
Ph.D. program in Computational Mathematics and Decision Sciences

UNIVERSITÀ DEGLI STUDI DI PAVIA
UNIVERSITÀ DELLA SVIZZERA ITALIANA

Ph.D. program in Applied Mathematics and Computational Sciences

KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Numerical approximation of PDEs

on complex geometries:

fluid–structure interaction problems

and virtual element methods

Ph.D. dissertation

Advisors:
Silvia Bertoluzza

Daniele Boffi

Candidate:
Fabio Credali

2

Abstract

The studies in numerical approximation of partial differential equations (PDEs)

are characterized by the necessity of managing complex geometries and their dis-

cretization. We focus our attention on two different fields where complex geome-

tries are very common: the mathematical modeling of fluid-structure interaction

problems and the family of virtual element methods.

We first consider the finite element approximation of fluid-structure interaction

(FSI) problems described by a distributed Lagrange multiplier formulation. The

method is based on a fixed mesh for the fluid domain which is extended to include

the region occupied by the solid, in the spirit of the fictitious domain approach.

The reference configuration of the solid is discretized with a fixed mesh which is

mapped, at each time step, to the actual position of the body.

A crucial aspect of the method is the assembly of the finite element matrix

describing the coupling between fluid and structure. This procedure consists in

integrating over the solid domain both solid and fluid basis functions, which are

defined on two different non-matching grids. This can be done in two ways: the

exact approach is based on a composite quadrature rule defined on the intersection

between the two involved meshes, whereas the approximate approach is carried

out roughly integrating on each solid element. We discuss and compare these two

approaches both from the theoretical and computational point of view. We present

quadrature error estimates for the approximate case accompanied by a wide range

of numerical tests, showing the different features of the considered techniques.

Moreover, we provide the proof that the problem is well-posed when the coupling

term is inexactly assembled.

From the computational point of view, another aspect that cannot be over-

looked is the cost, in terms of time and resources, required to carry out the sim-

ulation of a fluid-structure interaction problem. In particular, several difficulties

3

4

may occur while performing this task. For instance, the problem arises from non-

linear models, the coupling terms need to be updated at each time step, the linear

system is ill-conditioned due to the high resolution. Therefore, for these reasons,

accuracy and efficiency should be balanced and the use of a parallel solver becomes

mandatory in this sense. We present a preliminary study on a parallel solver for

our fictitious domain formulation. As a first step towards the design of an effective

solver, we consider block preconditioners, which are tested on two simplified aca-

demic problems and compared in terms of optimality, weak and strong scalability.

Virtual element methods (VEM) are known to tackle complex geometries with-

out limitations on the degree of the polynomial that partially contributes to the

approximated solution. An important aspect of this method is that we are not re-

quired to explicitly compute the basis functions of the VEM space since these are

solutions of PDEs. Due to this fact, several quantities are not computed exactly.

Two of these are the bilinear form, for which the action on the nonpolynomial part

is handled by a stabilization term, and the error, where the contribution of the

nonpolynomial part is neglected.

In certain cases, such as when anisotropic problems are considered, the method

may show poor performance if endowed with standard stabilization terms, which

have an isotropic structure. We propose a model order reduction technique con-

structed by means of the reduced basis method (RB) for efficiently solving the

equation associated to each virtual basis function. The idea is to replace the sta-

bilization term with an actual approximation of the nonpolynomial contribution.

We show that this operation produces good results even if done in a very rough

way, so that the virtual nature of the method is preserved.

In post-processing framework, it is well known that, when a PDE is solved with

VEM, the degrees of freedom of the discrete solution allow only the computation

of projections onto discontinuous polynomial spaces, so that the solution is not

conforming. The RB approximation of the virtual functions can also be exploited

for reconstructing conforming solution in the VEM space. This task can be useful to

carry out operations such as visualization, reconstruction in subdomains, pointwise

evaluation and evaluation of the conforming error when benchmarking the method.

The proposed RB approach is validated trough the comparison with standard

VEM techniques in terms of accuracy and efficiency and the mentioned applications

are discussed with several numerical tests.

Sommario

Gli studi riguardanti l’approssimazione numerica di equazioni differenziali alle de-

rivate parziali (PDEs) sono caratterizzati dalla necessità di gestire geometrie com-

plesse e la loro discretizzazione. Focalizziamo la nostra attenzione su due differenti

campi dove la presenza di geometrie complesse è molto comune: lo studio di model-

li matematici per problemi di interazione fluido-struttura e la famiglia dei metodi

agli elementi virtuali.

Consideriamo l’approssimazione tramite elementi finiti di problemi di intera-

zione fluido-struttura (FSI) descritti tramite una formulazione con moltiplicatore

di Lagrange distribuito. Il metodo è basato su una mesh fissa per il dominio fluido

che viene estesa affinchè includa anche la regione occupata dal solido, nello spirito

dell’approccio a dominio fittizio. La configurazione di riferimento per il solido è

discretizzata con una mesh fissa che viene mappata, ad ogni istante di tempo, nella

posizione effettiva dell’oggetto.

Un aspetto cruciale del metodo riguarda l’assemblaggio della matrice ad ele-

menti finiti che descrive l’interazione tra il fluido e la struttura. Questa procedura

consiste nell’integrare sul dominio solido le funzioni di base sia del fluido che del

solido, che sono definite su due mesh non allineate. Questa operazione può esse-

re effettuata in due modi: l’approccio esatto è basato sull’uso di una formula di

quadratura composita che viene costruita sull’intersezione delle mesh coinvolte,

mentre l’approccio approssimato consiste nell’intergare grossolanamente su ogni

elemento della mesh solida. Discutiamo e confrontiamo questi due approcci sia dal

punto di vista teorico che computazionale. Presentiamo stime per l’errore di qua-

dratura nel caso approssimato, corredate da una vasta gamma di test numerici che

mostrano le diverse caratteristiche delle tecniche considerate. Inoltre, dimostriamo

che il problema discreto è ben posto anche quando il termine di accoppiamento

viene costruito in maniera approssimativa.

5

6

Dal punto di vista computazionale, un altro aspetto che non può essere ignorato

è il costo, in termini di tempo e risorse, necessario per simulare un problema di in-

terazione fluido-struttura. Potrebbero infatti sorgere varie difficoltà. Per esempio,

il problema potrebbe derivare da modelli non lineari, il termine di accoppiamento

deve essere aggiornato ad ogni istante di tempo, il sistema lineare è mal condizio-

nato a causa dell’alta risoluzione. Di conseguenza, per queste ragioni, accuratezza

ed efficienza devono essere bilanciate e l’uso di un solutore parallelo diventa obbli-

gatorio in questo senso. Presentiamo uno studio preliminare riguardante un primo

solutore parallelo per la nostra formulazione a dominio fittizio. Come primo passo

verso il design di un solutore efficace, consideriamo due precondizionatori a blocchi,

che testiamo e confrontiamo su due problemi accademici in termini di ottimalità

e scalabilità debole e forte.

I metodi agli elementi virtuali (VEM) sono noti per la capacità di gestire geo-

metrie complesse senza limitazioni sul grado polinomiale, che contribuisce solo

parzialmente alla soluzione approssimata. Un aspetto importante di questo meto-

do consiste nel fatto che non è necessario calcolare esplicitamente le funzioni di

base dello spazio VEM, in quanto esse stesse soluzioni di PDEs. Di conseguenza,

diverse quantità non sono calcolate in maniera esatta. Due di queste sono la forma

bilineare, in cui il contributo non polinomiale viene gestito tramite un termine di

stabilizzazione, e l’errore, dove il contributo non polinomiale viene ignorato.

In alcuni casi, come per esempio quando si considerano problemi anisotropi,

il metodo potrebbe fornire risultati non ottimali se costruito tramite termini di

stabilizzazione standard, che hanno invece struttura isotropa. Proponiamo un ap-

proccio ad ordine ridotto costruito tramite il metodo alle basi ridotte (RB) per

risolvere in maniera efficiente l’equazione associata ad ogni funzione di base vir-

tuale. L’idea è di sostituire il termine di stabilizzazione con una approssimazione

effettiva del contributo non polinomiale. Mostriamo che questa operazione porta

a buoni risultati anche se effettuata in maniera grossolana, in modo tale che la

natura virtuale del metodo sia preservata.

Nel caso del post-processing, è ben noto che, quando una PDE viene risolta

tramite VEM, i gradi di libertà della soluzione discreta permettono di calcolare

solo proiezioni in spazi polinomiali discontinui, per cui la soluzione risulta non

conforme. L’approssimazione a basi ridotte delle funzioni virtuali può essere sfrut-

tata anche per ricostruire soluzioni che siano conformi nello spazio VEM. Questa

7

tecnica può essere impiegata per effettuare operazioni come visualizzazione, rico-

struzione in sotto-domini, valutazione puntuale e valutazione dell’errore conforme

quando si effettua l’analisi comparativa del metodo.

Il metodo a basi ridotte che proponiamo viene validato, in termini di accuratez-

za ed efficienza, tramite il confronto con tecniche VEM standard e le applicazioni

che abbiamo menzionato vengono discusse tramite diversi test numerici.

8

9

Ph.D. program in Computational Mathematics and Decision Sciences

Università degli Studi di Pavia, Italy

Università della Svizzera Italiana, Switzerland

Ph.D. program Coordinator: Luca Pavarino

Ph.D. program in Applied Mathematics and Computational Sciences

Computer, Electrical and Mathematical Sciences and Engineering Division,

King Abdullah University of Science and Technology, Saudi Arabia

Reviewers:

Luca Heltai Scuola Internazionale Superiore di Studi Avanzati, Italy

Stefano Berrone Politecnico di Torino, Italy

Committee members:

Luca Pavarino Università degli Studi di Pavia, Italy

Daniele Boffi King Abdullah University of Science and Technology, Saudi Arabia

Silvia Bertoluzza IMATI ‘E. Magenes’, CNR Pavia, Italy

Stefano Berrone Politecnico di Torino, Italy

Luca Heltai Scuola Internazionale Superiore di Studi Avanzati, Italy

Matteo Parsani King Abdullah University of Science and Technology, Saudi Arabia

Rolf Krause Università della Svizzera Italiana, Switzerland

Pavia, 28 November 2023

10

Acknowledgements

The work presented in this Ph.D. thesis has been developed during a three years

journey between Europe and Middle East: I thank the three universities that made

this unique experience possible.

I would like to thank my mentors, Silvia Bertoluzza and Daniele Boffi, for their

availability, kindness, and enthusiasm in guiding my work. I couldn’t have asked

for better role models.

Many thanks to Lucia Gastaldi, Simone Scacchi and Daniele Prada for the

collaboration we established during these years, which not only contributed to the

scientific results, but also to my academic growth.

Daniele B. deserves also my gratitude for giving me the opportunity of living

and studying in Saudi Arabia, taking me out of the “tiny world” of Ferrera and

Pavia. Life in KAUST would not have been the same without my traveling com-

panions: Simone, Clarissa and Stefanos (“the committee”), Linda and Najwa, Luca

and Roberto, Paolo, Umberto. I will miss the moments of brain storming and relax

in the office, the dinners together, the time we spent in IRC. I will never forget our

trips to Al Ula and Egypt, the conferences. I hope our friendship remains, even

though our paths are somehow diverging.

Moving to Italy, I can’t thank my Family enough for the support they gave me

throughout the eight years of university studies (and more than that ...). They are

always there, at home, waiting for me. Thanks to dad Marco and uncle Franco for

the home-airport taxi service, even at unlikely hours.

The final thought goes to my friends. To lifelong friends, partner in crime in

a thousand adventures: Elena, Jacopo, Riccardo, Luca, and Cesare. To Matteo,

Mario, and Alessandro, with whom I began the mathematical journey back in

2015: we have stayed in touch ever since. To the friends of the legendary “Cardano”:

Laura, Alessandro, and Marco. And lastly, to Sofia and Donato, for the time shared

at the “Nave”.

11

12

Ringraziamenti

Il lavoro contenuto in questa tesi di dottorato è stato sviluppato durante tre anni

di viaggio tra l’Europa e il Medio Oriente: ringrazio le tre istituzioni universitarie

che mi hanno permesso di vivere questa esperienza unica.

Ringrazio i miei mentori, Silvia Bertoluzza e Daniele Boffi, per la disponibilità,

la gentilezza e l’entusiasmo con cui hanno sempre guidato il mio lavoro. Non avrei

potuto seguire esempi migliori.

Un ringraziamento va anche a Lucia Gastaldi, Simone Scacchi e Daniele Prada

per la bella collaborazione che ha contribuito sia ai risultati scientifici che alla mia

formazione accademica.

A Daniele B. va anche la mia gratitudine per avermi dato l’opportunità di

vivere e studiare in Arabia Saudita, tirandomi fuori dal “mondo piccolo” di Ferrera

e Pavia. Sicuramente la vita a KAUST non sarebbe stata la stessa senza i miei

compagni di viaggio: Simone, Clarissa e Stefanos (“the committee”), Linda e Najwa,

Luca e Roberto, Paolo, Umberto. Mi mancheranno i momenti di confronto e svago

in ufficio, le cene insieme, le giornate in piscina. Non dimenticherò mai i nostri

viaggi ad Al Ula e in Egitto, le conferenze. Spero che la nostra amicizia rimanga

nonostante le nostre strade si stiano in qualche modo dividendo.

Spostandomi in Italia, non posso che ringraziare infinitamente la mia Famiglia,

sempre lì a casa ad aspettarmi, per il sostegno durante gli otto anni di studi

universitari (e non solo ...). Un grazie a papà Marco e zio Franco per il servizio

taxi casa-aeroporto, anche ad orari improbabili.

L’ultimo pensiero è per gli amici. Per gli amici di una vita, complici di mille

avventure: Elena, Jacopo, Riccardo, Luca e Cesare. Per Matteo, Mario ed Alessan-

dro, coi quali ho iniziato il percorso matematico nel lontano 2015: da allora non

ci siamo persi di vista. Per i compagni del mitico “Cardano”, Laura, Alessandro e

Marco. E infine per Sofia e l’ingegner Donato, per il tempo condiviso in “Nave”.

13

14

Contents

Abstract 3

Sommario 5

Acknowledgements 11

Ringraziamenti 13

Functional analysis notation 19

I Fluid-structure interaction problems 23

Introduction 25

1 Immersed boundary with Lagrange multiplier 27

1.1 The immersed boundary method 29

1.1.1 Problem setting . 29

1.1.2 Derivation of the model . 31

1.1.3 Stability estimate . 36

1.2 Fictitious domain approach with DLM 38

1.3 Time semi-discretization . 40

1.4 Finite element discretization . 42

1.5 Analysis of the stationary problem 44

2 The interface matrix 49

2.1 Assembly techniques . 50

2.1.1 Assembly with mesh intersection 52

2.1.2 Assembly without mesh intersection 55

15

16 CONTENTS

2.1.3 Generalization . 56

2.2 A numerical investigation . 56

2.2.1 Model problem . 57

2.2.2 Finite element spaces . 59

2.2.3 Mesh generation . 60

2.2.4 Mesh intersection . 61

2.2.5 Quadrature rules for the interface matrix 63

2.2.6 Numerical results . 65

2.3 The effect of numerical integration 70

2.4 Error estimates for the inexact coupling term 86

2.4.1 Numerical tests . 95

2.5 Inf–sup conditions for inexact coupling 97

3 A parallel solver 105

3.1 The numerical method . 107

3.1.1 Parallel preconditioners . 109

3.1.2 The interface matrix . 110

3.2 Numerical results . 113

3.2.1 Linear solid model . 114

3.2.2 Nonlinear solid model . 126

3.3 Final remarks . 134

Bibliography 148

II Model order reduction in support of VEM 149

Introduction 151

4 The Virtual Element Method 155

4.1 Model problem . 159

4.2 Domain discretization . 160

4.3 A class of non-conforming discretizations 162

4.4 The Virtual Element space . 165

4.4.1 The discrete bilinear form ah 168

4.4.2 The right hand side . 171

4.5 Some estimates . 172

CONTENTS 17

5 Reduced Basis for VEM 175

5.1 VEM functions as solutions to parametric PDEs 177

5.2 The reduced basis method . 182

5.2.1 General idea . 182

5.2.2 How to construct a reduced basis 184

5.3 Computing virtual functions with reduced basis 185

5.3.1 The offline phase: snapshots computation 186

5.3.2 The affine decomposition . 188

5.3.3 The online phase: reconstruction of basis functions 190

5.4 Numerical validation . 191

5.4.1 Dataset generation . 191

5.4.2 Construction of the reduced basis 195

5.4.3 Accuracy . 197

5.4.4 Computational efficiency . 198

5.5 Design of a new VEM stabilization 204

5.5.1 The RB–stabilized VEM as a fully conforming method . . . 205

5.5.2 Numerical tests . 207

5.6 Post-processing of VEM with RB method 215

5.6.1 Visualization . 215

5.6.2 Local reconstruction . 216

5.6.3 Convergence test . 217

Bibliography 233

A Curriculum vitae 235

B Academic activity 237

B.1 Papers . 237

B.2 Conferences . 238

18 CONTENTS

Functional analysis notation

In this section, we recall classical notation in functional analysis we are going to

adopt through the work. Let us denote by Ω ⊂ Rd a generic open bounded domain.

We first introduce the space of square integrable functions in Ω

L2(Ω) =

{
v :

∫

Ω

|v|2 dx = ‖v‖2L2(Ω) <∞
}
.

In particular, the norm of this space is induced by the scalar product

(v, w)Ω =

∫

Ω

vw dx.

For the sake of precision, notice that the term functions should be replaced by

classes of measurable functions, where each class is composed by functions which

differ only on a subset of Ω with zero Lebesgue measure. Moreover, we consider

the following subspace made up of all the L2(Ω) functions with zero mean

L2
0(Ω) =

{
v ∈ L2(Ω) :

∫

Ω

v dx = 0

}
.

We now introduce the concept of Sobolev space. Given an integer r ≥ 0, we

define

Hr(Ω) =
{
v ∈ L2(Ω) : Dαv ∈ L2(Ω), ∀|α| ≤ r

}
.

In particular, α is a multi-index, which means α = (α1, . . . , αd) and |α| = α1 + · · ·+ αd.

If x ∈ Rd, then the action of α consists in

xα = xα1

1 · · · xαd

d .

The symbol Dαv denotes the following derivative, which is intended in distribu-

tional sense

Dαv =
∂|α|v

∂xα1

1 · · · ∂xαd

d

.

19

20 FUNCTIONAL ANALYSIS NOTATION

The Sobolev space Hr(Ω) is endowed with the norm

‖v‖2r,Ω =
∑

s≤r

|v|2s,Ω,

where |v|s,Ω denotes the sth semi-norm

|v|2s,Ω =
∑

|α|=s

|Dαv|2L2(Ω) .

Notice that L2(Ω) can be interpreted as the Sobolev space H0(Ω). Therefore, we set

‖v‖0,Ω = ‖v‖L2(Ω). In particular, H1(Ω) is the space of square integrable functions

up to the first order derivative; H1
0(Ω) ⊂ H1(Ω) is the subspace of functions with

zero trace on ∂Ω. In this subspace, the semi-norm |v|1,Ω is equivalent to the full

norm ‖v‖1,Ω.

If the exponent r is any positive real number, we define the fractional Sobolev

space

Hr(Ω) =

{
v ∈ L2(Ω) :

|v(x1)− v(x2)|
|x1 − x2|

d
2
+r

∈ L2(Ω× Ω)

}

endowed with the natural norm

‖v‖2r,Ω = ‖v‖20,Ω +

∫

Ω

∫

Ω

|v(x1)− v(x2)|2
|x1 − x2|d+2r

dx1dx2,

where the term

|v|2r,Ω =

∫

Ω

∫

Ω

|v(x1)− v(x2)|2
|x1 − x2|d+2r

dx1dx2

is called Gagliardo semi-norm of v.

The Lebesgue space containing all the measurable functions that are bounded

almost everywhere in Ω is

L∞(Ω) =
{
v : ‖v‖∞,Ω = ess sup |v| <∞

}
.

As done for L2(Ω), also in this case we can introduce a family of Sobolev spaces

where derivatives are bounded as well

Wr,∞ = {v ∈ L∞(Ω) : Dαv ∈ L∞(Ω), ∀|α| ≤ r} .

FUNCTIONAL ANALYSIS NOTATION 21

In general, given two functional spaces V and W , we denote by L(V,W) the

space of linear functionals from V to W . Moreover, given the dual space V ′ of V ,

we denote the duality pairing by angle brackets 〈·, ·〉.

Functional spaces of vector valued functions are indicated with boldface letters.

We denote by C0(Ω) the space of continuous functions and by C1(Ω) the space

of continuous functions with continuous derivative.

Finally, given an integer k ≥ 0, we introduce the space of polynomials of degree

less or equal than k

Pk(Ω) = {p : p is a polynomial of degree ≤ k} .

References

I. J. L. Lions, and E. Magenes. Non-homogeneous boundary value problems and

applications: Vol. 1, volume 181. Springer Science & Business Media, 2012.

II. H. Brézis. Functional analysis, Sobolev spaces and partial differential equa-

tions, volume 2. Springer, 2011.

III. D. Boffi, F. Brezzi, and M. Fortin. Mixed finite element methods and appli-

cations, volume 44. Springer, 2013.

22 FUNCTIONAL ANALYSIS NOTATION

Part I

Numerical approximation of

fluid-structure interaction problems:

a fictitious domain approach

23

Introduction

The study of fluid-structure interaction problems has been developed starting from

the second half of the last century: this topic embraces several fields of study since

mathematical modeling, physical phenomena, engineering interests are combined

together.

In particular, the equations governing fluids and solids are complicated, since

nonlinear terms are usually involved, with the difficulty of knowing analytical

solutions. Due to these problems and thanks to the increase of computational

power, nowadays we are able to simulate the dynamics of interaction systems.

For this reason, several mathematical and computational approaches have been

presented during the years. They can be classified into two big categories [69]: the

monolithic approach consists in modeling both fluid and structure behaviors in the

same mathematical framework in order to obtain a single equation for the whole

system, also containing the interface conditions; on the other hand, the partitioned

approach manages the fluid and the structure as two separate entities, each in its

own mathematical setting and with separate meshes; in this case, the interface

conditions are imposed explicitly.

These methods can be also classified with respect to the approach used to

represent the immersion of the solid into the fluid or viceversa. In this case, the

methods are divided into boundary fitted approaches (BF) and non boundary fitted

approaches (NBF). In the first case, the mesh of the fluid domain evolves and

deforms around a Lagrangian mesh used for the structure: the two entities share the

interface. A popular scheme of this category is the so-called Arbitrary Lagrangian

Eulerian formulation (ALE [67, 48, 70, 49]): the Eulerian point of view used for

the fluid is combined with the Lagrangian one, used for the solid, on a boundary

fitted mesh; the kinematic constraints are satisfied by construction, but during the

evolution of the system, the mesh may become severely distorted.

To overcome the drawbacks just described, NBF approaches were developed:

25

26

the solid discretization is superimposed on the fluid one; in this case, the dis-

advantage may be a reduction in accuracy near the interface. Since there is not

an optimal method for the wide range of phenomena one can model, this family

includes several methods.

For example, the Nitsche–XFEM [35, 1] method was born for the study of

thin-walled elastic bodies immersed in incompressible fluids; the fluid domain dis-

cretization is done with an unstructured mesh not fitted to the solid mid-surface

deformed mesh. In this way, weak and strong discontinuities are allowed across the

interface and the fluid-structure coupling is enforced with Nitsche’s mortaring.

A level set formulation [37] was introduced for modeling incompressible and

immiscible Navier–Stokes equations separated by a free surface. In particular, the

boundary of the two-fluid interface is treated as the set of zeros of a certain smooth

function defined on the entire physical domain, so that complex geometries can be

easily managed and the extension to the 3D case can be done in a natural way.

Finally, the immersogeometric analysis [72] is a NBF method based on the

isogeometric analysis: indeed, NURBS and splines are used to accurately represent

the involved geometries.

Our formulation originated from the immersed boundary method (IBM) [86]

and then evolved towards a fictitious domain formulation [61, 60]. In the original

finite element formulation of the IBM the evolution of the structure is governed by

an ordinary differential equation involving the velocity of the fluid and the position

of the solid body with the coupling modeled by Dirac delta functions. Then, in the

spirit of the fictitious domain, a Lagrange multiplier has been introduced so that

the motion of the structure can be variationally imposed through a bilinear form.

This part is divided into three chapters: in the first one, we derive the fictitious

domain formulation starting from the immersed boundary method, discussing well-

posedness and other properties of continuous and discrete problems. In the second

chapter, following [20], we present two possible techniques for the assembly of the

finite element interface matrix, which couples the fluid and structure evolution. In-

deed, the coupling term can be assembled either implementing an exact composite

quadrature rule or with inexact computations. The optimality of the results is an-

alyzed with several numerical tests and quadrature error estimates are presented

for the inexact technique. Finally, in Chapter 3, we present a preliminary study on

a parallel solver for the efficient simulation of FSI problems with fictitious domain

formulation [21, 22].

Chapter 1

The finite element immersed

boundary method with distributed

Lagrange multiplier

The immersed boundary method was introduced by Peskin in 1972 [85] in order

to simulate the dynamics of the flexible leaflet of a human heart valve that moves

within the blood flow. This first study was performed in a two dimensional setting

and then extended to the three dimensional case in 1989 [87, 82]. During the past

years, this method has been implemented for several applications. We mention, for

instance, models for flapping flexible filaments in flowing soap films [97], simula-

tion of aquatic animal locomotion [55], computational models of the cochlea [14],

large-eddy simulations [88], shock/obstacle interactions [38] and numerical simula-

tions of three dimensional foam [78]. From the mathematical point of view, several

aspects have been investigated: for instance, adaptive mesh refinement [89], re-

duced numerical viscosity [75], a stochastic approach for fluid-structure dynamics

at microscopic length scales [6], a penalty method for elastic boundaries with mass

[73], and the recent Fourier spectral approach [40]. A review article was published

by Peskin in 2002 [86].

The mathematical formulation is based on the use of Eulerian variables for

describing the fluid dynamics, while deformations and motion of the immersed

solid body are tracked using Lagrangian variables. Moreover, the forces exerted

by the structure on the fluid are represented via the use of Dirac delta functions.

From the numerical point of view, the method was presented in the finite difference

27

28 IBM-DLM

framework.

In 2003, Boffi and Gastaldi [23] presented a first modification of the immersed

boundary method by means of the finite element method, hence they developed

the variational formulation of the considered problem and then presented a first

proof of existence of the solution in a simple one dimensional problem. During

the years, this finite element version has been studied from several points of view:

investigations about the numerical stability and CFL condition were published

in 2007 [27, 28] in collaboration with Heltai, an hyper-elastic formulation was

developed in 2008 [29] with the contribution of Peskin, while the simulation of

systems with different fluid and solid densities was presented in 2011 [18]. The

variational implementation of immersed finite element methods, such as the IBM,

has been discussed in 2012 by Heltai and Costanzo [66]. By the same authors,

we also mention [90], where the fully variational method is validated by means

of various benchmarks for fluid-structure interaction numerical schemes, and [91],

where the method is applied to brain Biomechanics problems.

Finally, in 2015, Boffi, Cavallini and Gastaldi [19] presented a new modification

of the finite element immersed boundary method. This is based on the use of a

distributed Lagrange multiplier in order to weakly couple the evolution of fluid

and structure and enforce the ordinary differential equation governing the mo-

tion of the solid. Moreover, it was proved that, when semi-implicit time advancing

schemes are chosen, the method is unconditionally stable, i.e. stable without any

restriction on the time marching step. This new formulation is a current research

topic and several aspects have been studied: in 2017, the inf-sup conditions for

both continuous and discrete problems have been proved for the stationary prob-

lem originating from the sequence of time semi-discretized problems [24]; in 2019,

application and stability of several time advancing schemes like Backward Euler,

BDFs, Crank–Nicolson were studied [31]; in 2020 Boffi and Gastaldi investigated

about existence and uniqueness of the solution for a simplified linearized version

of a FSI problem [25].

The outline of this chapter is the following: in Section 1.1, we present the

theoretical background of the immersed boundary method in the case of hyper-

elastic structures immersed in incompressible fluids governed by the Navier–Stokes

equations. In Section 1.2 we present the new version of the method based on a dis-

tributed Lagrange multiplier in the spirit of the fictitious domain approach, while

Section 1.3 and Section 1.4 are focused on time and finite element discretizations

1.1. THE IMMERSED BOUNDARY METHOD 29

respectively. Finally, in Section 1.5, we recall the main existing results on stability

and well-posedness.

