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Abstract

The focus of this PhD research is the theoretical study of the generation of non-

classical states of light by parametric fluorescence in integrated devices. The analyzed

quantum phenomena are spontaneous four-wave mixing (SFWM) and spontaneous

parametric down conversion (SPDC). The core idea of this research is to study sys-

tems composed of two resonators and take advantage of the possible coupling between

them, maximizing the generation efficiency of the selected nonlinear process. Here,

we present two main strategies: the strong linear coupling and the linear uncoupling.

The former exploits the interaction between two resonators that behave like two atoms

of a (photonic) molecule, by playing on the common resonances that they may have.

The latter relies on the linear uncoupling of two resonators that can interact solely

through a nonlinear interaction, with light circulating in one resonator that cannot

flows into the other. Among all the possibilities to achieve this (un)coupling, we study

two situations: one where the coupling is obtained by the use of a directional coupler

and one where it’s obtained by the use of a Mach-Zehnder interferometer. The result

of the linear uncoupling of two resonators, while maintaining the nonlinear coupling

between them, depends strongly on the type of process under consideration. We in-

vestigate both SFWM and SPDC in both kinds of coupling situation, the challenges

that can be encountered and what solutions can be used to overcome the different

problems. We see how the strong coupling strategy is best suitable to suppress non-

linear parasitic processes without compromising the generation efficiency, resulting in

a high-level of squeezing of the generated state; this platform can be used in a quan-

tum computation framework for the generation of q-bits. On the other hand, with

the linear uncoupling strategy we can obtain the independent control on the linear

properties of the two resonators, enabling the suppression of parasitic processes and

the generation of photon pairs, with a fine control on their spectral properties, in a

reconfigurable photonic chip.
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Introduction

The field of integrated photonics has become of paramount importance in the

framework of quantum technologies. Its basic idea is to encode information in a

quantum state and then exploit the main features of quantum mechanics, such as

superposition and entanglement, to perform quantum computation, quantum com-

munication, and quantum metrology. Photons are one of the best candidates to play

this role. For example, using photons as quantum bit (q-bit) allows to work at room

temperature, instead of the liquid-nitrogen temperature for superconductive q-bits,

and employing light to transmit information is more efficient with respect to electrical

signals, thanks to the ease with which light can be guided. There are many different

ways to generate a quantum state of light. For example, single molecules, Rydberg

atoms, colour centers and quantum dots are used as single photon sources. Instead,

parametric fluorescence can be exploited to generate single or multiple photon pairs

or squeezed light.

In this research, we studied the theory regarding the generation of photon pairs

through second- and third-order nonlinear processes such as spontaneous paramet-

ric down conversion (SPDC) and spontaneous four-wave mixing (SFWM). These are

nonlinear processes and lack in efficiency, because the optical nonlinear response of

most systems far from electronic transitions is very weak. Integrated structures are

thus the most convenient way to examine these phenomena, by exploiting spatial and

temporal light confinement. Depending on the process, different platforms can be

analyzed, such as Lithium Niobate for SPDC and Silicon or Silicon Nitride for what

concerns SFWM. During this research we had the chance to collaborate with several

research groups, providing the theoretical model to both study and design the most

suitable structure and to validate the theory after the experiment was performed. In

particular, we studied the generation of quantum states of light in systems composed

of two coupled resonators, where the key point is the strength of the coupling between

them. In fact, they can be strongly linearly coupled, to form a linear photonic mole-

cule, or they can be linearly uncoupled, but coupled through the nonlinear interaction,

to form a nonlinear photonic molecule. The main advantage of exploiting a molecule

is the possibility to play with the set of resonances of each resonator (the atoms

composing the molecule), adjusting the spectral position, splitting or eliminating the

wanted and unwanted resonances. This kind of flexibility is a very desirable feature
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2 Introduction

of an integrated structure that, once is fabricated, cannot be modified. Obtaining

quantum light states generation and control on chip is one of the most desired target,

for an out-of-laboratory spreading of this technology. Differently, by linearly uncou-

ple two resonators we can achieve the independent control of their linear properties,

allowing for a reconfigurable structure, that can be tuned easily thanks to electrical

heaters or electro-optical modulators.

In the first chapter of this manuscript, we recall the necessary theoretical for-

malism and retrace the derivation of the most important equations. In the second

chapter we describe the first strategy of strongly couple two resonators and in the

third chapter we address the second strategy of linearly uncouple two resonators that

still remain coupled through a nonlinear interaction. The simulations in this the-

sis were mainly performed thanks to a custom Python code that we developed and

kept on upgrading during these years of work. We used this code to simulate and

study the different structures, improving its efficiency and reliability, by comparing

the simulations with experimental data and other groups’ results. We are currently

collaborating with theoretical and experimental research groups at the University of

Toronto (CA), at Xanadu Quantum Technology in Toronto (CA), at CEA-LETI in

Grenoble (FR), at the University of Munster (GE), and at NIST in Maryland (US),

other than the one here at the University of Pavia. Our task is to provide the theo-

retical model and the best parameter for efficient designs and to perform simulations

to estimate the properties of the analyzed structures.



CHAPTER 1

Theoretical formalism

In this chapter, we review the theory necessary to face the generation of nonclas-

sical states of light in integrated structures. We discuss the quantization of the field

in an integrated device, fundamental concepts of nonlinear quantum optics and the

coupling of two resonators, to conclude with the main features of a ring resonator.

1.1. Quantization in an integrated device

The first step to describe quantum states of light is, of course, to quantize the

electromagnetic field. This goal can be achieved in several ways. To properly deal

with nonlinear optics, though, it has been shown [1] that we need to quantize the

field in terms of the displacement field D instead of the usual E, otherwise we would

get incorrect expressions for three and higher-order photon interaction terms in the

Hamiltonian describing usual nonlinear processes, such as parametric down conver-

sion, frequency conversion, and four-wave mixing. Maxwell’s equations in absence of

sources are

∂

∂t
B(r, t) = −∇×E(r, t) ,

∂

∂t
D(r, t) = ∇×H(r, t) ,

∇ ·B(r, t) = 0 ,

∇ ·D(r, t) = 0 , (1.1)

and this way of writing them also suggests that we should focus on B and D. The

first two equations can be seen as the equation of motion for the two field operators

and the last two equations as the boundary conditions. Then, we need to write E

and H in terms of D and B. In general, only non-magnetic materials are considered,

thus we use the following constitutive relations

D(r, t) = ε0εr(r)E(r, t) ,

B(r, t) = µ0H(r, t) , (1.2)

with εr(r) a position-dependent relative dielectric constant. With eqs. (1.2) we can

solve Maxwell’s equations.
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4 1. THEORETICAL FORMALISM

To quantize the field we need a set of commutators and a Hamiltonian H that

would lead to the dynamical equations of (1.1) when used in Hamilton’s equation of

motion for the operators B and D

iℏ
∂D

∂t
= [D,H] and iℏ

∂B

∂t
= [B,H] . (1.3)

The appropriate equal-time commutation relations are[
Di(r), Dj(r′)

] [
Bi(r), Bj(r′)

]
= 0 ,[

Di(r), Bj(r′)
]
= iℏϵilj

∂

∂rl
[
δ(r − r′)

]
. (1.4)

The Hamiltonian is obtained integrating the energy density, defined as

dh = E · dD +H · dB , (1.5)

over the quantization volume, resulting in

H =

∫
V

Di(r)Di(r)

2ε0εr(r)
dr +

∫
V

Bi(r)Bi(r)

2µ0
dr , (1.6)

where we used the constitutive relations (1.2).

1.1.1. Isolated resonators - Mode Expansion. In the case of an isolated

resonator, such as a ring resonator, a common strategy is to identify a set of modes

m with associated angular frequency ωm for the field operators. To do so, we solve

the linear Maxwell equations written in terms of D and B, thanks to (1.2),

∂

∂t
B(r, t) = − 1

ε0
∇×

[
D(r, t)

ε(r)

]
∂

∂t
D(r, t) =

1

µ0
∇×B(r, t) , (1.7)

which lead to the master equation

Θ(Bm(r)) =
ωm

c2
Bm(r) , (1.8)

where

Θ( ) = ∇×
[
∇× ( )

ε(r)

]
, (1.9)

is the Maxwell operator. We solve (1.7) by looking for stationary solutions of eq.

(1.8) in the form
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D(r, t) = Dm(r)e−iωmt + c.c.

B(r, t) = Bm(r)e−iωmt + c.c. , (1.10)

where c.c. means complex conjugate. With (1.10) we find a pair of fields associated

to ωm (Dm(r),Bm(r)) . Since Maxwell operator (1.9) must be Hermitian, fields

associated with different modes are orthogonal, thus we normalize according to∫
V

E∗
m(r) ·Em(r)

ε0εr(r)
dr =

∫
V

B∗
m(r) ·Bm(r)

µ0
dr =

ℏωm

2
. (1.11)

In terms of these stationary solutions (1.10) we can write any Dm(r) and Bm(r)

fields as

D(r, t) =
∑
m

(
am(t)Dm(r) + a†m(t)D∗

m(r)
)

B(r, t) =
∑
m

(
am(t)Bm(r) + a†m(t)B∗

m(r)
)
, (1.12)

where am and a†m are the usual ladder operators for the mode m, that satisfy the

commutation rules[
am(t), am′(t)

]
= 0[

am(t), a†m′(t)
]
= δmm′ . (1.13)

Substituting eq (1.12) in (1.6) with the use of (1.11), we get

HL =
∑
m

ℏωm

(
a†m(t)am(t) +

1

2

)
, (1.14)

which is the well known linear Hamiltonian written in terms of ladder operators.

This Hamiltonian does not depend on time, since the phases of the ladders operators

cancel out.

1.1.2. Asymptotic fields. In this work, we will deal with general integrated

structures with more than one optical element, that are more complex with respect

to the standard ring resonator. We thus adopt the strategy of using the formalism of

the so called asymptotic fields [2, 3]. Instead of expanding the fields as in (1.12), we

use these particular stationary solutions of Maxwell equations as a basis to build the

electromagnetic field. If we consider a structure composed of an arbitrary number of

channels connected via an interaction region, as sketched in Fig. 1.1, an asymptotic-

in wavepacket consists in general of an incoming wavepacket at t → −∞ in one

channel, and outgoing fields in every channel at t→ ∞. Similarly, an asymptotic-out

wavepacket consists of a single outgoing wavepacket at t → ∞, and fields incoming

from every channel at t→ −∞.
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In this framework, we explicit the subscript k, which indicates the continuous

variable wavevector, to distinguish it from the discrete variable m which represents

the mode band where ωm,k belongs. We can write the field operators in terms of

either asymptotic-in or -out fields as

D(r, t) =
∑
X,m

∫
dkD

asy-in(out)(X)
m,k (r)a

asy-in(out)(X)
m,k (t) +H.c. ,

B(r, t) =
∑
X,m

∫
dkB

asy-in(out)(X)
m,k (r)a

asy-in(out)(X)
m,k (t) +H.c. , (1.15)

where (X) denotes the channel where the asymptotic field expansion is defined, and

aasy-in(out)(X)(k) are ladder operators which obey (1.13). The asy-out and asy-in states

are not independent, for they are linked by the complex conjugation operation

Dasy-out
m,k (r) =

[
Dasy-in

m,k (r)
]∗

,

Basy-out
m,k (r) =

[
−Basy-in

m,k (r)
]∗

. (1.16)

Due to their asymptotic behavior, the asymptotic-in expansion is a natural choice for

any incoming pump or seed field, and the asymptotic-out expansion for output fields,

such as fields generated by nonlinear processes.

As an example, in the simple case of a waveguide, as sketched in Fig. 1.2(a), if

we consider only one channel (i.e. light incoming from the left) the asymptotic-in

displacement field would be

Dasy-in,wg
m,k (r) =

√
ℏωk

4π
dm,k(x, y)e

ikz , (1.17)

where dm,k(x, y) is the displacement field distribution in the plane transverse to the

propagation direction. Instead, in the case of a single ring resonator (Fig. 1.2(b)),

Figure 1.1. Sketch of the system’s interaction region with four channels.
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Figure 1.2. (a) Sketch of a channel waveguide and (b) of a ring resonator.

we would have

Dasy-in,ring
m,k (r) =

√
ℏωk

4π
dm,k(r⊥)fke

ikζ , (1.18)

where fk is the field enhancement inside the ring, r⊥ and ζ are the transverse and

longitudinal coordinates along the ring, respectively.

A subtle point in this framework is taking into account for losses. Even if absorp-

tion losses can be neglected, in a realistic system scattering losses should be included.

Here the problem is how to calculate the asymptotic fields in the presence of such

losses. The solution of modelling the structure using finite-difference-time-domain

(FDTD) is impractical for large systems, for it would require a detailed description of

the structure at the nanometer level. The effect of scattering is a decrease in the field

intensity as light propagates both through a waveguide or inside a resonator. This

loss can be modelled as an effective absorption [4]. A common way to describe this

kind of absorption consists of introducing a complex wavevector k̃. For asymptotic-in

states we have

k̃in = k + i
ξ

2
, (1.19)

where k is the usual wavevector and ξ brings into effect the field intensity decay due

to the propagation losses. For asymptotic-out states we have

k̃out = k − i
ξ

2
, (1.20)

where we see that k̃out = [k̃in]
∗. This strategy allows for a straightforward imple-

mentation of the losses inside the theoretical model that can be easily include in any

numerical code.

1.2. Parametric Fluorescence

Parametric fluorescence is one of the various nonlinear effects that arise when the

response of the polarization of a medium is non linear in the electric field. When light

interacts with a medium, to describe the fields we have to include the polarization
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field P (r, t) in the definition of the constitutive relations (1.2) to get the general form

D(r, t) = ε0E(r, t) + P (r, t) . (1.21)

Since the magnetic response can be neglected, we focus only on the electric contri-

bution. To describe this effect, we consider the limit of a small nonlinear response of

the medium and expand P (r, t) in terms of E(r, t) as

P i(r, t) = ε0χ
(1)
ij (r)Ej(r, t) + ε0χ

(2)
ijl (r)E

j(r, t)El(r, t)

+ εχ
(2)
ijlm(r)Ej(r, t)El(r, t)Em(r, t) + ... , (1.22)

where i, j, l,m are the Cartesian components, that are to be summed over if repeated,

and χ(n) is the n-th order of the susceptibility tensor. We broke the expansion at the

third order because we are interested in studying second- and third-order nonlinear

phenomena, neglecting higher order terms. Since our choice of fundamental field was

the displacement field, we use (1.21) to include (1.22) and write

Di(r, t) = ε0E
i(r, t) + ε0χ

(1)
ij (r)Ej(r, t) + ε0χ

(2)
ijl (r)E

j(r, t)El(r, t)

+ εχ
(3)
ijlm(r)Ej(r, t)El(r, t)Em(r, t)

= ε0

[
εr(r)E

i(r, t) + χ
(2)
ijl (r)E

j(r, t)El(r, t)

+χ
(3)
ijlm(r)Ej(r, t)El(r, t)Em(r, t)

]
, (1.23)

where we wrote

εr(r)E
i(r, t) = Ei(r, t) + χ

(1)
ij (r)Ej(r, t) . (1.24)

Then, we use (1.23) to find the expression for the i-th component of the electric field

Ei(r, t) =
Dj(r, t)

ε0εr(r)
−
χ
(2)
ijl (r)

εr(r)
Ej(r, t)El(r, t)

−
χ
(3)
ijlm(r)

εr(r)
Ej(r, t)El(r, t)Em(r, t) . (1.25)

For any other component Ep(r, t), with p = j, l,m, we can use the linear relation

Ep(r, t) = Dp(r, t)/ (ε0εr(r)) to write the electric field Ei(r, t) in terms of D(r, t) as
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Ei(r, t) =
Di(r, t)

ε0εr(r)
−
χ
(2)
ijl (r)

ε20ε
2
r(r)

Dj(r, t)Dl(r, t)

−
χ
(3)
ijlm(r)

ε30ε
3
r(r)

Dj(r, t)Dl(r, t)Dm(r, t) , (1.26)

and finally

Ei(r, t) =
1

ε0

[
Di(r, t)

εr(r)
− Γ

(2)
ijl (r)D

j(r, t)Dl(r, t)

−Γ
(3)
ijlm(r)Dj(r, t)Dl(r, t)Dm(r, t)

]
, (1.27)

with

Γ
(2)
ijl (r) =

χ
(2)
ijl (r)

ε0ε3r(r)
and Γ

(3)
ijlm(r) =

χ
(3)
ijlm(r)

ε20ε
4
r(r)

, (1.28)

where we neglected cascaded second-order nonlinear contributions to the third-order

nonlinearity. Using (1.27) in eq. (1.5), we find the total Hamiltonian

H(t) = HL +HNL(t) , (1.29)

where HL is the linear Hamiltonian of equation (1.6) and

HNL =− 1

3ε0

∫
Γ
(2)
ijl (r)D

i(r, t)Dj(r, t)Dl(r, t)dr

− 1

4ε0

∫
Γ
(3)
ijlm(r)Di(r, t)Dj(r, t)Dl(r, t)Dm(r, t)dr (1.30)

is the nonlinear part of the full Hamiltonian, fundamental to study nonlinear phenom-

ena. From the nonlinear Hamiltonian (1.30) we can write the state of the generated

photons in a channel waveguide due to an exciting pump pulse as the two-mode

squeezed vacuum

|ψII⟩ = e

(
βC†

II−H.c.
)
|vac⟩ , (1.31)

where |β|2 can be seen as the probability of generating the photon pair and

C†
II =

1√
2

∫
dk1dk2ϕ(k1, k2)a

†
S,k1

a†I,k1 (1.32)

is an operator, such that C†
II |vac⟩ is a normalized two-photon state, where a†S,k is the

signal creation operator and a†I,k is the idler creation operator, and ϕ(k1, k2) is the

biphoton wavefunction, which is unique for each process. We will work in the limit
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of small probability of photon pairs generation, |β|2 ≪ 1, and thus expand eq. (1.31)

in

|ψII⟩ ≈ |vac⟩+ βC†
II |vac⟩ . (1.33)

The number of generated pairs of a nonlinear process is obtained from the biphoton

wavefunction ϕ(k1, k2): the modulus square of this quantity represents the probability

density of generating a pair of photon with wavevectors k1 and k2. Two of the most

exploited processes among parametric fluorescence are spontaneous parametric down

conversion (SPDC) and spontaneous four-wave mixing (SFWM). These are the two

processes that we will investigate in this work.

1.2.1. SPDC. Spontaneous parametric down conversion (SPDC), see Fig. 1.3,

is a second order nonlinear interaction which involves three photons and can be viewed

as the spontaneous decay of one photon at higher energy into two photons at smaller

energies. These three photons are historically called pump (the pumping photon),

signal and idler (the generated photons). For energy and momentum conservation

(also called phase matching condition) to be satisfied, equationsωP = ωS + ωI

kP = kS + kI

must hold, where

|k| = ω

c
neff(ω) (1.34)

is the wavevector, with neff(ω) the effective refractive index. The indices P, S, I refer

to pump, signal, and idler, respectively, and this notation will be use throughout the

work.

