that caused the least di�culty.

DH2 Constantly explaining the relationship between classical and quantum elements helps

to exceed the classical approach and grasp the quantum characteristics proper.

The transition from classical to quantum was extremely di�cult when building the

model (see Tab. 7.3 and Tab. 7.4). When it came to applying the model in the

algorithms and the teleportation protocol, however, the classical-quantum dialectic

enabled the students to grasp the quantum advantages (see DH5). This leads us to

two evaluations, one intrinsic to TLS and one of a general nature: the first concerns

the need for more time to be devoted to certain phases of construction: in particular

those of polarisation and dual rail coding in relation to the concept of superposi-

tion first of all. Secondly, students are often not adequately supported by previous

knowledge of classical physics.



Chapter 7. Quantum technologies for students: design, implementations and results 243

DH3 Students, if properly guided through specially designed materials, can construct the

computational model using optical devices (half wave plates, phase shifters, beam

splitters, polarising beam splitters).

Considering the di�culty and the innovation of the proposed educational pathway,

we find the results of the construction of optical circuits encouraging. In simpler

designs, students operate well (see S5 item A3.2, S7 items D1 and D2, S8 items

B3 and E1); they struggle more if the optical circuit to be realized involves many

devices, implements two registers and the students are not guided (see D7 item D3,

S8 item A4). We think that the possibility of proposing laboratory activities, or

possibly the construction of a specially designed simulation, can greatly facilitate

these results.

DH4 The presentation of algorithms and protocols focused on a concrete problem to solve,

engaging students and inviting even less competent students to comprehension.

Interviews with the teachers of the two classes and notes taken by the researcher

confirm the engagement of students especially in lessons on algorithms and telepor-

tation protocol. In addition, one teacher emphasized the involvement of students

who normally have little interest in the subject.

DH5 References to a concrete problem in the algorithms and protocols enable the advan-

tages of quantum computation to be grasped.

In general, students responded with satisfactory percentages to questions requir-

ing them to explain the quantum advantage (see S6 items A2, C4, D2 and E1, S7

items A4.1, A4.2 and C2, S8 items B2’ and D2).

DH6 The diagrammatic model appears to the students in its entirety.

This is, to all intents and purposes, the hypothesis that we do not feel able to

confirm. The proposed experiments still lack a strong experimental approach in the

laboratory for the model to be complete. SS was the first example where this aspect

entered into teaching, but our research is focused on curricular paths. However, what

emerges from the two experiments is that about half the class is able to interpret

and design diagrams both logically and experimentally and to connect their mean-

ing, thanks to the designed worksheets, to the solution of real problems (see S7 and

S8).
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7.6 Research questions and design principles

SRQ1 : How is it possible to construct an adequate content simplification process to

present the topics of the second quantum revolution to students in a meaningful way

from very advanced theoretical aspects?

Based on the design hypotheses and the data from the experiments, we conclude that to

construct an adequate content simplification process it is needed:

1. greatly support the transition from classical to quantum without taking the correct-

ness of prior knowledge for granted;

2. introduce a minimal quantum mechanical formalism (Dirac notation) appropriate

for addressing qubits, quantum logic gates and measurements;

3. allow students to continuously grasp the dialectic between logical-formal and physical-

experimental aspects in relation to real problems;

4. support the students’ diagrammatic modelling process by clarifying at all times the

interpretation being given (computational, physical, experimental);

5. support the understanding of algorithms and protocols through the elementaryiza-

tion process. The case of the tripartition of information processing in the case of

algorithms is emblematic of this approach.

The polarization-based approach seems adequate to support all these requests because we

are able to construct a coherent and comprehensive educational pathway.

SRQ2 : How e↵ective is an integrated and multidisciplinary approach in order to enable

students to understand some topics of quantum computation and quantum informa-

tion?

The data that emerged from the worksheets concerning algorithms and teleportation proto-

col seem encouraging. Despite various critical issues that emerged during the construction

of the model, the concluding worksheets (those relating to Grover’s algorithm and the

teleportation protocol) show that a large number of the students obtained an adequate

grasp of the topics of quantum computation and information, and that this grasp is often

linked to the possibility of reading the problems with an integrated and multidisciplinary

approach.
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SRQ3 Based on findings the first two research questions, what design principles can be

formulated for the development of TLS resources in quantum computation for high

school students?

In the light of all the work that has been done and the answers to the first two

research questions, we can finally state three design principles that we also believe

should be foundational to TLS:

1. Integrated and multidisciplinary approach: aware that instruction on

theoretical topics such as non-classical logic and circuits is an indispensable

requirement for the acquisition of a functional understanding of related algo-

rithms and protocols, however, there is a need to o↵er integrated educational

paths allowing students to make a connection between abstract mathematical

content stemming from a seemingly counterintuitive physical theory and the

description of systems and networks that can possibly encode and process in-

formation. As a result, we choose to develop a learning trajectory where the

study of logic/computation and the physical implementation of gates and algo-

rithms progress in parallel, engaging students in the design of realistic circuits

in which state preparation, transformation and measurement are performed by

physically realistic devices. The climax of the learning trajectory is the dia-

grammatic model.

2. Quantum physics and information processing: the second principle for

the design of our course concerns the understanding of the core content, which

may be identified with the conceptual junction between quantum physics and

information processing. This junction is represented by the physical and in-

formational interpretation of a state vector lying in a two-dimensional Hilbert

space equipped with linear dynamics. This leads us to our design principle:

guiding students to encode information in di↵erent physical properties, exam-

ining how they are linked to the vectors of the abstract two-dimensional Hilbert

space according to the property at hand, with the aim to build a global knowl-

edge structure on the relation between physical properties and state space in

the encoding procedure.

3. Elementarization About algorithms, we suggest to decompose the structure

of the information processing phase into three sequential processes: (1) the en-

abling of parallelism by means of Hadamard gates on target register and ancilla

qubit to generate an equal superposition of all the states of the computational
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basis on which the oracle can act at once; (2) the transfer of the whole infor-

mation encoded in the oracle function to the target register(s) in the form of a

positive or negative sign attached to each basis vector, possibly establishing an

entanglement between the qubits; (3) the enabling of interference by means of

a network of logic gates to produce - often in concurrence with the exploitation

of entanglement - the desired state on which measurement can be performed.

About the teleportation protocol, we suggest that the case in which Alice does

not share an entangled qubit with Bob be put before the discussion of the ac-

tual protocol. The particular feature of the protocol (the correlations between

Alice’s qubits and Bob’s) will then emerge with greater emphasis directly from

considerations made by the students than in the case examined in the first part.
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Summary, limits and future

perspectives

We presented a research project that had as its first goal to build a course for the teacher

professional development on the topics of quantum computation and communication with

high cultural impact. Our research relied on the MER for the clarification and analysis

of the scientific content, and in the design of educational pathways. An initial course

conducted between October 2020 and March 2021 was able to collect research data on

teachers’ perspectives on the topics covered; it was also possible to create an initial group

of teachers engaged in close collaboration with the researchers to co-design teaching paths

for students. This resulted in a TLS for students and a series of research-based instructional

materials. In particular, we have seen how the TLS and the worksheets were constructed

on the basis of two well-defined theoretical frameworks: the IBL and the MBT to help

students to develop an organized knowledge structure concerning QIS embedded in active

and constant engagement in construction and reconstruction knowledge through hands-on

interactions. Moreover, it was possible to start designing courses for first-year students

on the physics of classical computation and third-year students on the problems of the

thermodynamics of computation.

Although we have clearly divided the work done with teachers and the work done with

students into two separate chapters, it has in fact been built up over time thanks to the

continuous interactions between the two aspects. This was necessary because not enough

educational research literature can be found on the subject of quantum technologies; but

it is also our belief that only the active presence of teachers can create e↵ectively realizable

247
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pathways in the curriculum. The analysis of the research data, obtained from tests relat-

ing to the teacher training course, from the semi-structured interviews carried out several

times during the training course, from the worksheets used in the two curricular experi-

ments at Castel San Giovanni and Florence and those of the Summer School on Quantum

Technologies, made it possible to answer at least in part some significant research ques-

tions both relating to the work carried out with teachers and to the work dedicated to

students.

Specifically with regard to teachers, we observed that:

1. a process of elementarization of the proposed contents is necessary in view of the

fact that they are substantially new to teachers; however, this process can only be

supported by great formal and conceptual rigour. Dirac formalism and matrix al-

gebra are considered adequate. Furthermore, the simplification must constantly live

up to two aspects: the presentation of the educational materials and the continuous

comparison with the experimental aspects. The diagrammatic model as a common

framework for computational and physics topics seems to be a useful tool;

2. the interdisciplinary and integrated approach with a high cultural impact, the record

of lessons and the materials for lessons, all supported by continuous work and dis-

cussions with researchers, have activated some teachers to develop a personal com-

mitment to longitudinal, interdisciplinary educational innovation directed towards

themes of quantum information and computation;

3. the constant presence of the researchers in the co-design work, the presence of one

of them during the teaching experiments, the realization of training meetings for

the teachers in service in the schools involved made it possible to get to know the

environment, including school directors and to activate a shared and extensive col-

laboration. The result is the participation of other teachers from the same school in

the training meetings. In this way, a reference figure, a kind of expert teacher, who

coordinates, supported by the researchers, small working groups on the topics of the

second quantum revolution has been established in the individual schools. We have

not yet been able to establish a full-fledged community of practice, but we hope to

be able to do so in the future given the latest developments.