1.1 The immersed boundary method

1.1.1 Problem setting

We consider fluid-structure interaction problems characterized by an incompress-

ible elastic body immersed in an incompressible fluid, in two or three dimensions

(d = 2, 3). At the generic time instant t, these two entities occupy two disjoint re-

gions: we call Ωf
t ⊂ Rd the region occupied by the fluid and Ωs

t the region occupied

by the solid. The solid body can be either of codimension one (thin structure) or

of codimension zero (thick structure). In this work, we focus our attention on the

codimension zero case, but the model can deal with more general situations as well.

We introduce a third domain, Ω ⊂ Rd, as the union of Ωf
t and Ωs

t : this domain

is independent from time. Moreover, we assume that the solid body cannot touch

the boundary of the container Ω.

In order to represent the motion of the solid, we introduce a reference domain

B ⊂ Rd associated with the Lagrangian variable s ∈ B, while the fluid motion is

represented by the Eulerian variable x. In this setting, at each time instant, Ωs
t

can be seen as the image of B through the map X : B −→ Ωs
t and each x ∈ Ωs

t can

be represented in terms of s

x = X(s, t). (1.1)

A schematic representation is depicted in Figure 1.1.

In particular, the kinematic equation describing the motion of the structure is

given by

us(x, t) =
∂X

∂t
(s, t) for x = X(s, t) (1.2)

where us denotes the velocity of the solid. Conversely, if we work with the deriva-

tives with respect to s, we get the deformation gradient F = ∇s X with its determi-

nant |F|. Since we consider the case of incompressible solid materials, |F| is constant

in time, and, in addition, |F| = 1 when B corresponds with the initial position Ωs
0 of

the structure. On the other hand, the fluid evolution is studied considering veloc-

ity uf and pressure pf . Denoting by ρf and νf > 0 the fluid density and viscosity

respectively and introducing the symmetric gradient ε(v) = (∇v +∇⊤ v)/2, we

30 IBM-DLM

ΩΩf
t

B
Ωs

t

s
x

X

Figure 1.1: Geometric configuration of the problem. The Lagrangian points s in

the solid reference domain B are mapped into the actual position of the body Ωs
t

through the map X. The domain Ω acts like a container.

can define the Cauchy stress tensor

σf = −pfI+ νf ε(u
f) (1.3)

so that we can state the incompressible Navier–Stokes equations describing the

fluid dynamics in Ωf
t as follows

ρf

(
∂uf

∂t
+ uf · ∇uf

)
= divσf

divuf = 0.

(1.4)

For the solid, we consider the case of a viscoelastic material, therefore the char-

acterization can be done splitting the Cauchy stress tensor into two contributions

σs = σs
f + σs

s (1.5)

where σs
f is similar to the fluid tensor σf , but defined via the solid viscosity

νs > 0 and the pressure ps, which is a Lagrange multiplier used to enforce the

incompressibility condition

σs
f = −psI+ νs ε(u

s), (1.6)

while σs
s is defined using the Piola–Kirchhoff elasticity stress tensor P

σs
s = |F|−1

PF. (1.7)

In particular, in the Lagrangian setting, we are expressing the elastic contribu-

tion to the Cauchy stress tensor using P, indeed P(s, t) = |F(s, t)|σs
s(x, t)F

−⊤(s, t)

1.1. THE IMMERSED BOUNDARY METHOD 31

for x = X(s, t). This represents the elastic force per unit reference volume or area

in the physical space (pointwise expression). It is important to notice that if O is

a smooth portion of the reference domain B evolving as Ot = X(O, t), then we

have ∫

∂Ot

σs
s · n da =

∫

∂O

P ·N dA ∀O ⊂ B (1.8)

where n is the outer normal to Ot and N is the outer normal to O in Lagrangian

coordinates.

We now have all the ingredients we need to state the equations for the solid:

denoting by ρs the solid density, we have

ρs
∂2X

∂t2
= divs

(
|F|σs

fF
−⊤ + P(F)

)

divus = 0.

(1.9)

Finally, we enforce continuity for velocity and Cauchy stress tensor by imposing

the following transmission conditions

uf = us on ∂Ωs
t

σfnf = −
(
σs

f + |F|−1
PF

⊤
)
ns on ∂Ωs

t ,
(1.10)

where ns and nf denote the outer unit normal vectors to Ωs
t and Ωf

t , respectively.

Moreover, also the following initial conditions are considered

uf (0) = u
f
0 in Ωf

0

us(0) = us
0 in Ωs

0

X(0) = X0 in B
uf = 0 on ∂Ω.

(1.11)

1.1.2 Derivation of the model

To derive our model, we now extend to the entire domain Ω all the involved

quantities, therefore we have

u =




uf in Ωf

t

us in Ωs
t

p =




pf in Ωf

t

ps in Ωs
t

(1.12)

ρ =




ρf in Ωf

t

ρs in Ωs
t

ν =




νf in Ωf

t

νs in Ωs
t

σ =




σf in Ωf

t

σs in Ωs
t

(1.13)

32 IBM-DLM

so that we can introduce the mass balance equation

∂ρ

∂t
+ ρ divu = 0 (1.14)

and the conservation of momenta

ρu̇ = ρ

(
∂u

∂t
+ u · ∇u

)
= divσ. (1.15)

We also notice that the kinematic equation (1.2) becomes

u(X(s, t), t) =
∂X

∂t
(s, t) for s ∈ B, (1.16)

which is the constraint taking into account the correspondence between the mate-

rial velocity of the solid and the velocity in Ωs
t .

Starting from this last equation and using the principle of virtual works, we

can write ∫

Ω

ρu̇ · v dx−
∫

Ω

(divσ)v dx = 0 (1.17)

where v is an arbitrary test function, so that, integrating by parts, we get

∫

Ω

ρu̇ · v dx+

∫

Ω

σ : ∇v dx−
∫

∂Ω

(σ · n)v da = 0 (1.18)

denoting by n the outer normal to ∂Ω.

We rewrite the conservation of momenta in terms of ρf , ρs,σf and σs:

∫

Ω

ρf u̇ · v dx+

∫

Ω

σf : ∇v dx−
∫

∂Ω

σfn · v da

= −(ρs − ρf)

∫

Ωs
t

u̇ · v dx−
∫

Ωs
t

σs : ∇v dx.
(1.19)

In the following, the difference ρs − ρf will be denoted by δρ. Thanks to the

definition of us as ∂X/∂t, we can observe that u̇ = ∂2X/∂t2 in Ωs
t ; using that

|F| = 1 when B = Ωs
0, we can write

∫

Ω

ρf u̇ · v dx+

∫

Ω

σf : ∇v dx−
∫

∂Ω

σfn · v da

= −δρ
∫

B

∂2X

∂t2
· v(X(s, t)) ds−

∫

B

P : ∇s v(X(s, t)) ds.

(1.20)

1.1. THE IMMERSED BOUNDARY METHOD 33

By applying integration by parts for the second, the third and the last term as

follows

−
∫

Ω

(divσf)v dx =

∫

Ω

σf : ∇v dx−
∫

∂Ω

σfn · v da
∫

B

P : ∇s v(X(s, t)) ds = −
∫

B

(divs P)v ds+

∫

∂B

PN · v dA

(1.21)

we obtain

∫

Ω

(ρf u̇− divσf) · v dx =− δρ

∫

B

∂2X

∂t2
· v(X(s, t)) ds

+

∫

B

P : ∇s v(X(s, t)) ds−
∫

∂B

PN · v dA.

(1.22)

Introducing the d-dimensional Dirac delta distribution and using the fact that

a function can be evaluated multiplying it by a shifted delta and integrating, we

can write

v(X(s, t)) =

∫

Ω

v(x)δ(x−X(s, t)) dx ∀s ∈ B (1.23)

hence, all the terms at the right hand side of (1.22) can be rewritten accordingly.

We show the procedure only for the first one, since the others are analogous:

δρ

∫

B

∂2X

∂t2
· v(X(s, t)) ds = δρ

∫

B

∂2X

∂t2

[∫

Ω

v(x)δ(x−X(s, t)) dx

]
ds

=

∫

Ω

[
δρ

∫

B

∂2X

∂t2
· δ(x−X(s, t)) ds

]
· v(X(s, t)) dx;

(1.24)

therefore, equation (1.22) becomes

∫

Ω

(ρf u̇− divσf) · v dx =−
∫

Ω

[
δρ

∫

B

∂2X

∂t2
· δ(x−X(s, t)) ds

]
· v(X(s, t)) dx

+

∫

Ω

[∫

B

(divs P)δ(x−X(s, t)) ds

]
· v(X(s, t)) dx

−
∫

Ω

[∫

∂B

PNδ(x−X(s, t)) dA

]
· v(X(s, t)) dx.

At this point, using the fundamental lemma of calculus of variations, we can delete

the integrals related to Ω and v so that we get the equations governing the interac-

tion between fluid and structure in the setting of the immersed boundary method

34 IBM-DLM

ρf u̇− divσf =− δρ

∫

B

∂2X

∂t2
· δ(x−X(s, t)) ds

+

∫

B

(divs P)δ(x−X(s, t)) ds−
∫

∂B

PNδ(x−X(s, t)) dA.

(1.25)

We define

d(x, t) = −δρ
∫

B

∂2X

∂t2
· δ(x−X(s, t)) ds

f(x, t) =

∫

B

(divs P)δ(x−X(s, t)) ds

t(x, t) = −
∫

∂B

PNδ(x−X(s, t)) dA

(1.26)

as, respectively, the excess Lagrangian mass density, the inner force density and

the transmission force density.

Now, exploiting the definition of σf given in (1.3), we deduce the Navier–Stokes

equation in Ω

ρf u̇− divσf = ρf

(
∂u

∂t
+ u · ∇u

)
− div

(
− pI+ ν ε(u)

)

= ρf

(
∂u

∂t
+ u · ∇u

)
+∇ p− ν div(ε(u))

(1.27)

so that we can present the strong formulation of our model problem for fluid-

structure interactions.

Problem 1.1.1. Find u, p and X which satisfy:

ρf

(
∂u

∂t
+ u · ∇u

)
+∇ p− ν div(ε(u)) = d+ f + t in Ω× (0, T) (1.28a)

divu = 0 in Ω× (0, T) (1.28b)

d(x, t) = −δρ
∫

B

∂2X

∂t2
· δ(x−X(s, t)) ds in Ω× (0, T) (1.28c)

f(x, t) =

∫

B

(divs P)δ(x−X(s, t)) ds in Ω× (0, T) (1.28d)

t(x, t) = −
∫

∂B

PNδ(x−X(s, t)) dA in Ω× (0, T) (1.28e)

∂X

∂t
(s, t) = u(X(s, t), t) in B × (0, T) (1.28f)

1.1. THE IMMERSED BOUNDARY METHOD 35

u(x, t) = 0 on ∂Ω× (0, T) (1.28g)

u(x, 0) = u0(x) in Ω (1.28h)

X(x, 0) = X0(s) in B. (1.28i)

We now derive the variational formulation of our problem to discretize it using

the finite element method. In order to treat the source terms d, f , t as linear contin-

uous functionals in distributional sense, we introduce the following lemma [23, 29].

Lemma 1.1.1. Assume that B is a Lipschitz domain, that, ∀t ∈ [0, T], X ∈ W1,∞(B),
∂2X/∂t2 ∈ H−1(B) and P ∈ W1,∞(B). Then ∀t ∈ (0, T), the excess Lagrangian

mass density d and the force density F(t) = f + t are distribution functions be-

longing to H−1(B) defined as follow: for all v ∈ H1
0(Ω)

H−1〈d(t),v〉H1
0
= −δρ

∫

B

∂2X

∂t2
v(X(s, t)) ds ∀t ∈ (0, T)

H−1〈F(t),v〉H1
0
= −

∫

B

P(F(s, t)) : ε(v(X(s, t)) ds ∀t ∈ (0, T).

(1.29)

On the other hand, for (1.28a) and (1.28b) we work in the usual way. For

(1.28a), if we consider a test function v ∈ H1
0(Ω), we obtain

∫

Ω

ρf

(
∂u

∂t
+ u · ∇u

)
v dx+

∫

Ω

∇ p · v dx

−
∫

Ω

ν div(ε(u))v dx = 〈d,v〉+ 〈F,v〉,
(1.30)

where the second and the third terms can be integrated by parts taking into

account that the boundary terms vanish, hence

−
∫

Ω

ν div(ε(u))v dx = ν

∫

Ω

ε(u) : ε(v) dx
∫

Ω

∇ p · v dx = −
∫

Ω

p div v dx

and the first is expanded using linearity.

For (1.28b), we simply have that

∫

Ω

(divu)q dx = 0 ∀q ∈ L2
0(Ω). (1.31)

Finally, we obtain the variational formulation of Problem 1.1.1.

36 IBM-DLM

Problem 1.1.2. Given u0 ∈ H1
0(Ω) and X0 : B −→ Ωs

t , ∀t ∈ (0, T), find

(u(t), p(t)) ∈ H1
0(Ω)× L2

0(Ω) and X(t) ∈ W1,∞(B), such that

ρf
∂

∂t
(u(t),v)Ω + b(u(t),u(t),v) + a(u(t),v)

− (div v, p(t))Ω = 〈d(t),v〉+ 〈F(t),v〉
∀v ∈ H1

0(Ω) (1.32a)

(divu(t), q)Ω = 0 ∀q ∈ L2
0(Ω) (1.32b)

〈d(t),v〉 = −δρ
∫

B

∂2X

∂t2
v(X(s, t)) ds ∀v ∈ H1

0(Ω) (1.32c)

〈F(t),v〉 = −
∫

B

P(F(s, t)) : ∇s v(X(s, t)) ds ∀v ∈ H1
0(Ω) (1.32d)

∂X

∂t
(s, t) = u(X(s, t), t) ∀s ∈ B (1.32e)

u(x, 0) = u0(x) ∀x ∈ Ω (1.32f)

X(s, 0) = X0(s) ∀s ∈ B (1.32g)

where
a(u,v) = ν(ε(u), ε(v))Ω

b(u,v,w) =
ρf
2

(
(u · ∇v,w)Ω − (u · ∇w,v)Ω

)
.

Moving from Problem 1.1.1 to Problem 1.1.2, we have introduced the Navier–

Stokes trilinear form b: in particular, we have implicitly used the result of the

following proposition [93].

Proposition 1.1.1. The trilinear form b satisfies the following equalities

b(u,u,v) =

∫

Ω

(u · ∇u)v dx =
1

2

∫

Ω

(u · ∇u)v dx− 1

2

∫

Ω

(u · ∇v)u dx. (1.33)

1.1.3 Stability estimate

Before introducing the new formulation of Problem 1.1.2 based on the use of a

distributed Lagrange multiplier in the spirit of the fictitious domain approach, let

us discuss its stability [19].

In particular, we recall the main features of hyper-elastic materials [29, 18, 65,

64], which are considered in our model. We introduce a positive potential energy

W (F) > 0 which depends only on the deformation gradient; indeed, the properties

of the body are a consequence of its current position and not of the path it followed

during its evolution.

The properties of W are consequence of physical considerations:

1.1. THE IMMERSED BOUNDARY METHOD 37

• if no deformation is applied to the material, there is no energy to be stored,

hence F = I and W (I) = 0;

• an object made up of hyper-elastic material cannot be infinitely expanded

or shrunk to have null volume, therefore

|F| −→ 0,∞ =⇒ W (F) −→ 0;

• the energy function is independent from rigid body motions, so that

W (F̃) = W (F)

if F̃ is obtained from F as a consequence of a rigid motion.

Combining the third property with the fact that F does not change under

rigid translations, the energy W is such that for all rotations R ∈ Rd×d satisfying

R⊤R = I and detR > 0

Y = RX+U =⇒ W (∇s Y) = W (∇sX ·R⊤) = W (∇s X) (1.34)

where U is a fixed translation vector.

Moreover, the link between this energy density W and the first Piola–Kirchhoff

stress tensor is given by the following relation

(P(F(s, t)))i,j =
∂W

∂Fi,j

(F(s, t)) =

(
∂W

∂F
(s, t)

)

i,j

(1.35)

where i, j = 1, . . . , d. A variation in the deformation of a rigid body produces a

corresponding variation on its energy, with the generation of an internal stress

to re-establish the original configuration: this stress is obtained in Lagrangian

framework.

Finally, we have that the total elastic potential energy associated with B is

expressed as

E (X(t)) =

∫

B

W (F(s, t)) ds. (1.36)

Remark 1.1.1. In general, for elasticity problems, we should assume that the

potential energy W is polyconvex [62]. Since we are considering incompressible

materials, |F| is constant in time and it makes sense to assume W to be a C1

convex function.

38 IBM-DLM

In the following proposition [18], we state the stability estimate for Prob-

lem 1.1.2.

Proposition 1.1.2. Let us assume that for almost every t ∈ [0, T], u(t) ∈ H1
0(Ω)

and X(t) ∈ W1,∞(B) are solutions for Problem 1.1.2, then the following equation

holds true

ρf
2

∂

∂t
‖u(t)‖20,Ω + ν ‖ε(u(t))‖20,Ω +

δρ

2

∂

∂t

∥∥∥∥
∂X

∂t

∥∥∥∥
2

0,B

+
∂

∂t
E (X(t)) = 0. (1.37)

1.2 Fictitious domain approach with distributed

Lagrange multiplier

We now introduce the recent formulation of the immersed boundary method based

on a distributed Lagrange multiplier [19]. We observe that the method has been

developed in the spirit of the fictitious domain approach, where the fluid domain

Ωf
t is extended also in Ωs

t introducing Ω. In particular, the introduction of the

distributed Lagrange multiplier has the aim of enforcing the kinematic constraint

∂X

∂t
= u(X(s, t), t) for x = X(s, t). (1.38)

For this purpose, let us consider two Hilbert spaces Λ, M and define a contin-

uous bilinear form c : Λ×M −→ R satisfying the property

c(µ,Z) = 0 ∀µ ∈ Λ =⇒ Z = 0 in B. (1.39)

A reasonable choice for M is H1(B) since we can assume that X(t) ∈ W1,∞(B)
for almost every t ∈ (0, T) so that u(X(·, t), t) ∈ H1(B).

Moreover, we present two possible choices for Λ and the form c: we can consider

c as the duality pairing between H1(B) and its dual space Λ = (H1(B))′

c(µ,Z) = 〈µ,Z〉 ∀µ ∈ Λ, ∀Z ∈ H1(B); (1.40)

alternatively, we can take Λ = M = H1(B) and c as the scalar product in H1(B),
therefore

c(µ,Z) = (µ,Z)B + (∇s µ,∇s Z)B ∀µ,Z ∈ H1(B). (1.41)

Using the defining property of c given by (1.39), Equation (1.38) is equivalent

to

c

(
µ,u(X(s, t), t)− ∂X(s, t)

∂t

)
= 0 ∀µ ∈ Λ. (1.42)

1.2. FICTITIOUS DOMAIN APPROACH WITH DLM 39

Clearly, we need also to add terms involving c and the multiplier in the equations

for fluid and solid in order to couple them. Therefore, introducing the Lagrange

multiplier λ(t) ∈ Λ and taking again into account (1.39), we can rewrite Equation

(1.32a) in the following way

ρf
∂

∂t
(u(t),v)Ω + b(u(t),u(t),v) + a(u(t),v) + c(λ(t),v(X(t))) = 0 ∀v ∈ H1

0(Ω)

δρ

(
∂2X

∂t2
(t),Y

)

B

+ (P(F(t)),∇s Y)B − c(λ(t),Y) = 0 ∀Y ∈ H1(B).
(1.43)

At this point, we can rewrite Problem 1.1.2 in its new form.

Problem 1.2.1. Given u0 ∈ H1
0(Ω) and X0 : B −→ Ω, ∀t ∈ (0, T), find u(t) ∈ H1

0(Ω),

p(t) ∈ L2
0(Ω), X(t) ∈ W1,∞(B) and λ(t) ∈ Λ, such that

ρf
∂

∂t
(u(t),v)Ω + b(u(t),u(t),v) + a(u(t),v)

− (div v, p(t))Ω + c(λ(t),v(X(t))) = 0 ∀v ∈ H1
0(Ω) (1.44a)

(divu(t), q)Ω = 0 ∀q ∈ L2
0(Ω) (1.44b)

δρ

(
∂2X

∂t2
,Y

)

B

+ (P(F(s, t)),∇sY)B − c(λ(t),Y) = 0 ∀Y ∈ H1(B) (1.44c)

c

(
µ,u(X(·, t), t)− ∂X

∂t
(t)

)
= 0 ∀µ ∈ Λ (1.44d)

u(x, 0) = u0(x) ∀x ∈ Ω (1.44e)

X(s, 0) = X0(s) ∀s ∈ B (1.44f)

Also for this new formulation we can write an energy estimate similar to the

one presented in Proposition 1.1.2.

Proposition 1.2.1 ([19]). For almost every t ∈ (0, T), let u(t) ∈ H1
0(Ω) and

X(t) ∈ H1(B) be solutions of Problem 1.2.1 with ∂X(t)/∂t ∈ L2(B), then the fol-

lowing energy estimate holds true

ρf
2

∂

∂t
‖u(t)‖20,Ω + ν ‖ε(u(t))‖20,Ω +

δρ

2

∂

∂t

∥∥∥∥
∂X

∂t

∥∥∥∥
2

0,B

+
∂

∂t
E (X(t)) = 0. (1.45)

Remark 1.2.1. Existence and uniqueness of the solution for Problem 1.2.1 have

been proved in [25] following the Galerkin approximation technique used in [93,

Chapt.III.1]. A linearized version of the problem is considered: the convective term

40 IBM-DLM

b is neglected and P(F) = κ∇s F. Moreover, c is defined as in Equation (1.41). In

particular, we have

u ∈ L∞(0, T ;V0) ∩ L2(0, T ;H0)

p ∈ L2(0, T ; L2
0(Ω))

X ∈ L∞(0, T ;H1(B)) with
∂X

∂t
∈ L∞(0, T ;L2(B)) ∩ L2(0, T ;H1(B))

λ ∈ L2(0, T ;H1(B))

where
V = {v ∈ (D(Ω))d : div v = 0}

H0 = the closure of V in H1
0(Ω)

V0 = the closure of V in L2
0(Ω).

and D(Ω) denotes the space of infinitely differentiable functions with compact sup-

port in Ω.

1.3 Time semi-discretization

In this section, we discuss the time semi-discretization of Problem 1.2.1. We present

a scheme based on backward finite differences [19]. We will show that also high

order schemes can be considered.

Let us consider N ∈ N and subdivide the time interval [0, T] in N equal

parts with time step ∆t = T/N and nodes tn = n∆t for n = 0, . . . , N . The

approximation of time derivatives for a generic function f reads as follows

∂f

∂t
(tn+1) ≈

fn+1 − fn

∆t
,

∂2f

∂t2
(tn+1) ≈

fn+1 − 2fn + fn−1

∆t2
. (1.46)

As a consequence, we obtain the following fully implicit scheme.

Problem 1.3.1. Given u0 ∈ H1
0(Ω) and X0 ∈ W1,∞(B), for n = 1, . . . , N find

(un, pn) ∈ H1
0(Ω)× L2

0(Ω), X
n ∈ H1(B), and λn ∈ Λ, such that

ρf

(
un+1 − un

∆t
,v

)

Ω

+ b(un+1,un+1,v) + a(un+1,v)

− (div v, pn+1)Ω + c(λn+1,v(Xn+1)) = 0 ∀v ∈ H1
0(Ω) (1.47a)

(divun+1, q)Ω = 0 ∀q ∈ L2
0(Ω) (1.47b)

1.3. TIME SEMI-DISCRETIZATION 41

δρ

(
Xn+1 − 2Xn +Xn−1

∆t2
,Y

)

B

+ (P(Fn+1),∇s Y)B

− c(λn+1,Y) = 0 ∀Y ∈ H1(B) (1.47c)

c

(
µ,un+1(Xn+1)− Xn+1 −Xn

∆t

)
= 0 ∀µ ∈ Λ (1.47d)

However, there is a detail to be discussed. We have to compute terms related

to H1
0(Ω) functions evaluated along the structure through the mapping Xn+1: for

example, the term v(Xn+1) requires the knowledge of Xn+1 which has not been

computed yet, hence we choose to evaluate these terms using the mapping Xn

related to the previous step. The same change is done also on b, which is linearized

by computing the transport velocity at the previous time step. Finally, we obtain

a modified Backward Euler time advancing scheme.

Problem 1.3.2. Given u0 ∈ H1
0(Ω) and X0 ∈ W1,∞(B), for n = 1, . . . , N find

(un, pn) ∈ H1
0(Ω)× L2

0(Ω), X
n ∈ H1(B), and λn ∈ Λ, such that

ρf

(
un+1 − un

∆t
,v

)

Ω

+ b(un,un+1,v) + a(un+1,v)

− (div v, pn+1)Ω + c(λn+1,v(Xn)) = 0 ∀v ∈ H1
0(Ω) (1.48a)

(divun+1, q)Ω = 0 ∀q ∈ L2
0(Ω) (1.48b)

δρ

(
Xn+1 − 2Xn +Xn−1

∆t2
,Y

)

B

+ (P(Fn+1),∇s Y)B

− c(λn+1,Y) = 0 ∀Y ∈ H1(B) (1.48c)

c

(
µ,un+1(Xn)− Xn+1 −Xn

∆t

)
= 0 ∀µ ∈ Λ (1.48d)

In particular, we can define X−1 manipulating

X0 −X−1

∆t
= us

0 in B. (1.49)

This semi-implicit time advancing scheme is unconditionally stable since we

can prove the following energy estimate without limitations on the choice of the

time step [19].

Proposition 1.3.1. Let us assume W to be a convex function as in Remark 1.1.1

and δρ > 0. Let un ∈ H1
0(Ω) and Xn ∈ H1(B) for n = 0, . . . , N satisfying Prob-

lem 1.3.2 with Xn ∈ W1,∞(B). Then the following estimate holds true for all

42 IBM-DLM

n = 0, . . . , N − 1

ρf
2∆t

(∥∥un+1
∥∥2
0,Ω

− ‖un‖20,Ω
)
+ ν

∥∥ε(un+1)
∥∥2
0,Ω

+
δρ

2∆t

(∥∥∥∥
Xn+1 −Xn

∆t

∥∥∥∥
2

0,B

−
∥∥∥∥
Xn −Xn−1

∆t

∥∥∥∥
2

0,B

)
+

E (Xn+1)− E (Xn)

∆t
≤ 0

(1.50)

As mentioned at the beginning of this section, high order schemes can be cho-

sen for the time discretization. For instance, in [31], the second order Backward

differentiation formula BDF2 was considered following the idea already used in

[50, 39, 84] producing an unconditionally stable numerical scheme. Moreover, a

Crank–Nicolson scheme, implemented with both the midpoint and the trapezoidal

rule, was presented: in the first case, the unconditional stability is still valid, while

in the second case it is not straightforward to be proved; nevertheless, several

numerical tests did not show any type of instability.

Remark 1.3.1. We point out that Problem 1.3.1 and Problem 1.3.2 can be inter-

preted as a sequence of stationary problems. In the next sections, we analyze the

associated stationary problem, which has the structure of saddle point problem, in

both the continuous and discrete setting.

1.4 Finite element discretization

We have just presented the time semi-discretization of our fluid-structure inter-

action problem, so that we can now introduce the discretization in space making

use of mixed finite elements. Here we describe the main features since the more

technical aspects will be addressed in the next sections.

Let us consider a mesh T Ω
h for the domain Ω with mesh size hΩ and a second

mesh T B
h , with mesh size hB, for the solid reference domain B. Accordingly with

the theory of the mixed formulation for the Stokes problem [15], we consider two

finite dimensional subspaces Vh ⊂ H1
0(Ω) and Qh ⊂ L2

0(Ω) satisfying the inf-sup

condition to approximate the fluid variables u and p. Moreover, we consider other

two discrete spaces for the approximation of X and λ: Sh ⊂ H1(B) and Λh ⊂ Λ. In

this setting, we are able to present the finite element counterpart of Problem 1.3.2.

1.4. FINITE ELEMENT DISCRETIZATION 43

Problem 1.4.1. Given u0
h ∈ Vh and X0

h ∈ W1,∞(B), for n = 1, . . . , N find

un
h ∈ Vh, p

n
h ∈ Qh, X

n
h ∈ Sh, and λn

h ∈ Λh, such that

ρf

(
un+1
h − un

h

∆t
,v

)

Ω

+ b(un
h,u

n+1
h ,v) + a(un+1

h ,v)

− (div v, pn+1
h)Ω + c(λn+1

h ,v(Xn
h)) = 0

∀v ∈ Vh (1.51a)

(divun+1
h , q)Ω = 0 ∀q ∈ Qh (1.51b)

δρ

(
Xn+1

h − 2Xn
h +Xn−1

h

∆t2
,Y

)

B

+ (P(Fn+1
h),∇s Y)B

− c(λn+1
h ,Y) = 0

∀Y ∈ Sh (1.51c)

c

(
µ,un+1

h (Xn
h)−

Xn+1
h −Xn

h

∆t

)
= 0 ∀µ ∈ Λh (1.51d)

where F
n+1
h = ∇s X

n+1
h .