The most common material platforms that naturally possess second-order non-

linear response are standard III-V semiconductors alloys, such as AlN [5, 6], GaN

Figure 1.3. Schematic representation of (a) SPDC by a χ(2) medium (e.g. Lithium Niobate) and
(b) frequencies involved in the process.
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[7], GaAs [8, 9], AlGaAs [10] and GaP [11], thanks to their high χ(2) tensor compo-

nents, with typical values ranging from 0.01 pm/V up to 600 pm/V [12] and emerging

material such as Lithium Niobate (LiNbO3) [13, 14] which possesses both second-

and third-order nonlinear responses and is particularly appealing for the integration

of optical modulators [15]. Despite their drawbacks, such as fabrication complexity,

device capability and cost, a great effort is being put into the development of these

platforms.

The goal is to calculate the pair generation and, to do so, we need the expression

of the biphoton wavefunction ϕ(k1, k2) that appears in (1.32). We can calculate it

following a backward Heisenberg picture approach [16]. We start from the nonlinear

Hamiltonian related to second-order nonlinear interaction

HNL(t) =− 1

3ε0

∫
dr Γ

(2)
ijl (r)D

i(r, t)Dj(r, t)Dl(r, t) (1.35)

and restrict to the SPDC process considering only terms associated with down con-

version of photons, in the framework of the asymptotic field formalism, obtaining

HSPDC(t) = −
∫
dk1 dk2 dk3 J(k1, k2, k3)a

†
S,k1

(t)a†I,k2(t)aP,k3(t) + H.c. ,

(1.36)

that is the Hamiltonian that will drive the evolution of the asymptotic state, where

J(k1, k2, k3) =
1

ε0

∫
dr Γ

(2)
ijl (r)[D

out
S,k1(r)]

∗[Dout
I,k2(r)]

∗Din
P,k3(r) (1.37)

is the overlap integral of the asymptotic fields involved in the process; this quantity de-

pends on the geometry of the structure under consideration. Following this approach,

we obtain, from equation (1.32), the expression for the biphoton wavefunction

ϕSPDC(k1, k2) =
2π

√
2α

β

i

ℏ

∫
dk3 ϕP (k3)J(k1, k2, k3)

× δ(ωP,k3 − ωS,k1 − ωI,k2) , (1.38)

where |α|2 is the expected number of photons in the input pulse and ϕP (k) is the pulse

shape. The Dirac delta function expresses the energy conservation of the process, by

setting ωP,k = ωS,k1 + ωI,k2 .
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We can move from a wavevector notation to a frequency notation defining

am,ω =

√
1

vg,m(ω)
am,k , (1.39)

ϕP (ω3) =

√
1

vg,P (ω3)
ϕP (k3) , (1.40)

ϕ(ω1, ω2) =

√
1

vg,S(ω1)vg,I(ω2)
ϕ(k1, k2) (1.41)

where, for every m = P, S, I, vg,m(ω3) = dωm
dkm

is the group velocity of the mode

m. The prefactors ensure canonical commutation relations for (1.39) and the proper

normalization conditions for (1.40) and (1.41)

∫
|ϕP (ω3)| dω3 = 1 , (1.42)∫
dω1

∫
dω2 |ϕ(ω1, ω2)| = 1 . (1.43)

Thus, we obtain for the biphoton wavefunction

ϕSPDC(ω1, ω2) =
2π

√
2α

β

i

ℏ

√
1

vg,S(ω1)vg,I(ω2)

×
∫
dω3

1

vg,P (ω3)
ϕP (ω3)J(ω1, ω2, ω3)δ(ω3 − ω1 − ω2) ,

(1.44)

where the integral over ω3 can be solved thanks to the delta function, resulting in

ϕSPDC(ω1, ω2) =
2π

√
2α

β

i

ℏ

√
1

vg,S(ω1)vg,I(ω2)vg,P (ω1 + ω2)

×ϕP (ω1 + ω2)J(ω1, ω2, ω1 + ω2) . (1.45)

From equation (1.45), applying the normalization condition (1.43), we can calculate

the number of pairs generated per pulse |β|2 as

|βSPDC|2 =
8π2|α|2

ℏ2

∫
dω1dω2

1

(vg,S(ω1)vg,I(ω2)vg,P (ω1 + ω2))

× |ϕP (ω1 + ω2)|2 |J(ω1, ω2, ω1 + ω2)|2 . (1.46)

1.2.2. SFWM. On the other hand, spontaneous four-wave mixing (SFWM), see

Fig. 1.4, is a third order nonlinear process which can be represented as the elastic



1.2. PARAMETRIC FLUORESCENCE 13

Figure 1.4. Schematic representation of (a) SFWM by a χ(3) medium (e.g. Silicon) and (b) fre-
quencies involved in the process.

scattering between two photons into two other photons at different energies. Here,

four photons are involved: two pump photons, one signal and one idler. In both cases

energy and momentum conservation must be satisfied; for SFWM it holds

2ωP = ωS + ωI

2kP = kS + kI

, (1.47)

with k defined in (1.34). The platforms commonly employed for third-order non-

linear processes are Silicon [17], Silicon Nitride (Si3N4) [18], Silica (SiO2) [19], and

Hydex [15]. These materials are characterized by high values of χ(3) components, of

the order of 102 pm2/V2 up to 105 pm2/V2 [20], with almost negligible χ(2), due to

their centrosymmetric (invariant to an inversion symmetry transformation) or amor-

phous structure. However, it is possible to induce effective χ(2) in silicon photonic

materials, for example by symmetry-breaking mediated by an externally applied elec-

tric field [21], intrinsic symmetry-breaking at a (SiO2) interface [22], and all-optical

poling of (Si3N4) [23]. The biggest advantage when working with Silicon photon-

ics is the compatibility with the modern complementary-metal-oxide-semiconductor

(CMOS) technology, which allows for an easier fabrication process and a dramatic

cost reduction.

The nonlinear Hamiltonian to be considered here is

HNL(t) =− 1

4ε0

∫
dr Γ

(3)
ijlm(r)Di(r, t)Dj(r, t)Dl(r, t)Dm(r, t) , (1.48)

that can be rewritten in a form that describes only the four wave mixing process [24],

considering only operators that destroy two pump photons and create the signal and

idler photons, as
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HSFWM(t) = −
∫
dk1 dk2 dk3 dk4 J(k1, k2, k3, k4)×

a†S,k1(t)a
†
I,k2

(t)aP,k3(t)aP,k4(t) , (1.49)

where

J(k1, k2, k3, k4) =
3

2ε0

∫
dr Γ

(3)
ijlm(r)[Dout

S,k1(r)]
∗[Dout

I,k2(r)]
∗Din

P,k3(r)D
in
P,k4(r).

(1.50)

Following a similar procedure as done for the SPDC case, we obtain for the biphoton

wavefunction

ϕSFWM(k1, k2) =
2π

√
2α2

β

i

ℏ

∫
dk3 dk4 ϕP (k3)ϕP (k4)J(k1, k2, k3, k4)

× δ(ωP,k4 + ωP,k3 − ωS,k1 − ωI,k2) , (1.51)

and, in the angular frequency domain, after computing the integral with the delta

function,

ϕSFWM(ω1, ω2) =
2π

√
2α2

β

i

ℏ

√
1

vg,S(ω1) vg,I(ω2)

∫
dω3 ϕP (ω1 + ω2 − ω3)

× ϕP (ω3)

√
1

vg,P (ω3)vg,P (ω1 + ω2 − ω3)
J(ω1, ω2, ω3, ω1 + ω2 − ω3) , (1.52)

which gives the number of generated pairs per pulse

|βSFWM|2 = 8π2|α|2

ℏ2

∫
dω1 dω2

1

vg,S(ω1) vg,I(ω2)

∣∣∣∣∫ dω3 ϕP (ω1 + ω2 − ω3)

× ϕP (ω3)

√
1

vg,P (ω3)vg,P (ω1 + ω2 − ω3)
J(ω1, ω2, ω3, ω1 + ω2 − ω3)

∣∣∣∣∣
2

.

(1.53)

In order to practically calculate the number of generated pairs, we have to dive

into the overlap integral expressions (1.37) and (1.50) which contain the field involved

in the processes. These fields strongly depend on the framework in which one is

studying the nonlinear phenomena. As a matter of fact, due to the nonlinear nature

itself, the generation of photon pairs in bulk systems is quite low. We can try to

give an estimate of such a generation efficiency using a simplified expression for the

generated photon power [25], in this case the idler,
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PI =
ℏωP

T
(γNLPPL)

2 , (1.54)

with γNL the nonlinear power factor, defined as

γNL =
n2ωP

cAeff
, (1.55)

where PP is the pump power, L is the length of the sample, Aeff is the effective area,

which can be thought as the focusing area, n2 is the nonlinear refractive index of the

material and T is the generation bandwidth time, defined as

T =
2π∫

ωP

0

[
1−

(
Ω
ωP

)2]
sinc2(∆kL

2 ) dΩ

, (1.56)

where Ω = ω − ωP indicates positive detuning from the pump and ∆k = 2kP (ωP )−
kS(ωP − Ω) + kI(ωP + Ω) represents the phase matching condition. If we assume

∆k = 0 over the entire bandwidth,

T ≈ 2π∫
ωP

0

[
1−

(
Ω
ωP

)2]
dΩ

=
2π[

Ω− Ω3

3ω2
P

]ωP

0

=
3π

ωP
, (1.57)

giving

PI =
ℏω4

P

3π

(
n2PPL

cAeff

)2

. (1.58)

We are overestimating this result by neglecting any diffraction and assuming the

focusing area constant over the entire sample. Thus, if we assume a pump power PP =

1mW at ωP = 1215 rad/ps (1550 nm), a length L = 1 cm, an area Aeff = 100µm2,

and a nonlinear refractive index for Silicon n2(@1550 nm) = 5.59 × 10−18m2/W, we

get a generated power of PI = 8×10−15W, that makes this process almost impossible

to detect. It is clear that we need a strategy to increase the generation. Looking at

equation (1.58), one solution could be to take advantage of the interaction length, by

considering a very large L. This is the case of nonlinear phenomena in an optical fiber,

where light is guided for kilometers. Another solution could be to reduce the effective

area Aeff of the process, connected to the nonlinear coefficient γNL in (1.55). This can

be achieved by confining light in an integrated waveguide, which can be characterized

by an effective area of the orders of 10−2 µm. In this case, given the increase of four

orders of magnitude of γNL, the generated power would increase of eight orders of
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magnitude. Integrated circuits are thus the best way to exploit nonlinear phenomena,

since they allow for tighter modal confinement and better modal overlap, leading to

higher conversion efficiency [25]. To increase the interaction, one can also benefit from

temporal confinement; this is the case of a resonator, where light is confined in a small

volume for a long time. From the simple ring resonator to more complex structures,

resonators offer both spatial and temporal confinement as well as a well-defined set

of resonances that can be exploited in the parametric processes. Furthermore, having

the photon source directly on an integrated chip is desirable for an efficient use in

quantum-information processing [26]. In this work we will show how resonators can

be employed to generate states of light.

1.3. Main features of a ring resonators

The simplest resonator we can design is a ring resonator, like the one shown in

Fig. 1.2(b), that can be realized by bending a ridge waveguide on itself. Due to the

circular symmetry, the ring presents a set of resonances (modes) (see Fig. 1.6 and

1.7) at the frequencies that satisfy the phase condition

δ = kL = m2π , (1.59)

with m integer and L the length of the ring.

We considered chromatic dispersion (1.34), thus, if the frequency range is sharp

enough around a reference frequency ω0, we can expand the real part of the wavevector

(1.19)-(1.20) in Taylor series around that frequency

k(ω) = k0 +
1

vg
(ω − ω0) +

1

2
β2(ω − ω0)

2, (1.60)

where k0 = ω0/c neff, neff is the effective index at ω0, vg = [dω/dk]ω0 = c/ng the group

velocity, ng is the group index, and β2 = [d2k/dω2]ω0 the group velocity dispersion

(GVD). From this, we can calculate the free spectral range (FSRω), which is the

spectral distance between two consecutive resonance peaks ωm+1−ωm. If we consider

(1.59) with (1.60), by neglecting the GVD, we can write

 k0L+ L
vg
(ωm+1 − ω0) = (m+ 1)2π

k0L+ L
vg
(ωm − ω0) = m2π

, (1.61)

and subtract the two equations, obtaining

FSRω = 2π
vg
L
. (1.62)
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Figure 1.5. Schematic representation of the coupling between a bus waveguide and a ring resonator,
showing the self-coupling and cross-coupling coefficients of the point coupler and the involved fields
amplitude.

The coupling between the waveguide and the ring can be modelled by a scattering

matrix, assuming light coming from the left in the bus waveguide, that links the

incoming fields to the coupling point (f1 and f4) with outgoing fields (f2 and f3)

through the self-coupling σ and cross-coupling κ coefficients of the coupler (Fig. 1.5),

as

(
f2

f3

)
= X

(
f1

f4

)
(1.63)

where X is the scattering matrix that can be written as

X =

(
σ iκ

iκ σ

)
(1.64)

with the the coupler is assumed lossless with (σ, κ) ∈ [0, 1] and hence yielding σ2+κ2 =

1 [12, 27]. We can write the expression for

f4 = f3e
ik̃L = f3ae

iδ , (1.65)

where 1− a = 1− e−ξL is the round-trip loss and δ = kL is the phase acquired in a

round-trip, and obtain the system associated to (1.63)


f2 = σf1 + iκf4

f3 = iκf1 + σf4

f4 = f3ae
iδ .

(1.66)
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From this system we can obtain the complex transmission coefficient

t =
f2
f1

=
σ − aeiδ

1− σaeiδ
. (1.67)

In Fig. 1.6(a) we plot the transmittance T = |t|2 as a function of k. It is straightfor-

ward to see that if there are no scattering losses (ξ = 0) the transmittance is T = 1,

thus the ring is behaving like an all-pass filter; instead, if a = σ, at the resonance

condition the transmission drops to zero (Fig. 1.6(b)). This last regime is called

critical coupling, when all the energy flowing from the waveguide into the resonator

does not couple out anymore.

From (1.66) we can also calculate the field enhancement of the ring resonator

FE =
f4
f1

=
iκ

1− σaeiδ
, (1.68)

which corresponds to the intensity enhancement

|FE|2 = κ2

1 + σ2a2 − 2σa cos(δ)
. (1.69)

This quantity is plotted in Fig. 1.7(a) as a function of the angular frequency. If we

neglect the GVD in the δ expansion around the resonance frequency ωm, we can write

cos (k(ω)L) ≈ cos

(
k(ωm)L+

L

vg
(ω − ωm)

)
= 1− 1

2

(
L

vg

)2

(ω − ωm)2 ,

(1.70)

since k(ω0)L = m2π, that leads to the expression

Figure 1.6. Transmission dips of a ring resonator: (a) the spectral distance between two consecutive
resonances is the FSR; (b) at the critical coupling condition (σ = a) the on-resonance transmission
drops to zero.
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Figure 1.7. Intensity enhancement of a ring resonator: (a) comb of equally-spaced resonances and
(b) zoom on a single Lorentzian-shaped resonance.

|FEm(ω)|2 = κ2

1 + σ2a2 − 2σa+ σa
(

L
vg

)2
(ω − ωm)2

=

1− σ2

(1− σa)2 + σa( L
vg
)2(ω − ωm)2

. (1.71)

The maximum of the intensity is reached on resonance, when ω = ωm, becoming

|FE(max)|2 =
1− σ2

(1− σa)2
. (1.72)

From this, we can calculate the full width at half maximum (FWHM) Γm of the m-th

resonance by setting |FEm(ω)|2 = |FE(max)|2/2 at (ω − ωm) = Γm/2, giving

∣∣∣∣FEm(ωm +
Γm

2
)

∣∣∣∣2 = 1− σ2

(1− σa)2 + σa( L
vg
)2(Γm

2 )2
=

1− σ2

2(1− σa)2
, (1.73)

which results in

Γm =
2(1− σa)vg√

σaL
. (1.74)

We notice that we can write equation (1.71) as

|FEm(ω)|2 = |FE(max)|2
Γ2
m
4

Γ2
m
4 + (ω − ωm)2

, (1.75)

with |FE(max)|2 given by (1.72), which tells us that the resonances in Fig.1.7 follow a

Lorentzian shape (Fig. 1.7(b)).
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Equation (1.74) allows us to write the expression for the quality factor Q of the

ring resonator, that represents the number of cycles the light travels in the ring

before the energy is reduced by a factor 1/e. It gives an estimate of how long energy

flows inside the ring before being coupled out or lost. Therefore, we can consider

an intrinsic quality factor QI that depends only on the losses inside the ring, and a

coupling quality factor QC that takes into account exclusively the energy loss due to

the coupling with the bus waveguide. The total quality factor, called loaded quality

factor QL, is then

1

QL
=

1

QI
+

1

QC
, (1.76)

and it is defined by

QL =
ωm

Γm
=

√
σaLωm

2(1− σa)vg
, (1.77)

where ωm and Γm are quantities that can be easily extracted from a transmission

spectrum.

An important parameter for a resonator is the finesse F . This quantity is defined

as

F =
2πFSR

Γm
=

π
√
σa

(1− σa)
, (1.78)

and links the width of a resonance with its distance from the subsequent one. We can

study the system in the high-finesse regime, σa ≈ 1, and try to link this quantity with

the maximum intensity enhancement (1.72). First, we consider the case of negligible

losses (a = 1) and write

F ≈ π

1− σ
, (1.79)

|FE(max)|2 ≈
1 + σ

1− σ
≈ 2

1− σ
, (1.80)

and by comparing these two equations we get

|FE(max)|2 ≃
2

π
F . (1.81)

Instead, if we consider the critical coupling regime (σ = a), we can write

F ≈ π

1− σ2
, (1.82)

|FE(max)|2 ≈
1− σ2

(1− σ2)2
≈ 1

1− σ2
, (1.83)
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and thus get

|FE(max)|2 ≃
1

π
F . (1.84)

The finesse is a significant parameter of a ring resonator because from a very simple

measurement of the FSR and of the FWHM it is possible to acquire information about

the field enhancement, a far more hidden quantity that cannot be measured directly

in an experiment. Among integrated sources, ring resonators have been widely used,

for they are compatible with open-fab industrial production, they have a small foot-

print, they can provide high generation rates thanks to large field enhancements and

they are naturally characterized by a resonance comb, which can be exploited to guar-

antee energy conservation in resonant parametric processes [28–30]. Ring resonators

applications vary from signal processing to optical sensing [31]. These resonators are

excellent for on-chip integrated optics [32] and are already used in commercial devices

[17, 18].

The simplicity of ring resonators is one of their biggest advantage, but also one

of their limits. Despite the numerous properties that we mentioned before, there are

some issues that sometimes cannot be overcome. For example, so far we neglected

dispersion effect by assuming null GVD, though, it is necessary to understand what

effect might be produced. If β2 > 0 we are in the so-called normal dispersion regime,

while if β2 < 0 we are in the regime of anomalous dispersion. The effect of such

dispersion is sketched in Fig. 1.8 and it causes an uneven shift of the resonances

at different frequencies. It is clear that if we seek for equally-spaced resonances to

satisfy energy conservation, GVD can deteriorate the nonlinear process. We can try

to compensate for this effect with dispersion engineering by adjusting the geometry

of the waveguide, but the tunability is limited.

Figure 1.8. (a) Normal and (b) anomalous dispersion regimes. The spectra affected by the GVD
(solid black lines) are compared with those where β2 = 0 (dashed grey lines). The effect is exagger-
ated.
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Figure 1.9. (a) Kerr effect on a temporal pulse; the result is the so-called chirped pulse. (b) Effect
of SPM and XPM on the resonances of a ring. SPM acts only on the pump resonance, resulting in
a smaller detuning with respect to the other resonances.