In summary, the aspects of disciplinary content, the continuous co-design work and the

presence of the researchers in the context of the schools helped to create an environment

that could educate and activate some teachers on topics that were not only di�cult but

also almost completely unknown and traditionally not covered in the school curriculum,



Chapter 8 249

showing, if need be, how interesting and stimulating the topics could be.

The work carried out together with teachers produced a TLS on the topics of quan-

tum computation and quantum communication that can answer three further research

questions from whose answers we derive that:

1. to construct an adequate content simplification process it is needed:

(a) greatly support the transition from classical to quantum without taking the

correctness of prior knowledge for granted;

(b) introduce a minimal quantum mechanical formalism (Dirac notation) appropri-

ate for addressing qubits, quantum logic gates and measurements;

(c) allow students to continuously grasp the dialectic between logical-formal and

physical-experimental aspects in relation to real problems;

(d) support the students’ diagrammatic modelling process by clarifying at all times

the interpretation being given (computational, physical, experimental);

(e) support the understanding of algorithms and protocols through the elementary-

ization process. The case of the tripartition of information processing in the

case of algorithms is emblematic of this approach.

2. a large number of the students obtained an adequate grasp of the topics of quantum

computation and information, and that this grasp is often linked to the possibility

of reading the problems with an integrated and multidisciplinary approach;

3. it is possible to identify three design principles that guide the TLS:

(a) present an integrated and multidisciplary approach;

(b) guiding students to encode information in di↵erent physical properties;

(c) propose an elementarization for intruction of quantum algorithms and quantum

protocols.

It is worth emphasizing that the approach of the proposed educational paths is ultimately

based on the possibility of constructing a diagrammatic model whose strength lies in its

theoretical abstractness linked to the theory of categories: it is precisely this abstractness

that allows diagrams to be interpreted in the three aspects that are significant for us:

logical, physical-theoretical and experimental.
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8.1 Limits and future perspectives

There are some objective limitations to the work we have presented. The first and proba-

bly the most important one is that it is not yet able to present a pathway that introduces

quantum physics from the informational approach in a strong way. We preferred to build

a course that would fit into the tradition of quantum physics education (polarization ap-

proach) and go further in continuity with it in order to fully realize the integrated and

interdisciplinary perspective. However, we are convinced that after a few implementations

of the TLS, the time will come to review the entire sequence. However, the possibility

of working simultaneously on the logical-computational, physical-theoretical and experi-

mental aspects (albeit relating to ideal optical devices in the two curricular experiments)

we believe is an extremely significant achievement and marks an absolute novelty in the

panorama of educational research on these topics.

We report two further limitations, which, however, will also be the starting point for the

main possible future developments:

1. the fact that only in the Summer School was it possible to work with real optical de-

vices. The diagrammatic model only materializes when it also becomes experimental

practice: thus the latter phase, which could also become the former, is absolutely

fundamental and is missing from the two experiments presented. To a large extent,

this was also due to the restrictions on the use of laboratories during the Covid

pandemic19;

2. the diagrammatic model does not show its full potential in high school pathways. In

fact, the possibility of working syntactically on diagrams is far from being exploited

in a pathway for secondary school students.

These observations allow us to introduce what we see as the most promising future devel-

opments:

1. We believe that closer collaboration with the experimental area is necessary for the

realization of experimental setups appropriate to the proposed course. Furthermore,

it might be interesting to develop simulations to allow students to build experimental

setups at least in a virtual laboratory;

2. we think that the TLS can be developed in such a way that it can also become suitable

for university paths for non-physicists: the categorical approach, for example, could
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fit very well for computer scientists. Furthermore, the possibility of describing non-

physical processes by means of diagrams also makes the pathway interesting for

science faculties, such as chemistry, which are only apparently less involved.
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S2 Polarization gates  

A. Implementation of a qubit on the linear polarization of the photon  

A.1 Determine the action of a phase shifter of  on the state vector of prepared photons as follows 

 
Write the resulting vector in the space to the right of the phase shifter symbol and explain: 
___________________________________________________________________________________ 
___________________________________________________________________________________ 
___________________________________________________________________________________ 

A.2 Propose an implementation of Z logical gate using one or more of the following devices: 

• two calcite crystals, direct and reverse, with channels at 0° e 90°  

• non-phase mirror 

• a phase-shifter 

• a filter can be directed as desired  

Represent the apparatus to the right of the single-photon source, explaining its functioning: 

 
___________________________________________________________________________________ 
___________________________________________________________________________________ 
___________________________________________________________________________________ 

A.3 Propose a realization of the X and H gates on the polarization of a photon, specifying the devices used 
and the conditions of their use. 
___________________________________________________________________________________ 
___________________________________________________________________________________ 
___________________________________________________________________________________ 

�
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S4 – Propagation and coding on dual-ail 
 
A1. For each of the figures 

 
 

• identifies which side of the interface the adhesive is on (!! < !) and on which side the dielectric 
(!" > !), writing the refractive index of each on the corresponding side of the interface; 

• determines whether the reflection is without phase shift (%& = 0) or with phase shift (%& = *) and 
report it on the reflected beam. 
 

A2.1 For each of the two figures, label the incoming and outgoing arms according to the phase of the reflected     
        rays 

• 0: branches corresponding to reflection without phase shift; 
• 1: branches corresponding to reflection with phase shift. 

If it is helpful, help yourself by indicating the refractive index value on each prism 
 

 
 
A2.2 Consider two arms with the same label. Does the value assigned depend on the direction in which the 

light beam passes through these arms? If yes, explain how it varies depending on the direction, if no, 
explain why. 
___________________________________________________________________________________ 
___________________________________________________________________________________ 
___________________________________________________________________________________ 
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S5 – Gates and optical circuits in dual rail 
 

A. Implementation of a qubit on the two possible paths of a photon 
A1. Design a Z-gate in dual rail coding. For each sub-question, examine the initial and final states. Is a tool 

needed to produce the required transformation? If yes, which one? You have calcite crystals, phase-
free mirrors, filters, phase shifters. Explain your choices. 

A1.1 State prepared in |0⟩ 

: 

___________________________________________________________________________________ 

A1.2 State prepared in |1⟩ 

 
___________________________________________________________________________________ 

A1.3 State prepared in 
|"⟩$|%⟩
√'  

 
___________________________________________________________________________________ 

 

A2. Identifies the correct symbolic representation of the X gate on a state prepared in 
|"⟩$|%⟩
√'  and explain 

 

___________________________________________________________________________________ 

A3.1 Solve the logic circuit, reporting the state after each gate: 
 

 

 
A3.2 Design the corresponding optical circuit with encoding dual rail. Explain each step: 
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2 
 

 
___________________________________________________________________________________ 

___________________________________________________________________________________ 

___________________________________________________________________________________ 

 

A4. A colleague of yours last year made the following statement: «Saying that the state is prepared in
|"⟩$|%⟩
√'  

or in 
|"⟩(|%⟩
√' 	is equivalent to saying that it was initially prepared in	|0⟩ or in |1⟩ and passed an H-gate ». 

Do you agree with your colleague? Justify your answer. 

___________________________________________________________________________________ 

___________________________________________________________________________________ 

___________________________________________________________________________________ 
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S6 - DEUTSCH ALGORITHM 

Quantum parallelism 

Let us consider the first part of the circuit. 
 
 
 
 
 
 
 
 

Classically, if we want to know the result of applying a Boolean function  on a 
certain number  two classical calculations are required to find the result: for x = 0 and for x = 1. 
For example, the logic gate Not: 

A. (Input encoding) Let us now consider the first part of the algorithm circuit: 
 
 
 
 
 
 
 
Question A1. In relation to the coin problem: which side(s) of the coin is/are encoded in the output 
state of the first Hadamard? (Remember that according to the database encoding silver face = 0; 
gold face = 1)

1. Silver face 
2. Golden face 
3. Both 

Explain why: 

____________________________________________________________________
____________________________________________________________________ 

f : {0,1} � {0,1}
x

|0� + |1�
2

258



Question A2. Establish whether we gain an advantage over the classical case by using the  
gate. If yes, in what does it consist? If no, why? 