Assuming that P(F) = κF = κ∇s X and denoting by ϕ, ψ, χ and ζ the basis

functions of Vh, Qh, Sh and Λh respectively, we write Problem 1.4.1 in matrix

form as 


A B⊤ 0 Cf (X
n
h)

⊤

B 0 0 0

0 0 As −C⊤
s

Cf (X
n
h) 0 − 1

∆t
Cs 0







un+1
h

pn+1
h

Xn+1
h

λn+1
h




=




f

0

g

d




(1.52)

where

A =
ρf
∆t
Mf + Kf with (Mf)ij = (ϕj,ϕi)Ω and (Kf)ij = a(ϕj,ϕi) + b(un

h,ϕj,ϕi)

Bki = −(divϕi, ψk)Ω

As =
δρ
∆t2

Ms + Ks with (Ms)ij = (χj,χi)B and (Ks)ij = κ(∇s χj,∇s χi)B

(Cf (X
n
h))ℓj = c(ζℓ,ϕj(X

n
h))

(Cs)ℓj = c(ζℓ,χj)

fi =
ρf
∆t
(Mfu

n
h)i

gi =
δρ
∆t2

(Ms(2X
n
h −Xn−1

h))i

dℓ = − 1
∆t
(CsX

n
h)ℓ.

44 IBM-DLM

Remark 1.4.1. We observe that when c is defined as the duality pairing between

H1(B) and its dual, as presented in (1.40), provided that Λh ⊂ L2(B), we can

identify it as the inner product of L2(B), hence

c(µh,Yh) = (µh,Yh)B ∀µh ∈ Λh, ∀Yh ∈ Sh. (1.53)

Conversely, if c is the scalar product in H1(B), no modification is needed.

1.5 Analysis of the stationary problem

In order to study the well-posedness of our problem, we focus our attention on the

associated stationary problem [24, 26]: indeed, as previously mentioned, we can

read the time semi-discretized Problem 1.3.2 as a sequence of stationary problems.

For simplicity, let us consider again the case of the linear solid model given

by P(F) = κ∇s X and set X = Xn and u = un. Then, we define two new bilinear

forms, related to the fluid and the structure equations respectively

af (u,v) = α(u,v)Ω + a(u,v) + b(u,u,v) ∀u,v ∈ H1
0(Ω)

as(X,Y) = β(X,Y)B + γ(∇s X,∇s Y)B ∀X,Y ∈ H1(B)
(1.54)

and we deduce right hand sides and constants from time step and physical coeffi-

cients of the model as

u = un+1, p = pn+1, X =
Xn+1

∆t
, λ = λn+1

f =
ρf
∆t

un

g =
δρ

∆t2
(2Xn −Xn−1)

d = − 1

∆t
Xn

α =
ρf
∆t
, β =

δρ

∆t
, γ = κ∆t.

Therefore, the continuous formulation for the stationary problem reads as fol-

lows.

Problem 1.5.1. Let X ∈ W1,∞(B) be invertible with Lipschitz inverse and u ∈ H1
0(Ω)

such that divu = 0. Given f ∈ L2(Ω), g ∈ L2(B) and d ∈ L2(B), find (u, p) ∈
H1

0(Ω)× L2
0(Ω), X ∈ H1(B) and λ ∈ Λ, such that

af (u,v)− (div v, p)Ω + c(λ,v(X)) = (f ,v)Ω ∀v ∈ H1
0(Ω) (1.55a)

1.5. ANALYSIS OF THE STATIONARY PROBLEM 45

(divu, q)Ω = 0 ∀q ∈ L2
0(Ω) (1.55b)

as(X,Y)− c(λ,Y) = (g,Y)B ∀Y ∈ H1(B) (1.55c)

c(µ,u(X)−X) = c(µ,d) ∀µ ∈ Λ (1.55d)

It is easy to see that this formulation presents a saddle point structure; indeed,

moving to the operational formulation, we have




Af B⊤ 0 C⊤
f

B 0 0 0

0 0 As −C⊤
s

Cf 0 −Cs 0







u

p

X

λ




=




f

0

g

d




. (1.56)

As a consequence, its well-posedness can be studied in terms of inf-sup condi-

tions [15]: in order to do that, it is convenient to rearrange the variables, so that

we obtain 


Af 0 C⊤
f B⊤

0 As −C⊤
s 0

Cf −Cs 0 0

B⊤ 0 0 0







u

X

λ

p




=




f

g

d

0




; (1.57)

hence, following the work done in [24, 26], Problem 1.5.1 can be reformulated

making use of only two bilinear forms.

Problem 1.5.2. Let X ∈ W1,∞(B) be invertible with Lipschitz inverse and u ∈ H1
0(Ω)

such that divu = 0; given f ∈ L2(Ω), g ∈ L2(B) and d ∈ L2(B), find (U, p) ∈
V × L2

0(Ω) such that

A (U,V) + B(V, p) = (f ,v)Ω + (g,Y)B − c(µ,d) ∀V ∈ V

B(U, q) = 0 ∀q ∈ L2
0(Ω).

(1.58)

In particular, V denotes the product space H1
0(Ω)×H1(B)×H1(B) containing

all the triplets V = (v,Y,µ) endowed with the norm

~V~ = ‖v‖1,Ω + ‖Y‖1,B + ‖µ‖Λ (1.59)

46 IBM-DLM

so that the bilinear forms A and B are defined as follows

A : V × V → R

A (U,V) = af (u,v) + as(X,Y) + c(λ,v(X)−Y)− c(µ,u(X)−X)

B : V × L2
0(Ω) → R

B(V, q) = (div v, q)Ω

(1.60)

In particular, the inf-sup conditions for Problem 1.5.1 are equivalent to the

conditions for Problem 1.5.2 which have been proved in [24].

Proposition 1.5.1. There exist two positive constants θ and η such that

inf
U∈K[B]

sup
V∈K[B]

A (U,V)

~U~ ~V~
≥ θ, inf

q∈L2
0
(Ω)

sup
V∈V

B(V, q)

~V~ ‖q‖0,Ω
≥ η, (1.61)

where K[B] = {V ∈ V : B(V, q) = 0 ∀q ∈ L2
0(Ω)}.

Consequently, the solution operator L : V×L2
0(Ω) → V ′× (L2

0(Ω))
′ associated

to our problem

L (U, p) = (f ,g,d,0) (1.62)

is an isomorphism.

Once the inf-sup conditions are proved for the continuous problem, we can

move to study the well-posedness for the finite element discrete problem: we can

proceed as in Section 1.4 and introduce the discrete spaces Vh, Qh defined on the

fluid mesh T Ω
h and Sh, Λh defined on the solid mesh T B

h . In particular, even if the

Sh and Λh can be either equal or different to each other, we assume that Sh = Λh.

In particular, we set them to be made up of piecewise linear elements

Sh = Λh = {Y ∈ H1(B) : Y|T ∈ (P1(T))
d ∀T ∈ T B

h }. (1.63)

This last assumption is not too restrictive and was already considered in [24],

whereas other possible choices for Sh and Λh are discussed in [26, 2].

Therefore, the discrete counterpart of Problem 1.5.1 reads.

Problem 1.5.3. Let X ∈ W1,∞(B) be invertible with Lipschitz inverse and u ∈ H1
0(Ω)

such that divu = 0. Given f ∈ L2(Ω), g ∈ L2(B) and d ∈ L2(B), find (uh, ph) ∈
Vh ×Qh, Xh ∈ Sh and λh ∈ Λh, such that

af (uh,vh)− (div vh, ph)Ω + c(λh,vh(X)) = (f ,vh)Ω ∀vh ∈ Vh (1.64a)

1.5. ANALYSIS OF THE STATIONARY PROBLEM 47

(divuh, qh)Ω = 0 ∀qh ∈ Qh (1.64b)

as(Xh,Yh)− c(λh,Yh) = (g,Yh)B ∀Yh ∈ Sh (1.64c)

c(µh,uh(X)−Xh) = c(µh,d) ∀µh ∈ Λh. (1.64d)

Analogously to the continuous case, we now introduce the discrete product

space

Vh = Vh × Sh ×Λh ⊂ V

associated to the norm ~·~ and with generic element denoted by Vh = (vh,Yh,µh).

For the proof of the inf-sup conditions we refer again to [24].

Proposition 1.5.2. There exist two positive constants θ̃ and η̃ such that

inf
Uh∈Kh[B]

sup
Vh∈Kh[B]

A (Uh,Vh)

~Uh~ ~Vh~
≥ θ̃, inf

qh∈Qh

sup
Vh∈Vh

B(Vh, qh)

~Vh~ ‖qh‖0,Ω
≥ η̃, (1.65)

where Kh[B] = {Vh ∈ Vh : B(Vh, qh) = 0 ∀qh ∈ Qh}.

Therefore, the discrete counterpart of the operator L defined in (1.62)

Lh : Vh ×Qh −→ V
′
h ×Q′

h such that Lh(Uh, ph) = (f ,g,d,0) (1.66)

is still an isomorphism.

Finally, we state the optimal convergence theorem, which directly follows from

the well-posedness.

Theorem 1.5.1. Let Vh and Qh satisfy the usual compatibility conditions for the

Stokes problem. If (u, p,X,λ) and (uh, ph,Xh,λh) denote respectively the solution

for the continuous and the discrete problem, the following error estimate holds true

‖u− uh‖1,Ω + ‖p− ph‖0,Ω + ‖X−Xh‖1,B + ‖λ− λh‖Λ
≤ C

(
inf

v∈Vh

‖u− v‖1,Ω + inf
q∈Qh

‖p− q‖0,Ω + inf
Y∈Sh

‖X−Y‖1,B + inf
µ∈Λh

‖λ− µ‖Λ
)
.

(1.67)

48 IBM-DLM

Chapter 2

The interface matrix

Since our model is based on a coupling method, a crucial role is performed by

the interface matrix, which combines the solid kinematics with the fluid dynamics

via integration over the solid mesh of both solid and fluid basis functions. The

reciprocal position of the two meshes can be taken into account in two different

ways: the first one consists in computing the intersection element by element so

that we can implement a composite integration rule, whereas the second one avoids

this geometric computation and consists in directly integrating on the elements of

the solid mesh T B
h .

A similar investigation has been performed in mortar element framework in the

case of codimension one interface problems for second order elliptic equations [80],

while the recent work [57] presents an interpolation technique between unfitted

grids based on Lagrange extraction in immersed finite elements and isogeometric

analysis. Moreover, a comparison of non-matching techniques for the finite element

approximation of interface problems has been recently presented [16].

From the computational perspective, the study and development of efficient al-

gorithms for the computation of the intersection between non-matching grids have

been discussed in several papers as support tools for the simulation of coupled prob-

lems. For instance, in [81], a 3D Nitsche method is efficiently implemented in the

cut–FEM setting by Massing, Larson and Logg. In [74], the authors present a C++

package called MOONoLith (Multipurpose Object Oriented Numerics Library):

this library implements an algorithm for the variational transfer of information

between meshes based on a monolithic parallel approach. This involves the com-

putation of the intersection of meshes, both in two and three dimensional cases.

In [33], efficient algorithms for the intersection of simplicial elements of different

49

50 CHAPTER 2. THE INTERFACE MATRIX

codimensions in a 3D setting are presented for the case of XFEM and mortar

methods, while in the work by Farrell and Maddison [54], the implementation of

Galerkin projections for conservative interpolation between discrete fields is based

on the Sutherland–Hodgman algorithm for clipping polygons. We finally mention

that boolean operations between meshes of different codimensions, as well as finite

elements methods on unfitted grids, have been just introduced in the latest version

of the deal.II library [5].

This chapter is subdivided into five sections. The first two sections are based on

our work [20]: we describe the algorithms one can adopt in order to assemble the

coupling matrix as described above, while in Section 2.2, we present a numerical

investigation to understand how the two proposed techniques affect the conver-

gence of our method. In Section 2.3, we discuss a general result on the effect of

numerical integration on fluid-structure interaction problems, while in Section 2.4,

we present quadrature error estimates for the approximate integration of the cou-

pling term. Finally, in the last section, we discuss the well-posedness of the problem

discretized with inexact coupling, proving that the inf-sup conditions are satisfied.

2.1 Assembly techniques

As we discussed in the previous chapters, the use of the fictitious domain approach

consists in extending the fluid domain to the region occupied by the immersed solid

body; consequently, we have that the solid mesh is superimposed on the fluid one

when mapped into the fluid domain.

From the point of view of the equations modeling our interaction system, we

have that the coupling between fluid and structure is represented by the bilinear

form c(µh,vh(X)) associated to the matrix Cf , as described in Sections 1.2 and 1.4.

Since c can be defined either as the scalar product of L2(B) or H1(B), it

is evident the fact that we have to compute integrals over the solid domain B
involving µh ∈ Λh, defined on B, and vh ∈ Vh, that is related to the whole domain

Ω: this means that we need to integrate the velocity shape functions, defined with

respect to T Ω
h , over the solid mesh T B

h , also combined with the map X so that the

actual position occupied by the structure, and discretized by X(T B
h), can be taken

into account.

We focus on the case of triangular meshes in two dimensions, but more general

situations can be considered, see Section 2.1.3.

2.1. ASSEMBLY TECHNIQUES 51

X
_

(a) Mapping of a solid element into the fluid mesh. (b) Mismatching supports

Figure 2.1: Graphical example of reciprocal positions between fluid and solid ele-

ments. On the left, a particular element of the blue solid mesh T B
h , colored in grey,

is immersed in the cyan fluid mesh. On the right, the support of the fluid basis

function related to the black node is colored in yellow and only partially matches

the mapped solid element.

In Figure 2.1a, in a portion of fluid and solid mesh, we show the action of

X applied to a single solid element Ts of T B
h . Its mapped counterpart X(Ts) is

immersed in the fluid mesh and it is colored in grey. To perform this mapping, we

apply X to the nodes, so that we can keep straight the edges connecting them.

Moreover, in Figure 2.1b, we present an example of mismatch between the support

of a fluid function with respect to an immersed solid element: the support of the

considered function, indicated in yellow, only partially matches the blue triangle.

It is important to notice that all these considerations do not affect the assembly

of the matrix Cs, defined by c(µh,Yh) since the involved variables are both defined

on T B
h , indeed µh ∈ Λh and Yh ∈ Sh.

After this preliminary discussion, we can now present the discrete version of

the available definitions for the bilinear form c. If c is the inner product in L2(B)
as discussed in (1.53), we can write

ch(µh,vh(X)) =

∫

B

µh · vh(X) ds =
∑

Ts∈T B

h

∫

Ts

µh · vh(X) ds, (2.1)

while, if c is the H1(B) scalar product as presented in (1.41), we have that

52 CHAPTER 2. THE INTERFACE MATRIX

ch(µh,vh(X)) can be written as follows

ch(µh,vh(X)) =

∫

B

µh · vh(X) +∇s µh : ∇s vh(X) ds

=
∑

Ts∈T B

h

∫

Ts

µh · vh(X) +∇s µh : ∇s vh(X) ds.
(2.2)

We remark that in the last integral, ∇s vh(X) represents a composite gradient,

hence

∇s vh(X) = ∇vh : ∇s X.

In (2.1) and (2.2), we reduced the global definitions to each triangle Ts ∈ T B
h .

In the following, given the integral on a generic Ts ∈ T B
h , we present two possible

assembly techniques: in order to fully take into account that a velocity function

is integrated over a solid element, one can first compute the intersection between

the fluid mesh T Ω
h and the solid one mapped into Ωs, or, alternatively, one can

directly integrate over Ts ∈ T B
h , without additional procedures. The integrals in

(2.1) and (2.2) will be expanded from these two perspectives.

The area of a generic triangle T will be denoted by |T|. We denote by {(p0
k, ω

0
k)}K0

k=1

quadrature nodes and weights for the numerical computation of the L2(B) scalar

product, while {(p1
k, ω

1
k)}K1

k=1 represent the quadrature rule we use for computing

the L2(B) scalar product of gradients.

2.1.1 Assembly with mesh intersection

The first technique we present allows us to compute exactly the integrals in (2.1)

and (2.2) since we can make use of a composite rule over Ts, based on the inter-

section of the fluid and solid meshes.

Computing the intersection, we get a finer triangulation for the structure, char-

acterized by the fact that each element is contained in a single fluid element

Tf ∈ T Ω
h so that the related velocity basis functions are completely supported.

In order to get this type of partition for Ts ∈ T B
h , we intersect its mapped counter-

part X(Ts) with each Tf ∈ T Ω
h , therefore Ts can be seen as the union of disjoint

polygons P1, . . . , PJ

Ts =
J⋃

j=1

Pj; (2.3)

2.1. ASSEMBLY TECHNIQUES 53

(a) With mesh intersection (b) Without mesh intersection

Figure 2.2: A graphical example for the two approaches proposed for the assembly

of the interface matrix. The velocity mesh is colored in cyan, while in blue we have

the immersed counterpart of the solid element under consideration. On the left, the

mapped solid triangle is partitioned into sub-polygons (purple lines) accordingly

with its position with respect to the fluid mesh. If a polygon is not already a

triangle, it is triangulated (pink lines). On the right, mapped nodes for a Gauss

quadrature rule with order two are represented in the immersed solid element:

notice that they belong to different fluid triangles.

in particular, if a polygon Pj is already a triangle, we integrate over it, otherwise,

we simply partition it into triangles T1, . . . ,TIj connecting each vertex with the

barycenter, hence

Ts =
J⋃

j=1

Pj =
J⋃

j=1

Ij⋃

i=1

Ti. (2.4)

In Figure 2.2a, we schematically represent this procedure on a single mapped

solid triangle (in blue) which is partitioned first into polygons (in purple) and then

into smaller triangles (in pink).

As a consequence, the scalar product in L2(B) can be numerically computed

as follows

∫

Ts

µh · vh(X) ds =
J∑

j=1

∫

Pj

µh · vh(X) ds =
J∑

j=1

Ij∑

i=1

∫

Ti

µh · vh(X) ds

=
J∑

j=1

Ij∑

i=1

|Ti|
K0∑

k=1

ω0
k µh(p

0
k) · vh(X(p0

k)),

(2.5)

54 CHAPTER 2. THE INTERFACE MATRIX

while, for the scalar product of gradients we have

∫

Ts

∇s µh : ∇s vh(X) ds =
J∑

j=1

∫

Pj

∇sµh : ∇s vh(X) ds

=
J∑

j=1

Ij∑

i=1

∫

Ti

∇s µh : ∇s vh(X) ds

=
J∑

j=1

Ij∑

i=1

|Ti|
K1∑

k=1

ω1
k ∇s µh(p

1
k) : ∇s vh(X(p1

k)).

(2.6)

The procedure is summarized in Algorithm 2.1.

Algorithm 2.1 Assembly Cf with mesh intersection

Data:

{Tf}f=1,...,NF
: elements of the fluid mesh T Ω

h

{Ts}s=1,...,NS
: elements of the reference solid mesh T B

h

Compute mesh intersection {Tf}f ∩ {X(Ts)}s:
each X(Ts) is partitioned into J ≥ 1 polygons {Pj}j=1,...,J

associated with J fluid elements {Tf,j}j=1,...,J , i.e. Pj ↔ Tf,j

for {Ts}s=1,...,NS
do

for {Pj}j=1,...,J do

if Pj is not a triangle then
Triangulate Pj into {Ti}i=1,...,Ij

end

else
Ij = 1 and T1 = Pj

end

for {Ti}i=1,...,Ij do
Integrate using the basis functions related to Ts and Tf,j

Load contribution to the global matrix
end

end

end

2.1. ASSEMBLY TECHNIQUES 55

2.1.2 Assembly without mesh intersection

This second possibility is cheaper than the previous one because skips all the

geometric computations related to the intersection of the two meshes. Therefore,

since we directly integrate on the elements of T B
h , we can compute the quadrature

nodes in the element Ts we are considering, accordingly to a certain quadrature

rule.

Obviously, the evaluation of the solid shape functions does not require particu-

lar attention. Conversely, the evaluation of the velocity functions is delicate since

the quadrature nodes could be placed in different fluid elements, hence we need

to check in which fluid triangle each node is located. This operation, in the trian-

gular case, can be easily carried out making use of barycentric coordinates, since

they are a powerful tool for this type of computations. Indeed, the barycentric

coordinates are a local coordinate system related to a simplex (in 2D, a triangle)

so that a point can be represented using its distances from the three edges: if a

point is in the interior or on the boundary of a triangle, its local coordinates are

non-negative.

Once this procedure is done, at each mapped quadrature node we can evaluate

the fluid functions related to the element containing it and, finally, apply the

quadrature formula.

In Figure 2.2b we report an example of local coupling without mesh intersection

based on a Gaussian rule with three nodes. We can see that the three points are

in different fluid elements. Moreover, notice that the solid element interacts also

with fluid triangles that we are not considering. It is evident that this procedure

is inexact and may introduce an additional source of error.

Therefore, with this approach, the numerical version of the L2(B) scalar prod-

uct is given by

∫

Ts

µh · vh(X) ds ≈ |Ts|
K0∑

k=1

ω0
k µh(p

0
k) · vh(X(p0

k)); (2.7)

while for the term involving gradients, we get

∫

Ts

∇s µh : ∇s vh(X) ds ≈ |Ts|
K1∑

k=1

ω1
k ∇s µh(p

1
k) : ∇s vh(X(p1

k)). (2.8)

This procedure is summarized in Algorithm 2.2.

56 CHAPTER 2. THE INTERFACE MATRIX

Algorithm 2.2 Assembly the Cf matrix block without mesh intersection

Data:

{Tf}f=1,...,NF
: elements of the fluid mesh T Ω

h

{Ts}s=1,...,NS
: elements of the reference solid mesh T B

h

for {Ts}s=1,...,NS
do

Compute quadrature nodes p1, . . . ,pK in Ts for the rules under consideration

Evaluate solid basis functions

Find the fluid element containing each mapped quadrature point:

i.e. X(pk) ↔ Tf,k with k = 1, . . . , K

for {Tf,k}k=1,...,K do

Evaluate the fluid basis functions in X(pk) and integrate over Ts

Load contribution to the global matrix
end

end

2.1.3 Generalization

We have just described the possible techniques one can adopt to assemble the

interface matrix in the particular case of two dimensional triangular meshes.

Since for the finite element method different types of meshes are allowed, such

as quadrilateral meshes, it is important to point out that our method still works

and the two algorithms can be easily adapted to more general cases.

Also the extension to the three dimensional case is possible, obviously with an

increase of computational costs due to the complexity of the geometry of tetrahedra

and polyhedra. The computation of the intersection of three dimensional elements

is non-trivial, but several specific packages can be used for additional support. For

the assembly without mesh intersection, the use of barycentric coordinates is still

a valid technique in the case of tetrahedral meshes. An example of tetrahedral

element immersed in a fluid mesh is depicted in Figure 2.3.

2.2 A numerical investigation

At this point, we present a first series of numerical tests in order to discuss how the

use of the two approaches just presented affects the convergence of the numerical

2.2. A NUMERICAL INVESTIGATION 57

Figure 2.3: A mapped solid tetrahedron (red) is immersed in a portion of fluid

tetrahedral mesh (blue). The green points denote the intersection between the

edges of the red element with the faces of the blue tetrahedra, and vice versa. It

is clear that the polyhedra resulting from the intersection are characterized by a

complex geometry.

method. In particular, we are going to solve a two dimensional stationary problem

with triangular finite elements.

In the following sections, we introduce the considered model problem and ex-

amine all the details related to the implementation of our Python 3.8 script written

specifically for the purpose.

2.2.1 Model problem

Let us consider a simplified version of the stationary problem presented in the

previous chapter, Problem 1.5.1.

Problem 2.2.1. Let X ∈ W1,∞(B) be invertible with Lipschitz inverse.

Given f ∈ L2(Ω), g ∈ L2(B) and d ∈ L2(B), find (u, p) ∈ H1
0(Ω)× L2

0(Ω), X ∈ H1(B)
and λ ∈ H1(B), such that

af (u,v)− (div v, p)Ω + c(λ,v(X)) = (f ,v)Ω ∀v ∈ H1
0(Ω) (2.9a)

(divu, q)Ω = 0 ∀q ∈ L2
0(Ω) (2.9b)

as(X,Y)− c(λ,Y) = (g,Y)B ∀Y ∈ H1(B) (2.9c)

c(µ,u(X)−X) = c(µ,d) ∀µ ∈ H1(B). (2.9d)

58 CHAPTER 2. THE INTERFACE MATRIX

In this case, we assume that the bilinear forms involved in the variational

formulation are defined as follows

af (u,v) = (∇u,∇v)Ω

as(X,Y) = (∇s X,∇s Y)B,

while for the coupling term we consider the scalar product in H1(B)
c(µ,Y) = (µ,Y)B + (∇s µ,∇s Y)B.

The solutions of our tests are chosen in advance so that they are known in

their analytical form and do not belong to the finite element spaces chosen for the

approximation; hence the right hand sides are accordingly computed:

f = −∆u+∇ p+ “c(λ,v)”

g = −∆X− λ+ g∂B

d = u(X)−X,

where the term c(λ,v) in f is imposed only variationally and only in the region

occupied by the solid body Ωs; for this reason, the assembly of this particular

term is performed by making use of the mesh intersection in order to get an exact

computation.

Moreover, g∂B denotes the boundary integral we obtain integrating by parts

the equation of the solid, ignoring the multiplier term, indeed we have

as(X,Y) = (∇s X,∇s Y)B = (−∆X,Y)B + (∇s X · ns,Y)∂B.

We are going to present eight different numerical tests performed varying the

mutual position between fluid and solid, using trivial and non-trivial choices of X

and both continuous and discontinuous pressure functions. In particular, for the

first six tests, we assume that X is the identity, implying that reference and actual

solid domain coincide, B = Ωs. This assumption is removed in the last two tests,

where different domains are chosen. Furthermore, in the fifth and sixth tests, we

analyze the behavior of our solver in the case of discontinuous pressure both in the

case in which the discontinuity coincides with the fluid-structure interface or not.

In terms of finite element spaces, we work with the Bercovier–Pironneau ele-

ment and its enhanced version for velocity and pressure, while we choose piecewise

linear spaces for the variables defined on B. The main features and the derivation

of this Stokes pair from the classical Hood–Taylor element are reviewed in the next

section.

2.2. A NUMERICAL INVESTIGATION 59

2.2.2 Finite element spaces

One of the most used Stokes pairs is the lowest order Hood–Taylor element P2/P1

[15] characterized by the use of piecewise quadratic polynomials for the velocity

and piecewise linear polynomials for the pressure:

VHT = {v ∈ H1(B) : v|T ∈ (P2(T))
2 ∀T ∈ T Ω

h }
QHT = {q ∈ H1(Ω) ∩ L2

0(Ω) : q|T ∈ P1(T) ∀T ∈ T Ω
h }.

(2.10)

With this choice, the local degrees of freedom for the velocity are six, vertices and

midpoints, while for the pressure only the vertices are considered.

Since this setting implies the implementation of quadratic polynomials, a pop-

ular alternative often used in this field of study and engineering simulations is the

Bercovier–Pironneau element P1 − iso − P2/P1 [13, 61]: this is intended as the

cheaper version of (2.10) since they share the same set of degrees of freedom, but

making use of piecewise linear functions also for the approximation of the velocity.

The drawback is that we theoretically lose one order in the rate of convergence:

this is actually true for the velocity, whereas the pressure error superconverges [17].

This phenomenon has been observed and studied for an another low order Stokes

element, the MINI, both from the theoretical [53] and experimental [42, 43] point

of view.

In order to combine the six local degrees of freedom of Vh in (2.10) with the

use of piecewise linear polynomials, we need to work with two different meshes for

velocity and pressure: we can see each pressure element as a macroelement contain-

ing four velocity triangles, obtained connecting the midpoints. As a consequence,

we have that if T Ω
h is the space discretization we use for the pressure, the velocity

mesh is T Ω
h/2. Finally, (Vh, Qh) is defined as follows

Vh = {v ∈ H1
0(Ω) : v|T ∈ (P1(T))

2 ∀T ∈ T Ω
h/2}

Qh = {q ∈ H1(Ω) ∩ L2
0(Ω) : q|T ∈ P1(T) ∀T ∈ T Ω

h }.
(2.11)

An enhanced version of (2.11) was introduced in [17]: since discontinuous pres-

sure schemes satisfy a local mass conservation property (which means that we

have null average divergence element by element), piecewise constant functions

were added to Qh:

Qh = {q ∈ L2
0(Ω) : q = q1 + q0,

q1 ∈ H1(Ω), q1|T ∈ P1(T),

q0|T ∈ P0(T) ∀T ∈ T Ω
h }.