Another problem may arise from the power injected in the system. If it’s high

enough, the nonlinear Kerr effect, related to the third order nonlinearity, starts to

play, modifying the refractive index differently for different resonances (Fig 1.9(a)).

In particular, the effect of self-phase modulation (SPM) and cross-phase modulation

(XPM)[33] detunes the pump resonance with respect to the other resonances, prevent-

ing the energy matching condition (Fig 1.9(b)). This means that, when employing a

standard ring resonator, one should design the system taking into account the power

at which it will eventually work, for example working in an anomalous dispersion

regime to compensate Kerr effect at the target power.

1.3.1. Dispersion tolerance in a ring resonator. In a ring resonator, where

dispersion engineering is limited, we must consider a trade-off between the quality

factor of the resonator, which determines the linewidth of the resonances, and the

generation bandwidth, for spectrally distant resonances will more likely fall out of

phase matching.

Lets consider SP-SFWM as an example. The phase mismatch, due to dispersion,

is ∆kdisp = k(ωI)+k(ωS)−2k(ωP ). Since we consider an expansion of the wavevector

up to the second order (1.60), we get ∆kdisp = β2(ωI−ωP )
2, where we used ωI+ωS =

2ωP . From this value we can define a coherence length

Lcoh =
π

∆kdisp
=

π

β2Ω2
gen

, (1.85)

where

Ωgen = ωI − ωP > 0 (1.86)
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Figure 1.10. (a) Ring resonator spectrum affected by normal dispersion (the effect is exaggerated).
(b) Tolerance between the wavevector HWHM δk/2 and the phase mismatch due to dispersion ∆kdisp.

is the generation bandwidth, that is the maximum spectral distance between idler (or

signal) photon where the phase matching condition is satisfied. The phase mismatch

must be

∆kdisp <
δk

2
, (1.87)

where δk = ΓI/(vg) is the wavenumber FWHM of the resonance (see Fig. 1.10).

From (1.85) we can calculate the condition the coherence length must follow to

get an efficient conversion process

Lcoh >
2π

δk
=

2πvg
ωI

QI = 2πvgτdwell , (1.88)

where we stood out the dependence on the quality factor QI and on the dwelling time

τdwell, i.e. the mean time a photon spends inside the resonator before exiting, of the

resonator. As we can expect, the higher the quality factor, and thus the higher the

dwelling time, the higher must be the coherence length. We can also rewrite equation

(1.88) using (1.85) to highlight the condition over the bandwidth Ωgen as

Ω2
gen <

ΓI

2vgβ2
=

ωI

2vgβ2QI
. (1.89)

@ 1550 nm vg (µm/ps) β2 (ps2/µm) QI Ωgen (rad/ps)

Si ≈ 100 ≈ 1× 10−8 ≈ 105 ≈ 80
Si3N4 ≈ 150 ≈ 1× 10−7 ≈ 105 ≈ 20
LiNbO3 ≈ 120 ≈ 1× 10−8 ≈ 105 ≈ 70

Table 1.1. Generation bandwidth Ωgen comparison and typical group velocities vg, GVDs β2 and
quality factors QI values of most common platforms, at telecom wavelength λ = 1550 nm.
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In table 1.1 we show some value of the generation bandwidth for typical quantities

of the most common platforms, at the fixed angular frequency ωI = 1215 rad/ps

(1550 nm).

In conclusion, ring resonators are the best way to exploit nonlinear processes in

integrated structures, but within certain limitations. Some unwanted effects can be

detrimental for the desired process and thus require a different approach. This is the

focus of our work, where we study solutions to engineer the resonances to overcome

these problems. The idea is to take advantage of the interaction between two different

resonators that share a common spatial region.

1.4. Towards practical implementation

Ring resonators are practical and efficient platforms, but their simplicity may lead

to some limitations. One example can be the coupling of the light from an external

bus waveguide into the resonator. In fact, we modelled the coupling through a point

coupler where light transfer happens, by definition, in a point. This sometimes isn’t

a good approximation, for the coupling of well confined modes can take place only

over a finite distance. In fact, due to the limited fabrication resolution, the waveguide

and the ring could not be closer than a few hundreds of nanometers. The natural

solution is to move from a ring resonator to a racetrack resonator, as the one sketched

in Fig. 1.11, where the coupling with an external waveguide can easily happen along

the straight part of the resonator. The coupling region of length Lcp can be treated

as a coupler with effective coefficients σ and κ.

However, this solution does not solve another limitation that we may encounter

when dealing with integrated structure, that is the increase of the losses in the tran-

sition from a straight waveguide to a bent region of a resonator. There, the mode

profile is modified as it experiences a centrifugal-like force, see Fig. 1.12, that moves

Figure 1.11. Sketch of a racetrack resonator and representation of the coupling with the bus waveg-
uide through a finite-length coupler.
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Figure 1.12. Simulated mode profile [34] of a field propagating (a) in a straight waveguide and (b)
in a bent waveguide.

the mode towards the edge of the waveguide. This abrupt change in the mode profile

may lead to intermodal coupling, especially in the case of a multimode waveguide,

that can be detrimental for high quality factor resonators. We addressed this problem

by studying the Bezier curve [35], a particular kind of bend than allows for a gentler

transition from the straight arm to the bend with respect to a standard circumfer-

ence arc, thanks to a variable curvature radius. A cubic Bezier curve is defined by

the parametric equation

B(t) = (1− t)3P1 + 3t(1− t)2P2 + 3t2(1− t)P3 + t3P4 , (1.90)

Figure 1.13. Comparison between a standard semi-circumference of radius R = 60µm and a cubic
Bezier curve define by the control points P1 = (0, 0), P2 = (2R, 0), P3 = (2R, 2R), and P4 = (0, 2R).
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where t ∈ [0, 1] is the curve parameter and P1, P2, P3, and P4 are the control points.

In Fig. 1.13 we compare the Bezier curve (black line), defined by four points at

the vertices of a square, with a standard semi-circumference (red line). We can see

that in points P1 and P4 the curvature radius is larger with respect to that of the

semi-circumference, allowing for a smooth transition. In particular, this Bezier curve

is designed such that the curvature radius in points P1 and P4 tends to infinity and

decreases until the minimum value of Rmin ≈ 0.75R where the tangent to the curve

is vertical. In the example in Fig. 1.13 we have R = 60µm and Rmin ≈ 45µm. We

stress that Rmin is smaller than the radius R of the simple circumference, thus, when

designing such a structure, this feature has to be considered. One can avoid this issue

by designing a more complex curve, composed of different Bezier arcs, but we did not

address this problem in this work.

If we consider the coupler we discussed for the racetrack resonator with circular

curves, usually the coupling (κ) is taken to be zero in the bent region. Instead, when

designing the Bezier curve we have to consider a non-zero coupling that decreases

with the increasing of the banding radius. We studied a model, sketched in Fig.

1.14, to simulate such a coupling, by dividing the Bezier curve in N short segments

and considering N short directional couplers (DCs) with different gaps gi, and thus

different coupling constants κi, from the minimum value of the actual DC gap gDC

up to the maximum gap gmax after which the coupling can be considered negligible.

The relevant features of the Bezier arc that contributes to the coupling are shown in

Fig. 1.15, where we represent the geometry of the arc, with its x- and y-span (panel

(a)) and the value of the gap as a function of the x coordinate (panel (b)).

The general properties of a DC will be detailed in chapter 3, since for this model

we only need to associate to each coupler a scattering matrix Si defined as

Si =

[
cos(κiLi) −i sin(κiLi)

−i sin(κiLi) cos(κiLi)

]
, (1.91)

Figure 1.14. Sketch of the model for the effective coupling between two Bezier curves. The arcs are
divided in N segments each of length Li and gap gi from the minimum value gDC to the maximum
value of gmax.
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Figure 1.15. (a) Bezier arc x-span = 24.9µm and y-span = 1.9µm, determined by setting y-limit =
gmax − gDC, where the maximum gap is gmax = 2µm and the minimum gap is gDC = 0.1µm. (b)
Plot of the gap between the waveguides for increasing x coordinate.

where Li is the length of the ith coupler, determined by dividing the x-span of the

Bezier arc by the number of couplers N ; hence, in this model all the Li are the

same, but the theory can be generalized by assuming different values for each DC, as

long as their sum equals the total x-span of the arc. The larger the number N , the

more accurate is the model, up to a value where it reaches convergence. The total

scattering matrix, that connects in and out fields as[
f2

f3

]
= Stot

[
f1

f4

]
, (1.92)

is given by

Stot = SN · SN−1 · · ·S1 · SDC , (1.93)

where

SDC =

[
cos(κDCLDC) −i sin(κDCLDC)

−i sin(κDCLDC) cos(κDCLDC)

]
(1.94)

is the scattering matrix describing the usual directional coupler with gap gDC, cou-

pling κDC, and length LDC. Finally, in Fig. 1.16 we compare the effective coupling κeff

calculated from the total matrix (1.93) model including the Bezier curve contribution

(black solid line) with that of the sole DC when the circumference arc is used (dashed

red line), for different lengths of the DC. At LDC = 0 is visible the contribution to

the coupling with the bus waveguide given by the sole Bezier arc.

We studied this model for a more practical implementation of an integrated plat-

form because the focus of our work is how to take advantage of the coupling between
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Figure 1.16. Comparison between the effective coupling modelled with the Bezier curve (black solid
line) and that with a standard circumference arc (dashed red line) as a function of the DC length.
The difference between the two plots at LDC = 0 is the contribution to the effective coupling from
the Bezier arc.

two resonators, and so we need to gain a deep knowledge of the limitations that one

can encounter and the technique that can be applied to overcome them to best exploit

the possible configurations.

1.5. Linear and nonlinear coupling of two resonators

We are interested in the effect of the interaction of two resonators on their reso-

nance combs. Let’s consider two ring resonators of length L1 and L2 placed close to

each other, coupled by a point coupler with coupling coefficient κ, as shown in Fig.

1.17(a). We want to study how the position of their resonances changes depending

on the coupling between them. We assume no scattering nor coupling losses. We can

identify four fields around the coupler that are connected by the linear system


f1 = f2

√
(1− κ2) + iκf3

f2 = f1e
ik(ω)L1

f3 = f4e
ik(ω)L2

f4 = iκf2 +
√

(1− κ2)f3

, (1.95)

that can be solved algebraically by finding the solution to

M(ω)f = 0 , (1.96)
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Figure 1.17. (a) Sketch of the system composed of two coupled ring resonators, with L1 = 500µm
and L2 = 300µm, respectively, and fields around the coupler. (b) Resonances position for different
values of the coupling coefficient κ. When the coupling is zero, two combs of resonances are visible,
with FSR1 and FSR2 indicated by red and blue arrows, respectively. When κ = 1, only one set of
resonances is present, with its FSR (green arrows).

where

M(ω) =


1 −

√
(1− κ2) −iκ 0

−eik(ω)L1 1 0 0

0 0 1 −eik(ω)L2

0 −iκ −
√

(1− κ2) 1

 , (1.97)

and

f =


f1

f2

f3

f4

 . (1.98)

The problem has a non-trivial solution if the determinant of the matrix is zero

(Rouché-Capelli theorem). We then look for the solutions of the problem

Det(ω) = det |M(ω)| = 0 , (1.99)

that are the normal modes of the structure.

In Fig.1.17(b), we plot the value of the coupling at the different ω that satisfy

equation (1.99). We find that, at κ = 0, two sets of resonances are clearly visible

and the FSR1 of ring 1 and FSR2 of ring 2 are indicated by red and blue arrows,

respectively. At κ = 1, only one set of resonances is visible, with an FSR, indicated

by green arrows, smaller than those of the single ring resonators. This is because,
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Figure 1.18. Schematic representation of two ring resonators that share a common region where the
nonlinear interaction can occur. The modes of ring 1 (red) and those of ring 2 (blue) are both present
in the interaction region (dotted yellow box) and are orthogonal, in the way specified in (1.101).

actually, there is only one resonator with length L1+L2. We underline that the cou-

pling between the two resonators afflicts the resonances, depending on their relative

position. In fact, resonances that are closer are shifted further with respect to those

that are more spaced. For example, the resonance around 1211 rad/ps is quite distant

from the others and hence it’s less shifted and only for high value of κ. On the other

hand, the two almost-degenerate resonances around 1214 rad/ps are immediately split

as the coupling is turned on. This is because the resonators have the same mode,

thus ∫
D∗

1(r) ·D2(r)dr ̸= 0 , (1.100)

and the linear interaction can occur. This behavior recalls the Rabi splitting [36, 37]

that takes place, for example, between two degenerate energy levels in a molecule: the

energy splitting of the levels is directly proportional to the strength of the interaction.

The length of the resonator determines the FSR and thus the recursive overlapping

of the resonances. In the example in Fig. 1.17, the ratio between L1 and L2 is 5/3,

which is reflected in five FSR1 and three FSR2 between two consecutive degenerate

resonances (e.g. around 1197 rad/ps and 1214 rad/ps). This feature can be exploited

to engineer some selected resonances of one resonator by properly designing another

one that will interact with it. This strategy is what we will investigate in the second

chapter of this work, considering the two resonators as the photonic atoms that couple

forming a photonic molecule.

The nonlinear coupling of two resonators is a more subtle subject. With this,

we mean two (or more) linearly uncoupled resonators that interact only through a
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nonlinear interaction. Thus, the question is how such a non-coupling can be achieved,

given that the usual way to linearly uncouple two resonators (as those in Fig. 1.17) is

to space them apart, but in such case, they would not interact at all. The schematic

idea is plotted in Fig. 1.18, showing that the two resonators must have a common

region (yellow dotted box) where they share their modes. These modes are orthogonal

∫
D∗

1(r) ·D2(r)dr = 0 , (1.101)

preventing light from one resonator to flow into the other, but the nonlinear overlap

integral, for example in the case of SFWM∫
Γ(3)(r)D∗

1(r)D
∗
1(r)D2(r)D2(r)dr ̸= 0 , (1.102)

is different from zero, allowing the nonlinear interaction to occur. The designing of

the uncoupler that can provide such a behavior is the topic of the third chapter of

this work.





CHAPTER 2

Squeezed Light from a Linear Photonic Molecule

In this chapter, we analyze how the linear interaction between two ring resonators

can be exploited to engineer the resonances of the composite system. If we consider

the two resonators as two atoms, we can call photonic molecule the structure com-

posed of the two interacting rings. In the field of quantum technologies, the use

of a particular nonclassical state of light, the squeezed state, has proven to be of

paramount importance. Squeezed light sources are a fundamental building block of

photonic technologies for quantum information processing. Squeezing is an essen-

tial resource for quantum sensing [38, 39] and a wide range of quantum computing

algorithms [40–42], and much effort has gone into engineering scalable implementa-

tions of such sources using integrated photonics. For applications requiring very large

numbers of components, high-index-contrast nanophotonic platforms are preferred,

as they enable large-scale integration with many hundreds or thousands of elements

on a single monolithic chip [43]. In the following we briefly recall what squeezed light

is and what technique we adopted to generate such a state of light.

2.1. Squeezing

If we consider the position and momentum operators x̂ and p̂ of an harmonic

oscillator of mass m, at the angular frequency ω, usually defined as

x̂ =

√
ℏ

2mω
(a† + a) (2.1)

and

p̂ = i

√
ℏmω
2

(a† − a) , (2.2)

the Heisenberg uncertainty principle gives

∆x̂∆p̂ ≥ ℏ
2
. (2.3)

In general, a squeezed state can be defined as a state where

33
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Figure 2.1. Schematic representation of the Wigner function (top) and of its cross section in the
x-p plane (bottom) for (a) a coherent state and (b) for a squeezed coherent state.

∆x̂ <

√
ℏ
2
or ∆p̂ <

√
ℏ
2
, (2.4)

that means the standard deviation of one conjugated variable is lower than the shot

noise limit. Mathematically, such a state is described by the unitary squeezing oper-

ator

Ŝ(s) = exp

{
1

2
s∗a2 − 1

2
s(a†)2

}
, (2.5)

where s is the complex squeezing parameter. An example is schematically pictured in

Fig. 2.1, where we compare a standard coherent state |α⟩ with a squeezed coherent

state Ŝ(s) |α⟩.
We can look at a general phase-dependent quadrature of the field operator, defined

as

aϕ(t) =
1√
2

(
eiϕa(t) + e−iϕa†(t)

)
, (2.6)

and see the effect of the squeezing on a vacuum state and on a coherent state, looking

at the temporal evolution. We compare the temporal evolution of a vacuum state with

that of a squeezed vacuum state in Fig. 2.2. The quadratures plane is represented on

the left, with two orthogonal quadratures aϕ and aϕ+π/2 and their uncertainties, while
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Figure 2.2. Schematic representation of the evolution of a state in the the x-p plane (left) and
corresponding value of the measured quadrature (right) for (a) a vacuum state and (b) for a squeezed
vacuum state. The variances and their values are highlighted in the figures.

the evolution of the quadrature aϕ in time is plotted on the right. The eigenvalues

of the quadrature operators are proportional to the electric field. In the case of a

vacuum state (Fig. 2.2(a)), we plot

⟨aϕ(t)⟩|0⟩ = ⟨0| aϕ(t) |0⟩ , (2.7)

and check that the mean value is zero and the uncertainty ⟨∆aϕ⟩std is constant, as

expected. In the case of a squeezed vacuum state (Fig. 2.2(b)), we plot

⟨aϕ(t)⟩|s⟩ = ⟨0| Ŝ†(s)aϕ(t)Ŝ(s) |0⟩ , (2.8)

and see that, while the mean value is still zero, the uncertainty changes, from a

minimum value ⟨∆aϕ⟩min to a maximum value ⟨∆aϕ⟩max, both dependent on the

squeezing parameter s. Similarly, in Fig. 2.3 are compared the temporal evolution of

a coherent state with that of a squeezed coherent state. We plot

⟨aϕ(t)⟩|α⟩ = ⟨α| aϕ(t) |α⟩ , (2.9)
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Figure 2.3. Schematic representation of the evolution of a state in the the x-p plane (left) and
corresponding value of the measured quadrature (right) for (a) a coherent state and (b) for a squeezed
coherent state. The variances and their values are highlighted in the figures.

in the case of a coherent state (Fig. 2.3(a)) and

⟨aϕ(t)⟩|sα⟩ = ⟨α| Ŝ†(s)aϕ(t)Ŝ(s) |α⟩ , (2.10)

in the case of a squeezed coherent state (Fig. 2.3(b)). The results are similar to

those of Fig. 2.2, with the same behavior of the uncertainties but with a mean value

proportional to |α|2.
The usual way to measure a squeezed state of light is through homodyne detec-

tion [44], sketched in Fig. 2.4. This setup measures the electric field, or quadrature-

operator expectation values, of the incident light as functions of the measurement

phase angle. It is a particularly important technique for the study of squeezed light,

for its sensitivity to the phase ϕ of the signal field allows unambiguous identifications

of squeezed light to be made. The light beam to be measured, the signal, is incident

on one arm of the beam splitter (BS), while the other arm carries a strong coherent

light beam, the local oscillator (LO); at the outputs of the BS there are two photode-

tectors (PDs). The quantity to be measured is the difference between the numbers
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Figure 2.4. Homodyne detection scheme. Signal and LO enter the two arms of the BS and photons
are detected by two PDs at the output ports. The phase ϕ of the LO can be tuned as preferred
thanks to a phase shifter. The measured quantity is the difference between the numbers of photons
arriving at the two detectors during the measurement time.

of photons arriving at the two detectors during the measurement time. The most

sensitive measurements are made by balanced homodyne detection, where a 50:50 BS

is used. The LO needs to be much more intense than the signal field and its effect is

to produce measurements proportional to the signal field.