______________________________________________________________________________
______________________________________________________________________________ 

B. (Oracle) From the considerations made in previous meetings, we know that a quantum logic 
gate acts on a generic qubit as in the figure: 

In the case of the quantum logic gate Not (classical example on the previous page), therefore, we 
obtain 
 
                                         

Question B1. What property of the operators ensures that the quantum advantage of being able to 
act simultaneously on both qubits of the computational base can actually be exploited? Justify your 
answer. 

______________________________________________________________________________
______________________________________________________________________________ 
______________________________________________________________________________

______________________________________________________________________________ 

Oracle and compound systems: 
To encode the output information exclusively on the target register, associating each side of the 
coin (silver and gold) with the corresponding image (heads or tails) we use the sign: + heads, - 
tails. 
To do this we introduce an auxiliary register (qubit ancilla) and define the oracle as follows: 
 

 
As can be seen on the ancilla, the action of the operator U depends on the value of f on the target. 
The target remains unchanged. 

H

|0� � |1�
2 |1� � |0�

2
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C1. The operator U is a logical gate with two inputs and two outputs. Writing the truth table (the 
behaviour of the operator on ) of the logical gate in case 

. 

 

Are there any logic gates of your knowledge that operate in this way? If yes, please specify which. 
If no, explain why. 

____________________________________________________________________ 

So in this case, the corresponding circuit is (insert name in the grey box) 
 
 
 
 
 
 
 
 
 
 

 
Performing the calculations we obtain:  

 

The minus sign (which we remind we want to use to encode the image on the two sides of the 
coin) can be transferred from the ancilla to the target, the register on which the measurement will 
be performed to obtain the output needed to answer the problem. 

 

C2. What feature of quantum physical systems is exploited? 

________________________________________________________________________

________________________________________________________________________ 

|00�, |01�, |10�, |11�
f (0) = 0 � f (1) = 1

Input Output

|01�
|10�

|00�

|11�

|0�
2 |1� � + |1�

2 ( � |1� �)

|0�
2 |1� � � |1�

2 ( |1� �) = ( |0� � |1�
2 ) |1� �
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C3. To which state vector does the minus sign in the compound state belong? 

1. only to the target 
2. only to the ancilla 
3. target  ancilla 

Explain: 

________________________________________________________________________

________________________________________________________________________

_____________________________________________________________________________ 

 
Let us look again at the coin problem from which we started.  
On the way out of the oracle, thanks to the property of compound systems, on the target register 
we find the state we have just obtained 

 
C4. What image(s) on the face of the coin tell us about the status of the target coming out of the 
oracle? 

1. Heads 
2. Tails 
3. Heads and Tails  

Explain: 

________________________________________________________________________

________________________________________________________________________ 

This state stores as much information as possible about the coin to determine whether it is genuine 
or counterfeit: the qubits encode the sides of the coin, the respective sign the image contained 
within it. 
 

 
 

C5 If we implemented the circuit a large number of times in the same initial condition and 
measured the target, could we know whether the coin was genuine or counterfeit? 

____________________________________________________________________

____________________________________________________________________ 

�

Algoritmo di Deutsch 

Nome………………………  Cognome………………… 
Nome………………………  Cognome………………… 

 
Parallelismo quantistico 

Consideriamo la prima parte del circuito. 
Classicamente se vogliamo conoscere il risultato dell'applicazione di una certa 
funzione booleana su un certo numero  due calcoli classici sono 
necessari per trovare il risultato: per x = 0 e per x = 1. Ad esempio la porta logica 
Not: 

A. (Codifica input) Consideriamo ora la prima parte del circuito dell’algoritmo: 

Quesito A1. Osservando le due immagini stabilisci se con l’utilizzo della porta  
otteniamo un vantaggio rispetto al caso classico. Se si, in cosa consiste? Se no, 
perché? (Ricordiamo che secondo la codifica del database faccia argentata = 0; faccia 
dorata = 1) 
____________________________________________________________________

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________ 

f : {0,1} � {0,1} x

H
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Generalization 
We can generalize what we have seen in the specific case where  e and 
obtain as an output state from the oracle 

The meaning of which is: the sign depends on how it acts f! 

It is f to determine which image is present on each side of the coin. 
 
In particular if f is balanced ( ) (authentic coin!)  the signs will be opposite, otherwise 
( ) concordant (counterfeit coin!). 
 
It follows that the qubits coming out of the oracle will be 
1)  whether the function is balanced and thus whether the coin is authentic in the coding 
described for the database; 
 
2)  if the function is constant and thus if the coin is not authentic in the coding described for 
the database. 
 
As we have seen, this is not enough to determine whether the coin is genuine or counterfeit. 
However, we can exploit a further characteristic of quantum systems: interference! 
 
Interference 
 

We know in fact that the Hadamard gate on a superposition state creates interference phenomena 
such that  e .  
K n o w i n g t h a t t h e f i n a l s t a t e b e f o r e t h e l a s t H a d a m a r d i s 

, 

D1. Complete the table  

f (0) = 0 � f (1) = 1

f (0) � f (1)
f (0) = f (1)

± |1� �

± |0� �

|0� � � |0� |1� � � |1�

|�� = 1
2 ((�1) f (0) |0� + (�1) f (1) |1�)

Boolean function State after the Oracle State after the last 
Hadamard

Classic bit after 
measurement and 

probability

___ ,  p= ____

___ ,  p= ____

___ ,  p= ____

___ ,  p= ____
_______ = ____|� � =f (0) = 1 � f (1) = 1

_______ = ____|� � =

_________|� �f in =

f (0) = 0 � f (1) = 0 _________|� �f in =

f (0) = 1 � f (1) = 0

_______ = ____|� � =

f (0) = 0 � f (1) = 1
_______ = ____|� � = _________|� �f in =

_________|� �f in =

1
2 ((�1) f (0) | 0� + (�1) f (1) |1�)

1
2 ((�1) f (0) |0� + (�1) f (1) |1�)
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D2. By observing the table above, establish what relationship there is between the authenticity of 
the coin and the outcome of the measurement. Explain. 

________________________________________________________________________

________________________________________________________________________ 

Final conclusions 
 
E1. How many times does the quantum operator   have to be implemented to determine whether 
a coin among those in the database is genuine or counterfeit? What is the advantage over 
classical computation? 

________________________________________________________________________

________________________________________________________________________

_____________________________________________________________________________

_________________________________________________________________________ 

Implementation with optical devices 

 

F1. Describe the optical devices used to realize the optical circuit of Deutsch's algorithm (in the 
case under consideration described by the figure in the table below) in the order in which they are 
encountered in the circuit. Explain their function in relation to the logical development of the 
algorithm.
________________________________________________________________________________

________________________________________________________________________________ 

________________________________________________________________________________ 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

________________________________________________________________________________ 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

Uf

CNOT

f (0) = 0 � f (1) = 1
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________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

F2. Enter in the grey boxes the corresponding state in Dirac notation consistent with the action of 
the individual optical devices (including the device used for measurement). Also express the 
classical information bit obtained and its probability. 
 

O

J�/2 22,5�

J

�/2
45 �

1

0

0

=
0

1

1

2 3

3

3

4

4

4
5

6
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S7 - GROVER’S ALGORITHM 

 
The goal of the algorithm is, in this case, to determine the microchipped bar from among the four in 
the bank's caveau.  
It should also be reminded that the   

 

is defined on the codes for the four bars at values in  and identifies, in the database, the only 
bar with a microchip by returning 1 (which in the discussion of our case is for simplicity's sake the 
one corresponding to the coding ). 

In order to deeply understand the behaviour of Grover's search algorithm, we shall use what was 
done in the analysis of Deutsch's algorithm; the processes, in fact, remain the same. 
First, we present the two circuits related to Deutsch's and Grover's algorithm: 

Quantum Parallelism 

Let us therefore consider the first part of the circuit relating to the target register: 

 

Question A1: In relation to the microchip bar problem: which bar(s) is/are encoded in the output 
state by the two Hadamards on the target register? Explain 

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________ 

f : {0,1}2 � {0,1}

f (x) = {1 i f x = x0
0 oth er wise

{0,1}
x0 = (1,0)

⟩|0 H

⟩|1 H

⟩|0 H H

Uf H

X

X X H

X H

ALGORITMO DI GROVER
CIRCUITO LOGICO SEMPLIFICATO

Z
{target

ancilla

12-04-2022 I.I.S. A. Volta, Castel san Giovanni (PC)

Problema della moneta: algoritmo quantistico

Algoritmo di Deutsch

|0�

|1�

Uf
|y � f(x)�

|x�H

H

H

f : {0,1} � {0,1}

Target

Ancilla

1985

|00� � 1
2 ( |00� + |01� + |10� + |11�)
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To encode the output information exclusively on the target register, we use the sign: + without 
microchip, - with microchip. 
To do this, we introduce an auxiliary register (qubit ancilla) and define the oracle as follows: 

Question A2: Coming out of the Hadamard gate on the ancilla the state is . 