(2.12)

60 CHAPTER 2. THE INTERFACE MATRIX

This modified element is also called P1−iso−P2/P1+P0 and the inf-sup conditions

were proved making use of the macroelement technique under the assumption that

each pressure element has at least one internal node. With the enhancement, we

loose the superconvergence in pressure. Moreover, it is important to notice that

this enhancement is not possible in the three dimensional case since there are no

degrees of freedom in the interior of the faces.

In FSI applications it is very common that the pressure function presents a

discontinuity along the interface. When this coincides with the fluid mesh, the use

of discontinuous pressure elements produces an improvement with respect to the

case of continuous finite elements: indeed, in the first case, the convergence rate

remains optimal, since no oscillations originate (Figure 2.4a); conversely, in the

second case, the error presents the so-called Gibbs phenomenon (Figure 2.4b). No

improvement is obtained when the discontinuity does not coincide with the fluid

mesh.

In our case, the use of two different meshes for velocity and pressure affects the

assembly procedure of the interface matrix Cf since it is defined from c(λh,vh(X)):

this implies that we have to couple a variable defined on T B
h with a variable defined

on T Ω
h/2.

For the spaces related to the structure variables, we choose piecewise linear

polynomials as we did in Section 1.5

Sh = Λh = {Y ∈ H1(B) : Y|T ∈ (P1(T))
2 ∀T ∈ T B

h }. (2.13)

2.2.3 Mesh generation

The generation of the meshes is done on the unit square [0, 1]2 and then the nodes

are mapped to Ω and B.

The discretization of the fluid domain Ω is chosen to be uniform, while for the

solid domain B we work with both uniform and unstructured grids; in particular,

in the last case, the generation of the mesh is done making use of the Gmsh finite

element mesh generator [58].

All the involved meshes satisfy the shape regularity property. When we work

with the enhanced pair P1 − iso − P2/P1 + P0, we need to pay attention to the

corner triangles so that they do not violate the stability assumption that at least

one node has to be in the interior of the domain: if needed, we perform diagonal

2.2. A NUMERICAL INVESTIGATION 61

x

−2
−1

0
1

2

y

−2
−1

0
1

2

p
−
p h

−0.4
−0.2
0.0

0.2

0.4

(a) P1 + P0 discontinuous pressure

x

−2
−1

0
1

2

y

−2
−1

0
1

2

p
−
p h

−0.4
−0.2
0.0

0.2

0.4

(b) P1 discontinuous pressure

Figure 2.4: On the left, error p−ph of a discontinuous pressure approximated with

discontinuous finite elements. On the right, the error committed when continuous

elements are used: the region of the jump is characterized by the oscillations of the

Gibbs phenomenon

exchange to avoid wrong approximations and instabilities of the pressure on the

boundary.

In Table 2.1, we report the number of degrees of freedom related to each un-

known in dependence of the chosen finite element spaces and spatial discretizations.

In Figure 2.5, we show some examples of meshes used to discretize Ω and B.

2.2.4 Mesh intersection

The computation of the intersection between two meshes is an expensive procedure,

especially when fine meshes are used.

In particular, if NF and NS denote the number of fluid and solid elements, re-

spectively, as done in Algorithms 2.1 and 2.2, then the number of pairs of elements

we have to test for computing the intersection is NF ×NS; for this reason, a first

way to reduce computational and time costs avoiding testing a pair of disjoint tri-

angles is the implementation of the bounding box technique provided by the Rtree

Python package. In this way, one predicts in advance if a pair has non-empty in-

tersection checking the mutual position of the two boxes: if the boxes are disjoint,

then the intersection between the two elements is empty and we rapidly move to

analyze an another pair of elements.

62 CHAPTER 2. THE INTERFACE MATRIX

(a) Right (b) Right with correction (c) Left (d) Unstructured

Figure 2.5: Some examples of meshes. (a) and (b) are uniform meshes used for Ω

and, in particular, in (b) we can observe the diagonal exchange for correcting the

corners elements for the P1 + P0 pressure approximation. The meshes in (c) and

(d) are used to discretize B.

DOFs uh DOFs ph DOFs p0h DOFs Xh, λh DOFs Xuns
h , λuns

h

2,178 289 801 162 232

8,450 1,089 3,137 578 742

33,282 4,225 12,417 2,178 2,788

132,028 16,641 49,409 8,450 11,018

526,338 66,049 197,121 33,282 43,734

2,101,250 263,169 787,457 132,028 174,316

Table 2.1: Number of degrees of freedom for each variable in dependence of mesh

and finite element space. The last column is related to the use of unstructured

meshes for the discretization of the solid domain B, while the other cases refer to

uniform meshes. The notation p0h is reserved for the pressure approximation by

P1 + P0 elements.

For the actual computation of the intersection of two elements, the Shapely

package provides the module geometry containing tools to represent geometric

objects such as segments, lines and polygons and also to manage boolean opera-

tions between them. Indeed, in order to compute the intersection of two triangles,

we represent them using the data structure polygon and then we compute the

intersection with the intersection() method. The computation of the triangula-

tion of the resulting polygon by connecting vertices and barycenter can be easily

performed.

2.2. A NUMERICAL INVESTIGATION 63

On the other hand, when we choose to assemble the interface matrix Cf without

computing the intersection of the two meshes, we do not need particular tools since

we can easily use the barycentric coordinate system as described in Section 2.1.2.

In Figure 2.6 we report the geometric configurations of our tests: to fix ideas,

we represent both the solid and fluid discretizations with coarse meshes.

2.2.5 Quadrature rules for the interface matrix

Since we are using finite element spaces made of piecewise linear polynomials, it

is easy to find quadrature rules allowing us to integrate exactly the quantities

involved in the definitions of Af , As, B and Cs. Here, we focus our attention on

the quadrature rules we use for assembling the interface matrix Cf with the two

techniques under consideration.

We are considering the definition of c(µh,vh(X)) as the scalar product in

H1(B), hence we have to integrate both the product of the two functions (µh,vh(X))B
and the product of the gradients (∇s µh,∇s vh(X))B: as a consequence of the cho-

sen finite element spaces for the velocity and the Lagrange multiplier, this means

that for the first term we need to use a quadrature formula exact for quadratic

polynomials and, for the second case, a rule with first order precision.

We explained before that the computation of the mesh intersection allows us to

integrate on solid triangles which are uniquely included in a fluid element, hence

applying the following Gaussian quadrature rules we get exact integrals for Cf .

Definition 2.2.1 (Gauss rule, order 1). A polynomial f of degree one can be

integrated exactly by the following one-point formula
∫

T

f(x) dx ≈ |T| f(xT) (2.14)

where xT is the barycenter of T.

Definition 2.2.2 (Gauss rule, order 2). A polynomial f of degree two can be

integrated exactly by the following three-points formula

∫

T

f(x) dx ≈ |T|
3

3∑

k=1

f
(
x(k)
)

(2.15)

where the quadrature nodes, represented in barycentric coordinates, are

x(1) = (2/3, 1/6, 1/6)

64 CHAPTER 2. THE INTERFACE MATRIX

(a) Test 1 (b) Test 2 (c) Test 3

(d) Test 4 (e) Test 5 (f) Test 6

(g) Test 7 (h) Test 8

Figure 2.6: The mutual position between fluid and solid body of our tests rep-

resented with coarse meshes; each configuration is kept unchanged when the the

discretizations are refined. We recall that in the first six cases the reference domain

B coincides with the actual position of the structure. Moreover, due to our choice

of Stokes element, it is important to specify that the yellow mesh is the one related

to the velocity.

2.2. A NUMERICAL INVESTIGATION 65

and its permutations.

In the case of assembly without mesh intersection, we implement the formula

in Equation (2.15) for both the L2(B) and the H1(B) contributions. Moreover, in

order to collect more information about the behavior of our solver when based

on this approach, we also assembled Cf using a Gauss quadrature rule with third

order precision.

Definition 2.2.3 (Gauss rule, order 3). A polynomial f of degree three can be

integrated exactly by the following four-points formula

∫

T

f(x) dx ≈ |T|
(
25

48

3∑

k=1

f
(
x(k)
)
− 9

16
f(xT)

)
(2.16)

where the quadrature nodes, represented in barycentric coordinates, are

x(1) = (3/5, 1/5, 1/5)

with its permutations and the barycenter xT of T.

2.2.6 Numerical results

After having listed and described the main features of the numerical method we

have implemented for our study, we now move to the description of tests and

related results.

We are going to show that the optimal convergence rate is reached only when

the coupling matrix Cf is assembled computing the intersection between fluid and

solid meshes; moreover, the method without mesh intersection does not improve

its performance when we increase the precision of the quadrature rule.

Test 1

The first test is a sort of sanity check since we want to show that, in the particular

situation where the mapped solid mesh perfectly matches the velocity one, the two

assembly techniques for the interface matrix are equivalent.

We solve Problem 2.2.1 in the case of a square solid body B = Ωs = [−1, 1]2

immersed in the fluid domain Ω = [−2, 2]2 discretized by matching uniform right-

oriented meshes. Moreover, as we stated before, the assumption B = Ωs implies

that the map X is simply the identity over B, therefore the datum d is equal to 0.

66 CHAPTER 2. THE INTERFACE MATRIX

The other right hand sides, f and g, are computed in such a way that the

solutions of our problem are the following:

u(x, y) = curl
(
(4− x2)2(4− y2)2

)

u|∂Ω = 0

p(x, y) = 150 sin(x)

X(x, y) = u(x, y)

λ(x, y) =
(
ex, ey

)
.

(2.17)

In terms of convergence, according to the choice of the Bercovier–Pironneau

element, which is a low-order Stokes pair, we expect that the rate of convergence

of pressure and velocity with respect to the L2 and H1 norm respectively is one,

in contrast with a second order convergence for the velocity in L2.

For the solid variables, according to the standard theory of finite elements

[32, 41], we expect that the L2 error decays with order two, while the H1 error

with order one.

In Tables 2.2 and 2.3, we report relative errors and convergence rates related

to the approximation with P1 − iso−P2/P1/P1/P1, while the results for the case

P1 − iso− P2/P1 + P0/P1/P1 are collected in Tables 2.4 and 2.5.

Analyzing the obtained data, we see that effectively in this case the schemes

with and without mesh intersection are equivalent. Moreover, the convergence

rates satisfy our expectations, with a superconvergence for pressure and Lagrange

multiplier when the classical Bercovier–Pironneu element is used; this phenomenon

does not concern the case of the enhanced version.

Test 2

The aim of this test is to simulate a first simple situation in which only the bound-

ary of the structure coincides with the spatial discretization of Ω.

We consider the same setting we used in the previous test, but making a differ-

ent choice of meshes: indeed, we select a right-oriented uniform mesh for the fluid,

while for the solid domain we use a left-oriented uniform mesh.

The results of the simulations are reported in Figure 2.7. We can see that,

when the coupling term is assembled in approximate way with the second order

quadrature rule, the method presents a slight loss of order of convergence unlike

the case in which we use the quadrature formula of order three, which produces

results similar to the case with intersection.

2.2. A NUMERICAL INVESTIGATION 67

Test 3

Now we add another factor of complexity in terms of geometry: in addition to

choosing two meshes with non-trivial intersection, we also make sure that the

boundary of the solid body does not coincide with the fluid mesh: therefore, we

set B = Ωs = [−0.62, 0.38]2 and again Ω = [−2, 2]2 with the same solutions as

in (2.17).

The spatial discretization is done in the same way as in Test 2.

In Figure 2.8, we can see that in this new situation, the different behavior of

the two schemes is more evident: it is clear that the optimal convergence rates are

ensured only when the interface matrix is exactly assembled with mesh intersection.

No improvements are observed when we increase the quadrature precision in the

case without mesh intersection.

Test 4

At this point, in the same setting of Test 3, we replace the uniform mesh for B
with an unstructured grid to analyze the convergence when a more general spatial

discretization of the solid is considered.

The results of this test are summarized in Figure 2.9: in the case of the contin-

uous pressure element, the convergence deficiency is evident for the approximate

case; conversely, when the pressure is approximated with discontinuous elements,

the behavior partially improves.

It is important to notice that, in this more general situation, we lose the su-

perconvergence of ‖λ− λh‖1,B we got in the previous tests where only uniform

meshes have been used.

Test 5

In this test we want to analyze the behavior of the two approaches in the case

of a discontinuous pressure with the discontinuity placed on the boundary ∂Ωs

since this is a common situation in FSI simulations. In addition, we consider also

the case where ∂Ωs coincides with the fluid mesh. Therefore, in order to take into

account this discontinuity in the numerical scheme, we add a new weak term in the

computation of the right hand side f , indeed the pressure term can be decomposed

68 CHAPTER 2. THE INTERFACE MATRIX

as follows∫

Ω

p div v dx =

∫

Ωs

v ·∇ p dx−
∫

∂Ωs

(v ·ns) p da+

∫

ΩrΩs

v ·∇ p dx−
∫

∂Ωs

(v ·nf) p da,

where, again, ns and nf are outer and inner normal unit vectors to ∂Ωs. The

computation of the boundary terms concerns the integration of fluid variables on

the solid mesh, hence the immersion and the mutual position between the two

meshes have to be taken into account.

For our test, we choose Ω = [−2, 2]2 and B = Ωs = [−1, 1]2, so that d = 0

since X is the identity over B. Once again, we discretize Ω with a sequence of

right-oriented uniform meshes and B with left-oriented uniform meshes. We set

the solutions of our problem to be

u(x, y) = curl
(
(4− x2)2(4− y2)2

)

u|∂Ω = 0

p(x, y) =




150 sin(x)− 50

3
in Ωf

150 sin(x) + 50 in Ωs = B.

X(x, y) = u(x, y)

λ(x, y) =
(
ex, ey

)
.

(2.18)

and we compute f and g accordingly.

Tests of this type are useful to understand what are the advantages of using

discontinuous elements for the approximation of the pressure function in FSI prob-

lem where situations of this type are very common. Indeed, the enhanced pressure

space P1 + P0 allows to circumvent the Gibbs phenomenon, obtained instead in

the case of classical P1 elements, reaching the optimal convergence.

In terms of assembling of the interface matrix, we get similar results to those of

Test 2, where only the computation of the intersection provides good convergence.

Convergence plots are reported in Figure 2.10.

Test 6

We work again with a pressure function which is discontinuous on the solid bound-

ary ∂Ωs with the addition of a complication, namely the fact that the discontinuity

does not coincide with the velocity mesh. Therefore, still setting Ω = [−2, 2]2, we

choose B = Ωs = [π/4, π/4]2, both discretized with the same sequences of grids we

previously used in Test 5.

2.2. A NUMERICAL INVESTIGATION 69

The computation of the right hand sides is done in order to get as solutions

u(x, y) = curl
(
(4− x2)2(4− y2)2

)

u|∂Ω = 0

p(x, y) =




150 sin(x) + 50π2

4

(
π2

4
− 16

)−1
in Ωf

150 sin(x) + 50 in Ωs = B.

X(x, y) = u(x, y)

λ(x, y) =
(
ex, ey

)
.

(2.19)

Since we have no matching between the pressure discontinuity and the fluid

mesh, in this case also the enhanced pressure space P1 + P0 does not work well;

indeed the optimal convergence rate cannot be reached due to the Gibbs phe-

nomenon.

As a consequence, we notice that with the two choices of finite element spaces,

the fluid variables converge with the same rate both when we calculate the inter-

section of the meshes, and when we do not compute it. On the other hand, the

solid variables are affected by the interface matrix assembly techniques as shown

in Figure 2.11.

Test 7

The only situation that we have not already considered in our tests is the one in

which the map X is different from the identity.

Therefore, let us consider as reference solid domain the square B = [−1, 1]2,

partitioned with uniform left meshes, while we set the actual solid body domain

to be the unit disk Ωs = {x ∈ R2 : |x| ≤ 1}, so that X is defined as

X(s) =

(
s1

√
1− s22

2
, s2

√
1− s21

2

)
,

where s = (s1, s2). Since X is non-trivial, the right hand side d is different from the

null-vector and in particular we have d = u(X)−X which involves the computation

of a term of type c(µ,u(X)) via mesh intersection as done for f . Moreover, Ω and

the solutions are the same as in Test 1 and (2.17).

In this more general case, we can see that the behavior we observed in all the

previous tests is confirmed: the exact procedure is still the best one as reported in

Figure 2.12.

70 CHAPTER 2. THE INTERFACE MATRIX

Test 8

This last test is a combination of two previous tests: indeed, we consider the same

problem setting as for Test 3, but with B = [0, 1]2 which is mapped into the actual

solid body Ωs = [−0.62, 0.38]2 via the action of

X(s) = (−0.62 + 2s1, −0.62 + 2s2).

The convergence plots are reported in Figure 2.13 and they agree with the

results obtained in Test 7.

2.3 The effect of numerical integration: abstract

result

Sometimes, in practical situations, the integrals defining bilinear forms and right

hand sides are computed with quadrature formulas which are not exact; in our

specific formulation, this is the case of the interface matrix, as previously explained.

In this section, we derive a general abstract result concerning the error of

numerical integration for all the involved quantities. The starting point for this

analysis are the existing results about the stationary problem we recalled in Sec-

tion 1.5.

Let us first introduce an approximated version of Problem 1.5.3, where af,h,

as,h and ch denote the numerical counterparts of the bilinear forms af , as, c,

respectively and (·, ·)h denotes the numerical L2 scalar product. Consequently, we

can state the following problem.

Problem 2.3.1. Let X ∈ W1,∞(B) be invertible with Lipschitz inverse and u ∈ H1
0(Ω)

such that divu = 0. Given f ∈ L2(Ω), g ∈ L2(B) and d ∈ L2(B), find (u⋆
h, p

⋆
h) ∈

Vh ×Qh, X
⋆
h ∈ Sh and λ⋆

h ∈ Λh, such that

af,h(u
⋆
h,vh)− (div vh, p

⋆
h)h,Ω + ch(λ

⋆
h,vh(X)) = (f ,vh)h,Ω ∀vh ∈ Vh (2.20a)

(divu⋆
h, qh)h,Ω = 0 ∀qh ∈ Qh (2.20b)

as,h(X
⋆
h,Yh)− ch(λ

⋆
h,Yh) = (g,Yh)h,B ∀Yh ∈ Sh (2.20c)

ch(µh,u
⋆
h(X)−X⋆

h) = ch(µh,d) ∀µh ∈ Λh. (2.20d)

Also in this case, it is useful to rearrange the problem as we did in Section 1.5,

so that we can introduce two new discrete bilinear forms, Ah : Vh × Vh → R and

2.3. THE EFFECT OF NUMERICAL INTEGRATION 71

Errors and convergence rates for Test 1 • P1 − iso− P2/P1/P1/P1

hΩ ‖p− ph‖0,Ω ‖u− uh‖0,Ω ‖u− uh‖1,Ω
Error Rate Error Rate Error Rate

Coupling with mesh intersection

1/4 2.102e-02 - 9.622e-03 - 7.684e-02 -

1/8 6.251e-03 1.75 2.408e-03 2.00 3.834e-02 1.00

1/16 1.977e-03 1.66 6.017e-04 2.00 1.915e-02 1.00

1/32 6.546e-04 1.59 1.504e-04 2.00 9.572e-03 1.00

1/64 2.233e-04 1.55 3.758e-05 2.00 4.785e-03 1.00

1/128 7.745e-05 1.53 9.394e-06 2.00 2.392e-03 1.00

Coupling without mesh intersection, quad. rule of order 2

1/4 2.102e-02 - 9.622e-03 - 7.684e-02 -

1/8 6.251e-03 1.75 2.408e-03 2.00 3.834e-02 1.00

1/16 1.977e-03 1.66 6.017e-04 2.00 1.915e-02 1.00

1/32 6.546e-04 1.59 1.504e-04 2.00 9.572e-03 1.00

1/64 2.233e-04 1.55 3.758e-05 2.00 4.785e-03 1.00

1/128 7.745e-05 1.53 9.394e-06 2.00 2.392e-03 1.00

Coupling without mesh intersection, quad. rule of order 3

1/4 2.102e-02 - 9.622e-03 - 7.684e-02 -

1/8 6.251e-03 1.75 2.408e-03 2.00 3.834e-02 1.00

1/16 1.977e-03 1.66 6.017e-04 2.00 1.915e-02 1.00

1/32 6.546e-04 1.59 1.504e-04 2.00 9.572e-03 1.00

1/64 2.233e-04 1.55 3.758e-05 2.00 4.785e-03 1.00

1/128 7.745e-05 1.53 9.394e-06 2.00 2.392e-03 1.00

Table 2.2: Errors and convergence rates for the fluid variables of Test 1 discretized

with P1 − iso− P2/P1/P1/P1

72 CHAPTER 2. THE INTERFACE MATRIX

Errors and convergence rates for Test 1 • P1 − iso− P2/P1/P1/P1

hB ‖X−Xh‖0,B ‖X−Xh‖1,B ‖λ− λh‖0,B ‖λ− λh‖1,B
Error Rate Error Rate Error Rate Error Rate

Coupling with mesh intersection

1/8 8.011e-03 - 4.972e-02 - 1.908e-01 - 4.166e-01 -

1/16 2.011e-03 1.99 2.479e-02 1.00 4.786e-02 2.00 1.111e-01 1.91

1/32 5.032e-04 2.00 1.239e-02 1.00 1.197e-02 2.00 2.963e-02 1.91

1/64 1.258e-04 2.00 6.193e-03 1.00 2.991e-03 2.00 8.185e-03 1.86

1/128 3.146e-05 2.00 3.096e-03 1.00 7.476e-04 2.00 2.524e-03 1.70

1/256 7.864e-06 2.00 1.548e-03 1.00 1.869e-04 2.00 9.445e-04 1.42

Coupling without mesh intersection, quad. rule of order 2

1/8 8.011e-03 - 4.972e-02 - 1.908e-01 - 4.166e-01 -

1/16 2.011e-03 1.99 2.479e-02 1.00 4.786e-02 2.00 1.111e-01 1.91

1/32 5.032e-04 2.00 1.239e-02 1.00 1.197e-02 2.00 2.963e-02 1.91

1/64 1.258e-04 2.00 6.193e-03 1.00 2.991e-03 2.00 8.185e-03 1.86

1/128 3.146e-05 2.00 3.096e-03 1.00 7.476e-04 2.00 2.524e-03 1.70

1/256 7.864e-06 2.00 1.548e-03 1.00 1.869e-04 2.00 9.445e-04 1.42

Coupling without mesh intersection, quad. rule of order 3

1/8 8.011e-03 - 4.972e-02 - 1.908e-01 - 4.166e-01 -

1/16 2.011e-03 1.99 2.479e-02 1.00 4.786e-02 2.00 1.111e-01 1.91

1/32 5.032e-04 2.00 1.239e-02 1.00 1.197e-02 2.00 2.963e-02 1.91

1/64 1.258e-04 2.00 6.193e-03 1.00 2.991e-03 2.00 8.185e-03 1.86

1/128 3.146e-05 2.00 3.096e-03 1.00 7.476e-04 2.00 2.524e-03 1.70

1/256 7.864e-06 2.00 1.548e-03 1.00 1.869e-04 2.00 9.445e-04 1.42

Table 2.3: Errors and convergence rates for the solid variables of Test 1 discretized

with P1 − iso− P2/P1/P1/P1

2.3. THE EFFECT OF NUMERICAL INTEGRATION 73

Errors and convergence rates for Test 1 • P1 − iso− P2/P1 + P0/P1/P1

hΩ ‖p− ph‖0,Ω ‖u− uh‖0,Ω ‖u− uh‖1,Ω
Error Rate Error Rate Error Rate

Coupling with mesh intersection

1/4 7.981e-02 - 1.043e-02 - 8.042e-02 -

1/8 3.939e-02 1.02 2.617e-03 1.99 4.017e-02 1.00

1/16 1.957e-02 1.01 6.549e-04 2.00 2.008e-02 1.00

1/32 9.749e-03 1.00 1.637e-04 2.00 1.004e-02 1.00

1/64 4.866e-03 1.00 4.093e-05 2.00 5.018e-03 1.00

1/128 2.431e-03 1.00 1.023e-05 2.00 2.509e-03 1.00

Coupling without mesh intersection, quad. rule of order 2

1/4 7.981e-02 - 1.043e-02 - 8.042e-02 -

1/8 3.939e-02 1.02 2.617e-03 1.99 4.017e-02 1.00

1/16 1.957e-02 1.01 6.549e-04 2.00 2.008e-02 1.00

1/32 9.749e-03 1.00 1.637e-04 2.00 1.004e-02 1.00

1/64 4.866e-03 1.00 4.093e-05 2.00 5.018e-03 1.00

1/128 2.431e-03 1.00 1.023e-05 2.00 2.509e-03 1.00

Coupling without mesh intersection, quad. rule of order 3

1/4 7.981e-02 - 1.043e-02 - 8.042e-02 -

1/8 3.939e-02 1.02 2.617e-03 1.99 4.017e-02 1.00

1/16 1.957e-02 1.01 6.549e-04 2.00 2.008e-02 1.00

1/32 9.749e-03 1.00 1.637e-04 2.00 1.004e-02 1.00

1/64 4.866e-03 1.00 4.093e-05 2.00 5.018e-03 1.00

1/128 2.431e-03 1.00 1.023e-05 2.00 2.509e-03 1.00

Table 2.4: Errors and convergence rates for the fluid variables of Test 1 discretized

with P1 − iso− P2/P1 + P0/P1/P1

74 CHAPTER 2. THE INTERFACE MATRIX

Errors and convergence rates for Test 1 • P1 − iso− P2/P1 + P0/P1/P1

hB ‖X−Xh‖0,B ‖X−Xh‖1,B ‖λ− λh‖0,B ‖λ− λh‖1,B
Error Rate Error Rate Error Rate Error Rate

Coupling with mesh intersection

1/8 8.854e-03 - 5.239e-02 - 2.300e-01 - 1.861e+00 -

1/16 2.228e-03 1.99 2.616e-02 1.00 5.802e-02 1.99 9.338e-01 0.99

1/32 5.578e-04 2.00 1.308e-02 1.00 1.453e-02 2.00 4.672e-01 1.00

1/64 1.395e-04 2.00 6.539e-03 1.00 3.632e-03 2.00 2.336e-01 1.00

1/128 3.487e-05 2.00 3.269e-03 1.00 9.078e-04 2.00 1.168e-01 1.00

1/256 8.718e-06 2.00 1.635e-03 1.00 2.269e-04 2.00 5.840e-02 1.00

Coupling without mesh intersection, quad. rule of order 2

1/8 8.854e-03 - 5.239e-02 - 2.300e-01 - 1.861e+00 -

1/16 2.228e-03 1.99 2.616e-02 1.00 5.802e-02 1.99 9.338e-01 0.99

1/32 5.578e-04 2.00 1.308e-02 1.00 1.453e-02 2.00 4.672e-01 1.00

1/64 1.395e-04 2.00 6.539e-03 1.00 3.632e-03 2.00 2.336e-01 1.00

1/128 3.487e-05 2.00 3.269e-03 1.00 9.078e-04 2.00 1.168e-01 1.00

1/256 8.718e-06 2.00 1.635e-03 1.00 2.269e-04 2.00 5.840e-02 1.00

Coupling without mesh intersection, quad. rule of order 3

1/8 8.854e-03 - 5.239e-02 - 2.300e-01 - 1.861e+00 -

1/16 2.228e-03 1.99 2.616e-02 1.00 5.802e-02 1.99 9.338e-01 0.99

1/32 5.578e-04 2.00 1.308e-02 1.00 1.453e-02 2.00 4.672e-01 1.00

1/64 1.395e-04 2.00 6.539e-03 1.00 3.632e-03 2.00 2.336e-01 1.00

1/128 3.487e-05 2.00 3.269e-03 1.00 9.078e-04 2.00 1.168e-01 1.00

1/256 8.718e-06 2.00 1.635e-03 1.00 2.269e-04 2.00 5.840e-02 1.00

Table 2.5: Errors and convergence rates for the solid variables of Test 1 discretized

with P1 − iso− P2/P1 + P0/P1/P1

2.3. THE EFFECT OF NUMERICAL INTEGRATION 75

Test 2 •P1 − iso− P2/P1/P1/P1

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Test 2 •P1 − iso− P2/P1 + P0/P1/P1

10
-2

10
-1

10
-3

10
-2

10
-1

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

Figure 2.7: Convergence plots for Test 2

76 CHAPTER 2. THE INTERFACE MATRIX

Test 3 •P1 − iso− P2/P1/P1/P1

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Test 3 •P1 − iso− P2/P1 + P0/P1/P1

10
-2

10
-1

10
-3

10
-2

10
-1

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

Figure 2.8: Convergence plots for Test 3

2.3. THE EFFECT OF NUMERICAL INTEGRATION 77

Test 4 •P1 − iso− P2/P1/P1/P1

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Test 4 •P1 − iso− P2/P1 + P0/P1/P1

10
-2

10
-1

10
-3

10
-2

10
-1

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

Figure 2.9: Convergence plots for Test 4

78 CHAPTER 2. THE INTERFACE MATRIX

Test 5 •P1 − iso− P2/P1/P1/P1

10
-2

10
-1

10
-2

10
-1

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Test 5 •P1 − iso− P2/P1 + P0/P1/P1

10
-2

10
-1

10
-3

10
-2

10
-1

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

Figure 2.10: Convergence plots of Test 5

2.3. THE EFFECT OF NUMERICAL INTEGRATION 79

Test 6 •P1 − iso− P2/P1/P1/P1

10
-2

10
-1

10
-2

10
-1

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Test 6 •P1 − iso− P2/P1 + P0/P1/P1

10
-2

10
-1

10
-2

10
-1

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-2

10
-1

Figure 2.11: Convergence plots of Test 6

80 CHAPTER 2. THE INTERFACE MATRIX

Test 7 •P1 − iso− P2/P1/P1/P1

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Test 7 •P1 − iso− P2/P1 + P0/P1/P1

10
-2

10
-1

10
-3

10
-2

10
-1

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

Figure 2.12: Convergence plots of Test 7

2.3. THE EFFECT OF NUMERICAL INTEGRATION 81

Test 8 •P1 − iso− P2/P1/P1/P1

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Test 8 •P1 − iso− P2/P1 + P0/P1/P1

10
-2

10
-1

10
-3

10
-2

10
-1

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

Figure 2.13: Convergence plots of Test 8

82 CHAPTER 2. THE INTERFACE MATRIX

Bh : Vh ×Qh → R, such that

Ah(Uh,Vh) = af,h(uh,vh) + as,h(Xh,Yh)

+ ch(λh,vh(X)−Yh)− ch(µh,uh(X)−Xh)

Bh(Vh, qh) = (div vh, qh)h,Ω

(2.21)

for all Vh ∈ Vh, qh ∈ Qh.