By comparing the two photon state expression of eq. (1.31) with that of the

squeezing operator of eq (2.5), we find that the link between the squeezing parameter

and the number of generated pairs is

s = 2β , (2.11)

which suggests that the more efficient the pair generation is, the higher the level of

squeezing will be. Commonly, the level of squeezing is indicated by the squeeze factor

f [45], which is defined by

f = −10Log

(
⟨∆aϕ⟩2

⟨∆aϕ⟩2std

)
, (2.12)

and is expressed in dB, where ⟨∆aϕ⟩2 and ⟨∆aϕ⟩2std are the variances of the mea-

sured squeezed state and of the standard coherent or vacuum state with minimum

uncertainty, respectively. A 3 dB level of squeezing denotes that the variance of one

quadrature is half that of the non-squeezed state. When a squeezed state experiences

optical loss, it remains squeezed but the squeeze factor is reduced. Also the state’s

purity is reduced, i.e. the product of the quadrature uncertainties increases above

the minimum value. To maximize the benefit from squeezed states in applications,
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strongly squeezed states need to be generated and optical loss minimized. The first

signature of squeezed light was observed in a groundbreaking experiment using four-

wave mixing in an atomic vapor of sodium atoms [46]. In bulk systems, the current

record level of squeezing is 15 dB [47]. It would be desirable, though, to obtain an

integrated squeezing source on chip, and to do so a lot of effort has been made. We

now show the technique we studied that can be applied to obtain a vacuum-squeezed

state of light.

2.2. Dual-pump SFWM and parasitic processes

A number of solutions to generated a squeezed state of light has already been

proposed. Within the domain of nanophotonic structures, bright intensity-difference

squeezing in a silicon nitride ring resonator driven above the parametric oscillation

threshold has been demonstrated [26]. Subsequently, a two-ring structure was used

to enable tuning of the level of squeezing by varying the effective resonator coupling

condition [48]. Single-ring resonators driven below threshold have yielded two-mode

(nondegenerate) quadrature squeezing and photon number difference squeezing [49].

Micromechanical resonators have generated small levels of squeezing over a few MHz

of bandwidth [50]. Some squeezing in a single-mode degenerate configuration has also

been reported with microrings using a single-pump [51], but this suffers from strong

excess noise contributions arising from non-parametric effects such as thermorefrac-

tive fluctuation [52]. Aside from limiting the amount of available squeezing, the pres-

ence of excess noise is especially undesirable for quantum computing applications, as

such noise degrades the purity of the quantum states employed. No nanophotonic

device has yet been demonstrated which efficiently produces quadrature squeezed vac-

uum in a single, degenerate spectral mode, uncontaminated by excess noise from both

non-parametric and unwanted parametric processes. A promising candidate has been

proposed based on dual-pump spontaneous four-wave mixing (DP-SFWM) in micror-

ing resonators [53, 54]. Microring resonators are also desirable for the broadband

Figure 2.5. Schematic representation of (a) DP-SFWM by a χ(3) medium (e.g. Silicon) and (b)
frequencies involved in the process.



2.2. DUAL-PUMP SFWM AND PARASITIC PROCESSES 39

Figure 2.6. Intensity enhancement inside a single-ring resonator, showing both DP-SFWM (green
arrows) and parasitic processes of SP-SFWM (red and blue arrows) and BS-FWM (orange arrows)
that occur when two resonances P1 and P2 are pumped.

nature of the squeezing they can produce [55]. DP-SFWM process, schematically

represented in Fig. 2.5, is a third order nonlinear process like SP-SFWM but where

there are two pump fields that are injected at two different frequencies and the pair

of photon is generated in a single, degenerate spectral mode, denoted as signal. By

using pumps very well separated in frequency from the squeezed mode, noise contri-

butions from non-parametric effects like thermorefractive fluctuations can be avoided.

However, in such a system a number of unwanted parametric effects [56] add noise to

the squeezing band, irreversibly corrupting the output. The primary culprit for such

unwanted noise is SP-SFWM [57] driven by each individual pump; further degra-

dation is caused by Bragg-scattering four-wave mixing (BS-FWM) [58], which can

transfer energy away from the squeezed mode. A schematic of the four-wave mixing

processes that can occur while attempting DP-SFWM in a standard ring resonator

is pictured in Fig. 2.6. Here, the target process of DP-SFWM from modes P1 and

P2 to S is shown with green arrows, while the parasitic processes of SP-SFWM with

red and blue arrows, and BS-FWM with orange arrows. The unwanted processes

of SP-SFWM from P1 and P2 generate excess noise in the S mode, contaminating

the output, while BS-FWM transfers photons away from the S mode as photons are

exchanged between the two pumps. The resonances X1 and X2, due to the evenly-

spaced resonances in the ring comb, are those responsible for the parasitic processes

that compromise the quality of the generated state and are those that have to be

removed.

Without suppression of parasitic effects, it was shown that only 0.8 dB of squeezing

would have been achievable. To overcome this, some suppression of parasitic processes

was achieved by detuning the pumps from resonance, with 1.34 dB of degenerate

squeezing observed and 3.09 dB of squeezing inferred on-chip [59]. The schematic idea

of the parasitic-process suppression is pictured in Fig. 2.7. Here, we see that shifting

the pump resonances, necessarily less than one linewidth, away from the S mode can
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Figure 2.7. Schematic representation of the detuning strategy in a ring resonator. Modes P1 and P2

are exited slightly off-resonance to avoid the energy conservation to be satisfy for SP-SFWM between
modes P1, S, X1 and P2, S, X2.

eliminate the energy match for the single pump process to occur in modes X1 and

X2. However, this strategy suffers from a significant trade-off between squeezing and

pump power efficiency, as detuning the pumps reduces their resonance enhancement

in the ring, compromising the efficiency of the desired squeezing process. The strategy

of directly engineering the resonances can bypass the detuning approach by strongly

suppressing unwanted parasitic nonlinear effects without significantly compromising

the generation efficiency.

2.3. The snowman

The structure we studied is composed of two strongly-coupled ring resonators

[60], as sketched in Fig. 2.8(a). The principal ring, where the generation happens, is

coupled to a bus waveguide for pump injection and photons extraction. The auxiliary

ring is used to engineer particular resonances of the principal one. We leverage a de-

sign based on photonic molecules: these devices are composed of two or more optical

resonators, arranged such that some of the modes of each resonator are coupled to

those of the other. Such structures have been used for emulating the behavior of

two-level systems [61], lasing [62], and on-demand optical storage and retrieval [63].

Coupled resonators have also been used for dispersion engineering of integrated de-

vices [64, 65], enhancing their performance for nonlinear optical applications. In ring

resonators, both SP-SFWM and BS-FWM effects are strongly enhanced by the pres-

ence of resonances that are otherwise not relevant to the desired dual-pump squeezing

dynamics. To suppress these unwanted processes, it suffices to design a structure for

which the two resonances labelledX1 andX2 are removed or suitably corrupted, with-

out significantly degrading the properties of the resonances used for the two pumps

and the signal, labeled P1 and P2, and S, respectively. To that end, tuning the auxil-

iary ring such that the X1 and X2 resonances of the principal ring nearly coincide in
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Figure 2.8. (a) Sketch of the photonic molecule structure, with the principal and auxiliary ring
resonators. (b) Intensity enhancement of the two-ring photonic molecule. The resonances of the sole
principal and auxiliary resonators are plotted in dashed-red and dashed-blue lines, respectively. The
comb of the photonic molecule is represented in solid black line, showing the splitting and detuning
of the hybridized X1 and X2 resonances that arises from the strong linear coupling between the
principal and auxiliary resonator, which leads to the suppression of the parasitic processes (dashed
arrows).

frequency with resonances of the auxiliary resonator, gives rise to two new hybridized

resonances, strongly split and detuned from their original frequencies (Fig. 2.8(b)).

The unwanted parametric processes involving the original X1 and X2 resonances are

thereby highly suppressed. Since this modification to the X1 and X2 resonances can

occur without having a significant impact on the P1, P2, and S resonances, strong

enhancement of the desired squeezing process is maintained. Thus, the free spectral

range of the auxiliary resonator is chosen to be four-third of that of the principal

resonator, so that only every fourth mode of the principal resonator is hybridized.

The device is fabricated on a commercially available stoichiometric silicon nitride

(Si3N4) strip waveguide platform offered by Ligentec SA. The waveguide cross-section

is 1500 nm×800 nm (width×thickness) and is fully cladded in SiO2. This platform

and cross-section are selected for low propagation loss, lack of two-photon absorption,

and high third-order optical nonlinearity. Independent microheaters are overlaid to

provide thermal tuning of each resonator. The principal resonator is designed to have

radius R = 114µm, and the auxiliary resonator to have radius 0.75×R, leading to free
spectral ranges of 200GHz for the principal resonator, and 267GHz (approximately

one-third larger) for the auxiliary resonator. The principal resonator is strongly

over-coupled to the bus waveguide, resulting in an escape efficiency of ∼ 90% in the

wavelength range of interest; such over-coupling is important to limit the amount

of loss experienced by the squeezed light on-chip. A micrograph of the device and

the linear transmission spectrum measurements of the fundamental transverse elec-

tric resonances in the wavelength range of interest were performed by the Xanadu

Quantum Technology group in Toronto (CA) and are exhibited in Fig. 2.9(a) and

2.9(b), respectively. The auxiliary resonator microheater is tuned to achieve spectral
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Figure 2.9. (a) Micrograph of the photonic molecule structure and simplified schematic of the
apparatus for linear characterization. The principal resonator is on the left, coupled at the bottom
to a bus waveguide. The smaller ring on the right acts as the auxiliary resonator. Microheaters
overlaid apply voltages V1 and V2 to the principal and auxiliary heaters, respectively. A swept
wavelength source (SWS) and photodiode (PD) measure the transmission spectrum of the device. (b)
Measured TE polarization transmission spectrum of the device in the wavelength range of interest,
with resonators tuned to hybridize the unwanted resonances X1 and X2. Also evident are two
resonances of the auxiliary resonator, which are indirectly weakly coupled to the bus waveguide via
the principal resonator. (c) Transmission spectrum near the X1 resonance doublet of the device as
the power dissipated by the auxiliary microheater is scanned. The resonance doublet exhibits the
classic ”avoided crossing” behavior associated with a pair of hybridized modes of a photonic molecule.
Images taken from [60].

alignment of the resonances associated with the auxiliary and principal resonator,

leading to the formation of hybrid, split resonances X1 and X2. The three resonances

of interest of the principal resonator are preserved, displaying un-split Lorentzian

lineshapes with loaded quality factors of ∼ 3×105. The transmission spectrum of the

device for a range of different auxiliary microheater settings is plotted in Fig. 2.9(c)

for wavelengths near the X1 resonance. As the auxiliary resonances are tuned, the

resonance doublet exhibits the classic avoided crossing behavior of coupled modes in

a photonic molecule as the coupling strength (in this case determined by the detuning

between X1 resonances of the auxiliary and principal resonators) is varied (we saw

this splitting behavior in Fig. 1.17 of chapter 1).
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Figure 2.10. (a) Quadrature variance at 20 MHz sideband frequency (blue trace) normalized to
shot noise, plotted as a function of time as the LO phase is ramped. The black dashed line is the
shot noise level. (b) Single-pump parametric fluorescence spectrum (normalized to shot noise) in the
S mode, measured using homodyne detection with one pump turned off. The blue trace is taken with
the auxiliary resonator tuned such that the P1, S, and X1 resonances are not significantly coupled
to the principal resonator, effectively disabling the noise suppression, resulting in the contamination
of the signal mode with broadband unwanted noise. The orange trace is taken with the auxiliary
resonator tuned to split the X1 and X2 resonances, suppressing the noise to less than 0.1 dB above
shot noise over the entire measurement band. For both traces the pump power was 75 mW, and the
noise observed is phase-insensitive, as expected for single-pump parametric fluorescence. (c) On-chip
squeezing and anti-squeezing spectra with noise suppression enabled (orange crosses) and disabled
(blue points). The pump power was adjusted from 70 mW for the suppression-enabled case to 90
mW for the suppression-disabled case to keep the anti-squeezing approximately fixed, compensating
for small changes in the overall four-wave mixing efficiency associated with tuning the auxiliary
resonator. Squeezing is strongly diminished with noise suppression disabled. Images taken from [60].

A representative quadrature variance trace at 20MHz sideband frequency is shown

in Fig. 2.10(a) as the local oscillator phase is ramped. The directly measured squeez-

ing was 1.65(1) dB. As the total collection and detection efficiency was 38(2)% (fac-

toring in all losses experienced by the squeezed light except the resonator escape

efficiency), this corresponds to ∼8(1) dB of squeezing available at the device output

on-chip. This is consistent with the maximum amount of squeezing possible from this

device: as the principal resonator escape efficiency is ∼ 90%, the maximum amount of

squeezing on-chip is limited to 10 dB. For comparison, the level of squeezing required

for fault-tolerant continuous variable quantum computation was recently shown to
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be ∼10 dB [66]. To assess the importance of the auxiliary resonator in suppressing

unwanted processes, the parametric fluorescence noise spectrum generated in the S

mode was measured with only the pump at P1 turned on, with 70mW on-chip power.

The results are shown in Fig. 2.10(b) for two different voltages applied to the aux-

iliary resonator. When the auxiliary resonator is tuned such that the X1 resonance

is no longer hybridized, a strong noise contribution (more than 1.2 dB above shot

noise) on all quadratures is observed. This excess noise is reduced to < 0.1 dB above

shot noise when the auxiliary resonator is appropriately tuned. In the absence of

the auxiliary resonator, several dB of excess noise would therefore be present in the

S mode, severely degrading the purity and achievable squeezing in the generated

quantum state. This effect can also be directly seen in Fig. 2.10(c), in which the

on-chip squeezing and anti-squeezing spectra are shown with noise suppression en-

abled (orange crosses) and disabled (blue points). For fair comparison, the power

was adjusted from 70mW for the data with suppression enabled to 90mW for the

data with suppression disabled, in order to maintain a fixed degree of anti-squeezing.

This adjustment in power was necessary to compensate for the small perturbations

in the effective quality factors and resonance frequencies of the principal ring that

arise from tuning the auxiliary resonator. The suppression of unwanted parametric

processes is crucial to demonstrate strong single-mode squeezed light sources based

on four-wave mixing. This is possible by designing a nanophotonic molecule to selec-

tively suppress unwanted parasitic processes without significantly affecting squeezing

efficiency. These results highlight the significant control that can be achieved over

quantum nonlinear optical processes by exploiting nanophotonic platforms, and re-

move a significant barrier impeding progress towards scaling up devices for photonic

quantum information processing.

Depending on the kind of problem that one has to overcome and on the degree of

control that one wants to achieve on the photonic system, strong coupling may not

be the best strategy. In the next chapter we will see the counterpart of this approach,

which is the linear uncoupling.



CHAPTER 3

Photon Pairs from Linearly Uncoupled Resonators

In this chapter, we investigate a completely different strategy to gain the desired

control on the resonance comb of a structure. The goal is to exploit the linear uncou-

pling of two resonators that still are coupled through a nonlinear interaction. This

idea was first proposed by Menotti et al. [67] a few years ago for studying SFWM

in a two-racetrack resonators system. In this kind of structure, each normal mode

can be associated with one resonator, and energy passes from one mode to the other

only thanks to the presence of a nonlinear interaction. This can occur because two

or more normal modes that are nonlinearly coupled overlap in part of the structure.

Having the resonators linearly uncoupled facilitates the engineering of their spectral

properties and resonant field enhancement. This is particularly useful for nonlinear

optical processes, which typically require several conditions to be met, from those

necessary to guarantee the process efficiency (e.g. phase-matching) to those needed

to suppress the notorious parasitic processes. In such structures, the strength of the

nonlinear interaction is usually reduced compared to what it would be if the modes

were sharing the full structure, like for SFWM involving the modes of a single ring

resonator. This is why this strategy is more suitable for application in the field of

quantum communication, e.g. quantum keys distribution, where the focus is on the

on-demand production of entangled pairs of photons rather than a high conversion

efficiency, but it can be applied also where an effective precise suppression of the

parasitic processes is needed, like the generation of squeezed states.

3.1. Linearly uncoupled resonators

We begin by considering structures of the general form sketched in Fig. 3.1,

composed of two racetrack resonators of length L1 and L2 and a coupling region, the

“coupler”, between them. Each resonator is also point-coupled to a bus waveguide,

where σ1,m(2.m) is the usual waveguide self-coupling coefficient, described in chapter 1,

between the bus waveguide and the Resonator 1 (2) at frequencies in the neighborhood

of its m-th resonance, with 0 ≤ σ1,m(2.m) ≤ 1. We assume the bus waveguides and

the waveguides of the resonators to be the same and single mode at the frequencies

of interest. We are interested in couplers that can be designed so that in the linear

regime there is actually no coupling. That is, linearly propagating light enters the

coupler from one resonator and exits into the same resonator.

45
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Figure 3.1. (a) Sketch of the double racetrack resonator structure, with the resonant fields inside
Resonator 1 (grey) and Resonator 2 (purple), and (b) detail of the coupler, with the incoming and
outgoing fields.

We want to describe the coupler with the same scattering matrix X (1.64) we

used in chapter 1. This unitary matrix links the input fields f
(1)
−,ω and f

(2)
−,ω at the

beginning of the coupler (z = 0) to the output fields f
(1)
+,ω and f

(2)
+,ω at the end of it

(z = Lcp) as(
f
(1)
+,ω

f
(2)
+,ω

)
= X

(
f
(1)
−,ω

f
(2)
−,ω

)
=

(
X11 X12

X21 X22

)(
f
(1)
−,ω

f
(2)
−,ω

)
, (3.1)

where f
(i)
±,ω is the field circulating in the i-th resonator at angular frequency ω. If we

want the two resonators to be uncoupled, in a realistic situation the terms X12 and

X21 should be as close as possible to zero. Naturally, one could achieve high linear

isolation of the two racetracks by designing a coupler with very distant waveguides,

but this would also prevent any nonlinear interaction between them. Instead, one can

construct the coupler such that the modes of the two resonators share a spatial region

inside of it, and yet the two resonators are uncoupled in the linear regime. In such a

situation, each resonator has a well-defined set of resonances that are associated with

light confinement mainly in it and thus its linear properties are similar to those of

the ring resonator described in chapter 1.

To characterize this structure in the linear regime, in Fig. 3.2 we plot the transmis-

sion and the intensity enhancement as a function of frequency for various in/out port

configurations (see Fig. 3.1). We assume a realistic case in which the two resonators

are just nearly linearly uncoupled, and consider a frequency range |ω−ωi,m| ≪ vg/Li.