Denoted  the output status of the oracle on the ancilla, complete the following table: 

Question A3: In the oracle step, how does the status of the ancilla corresponding to  (qubit 
related to the bar with microchip)? 
 
______________________________________________________________________________
__________________________________________________________ 

Question A4.1: How many times is it necessary to implement the oracle to complete the previous 
table? Explain. 

______________________________________________________________________________
__________________________________________________________ 

Question A4.2: Do we gain an advantage over the classical case? Explain. 

______________________________________________________________________________
__________________________________________________________ 

|y� = |0� � |1�
2

|y � f (x)�

Bar Function Output state

Without microchip

With microchip  f (x) = . . . . . . |y � f (x)� = . . . . . . . . = . . . . . . . .

|y � f (x)� = . . . . . . . . f (x) = . . . . . .

|10�

⟩|0 H

⟩|1 H

⟩|0 H H

Uf H

X

X X H

X H

ALGORITMO DI GROVER
CIRCUITO LOGICO SEMPLIFICATO

Z
{target

ancilla ⟩|% ⨁'())

⟩|)

{
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Oracle and compound systems 

From the above considerations, the following state will arise out of the oracle 
 

 

that we can immediately write 
 

Question B1: What feature of quantum systems allows us to go from (1) to (2)? 

____________________________________________________________________

____________________________________________________________________ 

Question B2: To which register does the minus sign in the compound state belong? 
1. only to the target 
2. only to the ancilla 
3. target  ancilla 

Explain: 

________________________________________________________________________________

________________________________________________________________________________ 

Let us return to the bar problem from which we started.  
On exit from the oracle, thanks to the property of compound systems, on the target register we find 
the state we have just obtained 

 

Question B3: Which bar(s) in the caveau tells us the status of the target register coming out of the 
oracle? What information does it give us? Explain. 

________________________________________________________________________________

________________________________________________________________________________ 

�

⟩|0 H

⟩|1 H

⟩|0 H H

Uf H

X

X X H

X H

ALGORITMO DI GROVER
CIRCUITO LOGICO SEMPLIFICATO

Z
{target

ancilla ⟩|% ⨁'())

⟩|)

{ 1
2 ( |00� � |1� � + |01� � |1� � + |10� � ( � |1� �) + |11� � |1� �)

1
2 ( |00� + |01� � |10� + |11�) � |1� �

1
2 ( |00� + |01� � |10� + |11�)

⟩|0 H

⟩|1 H

⟩|0 H H

Uf H

X

X X H

X H

ALGORITMO DI GROVER
CIRCUITO LOGICO SEMPLIFICATO

Z
{target

ancilla ⟩|% ⨁'())

⟩|)

{

(1)

(2)
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This state therefore contains all possible information about the bars to determine whether they are 
without or with a microchip: the qubits encode the bars, the respective sign the presence or 
absence of the microchip. 
 

 

Question B4: If we implemented the circuit a large number of times in the same initial condition 
and measured the target, could we know which bar is microchipped? Explain 

____________________________________________________________________

____________________________________________________________________ 

Interference  

 

The remaining part of the circuit is used to create interference so as to have a state whose 
measurement allows the problem to be solved. 

Question C1: By inserting the detectors at the end of the circuit, what pair of classical bits would 
we obtain? How does this allow us to solve the problem of determining the bar with microchips? 
Explain. 

____________________________________________________________________

____________________________________________________________________ 

Final conclusions 

Question C2: How many times does the quantum operator  have to be implemented to find the 
microchip bar among those in the database? What is the advantage over classical computation? 

________________________________________________________________________________

________________________________________________________________________________ 

________________________________________________________________________________ 

________________________________________________________________________________

Uf

⟩|0 H

⟩|1 H

⟩|0 H H

Uf H

X

X X H

X H

ALGORITMO DI GROVER
CIRCUITO LOGICO SEMPLIFICATO

Z
{target

ancilla ⟩|% ⨁'())

⟩|)

{

⟩|0 H

⟩|1 H

⟩|0 H H

Uf H

X

X X H

X H

ALGORITMO DI GROVER
CIRCUITO LOGICO SEMPLIFICATO

Z
{target

ancilla ⟩|% ⨁'())

⟩|)

{

|�f in� = � |10�
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Implementation with optical devices 

In the optical device realization of the algorithm, we will not use the qubit ancilla. This is to avoid 
the need for an additional encoding (3 qubits!). This means that the oracle will have to be made in 
such a way that it directly shifts to the state corresponding to  the microchip bar (in general, 
therefore, we will have 4 different oracles, but we will always assume that the qubit corresponding 
to the microchip bar is ). 
 

Question D1: Build an optical device able to realize the first part of the circuit, according to known 
colour conventions (blue=paths - red=polarization). Then insert along the paths the corresponding 
states in Dirac notation. 

Explain: 

________________________________________________________________________________

________________________________________________________________________________ 

________________________________________________________________________________

________________________________________________________________________________ 

�

|10�

           

H

H

|0�

|0�

⟩|0 H

⟩|0 H H

H

X

X X H

X H

ALGORITMO DI GROVER
CIRCUITO LOGICO SEMPLIFICATO

Z
Uf
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Question D2: The second part of the circuit refers to the oracle. Consider the case where the bar 
with the microchip is the one corresponding to the coding  and complete the circuit in the 
figure by inserting the missing parts (Hint: be careful, because the plate acting on the polarization 
must only change sign to that component if it is equal to . What is the axis of symmetry that 
performs this process?). 

Explain the oracle design: 

________________________________________________________________________________

________________________________________________________________________________ 

________________________________________________________________________________

Question D3: Building the oracle in the situation where the qubit to which the sign is to be 
changed is the one indicated in each individual cell 

|10�
|0�

H

H

|0�

|0�
Uf

 

J
|0�|0�

J

                        |0� |1�                         |1� |1�                         |0� |0�
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Question D4: The last part of the circuit corresponds to interference and measurement. Complete 
(enter the angles of the plates, write next to the physical devices their role with respect to the logic 
circuit, indicate next to the corresponding detector the classical bit pair (1,0) detected) the circuit in 
the figure corresponding only to the part after the oracle (Hint: remember that the CZ gate changes 
sign only at the qubit ). 

Explain 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

|11�

H

Z

⟩|0 H

⟩|0 H H

H

X

X X H

X H

ALGORITMO DI GROVER
CIRCUITO LOGICO SEMPLIFICATO

Z
Uf

H X

X � X

X H

H

J J

J
J

J

� �

� �

CZ

JJ

J
J
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S8 - QUANTUM TELEPORTATION 

 
The goal of the protocol is to teleport the information stored in Charlie's qubit (First register) from 
Alice (Second register) to Bob (Third register) using classical communication. 

Preparatory activity: Charlie and Alice 

Let us therefore consider the first two registers, those corresponding to Charlie and Alice. Charlie 
prepares a qubit in the generic state and delivers it to Alice (the state is unknown to Alice!); Alice 
has a qubit in superposition as in the following image: 

Question A1: Develop in the box below both registers together in Dirac notation ( preserving the 
colours as in the figure) showing that  

Elementarizzazione teletrasporto

Se trascuriamo ciò che accade dopo la misurazione, la differenza fondamentale con il circuito
precedente è riassunta nel riquadro:
• l’aggiunta di un terzo registro che viene posto in entanglement con il secondo:

Per mostrare la sottile, ma fondamentale differenza con il caso precedente, useremo la seguente
notazione:

| ⟩0 | ⟩0 + | ⟩1 | ⟩1
2

| ⟩2

| ⟩0

H

| ⟩0 U | ⟩2

H

| ⟩0 := | ⟩0 | ⟩0

| ⟩1 := | ⟩1 | ⟩1

| ⟩0′ := | ⟩0 | ⟩1

| ⟩1′ := | ⟩1 | ⟩0
Lo stato sul 2° e 3° registro dopo la prima CX
può essere scritto come: | ⟩# $| ⟩%

&

2

Attività propedeutica per il teletrasporto

Il qubit codificato sui cammini viene preparato dalla porta ! nello stato generico: "| ⟩0 + '| ⟩1
Il qubit codificato sulla polarizzazione viene emesso nello stato | ⟩# $| ⟩%&

Quesito 1. Sviluppa i due registri congiuntamente in notazione di Dirac.

| ⟩0 !
| ⟩0 + | ⟩1

2

H

!"

| ⟩0 ⊗ | ⟩0 + | ⟩1
2

#⊗ %
, ⟩0 + - ⟩1 ⊗ | ⟩0 + | ⟩1

2 = ⟩,|0 (| ⟩0 + | ⟩1 ) + ⟩-|1 (| ⟩0 + | ⟩1 )
2

!"