In the same way, we introduce the solution operator L ⋆
h : Vh ×Qh → V ′

h ×Q′
h

satisfying, for all Vh ∈ Vh and qh ∈ Qh,

〈L ⋆
h (Uh, ph), (Vh, qh)〉 = Ah(Uh,Vh) + Bh(Vh, ph) + Bh(Uh, qh). (2.22)

We are interested in measuring the error between the exact solution (u, p,X,λ)

and the approximated one, (u⋆
h, p

⋆
h,X

⋆
h,λ

⋆
h), when solving Problem 2.3.1.

Before starting the analysis, we present some useful ingredients. First of all, we

assume that Problem 2.3.1 is well-posed, i.e. that it satisfies the inf-sup conditions.

Assumption 2.3.1. Ah and Bh satisfy the inf-sup conditions, that is there exist

two positive constants θ⋆ and η⋆ such that

inf
Uh∈K⋆[Bh]

sup
Vh∈K⋆[Bh]

Ah(Uh,Vh)

~Uh~ ~Vh~
≥ θ⋆, inf

qh∈Qh

sup
Vh∈Vh

Bh(Vh, qh)

~Vh~ ‖qh‖0,Ω
≥ η⋆,

(2.23)

where K⋆[Bh] = {Vh ∈ Vh : Bh(Vh, qh) = 0 ∀qh ∈ Qh}.

We start our investigation applying [34, Prop.1.1]: there exists a pair (Vh, qh)

such that the following bound holds true

~Uh −U⋆
h~ + ‖ph − p⋆h‖0,Ω ≤M

〈L ⋆
h (Uh −U⋆

h, ph − p⋆h), (Vh, qh)〉
~Vh~ + ‖qh‖0,Ω

(2.24)

for a constant M depending on η⋆ and θ⋆. This inequality is consequence of As-

sumption 2.3.1: the equivalence between Brezzi [34] and Babuška [7] theories has

been discussed in [96].

Now, with some easy manipulations involving the definition of Ah and the

linearity, we have that

〈L ⋆
h (Uh −U⋆

h, ph − p⋆h), (Vh, qh)〉 =
〈(L ⋆

h − Lh)(Uh, ph), (Vh, qh)〉+ (f ,vh)Ω − (f ,vh)h,Ω

+ (g,Yh)B − (g,Yh)h,B + c(d,µh)− ch(d,µh)

(2.25)

2.3. THE EFFECT OF NUMERICAL INTEGRATION 83

where we also used that (Uh, ph) is solution of Problem 1.5.3.

Now, expanding the definition of the operators Lh and L ⋆
h , thanks to the

triangular inequality, we get the following expression

|〈(L ⋆
h − Lh)(Uh, ph), (V, qh)〉| ≤ |af,h(uh,vh)− af (uh,vh)|

+ |as,h(Xh,Yh)− as(Xh,Yh)|
+
∣∣ch(λh,vh(X)−Yh)− c(λh,vh(X)−Yh)

∣∣

+
∣∣ch(µh,uh(X)−Xh)− c(µh,uh(X)−Xh)

∣∣

+ |Bh(vh, ph)− B(vh, ph)|
+ |Bh(uh, qh)− B(uh, qh)| .

(2.26)

Therefore, combining (2.24) and (2.25), we obtain

~Uh −U⋆
h~ + ‖ph − p⋆h‖0,Ω ≤M〈L ⋆

h (Uh −U⋆
h, ph − p⋆h), (V, qh)〉(~V~ + ‖qh‖0,Ω)−1

=M
[
〈(L ⋆

h − Lh)(Uh, ph), (V, qh)〉
+ (f ,vh)Ω − (f ,vh)h,Ω + (g,Yh)B − (g,Yh)h,B

+ c(d,µh)− ch(d,µh)
]
(~V~ + ‖qh‖0,Ω)−1

(2.27)

so that taking into account equation (2.26), we get the final bound

~Uh −U⋆
h~ + ‖ph − p⋆h‖0,Ω

≤M
{
|af,h(uh,vh)− af (uh,vh)|+ |as,h(Xh,Yh)− as(Xh,Yh)|

+
∣∣ch(λh,vh(X)−Yh)− c(λh,vh(X)−Yh)

∣∣

+
∣∣ch(µh,uh(X)−Xh)− c(µh,uh(X)−Xh)

∣∣

+ |Bh(vh, ph)− B(vh, ph)|+ |Bh(uh, qh)− B(uh, qh)|
+ |(f ,vh)Ω − (f ,vh)h,Ω|+ |(g,Yh)B − (g,Yh)h,B|
+ |c(d,µh)− ch(d,µh)|

}
(~Vh~ + ‖qh‖0,Ω)−1

≤M
{
Af (uh) +As(Xh) + Cf (λh) + Cs(λh) + Cf (uh)

+ Cs(Xh) +H(uh) +H⊤(ph) + F + G +D
}

(2.28)

84 CHAPTER 2. THE INTERFACE MATRIX

where the bilinear forms are given by

Af (uh) = sup
vh∈Vhr{0}

|af (uh,vh)− af,h(uh,vh)|
‖vh‖1,Ω

As(Xh) = sup
Yh∈Shr{0}

|as(Xh,Yh)− as,h(Xh,Yh)|
‖Yh‖1,B

Cs(Xh) = sup
µh∈Λhr{0}

|c(µh,Xh)− ch(µh,Xh)|
‖µh‖Λ

Cf (uh) = sup
µh∈Λhr{0}

∣∣c(µh,uh(X))− ch(µh,uh(X))
∣∣

‖µh‖Λ
C⊤
s (λh) = sup

Yh∈Shr{0}

|c(λh,Yh)− ch(λh,Yh)|
‖Yh‖1,B

C⊤
f (λh) = sup

vh∈Vhr{0}

∣∣c(λh,vh(X))− ch(λh,vh(X))
∣∣

‖vh‖1,Ω
H(uh) = sup

qh∈Qhr{0}

|B(uh, qh)− Bh(uh, qh)|
‖qh‖0,Ω

H⊤(ph) = sup
vh∈Vhr{0}

|B(vh, ph)− Bh(vh, ph)|
‖vh‖1,Ω

(2.29)

and the terms on the right hand side are

F = sup
vh∈Vhr{0}

|(f ,vh)Ω − (f ,vh)h,Ω|
‖vh‖1,Ω

G = sup
Yh∈Shr{0}

|(g,Yh)B − (g,Yh)h,B|
‖Yh‖1,B

D = sup
µh∈Λhr{0}

|c(d,µh)− ch(d,µh)|
‖µh‖Λ

.

(2.30)

Finally, the final abstract result reads as follows.

Theorem 2.3.1. In the setting given by Assumption 2.3.1, if (u, p,X,λ) is solu-

tion of Problem 1.5.1 and (u⋆
h, p

⋆
h,X

⋆
h,λ

⋆
h) is solution of Problem 2.3.1, then the

following error estimate holds true

‖u− u⋆
h‖1,Ω + ‖p− p⋆h‖0,Ω + ‖X−X⋆

h‖1,B + ‖λ− λ⋆
h‖Λ

≤ ‖u− uh‖1,Ω + ‖p− ph‖0,Ω + ‖X−Xh‖1,B + ‖λ− λh‖Λ
+M

{
Af (uh) +As(Xh) + Cf (λh) + Cs(λh) + Cf (uh)

+ Cs(Xh) +H(uh) +H⊤(ph) + F + G +D
}
,

(2.31)

2.3. THE EFFECT OF NUMERICAL INTEGRATION 85

where (uh, ph,Xh,λh) is solution of Problem 1.5.3 and Af ,As, Cf , Cs,H,F ,G,D
are defined above.

As observed in practice in Section 2.2.5, it is reasonable to assume that only

the terms on the right hand side and the coupling terms of the form c(µ,v(X))

are inexactly computed, therefore we restrict our discussion to this particular case.

Let us consider the following problem.

Problem 2.3.2. Let X ∈ W1,∞(B) be invertible with Lipschitz inverse and u ∈ H1
0(Ω)

such that divu = 0. Given f ∈ L2(Ω), g ∈ L2(B) and d ∈ L2(B), find (u⋆
h, p

⋆
h) ∈

Vh ×Qh, X
⋆
h ∈ Sh and λ⋆

h ∈ Λh, such that

af (u
⋆
h,vh)− (div vh, p

⋆
h)Ω + ch(λ

⋆
h,vh(X)) = (f ,vh)h,Ω ∀vh ∈ Vh (2.32a)

(divu⋆
h, qh)Ω = 0 ∀qh ∈ Qh (2.32b)

as(X
⋆
h,Yh)− c(λ⋆

h,Yh) = (g,Yh)h,B ∀Yh ∈ Sh (2.32c)

ch(µh,u
⋆
h(X))− c(µh,X

⋆
h) = ch(µh,d) ∀µh ∈ Λh. (2.32d)

Still under Assumption 2.3.1, we can easily derive a corollary of Theorem 2.3.1

for the particular case of Problem 2.3.2.

Corollary 2.3.1. Under Assumption 2.3.1, if (u, p,X,λ) is solution of Prob-

lem 1.5.1 and (u⋆
h, p

⋆
h,X

⋆
h,λ

⋆
h) is solution of Problem 2.3.2, then the following error

estimate holds true

‖u− u⋆
h‖1,Ω + ‖p− p⋆h‖0,Ω + ‖X−X⋆

h‖1,B + ‖λ− λ⋆
h‖Λ

≤ ‖u− uh‖1,Ω + ‖p− ph‖0,Ω + ‖X−Xh‖1,B + ‖λ− λh‖Λ
+M

{
Cf (uh) + C⊤

f (λh) + F + G +D
}
,

(2.33)

where (uh, ph,Xh,λh) is solution of Problem 1.5.3 and Cf , C⊤
f ,F ,G,D are defined

in (2.29) and (2.30).

Let us observe that if f , g, and d are sufficiently regular and a quadrature

rule is appropriately chosen, then the related consistency terms F ,G,D can be

estimated using classical finite element theory [41]. For this reason, in the next

section, we are going to present quadrature error estimates only for the coupling

terms Cf (uh) and C⊤
f (λh).

Moreover, in Section 2.5, we will prove the inf-sup conditions stated in As-

sumption 2.3.1 for the particular case of Problem 2.3.2.

86 CHAPTER 2. THE INTERFACE MATRIX

2.4 Error estimates for the inexact coupling term

In this section, we study quadrature error estimates for the coupling term c when

assembled in approximate way. We focus our discussion on the two dimensional

case with triangular meshes and we consider first order elements for the involved

variables, i.e. velocity and Lagrange multiplier. Therefore, we set

Vh = {v ∈ H1
0(Ω) : v|T ∈ (P1(T))

2 ∀T ∈ T Ω
h }

Λh = {µ ∈ H1(B) : µ|T ∈ (P1(T))
2 ∀T ∈ T B

h }
(2.34)

The choice of linear elements for the velocity is justified, for instance, by the

Bercovier–Pironneau element we already used for the numerical investigation pre-

sented in Section 2.2. Moreover, we remind that in our discussion we are assuming

that Sh = Λh.

In order to fix notation, before proving the mentioned error estimates, we re-

call the main features of affine finite elements and then we introduce the error

functional E [41].

Let us consider the reference triangle T̂. Given any generic finite element T,

there exists a unique affine mapping

FT : T̂ −→ T

FT(x̂) = DTx̂+ dT,
(2.35)

where DT is an invertible 2 × 2 matrix and dT a vector in R2. In particular, FT

maps the vertices of T̂ to those of T. A schematic representation of the action of

the map FT is showed in Figure 2.14. In this setting, given a generic finite element

function v defined on T, we have the following relation

v̂(x̂) = v(FT(x̂)). (2.36)

Moreover, we have

‖DT‖ ≤ hT, detDT =
|T|
|T̂|

, |T| ≤ h2T. (2.37)

We now define the quadrature error functional.

Definition 2.4.1. Given a generic function f and a quadrature rule with nodes and

weights {(pk, ωk)}Kk=1, the quadrature error functional ET over a generic element

2.4. ERROR ESTIMATES FOR THE INEXACT COUPLING TERM 87

x

y

T̂

T

FT

Figure 2.14: Example of affine finite element.

T is defined as the difference between the exact integral and the numerical one, i.e.

ET(f) =
∫

T

f(x) dx− |T|
K∑

k=1

ωkf(pk). (2.38)

We observe that a scaling argument for this functional holds true, indeed we

have

ET(f) = (detDT) Ê(f̂). (2.39)

Moreover, we will denote by EB the quadrature error committed on the entire

domain B.

We start proving the following technical result.

Lemma 2.4.1. Let us consider a triangle T ∈ T B
h such that it is not included in

an element of T Ω
h . Let us assume that the map X is linear in T so that vh(X) is

continuous and piecewise linear in T. Then, vh(X) ∈ H1+s(T) for 0 ≤ s < 1/2

and

‖∇s vh(X)‖s,T ≤ C

1− 2s
‖∇s vh(X)‖0,T.

Proof. We denote by Φ a generic component of ∇s vh(X). Since T ∈ T B
h is chosen

in such a way that X(T) is not included in an element of T Ω
h , we partition it in

polygons Pj with j = 1, . . . , J so that

T =
J⋃

j=1

Pj

88 CHAPTER 2. THE INTERFACE MATRIX

and vh(X) is linear in each Pj. We now denote by Φj the restriction of Φ in Pj,

i.e. Φ|Pj
. Thanks to the Sobolev inclusion H1(Pj) ⊂ Hs(Pj) for 0 ≤ s < 1/2, the

extension by zero Φ̃j of Φj ∈ Hs(Pj) belong to Hs(T) and the following estimate

holds true

‖Φ̃j‖s,T ≤ C

1− 2s
‖Φj‖s,Pj

.

This bound is proved applying [79, Chap. 1, Theo. 11.4] as done by Durán, Gastaldi

and Lombardi in [52]. Consequently, Φ =
∑J

j=1 Φ̃j belongs to Hs(T). Moreover,

since Φj is constant, we can write

‖Φ‖s,T ≤ C

1− 2s

(
J∑

j=1

‖Φj‖2s,Pj

)1/2

=
C

1− 2s

(
J∑

j=1

‖Φj‖20,Pj

)1/2

so that we have proved that ∇s vh(X) ∈ Hs(T) and

‖∇s vh(X)‖s,T ≤ C

1− 2s
‖∇s vh(X)‖0,T.

With this tool, we are now able to prove quadrature error estimates for the

L2(B) scalar product and the L2(B) scalar product of gradients.

Proposition 2.4.1. Let us consider Vh and Λh as defined in (2.34) and assume X

to be linear. Given a quadrature rule {(p0
k, ω

0
k)}K0

k=1 exact for quadratic polynomials,

which means

Ê(f̂) = 0 ∀f̂ ∈ P2(T̂), (2.40)

the following estimate holds true

∣∣EB(µh · vh(X))
∣∣ ≤ Ch

3/2
B | log hmin

B | ‖µh‖0,B ‖vh‖1,Ω ∀µh ∈ Λh, ∀vh ∈ Vh,

(2.41)

where hmin
B = minT∈T B

h
hT.

Proof. The entire proof is done locally in an element T ∈ T B
h and then the global

estimate is derived summing on all the elements. Given T ∈ T B
h , let us notice that

if T is included in an element of the fluid mesh T Ω
h , then ET(µh · vh(X)) = 0.

Therefore, we can separate the elements of the solid mesh T B
h into two families

T B
h,1 = {T ∈ T B

h : T is included in an element of T Ω
h }

T B
h,2 = T B

h \ T B
h,1,

(2.42)

2.4. ERROR ESTIMATES FOR THE INEXACT COUPLING TERM 89

and consider T ∈ T B
h,2 because for the elements in T B

h,1 no error occurs. Since vh(X)

is piecewise linear in T, we introduce a decomposition of T into polygons, so that

we have

T =
J⋃

j=1

Pj

and vh(X) ∈ (P1(Pj))
2 for j = 1, . . . , J . Notice that both µh ∈ (P1(T))

2 and

vh(X) are continuous in the element under consideration.

We now look for an estimate of the local quadrature error reading as

ET(µh · vh(X)) =

∫

T

µh · vh(X) ds− |T|
K0∑

k=1

ω0
k µh(p

0
k) · vh(X(p0

k)). (2.43)

To this aim, we introduce the linear interpolant vI ∈ (P1(T))
2 of vh(X) so that

adding and subtracting equivalent terms from (2.43), we find

ET(µh · vh(X)) =

∫

T

µh ·
(
vh(X)− vI

)
ds

+

∫

T

µh · vI ds− |T|
K0∑

k=1

ω0
k µh(p

0
k) · vI(p

0
k)

+ |T|
K0∑

k=1

ω0
k µh(p

0
k) ·
(
vh(X(p0

k))− vI(p
0
k)
)

(2.44)

where each term can be studied separately.

Let us work on the first term. By Cauchy–Schwarz inequality and a classical

interpolation result, we have
∣∣∣∣
∫

T

µh ·
(
vh(X)− vI

)
ds

∣∣∣∣ ≤ ‖µh‖0,T
∥∥vh(X)− vI

∥∥
0,T

≤ h1+s
T ‖µh‖0,T |vh(X)|1+s,T

(2.45)

so that, applying Lemma 2.4.1, we finally obtain
∣∣∣∣
∫

T

µh ·
(
vh(X)− vI

)
ds

∣∣∣∣ ≤
h1+s
T

1− 2s
‖µh‖0,T |vh(X)|1,T. (2.46)

The second term is nothing else that the quadrature error of the product µh ·vI :

since both functions are linear in T, thanks to the choice of quadrature rule, we

have

ET(µh · vI) =

∫

T

µh · vI ds− |T|
K0∑

k=1

ω0
k µh(p

0
k) · vI(p

0
k) = 0 (2.47)

90 CHAPTER 2. THE INTERFACE MATRIX

For the third term, we start applying the discrete Cauchy–Schwarz inequality;

then, exploiting the precision of the quadrature rule under consideration, we can

easily write
∣∣∣∣∣|T|

K0∑

k=1

ω0
k µh(p

0
k) ·
(
vh(X(p0

k))− vI(p
0
k)
)
∣∣∣∣∣

≤
(
|T|

K0∑

k=1

ω0
k µh(p

0
k)

2

)1/2(
|T|

K0∑

k=1

ω0
k

(
vh(X(p0

k))− vI(p
0
k)
))1/2

=

(∫

T

|µh|2
)1/2(

|T|
K0∑

k=1

ω0
k

(
vh(X(p0

k))− vI(p
0
k)
))1/2

≤ K0 |T|1/2 ‖µh‖0,T
∥∥vh(X)− vI

∥∥
∞,T

.

(2.48)

In order to estimate
∥∥vh(X)− vI

∥∥
∞,T

, we make use of some standard arguments

in finite elements theory [41]. Indeed, moving to the reference element T̂ through

the affine map FT defined in (2.35), we have
∥∥vh(X)− vI

∥∥
∞,T

≤
∥∥∥̂vh(X)− v̂I

∥∥∥
∞,T̂

.

Now, since vh(X) ∈ H1+s(T), we can exploit the inclusion H1+s(T̂) ⊂ L∞(T̂) so

that∥∥∥̂vh(X)− v̂I

∥∥∥
∞,T̂

≤
∥∥∥I− Π̂

∥∥∥
L(H1+s(T̂),L∞(T̂))

inf
q̂∈[P1(T̂)]2

∥∥∥̂vh(X) + q̂

∥∥∥
1+s,T̂

≤ C
∣∣∣̂vh(X)

∣∣∣
1+s,T̂

,

(2.49)

where L(H1+s(T̂),L∞(T̂)) denotes the space of linear functionals from H1+s(T̂)

to L∞(T̂) and ̂vh(X(ŝ)) = vh(X(FT(ŝ))). Moreover, I is the identity operator and

Π̂ is the interpolation operator in (P1(T̂))
2. An estimate for the last term can be

found applying the definition of fractional Sobolev semi-norm and following the

theory by Dupont and Scott [51]. In particular, we have

∣∣∣̂vh(X)
∣∣∣
2

1+s,T̂
=
∣∣∣∇s

̂vh(X)
∣∣∣
2

s,T̂
=

∫

T̂

∫

T̂

∣∣∣∇s
̂vh(X(ŝ1))−∇s

̂vh(X(ŝ2))
∣∣∣
2

|̂s1 − ŝ2|2(s+1)
dŝ1dŝ2

= |detDT|−2

∫

T

∫

T

∣∣DT

(
∇s vh(X(s1))−∇s vh(X(s2))

)∣∣2

|s1 − s2|2(s+1)

(|s1 − s2|∣∣D−1
T (s1 − s2)

∣∣

)2(s+1)

ds1ds2

≤ ‖DT‖4+2s

|detDT|2
∣∣∇s vh(X)

∣∣2
s,T

;

2.4. ERROR ESTIMATES FOR THE INEXACT COUPLING TERM 91

together with (2.37), this implies
∣∣∣̂vh(X)

∣∣∣
2

1+s,T̂
≤ h2sT

∥∥∇s vh(X)
∥∥2
s,T
. (2.50)

Thanks again to Lemma 2.4.1, the third term is bounded as follows
∣∣∣∣∣|T|

K0∑

k=1

ωk µh(p
0
k) ·
(
vh(X(p0

k))− vI(p
0
k)
)
∣∣∣∣∣ ≤

C

1− 2s
|T|1/2 hsT ‖µh‖0,T

∥∥vh(X)
∥∥
1,T

≤ C
h1+s
T

1− 2s
‖µh‖0,T

∥∥∇s vh(X)
∥∥
0,T
.

(2.51)

Putting together (2.46), (2.47) and (2.51), the local estimate reads

∣∣ET(µh · vh(X))
∣∣ ≤ C

h1+s
T

1− 2s
‖µh‖0,T

∥∥vh(X)
∥∥
1,T

(2.52)

for 0 ≤ s < 1/2. In particular, considering s = 1
2
+ 1

log hT
, by means of some easy

manipulations, we have
∣∣ET(µh · vh(X))

∣∣ ≤ Ch
3/2
T | log hT| ‖µh‖0,T

∥∥vh(X)
∥∥
1,T
.

At this point, summing on all the triangles in T B
h,2 and exploiting the inclusion

X(B) ⊂ Ω, we finally obtain (2.41).

Proposition 2.4.2. Let us consider Vh and Λh as defined in (2.34) and assume

X to be linear. Given a quadrature rule {(p1
k, ω

1
k)}K1

k=1 exact for constants, which

means

Ê(f̂) = 0 ∀f̂ ∈ P0(T̂) (2.53)

and a quasi uniform mesh T Ω
h , the following estimate holds true

∣∣EB(∇s µh : ∇s vh(X))
∣∣ ≤ C

(
h
1/2
B | log hmin

B |+ hB
hΩ

)
‖∇s µh‖0,B ‖∇vh‖0,Ω (2.54)

for all µh ∈ Λh, vh ∈ Vh.

Proof. We start dividing the elements of the solid mesh T B
h into two families as

already done in (2.42). We then work locally in T ∈ T B
h,2 with the aim of finding a

bound for the local quadrature error

ET(∇s µh : ∇s vh(X)) =

∫

T

∇s µh : ∇s vh(X) ds

− |T|
K1∑

k=1

ω1
k ∇s µh(p

1
k) : ∇s vh(X(p1

k)).

(2.55)

92 CHAPTER 2. THE INTERFACE MATRIX

Let us notice that ∇s µh is constant in T, whereas ∇s vh(X) is discontinuous

piecewise constant in T. Introducing again the linear interpolant vI of vh(X),

(2.55) can be reformulated as

ET(∇s µh : ∇s vh(X)) =

∫

T

∇s µh :
(
∇s vh(X)−∇s vI

)
ds

+

∫

T

∇s µh : ∇s vI ds− |T|
K1∑

k=1

ω1
k ∇s µh(p

1
k) : ∇s vI(p

1
k)

+ |T|
K1∑

k=1

ω1
k ∇s µh(p

1
k) :

(
∇s vh(X(p1

k))−∇s vI(p
1
k)
)
,

(2.56)

so that each term can be studied independently from the others.

Looking at the first term, we can apply the Cauchy–Schwarz inequality to

obtain ∣∣∣∣
∫

T

∇s µh :
(
∇s vh(X)−∇s vI

)
ds

∣∣∣∣

≤ ‖∇s µh‖0,T
∥∥∇s vh(X)−∇s vI

∥∥
0,T
.

(2.57)

Exploiting Lemma 2.4.1, we can write

∥∥∇s vh(X)−∇s vI

∥∥
0,T

≤ hsT
∥∥∇s vh(X)

∥∥
s,T

≤ hsT
1− 2s

∥∥∇s vh(X)
∥∥
0,T

so that, setting s = 1
2
+ 1

log hT
, we find

∣∣∣∣
∫

T

∇s µh :
(
∇s vh(X)−∇s vI

)
ds

∣∣∣∣

≤ Ch
1/2
T |log hT| ‖∇s µh‖0,T

∥∥∇s vh(X)
∥∥
0,T
.

(2.58)

The second term is the quadrature error for the product ∇s µh : ∇s vI , which

is zero since the integrand function is constant, therefore

ET(∇s µh : ∇s vI) =

∫

T

∇s µh : ∇s vI ds

− |T|
K1∑

k=1

ω1
k ∇s µh(p

1
k) : ∇s vI(p

1
k) = 0.

(2.59)

The last term can be treated by Cauchy–Schwarz inequality and taking into

2.4. ERROR ESTIMATES FOR THE INEXACT COUPLING TERM 93

account the precision of the quadrature rule as in (2.48), we get

∣∣∣∣∣|T|
K1∑

k=1

ω1
k ∇s µh(p

1
k) :

(
∇s vh(X(p1

k))−∇s vI(p
1
k)
)
∣∣∣∣∣

≤ K1 |T|1/2 ‖∇s µh‖0,T
∥∥∇s vh(X)−∇s vI

∥∥
∞,T

.