Then, one can easily identify modes associated primarily with one or the other of the

two resonators, and find more than 30 dB on-resonance isolation between the two

resonators. In a practical realization of such devices, a striking advantage of this

configuration is that one can control the relative position of the two resonance combs

by means of electric heaters [68], or any other mechanism that induces an effective
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Figure 3.2. (a) Transmission spectra for “In” to “Through” (I), “Add” to “Drop” (II), “In” to
“Drop” (III), and “Add” to “Through” (IV). (b) Corresponding intensity enhancement. The dips in
the lines I and II of plot (a), which occurs at the resonance frequencies, correspond to the intensity
enhancement peaks of lines I and II shown in plot (b). We assumed L1 = 641µm, L2 = 432µm, σ1 =
0.933, σ2 = 0.993, ξ = 0.23 cm−1 (corresponding to 1 dB/cm), and a value of the coupling coefficient
X12 = X21 = −i0.00161, the last to ensure that the resonators are nearly linearly uncoupled.

refractive index change in one of the resonators in a region far from the coupler. In

the limit where the “coupler” in fact provides no coupling between the resonators in

the linear regime, when low intensity light is injected into the ith resonator through

the corresponding bus waveguide, the intensity enhancement in the resonator of light

at frequencies close to that of the mth resonance is described by equation (1.69).

Note that the field distribution inside the coupler is not relevant to the establish-

ment of linear uncoupling, as long as it is guaranteed that light entering from one

resonator is redirected into the same one. However, if one is interested in achiev-

ing nonlinear coupling between the two resonators, the field distribution inside the

coupling region is crucial, as the strength of the nonlinear interaction depends on

the spatial integral of the involved fields, which can be nonvanishing only in the

coupling region. The coupler can be realized in several ways, and the use of the

device for implementing different nonlinear optical processes can be considered. In
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this work we study two possibilities for the structure: a directional coupler (DC) and

a Mach-Zehnder interferometer (MZI). Also, we consider the use of the device for

implementing parametric fluorescence, where pump light is injected in the “In” port

at a resonance frequency of Resonator 1, and signal and idler light is generated at

resonance frequencies of Resonator 2 and exits through the “Drop” port.

3.1.1. Directional coupler. We first consider the structure where the coupler

is a DC with length LDC, as sketched in Fig. 3.3. The linear coupling between

the two waveguides forming the DC can be described in the framework of standard

coupled mode theory [12], in which the coupling constant κDC depends on the linear

overlap integral of the transverse field profile of the waveguide modes, which is a

function of distance along the coupling region. We restrict ourselves to a frequency

range sufficiently small that κDC can be considered frequency independent. Then,

when LDC = nπ/κDC, with n a positive integer, the DC cross transmission is zero,

yielding a high isolation of the two resonators in the linear regime [67]; in the absence

of coupling to the bus waveguides, the energy of the resonant modes of the structure

would be mainly confined to one resonator or the other.

We now take a closer look to the field distribution inside the DC, as sketched in

Fig. 3.3. Following equation (1.17), one can write the displacement field associated

with each channel as

Dch,ω(r) =

√
ℏω
4π
fch,ω(z)dch(x, y)e

ik(ω)z, (3.2)

where ch = up, lo, with “up” (“lo”) referring to the channel belonging to Resonator

1(2) as shown in Fig. 3.1, and dch(x, y) is the displacement field distribution in the

plane transverse to the propagation direction, properly normalized [16]. As we take

all the waveguides involved in the structure to be the same, we can assume that

Figure 3.3. (a) Sketch of the double racetrack resonator structure, with the resonant fields inside
Resonator 1 (grey) and Resonator 2 (purple), and (b) detail of the coupler, with the incoming and
outgoing fields.
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dch(x, y) is the same for all the channels under consideration and also that it can

be approximated as independent of ω. Finally, fch,ω(z) is a slowly varying envelope

function that takes into account for the field distribution along z; this function does

not depend on the intensity of the light circulating in the structure but rather on the

geometry of the coupler. We havefDC
up,ω(z) = fup,ω(0) cos(|κDC|z)− iflo,ω(0) sin(|κDC|z)

fDC
lo,ω(z) = −ifup,ω(0) sin(|κDC|z) + flo,ω(0) cos(|κDC|z) ,

(3.3)

with fup(lo),ω(0) determined by the appropriate boundary conditions: fup(lo),ω(0) =

f
(1,2)
−,ω , and fup(lo),ω(LDC) = f

(1,2)
+,ω . Then the coefficients of the scattering matrix (1.64)

are found to be

X11 = cos |κDC|LDC), (3.4)

X12 = −i sin(|κDC|LDC), (3.5)

X21 = −i sin(|κDC|LDC), (3.6)

X22 = cos(|κDC|LDC), (3.7)

where note that overall phase eik(ω)LDC due to the field propagation in the DC is

included in the fast varying component of (3.2).

In Fig. 3.4 we show the field profile inside the DC for two different coupling

configurations. We first consider the field distribution |fup(z)|2 in the upper channel

Figure 3.4. Intensity distribution in the upper channel of the DC for two different values of the
coupling coefficient, namely (a) κDC = 0.064µm−1 (perfect uncoupling) and (b) κDC = 0.068µm−1

(residual coupling).
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in the case of perfect linear uncoupling (see Fig. 3.4(a)). We assume a typical value

of κDC = 0.064µm−1, and we take LDC = 2π/κDC = 98.2µm. Light is injected into

the “In” port (solid grey line) on resonance with Resonator 1 at ωIn = 1215.20 rad/ps

(λIn = 1550.07 nm) and into the “Add” port (dashed violet line) on resonance with

Resonator 2 at ωAdd = 1214.67 rad/ps (λAdd = 1550.75 nm) (see Fig. 3.2). As

expected, in this situation, at the beginning (z = 0) and at the end (z = LDC) of the

DC, |f Inup(z)|2 is maximum, while |fAdd
up (z)|2 is zero.

We now consider a small deviation from this ideal situation; we take the same

LDC = 98.2µm, but a larger coupling constant κDC = 0.068µm−1. This would arise,

for example, if the waveguides were slightly closer to each other than in the ideal

situation. We plot the corresponding intensity distribution in Fig. 3.4(b). Unlike the

ideal situation, here the intensity of the light injected into the “Add” port is slightly

different from zero at the end of the waveguide, and that of the light injected into

the “In” port is not quite at the maximum there, indicating a small linear coupling

between the two resonators. More surprisingly, while the field intensity for the light

associated with the mode of Resonator 1 is essentially unchanged, that associated

with the mode of Resonator 2 is half of that shown in Fig. 3.4(a). Such a remarkable

difference demonstrates that the presence of some coupling between two resonators,

as occurs if the DC is not ideal, does not affect all the modes in the same way. If

we look at Fig. 3.2, we notice that the resonance associated with Resonator 2 at

1214.67 rad/ps is close to a resonance of Resonator 1, and thus even a small variation

of the DC cross-coupling coefficient, such as the one considered here, can lead to a

strong reduction of the field intensity in Resonator 2. In contrast, the Resonator 1

resonance at 1215.20 rad/ps is spectrally far from other resonances, which minimizes

the linear coupling to those other modes.

These results show that a DC can be used to achieve the spatial overlap of modes

belonging to linearly uncoupled (a) or nearly-uncoupled (b) resonators. The approach

is conceptually very simple and can be realized in compact structures. However, one

can identify two potential problems with this implementation. The first is that the DC

properties critically depend on the value of κDC, which can be considered frequency

independent only in a limited bandwidth, typically only a few tens of nanometers

at telecom wavelengths [69]. The second is that the field distributions of the modes

belonging to different resonators are in quadrature along the DC, as shown in Fig.

3.4, and thus any nonlinear interaction between them is expected to be small. In the

following we introduce a different structure to overcome these limitations.

3.1.2. Mach-Zehnder interferometer.

We now consider the Mach-Zehnder interferometer, sketched in Fig. 3.5, which

is composed of two waveguides that are connected by two point couplers (PCs). The

PCs are characterized by self-coupling coefficients σsx and σdx, and cross-coupling
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Figure 3.5. Sketch of the Mach-Zehnder interferometer and a schematic representation of the over-
lap of the fields in the channels.

coefficients κsx and κdx, respectively. We take the coefficients to be real and positive;

then from energy conservation σ2sx(dx)+κ
2
sx(dx) = 1, and the splitting ratios of the PCs

are defined as (100σ2sx(dx)):(100κ
2
sx(dx)). It follows that this system can be described

by the scattering matrix (1.64), with

X11 = σsxσdx − κsxκdxe
i∆ϕ, (3.8)

X12 = i
[
σsxκdx + κsxσdxe

i∆ϕ
]
, (3.9)

X21 = i
[
κsxσdx + σsxκdxe

i∆ϕ
]
, (3.10)

X22 = −κsxκdx + σsxσdxe
i∆ϕ, (3.11)

where ∆ϕ is the optical phase difference between the two arms of the interferome-

ter. Note that again the overall phase eik(ω)LMZI due to the field propagation in the

interferometer is included in the fast varying component of (3.2). In practise, the in-

terferometer acts as coupler, characterized by an effective straight-through coefficient

σMZI = X11 = σdxσsx − κdxκsxe
i∆ϕ , (3.12)

which identifies the fraction of field amplitude in Resonator 1 that is transferred back

into it. In Fig. 3.6, we show the modulus squared of σMZI, in the special case of

σdx = σsx = σ, for different values of ∆ϕ. Interestingly, when ∆ϕ = (2m+1)π (solid

black line), the coefficient σMZI = 1 for any value of σ. Therefore one can exploit

interference at the output of the interferometer to achieve linear uncoupling of the

two resonators. The curve shows that for a symmetric interferometer this is very

robust: perfect linear uncoupling is obtained as long as the PCs are identical.

We now turn to the field inside each arm of the interferometer, again described by

Eq. (3.2). Here the slowly varying envelope function fMZI
up(lo),ω(z) in the upper (lower)
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Figure 3.6. Effective straight-through coefficient σMZI of the interferometer for different phases ∆ϕ
as function of the coupling coefficients of the two PCs assumed identical.

arm of the interferometer is z-independent and given byfMZI
up,ω = σdxf

(1)
−,ω + iκdxf

(2)
−,ω,

fMZI
lo,ω =

[
iκdxf

(1)
−,ω + σdxf

(2)
−,ω

]
ei∆ϕ ,

(3.13)

where f
(i)
−,ω is the field enhancement of the ith resonator, defined in eq. (1.69), and the

slowly varying envelope functions at the end of the MZI in Resonator 1 and Resonator

2 are given by

f In+,ω =
[
σsxσdx − κsxκdxe

i∆ϕ
]
f In−,ω+

i
[
σsxκdx + κsxσdxe

i∆ϕ
]
fAdd
−,ω (3.14)

and

fAdd
+,ω =

[
−κsxκdx + σsxσdxe

i∆ϕ
]
fAdd
−,ω +

i
[
κsxσdx + σsxκdxe

i∆ϕ
]
f In−,ω , (3.15)

respectively. We note that, unlike the DC structure, f
(1,2)
+,ω ̸= fMZI

up(lo),ω(LMZI) and

f
(1,2)
−,ω ̸= fMZI

up(lo),ω(0), because of the field discontinuity introduced at each point cou-

pler.

Although the linear uncoupling provided by the MZI is not sensitive to the split-

ting ratio of the PCs, as long as they are identical, this parameter plays an important
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role when we focus on maximizing the nonlinear interaction. Considering the sym-

metry of the structure, if we assume to work in a frequency band narrow enough that

the coupling can be considered frequency-independent, the best configuration would

be to have PCs with a (50):(50) splitting ratio. This would lead to a splitting of both

pump and generated fields in both arms of the MZI, maximizing the overlap of the

fields and thus the nonlinear interaction. Instead, if the splitting ratio were (100):(0),

the pump would be confined in the upper arm, while signal and idler would be in the

lower arm of the interferometer. Similarly, if the splitting ratio were (0):(100), the

situation would be the reverse. Thus in both cases the nonlinear interaction would

vanish. In a more complicated situation, with pump, signal and idler at very differ-

ent frequencies, the frequency dependence of the PCs could not be ignored, and one

would have to design the structure accounting for different coupling ratios for the

different fields, with the goal of directing them to the same arm of the interferometer.

One can identify two advantages of the MZI coupler over the DC. The first is

that the performance of the MZI coupler is less affected than that of the DC by the

frequency dependence of the coupling coefficients, and thus by the splitting ratio,

since perfect linear uncoupling holds for the MZI coupler with identical PCs. So

a linear uncoupling over a bandwidth of the order of hundreds of nanometers is

possible in the telecom band [70]. The second advantage is a higher photon conversion

efficiency for the MZI coupler than for the DC; the field distribution in each arm of

the interferometer is the same as that of an isolated channel, and thus the slowly

varying envelope function component is not oscillating.

3.2. Linear uncoupling with third-order nonlinearity

The couplers that are the focus of this chapter – the DC and the MZI coupler

– fall in the category of couplers composed of two channels. Within this general

framework we take z to identify the propagation direction, with x and y being the

transverse coordinates. Crucial to the calculations is the description of the overlap

of the fields in the coupling region, identified by the overlap integral. This quantity,

which depends on the nonlinear process under study and on the geometry of the

coupling region, plays a central role in determining the efficiency of the nonlinear

process. Second and third order nonlinearities have to be treated separately, because

the couplers respond differently. This is because, in general, in SFWM the fields

involved are around the same frequency, while with SPDC the pump field and the

generated fields are spectrally distant.

3.2.1. Comparing SFWM generation rates. In chapter 1 we derived a gen-

eral expression for the SFWM number of generated pairs per pump pulse (1.53)
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|β|2 = ℏ2|α|4

8π2
γ2NL

ω2
P

∫
dω1dω2 ω1ω2×∣∣∣∣∫ dω3ϕP (ω3)ϕP (ω4)
√
ω3ω4 J (ω1, ω2, ω3, ω4)

∣∣∣∣2 , (3.16)

where |α|2 is the average number of pump photons per pulse, γNL is the nonlinear

power factor, ϕP (ω) is the pump profile, and

J (ω1, ω2, ω3, ω4) =
∑
ch

Jch(ω1, ω2, ω3, ω4) (3.17)

is the coupler spatial integral of the z-dependent functions of the four fields involved

in the process, where

Jch(ω1, ω2, ω3, ω4) =

∫ Lch

0
dz f∗ch,ω1

(z)f∗ch,ω2
(z)fch,ω3(z)fch,ω4(z)e

i∆kz ,

(3.18)

is the integral in each channel of the coupler, with ∆k = k(ω1) + k(ω2) − k(ω3) −
k(ω4). The shape of the field enhancement fch,ω(z) depends on the coupler under

consideration. In general, eq. (3.16) needs to be evaluated numerically, but in order

to calculate an explicit expression we work in the continuous wave (CW) regime by

taking a narrow pump pulse ϕP (ω) (see [71] for details), obtaining a photon pair

generation rate

Rpair =
|β|2

∆T
=

1

4π

(
γNLPP

ωP

)2 ∫
dω1ω1(2ωP − ω1)

× |J (ω1, 2ωP − ω1, ωP , ωP )|2 , (3.19)

where PP = ℏωP |α|2/∆T is the injected pump power and ∆T the pump temporal

duration, taken to go to infinity along with the average number of pump photons in

the pulse so that PP is held constant. We can estimate the pairs production rate

for each structure once the expression of the overlap integral is evaluated. Again,

in general the integral in (3.19) needs to be evaluated numerically, but with the

approximation of Lorentzian shape of the intensity enhancement, described by eq.

(1.71), we can write an analytic expression for the pair generation rate. In fact, with

this approximation the integral (3.18) for a single channel can be written as

|J (ω1, 2ωP − ω1, ωP , ωP )|2 = |Fmax|2L(ω1, 2ωP − ω1)|Jspatial|2 , (3.20)

where
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|Fmax|2 = |FE(max)2,S |2|FE(max)2,I |2|FE(max)1,P |4 , (3.21)

is the product of the maximum values of the intensity enhancement in Resonators 1

and 2 of each resonance involved in the process, given by eq. (1.72),

L(ω1, 2ωP − ω1) =

 Γ2
2,S

4
Γ2
2,S

4 + (ω1 − ωS)2

Γ2
2,I

4
Γ2
2,I

4 + (ω1 − ωS)2

+

 Γ2
2,S

4
Γ2
2,S

4 + (ω1 − ωI)2

Γ2
2,I

4
Γ2
2,I

4 + (ω1 − ωI)2

 (3.22)

is the product of the Lorentzian shape of the signal and idler resonances centered

at ωS and ωI respectively. Here Γ2,m=S,I is given by eq. (1.74), while the absolute

value squared of the pump shape is assumed to be proportional to a Dirac delta

function, given the CW regime; Jspatial is the spatial part of the integral, which

depends only on the geometry of the system. We can perform the integral over the

frequency-dependent factor, common for all the possible geometries, which results in

(see appendix A for detailed calculation)

∫
dω1ω1(2ωP − ω1)L(ω1, 2ωP − ω1) ≈ π

Γ2,SΓ2,I

(Γ2,S + Γ2,I)
(ωSωI) . (3.23)

With this in hand, we can write (3.19) as

Rpair =
1

4π

(
γNLPP

ωP

)2

|Fmax|2π
Γ2,SΓ2,I

(Γ2,S + Γ2,I)
(ωSωI) |Jspatial|2 . (3.24)

The expression for Jspatial needs to be evaluated for each structure. In the following

this we do and then compare our results for the DC and MZI coupling structures

with that of a standard ring resonator, assuming in all calculations that we satisfy

the phase matching condition, ∆k = 0, to good approximation.