⟩,|0 (| ⟩0 + | ⟩1 ) + ⟩-|1 (| ⟩1 + | ⟩0 )
2 = , ⟩0 + - ⟩1 ⊗ | ⟩0 + | ⟩1

2

Attività propedeutica per il teletrasporto. Quesito 1

| ⟩0 !
| ⟩0 + | ⟩1

2

H

!" ⟩,|0 (| ⟩0 + | ⟩1 ) + ⟩-|1 (| ⟩1 + | ⟩0 )
2 = , ⟩0 + - ⟩1 ⊗ | ⟩0 + | ⟩1

2
&⊗ %

| ⟩0 ⊗ | ⟩0 + | ⟩1
2

#⊗ %
, ⟩0 + - ⟩1 ⊗ | ⟩0 + | ⟩1

2 = ⟩,|0 (| ⟩0 + | ⟩1 ) + ⟩-|1 (| ⟩0 + | ⟩1 )
2

!"

( ⟩, + -)|0 + ⟩(, − -)|1
2 ⊗ | ⟩0 + | ⟩1

2

Il qubit codificato sui cammini viene preparato dalla porta ! nello stato generico: "| ⟩0 + '| ⟩1
Il qubit codificato sulla polarizzazione viene emesso nello stato | ⟩# $| ⟩%&

Quesito 1. Sviluppa i due registri congiuntamente in notazione di Dirac.

. . . . . .
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Question A2: Establish whether the state composed immediately before the Hadamard is 
separable or entangled. 
 

____________________________________________________________________

____________________________________________________________________ 

 

Question A3: Establish, when measuring, which classical bits are obtained on each register, and 
with what probability.  
 

____________________________________________________________________

____________________________________________________________________ 

 
If we encode Charlie's information on dual-rail and Alice's in polarization, we then obtain the optical 
circuit 
 

And  the state                   before measurement: 
 

Question A4: Design the corresponding optical circuit starting from the left, with particular 
attention to the orientation of any beam-splitters. Help yourself with the explicit calculation in which 
the encodings are expressed. 

2

Attività propedeutica per il teletrasporto

Il qubit codificato sui cammini viene preparato dalla porta ! nello stato generico: "| ⟩0 + '| ⟩1
Il qubit codificato sulla polarizzazione viene emesso nello stato | ⟩# $| ⟩%&

Quesito 1. Sviluppa i due registri congiuntamente in notazione di Dirac.

| ⟩0 !
| ⟩0 + | ⟩1

2

H

!"

| ⟩0 ⊗ | ⟩0 + | ⟩1
2

#⊗ %
, ⟩0 + - ⟩1 ⊗ | ⟩0 + | ⟩1

2 = ⟩,|0 (| ⟩0 + | ⟩1 ) + ⟩-|1 (| ⟩0 + | ⟩1 )
2

!"

⟩,|0 (| ⟩0 + | ⟩1 ) + ⟩-|1 (| ⟩1 + | ⟩0 )
2 = , ⟩0 + - ⟩1 ⊗ | ⟩0 + | ⟩1

2
5

Attività propedeutica per il teletrasporto. Quesito 1

2. Stabilisci se lo stato composto immediatamente prima della misurazione è separabile o entangled.

| ⟩0 !
| ⟩0 + | ⟩1

2

H

3. Determina, all'atto della misurazione, quali bit classici si ottengono su ciascun registro, e con che
probabilità.

E’ separabile, in quanto può essere scritto come prodotto dei due stati componenti

( ⟩, + -)|0 + ⟩(, − -)|1
2 ⊗ | ⟩0 + | ⟩1

2

del resto l’unica porta non separabile, la CX, non aveva avuto alcun effetto sullo stato

Nel 1° registro: 0 con probabilità (# + %)& e 1 con probabilità (# − %)&
Nel 2° registro: 0 al 50% e 1 al 50%
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Entanglement: Alice and Bob share an entangled state 

Let us now consider the entire circuit with the three registers.  
Compared to the previous case, the difference in the preparation is that the state held by Alice is 
entangled with Bob’s, as can be seen in the dashed line; we will assume already prepared the 
state  (prepared by Charlie and delivered to Alice): 
 

The corresponding entangled state is 
 

We can see that the formal development is similar to the previous one 

Question B1: Complete the second row of the table by highlighting the formal analogy with the 
case discussed above in the first row.
 

Question B2: Is the obtained state    a separable state?   
 
 
If yes, write it as a state product. If not, explain why. 
 

____________________________________________________________________

____________________________________________________________________ 

Question B2’: So what is the effect of Alice and Bob sharing two entangled qubits? 
 

____________________________________________________________________

____________________________________________________________________ 

|��

Attività propedeutica per il teletrasporto

Il qubit codificato sui cammini viene preparato dalla porta ! nello stato generico: "| ⟩0 + '| ⟩1
Il qubit codificato sulla polarizzazione viene emesso nello stato | ⟩# $| ⟩%&

Quesito 1. Sviluppa i due registri congiuntamente in notazione di Dirac.

| ⟩0 !
| ⟩0 + | ⟩1

2

H

!"

| ⟩0 ⊗ | ⟩0 + | ⟩1
2

#⊗ %
, ⟩0 + - ⟩1 ⊗ | ⟩0 + | ⟩1

2 = ⟩,|0 (| ⟩0 + | ⟩1 ) + ⟩-|1 (| ⟩0 + | ⟩1 )
2

!"

⟩,|0 (| ⟩0 + | ⟩1 ) + ⟩-|1 (| ⟩1 + | ⟩0 )
2 = , ⟩0 + - ⟩1 ⊗ | ⟩0 + | ⟩1

2

Attività propedeutica per il teletrasporto. Quesito 1

| ⟩0 !
| ⟩0 + | ⟩1

2

H

!" ⟩,|0 (| ⟩0 + | ⟩1 ) + ⟩-|1 (| ⟩1 + | ⟩0 )
2 = , ⟩0 + - ⟩1 ⊗ | ⟩0 + | ⟩1

2
&⊗ %

| ⟩0 ⊗ | ⟩0 + | ⟩1
2

#⊗ %
, ⟩0 + - ⟩1 ⊗ | ⟩0 + | ⟩1

2 = ⟩,|0 (| ⟩0 + | ⟩1 ) + ⟩-|1 (| ⟩0 + | ⟩1 )
2

!"

( ⟩, + -)|0 + ⟩(, − -)|1
2 ⊗ | ⟩0 + | ⟩1

2

Il qubit codificato sui cammini viene preparato dalla porta ! nello stato generico: "| ⟩0 + '| ⟩1
Il qubit codificato sulla polarizzazione viene emesso nello stato | ⟩# $| ⟩%&

Quesito 1. Sviluppa i due registri congiuntamente in notazione di Dirac.

|�1�|�0�
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To achieve an entangled state, non-linear crystals are used that emit  
 
entangled photon pairs in the state        
 
 
Question B3: Insert the optical device that generates 
  

the entangled state used by Alice and Bob in the teleportation protocol  

Measurement 
 
Alice has both the qubit delivered by Charlie (first register) and the entangled one (second register) 
shared with Bob. Thus, the state controlled by Alice is the one corresponding to the first two 
registers; the third is related to Bob. 

The state immediately before the two detectors (after even the last Hadamard gate) is therefore 

Question C1: Complete the following table  

 

QUANTUM TELEPORTATION PROTOCOL

0

BBO

3

2
⟩"|1 λ/2   45°

CX0

0

1

1
⟩&|0

0,1

1,0

0,0

1,1

UV 
pump

⟩|(

| ⟩0 &| ⟩1 '
2 + | ⟩1 &| ⟩0 '

2 ⇒ | ⟩0 &| ⟩0 '
2 + | ⟩1 &| ⟩1 '

2

⟩"|1 λ/2   45°

CX0

0

1

1
⟩&|0

0,1

1,0

0,0

1,1

Alice's Qubit before 
measurement Measurement outcome Probability outcome Bob's Qubit after 

measurement

Elementarizzazione teletrasporto
| ⟩2

| ⟩0

H

| ⟩0 U | ⟩2

H

Applicando l’ultima H sul 1° registro si ha:

Esplicitiamo ora il 3° registro:

Raccogliamo rispetto ai vettori di base del 1° e del 2°:

⟩,(|0 + ⟩|1 ) ⟩0 + ⟩1 + ⟩-(|0 − ⟩|1 )(| ⟩0! + | ⟩1! )
2

1/2 ⟩,(|0 + ⟩|1 )( ⟩0 ⟩|0 + ⟩1 | ⟩1 ) + ⟩-(|0 − ⟩|1 )( ⟩0 ⟩|1 + ⟩1 ⟩|0 )

1/2 ⟩|0 ⟩|0 ,| ⟩0 + -| ⟩1 + ⟩|0 ⟩|1 ,| ⟩1 + -| ⟩0 + ⟩|1 ⟩|0 ,| ⟩0 − -| ⟩1 + ⟩|0 ⟩|1 ,| ⟩1 − -| ⟩0

Elementarizzazione teletrasporto

Se trascuriamo ciò che accade dopo la misurazione, la differenza fondamentale con il circuito
precedente è riassunta nel riquadro:
• l’aggiunta di un terzo registro che viene posto in entanglement con il secondo:

Per mostrare la sottile, ma fondamentale differenza con il caso precedente, useremo la seguente
notazione:

| ⟩0 | ⟩1 + | ⟩1 | ⟩0
2

| ⟩2

| ⟩0

H

| ⟩0 U | ⟩2

H

| ⟩0 := | ⟩0 | ⟩0

| ⟩1 := | ⟩1 | ⟩1

| ⟩0′ := | ⟩0 | ⟩1

| ⟩1′ := | ⟩1 | ⟩0
Lo stato sul 2° e 3° registro dopo la prima CX
può essere scritto come: | ⟩# $| ⟩%

&
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Correction 

The result of Alice's measurement is to collapse Bob's state into one of the four states in the last 
column of the table above.  
At this point, Alice communicates the measurement result to Bob via a classical communication 
channel.  
Depending on Alice's communication, Bob can correct his qubit to reconstruct the initial state 
shared by Charlie with Alice. 