(2.60)

We need to estimate the pointwise error
∥∥∇s vh(X)−∇s vI

∥∥
∞,T

, which requires

attention since ∇s vh(X) is discontinuous in T. To this aim, we partition the

triangle into polygons Pj for j = 1, . . . , N , so that T =
⋃J

j=1 Pj and ∇s vh(X) is

constant in each Pj. Therefore, we have

∥∥∇s vh(X)−∇s vI

∥∥
∞,T

= max
j=1,...,J

∥∥∇s vh(X)−∇s vI

∥∥
∞,Pj

and, using ‖∇s vI‖∞,T ≤
∥∥∇s vh(X)

∥∥
∞,T

, we obtain

∥∥∇s vh(X)−∇s vI

∥∥
∞,T

≤ 2 max
j=1,...,J

∥∥∇s vh(X)
∥∥
∞,Pj

. (2.61)

In order to treat
∥∥∇s vh(X)

∥∥
∞,Pj

, we use a macroelement technique. Notice that

each polygon Pj is also defined by intersecting X(T) with a fluid element Tf,j ∈ T Ω
h ,

this is equivalent to write

Pj = X
−1(

X(T) ∩ Tf,j

)
.

Applying an inverse inequality and introducing OT =
⋃J

j=1 Tf,j, which is the

macroelement of all the fluid triangles Tf,j ∈ T Ω
h such that X(T) ∩ Tf,j 6= ∅, we

can write

max
j=1,...,J

∥∥∇s vh(X)
∥∥
∞,Pj

≤ max
j=1,...,J

‖∇vh‖∞,Tf,j

≤ max
j=1,...,J

1

hTf,j

‖∇vh‖0,Tf,j
≤ 1

hΩ
‖∇vh‖0,OT

.
(2.62)

Hence,

∣∣∣∣∣|T|
K1∑

k=1

ω1
k ∇s µh(p

1
k) :

(
∇s vh(X(p1

k))−∇s vI(p
1
k)
)
∣∣∣∣∣

≤ |T|1/2
hΩ

‖∇s µh‖0,T ‖∇vh‖0,OT
≤ hB
hΩ

‖∇s µh‖0,T ‖∇vh‖0,OT
.

(2.63)

94 CHAPTER 2. THE INTERFACE MATRIX

Putting together (2.58), (2.59) and (2.63), the local estimate reads

ET(∇s µh : ∇s vh(X)) ≤ C

(
h
1/2
T |log hT|+

hB
hΩ

)
‖µh‖0,T

∥∥vh(X)
∥∥
1,T

(2.64)

so that, summing on over all T ∈ T B
h,2, and using X(B) ⊂ Ω, the global estimate

(2.54) is obtained.

The following results for the coupling term are direct consequence of the two

propositions we have just proved.

Proposition 2.4.3. With the same hypotheses of Proposition 2.4.1, if the coupling

bilinear form is defined as

c(µh,Yh) = (µh,Yh)B ∀µh ∈ Λh, ∀Yh ∈ Sh,

then the following quadrature error estimate holds true
∣∣c(µh,vh(X))− ch(µh,vh(X))

∣∣ ≤ Ch
3/2
B | log hmin

B | ‖µh‖0,B ‖vh‖1,Ω (2.65)

for all µh ∈ Λh, vh ∈ Vh.

Remark 2.4.1. This estimate suggests that the L2(B) coupling term produces

an optimal method also when assembled without mesh intersection provided that

the solid mesh size hB decreases to zero. This suggestion will be confirmed in the

numerical tests we are going to show in the next section. In any case, we should

remember that the use of the L2(B) scalar product at discrete level is a replacement

of the duality pairing, which means that at continuous level µ ∈ (H1(B))′. In order

to derive the dual norm in the right hand side of (2.65), we should apply an inverse

estimate, finally obtaining a factor h
1/2
B | log hmin

B |.
Proposition 2.4.4. With the same hypotheses of Propositions 2.4.1 and 2.4.2, if

the coupling bilinear form is defined as

c(µh,Yh) = (µh,Yh)B + (∇s µh,∇s Yh)B ∀µh ∈ Λh, ∀Yh ∈ Sh,

then the following quadrature error estimate holds true
∣∣c(µh,vh(X))− ch(µh,vh(X))

∣∣

≤ C

((
h
3/2
B + h

1/2
B

)
| log hmin

B |+ hB
hΩ

)
‖µh‖1,B ‖vh‖1,Ω

(2.66)

for all µh ∈ Λh, vh ∈ Vh.

2.4. ERROR ESTIMATES FOR THE INEXACT COUPLING TERM 95

Remark 2.4.2. The estimate in Proposition 2.4.4 is perfectly aligned with the

results we obtained in the numerical investigation we presented in Section 2.2.

Indeed, all the tests were performed maintaining the ratio hB/hΩ constant and

showed a loss of convergence for the method assembled without mesh intersection.

This theoretical result says that both hB and hB/hΩ are required to decrease to zero

if we want to obtain an optimal method with approximate integration of the H1(B)
scalar product.

2.4.1 Numerical tests

In this section we present two numerical tests with a twofold scope: we validate

the theoretical estimates we have just proved and we compare the behavior of

the L2(B) and H1(B) coupling terms. In particular, we are going to solve the

following stationary problem, already considered in Section 2.2 (see Test 8), with

two combinations of hB/hΩ.

Problem 2.4.1. Let X ∈ W1,∞(B) be invertible with Lipschitz inverse. Given

f ∈ L2(Ω), g ∈ L2(B) and d ∈ L2(B), find (u, p) ∈ H1
0(Ω)× L2

0(Ω), X ∈ H1(B)
and λ ∈ Λ, such that

(∇u,∇v)Ω − (div v, p)Ω + c(λ,v(X)) = (f ,v)Ω ∀v ∈ H1
0(Ω) (2.67a)

(divu, q)Ω = 0 ∀q ∈ L2
0(Ω) (2.67b)

(∇s X,∇s Y)B − c(λ,Y) = (g,Y)B ∀Y ∈ H1(B) (2.67c)

c(µ,u(X)−X) = c(µ,d) ∀µ ∈ Λ. (2.67d)

In particular, we set Ω = [−2, 2]2 and B = [0, 1]2. The actual configuration of

the solid is given by the square Ωs = [−0.62, 1.38]2 and is defined through the map

X(s) = (−0.62 + 2s1, −0.62 + 2s2), s = (s1, s2);

the right hand sides f , g and d are computed accordingly to the following choices

of solution
u(x, y) = curl

(
(4− x2)2(4− y2)2

)

u|∂Ω = 0

p(x, y) = 150 sin(x)

X(x, y) = u(x, y)

λ(x, y) =
(
ex, ey

)
.

96 CHAPTER 2. THE INTERFACE MATRIX

The considered domains are discretized with uniform triangulations: in par-

ticular, the fluid domain Ω is partitioned with a right-oriented mesh T Ω
h , while

the solid reference domain is partitioned with a left-oriented mesh T B
h . The geo-

metric configuration of the problem is depicted in Figure 2.6h. In terms of finite

elements spaces, the choice falls again on the standard Bercovier–Pironneau ele-

ment for fluid variables, while for solid variables we use continuous piecewise linear

elements. Information about the considered spaces are recalled in Section 2.2.

The coupling terms are integrated both exactly, i.e. with mesh intersection, and

approximately with a quadrature rule which is exact for polynomials of degree two.

Since the coupling is defined between velocity functions v and Lagrange multiplier

λ, in the the remainder of this section, we denote by hΩ the mesh size of the

velocity sub-triangulation T Ω
h/2. Moreover, for the L2(B) case, the convergence of

the Lagrange multiplier is studied with respect to the norm of the dual space

(H1(B))′, computed solving the associated Poisson equation.

Test 1

In this test we consider hB → 0 and hB/hΩ constant. The results are showed in

Figure 2.15, where the left column is related to the L2(B) coupling, while the right

column is related to the H1(B) coupling. As expected, since only the solid mesh

size is decreasing to zero, the choice of the L2(B) scalar product provides optimal

results also when the interface matrix is assembled without mesh intersection. For

the H1(B) scalar product the behavior is the one already observed in Section 2.2,

where only the method constructed with exact integration is optimal.

Test 2

For this test we choose hB → 0 and also hB/hΩ → 0, in particular hB = h
3/2
Ω .

The results are collected in Figure 2.16, with the same format of the previous

test. In this case both choices of coupling terms present equivalent behaviors with

respect to exact and inexact integration. For the H1(B) case computed without

mesh intersection, we can observe some oscillations of the convergence curve, but

the overall behavior is consistent with the exact case and the theoretical estimates.

Finally, let us remark that the suboptimal rate of convergence of the solid variables

is 1/3, which is consequence of our choices of mesh sizes.

Remark 2.4.3. A first comparison between the performance provided by the L2(B)

2.5. INF–SUP CONDITIONS FOR INEXACT COUPLING 97

and H1(B) scalar products has been discussed by Boffi, Ruggeri and Gastaldi [30].

This preliminary study was conducted on two dimensional elliptic interface prob-

lems with discontinuous coefficients considering several choices of hB/hΩ and with

exact integration of the coupling term. In particular, the L2(B) case showed some

instabilities when hB/hΩ ≤ 1, whereas the H1(B) scalar product worked generally

well. This means that the choice of coupling term cannot be done only looking at the

efficiency of the method. Clearly, from a computational point of view, the choice of

the L2(B) scalar product appears convenient because it produces good convergence

properties also when assembled with an approximate and cheap procedure, but, in

certain situations, accurate results may be obtained only by means of the H1(B)
scalar product computed with mesh intersection.

2.5 Inf–sup conditions for inexact coupling

In the previous sections, we studied quadrature error estimates for the coupling

term c when inexactly assembled without mesh intersection. Since the study has

been performed assuming the well-posedness of the problem, we dedicate this sec-

tion to the proof of the inf-sup conditions. To this aim, let us recall Problem 2.3.2

in matrix form




Af B⊤ 0 C⊤
f,h

B 0 0 0

0 0 As −C⊤
s

Cf,h 0 −Cs 0







u⋆
h

p⋆h

X⋆
h

λ⋆
h




=




f

0

g

d




. (2.68)

In this case, the bilinear form Bh defined in (2.21) coincides with the continuous

B(Vh, qh) = (div vh, qh)Ω, while Ah is defined as

Ah(Uh,Vh) = af (uh,vh) + as(Xh,Yh)

+ ch(λh,vh(X))− c(λh,Yh)− ch(µh,uh(X)) + c(µh,Xh)
(2.69)

for all Uh,Vh ∈ Vh, qh ∈ Qh.

98 CHAPTER 2. THE INTERFACE MATRIX

Test 1 •hB → 0

L2(B) coupling vs H1(B) coupling

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

Figure 2.15: Convergence plots of Test 1. Comparison between the L2(B) coupling

(left column) and H1(B) coupling (right column).

2.5. INF–SUP CONDITIONS FOR INEXACT COUPLING 99

Test 2 •hB → 0, hB/hΩ → 0

L2(B) coupling vs H1(B) coupling

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
0

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-3

10
-2

10
-1

10
-6

10
-4

10
-2

10
0

10
-3

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

Figure 2.16: Convergence plots of Test 2. Comparison between the L2(B) coupling

(left column) and H1(B) coupling (right column).

100 CHAPTER 2. THE INTERFACE MATRIX

Our problem is actually a double saddle point problem, indeed rearranging

variables, we can write




Af 0 C⊤
f,h B⊤

0 As −C⊤
s 0

Cf,h −Cs 0 0

B⊤ 0 0 0







u⋆
h

X⋆
h

λ⋆
h

p⋆h




=




f

g

d

0




; (2.70)

and observe that 


Af 0 C⊤
f,h

0 As −C⊤
s

Cf,h −Cs 0


 .

Consequently, exploiting this structure, the proof of well-posedness can be car-

ried out in three steps, as already done in [24], applying results from [96].

• Step 1. We prove the inf-sup condition for B.

This first step is trivial, because from the existing theory B satisfies the inf-sup

condition recalled in Proposition 1.5.2. Then, since our aim is to prove that Ah is

invertible in the discrete kernel of B

Kh[B] = {Vh ∈ Vh : B(Vh, qh) = 0 ∀qh ∈ Qh}, (2.71)

we introduce the space

V0,h = {vh ∈ Vh : (div vh, qh)Ω = 0 ∀qh ∈ Qh} (2.72)

and we proceed as follows.

• Step 2. We prove the inf-sup condition for the bilinear form Ch associated to

the operator [Cf,h, −Cs] on the space V0,h × Sh. We focus on the particular

case with Λh ⊂ Sh.

• Step 3. We prove the ellipticity of the operator

[
Af 0

0 As

]
in the kernel of Ch.

2.5. INF–SUP CONDITIONS FOR INEXACT COUPLING 101

Before starting the analysis, let us introduce the L2 projection onto Sh

Π0 : H1(B) −→ Sh (2.73)

such that for any Y ∈ H1(B), the projection Π0Yh satisfies
∫

B

(
Y − Π0Y

)
· Zh ds = 0 ∀Zh ∈ Sh. (2.74)

From standard theory, the following property holds true

∥∥Π0Y
∥∥
0,B

≤ C ‖Y‖0,B ∀Y ∈ H1(B). (2.75)

We start proving the inf-sup for Ch.

Proposition 2.5.1. Let us assume that the L2(B) term of ch is computed with a

quadrature rule {(p0
k, ω

0
k)}K0

k=1 which is exact for quadratic polynomials, while the

L2(B) scalar product of gradients is approximated with a quadrature rule {(p1
k, ω

1
k)}K1

k=1

exact for constants. If Λh ⊂ Sh, then there exists a constant ζc > 0 such that the

following condition holds true

sup
(vh,Yh)∈V0,h×Sh

ch(µh,vh(X)−Yh)

‖vh‖1,Ω + ‖Yh‖1,B
≥ ζc ‖µh‖Λ ∀µh ∈ Λh. (2.76)

Proof. Case 1. We consider the L2(B) coupling term (1.53) computed without

mesh intersection as described in Section 2.1.2. For simplicity, we recall its exact

and inexact definition

c(µh,Yh) = (µh,Yh)B ∀µh ∈ Λh, ∀Yh ∈ Sh,

ch(µh,Yh) =
∑

Ts∈T B

h

|Ts|
K0∑

k=1

ω0
kµh(p

0
k) ·Yh(p

0
k) ∀µh ∈ Λh, ∀Yh ∈ Sh.

Thanks to the definition of norm in the dual space Λ = (H1(B))′, there exists

Ỹ ∈ H1(B) realizing the supremum at continuous level, hence we have

‖µh‖Λ = sup
Y∈H1(B)

(µh,Y)B
‖Y‖1,B

= sup
Y∈H1(B)

c(µh,Y)

‖Y‖1,B
=

c(µh, Ỹ)

‖Ỹ‖1,B
. (2.77)

Now, making use of the projection Π0 with its property (2.75), we can write

c(µh, Ỹ)

‖Ỹ‖1,B
=

c(µh,Π
0Ỹ)

‖Ỹ‖1,B
≤ C

c(µh,Π
0Ỹ)

‖Π0Ỹ‖1,B
≤ sup

Yh∈Sh

c(µh,Yh)

‖Yh‖1,B
. (2.78)

102 CHAPTER 2. THE INTERFACE MATRIX

Since we are assuming that the considered quadrature rule is exact for quadratic

polynomial, we have that c and ch are equivalent when both integrand functions

are defined on the solid domain B, therefore we can write

‖µh‖Λ ≤ sup
Yh∈Sh

c(µh,Yh)

‖Yh‖1,B
= sup

Yh∈Sh

ch(µh,Yh)

‖Yh‖1,B
(2.79)

and, finally,

sup
Yh∈Sh

ch(µh,Yh)

‖Yh‖1,B
≤ sup

(vh,Yh)∈V0,h×Sh

ch(µh,vh(X)−Yh)

‖vh‖1,Ω + ‖Yh‖1,B
. (2.80)

Case 2. Now we consider the coupling term (1.41) defined as the scalar product

of H1(B) and discretized without mesh intersection (see Section 2.1.2). We recall

both definitions:

c(µh,Yh) = (µh,Yh)B + (∇s µh,∇s Yh)B,

ch(µh,Yh) =
∑

Ts∈T B

h
T Ω
h

|Ts|
[K0∑

k=1

ω0
kµh(p

0
k) ·Yh(p

0
k) +

K1∑

k=1

ω1
k ∇s µh(pk) : ∇s Yh(pk)

]

(2.81)

for all µh ∈ Λh, ∀Yh ∈ Sh. Given µh ∈ Λh, we can choose Yh = µh so that

‖µh‖Λ =
(µh,Yh)B + (∇s µh,∇s Yh)B

‖Yh‖1,B
=

c(µh,Yh)

‖Yh‖1,B
≤ sup

Yh∈Sh

c(µh,Yh)

‖Yh‖1,B
.

(2.82)

At this point, with the same computation we did in (2.79), the result is proved.

In the following proposition, we prove that Ah is coercive on the kernel of Ch.

Proposition 2.5.2. Let us assume that the L2(B) term of ch is computed with a

quadrature rule {(p0
k, ω

0
k)}K0

k=1 which is exact for quadratic polynomials, while the

L2(B) scalar product of gradients is approximated with a quadrature rule {(p1
k, ω

1
k)}K1

k=1

exact for constants. There exists ζa > 0 independent on the mesh size such that

af (uh,uh) + as(Xh,Xh) ≥ ζa(‖uh‖21,Ω + ‖Xh‖21,B) (2.83)

for all pairs (uh,Xh) in the kernel of Ch defined as

K[Ch] = {(vh,Yh) ∈ V0,h × Sh : ch(µh,vh(X))− c(µh,Yh) = 0 ∀µh ∈ Λh}.

2.5. INF–SUP CONDITIONS FOR INEXACT COUPLING 103

Proof. Before starting the proof, we recall the definition of af and as presented

in (1.54), assuming that P(F) = κF. In particular, we consider af in a simplified

version without the nonlinear convective term:

af (u,v) = α(u,v)Ω + a(u,v)

as(X,Y) = β(X,Y)B + γ(∇s X,∇s Y)B.
(2.84)

We remark that we can prove the proposition once for both options of c. Let us

observe that, if β > 0, we have

af (uh,uh) + as(Xh,Xh) ≥ C ‖uh‖21,Ω + β ‖Xh‖20,B + κ ‖∇s Xh‖20,B
≥ C ‖uh‖21,Ω +min{β, κ} ‖Xh‖21,B

(2.85)

so that the result is proved. Conversely, if β = 0, then

af (uh,uh) + as(Xh,Xh) ≥ C ‖uh‖21,Ω + κ ‖∇s Xh‖20,B . (2.86)

In this case, we missed the term ‖Xh‖20,B, therefore we need to recover it. We start

introducing the mean of Xh over B

X̊h = |B|−1

∫

B

Xh ds (2.87)

so that, by Poincaré–Wirtinger inequality, we have

‖Xh − X̊h‖0,B ≤ C ‖∇s Xh‖0,B . (2.88)

Applying the triangle inequality, we find

‖Xh‖0,B ≤ ‖X̊h‖0,B + ‖Xh − X̊h‖0,B ≤ ‖X̊h‖0,B + C ‖∇s Xh‖0,B . (2.89)

Exploiting that the pair (uh,Xh) belongs to the kernel K[Ch], with an easy ma-

nipulation we write

c(µh, X̊h) = ch(µh,uh(X))− c(µh,Xh − X̊h) ∀µh ∈ Λh (2.90)

so that, taking µh = X̊h, we have

‖X̊h‖20,B = c(X̊h, X̊h) = ch(X̊h,uh(X))− c(X̊h,Xh − X̊h). (2.91)

Now, taking into account the definition of X̊h, the term c(X̊h,Xh − X̊h) vanishes:

by linearity and thanks to the fact that ∇s X̊h = 0, we can write

c(X̊h,Xh − X̊h) =

∫

B

X̊h ·Xh ds−
∫

B

X̊2
h ds; (2.92)

104 CHAPTER 2. THE INTERFACE MATRIX

factorizing X̊h and exploiting the precision of the chosen quadrature rule, we find

∫

B

X̊h ·Xh ds−
∫

B

X̊2
h ds = X̊h

(∫

B

Xh ds− |B| X̊h

)
= 0. (2.93)

At this point, we look for a bound for ch(X̊h,uh(X)). Adding and subtracting the

same quantity, the following equality holds

ch(X̊h,uh(X)) = ch(X̊h,uh(X))− c(X̊h,uh(X)) + c(X̊h,uh(X)) (2.94)

and, by continuity, we get

c(X̊h,uh(X)) ≤ ‖X̊h‖0,B‖uh(X)‖0,B. (2.95)

Using the quadrature estimate of Proposition 2.4.1, we obtain

ch(X̊h,uh(X))− c(X̊h,uh(X)) ≤ Ch
3/2
B | log hmin

B |‖X̊h‖0,B‖uh‖1,Ω (2.96)

so that, in combination with (2.92) and (2.93), we find

‖X̊h‖0,B ≤ C(1 + h
3/2
B | log hmin

B |) ‖uh‖1,Ω . (2.97)

Finally, putting together (2.97) and (2.89), we get

‖Xh‖0,B ≤ C(1 + h
3/2
B | log hmin

B |) ‖uh‖1,Ω + C ‖∇s Xh‖0,B (2.98)

and this concludes the proof since we have a constant ζa such that

af (uh,uh) + as(Xh,Xh) ≥ ζa(‖uh‖21,Ω + ‖Xh‖21,B). (2.99)

Finally, combining Propositions 2.5.1 and 2.5.2, the well-posedness of Ah is

immediately proved accordingly with [96].

Proposition 2.5.3. There exists a positive constant θ⋆ such that the following

inf-sup condition holds true

inf
U∈Kh[B]

sup
V∈Kh[B]

Ah(U,V)

~U~ ~V~
≥ θ⋆. (2.100)

Chapter 3

A parallel solver

The numerical simulation of complex and large scale problems, such as fluid-

structure interactions, requires huge computational resources. During the last

decades, the advent of modern supercomputers contributed to the development

of parallel software and architectures. Nevertheless, the available resources are

clearly limited, therefore the design of efficient parallel solvers is fundamental to

balance accuracy and computational costs, also in terms of run time.

Several studies have been already focused on parallel solvers for the solution of

discrete systems arising from fluid-structure interaction problems. We mention the

works by Deparis, Quarteroni and collaborators [11, 44, 47], Barker and Cai [12]

and Wu and Cai [95] with applications in cardiac simulations and blood flow mod-

eling. In [63], Klawonn and collaborators focus on two-levels overlapping Schwartz

method, while Jodlbauer, Langer and Wick propose in [71] parallel block precon-

ditioners for a monolithic solver. We finally recall the recent work by Wichrowski,

Heltai and collaborators [94], based on high contrast Stokes preconditioners for

incompressible FSI problems. We remark that in all these cases, the ALE formu-

lation has been considered. On the other hand, in [76, 77], the authors introduce

preconditioners for XFEM formulations and in [74], Krause and Zulian propose

a parallel approach to deal with variational transfer of information between non

overlapping meshes in a mortar-like setting.

This chapter is focused on the preliminary study about a parallel solver for

fluid-structure interaction problems with fictitious domain approach we presented

in [21, 22] for two dimensional problems. In our work, the problem is solved mono-

lithically, which is a rather challenging task. Consequently, exploiting the block

structure of our system, we introduce and analyze from the numerical point of

105

106 CHAPTER 3. A PARALLEL SOLVER

view two block preconditioners we combine with the GMRES solver. This kind of

design is also motivated by the mixed nature of the equations, which allows the

use of preconditioners taking into account specific features of each sub-problem.

In particular, our Fortran implementation is based on the library PETSc from

Argonne National Laboratory [9, 10] and makes use of the direct solver Mumps

[3, 4] to invert the diagonal blocks of the preconditioners under consideration. A

challenging feature is of course represented by the computation of the interface

matrix, topic widely discussed in the previous chapter. Indeed, the motion of the

immersed solid body may lead to many possible data distribution scenarios which

are not easy to predict and, moreover, the track of all the element by element

interaction has to be done at each discrete time, with consequent reassembly of

the coupling matrix.

Our analysis regards several properties of the parallel solver and it is applied

to both linear and nonlinear models for the solid material, while the fluid model is

simplified removing the convective term of the Navier–Stokes equations. Moreover,

we assume that fluid and solid materials share the same density and viscosity, as

reasonably assumed in classical IBM setting [87].

As first step towards the design of an effective parallel solver for our formu-

lation, we conduct a numerical investigation on two academic problems which

should be helpful for understanding all the computational challenges posed by

the approach. We analyze the optimality of the proposed algorithms, their strong

and weak scalability and robustness with respect to different choices of time step.

Moreover, in order to check the admissibility of the results, we study the varia-

tion in volume of the solid body, which should be theoretically zero thanks to the

incompressibility of both fluid and solid materials.

The chapter is divided into three sections: in the first section, after presenting

the problem we are going to solve, we discuss the main features of our numerical

method such as finite element spaces, assembly procedure for the interface matrix

and preconditioners. In particular, the time discretization is realized by means of

the semi-implicit modified Backward Euler scheme. The Stokes equation is dis-

cretized with Q2 −P1 elements, while the solid variables are approximated by Q1

elements. In Section 3.2, we present a wide range of numerical results considering

first a linear and then a nonlinear problem; all the tests have been performed on

Linux clusters. Finally, in the last section, a discussion about the limits of the pro-

posed solver is carried out by considering also possible future research directions.

3.1. THE NUMERICAL METHOD 107

Of course, the design of highly scalable algorithms with respect to the total run

time is not trivial and several factors have to be taken into account.

3.1 The numerical method

In this section we consider a simplified version of the full discrete problem we

analyzed in Section 1.4. Indeed, let us consider Problem 1.4.1: we neglect the

convective term from the fluid equation and we assume that fluid and solid densities

have the same value, so that δρ = 0.

This choice about densities may appear as a limitation of our method, but

it is not; indeed, this is the particular situation in which instabilities may occur

due to the added mass effect. For instance, this phenomenon has been discussed

by Causin, Gerbeau and Nobile in [36] for FSI problems modeled by ALE: non

implicit time advancing schemes are unconditionally unstable when fluid and solid

have same densities and regardless the other discrete parameters. It has been

also shown that such critical behavior can be alleviated with some appropriate

treatments for transmission conditions [46, 8].

Moreover, as described in Remark 1.4.1, we set the coupling term to be the

scalar product in L2(B). Therefore, we are going to study the following problem

in two dimensions.

Problem 3.1.1. Given u0
h ∈ Vh and X0

h ∈ W1,∞(B), for n = 1, . . . , N find

un
h ∈ Vh, p

n
h ∈ Qh, X

n
h ∈ Sh, and λn

h ∈ Λh, such that

ρf

(
un+1
h − un

h

∆t
,v

)

Ω

+ a(un+1
h ,v)

− (div v, pn+1
h)Ω +

(
λn+1

h ,v(Xn
h)
)
B
= 0

∀v ∈ Vh (3.1a)

(divun+1
h , q)Ω = 0 ∀q ∈ Qh (3.1b)

(P(Fn+1
h),∇s Y)B −

(
λn+1

h ,Y
)
B
= 0 ∀Y ∈ Sh (3.1c)

(
µ,un+1

h (Xn
h)−

Xn+1
h −Xn

h

∆t

)

B

= 0 ∀µ ∈ Λh (3.1d)

We define the four discrete spaces on quadrilateral meshes. We set Vh and Qh

to be the popular Q2 − P1 pair, characterized by discontinuous pressure

Vh = {v ∈ H1
0(Ω) : v|E ∈ (Q2(E))

2 ∀E ∈ T Ω
h }

Qh = {q ∈ L2
0(Ω) : q|E ∈ P1(E) ∀E ∈ T Ω

h }.
(3.2)

108 CHAPTER 3. A PARALLEL SOLVER

This Stokes element has been studied in [59, 92]; historically, the use of a P1

pressure on quadrilateral is not a standard choice, but it is the solution for the

instability of the Q2 −Q1 pair.

On the other hand, for the solid variables Xh and λh, we set Sh = Λh to be

the space of continuous bilinear functions Q1, i.e.

Sh = Λh = {Y ∈ H1(B) : Y|E ∈ (Q1(E))
2 ∀E ∈ T B

h }. (3.3)

We recall that if we consider a linear constitutive law for the solid material,

which means P(F) = κF, then Problem 3.1.1 can be easily written in matrix form




ρf
∆t
Mf + K B⊤ 0 Cf (X

n
h)

⊤

B 0 0 0

0 0 As −C⊤
s

Cf (X
n
h) 0 − 1

∆t
Cs 0







un+1
h

pn+1
h

Xn+1
h

λn+1
h




=




fn

0

gn

dn




=




ρf
∆t
Mfu

n
h

0

0

− 1
∆t
CsX

n
h




(3.4)

In the remainder of the chapter, we use the notation Af =
ρf
∆t
Mf +K. We remark

that in more general situations, P(F) appears to be nonlinear since there is a

dependence of the matrix As on the variable Xn
h. If this is the case, the system has

to be solved making use of a nonlinear solver such as the Newton method or a fixed

point iterator. Since fixed point iterators may show poor convergence properties,

in our numerical simulation, we consider the Newton method as described, for

instance, in [56].