3.2.1.1. Ring resonator. In the case of a simple ring resonator of length L = 2πR,

the spatial integral is

J ring
spatial =

∫ L

0
ei∆kzdz = Lei

∆kL
2 sinc

(
∆kL

2

)
≈ L , (3.25)

and hence the generation rate (3.24) is
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Rring
pair =|FE(max),S |2|FE(max),I |2|FE(max),P |4

×
(
γNLPP

ωP

)2 ΓSΓI

(ΓS + ΓI)
(ωSωI)

L2

4
, (3.26)

with Γm=S,I the linewidth of the signal and idler resonances. This can be expressed

as a function of the loaded and coupling quality factors (Qm and QC,m respectively)

using Γm = ωm/Qm and

|FE(max),m|2 = 1− σ2m
(1− σmam)2

=
4vg
Lωm

Q2
m

QC,m
, (3.27)

from [67], giving

Rring
pair =

(
γNLPP

ωP

)2(4vg
L

)4 Q4
PQ

2
SQ

2
I

Q2
C,PQC,SQC,I

ωSωI

ω2
P

L2/4

ωSQI + ωIQS

=
43γ2NLP

2
P v

4
gωSωI

L2ω4
P (ωSQI + ωIQS)

Q4
PQ

2
SQ

2
I

Q2
C,PQC,SQC,I

. (3.28)

We assume to work over a frequency range small enough that we can take ωP ≈ ωS ≈
ωI = ω and QP ≈ QS ≈ QI = Q, which allows us to reduce (3.26) to a simplified

form. For no losses (QC,m = Qm), we find

Rring
pair = (γNLPP )

2 32v
4
g

ω3

Q3

L2
, (3.29)

retrieving the SFWM generation rate expression found earlier [25], while for critical

coupling (QC,m = 2Qm) we find

Rring
pair = (γNLPP )

2 2v
4
g

ω3

Q3

L2
. (3.30)

3.2.1.2. Directional Coupler. If we consider the DC structure and assume per-

fect uncoupling in the linear regime, the spatial integral is in the form of (detailed

calculation in appendix A)

Jspatial ≈ −LDC

4
[1− sinc(4κDCLDC)] , (3.31)

which lead to a generation rate of

RDC
pair =

(
γNLPP

ωP

)2

|FE(max)2,S |2|FE(max)2,I |2|FE(max)1,P |4

×
Γ2,SΓ2,I

Γ2,S + Γ2,I
(ωSωI)

L2
DC

64
[1− sinc(4κDCLDC)]

2 . (3.32)
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Again, we can express this formula in terms of quality factors, and find

RDC
pair =

4γ2NLP
2
P v

4
gωSωI

ω4
P (ωSQI + ωIQS)

Q4
PQ

2
SQ

2
I

Q2
C,PQC,SQC,I

×
(
LDC

L1L2

)2

[1− sinc(4κDCLDC)]
2 . (3.33)

3.2.1.3. Mach-Zehnder Interferometer. For the MZI coupler structure with per-

fect uncoupling in the linear regime, taking σdx = σsx = 1/
√
2, i.e. (50):(50) beam

splitters, the spatial integral results in

Jspatial ≈ −LMZI

2
, (3.34)

(detailed calculation in appendix A), which leads to a generation rate of

RMZI
pair =

(
γNLPP

ωP

)2

|FE(max)2,S |2|FE(max)2,I |2

× |FE(max)1,P |4
Γ2,SΓ2,I

Γ2,S + Γ2,I
(ωSωI)

L2
MZI

16
, (3.35)

and in terms of quality factors

RMZI
pair =

16v4gγ
2
NLP

2
PωSωI

ω4
P (ωSQI + ωIQS)

Q4
PQ

2
SQ

2
I

Q2
C,PQC,SQC,I

(
LMZI

L1L2

)2

. (3.36)

3.2.1.4. Comparison. We can have a better insight of the generation efficiency of

our two structures if we directly compare it with the ring resonator. For the DC

structure, the sinc function in (3.32) makes a negligible contribution for our typical

parameters of interest, and we can write

RDC
pair ≈

(
LLDC

4L1L2

)2

Rring
pair , (3.37)

and assuming L1 = L2 = 2L, which means having two racetracks with the same

bending radius of the ring, and taking the optimal length of the DC, i.e., LDC = πR

as shown in [67], the expression becomes

RDC
pair ≈

1

1024
Rring

pair . (3.38)

We can do the same calculations for the MZI structure, where

RMZI
pair,ext ≈

(
LLMZ

2L1L2

)2

Rring
pair , (3.39)

and assuming L1 = L2 = 2L and LMZ = πR we get

RMZI
pair ≈ 1

256
Rring

pair . (3.40)
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Structure Spatial integral Overall finesse factor Pair generation rate

J ring
spatial ≈ L F ∝ (L)−4 Rring

pair (3.28)

J DC
spatial ≈

1
4LDC F ∝ (L1L2)

−2 1
1024R

ring
pair (3.38)

JMZI
spatial ≈

1
2LMZI F ∝ (L1L2)

−2 1
256R

ring
pair (3.40)

Table 3.1. Rate comparison between the ring resonator, the DC-resonator and the MZI-resonator.
The other quantities of interest are the spatial integral and the resonators’ finesse.

An overview of our estimates is reported in Table 3.1, along with the main quantities

of interest of each structure. Although these two rates are substantially reduced from

that of the standard ring, the significant benefit obtained is that we can implement

independent control on each comb of resonances, and achieve several dB of pump

filtering from the generated fields.

3.2.2. SFWM and DC structure.

The first situation we want to address is DP-SFWM in the double-racetrack res-

onators structure where the coupling is realized through the DC. As we already de-

scribed in chapter 2, the major problem with DP-SFWM are the parasitic processes.

Before, we exploited strong coupling to selectively remove target resonances and sup-

press those processes. To study this, we first show in Fig. 3.7 the photon generation

rates due to the DP-SFWM and SP-SFWM processes in an integrated silicon mi-

croring resonator (like the one sketched in Fig. 2.6). As expected, the generation

rate for the DP-SFWM is unchanged as long as the product of the two pump powers

is held fixed, while the generation rate of the SP-SFWM processes scales quadrati-

cally with the appropriate pump powers [25]. The generation rates of the parasitic

processes, given by the sum of the two SP-SFWM rates, can be even one order of

magnitude larger than the generation rate of the DP-SFWM process, with a max-

imum signal-to-noise ratio (SNR) of only about 2 when the two pump powers are

equal.

Here, we show how with the advantage of the linear uncoupling strategy we can

move the position of the resonances we’re interested in, and place them in the right

configuration to allow for the dual-pump to occur, eliminating the parasitic processes.

With the two-racetracks system, we can tune the two independent sets of resonances
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Figure 3.7. Measurement and theoretical model of the pair generation rate in a single silicon mi-
croring resonator when the product of the powers of the two pumps is fixed for SP-SFWM pumped
at ωP1 (blue triangles and line) and ωP2 (red circles and line), their sum (black squares and line),
and DP-SFWM (green stars and line) (image taken from [69]).

to selectively enhance or suppress different nonlinear phenomena. In Fig. 3.8 we

represent a sketch of the realization of DP-SFWM in such a system. Two laser pumps

are tuned to resonances of the first resonator, leading to the generation of photon

pairs within a target resonance of the second resonator. Yet SP-SFWM processes are

expected to be suppressed, for the overall field enhancement at ωX1 = 2ωP1 −ωS and

ωX2 = 2ωP2 −ωS is strongly reduced by the absence of the three resonances satisfying

energy conservation.

We had the possibility to actually fabricate the designed structure and to perform

the experiment o the collaboration with the experimental group at the University of

Pavia and at CEA-LETI in Grenoble (FR). The device is presented in Fig. 3.9(a):

two Silicon racetrack resonators, with a waveguide cross section of 600 nm× 220 nm

to optimize the nonlinear effective area [72] and minimize propagation losses, with

lengths L1 = 372µm and L2 = 366µm, are located side by side, forming a DC of

length LDC = 92µm, chosen to minimize cross transmission and achieve isolation

of the two resonators. Thus, one set of modes is associated with Resonator 1, and

another with Resonator 2. In Fig. 3.9(b) we show the optical characterization, where

the two independent sets of resonances are clearly observed by injecting light from

a laser in ports T1 or T2 and detecting the optical response at the ports T6 and

T3, respectively. The free spectral ranges at 1550 nm are FSR1 ≃ 1.566 nm and

FSR2 ≃ 1.595 nm. The loaded quality factors are around 6 × 104 and 3 × 105, with
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Figure 3.8. Sketch of the SP-SFWM and DP-SFWM processes occurring in the device when two
laser pumps are aligned with two resonances (P1 and P2). Single-pump processes which generate
photons in the S mode are suppressed due to the weak field enhancement experienced at the spectral
position where energy conservation is preserved (X1 and X2).

the difference due to the number of waveguides coupled to the racetracks (two to

Resonator 1 and one to Resonator 2), which have the same intrinsic quality factors

of about 6× 105. The optical isolation is at least 20 dB over a 40-nm bandwidth, as

observed from the transmission spectrum T1 → T3.

We now consider the S mode, where photons can be generated through SP-SFWM

only if another photon is generated to guarantee the conservation of energy. In

particular, if the resonance at ωP1 is pumped by the laser, it can generate a photon

pair with one photon at ωS and one at ωX1 , such that ωX1 = 2ωP1 − ωS . A similar

argument holds for photons generated at ωX2 when pumping at ωP2 . Thanks to the

linear uncoupling, the two sets of resonances can be controlled independently, allowing

us to remove the resonances from X1 and X2. In practice, this control is achieved by

means of two electric heaters. We begin by verifying the capability of our structure

to suppress SP-SFWM. To do that, we calculate the variation of the efficiency of

the process by tuning the two sets of resonances, which leads to a modification of

the nonlinear coupling of the modes. We start by considering one pump resonance

of Resonator 1 in the middle of two resonances of Resonator 2. This configuration

guarantees the maximum efficiency for the SP-SFWM. Then, we detune the comb

of Resonator 1 by a certain amount and calculate the generation rate at each step

(Fig. 3.10(a)). Experimentally, this is realized by adjusting the driving voltage of
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Figure 3.9. (a) Optical image of the device with two linearly uncoupled racetracks. A second image
of the device without the electrical circuits has been superimposed to show the position of waveguides,
which are covered by the metal. (b) Linear characterization of the device over different ranges of
wavelengths for different in and out ports configurations (images taken from [69]).

the heater of Resonator 1 to shift its resonances, by tuning the pumping laser to

maintain the alignment, and by collecting the coincidences from the two resonances

of Resonator 2. The result is shown in Fig. 3.10(b), where with the solid red line

we plot the model for the generation rate derived in eq. (3.32) (normalized to its

maximum) that fits the data (black crosses) measured in the experiment. This result

shows that by tuning the two sets of resonances one can manipulate the nonlinear

coupling of the modes of the resonators and, consequently, the generation of pairs due

to the nonlinear processes occurring in the device. In the experiment, a detuning of

around 65 pm (around 13 times the linewidth of the resonances of Resonator 2) led to

a suppression of around three orders of magnitude with respect to perfect nonlinear

coupling.

With the possibility of attenuating the parasitic processes demonstrated, we were

able to perform the dual-pump SFWM experiment. The laser pumps are aligned with

two resonances of Resonator 1 (ωP1 = 1206.89 rad/ps and ωP2 = 1222.85 rad/ps),

which are equally spaced in frequency from the resonance ωS = 1214.88 rad/ps of

Resonator 2. This configuration is associated with a detuning of the resonances for

the single-pump process of about |δ| = 160 pm, that results in an estimated attenu-

ation of the SP-SFWM processes of about −37.7 dB, that is below the background

noise. Photons generated in the S mode are sent to a (50):(50) beam splitter and

detected by two photodetectors (D1 and D2, respectively), while photons associated

with SP-SFWM are collected from mode X1 and X2 and detected by two others

photodetectors (D3 and D4, respectively). The analysis of the coincidences on the

detectors allows for the recognition of the pairs generated through the different pro-

cesses. In particular, the DP-SFWM should lead to a temporal correlation between
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the detection events at D1 and D2. Similarly, the single-pump processes should result

in coincident detection between the events at D3 and D1/D2 for single-pump in mode

P1, and the events at D4 and D1/D2 for single-pump in mode P2. We show the result

of the coincidence experiment in Fig. 3.11. The red peak shows that photons arriv-

ing on D1 and D2 are emitted at the same time since their arrival time is correlated:

this clearly demonstrates that they are emitted through DP-SFWM since any other

process that can generate photons in the S mode cannot be characterized by this

temporal correlation. We measure a coincidence rate equal to 164.2 ± 0.4Hz, which

corresponds to an internal generation rate in the second resonator equal to 62±6 kHz,

and the coincidence to accidental ratio (CAR) is 1190 ± 10. The coincidence rate is

estimated by integrating the peak within the entire window (and subtracting the

noise), while the CAR is measured by taking into account the FWHM of the peak.

From the histograms in Fig. 3.11 it is also possible to evaluate the photon pairs

generated through SP-SFWM, which lead to coincidence events between D1 and D2

with D3 or D4. As can be seen, no peaks are clearly visible. In fact, the dark counts,

the noise from the environment, and other parasitic processes occurring in the setup

(such as Raman emission from optical fibers) hide the signal given by time-correlated

photons. This is due to the severe attenuation of the processes. Nevertheless, we can

estimate from the model that we should expect a SNR of about 21×103, correspond-

ing to an improvement of about four orders of magnitude over that of a single ring

system where dispersion engineering cannot be exploited. While the effectiveness of

this strategy depends on the specific application and the technological platform, this

is one of the strongest suppression of parasitic processes reported in the literature for

DP-SFWM in an integrated structure.

Figure 3.10. (a) Scheme of the single pump process with the aligned resonances configuration (top)
and detuned configuration (bottom). (b) Plot showing the attenuation of SP-SFWM as a function
of the detuning of the resonances of the two resonators (image taken from [69]).
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Figure 3.11. Histograms representing the coincidence events detected. The red, black, and blue
histograms represent the coincidences due to DP-SFWM (events on D1 and D2), SP-SFWM on
mode P2 (events on D1 and D4), and SP-SFWM on P1 (events on D1 and D3), respectively (image
taken from [69]).

These results demonstrate that the use of linearly uncoupled resonators allows for

the effective control of the nonlinear interaction between optical modes, leading to

the ability to enhance or suppress the generation of photon pairs through SFWM. As

already mentioned in the DC section (and clearly pointed out in [67]), the efficiency

of the parametric process in this kind of devices is reduced from what could be

achieved with a simple microring since here the nonlinear interaction occurs only

in the directional coupler region shared by the two rings. This decreases both the

overlap integral of the fields and the interaction length. This would be a limitation in

the framework of squeezed-light sources, where high generation efficiency is required.

However, a small interaction length and material nonlinearity can be compensated

for by taking advantage of the field enhancement in high-quality resonators, and by

increasing the pump intensity in the absence of nonlinear losses, as in Si3N4 resonators

[73, 74]. This device is anyway a promising platform for the implementation of

continuous-variable quantum computing, since the main sources of noise, due to SP-

SFWM, can be effectively suppressed. With the experiment, we could test the model

and confirm the achievement of a SNR of about four orders of magnitude.

3.2.3. SFWM and MZI structure. Although the linearly uncoupled resonators

with the DC can provide a quite compact system that greatly suppresses parasitic

processes, the design and fabrication of such systems can be challenging, for in a DC

the splitting ratio critically depends on its length and on the distances between the
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Figure 3.12. Optical image of the device composed of two resonators placed side-by-side forming
a Mach-Zehnder interferometer. The optical waveguides of the device, which are partially covered
by the metal circuits, have been highlighted with coloured lines: the region where the optical modes
propagate are highlighted in red for Resonator 1 and in blue for Resonator 2, while the purple line
highlights the section where the nonlinear interaction takes place (image taken from [70]).

two waveguides. In addition, the DC response is usually frequency dependent, with

the desired behavior achieved in a limited bandwidth, typically a few tens of nanome-

ters at telecom wavelengths [69]. Moreover, the generation efficiency compared to

what one usually obtains with a standard ring resonator is considerably reduced.

The reasons are the shorter interaction length and the smaller overlap integral in the

interaction region. We then look for a strategy to improve the generation efficiency.

One could think of increasing the length of the coupler to enhance the nonlinear inter-

action, but it was calculated that, for SFWM, the length of the DC has an optimum

value, which depends on the overall length of the resonator [67]. Thus, we can move

to a different strategy and explore the potential of the uncoupling through a MZI.

In fact, as we discussed earlier, the fields propagation in the two arms of the inter-

ferometer is that of an isolated channel waveguide, hence it does not suffer from the

field profile oscillation. This solution can provide significant improvements in terms

of linear isolation of the two resonators, operation bandwidth, and SFWM efficiency.

We had the chance to perform the experiment on this structure as well. The fab-

ricated device is shown in Fig. 3.12, realized by placing the two racetrack resonators

side-by-side to form the MZI. The couplers at the beginning and at the end of the

interferometer are realized with two identical directional couplers (DCs) with proper

length and distance to get a (50):(50) splitting ratio. The phase difference introduced

by the MZI is obtained by designing the two arms of the interferometer with two

different lengths, and can be calculated as

∆ϕ = k∆LMZI , (3.41)

where ∆LMZI is the MZI path difference and k = ω0neff/c +∆ω/vg the wavevector,

considering only the linear term in the expansion (1.60), where we call ∆ω = ω − ω0
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the bandwidth. A fine tuning on the value of ∆ϕ is obtained by means of an electrical

heater. As previously discussed, when ∆ϕ = (2m+1)π, with m integer, light entering

from the upper (lower) MZI input port is entirely redirected to the upper (lower)

output port, so that the two racetracks are perfectly linearly uncoupled. We recall

that the (50):(50) splitting ratio is not crucial in obtaining the uncoupling as long as

the two DCs are identical and the phase is ∆ϕ = (2m + 1)π (Fig. 3.6). However, it

is the best configuration to work with when the resonances involved in the process

are about the same frequency, in order to maximize the conversion efficiency. The

reason is again the frequency-dependent behavior of the DCs forming the MZI. In

the situation of very distant resonances, when each field couples at a different rate

than the others, one should engineer the couplers to direct the fields necessary to the

process into the same arm of the interferometer.

The first advantage we get from exploiting the MZI structure is the larger linear

isolation bandwidth. This can be calculated from equation (3.12), with ∆ϕ given by

eq. (3.41). If one works at the shortest useful path difference, which corresponds to

∆ϕ = π, in a single-mode silicon waveguide, with ω0 = 1215 rad/ps (λ0 = 1550 nm),

neff = 2.4, and ng = 4, one can expect a MZI straight transmission of more that 99%

over a bandwidth of around 50 rad/ps (≈ 190 nm), where for the DCs we assumed

Figure 3.13. Linear characterization of the device in three selected spectral ranges. The transmis-
sion T1 → T6 is plotted with solid orange line and the transmission T2 → T3 with dotted green
line, allowing one to observe the resonances associated to the two resonators. The dashed blue line
is obtained by characterizing the device through T1 → T3 transmission (image taken from [70]).
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the coupling coefficients σdx = σsx = cos(κDCLDC) = 1/
√
2. The second advantage

is the higher generation rate following from the fields distribution inside the coupler.

As shown in section 3.2.1, where we compared the rate in the different structures, the

generation efficiency gains a factor of 4 with respect to the DC case.

The experiment was conducted on a device fabricated from a silicon-on-insulator

silica-cladded waveguide having a cross section of 600× 220 nm2, chosen to minimize

the nonlinear effective area and, at the same, the propagation losses. The two res-

onators have lengths L1 = 639µm and L2 = 632µm, and the DCs have a (50):(50)

splitting ratio. The two arms of the interferometer have lengths LA1 = 194µm and

LA2 = 194.25µm to guarantee the linear isolation of the resonators near 1550 nm and

to maximize the operation bandwidth, as discussed above. To assess the presence of

the modes associated to the two resonators, we performed a linear characterization

of the device, shown in Fig. 3.13, by injecting light from a CW tunable laser into

ports T1 and T2 of the sample, and detecting the optical response at ports T6 and

T3, shown with solid orange and dotted green lines, respectively. The two sets of

Figure 3.14. (a) Plot of the simulated transmission spectra of Resonator 1 (from port T1 to port
T6) for different values of the phase ∆ϕ introduced by the MZI. (b) Experimental plots of the
spectra obtained by coupling the laser to port T1 and collecting the light from port T6. Each panel
is associated with a different value of the voltage applied to the heater on top of one arm of the
Mach-Zehnder (image taken from [70]).
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resonances (having different FSRs and finesse) can be clearly observed. Then, we

evaluated the coupling between the resonators. To do that, we injected the light to

port T1 while measuring the response at T3, plotted with the blue dashed line. We

performed the characterization over the full bandwidth of the tunable laser source

(from 1480 nm to 1640 nm, covering the C- and L-band and part of the S- band),

proving that an isolation of more than 30 dB can be achieved over the whole range

(≈ 160 nm). This demonstrates the significant improvement with respect to previous

results obtained with directional coupler’s isolation, where the bandwidth was about

only tens of nanometers.