Question D1: Complete the following table 

In this way Bob obtained the qubit prepared by Charlie. 

Question D2: A student in another class said: "Bob can get information about  instantly". Do 
you agree? Explain why.  
____________________________________________________________________ 
 
____________________________________________________________________ 

Elementarizzazione teletrasporto
| ⟩2

| ⟩0

H

| ⟩0 U | ⟩2

H

Applicando l’ultima H sul 1° registro si ha:

Esplicitiamo ora il 3° registro:

Raccogliamo rispetto ai vettori di base del 1° e del 2°:

⟩,(|0 + ⟩|1 ) ⟩0 + ⟩1 + ⟩-(|0 − ⟩|1 )(| ⟩0! + | ⟩1! )
2

1/2 ⟩,(|0 + ⟩|1 )( ⟩0 ⟩|0 + ⟩1 | ⟩1 ) + ⟩-(|0 − ⟩|1 )( ⟩0 ⟩|1 + ⟩1 ⟩|0 )

1/2 ⟩|0 ⟩|0 ,| ⟩0 + -| ⟩1 + ⟩|0 ⟩|1 ,| ⟩1 + -| ⟩0 + ⟩|1 ⟩|0 ,| ⟩0 − -| ⟩1 + ⟩|0 ⟩|1 ,| ⟩1 − -| ⟩0
Charlie's Initial Qubit Alice's bit pair after 

measurement
Bob's Qubit before 

correction U

Transformation(s) 
required for correction 

(U)

|��
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Implementation with optical devices 

Question E1: In each of the four cases, express the state possessed by Bob after Alice's 
measurement and insert, if necessary, one or more devices to realize the corrections (U). 

 
Question E2: Bob's reconstructed state is encoded in polarization while Charlie's original state 
was encoded in dual-rail. Do we deduce from this is that he was teleported? Explain. 

____________________________________________________________________

____________________________________________________________________ 

 

 

 

Figure 18. Optical circuit implementing the quantum teleportation protocol. 

An educationally significant aspect of this implementation is the possibility to emphasize the 
exclusively informational nature of quantum teleportation. Students can visualize how the 
information of one qubit encoded in the dual-rail is teleported to another photon in a different 
encoding (polarization). In addition, the generation of the desired Bell state in the second and third 
qubit (which in the optical implementation is obtained by means of different processes from those 
prescribed in the quantum circuit), and the fact that the qubit to be teleported is prepared only 
afterwards show that the circuit is a diagrammatic representation of the quantum protocol, that can 
be implemented with significant changes without affecting the final output.  

4. Conclusions 

In this article we presented a short course on quantum information and communication suitable for 
undergraduate non-physicists - for example in the context of an introductory program in quantum 
technologies available to students with diverse backgrounds -, for teacher professional development, 
and also for advanced secondary school students in vocational stages and summer schools in 
University. After preliminary testing which was performed in the academic year 2020-21 and 
produced encouraging results which will be discussed elsewhere, routine implementations in the 
aforementioned contexts will start the next year. Future developments also include engaging students 
in the experimental realization of the circuits and algorithms on an optical bench, and the development 
of an interactive computer simulation to support students’ learning. 
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Appendix C

Category theory for quantum

computation

C.0.1 Definition of category and diagrammatic representation

In this appendix we present the basic notions in category theory which appear in the con-

tinuation of the thesis. The reference to the recipe is in chapter 3. To start modelling our

recipe, we need an environment to define the ingredients and possible procedures on them.

In addition, we need to consider the possibility of operating several actions in succession:

for example we can take the guanciale, dice it and then put it in a pan. Mathematically,

what we need is objects, transformations (including identity) and sequential composition.

Definition C.1. A Category C consists of the fallowing data:

• Objects: A,B,C, ..., constituting the collection Ob(C);

• Arrows or morphisms : f, g, h, ..., constituting the collection1 Ar(C);

• a pair of mapping dom, cod : Ar(C) �! Ob(C) which to each arrow f assign its

domain and codomain. If f : A �! B we call A = dom(f) and B = cod(f).

8A,B 2 Ob(C) we define

C(A,B) := {f 2 Ar(C)|f : A �! B}

This set is the hom-set ;

1Regarding the need to refer to a collection and not to a set of objects and morphisms see [93] pag. 3
or [101] pag. 6

278
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• for any object A 2 Ob(C), a identity morphism idA : A �! A is designated;

• for any pair of morphisms f 2 C(A,B) and g 2 C(B,C), there is an arrow h 2
C(A,C) composition of f and g:

h := g � f : A �! C

These data are required to satisfy the following axioms:

Unit: 8 f 2 C(A,B), f � idA = f = idB � f ;

Associativity: 8 f 2 C(A,B), 8 g 2 C(B,C), 8 h 2 C(C,D),

(h � g) � f = h � (g � f)

A more rigorous example is that of the category Set whose objects are the sets and mor-

phisms the functions between sets. We can introduce a diagrammatic language to represent

a generic category that will be extremely useful below and is a distinctive characteristic

of the work we present2.

Following the definition, we represent the data as in Fig.C.1. Similarly, the axioms in

Figure C.1: Diagrammatic representation of data in the category C definition

Fig.C.2.

2The abstract representation has immediate interpretation both in our recipe and in the category Set
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Figure C.2: Diagrammatic representation of axioms in the category C definition

C.0.1.1 Useful notions

In this section we will introduce the fundamental definition that will be used with regard

to the notion of category. Despite their significance in Set is straightforward, their use in

the following chapters will clarify their meaning.

Definition C.2. An isomorphism in a category C is a morphism f : A �! B for which

there exists a morphism g : B �! A satisfying:

g � f = idA, and f � g = idB

Since the inverse is unique, we write g = f�1. Moreover, we will write A ⇠= B, if there

exist the isomorphism f .

An interesting aspect is that it is possible to reverse the directionality of arrows within a

category C without breaking the conditions of being a category:

Definition C.3. Given a category C, the opposite category Cop is defined such that

• Ob(Cop) = Ob(C)

• Cop(B,A) := C(A,B)

Composition and identities are received from C. The axioms are trivially satisfied.
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Another construction that will later be used to extend the category concept to the monoidal

case is that of Product Category :

Definition C.4. Given two categories C and D, their product is the category C⌦D, for

which:

• Ob(C⌦D) is a collection of pairs (A,B) of object A 2 Ob(C) and B 2 D;

• Ar(C ⌦ D) is a collection of pairs (f, g) of morphisms with f 2 C(A,C) and g 2
D(B,D)

Some basic construction will be extremely useful later. To begin with, let us consider the

notions of initial and terminal objects :

Definition C.5. An object X in a category C is

• initial if for every object A 2 Ob(C) there is exactly one morphism X �! A;

• terminal if, dually, for every object A 2 Ob(C) there is exactly one morphism

A �! X.

If a category has these structures, these are unique up to isomorphism.

In Set any 1-element set is a terminal object, and the empty set is the initial object.

Definition C.6. Given two objects A and B in a category, a product is an object P with

morphisms P
pA�! A and P

pB�! B, s.t. if X
f�! A and X

g�! B, there exists only one

morphysm u : X �! P making both triangles commute3:

X

A P B

f g
u

pA pB

A coproduct is the dual notion.

X

A P B
k1

f
u

k2

g

3
u � pA = f and u � pB = g
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In Set products are given by the Cartesian product with pa and pB the projections, and

coproducts by the disjoint union. We shall see the importance of this definition for the

possibility of determining the truth value in classical logic (and not only!) in 4.3.

We can then give the very important definition of a Cartesian Category :

Definition C.7. A category C is Cartesian if it has a terminal object and product of any

pair of object4.

One of the mottos of category theory is that morphisms are more important than objects.

A specific name for a morphism between categories is therefore to be expected.