Therefore, in presence of nonlinear constitutive laws, at each time step, we

compute a sequence of approximations of the solution until convergence to pre-

scribed tolerance. We denote by Un
h,k the global solution vector at time tn related

to the kth Newton iteration, i.e.

Un
h,k =




un
h,k

pnh,k
Xn

h,k

λn
h,k




In order to start the process, a good choice of initial approximation Un
h,0 is given

by zero velocity, pressure and Lagrange multiplier, while Xn
h,0 is set either to the

3.1. THE NUMERICAL METHOD 109

position of the solid computed at the previous time step or the initial configuration

if we need to solve the first time step.

The computation of Un
h,k+1 is performed as follows. Given Un

h,k, we first define

the residual

Rn
k =




Afu
n
h,k + B⊤pnh,k + Cf (X

n
h)

⊤λn
h,k

Bun
h,k

JAs(X
n
h,k)− C⊤

s λ
n
h,k

Cf (X
n
h)u

n
h,k − 1

∆t
Csλ

n
h,k


−




ρf
∆t
Mfu

n
h

0

0

− 1
∆t
CsX

n
h


 (3.5)

and then compute the Newton correction vector δUn
k by solving the linear system

J δUn
k = Rn

k , (3.6)

where J is the global Jacobian matrix defined as

J =




Af B⊤ 0 Cf (X
n
h)

⊤

B 0 0 0

0 0 JAs(X
n
h,k) −C⊤

s

Cf (X
n
h) 0 − 1

∆t
Cs 0




(3.7)

In particular, JAs(X
n
h,k) is the Jacobian related to the nonlinearity of (P(Fn+1

h),∇s Y)B.

Then, the solution is updated computing

Un
h,k+1 = Un

h,k − δUn
k . (3.8)

In our implementation, the procedure stops when a 10−6 reduction of the rel-

ative residual in Euclidean norm is reached, i.e.

|Rn
k |

|Rn
0 |

≤ 10−6 (3.9)

where Rn
0 is the residual at the first Newton iteration.

3.1.1 Parallel preconditioners

Before presenting two preconditioners for our parallel solver, we notice that the

matrix in (3.4), and similarly the Jacobian matrix (3.7), can be split into four

110 CHAPTER 3. A PARALLEL SOLVER

blocks as follows

A11 =

[
Af B⊤

B 0

]
A12 =

[
0 Cf (X

n
h)

⊤

0 0

]

A21 =

[
0 0

Cf (X
n
h) 0

]
A22 =

[
As −C⊤

s

− 1
∆t
Cs 0

]

where A11 represents the fluid equations, A22 the solid contribution and the re-

maining two blocks A12 = A⊤
21 contain the interface matrix.

In order to solve the linear system (3.4) and the Jacobian system (3.6), we

choose the parallel GMRES solver provided by the PETSc library. In particular,

the following stopping criterion is adopted: we check the reduction of the Euclidean

norm of the relative residual with a tolerance of 10−8 and restart parameter of 200.

Moreover, we endow the solver with the following choices of preconditioners, so that

the solution may be accelerated: we call block–diag the preconditioner defined as

[
A11 0

0 A22

]
(3.10)

while, we call block–tri the triangular preconditioner

[
A11 0

A21 A22

]
. (3.11)

The action of these two preconditioners is carried out by the exact inversion

of the diagonal blocks A11 and A22. In particular, this operation is performed by

means of the multifrontal direct solver Mumps [3, 4].

3.1.2 The interface matrix

As widely discussed in Chapter 2, the assembly of the coupling term is not triv-

ial and it can be carried out in two possible ways since one can perform exact

integration by computing the intersection between fluid and solid mesh or, alter-

natively, one can work with approximated integrals. In particular, we discussed

in Section 2.4 that the L2(B) coupling term provides good results with both the

exact and the approximate assembly techniques, therefore we design and test our

parallel solver taking into account both possibilities.

3.1. THE NUMERICAL METHOD 111

For the case of inexact integration, integrals are approximated using a first

order quadrature rule for quadrilaterals: the nodes are the vertices q1, . . . ,q4 of

the element E ∈ T B
h under consideration, while the weights are set equal to 1/4.

Consequently, the local coupling can be easily written as

∫

E

µh · vh(X
n
h) ds ≈

|E|
4

4∑

k=1

µh(qk) · vh(X
n
h(qk)) ∀E ∈ T B

h . (3.12)

On the other hand, for implementing exact integration, we partition each

E ∈ T B
h into a certain number of polygons according to its position with respect to

the fluid mesh T Ω
h ; if a polygon is not a triangle, it is triangulated for computational

purpose, by connecting each vertex with the barycenter. Hence, if E =
⋃J

j=1 Pj,

we have that

∫

E

µh · vh(X
n
h) ds =

J∑

j=1

∫

Pj

µh · vh(X
n
h) ds

=
J∑

j=1

Nj∑

i=1

[∫

Ti

µh · vh(X
n
h) ds

]

=
J∑

j=1

Nj∑

i=1

|Ti|
[4∑

k=1

ωkµh(pk) · vh(X
n
h(pk))

]
,

(3.13)

where {(pk, ωk)}4k=1 are nodes and weights of the third order Gaussian quadrature

rule on triangles we introduced in Definition 2.2.3 (see Sec. 2.2.5).

An example of the two described approaches is depicted in Figure 3.1.

We remark that element-by-element intersections are computed by means of

the Sutherland–Hodgman algorithm.

It is important to notice that the choice of assembly technique affects the

sparsity pattern of the coupling matrix: when the composite quadrature rule is

considered, a larger number of fluid degrees of freedom is involved so that the ma-

trix appears more dense than in the case of approximate integration. An example

is reported in Figure 3.2. We are going to see that this feature affects the solver,

which generally requires a slightly large number of iterations to solve the linear

system when Cf (X
n
h) is assembled exactly.

Finally, we point out that these operations are challenging and an efficient

parallel implementation is not easy to be carried out. In particular, in our imple-

mentation, the coupling term is assembled using two nested loops: the first loop

112 CHAPTER 3. A PARALLEL SOLVER

B

E

Ω Ω

Figure 3.1: A schematic representation of the geometric aspects of the coupling

operations. From the left hand side: a portion of the solid mesh T B
h with a partic-

ular element under consideration, the immersed counterpart of E associated with

the quadrature rule of the vertices, the same immersed element partitioned by

computing the intersection with the background fluid mesh.

0 2000 4000 6000

nz = 173345

0

1000

2000

3000

4000

5000

6000

7000

0 2000 4000 6000

nz = 147096

0

1000

2000

3000

4000

5000

6000

7000

Figure 3.2: Sparsity patterns for the global matrix (3.4) when the interface term

Cf (X
n
h) is computed with the two assembly techniques. The matrix is related to

the linear elastic model described in Section 3.2.1 and discretized with 7,846 global

DOFs. The number of nonzero entries is denoted by nz. When the interface matrix

is assembled exactly, the total amount of nz is 173,345; on the other hand, the

approximate assembly produces in total 147,095 nz.

3.2. NUMERICAL RESULTS 113

is distributed over the processors and iterates through the solid elements, whereas

the nested one is performed in serial over all the fluid elements. In particular, we

are going to see that this kind of design produces a lack of weak scalability.

3.2 Numerical results

In this section we present several numerical tests with the aim of analyzing the

performance of the proposed parallel solver. The study is done on two test cases:

for the first one, the solid is modeled by a linear constitutive law, while for the

second one a nonlinear model is chosen. Moreover, we remark that for each test,

we consider and compare the two assembly techniques for the coupling term. In

particular, our discussion is primarily focused on the three following features.

• Mesh refinement. We study robustness of the method when both fluid and

solid meshes are refined, whereas the number of cores on which we distribute

the computational load is kept constant. This kind of test is also called

optimality test.

• Weak scalability. In this case, the size of the problem, also known as work-

load, assigned to each core is kept constant. To this aim, each simulation is

performed by maintaining approximately constant the ratio #DOFs
#cores

. A weakly

scalable solver should maintain constant its run time.

• Strong scalability. We fix the number of degrees of freedom and then

we solve the problem increasing the number of processors. A measure of

scalability is given by the so-called speed up factor Sp, which is computed

dividing the total run time of the reference test by the total run time of the

m processors test.

Since in fluid-structure interactions several physical parameters are involved,

besides parallel performance and scalability, also other kinds of test may be carried

out: we focus on robustness with respect to time step refinement and conservation

of mass.

• Time step refinement. The choice of time step affects the performance of

the solver. For example, the choice of a small step produces small variations

in the configuration of the problem, therefore some operations are faster

114 CHAPTER 3. A PARALLEL SOLVER

thanks to the so-called dynamic allocation. Moreover, the choice of time step

may affect the convergence of the adopted nonlinear iterator.

• Volume loss. Since we are considering problems in which fluids and solids

are incompressible, a good parallel solver should present slight variations of

the volume of the involved entities. In particular, due to our choice of finite

element spaces, the divergence free constraint is not exactly imposed.

The results we present in this section are obtained by running the parallel solver

on two Linux clusters: Shaheen, provided by the Extreme Computing Research

Center at King Abdullah University of Science and Technology (Saudi Arabia),

and EOS, provided by the Department of Mathematics of the University of Pavia

(Italy). Shaheen is a Cray XC40 cluster constituted by 6,174 dual sockets compute

nodes, based on 16 core Intel Haswell processors running at 2.3GHz. Each node

has 128GB of DDR4 memory running at 2300MHz. EOS is a Linux Infiniband

cluster with 21 nodes, each carrying two 16 cores Intel Xeon Gold 6130 processors

running at 2.1 GHz.

3.2.1 Linear solid model

The first problem we address in our numerical tests involves an incompressible solid

body with linear constitutive law. This is a particular case of neo–Hookean mate-

rial: the first Piola–Kirchhoff stress tensor expressed with Lagrangian description

is formulated as

P(F) = κF. (3.14)

As a consequence, the associated energy density reads as

W (F) =
κ

2
F : F, (3.15)

while the potential energy is given by

E (X) =
κ

2

∫

B

W (F) ds =
κ

2

∫

B

|∇s X|2 ds. (3.16)

In particular, for our system we consider a viscous incompressible fluid filling

the square [−1, 1]2. Then, we immerse the elastic annulus described, at rest, by

{x ∈ R
2 : 0.3 ≤ |x| ≤ 0.5}.

3.2. NUMERICAL RESULTS 115

At the initial configuration, we consider the fluid at rest and a stretched version of

the annulus. When the solid body is stretched, its internal forces act with the aim

of bringing it back to the resting configuration and the surrounding fluid starts its

motion.

Since the geometry of the problem is symmetric, we can reduce the simulation

to a quarter of the mentioned domain so that we set

Ω = [0, 1]2 and B = {s = (s1, s2) ∈ R
2 : s1, s2 ≥ 0, 0.3 ≤ |s| ≤ 0.5}.

(3.17)

In this reduced system, the annulus touches the left and the lower side of Ω

and both fluid and solid are allowed to move along the tangential direction. On

the other hand, on the upper and right sides of Ω, we impose no-slip boundary

conditions for the velocity u.

In order to complete our equations, we consider the following initial conditions

at time instant t = 0

u(x, 0) = 0

X(s, 0) =

(
s1
1.4

, 1.4 s2

)
.

Moreover, we set fluid and solid densities equal to 1 and we also assume that

the two materials have same viscosity by setting νf = νs = 0.1. The initial shear

modulus κ is equal to 10.

In particular, the validation of the solver is done simulating the system until

T = 2. We collect in Figure 3.3 some snapshots of the evolution with final time

set to T = 20.

Mesh refinement

In order to study robustness of the parallel solver with respect to mesh refinement,

we solve the problem setting ∆t = 0.01 and we distribute the computational load

over 128 processors. Then, we solve the problem refining both fluid and solid

meshes six times: the smallest problem is solved with a total amount of 30,534

DOFs, while the largest has 1,460,934 total DOFs.

Results are collected in Table 3.1 for coupling with mesh intersection and in

Table 3.2 for coupling without mesh intersection; except for the assembly time

Tasm of mass and stiffness matrices and the total time Ttot, all the reported run

times are averaged over the 200 time instants of simulation.

116 CHAPTER 3. A PARALLEL SOLVER

Figure 3.3: Some snapshots of the evolution in time of the elastic annulus (linear

solid model).

3.2. NUMERICAL RESULTS 117

First, we observe that, for both coupling techniques, the volume loss reduces

when meshes are refined. In particular, when the exact coupling is carried out, the

values remain below 0.3% if we look at the three finest cases. On the other hand,

for the approximate coupling, the percentage of volume loss is always below 0.1%,

showing a better mass conservation for the immersed body.

Looking at the assembly time Tasm, we can see that it increases moderately

when we increase the number of degrees of freedom, whereas Tcoup grows superlin-

early.

Concerning the two preconditioners, from Table 3.1, we observe that block–

diag is not optimal since the GMRES iteration count grows rapidly from 124 to

394. As a consequence, Tsol and Ttot grow accordingly. Conversely, block–tri is

optimal since the number of iterations slightly increases, but remaining bounded

by 16. Therefore, Tsol shows a moderate increase. A comparison between the two

preconditioners can be done looking at Tsol in correspondence of the 746,566 DOFs

case: for block–diag it is almost 27 times larger than for block–tri.

Moving to Table 3.2, the two preconditioners have comparable behaviors. In-

deed, also block–diag is optimal: the number of GMRES iterations is bounded by

10. For block–tri, the good behavior is confirmed, with its bounded by 6. There-

fore Tsol slightly increases for both choices of preconditioners, which are basically

equivalent in terms of total run time.

Weak scalability

For studying the weak scalability, we fix only the temporal parameters: T = 2 and

∆t = 0.01; then, we vary number of processors and number of DOFs by almost

doubling them at each test. Theoretically, a weakly scalable parallel solver should

maintain constant its total run time. In particular, for the smallest simulation, we

consider 4 processors and 68,070 total degrees of freedom, while, for the largest

one, we consider 128 processors and 2,152,614 total DOFs. We remark that each

mesh refinement involves both T Ω
h and T B

h .

We collect our results in Table 3.3, for the case with mesh intersection, and in

Table 3.4 for the case without mesh intersection.

Of course, the assembly time Tasm remains basically constant because the pro-

cedure is carried out making use only of PETSc routines, which are scalable by

construction. On the other hand, the time Tcoup we need to assembly the interface

matrix is not scalable due to the design of the algorithm: as mentioned in Sec-

118 CHAPTER 3. A PARALLEL SOLVER

Linear solid model – Mesh refinement test

Coupling with mesh intersection

procs = 128, T = 2, ∆t = 0.01

DOFs vol. loss (%) Tasm(s) Tcoup(s) block-diag block-tri

its Tsol(s) Ttot(s) its Tsol(s) Ttot(s)

30,534 1.17 2.56e-3 2.09e-1 12 1.38 3.18e+2 7 8.08e-1 2.03e+2

120,454 5.06e-1 1.02e-2 8.94e-1 31 4.69 1.12e+3 9 1.34 4.43e+2

269,766 3.18e-1 2.35e-2 3.10 86 16.12 3.85e+3 11 2.06 1.04e+3

478,470 2.33e-1 4.01e-2 8.71 160 37.53 9.25e+3 12 3.02 2.30e+3

746,566 1.85e-1 6.50e-2 19.52 394 1.20e+2 2.79e+4 13 4.33 4.72e+3

1,074,054 1.54e-1 9.44e-2 37.72 - - - 14 5.51 8.65e+3

1,460,934 1.27e-1 1.27e-1 67.10 - - - 16 7.18 1.49e+4

Table 3.1: Refining the mesh in the linear solid model, coupling with mesh in-

tersection. The simulations are run on the Shaheen cluster. procs = number of

processors; DOFs = degrees of freedom; vol. loss = loss of structure volume in

percentage; Tasm = CPU time to assemble the stiffness and mass matrices; Tcoup
= CPU time to assemble the coupling term; its = GMRES iterations; Tsol = CPU

time to solve the linear system; Ttot = total simulation CPU time. The quantities

Tcoup, its and Tsol are averaged over the time steps. All CPU times are reported in

seconds.

Linear solid model – Mesh refinement test

Coupling without mesh intersection

procs = 128, T = 2, ∆t = 0.01

DOFs vol. loss (%) Tasm(s) Tcoup(s) block-diag block-tri

its Tsol(s) Ttot(s) its Tsol(s) Ttot(s)

30,534 6.99e-2 2.50e-3 1.68e-1 9 1.04 2.42e+2 5 6.57e-1 1.65e+2

120,454 6.89e-2 9.06e-3 2.50e-1 9 1.53 3.57e+2 6 1.01 2.53e+2

269,766 4.87e-2 2.33e-2 9.96e-1 10 2.10 6.19e+2 6 1.31 4.65e+2

478,470 4.24e-2 4.13e-2 3.70 10 2.65 1.27e+3 6 1.63 1.06e+3

746,566 4.09e-2 6.50e-2 9.90 10 3.30 2.64e+3 6 1.97 2.25e+3

1,074,054 3.69e-2 9.46e-2 20.68 10 3.93 4.92e+3 6 2.55 4.66e+3

1,460,934 3.52e-2 1.29e-1 45.39 10 4.66 1.00e+4 6 3.15 9.86e+3

Table 3.2: Refining the mesh in the linear solid model, coupling without mesh

intersection. The simulations are run on the Shaheen cluster. Same format as

Table 3.1.

3.2. NUMERICAL RESULTS 119

Linear solid model – Weak scalability test

Coupling with mesh intersection

T = 2, ∆t = 0.01

procs DOFs Tasm(s) Tcoup(s) block-diag block-tri

its Tsol(s) Ttot(s) its Tsol(s) Ttot(s)

4 68,070 8.55e-2 3.95 22 6.25e-1 933.43 8 2.24e-1 833.44

8 135,870 1.00e-1 5.23 38 2.16 1.48e+3 9 4.41e-1 1.13e+3

16 269,766 1.01e-1 8.77 111 10.23 3.80e+3 11 9.70e-1 1.95e+3

32 539,926 9.24e-2 59.27 706 108.05 2.50e+4 18 2.91 1.24e+4

64 1,074,054 1.90e-1 48.00 429 113.59 3.24e+4 14 3.90 1.04e+4

128 2,152,614 1.90e-1 98.63 - - - 18 11.43 2.20e+4

Table 3.3: Weak scalability for the linear solid model, coupling with mesh intersec-

tion. The simulations are run on the Shaheen cluster. Same format as Table 3.1.

tion 3.1.2, this procedure consists of two nested loops, on solid and fluid elements

respectively, but only the outer one is distributed over the processors. Therefore,

when we refine the meshes, we increase the workload without applying a proper

distribution. Anyway, if we compare Tcoup for the two assembly techniques, we see

that for the inexact case values are doubled with respect to the exact one.

Looking at the performance information of the two preconditioners, we notice

different behaviors. From Table 3.3, it is clear that block–diag combined with com-

posite integration for the coupling term is not convenient: the average of GMRES

iterations increases from 22 to 429 affecting Tsol and Ttot. For block–tri we have

better results: the number of iterations its is bounded by 18, but the time Tsol
spent to solve the linear system is not scalable.

From Table 3.4, we see that both block–diag and block–tri need few iterations

to solve the system: in the first case its is equal to 9 or 10, while for the second

preconditioner it is always equal to 6. This fact reflects on Tsol which assumes lower

values than in Table 3.3. Despite this, the two preconditioners have a lack of weak

scalability.

Strong scalability

The simulations for the strong scalability test are done with fixed spaced discretiza-

tion; in particular, we discretize the system with a total amount of 478,470 DOFs.

120 CHAPTER 3. A PARALLEL SOLVER

Linear solid model – Weak scalability test

Coupling without mesh intersection

T = 2, ∆t = 0.01

procs DOFs Tasm(s) Tcoup(s) block-diag block-tri

its Tsol(s) Ttot(s) its Tsol(s) Ttot(s)

4 68,070 8.80e-2 5.73 9 2.65e-1 1.22e+3 6 1.76e-1 1.18e+3

8 135,870 9.90e-2 13.63 10 5.54e-1 2.84e+3 6 3.50e-1 2.80e+3

16 269,766 1.04e-1 15.94 10 9.30e-1 3.35e+3 6 5.87e-1 3.31e+3

32 539,926 1.94e-1 28.00 10 1.54 5.90e+3 6 1.01 5.80e+3

64 1,074,054 1.89e-1 59.62 10 2.85 1.22e+4 6 1.78 1.27e+4

128 2,152,614 1.88e-1 198.75 10 7.53 5.94e+4 6 4.30 3.88e+4

Table 3.4: Weak scalability for the linear solid model, coupling without mesh inter-

section. The simulations are run on the Shaheen cluster. Same format as Table 3.1.

The time step is also fixed to ∆t = 0.01.

We remark that the computation of the speed up factor Sp is performed con-

sidering the total time Ttot of the 4 processors run as reference value.

The results are reported in Table 3.5 and Table 3.6 for exact and approximate

coupling respectively. From both tables we can see that Tcoup is perfectly scalable

as also graphically represented in Figure 3.4a. For both techniques the logarithm

of Tcoup scales almost linearly with respect to the number of processors.

When we use the composite quadrature rule for assembling Cf (X
n
h), the two

preconditioners have different behaviors. For block–diag we have a large number of

GMRES iterations, always bigger than 140, which remains almost constant when

we increase the number of processors. Thus, the time Tsol for solving the linear

system is not scalable and the actual speed up values are far from the theoretical

estimate. On the other hand, block–tri is more robust: the average number its

is small, always equal to 12 or 13, producing small values for Tsol too. Even if

Tsol is not perfectly scalable, the solver is globally scalable since Tcoup is scalable

and Tcoup is remarkably larger than Tsol. In Figure 3.4b, we compare the speed up

values for the two preconditioners. We can see that the blue line, corresponding to

block–diag, is very far from the ideal case (dashed line) in contrast with the red

line, which is related to block–tri and under estimated only for the 256 processors

run.

From Table 3.6, we can analyze our solver when approximate integration for

3.2. NUMERICAL RESULTS 121

Linear solid model – Strong scalability test

Coupling with mesh intersection

DOFs = 478470, T = 2, ∆t = 0.01

procs Tasm(s) Tcoup(s) block-diag block-tri

its Tsol(s) Ttot (s) Sp its Tsol(s) Ttot (s) Sp

4 6.41e-1 498.08 192 41.04 1.08e+5 - 12 2.52 9.85e+4 -

8 3.47e-1 169.69 168 21.60 3.83e+4 2.82 (2) 13 1.49 3.42e+4 2.88 (2)

16 1.78e-1 89.18 180 18.09 2.15e+4 5.02 (4) 12 1.20 1.79e+4 5.50 (4)

32 1.65e-1 26.45 192 19.42 9.17e+3 11.78 (8) 12 1.22 5.53e+3 17.81 (8)

64 8.32e-2 17.38 165 23.09 8.09e+3 13.35 (16) 13 1.57 3.64e+3 27.06 (16)

128 4.12e-2 8.52 170 40.58 9.82e+3 11.00 (32) 12 3.02 2.35e+3 41.91 (32)

256 2.03e-2 4.08 144 68.31 1.45e+4 7.45 (64) 12 5.91 2.00e+3 49.25 (64)

Table 3.5: Strong scalability for the linear solid model, coupling with mesh intersec-

tion. The simulations are run on the Shaheen cluster. DOFs = degrees of freedom;

procs = number of processors; Tasm = CPU time to assemble the stiffness and

mass matrices; Tcoup = CPU time to assemble the coupling term; its = GMRES

iterations; Tsol = CPU time to solve the linear system; Ttot = total simulation

time; Sp = parallel speedup computed with respect to the 4 processors run. The

theoretical speed up is reported between brackets. The quantities Tcoup, its and

Tsol are averaged over the time steps. All CPU times are reported in seconds.

the coupling matrix is carried out. In this case, both preconditioners exhibit very

small values of average GMRES iterations, 10 for block–diag and 6 for block–tri,

remaining constant when the number of processes increases. As before, the solution

time Tsol is not scalable, but thanks to the excellent scalability of Tcoup, the solver

appears to be strongly scalable in general. A plot showing the evolution of speed

up values is reported in Figure 3.4c. For both preconditioners the actual factors

are near or larger than the ideal ones.

Time step refinement

For this test we solve the linear problem with 478, 470 degrees of freedom and

splitting the computational load over 64 processors. Five different choices of time

step are considered: in particular, the largest value is ∆t = 0.02, while the smallest

one is ∆t = 0.001.

The results are collected in Table 3.7 for the case of exact coupling, while for the

approximate case we refer to Table 3.8. In both cases, the volume loss decreases

122 CHAPTER 3. A PARALLEL SOLVER

Linear solid model – Strong scalability test

Coupling with mesh intersection

DOFs = 478470, T = 2, ∆t = 0.01

procs Tasm(s) Tcoup(s) block-diag block-tri

its Tsol(s) Ttot (s) Sp its Tsol(s) Ttot (s) Sp

4 6.77e-1 1.68e+3 10 2.60 3.36e+5 - 6 1.69 3.37e+5 -

8 3.89e-1 741.99 10 1.87 1.50e+5 2.24 (2) 6 1.22 1.49e+5 2.26 (2)

16 1.79e-1 287.02 10 9.76e-1 5.76e+4 5.83 (4) 6 6.35e-1 5.75e+4 5.86 (4)

32 1.65e-1 108.92 10 9.95e-1 2.20e+4 15.27 (8) 6 6.21e-1 2.17e+4 15.53 (8)

64 7.70e-2 28.66 10 1.29 5.99e+3 56.09 (16) 6 8.68e-1 6.02e+3 55.98 (16)

128 4.04e-2 4.32 10 87.20 1.83e+4 18.36 (32) 6 58.70 1.26e+4 26.75 (32)

256 2.05e-2 1.63 10 5.04 1.33e+3 252.63(64) 6 3.05 951.11 354.32 (64)

Table 3.6: Strong scalability for the linear solid model, coupling without mesh

intersection. The simulations are run on the Shaheen cluster. Same format as

Table 3.5.

when ∆t is refined. Moreover, since the spatial parameters do not change, Tass
remains constant with respect to the time step refinement. The time we need

to assemble Cf (X
n
h), Tcoup, decreases when small values of ∆t are chosen, since

the geometric configuration does not significantly change between a time instant

and the subsequent. This happens independently of the considered technique and

thanks to the dynamic allocation of matrices since the sparsity pattern remains

basically unchanged.

Moving on analyzing the performance of the two preconditioners, we have dis-

similar results between Table 3.7 and Table 3.8. In Table 3.7, we can see that

block–diag is not robust when coarse values of ∆t are used, indeed for ∆t = 0.02,

the number of iterations its is around 1, 300, which is huge, especially if compared

with the value related to block–tri, which is bounded by 19. On the other hand,

from Table 3.8 both preconditioners are good since the number of iterations is

bounded by 12 for block–diag and 7 for block–tri. Clearly, the average time Tsol to

solve the system and the total Ttot directly depend on the number of iterations.

Volume loss

In this paragraph, we study how the choice of meshes, preconditioner and as-

sembly technique for the interface matrix affect the deformation of the immersed

solid body. In order to check if admissible results are produced, we analyze the

3.2. NUMERICAL RESULTS 123

Linear solid model – Time step refinement test

Coupling with mesh intersection

DOFs = 478470, procs = 64, T = 2, ∆t = 0.01

∆t vol. loss (%) Tasm(s) Tcoup(s) block-diag block-tri

its Tsol(s) Ttot(s) its Tsol(s) Ttot(s)

0.02 2.55e-1 1.01e-1 15.06 1364 190.66 2.05e+4 19 3.56 1.86e+3

0.01 2.33e-1 1.01e-1 11.83 170 23.69 7.48e+3 12 2.33 2.83e+3

0.005 2.04e-1 1.01e-1 10.86 30 5.70 6.68e+3 9 1.91 5.12e+3

0.002 1.88e-1 1.01e-1 9.90 12 2.61 1.26e+4 7 1.44 1.13e+4

0.001 1.81e-1 1.01e-1 9.91 8 1.73 2.28e+4 5 1.09 2.20e+4

Table 3.7: Refining the time step in the linear solid model, coupling with mesh

intersection. The simulations are run on the Shaheen cluster. Same format as

Table 3.1.