We also studied the control on the coupling by tuning the MZI phase thanks to

the thermal heater; the results are plotted in Fig. 3.14. By adjusting the phase

difference ∆ϕ we can switch from the linear uncoupled situation to a strong coupled

system. In fact, from the simulation of the transmission spectra from port T1 to

port T6 of Resonator 1, plotted in Fig. 3.14(a), we can see that for ∆ϕ = π and

∆ϕ = 3π only the comb of resonances belonging to Resonator 1 is visible; this means

that no light is coupled into Resonator 2. Conversely, for ∆ϕ = 2π the two resonators

are maximally coupled, and the visible spectrum is that of a resonator with a total

length Ltot = L1+L2. This behavior is reproduced also experimentally (Fig. 3.14(b)),

where 15mW of electrical power are sufficient to switch from the configuration with

no coupling (panels A and C) to that with maximally-coupled resonators (panel B).

In Fig. 3.15 we studied the pair generation efficiency, plotting the rate as a func-

tion of the optical pump power. The orange dotted line results from the theoretical

model (3.36), when considering the nominal parameters of the structure and the

resonant quality factor obtained from the linear characterization [75]. We also char-

acterized the nonlinearity of the device by performing a SFWM experiment. First, we

adjusted the position of the resonances of Resonator 2, by means of the corresponding

heater, such that two resonances (signal and idler) of Resonator 2 are equally spaced

in frequency with respect to a resonance (pump) of Resonator 1 (following the scheme

depicted in Fig. 3.10(a), top panel). In this condition, due to the nonlinear inter-

action occurring in the MZI, triply resonant SFWM can take place, by pumping the

device with a CW laser through port T1, tuned at the pump resonant frequency, and

detecting the coincidence rate of the generated signal and idler photons in port T3.

The data are obtained from the measured coincidence rate by taking into accounts

the linear losses of the set-up and the detection efficiency of the detectors. The data

are in very good agreement with the theory and, as expected, the generation rate

grows quadratically with the pump power. The measured generation rate is lower

than the theoretical value when the pump power exceeds 1mW. This is likely due to

two-photon absorption [76], which has not been included in our model.
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Figure 3.15. Power scaling of the SFWM coincidences. A time-tagging unit is used to correlate
the arrival times of the idler and signal photons generated through SFWM. In this way, a histogram
of the coincidences is obtained (as shown in the inset), and the rate of the events are obtained by
integrating the peak over a sufficiently wide window (4 ns) and subtracting the histogram background
(image taken from [70]).

In conclusion, SP- and DP-SFWM can be exploited in linearly uncoupled res-

onators, gaining control over the linear and nonlinear properties of the structure

thanks to the presented strategy. Uncoupling through the DC results in a compact

and easy-to-design structure but less robust against fabrication imperfection; on the

other hand, the use of a MZI, although the more subtle design and larger footprint,

enables a more efficient conversion, with a significantly larger isolation bandwidth.

This approach is versatile, as it allows one to precisely control the isolation between

the resonators and reconfigure the device to compensate for fabrication imperfections,

for example by means of thermal heater.

3.3. Linear uncoupling with second-order nonlinearity

With standard ring resonators a careful dispersion engineering of the waveguide

modes is usually required to balance chromatic material dispersion. While this ap-

proach is very effective for some material platforms and certain types of nonlinear

interactions, it can be challenging for others, especially when one operates in a wide

frequency range. Indeed, in this case solely dispersion engineering is not sufficient

to guarantee the desired arrangement of the resonances. The strategy of the linearly

uncoupled resonators immediately comes in handy, for it allows for efficient nonlinear
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processes with limited dispersion engineering. This concept stands out as a powerful

approach in all systems where material dispersion cannot be solely compensated by

a proper design of the waveguide cross section.

Recent progresses in the fabrication of photonic integrated devices using material

platforms characterized by a relatively large second-order nonlinearity, such as thin-

film lithium niobate (TFLN) [13, 77] or (aluminum)gallium-arsenide-on-insulator [78],

suggest the possibility of exploring the above-mentioned approach also in the frame-

work of doubly resonant SPDC. Unlike SFWM, this process involves a very large

frequency range, typically spanning from the fundamental frequency ωF to the sec-

ond harmonic ωSH = 2ωF, with ωSH being the pump frequency. In ring resonators,

dispersion engineering is critical to achieve doubly resonant condition, with the de-

sign tolerance being inversely proportional to the quality factors of the resonances

involved in the nonlinear process. In addition, self- and cross-phase modulation, as

well as the photorefractive effect [79], may limit the power range in which a device

can operate. In principle these problems can be addressed through a fine tuning

of the relative position of the resonances by means of thermal [80] or electro-optic

elements [81]. However, the effectiveness of this strategy depends on the material

platform and waveguide design, and it may come at the price of working at slightly

different wavelengths than initially planned. In this scenario, we shall see that the

use of linearly uncoupled resonators is quite useful, for it relaxes dispersion engineer-

ing efforts significantly, with doubly resonant condition achieved without relying only

on dispersion engineering but rather exploiting the independent tuning of the two

resonators.

3.3.1. SPDC and DC structure. The strategy of uncoupling two resonators

thanks to a properly-designed DC can be exploited also with second-order nonlinear

processes. Here, the main challenge is the very different spectral region of the pump

and the generated photons, for the coupler will respond differently for the two different

frequencies. We studied the situation of degenerate SPDC in a double-racetrack

structure on a TFLN platform. In designing this system we considered a trapezoidal

TFLN rib waveguide that can be fabricated by partial etching of a 300 nm thick X-

cut LiNbO3 (LN) film on a silica substrate. The waveguide features a sidewall angle

θ = 61◦, which is the typical value for LN waveguides etched in Ar plasma and is

cladded by a 750 nm thick electrically-cured hydrogen silsesquioxane (HSQ) cladding.

As a case study, we choose the same material stack used in [82] to show the monolithic

integration of electro-optically tunable circuits and superconducting nanowire single-

photon detectors (SNSPDs) in TFLN waveguides. Hence, this structure represents

a practical solution for the realization of fully integrated quantum photonic circuits

where non-classical states of light can be simultaneously generated, manipulated, and

detected.
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Figure 3.16. (a) Sketch of the TFLN waveguide cross section and the field profile of the phase-
matched (b) TE0 mode at ωF and (c) TE2 mode at ωSH (images taken from [83]).

First we engineer the dispersion through the geometry of the waveguide. Its cross

section is sketched in Fig. 3.16(a): it has a top width w = 660 nm, an etching depth

h2 = 255 nm, and a residual LN film of thickness h1 = 45nm at the base. When

propagation is along the y direction, the geometry of the waveguide is engineered

to guarantee phase matching for the degenerate SPDC with a photon from the TE2

mode at the pump frequency ωSH = 2ωF (λSH = 775 nm) down-converted into two

photons at the fundamental frequency ωF (λF = 1550 nm) in the TE0 mode. Yet, as

we shall see in the following, exact phase matching is not required in this structure.

The simulated [34] electric field intensity distributions for the TE0 and TE2 modes

are shown in Figs. 3.16(b) and 3.16(c), respectively.

The whole structure, shown in Fig. 3.17, is composed of two racetrack resonators

positioned side by side at a distance dDC along the straight section, forming the DC

of length LDC, shown in Fig. 3.18. The first racetrack has a straight arm of length

L1 = 554.8µm and a bending radius R1 = 50µm. In the upper straight section the

waveguide width increases linearly from w to w = 665 nm and then decreases from w

to w, forming a symmetric taper of total length 2LT = 459.0µm. This perturbation

in the racetrack geometry is introduced so that phase matching is not satisfied in the

taper region and Resonator 1 can support a resonant mode at ωF without supporting

any resonant modes at ωSH . The reason for this choice is that the DC can be designed

to uncouple perfectly only at one of the two frequencies of interest, thus if at the fun-

damental harmonic the two resonators are linearly uncoupled, at the second harmonic

there will be some residual linear coupling that can affect the down-conversion pro-

cess; the study of the taper realization will be explained later. The second racetrack

has a straight section of length L2 = 553.0µm and bending radius R2 = R1. These

parameters are chosen to guarantee that Resonator 2 supports an odd-order resonant
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Figure 3.17. Sketch of the structure, with taper region in the upper arm of Resonator 1 and bus
waveguides for pump injection and photon pairs extraction. Red blobs indicate the mode TE0
propagating in Resonator 1 at ωF, while green ones are for the TE2 mode in Resonator 2 at ωSH.

mode at ωSH , thus no resonant mode at ωF . Additionally, the two resonators are

point-coupled with two bus waveguides positioned at distance d1 and d2, respectively,

which correspond to the coupling constants σ1 and σ2. These waveguides are used

for the pump injection and the collection of the generated photons, as indicated in

Fig. 3.17. Efficient light coupling with the chip at both ωF and ωSH can be obtained

by means of grating couplers featuring a negative diffraction angle and a self-focusing

effect of the diffracted beam [84].

Knowing the behavior of the DC at the two different frequencies is fundamental to

study the pair generation process. The strength of the nonlinear interaction depends

Figure 3.18. Sketch of the fields propagating in the directional coupler. As can be seen, only the
field at the fundamental frequency oscillates in the lower channel where the two fields overlap.
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on the field distribution inside the DC, which is determined by LDC and dDC . In Fig.

3.19 we plot the DC coupling length Lc = π/κc, with κc the coupling coefficient, as

a function of dDC for the TE0 mode at the fundamental frequency and for the TE2

mode at the second harmonic. In general, the coupling lengths at ωF and ωSH are

different, due to the different field distribution of the two modes. In particular, Lc

grows faster for the second-harmonic mode, because of the stronger light confinement

in the waveguide at ωSH . We choose to work with dDC = 1225 nm, for which the

coupling length at ωSH is more than three times that at ωF (see Fig. 3.19). Thus, by

taking LDC = Lc = 552µm, one ensures perfect linear uncoupling at ωF . This choice

is a trade-off between having small resonators with a high finesse and working with a

sufficiently long DC in which SPDC can take place. With this length of the coupler,

at the SH there is a small coupling between the two resonators. As we sketched in Fig.

3.18, the field at ωF circulating in Resonator 1 oscillates between the two channels of

the DC, while that at ωSH circulating in Resonator 2, due to the very small coupling

coefficient, does not propagate in the upper channel of the coupler. We immediately

see a difference with respect to the case of SFWM with the DC structure: the fields

overlap only in one channel of the coupler. With this system, we are dealing with

a very large frequency range, thus the linear uncoupling of the two resonators at

Figure 3.19. Coupling length for a round-trip power transfer between two identical waveguides at
ωF (dashed red) and ωSH (dot-dashed green). The working point is also indicated. Inset: cross
section of the DC (image taken from [83]).
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both frequencies is challenging to obtain. In particular, for our parameter choice,

the DC cross-transmission coefficient is small but not zero at ωSH , therefor we need

to limit the coupling of the two resonators in some way. The strategy is to remove

the resonance at ωSH in Resonators 1 via the aforementioned adiabatic taper. The

increasing width of the waveguide produces an uneven shift of the comb of Resonator

1, for different frequencies acquire a different phase while propagating the taper. This

prevents resonant splitting due to strong linear coupling of the two resonators at the

pump frequency.

The success of the uncoupling can be viewed from the linear spectra of the struc-

ture. In Fig. 3.20(a) and (b) we show the resulting field intensity enhancement in

Figure 3.20. Intensity enhancement of the fields in the two separate racetracks (a) at the fundamen-
tal frequency and (b) at the second harmonic frequency. Notice the perfect isolation of the resonators
at ωF and the effect of the small pump leak in Resonator 1 at ωSH.
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the two resonators as a function of the frequency detuning from ωF and ωSH , re-

spectively. In our structure, at ωF light is circulating only in Resonator 1, while at

ωSH one finds light in both resonators. However, the two combs of resonances that

can be identified in Fig. 3.20(b) are independent and correspond to the resonant

frequency of Resonator 1 and Resonator 2, respectively. Finally, we set the coupling

coefficient σ1 = 0.995 and σ2 = 0.93. These parameters control the coupling of

the two resonators with the corresponding bus waveguides. Unlike in a single point-

coupled ring, in our structure the coupling condition can be adjusted for the two

combs of resonances independently, thus one has a large flexibility in controlling the

field enhancement and the quality factors at ωF and ωSH . In determining these values

we assumed reasonable propagation losses αF = 1dB/cm [77] and αSH = 3dB/cm.

These values result in a full width half maximum of Γ1 = 4 rad/ns and Γ2 = 18 rad/ns,

corresponding to Q1 ≈ 290000 and Q2 ≈ 135000, respectively.

3.3.2. SPDC and MZI structure. Like we did for SFWM, we can exploit the

advantage of using the MZI also for SPDC. We can combine the tapering strategy

for removing the unwanted resonance with the higher generation efficiency of the

MZI structure. Again, the interferometer can be realized by means of two DCs that

split the fundamental frequency in both arms. The SH field would then be either

confined in only one arm of the interferometer or circulating in both of them with

different intensities, depending on the chosen length of the DCs. In any case, SPDC

can take place since both fields are present in the same region. Considering the same

waveguide geometry described for the previous case, here we show a simulation of

the MZI structure where the two identical DCs are designed to split the field at the

fundamental harmonic in both arms of the interferometer. This is obtained by setting

the DC to have coupling coefficient κF = 0.0097µm−1, thus a coupling coefficient

κSH = 0.004µm−1, and length LDC = 80.9µm. This corresponds to having, over the

Figure 3.21. Sketch of the MZI coupler realized with two DCs. At ωSH light is confined in the lower
arm of the interferometer, while at ωF the DCs are designed to (50):(50) split the field in both arms.
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length LDC, a (50):(50) split at the fundamental frequency and ≈ (90):(10) split at

the SH.

The structure we simulated is similar to that sketched in Fig. 3.17, where the

coupler is the MZI sketched in Fig. 3.21. The two resonators have the same straight

length L1 = L2 = 561.9µm but different radii R1 = 70.0µm and R2 = 71.1µm, while

the MZI has a length LMZI = 400µm. In the upper straight section of Resonator 1 is

built the same symmetric taper previously discussed. When treating SPDC process

with the MZI, we have to care about the different frequencies involved. In fact, the

phase of the interferometer should be set to realize destructive interference between

the fields at ωF, therefor, since we have ωSH = 2ωF, the SH will always experience

constructive interference. This highlights the importance of the small coupling that

Figure 3.22. Intensity enhancement of the fields in the two separate racetracks and inside the arms
of the MZI (a) at the fundamental frequency and (b) at the second harmonic frequency.
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the DC have at ωSH and the taper to remove the corresponding resonance in Resonator

1. The correct behavior of the MZI can be investigated by plotting the intensity

enhancement outside and inside of it, as we do in Fig. 3.22. We can see in Fig.

3.22(a) that the field at ωF is circulating only in Resonator 1 (red dashed line) and

not in Resonator 2 (brown dashed-dot line), as we expect from the correct behavior of

the MZI. Instead, inside the interferometer, we see that the field is half of the intensity

in both arms (black dotted and magenta solid lines). Similarly, in Fig. 3.22(b) we

see that the field at ωSH is circulating only in Resonator 2 (green dashed line) and

not in Resonator 1 (black dotted line), but inside the MZI the field circulates only

in the lower arm (lime solid line). Due to the leakage effect, we can see some small

resonances appearing, as well as a slightly higher value of the field inside the arm of

the MZI with respect to that outside. Both these effects are though negligible and

do not affect the functionality of the structure. Here, we set the coupling coefficients

σ1 = 0.99 and σ2 = 0.94, that result in a full width half maximum of Γ1 = 5 rad/ns

and Γ2 = 17 rad/ns, corresponding to Q1 ≈ 245000 and Q2 ≈ 145000, respectively.

3.4. Generation rate and spectral properties

As an example, we demonstrate that one can take advantage of the peculiar

features of the double-racetrack resonators system to generate nearly uncorrelated

photon pairs by SPDC. If we consider the DC case, the expression for the biphoton

wavefunction describing the generated photon pairs can be calculated from equation

(1.45) by considering the asymptotic fields in the coupler (3.2). The result is

ϕSPDC(ω1, ω2) = i
α

β
χ(2)

√
ℏωSωIωP

8πε0ε3rASPDC
eff vg,S(ω1)vg,I(ω2)vg,P (ω1 + ω2)

× ϕP (ω1 + ω2)Jch (ω1, ω2, ω1 + ω2) , (3.42)

where χ2 is the typical value of the second-order nonlinearity of LN, ASPDC
eff is the

nonlinear effective area for SPDC [16], and ϕP (ω1 + ω2) is the pump spectral profile.

Finally, Jch (ω1 + ω2, ω1, ω2) is the field spatial integral in the lower channel of the

DC describing the second-order nonlinear interaction. Its expression, adapting (3.18)

to the SPDC case, is

Jch (ω1, ω2, ω1 + ω2) =

∫ LDC

0
f∗ch,ω1

(z)f∗ch,ω2
(z)fch,ω1+ω2(z)e

i∆kz , (3.43)

with fch,ω(z) given by (3.3) and ∆k = kP (ω1 + ω2)− kS(ω1)− kI(ω2). Here, we are

analyzing degenerate SPDC, thus we take ωS = ωI = ωF and ωP = ωSH, and call

TE0 the modes S and I, and TE2 the mode P . Then, we consider a more general
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expression for (3.42)

ϕSPDC(ω1, ω2) = i
α

β
χ(2)

√
ℏω2

FωSH

8πε0n4Fn
2
SHASPDC

eff vg,F(ω1)vg,F(ω2)vg,SH(ω1 + ω2)

× ϕP (ω1 + ω2)Jch (ω1, ω2, ω1 + ω2) , (3.44)

where we took the dielectric function εr to be frequency dependent and thus writing

εr(ωF) = n2F and εr(ωSH) = n2SH, where clearly nF and nSH are the mode effective

indices of the waveguide at ωF and ωSH , respectively. When the linear uncoupling

is reached, pump field belongs only to Resonator 1 while signal and idler only to

Resonator 2, thus we can use equation (3.3) to rewrite (3.43) as

Jch (ω1, ω2, ω1 + ω2) =− FE1,TE0(ω1)FE1,TE0(ω2)FE2,TE2(ω1 + ω2)

×
[
i

∫ LDC

0
cos2 (κFz) sin(κSHz)e

i∆kzdz

+

∫ LDC

0
sin2(κFz) cos (κSHz) e

i∆kzdz

]
. (3.45)

Here, FE1(2),TE0(TE2)(ω) is the field enhancement in Resonator 1(2) of the TE0(TE2)

mode, whose modulus square is described by (1.71), the phase mismatch became

∆k = kTE2(ω1 +ω2)− kTE0(ω1)− kTE0(ω2), with kTE0(TE2)(ω) the wavevector of the

TE0(TE2) mode of the waveguide, and κF and κSH are the coupling coefficients of

the DC at the fundamental and second harmonic frequency, respectively. A similar

comparison that we did for SFWM between the overlap integral of a ring resonator

Jring(ω1+ω2, ω1, ω2) and that in equation (3.45) can be made here. If we assume our

structure parameters, L1 ≃ L2 ≃ Lring, the same quality factors for both systems,

and ∆k = 0, we obtain

Jch(ω1 + ω2, ω1, ω2) ≃ Jring(ω1 + ω2, ω1, ω2)
LDC

2Lring
, (3.46)

thus giving an estimate of the decrease in the pair generation rate with respect to the

standard ring. Differently from the SFWM case, there is not a theoretical optimal

length for the DC, thus the limit is set by the coherence length of the process. In

fact, we can further analyze the linear uncoupling strategy by studying the spatial

overlap integral Jch (ω1 + ω2, ω1, ω2) of (3.45). We plot in Fig. 3.23 its modulus

square as a function of ∆k. We find a relatively wide region (some 0.01µm−1),

highlighted with a green band, around the phase matching condition ∆k = 0 in

which the strength of the nonlinear interaction has the same order of magnitude.