Definition C.8. A functor F : C �! D between categories C and D, consists in a

mapping of object to object and arrows to arrows in such a way that composition and

identities are preserved. This means that:

• F(f) : F(A) �! F(B), to every f 2 C(A,B);

• F(idA) = idF(A), to every A 2 Ob(C);

• F(g � f) = F(g) � F(f), to every f 2 C(A,B) and g 2 C(B,C).

A functor F represents a way of interpreting the category C in the category D. In this

regard, one of the most frequently used possibilities is to interpret a category in Set . We

shall see in 3.10 the usefulness of this approach.

Just as there are morphisms between categories, the functors, so there are morphisms

between functors, the natural transformations:

Definition C.9. Let F,G : C �! D be functors.

A natural transformation ↵ : F) G between them, denoted

C D

F

G

↵

is a family of arrows in D indexed by objects A 2 C,

{↵A : F(A) �! G(A)}
4This definition is very important from a computational point of view because whereas the Set category

with which we describe classical systems and computation is Cartesian, Hilb in which we describe quantum
systems and quantum computation is not. This has the implication that classically there is a uniform
copying system of states, from the quantum point of view, there is not.
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in D such that for any morphism f : A �! B in C the following diagram commutes

F(A) G(A)

F(B) G(B)

↵A

F(f) G(f)

↵B

C.0.1.2 Monoidal category: definition and diagrammatic representation

Let us now continue with our recipe. So far we have focused on a single ingredient, but it

is clear that this is extremely limiting in cooking! It is clear that we want to use several

ingredients at the same time in our cooking and perform several procedures together. This

is the sense of introducing parallel composition on objects (the ingredients) and morphisms

(the procedures). In Set this is equivalent to considering ordered pairs of sets and ordered

pairs of functions, i.e. in defining the Cartesian product. Let us now come to the general

definition.

In the previous section, we defined a category basically as a quadruple C = (Ob(C), Ar(C), id, �).
This definition allows for the possibility of composing in morphisms sequentially. However,

for our purposes we also need to be able to compose objects and morphisms in parallel.

We therefore introduce the concept of monoidal category :

Definition C.10. A monoidal category consists of the fallowing data:

• a category C;

• a functor ⌦ : C⇥C �! C called tensor product ;

• an object I 2 C, called unit object ;

• a family of natural isomorphisms ↵A,B,C : (A ⌦ B) ⌦ C �! A ⌦ (B ⌦ C) for any

triplet of objects A,B,C 2 C, called associators.

• a family of natural isomorphisms �A : I ⌦A �! A for each A 2 C, colled left unitor

;

• a family of natural isomorphisms ⇢A : A ⌦ I �! A for each object A 2 C, colled

right unitor.

These data are required to satisfy the following axioms for any A,B,C,D 2 Ob(C):
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triangle equation

(A⌦ I)⌦B A⌦ (I ⌦B)

A⌦B
⇢A⌦idB

↵A,I,B

idA⌦�B

Pentagon equation

(A ⌦ (B ⌦ C)) ⌦ D A ⌦ ((B ⌦ C) ⌦ D)

((A ⌦ B) ⌦ C) ⌦ D A ⌦ (B ⌦ (C ⌦ D))

(A ⌦ B) ⌦ (C ⌦ D)

↵A,B⌦C,D

idA⌦↵B,C,D↵A,B,C⌦idD

↵A⌦B,C,D ↵A,B,C⌦D

Equivalently, but more conveniently for us, we can write

Definition C.11. A strict monoidal category is a sextuple C = (Ob(C), Ar(C), id, �,⌦, I)
consisting of the fallowing data:

• a category C;

• a functor ⌦ : C⇥C �! C called tensor product ;

• an object I 2 C, called unit object ;

These data are required to satisfy the following axioms:

unit and associativity on objects 8 A,B,C 2 C

I ⌦A ⇠= A ⇠= A⌦ I, (A⌦B)⌦ C ⇠= A⌦ (B ⌦ C)

unit and associativity on morphisms 8 f 2 C(A,B), 8 g 2 C(B,C), 8 h 2 C(C,D)

idI ⌦ f ⇠= f ⇠= f ⌦ idI , (f ⌦ g)⌦ h ⇠= f ⌦ (g ⌦ h)

interchange law 8 f1 2 C(A,B), 8 g1 2 C(B,C), 8 f2 2 C(D,E), 8 g2 2 C(E,F )

(g1 ⌦ g2) � (f1 ⌦ f2) = (g1 � f1)⌦ (g2 � f2)

If the natural isomorphisms in definition are all identities, we say that the monoidal cate-

gory is strict.
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As before, we introduce the corresponding diagrammatic language for strict monoidal

categories. Following the definition, we represent the data as in Fig.C.3

Figure C.3: Data representation in the monoidal category definition

Similarly, the axioms in Fig.C.4 and Fig.C.5

Figure C.4: Axioms representation in the monoidal category definition

Here we would like to interpret some of the elements introduced in our preparation of a

recipe and in the category Set . The unit object is used to indicate a certain preparation,

a state in which an ingredient is: we are not interested in the previous history of the

ingredient (where it was bought, whether it was put in the fridge and the like), we are

only interested in saying that on our kitchen counter we have it. The same goes for the

final outcome of our recipe: when it is finished, we are not interested in knowing what will

happen to the dish of pasta carbonara: whether it will be served at the table and eaten
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Figure C.5: Interchange law representation in the monoidal category definition

or used as a demonstration on a television programme.

With regard to Set , the unit object is the singleton set {•}, used to indicate an element

of a set:

{•} �! A

In this way an element is a morphism. We will see the importance of this definition for

the introduction of the concepts of states and e↵ects.

To finish the presentation of what will be the main categorical framework, we need to

introduce the concept of the monoidal symmetric category:

Definition C.12. A symmetric monoidal category C = (Ob(C), Ar(C), id, �,⌦, I,�) is a

monoidal category C with a natural isomorphism SWAP

� : Ob(C)⇥Ob(C) �! Ob(C)⇥Ob(C)

A⌦B 7�! B ⌦A

satisfying 8 A,B 2 Ob(C) the axioms:

• �B,A � �A,B = idA⌦B �A,I = idA;

• (g ⌦ f) � �A,C = �B,D � (f ⌦ g);

• (idB ⌦ �A,C) � (�A,B ⌦ idC) = �A,B⌦C .

Diagrammatically, the SWAP corresponds to a swap of wires and it is involutory.

In the more general case of isomorphism instead of identity in the definition we speak of

monoidal braided category.
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Let’s go to see the most important result that accounts for the strength of diagrammatic

representation in relation to theory:

Theorem C.13 (Correctness of graphical calculus for braided (symmetric) monoidal cat-

egories). A well-typed equation between morphisms in a braided monoidal category follows

from the axioms if and only if it holds in the graphical language up to spatial isotopy

(graphical equivalence).

Remark C.14. We use the notion of isotopy because we assume the diagrams lie in a cube

in the three-dimensional space: the input wires terminate in the left face and the output

in the right face. This is also called spatial isotopy (We talk about graphical equivalence

if there is a spacial isotopy and �A,B = ��1
B,A

).

What we have seen so far allows us to introduce diagrammatic representations such as

those in Fig.C.6:

Figure C.6: Circuit diagram with casual structure from left to right

As in the case of categories, we can also introduce functors between monoidal categories:

Definition C.15. A monoidal functor between the two monoidal categories

C = (Ob(C), Ar(C), idC, �,⌦C, IC) and D = (Ob(D), Ar(D), idD, �,⌦D, ID) consists of the

fallowing data:

• a functor F : C �! D;

• a morphism ✏ : idD �! F(idC)

• a set of natural transformations ↵A,B : F(x)⌦D F(y) �! F(x⌦C y), for all A,B 2 C

These data are required to satisfy the following axioms:
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unit For all A 2 C the following diagrams commute:

F(A)⌦D ID F(A) ID ⌦D F(A) F(A)

F(A)⌦D F(IC) F(A⌦C IC) F(IC)⌦D F(A) F(IC ⌦C A)

⇢
D
C(A)

idF(A)⌦D✏ F(⇢�1
A

)

�
D
F(A)

✏⌦DidF(A) F(��1
A

)

↵A,IC
↵IC,A

associativity For all objects A,B,C 2 C the following diagram commutes:

(F(A)⌦D F(B))⌦D F(C) F(A)⌦D (F(B)⌦D F(C))

F(A⌦C B)⌦D F(C) F(A)⌦D F(B ⌦C C)

F((A⌦C B)⌦C C) F(A⌦C (B ⌦C C))

↵
D
F(A),F(B),F(C)

↵A,B⌦DidF(C) idF(A)⌦D↵B,C

↵A⌦CB,C ↵A,B⌦CC

F(↵C
(A,B,C))

Definition C.16. A braided monoidal functor is a monoidal functor F : C �! D between

braided monoidal categories making the following diagram commute:

F(A)⌦D F(B) F(B)⌦D F(A)

F(A⌦C B) F(A⌦C B)

�
D
F(A),F(B)

↵A,B ↵B,A

F(�A,B)

Let us now more briefly introduce three extensions that will be fundamental to the under-

standing of the examples we will give: the ZX-calculus in the quantum domain and, more

generally, the role of hypergraph categories. The corresponding diagrammatic parts will

not be discussed in detail5.
5What we have seen so far, as we shall see in the next chapter, represents the theoretical framework for

beginning to interpret diagrams both from a physical (not only, but in our case this is what interests us)
and computational point of view. Only the frameworks of the next paragraphs will be able to give rise to
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C.0.1.3 From monoidal categories to hypergraph categories

In this section we will introduce some developments that allow monoidal theory to be

interpreted as quantum theory at least in the case of pure states. We will not go into the

details of these constructions especially from a diagrammatic point of view. For this see

[96], [92], [93].

First, briefly, the idea is that in certain situations, frequently used in computer science,

we may be interested not only in considering flows of information that go back and result

in following operations. One thinks, for example6, of backpropagation in the case of

machine learning. In this case we can consider a map n describing a neural network

and its update R(n) (see [87]) that allows parameters to change during learning. Its

diagrammatic representation will be of the type:

Figure C.7: Map and backwardsmap for backpropagation in machine learning

The concept of a compact closed monoidal category is what we need (dagger for needs

arising from physics!).

Definition C.17. A dagger monoidal category is a monoidal category C together a functor

† : C �! C such that:

1. (g � f)† = f † � g†;

2. id†
H

= idH

3. (f †)† = f

true quantum computation based on intrinsically diagrammatic syntactic rules (as we shall see in Chapter
4 when we introduce the teleportation protocol).

6This example will be used to introduce the neural network computer in chapter3
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We therefore say that it is an involutive, contravariant functor, identity on object. Fur-

thermore, the dagger structure is compatible with the monoidal structure:

a (f ⌦ g)† = f † ⌦ g†, for all f, g;

b the canonical isomorphysm ↵A,B,C ,�A, ⇢A of the monoidal structure is unitary (f † �
f = idA and f � f † = idB)

The presence of the dagger functor makes it possible to introduce the concept of adjoint,

unitary, isometry, self-adjoint and positive maps7.

The second step we take is to define the concept of dagger compact closed monoidal

category, but first we need to define the concept of a dual object8:

Definition C.18. Let be C a monoidal category:

L 2 Ob(C) is left-dual to an object R 2 Ob(C)

R 2 Ob(C) is right-dual to an object L 2 Ob(C)

if the is a unit morphism

⌘ : I �! R⌦ L

and there is a counit morphism

✏ : L⌦R �! I

making the following diagrams commute:

R

idR

✏✏

⇢R
// R⌦ I

idR⌦⌘
// R⌦ (L⌦A)

↵R,L,R

✏✏

R I ⌦R
�
�1
A

oo (R⌦ L)⌦R
✏R⌦idR

oo

L

idL

✏✏

�L
// I ⌦ L

⌘A⌦idL
// (L⌦R)⌦ L

↵
�1
L,R,L

✏✏

L L⌦ I
⇢
�1
L

oo L⌦ (R⌦ L)
idL⌦✏

oo

7In the detail of quantum theory, we can introduce bra-ket and ket-bra as a composition of morphisms.
A dagger gives a correspondence between states and e↵ects. Furthermore, the introduction of Born’s rule
to tie the measurements to probabilities is straightforward.

8This definition is the basis for a simple diagrammatic representation of Bell’s states.
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We can then give the follow definition:

Definition C.19. A strict compact9 closed category C is symmetric monoidal category

such that 8A 2 Ob(C) exist:

1. the dual object A⇤ 2 Ob(C);

2. the pair (unit and counit) ⌘A, ✏A 2 Ar(C)

⌘A : I �! A⇤ ⌦A ✏A : A⌦A⇤ �! I

which are such that the following two diagrams commute:

A

idA⌦⌘A
✏✏

idA

((

A⇤ ⌘A⌦idA⇤
//

idA⇤
))

A⇤ ⌦A⌦A⇤

idA⇤⌦✏A
✏✏

A⌦A⇤ ⌦A
✏A⌦idA

// A A⇤

A very important concept we can introduce in compact closed category is name and

coname :

Definition C.20. Le C be a compact closed category and f : A �! B a morphism. We

define:

1. name pfq : I �! A⇤ ⌦B;

2. coname xfy : A⌦B⇤ �! I

which are such that the following two diagrams commute:

I

⌘A

✏✏

pfq

((

A⌦B⇤ f⌦idB⇤
//

xfy
))

B ⌦A⇤

✏B

✏✏

A⇤ ⌦A
idA⇤⌦f

// A⇤ ⌦B I

This second step allows us to introduce the string diagrams10 as in Fig.C.8

9The adjective closed allows us to introduce the Choi-Jamiolkowsky isomorphism. In fact, for every
two object A and B in C, there is a special objects [A �! B] whose states encode morphism in C(A,B).
In particular compact closed means that [A �! B] := A

⇤ ⌦ B. The subsequent definition of name and
coname concludes the introduction to state-process duality (see [92]).

10Let us make a few observations regarding Fig.C.8: with the semicircle before f , we have highlighted
the diagrammatic representation of Bell’s states; with the closed wire around g, the concept of partial trace
in categorical quantum theory.
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Figure C.8: String diagrams with the possibility to connect all to all.

The last step we need to take is to introduce the hypergraph categories,whose string

diagrams are hypergraphs. To do this we need to introduce a Frobenius structure and the

complementarity.

We start introducing the concept of internal comonoid :

Definition C.21. Let C be a monoidal category. An internal comonoid is an object

C 2 Ob(C) together with a pair of morphims

C ⌦ C
� � C

✏�! I,

where � is the comoltiplication and ✏ the comultiplicative unit (counit), which are such

that

C �
//

�

✏✏

C⌦C

idC⌦�
✏✏

and

C

�

✏✏

'

##

'

zz

C⌦C
�⌦idC

// C⌦C⌦C I ⌦ C C⌦C
✏⌦idC

oo

idC⌦✏
// C⌦ I

commute.

The notion of internal monoid is dual to the notion of internal comonoid.

We have what we need to define the Frobenius structure11:

Definition C.22. Let C a symmetric monoidal category. A Frobenius structure in C is a

quintuple (C, µ, ⌘, �, ✏) such that:

1. (C, µ, ⌘) is an internal monoid;

2. (C, �, ✏) is an internal comonoid;

11The concept of comonoid and the Frobenius laws allows us to introduce a observable structure in a
dagger symmtric monoidal category
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3. the Frobenius laws hold: (id⌦ µ) � (� ⌦ id) = � � µ = (µ⌦ id) � (id⌦ �)

We can therefore define the concept of hypergraph category([102])

Definition C.23. Le be C a symmetric monoidal category. C is hypergraph if each object

C is equipped with a Frobenius structure (C, µ, ⌘, �, ✏) such that the Frobenius algebra

structure of any tensor product C ⌦ D is induced in the canonical way from those of C

and D.

The last concept we need introduce in this introduction to category theory is the concept

of Z⇤-algebra :

Definition C.24. A symmetric monoidal category C is a bialgebra if 8C 2 Ob(C) exist:

1. a monoid (C, µ, ⌘);

2. a comonoid (C, �, ✏);

which are such that the following diagrams commute:

C ⌦ C

�⌦�

✏✏

⌘
// C �

// C ⌦ C

C ⌦ C ⌦ C ⌦ C
id⌦�⌦id

// C ⌦ C ⌦ C ⌦ C

µ⌦µ

OO

I ⌦ I

⌘

✏✏

⌘⌦⌘

((

C ⌦ C
µ

//

✏⌦✏
((

C

✏

✏✏

C
�

// C ⌦ C I ⌦ I

and ✏ � ⌘ = idI .

Definition C.25. A Z⇤-algebra is formed by two Frobenius algebrsa such that:

1. the first diagram in the previous definition commute;

2. two algebras are compatible, i.e. µ � � = ⌘ � ✏.
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In the particular case the two classical structure form a scaled12 bialgebra each other, they

define the strong complementary13:

Figure C.9: Spider diagrams for teleportation protocol

12For the di↵erence with our definition see [132].
13The last of these constructions allows the introduction of the concept of quantum measurement with

respect to two strongly complementary observables. All these elements form the basis of the ZX calculus,
with which we will show in Chapter 4 how the teleportation protocol can be demonstrated with simple
syntactic rules on diagrams.



Appendix D

Worksheets: pictures of the tables

in Chapter 7

We include in this appendix some pictures from the Chapter 7 that require larger sizes to

facilitate reading.

Tab. 7.10
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