This indicates that SPDC is particularly efficient as long as its coherence length

(Lcoh = π/∆k) is longer than LDC. This result is analogous to that observed for third-

order nonlinear interactions in linearly uncoupled resonators, in which the required

coherence length is set by the DC length and is independent of the quality factors
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Figure 3.23. Spatial overlap integral (3.45) modulus square as a function of ∆k = k(ωSH)−k(ω1)−
k(ωSH − ω1), with ωSH = ω1 + ω2. The green band indicates the window in which the efficiency has
almost the same order of magnitude; it can be compared to that of a single ring resonator (red band),
that is two orders of magnitude smaller.

of the resonators [67]. On the contrary, in a single ring resonator, the coherence

length is related to the distance travelled by light in a dwelling time τd = vgQ/ω. For

comparison, by assuming a ring resonator with our waveguide parameters, this would

require a coherence length larger than 30 000µm, which corresponds to an operational

bandwidth of only ∆k = 2×10−4 µm−1, represented by the red band in Fig. 3.23. As a

consequence, our system is more flexible and robust against fabrication imperfections

that may affect the waveguide dispersion.

Now we turn to the generation of uncorrelated photon pairs, and we consider a

Gaussian pump pulse centered at ωSH, having duration τ = 28ps and peak power

PP = 15mW, which corresponds to an average number |α|2 = 1.6 × 109 of pump

photons. The pulse is injected in Resonator 2 through the bus waveguide, and the

photons are generated in the arms of the coupler and then collected via the waveguide

coupled to Resonator 1. We compare the result we obtain for both DC and MZI

structures. The choice of the coupling parameters σ1 and σ2 is linked to the goal of

generating a separable photon pair. In fact, these parameters are chosen to ensure

the quality factor of Resonator 1 to be larger than that of Resonator 2 (Q1 > Q2),

providing a feasible strategy for the generation of nearly uncorrelated photon pairs

[85]. The idea is to be as close as possible to the critical coupling condition for the
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Figure 3.24. (a) JSD for a single ring resonator. The value of the SN is theoretically bounded to a
minimum of 1.09. (b) Symmetric JSD for the linearly uncoupled resonators (same results for both
DC and MZI). The SN is 1.01, below the single ring limit.

pump field at ωSH and to overcouple the Resonator 1 at ωF ; in this way one can

increase the pump field enhancement and the outcoupling of the generated pairs.

Thanks to the linear uncoupling strategy we gain the necessary independent control

of the quality factors of the two combs of resonances.

From the biphoton wavefunction (3.44), we calculate the state Schmidt number

SN [86] and the |β|2 for the DC structure. The results are a SN = 1.01, below the

single ring limit of 1.09, which confirms that the photons are nearly-uncorrelated, and

a |β|2 ≈ 0.01. By assuming a pump repetition rate of 1MHz, this correspond to a

generation rate of 104 pairs per second, which is comparable with that achieved with

other integrated platforms [87]. Then, we calculate the |β|2 for the MZI structure,

using the mentioned parameters σ1 and σ2, chosen to obtain the same SN = 1.01.

This decision is made to compare the efficiency of the structures when generating the

same state. From our calculation we obtain a similar value |β|2 ≈ 0.01. We deduce

that in the MZI structure, due to the bigger length of the resonators with respect to

the DC case, the high losses at the SH lower the efficiency of the process. Thus, even

if in theory this system should be more efficient, the result is the same as the DC

case. Nonetheless, with the Mach-Zehnder interferometer we gain the advantage of

the flexibility against fabrication defects discussed earlier. In Fig. 3.24 we plot the

joint spectral density (JSD) |ϕ (ω1, ω2)|2, in the case of the standard ring resonator

(panel (a)) and in both cases of DC and MZI structures (panel (b)). The latter JSD

is symmetric, suggesting that the biphoton state is separable. This result shows how

with the linear uncoupling strategy one can easily reach a value of the SN arbitrarily

close to 1, for the quality factors of pump and generating resonators are intrinsically

independent. The choice between uncoupling through DC or MZI is still linked to the

advances in the technology, for the MZI structure, although more robust and efficient,
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can suffer from high losses while the DC structure is less affected by this problem

thanks to its smaller footprint.

3.5. Beyond two-photon states

We showed how the linear uncoupling strategy can provide a precise control on

the linear properties of a structure which can be directed towards the generation and

manipulation of photon pairs. One may ask if this strategy is applicable to go beyond

two-photon states. Indeed, we investigate the possibility to reach optical parametric

oscillations (OPO) in such structures, within the visible-IR light frequency spectrum.

3.5.1. Optical parametric oscillation study. In a resonator, we call OPO the

regime where the generated field is large enough to initiate the stimulate generation

process. The threshold to this regime can be considered the moment when the pair

generation rate equals the linewidth of the resonances

ROPO
th = ΓS = ΓI . (3.47)

With this hypothesis, we can estimate the pump power threshold for the OPO. Here,

we discuss the case of SFWM, by considering the pair generation rate for a ring

resonator (3.28) in order to calculate the pump threshold

P ring
P,th =

ω2
PLQC,P

8γNLv2gQ
2
P

√
ωSQI + ωIQS

ωSωIQSQI
ROPO

th . (3.48)

It was demonstrated that in Si3N4 ring resonators one can achieve OPO with few

milliwatts of pump power [88]. If we assume the structure parameters from [88], such

as R = 23µm, Q ≈ 106, ωS = 1431 rad/ps, ωP = 2033 rad/ps, ωI = 2602 rad/ps

and ΓS = ΓI = 1.88 rad/ns, and typical Si3N4 platform values for the group index

ng = 2.086 and the nonlinear coefficient

γNL =
ωPn2
c

1

ASFWM
eff

, (3.49)

with nonlinear refractive index n2 = 2.6×10−7 µm2/W [20, 89] and SFWM nonlinear

effective area ASFWM
eff = 0.645µm2, by setting the condition (3.47) we get P ring

P,th =

3.4mW. We can then compare these results with the OPO power threshold in the

case of linearly uncoupled resonators. We considered the case of uncoupling through

MZI, assuming R = 23µm, L1 = L2 = 2L = 289µm, LMZI = πR = 72.26µm,

and the same platform parameters as before, resulting in a threshold power PMZI
P,th =

54.5mW = 16P ring
P,th. In this calculation we assumed LMZI ≪ Lcoh and the DCs of the

interferometer to work as (50):(50) beam splitters for all the three frequencies. This

is an optimistic result, for the wide range of pump, signal, and idler hardly allows

the DCs to work in this ideal situation. As we shall see, the feasible solution is to
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split only the pump and the signal, while keeping the idler in only one arm of the

interferometer.

3.5.2. Power effect: self-phase and cross-phase modulation. We want to

study the behavior of integrated structures when we cannot consider a low pump

power regime. In fact, we are approaching the OPO threshold by increasing the

power PP injected in the system, thus requiring to account for the nonlinear Kerr

effect; in particular self-phase modulation (SPM) and cross-phase modulation (XPM)

(Fig. 1.9). We can estimate the strength of such effects by studying the nonlinear

coefficients

γSPM =
ωPn2

cAPPPP
eff

and γXPM
J =

ωJn2
c

1

APJPJ
eff,J

, (3.50)

with J = S, I, which depend on the usual nonlinear effective areas [72]

APPPP
eff =

(∫
|EP (x, y)|2dxdy

)2∫
|EP (x, y)|4dxdy

(3.51)

and

APJPJ
eff,J =

(∫
|EP (x, y)|2dxdy

) (∫
|EJ(x, y)|2dxdy

)∫
|EP (x, y)|2|EJ(x, y)|2dxdy

(3.52)

for SPM and XPM, respectively. In (3.51) and (3.52) we are considering an electric

field E(x, y) with only one component, and we are assuming only one relevant element

of the χ(3) tensor and, for each mode, a homogeneous phase and group indexes.

In a standard ring resonator, the effect of SPM is half that of XPM; in fact, usually

one works in the anomalous dispersion regime (Fig. 1.8(b)), thus, when the power

increases and the combination of SPM and XPM forward-shifts the pump resonance,

this effect compensates the dispersion mismatch. For this reason, the ring resonator

Figure 3.25. Pump, signal, and idler relative position in the case of linearly uncoupled resonators
(figure of merit).
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should be designed to cancel this phase mismatch at a sufficiently large injected power

to initiate OPO. Here, we show how the MZI structure can be exploited to explore

different configurations, for example allowing to work in a normal dispersion regime

(Fig. 1.8(a)), by increasing the effect of SPM with respect to that of XPM, or in a

configuration where the Kerr effect compensates the normal dispersion independently

of the injected power, allowing for a reconfigurable OPO source. The idea is that, if

we imagine to pump the system from Resonator 1, SPM acts all along that resonator,

causing a refractive index change

∆nSPM ∝ PPn2

APPPP
eff

, (3.53)

while SPM and XPM are both present only in the coupler region, where all the fields

overlap. We assume (50):(50) splitting ratio of the fields, getting

∆nMZI
SPM =

∆nSPM
2

and ∆nMZI
XPM ≃ ∆nSPM , (3.54)

where we considered a similar contribution from the different effective areas. The

overall effect is a larger phase shift induced by the SPM with respect to that of XPM.

To analyze this effect, we define the figure of merit (FOM) shown in Fig. 3.25

∆Ω = (ωI − ωP )− (ωP − ωS) , (3.55)

which represents pump, signal, and idler resonances relative position. In Fig. 3.26 we

compare this FOM as a function of the injected power PP for both the ring resonator

and the MZI structure. As we can see, for increasing power, ∆Ω assumes increasing

Figure 3.26. Comparison between the FOM of the ring resonator with that of the MZI structure.
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Figure 3.27. FOM for the MZI structure as a function of the injected power for different strength
of the SPM.

positive values in the MZI case, while decreasing negative values in the ring case. This

explains why one usually works in the anomalous dispersion regime with the ring and

how with the MZI structure we can explore the normal dispersion regime. Moreover,

with the flexibility of the MZI structure, we can investigate different configurations,

where the strength of the SPM is tuned by playing with the width of Resonator 1’s

waveguide, modifying the mode confinement and consequently the SPM nonlinear

factor (3.50). We show a simulation in Fig. 3.27, where we can actually work in both

anomalous and normal dispersion regimes, deepening on the strength of SPM. For a

specific value (blue solid line), it is also possible to design a power-independent OPO

source, where the effect of SPM and XPM are compensated for any value of PP .

3.5.3. OPO in linearly uncoupled resonators design. In order to actually

design a working device, we have to consider the different behavior of both the Mach-

Zehnder interferometer and the directional couplers of which it is composed, when

dealing with distant pump, signal, and idler frequencies. For what concerns the DC,

we want to obtain a situation where the fields are directed in the MZI such that

they overlap as much as possible in at least one of its arms. Here, we design a

Si3N4 waveguide, on a SiO2 substrate surrounded by air, of width w = 400 nm and

height h = 400 nm. With this waveguide parameters, we set the gap of the DCs

to g = 200 nm and study the coupling as a function of the DC length LDC for the

three frequencies of interested ωP = 2415 rad/ps (λP = 780 nm), ωS = 2141 rad/ps

(λS = 880 nm), and ωI = 2691 rad/ps (λI = 700 nm). The plot of the effective
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coupling coefficient κeff for pump (solid green), signal (dashed red), and idler (dotted

blue) is shown in Fig. 3.28. From this, we choose the optimal length to split the fields

in order to maximize the overlap. Therefor, with a DC length of LDC = 13.5µm we

have a (50):(50) splitting of both pump and signal frequencies and ≈(0):(100) splitting

ratio for the idler frequency. This means the three fields overlap in the arm of the

interferometer belonging to Resonator 1. The tolerance on the DC length can be up

to 0.5µm without any significant change in the result. Instead, when designing the

MZI, the key point is obtaining a π phase shift for all the resonances. To do so, we

cannot rely only on the tuning mechanism offered by an electrical heater, but we need

to employ an interferometer with unequal arms length. In our design, we choose the

proper path difference ∆LMZI = 31.53µm between the arms of the MZI that satisfies

∆ϕm = km∆LMZI = (2n + 1)π, with n integer, for each m = P, S, I. The heater

on one of the arm of the MZI is still fundamental, for it provides the fine tuning

to correct any fabrication imperfection on ∆LMZI and ensures the π phase shift for

all the resonances. In this design we are including the Bezier curves we studied in

chapter 1 to allow for the realization of high-Q resonators. In fact, we can see the

non-zero coupling at LDC = 0 in Fig. 3.28. We stress that the use of Bezier curves

helps lowering the scattering losses but increases the overall length of the resonators,

reducing its finesse. Depending on the fabrication quality and technique, the use of

Bezier curves can be preferable. In Fig. 3.29 we show the estimate we obtain for a

MZI structure with length of the Bezier curves LB ≃ 92µm, length of the short MZI

Figure 3.28. Effective coupling coefficient of the DC as a function of its length for the three fre-
quencies of interest. The orange band indicates the chosen length and tolerance.
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Figure 3.29. Figure of merit normalized by the resonator linewidth as a function of the pump power.
The MZI working point is highlighted with the green circle, where the FOM is close to zero within
one FWHM tolerance (dashed blue lines) and the injected power is larger than the OPO threshold
(dashed red line).

arm LMZI ≃ 168µm and length of the long MZI arm LMZI + ∆LMZI ≃ 200µm, for

a total Resonator 1 length of L1 ≃ 575µm and Resonator 2 length of L2 ≃ 606µm.

Both resonators have quality factors Q ≈ 106 and linewidths Γ1 ≃ Γ2 ≃ 3 rad/ns

(≈ 1 pm). With these parameters, the resonances of the cold structure, i.e. when

the power is sufficiently low that Kerr effect can be neglected, are not aligned. As

the pump power is increased, the FOM decreases, until it approaches zero. The

goal is to get a zero FOM for a value higher, but as close as possible, to the OPO

power threshold PMZI
P,th = 48.3mW (dashed red line). In this simulation, we obtain a

structure where the FOM is close to zero within one FWHM of tolerance (dashed blue

lines) at PP ≃ 60mW. This result shows how the realization of an OPO source that

works in normal dispersion with relatively low pump power threshold is achievable.





Conclusions

This research was focused on the theoretical study of the generation of nonclassical

states of light via parametric fluorescence in integrated structure composed of two

resonators by exploiting the coupling between them. In particular, we studied two

phenomena: spontaneous parametric down-conversion (SPDC) and spontaneous four-

wave mixing (SFWM). We developed the theory necessary to describe the generation

of photon pairs in integrated photonic circuits, to understand how to increase the

generation efficiency and, at the same time, how to gain control on the properties

of the generated light. The core idea is to engineer some resonances of the system

to overcome the limitation that are typical of simple structures like ring resonators.

There, one can only play with the geometry of the waveguide forming the resonator

to compensate for the material dispersion or use some tuning mechanism to rigidly

shift the comb of the resonator. We examined two different strategies to achieve the

same goal, by exploiting the coupling between the two resonators involved, and access

to a new level of control of their properties. The first is the strong coupling strategy,

the second is the linear uncoupling strategy.

Many results are the success of collaborations with theoretical and experimental

research groups that made possible the comparison between different models and the

realization of devices for experimental validation. We modelled nonlinear parametric

processes in lossy integrated device in collaboration with the group at the University

of Toronto (CA) [4, 90]. With Xanadu Quantum Technology (CA) we studied the

squeezing in nanophotonic molecules, showing how with the strong coupling strategy

one can tune only specific resonances of a comb, for example to suppress certain para-

sitic processes. With this technique it was possible to achieve record-level of squeezing

on an integrated device, as reported in this work, thanks to the experiment carried

out by the Xanadu team and to which we have contributed by providing theoretical

support [60]. We investigated the advantages of the linear uncoupling strategy in

several ways, in platforms that exploit both second- or third-order nonlinear interac-

tion. In particular, we cooperated with the experimental groups at the University of

Pavia and CEA-LETI in Grenoble (FR) by studying the design of the structure and

its properties, actually demonstrating the suppression of the parasitic processes [69,

70], and in collaboration with the experimental group at the University of Munster

87
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(GE) we investigated the generation of separable photon pairs [83]. Finally, we real-

ized the design of an integrated optical parametric oscillators in collaboration with

the National Institute of Standard and Technologies in Maryland (US). For all the

different scenarios, we simulated the systems and provided a design of the devices by

determining the best structure parameters compatible with the current technology.

The field of integrated photonics is becoming of paramount importance for the imple-

mentation of practical quantum technologies, where reliable and efficient sources of

nonclassical states of light are desirable. This research aims towards that direction,

providing a practical and flexible solution.



APPENDIX A

Some analytical calculation

A.1. Analytic calculation of the Lorentzian shape of the resonances

Equation (3.22) is calculated from the Lorentzian shape of signal and idler reso-

nances

ℓ(ω1) = Γ2
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and
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where we have considered signal and idler photons to be indistinguishable, and thus

that they both can be generated in the resonance around ωS and in that around ωI .

These give the expression

L(ω1, 2ωP − ω1) = ℓ(ω1)ℓ(2ωP − ω1) ≈ Γ2
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C1(ω1) + C2(ω1) , (A.3)
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where we have neglected the product of Lorentzians centered at different frequencies,

given that generally FSRi ≫ Γi,m. This leads to∫
dω1ω1(2ωP − ω1)L(ω1, 2ωP − ω1) =∫
dω1ω1(2ωP − ω1) [C1(ω1) + C2(ω1)] , (A.4)
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in which we considered
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and hence to the final value∫
dω1ω1(2ωP − ω1)L(ω1, 2ωP − ω1) =

π
Γ2,SΓ2,I

(Γ2,S + Γ2,I)
(ωSωI) , (A.7)

of equation (3.23).
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A.2. Analytic calculation of J -spatial

In the case of perfect uncoupling via the DC we have fup,ω1(2)
(0) = flo,ω3(4)

(0) = 0,

and hence the condition (3.3) for each frequency simplifies to



fDC
up,ω1(2)

(z) = −iflo,ω1(2)
(0) sin(|κDC|z)

fDC
up,ω3(4)

(z) = fup,ω3(4)
(0) cos(|κDC|z)

fDC
up,ω1(2)

(z) = fup,ω1(2)
(0) cos(|κDC|z)

fDC
up,ω3(4)

(z) = −iflo,ω3(4)
(0) sin(|κDC|z)

, (A.8)

giving, from (3.18),

Jup(ω1, ω2, ω3, ω4) = Jlo(ω1, ω2, ω3, ω4) =

flo,ω1(0)flo,ω2(0)fup,ω3(0)fup,ω4(0)×∫ LDC

0
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and hence
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Similarly, in the case of perfect uncoupling via a MZI coupler, we have f
(1)
−,ω1(2)

=

f
(2)
−,ω3(4)

= 0 and, if we assume balanced beam splitters, σdx = σsx = σ (and hence

κdx = κsx = κ), condition (3.13) for the different frequencies simplifies in
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and, from (3.18),
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0
(−σ2κ2ei∆kz)dz ≈ −LMZI

2
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in the case of 50:50 point couplers (σ = κ = 1/
√
2).

A.3. Generation rates in terms of Finesse

The expression for the generation rate can be written in terms of the finesse F of

the resonators, thanks to the relation found in section II. For example, at the critical

coupling condition, we have
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