Linear solid model – Time step refinement test

Coupling without mesh intersection

DOFs = 478470, procs = 64, T = 2, ∆t = 0.01

∆t vol. loss (%) Tasm(s) Tcoup(s) block-diag block-tri

its Tsol(s) Ttot(s) its Tsol(s) Ttot(s)

0.02 6.27e-2 1.01e-1 45.78 12 2.41 4.79e+3 7 1.45 4.72e+3

0.01 4.24e-2 1.01e-1 32.52 10 2.15 7.50e+3 6 1.36 6.78e+3

0.005 3.23e-2 1.01e-1 23.55 9 1.85 1.04e+4 5 1.17 9.91e+3

0.002 2.58e-2 1.02e-1 14.57 7 1.57 1.60e+4 4 9.62e-1 1.55e+4

0.001 2.37e-2 1.01e-1 10.07 6 1.42 2.32e+4 4 9.60e-1 2.21e+4

Table 3.8: Refining the time step in the linear solid model, coupling without mesh

intersection. The simulations are run on the Shaheen cluster. Same format as in

Table 3.1.

124 CHAPTER 3. A PARALLEL SOLVER

4 8 16 32 64 128 256
10

-1

10
0

10
1

10
2

10
3

10
4

(a)

816 32 64 128 256

0

10

20

30

40

50

60

70

(b)

816 32 64 128 256

0

50

100

150

200

250

300

350

400

(c)

Figure 3.4: Graphic representation of the strong scalability tests reported in Ta-

ble 3.5 and Table 3.6. In the first plot, the scaling of Tcoup is represented in loga-

rithmic scale: the blue line refers to the case with exact integration, while the red

line is related to the approximate integration procedure. In both cases the decay

rate is 1, accordingly to the theoretical expectation. In the second line, we report

the speed up factor with respect to the number of processes: on left hand side

we have the exact coupling case, on the right the approximate one. Blue lines are

related to block–diag, while red lines are related to block–tri. The ideal speed up

is represented by the black dashed line.

percentage of volume loss between the last and the first simulated time instants.

In particular, for our study we fix the solid mesh and we refine the fluid one.

3.2. NUMERICAL RESULTS 125

For the first test, the solid mesh T B
h is made of 384× 192 elements, while for the

second one, we have 192 × 96 solid elements. On the other hand, for the fluid we

start with a 64×64 mesh and then we refine three times so that we have 128×128,

256× 256 and finally 512× 512 elements.

As we already previously observed, we have confirmation that the approximate

computation of the coupling matrix produces a better mass conservation than the

exact approach. Moreover, if T B
h is 384×192, we see that the parallel solver does not

work when the block–diag preconditioner is combined with the exact construction

of Cf (X
n
h) and coarse fluid meshes are considered (64× 64 and 128× 128). Indeed,

the results have no physical meaning since the volume loss is of 99.94% and 72.15%

respectively. Conversely, for the other choice of T B
h , we notice that, even if the

inexact coupling performs better in terms of mass conservation, it presents a slight

increase of volume loss when the fluid mesh is significantly finer than the solid

discretization, i.e. when T Ω
h is made up of 512×512 elements. The use of block–tri

does not produce degenerate situations and for all test cases the results are valid.

Linear solid model – Volume loss (%)

procs = 64, T = 2, ∆t = 0.01

solid mesh 384× 192

fluid mesh with mesh intersection without mesh intersection

block-diag block-tri block-diag block-tri

64× 64 99.94 2.51e-1 6.59e-2 6.59e-2

128× 128 72.15 2.24e-1 6.69e-2 6.69e-2

256× 256 2.33e-1 2.34e-1 4.24e-2 4.24e-2

512× 512 2.14e-1 2.14e-1 4.15e-2 4.15e-2

solid mesh 192× 96

fluid mesh with mesh intersection without mesh intersection

block-diag block-tri block-diag block-tri

64× 64 4.95e-1 4.95e-1 6.61e-2 6.62e-2

128× 128 5.06e-1 5.06e-1 6.89e-2 6.89e-2

256× 256 4.60e-1 4.60e-1 5.76e-2 5.76e-2

512× 512 5.48e-1 5.48e-1 2.66e-1 2.67e-1

Table 3.9: Refining the fluid mesh keeping fixed the solid one. Loss of the structure

volume in percentage.

126 CHAPTER 3. A PARALLEL SOLVER

3.2.2 Nonlinear solid model

In this test, the immersed solid is an isotropic hyperelastic material described by

the exponential strain energy density

W (F) =
γ

2η
exp

(
η[I1 − 2]

)
, (3.18)

where I1 denotes the first invariant of the right Cauchy–Green deformation tensor

F⊤F, i.e. I1 = trace(F⊤F), while γ and η are two constant parameters representing

material properties. In particular, γ > 0 is a stress-like parameter, while η > 0 is

a non-dimensional constant. This kind of materials are commonly considered in

cardiac simulations to model arterial walls and have been widely studied in [45].

We remark that thanks to the monotonic increase of the exponential, then the

density W appears to be strictly local convex with respect to F⊤F [68, 83].

For our test, we set the fluid domain Ω to be the unit square and we immerse

the elastic bar described by

Ωs
0 = B = [0, 0.4]× [0.45, 0.55] (3.19)

We emphasize that the solid reference domain B corresponds to the initial resting

configuration of the structure. In particular, the bar is anchored to the left edge of

the fluid domain and the dynamics of the system is generated by a force pulling

down the solid body. This force is applied to the right edge of Ωs
0 during the time

interval [0, 1]. Once the force is released, the elastic properties of the material steer

the structure back to rest.

We impose null Dirichlet conditions for u on the whole boundary ∂Ω, while at

initial time we set

u(x, 0) = 0

X(s, 0) = s.

As for the linear model, fluid and solid densities assume same value 1, for the

viscosities we choose νf = νs = 0.2. We set the physical parameters γ and η

involved in the energy density W to be γ = 1.333 and η = 9.242.

The analysis of the parallel solver is carried out simulating the evolution of

the system during the time interval [0, 2] for mesh refinement test, strong scala-

bility and time step refinement. The weak scalability is discussed simulating the

interaction until final time T = 0.1. In Figure 3.5 we report some snapshots of the

evolution until T = 5.

3.2. NUMERICAL RESULTS 127

Figure 3.5: Some snapshots of the evolution in time of the elastic bar (nonlinear

solid model).

128 CHAPTER 3. A PARALLEL SOLVER

Mesh refinement

We study the optimality of the solver for two different choices of time steps (∆t =

0.01 and ∆t = 0.002) and number of processors (32 and 64, respectively). We

initially consider a discretization consisting in 21,222 total DOFs and we refine

both fluid and solid mesh five times, so that the finest tests is performed using a

total amount of 741,702 DOFs.

We collect in Table 3.10 and Table 3.11 the results related to coupling with

and without mesh intersection respectively computed by considering ∆t = 0.01

and procs = 32. When Cf (X
n
h) is computed exactly, the volume loss assumes more

significant values: indeed, from the second test, it stabilizes at 1.47%, in contrast

with the approximate coupling case for which we register a reduction of one order

of magnitude between the first and the last simulation (from 3.50 × 10−1% to

5.34×10−2%). For both techniques, Tasm exhibits a moderate increase, while Tcoup
grows superlinearly.

Analyzing the performance of the preconditioners, first we notice that the aver-

age number of Newton iterations nit is always bounded by 3, however in the case of

coupling with mesh intersection it fails when the two finest spatial discretizations

are considered. From both tables we can conclude that block–diag is not robust: the

average number of GMRES linear iterations we need to solve the Jacobian linear

system reaches 406 in Table 3.10 and even 3,001 in Table 3.11 when the problem

is solved with 330,630 DOFs. Therefore, the solution time Tsol significantly grows

with clear impact on Ttot. For block–tri the situation is different. The number of

GMRES iteration its moderately increases, but remaining bounded by 30 and also

Tsol is always smaller than 30 s. Therefore, we can say that block–tri is robust with

respect to mesh refinement.

If we now consider a different time step, ∆t = 0.002, and we distribute the com-

putational load over 64 processors, the two preconditioners have slightly different

behaviors: the simulation results are reported in Table 3.12 (with mesh intersec-

tion) and Table 3.13 (without mesh intersection). First, we notice that block–tri

confirms its robustness since in both tables the related averaged iteration count

per nonlinear iteration is bounded by 10 for the exact coupling and by 24 for the

approximate case. On the other hand, block–diag becomes robust when the cou-

pling is computed with mesh intersection: the GMRES iteration count is bounded

by 15, which is very far from 406 we have when ∆t = 0.01 is considered. There-

fore, Tsol only moderately grows from 4.29× 10−1 s to 18.58 s. Unfortunately this

3.2. NUMERICAL RESULTS 129

Nonlinear solid model – Mesh refinement test

Coupling with mesh intersection

procs = 32, T = 2, ∆t = 0.01

DOFs vol. loss (%) Tasm(s) Tcoup(s) block-diag block-tri

nit its Tsol(s) Ttot(s) nit its Tsol(s) Ttot(s)

21,222 1.70 7.24e-3 6.08e-2 2 245 13.28 2.67e+3 2 21 1.56 3.24e+2

83,398 1.47 2.87e-2 8.41e-1 2 269 47.78 9.72e+3 2 23 5.57 1.28e+3

186,534 1.47 6.34e-2 4.10 3 388 1.55e+2 3.19e+4 3 26 14.38 3.71e+3

330,630 1.47 1.13e-1 9.05 3 406 2.59e+2 5.37e+4 3 27 23.95 6.62e+3

515,686 - - - - - - - - - - -

741,702 - - - - - - - - - - -

Table 3.10: Refining the mesh for the nonlinear solid model, coupling with mesh

intersection. The simulations are run on the Shaheen cluster. procs = number

of processors; DOFs = degrees of freedom; vol. loss = loss of structure volume

in percentage; Tasm = CPU time to assemble the stiffness and mass matrices;

Tcoup = CPU time to assemble the coupling term; nit = Newton iterations; its =

GMRES iterations to solve the Jacobian system; Tsol = CPU time to solve the

Jacobian system; Ttot = total simulation CPU time. The quantities Tcoup and nit

are averaged over the time steps, whereas the quantities its and Tsol are averaged

over the Newton iterations and the time steps. All CPU times are reported in

seconds.

improvement is not confirmed for the non intersection case, for which we reach an

average number of 516 linear iterations per Newton iteration, which is still large

even if very far from the 3, 000 its we observed in Table 3.11.

Weak scalability

In order to study the weak scalability, we set the final time T to be just 0.1 so that

considering ∆t = 0.002, we post-process data of 50 time instants. The results of

our simulations are reported in Table 3.14, for the case with mesh intersection, and

in Table 3.15 for the case without mesh intersection. The number of processors is

doubled four times starting from 4, while the number of DOFs goes from 64,014 to

1,008,678 accordingly with the same law, so that #DOFs
#cores

is almost kept constant.

As we already observed for the linear case, the assembly time Tcoup of the

interface matrix is not weakly scalable in general: when the exact quadrature is

considered, it goes from 1.30 s up to 41.81 s; on the other hand, for the approximate

130 CHAPTER 3. A PARALLEL SOLVER

Nonlinear solid model – Mesh refinement test

Coupling without mesh intersection

procs = 32, T = 2, ∆t = 0.01

DOFs vol. loss (%) Tasm(s) Tcoup(s) block-diag block-tri

nit its Tsol(s) Ttot(s) nit its Tsol(s) Ttot(s)

21,222 3.50e-1 4.90e-3 1.61e-2 3 245 7.26 4.49e+3 3 11 5.47e-1 331.91

83,398 2.07e-1 2.04e-2 6.89e-2 3 498 43.32 2.70e+4 3 14 1.99 1.24e+3

186,534 1.36e-1 4.56e-2 2.15e-1 3 1,572 308.33 1.85e+5 3 16 4.92 3.18e+3

330,630 9.97e-2 8.20e-2 6.42e-1 3 3,001 924.25 5.55e+5 3 18 8.63 5.95e+3

515,686 7.16e-2 1.26e-1 1.85 - - - - 3 25 17.71 1.31e+4

741,702 5.34e-2 3.19e-1 5.45 - - - - 3 30 28.59 2.19e+4

Table 3.11: Refining the mesh in the nonlinear solid model, coupling without mesh

intersection. The simulations are run on the EOS cluster. Same format as Table

3.10.

Nonlinear solid model – Mesh refinement test

Coupling with mesh intersection

procs = 64, T = 2, ∆t = 0.001

DOFs vol. loss (%) Tasm(s) Tcoup(s) block-diag block-tri

nit its Tsol(s) Ttot(s) nit its Tsol(s) Ttot(s)

21,222 1.71 4.04e-3 3.89e-2 2 11 4.29e-1 9.35e+2 2 8 3.93e-1 8.64e+2

83,398 1.47 1.68e-2 3.60e-1 2 12 1.67 4.06e+3 2 8 1.57 3.86e+3

186,534 1.49 3.80e-2 1.57 2 14 4.23 1.16e+4 2 9 4.00 1.11e+4

330,630 1.48 6.68e-2 4.77 2 14 7.71 2.49e+4 2 10 7.07 2.37e+4

515,686 1.44 1.05e-1 11.40 2 15 13.03 4.92e+4 2 10 11.48 4.58e+4

741,702 1.42 1.52e-1 23.23 2 15 18.58 8.49e+4 2 10 16.63 7.98e+4

Table 3.12: Refining the mesh in the nonlinear solid model, coupling with mesh

intersection. The simulations are run on the Shaheen cluster. Same format as

Table 3.10.

3.2. NUMERICAL RESULTS 131

Nonlinear solid model – Mesh refinement test

Coupling without mesh intersection

procs = 64, T = 2, ∆t = 0.001

DOFs vol. loss (%) Tasm(s) Tcoup(s) block-diag block-tri

nit its Tsol(s) Ttot(s) nit its Tsol(s) Ttot(s)

21,222 4.09e-1 4.33e-3 2.65e-2 2 21 6.21e-1 1.30e+3 2 12 4.95e-1 1.04e+3

83,398 2.70e-1 1.70e-2 1.45e-1 3 87 5.50 1.13e+4 3 14 2.13 4.55e+3

186,534 1.98e-1 3.81e-2 4.75e-1 3 270 30.83 6.26e+4 3 18 5.77 1.25e+4

330,630 1.58e-1 6.69e-2 1.58 3 516 1.00e+2 2.04e+5 3 20 10.66 2.45e+4

515,686 1.31e-1 1.05e-1 8.38 - - - - 3 23 17.62 5.20e+4

741,702 1.15e-1 1.52e-1 32.37 - - - - 3 24 26.46 1.18e+5

Table 3.13: Refining the mesh in the nonlinear solid model, coupling without mesh

intersection. The simulations are run on the Shaheen cluster. Same format as

Table 3.10.

technique we get better results, not so far to be scalable, since the minimum value

assumed by Tcoup is 2.82× 10−1 s, while the maximum value is 3.47 s.

In relation to the preconditioners, the results of the previous tests are con-

firmed. Block–diag cannot be used when the coupling term is inexactly constructed

since the average number of GMRES iterations per nonlinear iteration assumes

large values, such as its = 1, 952 when procs = 8. Better results are reported in

Table 3.14: the number of GMRES iterations grows from 23 to 68 affecting Tsol,

which increases from 5.22 s to 196.66 s: it is evident that, even if the results in this

case seem to be better, this preconditioner is not scalable.

For block–tri the situation is different. When the coupling term is assembled

with intersection, even if it is not perfectly scalable if we look at the solution time,

the average number of linear iterations per Newton iteration is almost constant,

increasing only from 15 to 18. The lack of scalability is evident for the other

assembly technique: indeed, from Table 3.15, we can see that its doubles its value,

from 20 to 40 between the first and the last simulation.

Strong scalability

The study of strong scalability is only performed on the block–tri preconditioner

since we observed poor performance for block–diag. For this test, we fix both fluid

and solid meshes so that the total amount of degrees of freedom corresponds to

515,686. The simulations are done increasing the number of processors from 4 to

132 CHAPTER 3. A PARALLEL SOLVER

Nonlinear solid model – Weak scalability test

Coupling with mesh intersection

T = 0.1, ∆t = 0.002

procs DOFs Tasm(s) Tcoup(s) block-diag block-tri

nit its Tsol(s) Ttot(s) nit its Tsol(s) Ttot(s)

4 64,014 1.36e-1 1.30 3 23 5.22 326.29 3 15 4.17 273.29

8 129,846 9.45e-2 2.51 3 29 10.76 663.37 3 15 7.35 493.16

16 253,462 9.74e-2 5.17 3 41 26.16 1.57e+3 3 16 13.72 944.30

32 515,686 1.70e-1 13.53 3 58 77.10 4.53e+3 3 17 33.14 2.33e+3

64 1,008,678 1.77e-1 41.81 3 68 196.66 1.19e+4 3 18 78.42 6.01e+3

Table 3.14: Weak scalability for the nonlinear solid model, coupling with mesh

intersection. The simulations are run on the Shaheen cluster. Same format as

Table 3.10.

Nonlinear solid model – Weak scalability test

Coupling without mesh intersection

T = 0.1, ∆t = 0.002

procs DOFs Tasm(s) Tcoup(s) block-diag block-tri

nit its Tsol(s) Ttot(s) nit its Tsol(s) Ttot(s)

4 64,014 8.27e-2 3.40e-1 3 89 14.46 739.84 3 20 5.16 275.04

8 129,846 9.52e-2 2.82e-1 3 1952 502.61 2.51e+4 3 29 11.34 581.25

16 253,462 9.61e-2 4.21e-1 3 722 361.60 1.81e+4 3 26 19.79 1.01e+3

32 515,686 1.81e-1 1.14 - - - - 3 57 79.67 4.04e+3

64 1,008,678 1.74e-1 3.47 - - - - 3 40 136.61 7.00e+3

Table 3.15: Weak scalability for the nonlinear solid model, coupling without mesh

intersection. The simulations are run on the Shaheen cluster. Same format as

Table 3.10.

3.2. NUMERICAL RESULTS 133

64. As for the linear problem, the speed up factor Sp is computed referring to the

total time Ttot of the 4 processors run.

Table 3.16 shows the results of the simulation carried out with exact coupling.

The final time is set to T = 2 and the time step is ∆t = 0.002. On the other hand,

in Table 3.17 we collect the results for the simulation with approximate coupling:

for this case, we have again T = 2, but we choose a different time step, ∆t = 0.01.

For both tests, the values of Tcoup confirm the behavior we already observed

with the linear model: in the case with intersection it scales linearly as we increase

the number of processors, while for the non intersection test the rate is even higher.

Moreover, the number of Newton iterations nit and the average number of GMRES

iterations present a scalable behavior since they remain bounded: in particular,

nit is always bounded by 3, while its is bounded by 6 in Table 3.16 and by 33 in

Table 3.17. However, the solution time Tsol is not scalable, therefore Tsol impairs the

global performance of the solver producing speed up values far from the theoretical

estimates.

Time step refinement

As already done for the linear solid model, we discuss how the solver behaves

when several choices of time step are considered; in particular the coarsest case

corresponds to ∆t = 0.02, while the finest one is related to ∆t = 0.001. We set

again T = 2 and we discretize the problem with a total amount of 515,686 degrees

of freedom.

The results of our simulations are reported in Table 3.18 (coupling with mesh

intersection) and Table 3.19 (coupling without mesh intersection). We notice that,

for the first case, the volume loss is constant, while in the second case, it increases

by one order of magnitude when the time step is refined. This results are in line

with all the previous tests.

Looking at the assembly times, Tasm keeps a constant value. On the other hand,

Tcoup is in average almost constant when Cf (X
n
h) is assembled exactly, assuming

values between 11 s and 12 s, whereas it drastically decreases (from 51.20 s to

8.62 s) when Cf (X
n
h) is computed with approximated integrals.

In terms of preconditioners, we see again that block–diag is not robust. From

Table 3.18, it behaves well only when a very fine time step is considered (for

∆t = 0.001 the average number of linear iterations per nonlinear iteration is 16),

but this is not anymore true when the interface matrix is assembled without mesh

134 CHAPTER 3. A PARALLEL SOLVER

Nonlinear solid model – Strong scalability test

Coupling with mesh intersection

DOFs = 515686, T = 2, ∆t = 0.002

procs Tasm(s) Tcoup(s) block-tri

nit its Tsol(s) Ttot (s) Sp

4 6.79e-1 80.89 2 6 11.17 1.05e+5 -

8 3.96e-1 38.71 2 6 9.02 5.79e+4 1.81 (2)

16 2.71e-1 21.10 2 6 9.33 4.10e+4 2.56 (4)

32 1.71e-1 12.53 2 6 7.55 2.86e+4 3.67 (8)

64 1.00e-1 8.44 2 6 13.29 3.68e+4 2.85 (16)

Table 3.16: Strong scalability for the nonlinear solid model, coupling with mesh

intersection. The simulations are run on the EOS cluster. DOFs = degrees of

freedom; procs = number of processors; Tasm = CPU time to assemble the stiffness

and mass matrices; Tcoup = CPU time to assemble the coupling term; nit = Newton

iterations; its = GMRES iterations to solve the Jacobian system; Tsol = CPU time

to solve the Jacobian system; Ttot = total simulation CPU time; Sp = parallel

speedup computed with respect to the 4 processors run. The theoretical speed

up is reported between brackets. The quantities Tcoup and nit are averaged over

the time steps, whereas the quantities its and Tsol are averaged over the Newton

iterations and the time steps. All CPU times are reported in seconds.

intersection. Conversely, block–tri seems more robust: for the intersection case, its

is bounded by 19 and it reduces when ∆t decreases, whereas it assumes larger

values for simulations without mesh intersection: in this case, its decreases from

193 (∆t = 0.02) to 23 (∆t = 0.001).

We remark that in some cases the solver fails due to the nonlinear Newton

iterator.

3.3 Final remarks

As already mentioned before, the design of efficient parallel solvers for coupled

problems is not an easy task under several aspects. For instance, the discretization

of the coupling term requires computations over non matching meshes. In our

3.3. FINAL REMARKS 135

Nonlinear solid model – Strong scalability test

Coupling without mesh intersection

DOFs = 515686, T = 2, ∆t = 0.01

procs Tasm(s) Tcoup(s) block-tri

nit its Tsol(s) Ttot (s) Sp

4 6.31e-1 185.50 3 33 30.49 5.93e+4 -

8 3.75e-1 22.85 3 33 27.62 2.48e+4 2.39 (2)

16 1.79e-1 4.74 3 29 24.79 1.91e+4 3.10 (4)

32 1.19e-1 2.51 3 25 18.26 1.36e+4 4.36 (8)

64 1.05e-1 8.77e-1 3 22 25.24 1.81e+4 3.28 (16)

Table 3.17: Strong scalability for the nonlinear solid model, coupling without mesh

intersection. The simulations are run on the EOS cluster. Same format as Ta-

ble 3.16.

Nonlinear solid model – Time step refinement test

Coupling with mesh intersection

DOFs = 515686, procs = 64, T = 2

∆t vol. loss (%) Tasm(s) Tcoup(s) block-diag block-tri

nit its Tsol(s) Ttot(s) nit its Tsol(s) Ttot(s)

0.02 - - - - - - failed - - - failed

0.01 - - - - - - failed - - - failed

0.005 1.44 1.06e-1 12.04 2 227 71.35 3.34e+4 2 19 14.97 1.08e+4

0.002 1.44 1.06e-1 11.43 2 59 25.49 3.70e+4 2 13 12.53 2.40e+4

0.001 1.44 1.06e-1 11.24 2 16 13.14 4.91e+4 2 10 11.44 4.54e+4

Table 3.18: Refining the time step ∆t for the nonlinear solid model, coupling with

mesh intersection. The simulations are run on Shaheen cluster. Same format as

Table 3.10.

136 CHAPTER 3. A PARALLEL SOLVER

Nonlinear solid model – Time step refinement test

Coupling without mesh intersection

DOFs = 515686, procs = 64, T = 2

∆t vol. loss (%) Tasm(s) Tcoup(s) block-diag block-tri

nit its Tsol(s) Ttot(s) nit its Tsol(s) Ttot(s)

0.02 1.08e-2 1.06e-1 51.20 - - - failed 4 193 65.66 1.17e+4

0.01 7.16e-2 1.06e-1 35.86 - - - failed 3 80 37.16 1.46e+4

0.005 1.04e-1 1.06e-1 24.28 - - - failed 3 48 26.25 2.03e+4

0.002 1.24e-1 1.05e-1 13.49 3 955 283.82 2.95e+5 3 30 20.69 3.42e+4

0.001 1.31e-1 8.66e-2 8.62 3 710 214.62 4.46e+5 3 23 17.89 5.30e+4

Table 3.19: Refining the time step ∆t for the nonlinear solid model, coupling with-

out mesh intersection. The simulations are run on Shaheen cluster. Same format

as Table 3.18.

implementation we have chosen the easiest algorithm one can consider: it is based

on two nested loops with only the external one distributed over the processors so

that each solid element is tested against all fluid elements. This choice affects the

properties of the solver: indeed, the procedure is strongly scalable but not weakly

scalable. In this second case, the increase of run time is significant. In order to

improve this procedure, other techniques may be considered for future studies: for

instance, one can keep track of the position of the solid body at the previous time

step to reduce the number of element by element pairs to be tested; an alternative

approach may be designed considering a K–nearest neighbors algorithm so that at

each time step a solid element is tested with few fluid elements in dependence of

its position.

Regarding the preconditioners, it is clear that block–diag is not suitable under

several aspects: in the case of the linear solid model, it suffers when combined

with the exact integration of the coupling term, showing an iteration count larger

than 100. For the nonlinear solid model, it performs poorly when combined with

the inexact assembly of Cf , since the order of magnitude of the average GMRES

iteration count is 103. Conversely, the overall behavior of block–tri is acceptable

since its performance is not strongly influenced by the choice of assembly tech-

nique for the interface matrix. Block–tri behaves well for both class of problems,

while is strongly scalable only when applied to linear problems. The lack of weak

scalability is evident, but more acceptable than for block–diag. Another limitation

may be represented by the exact inversion of the diagonal blocks: this operation is

3.3. FINAL REMARKS 137

slow when very fine meshes are considered. This choice has been done since some

preliminary tests showed bad results when the solid block A22 is inexactly inverted.

This is probably the main aspect we should improve in future studies.

Finally, from the modeling point of view, several extensions are possible. For

instance, we may consider the full Navier–Stokes problem reintroducing the non-

linear convective term, while for the structure, we may consider also anisotropic

constitutive laws. Finally, the biggest challenge is represented by the simulation of

three dimensional problems related to real world phenomena.

138 CHAPTER 3. A PARALLEL SOLVER

Bibliography

[1] F. Alauzet, B. Fabrèges, M. A. Fernández, and M. Landajuela. Nitsche-XFEM

for the coupling of an incompressible fluid with immersed thin-walled struc-

tures. Computer Methods in Applied Mechanics and Engineering, 301:300–

335, 2016.

[2] N. Alshehri, D. Boffi, and L. Gastaldi. Unfitted mixed finite element methods

for elliptic interface problems. Numerical Methods for Partial Differential

Equations, 1-24, 2023.

[3] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asyn-

chronous multifrontal solver using distributed dynamic scheduling. SIAM J.

Matr. Anal. Appl., 23(1):15–41, 2001.

[4] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hy-

brid scheduling for the parallel solution of linear systems. Paral. Comput.,

32(2):136–156, 2006.

[5] D. Arndt, W. Bangerth, M. Feder, M. Fehling, R. Gassmöller, T. Heister,

L. Heltai, M. Kronbichler, M. Maier, P. Munch, et al. The deal.II library,

version 9.4. Journal of Numerical Mathematics, 30(3):231–246, 2022.

[6] P. J. Atzberger, P. R. Kramer, and C. S. Peskin. A stochastic immersed

boundary method for fluid-structure dynamics at microscopic length scales.

Journal of Computational Physics, 224(2):1255–1292, 2007.

[7] I. Babuška. The finite element method with Lagrangian multipliers. Nu-

merische Mathematik, 20(3):179–192, 1973.

139

140 BIBLIOGRAPHY

[8] S. Badia, F. Nobile, and C. Vergara. Fluid–structure partitioned procedures

based on Robin transmission conditions. Journal of Computational Physics,

227(14):7027–7051, 2008.

[9] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman,

L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May,

L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith,

S. Zampini, H. Zhang, and H. Zhang. PETSc users manual. Technical Report

ANL-95/11 - Revision 3.9, Argonne National Laboratory, 2018.

[10] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschel-

man, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,

D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan,

B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc Web page.

http://www.mcs.anl.gov/petsc, 2018.

[11] D. Balzani, S. Deparis, S. Fausten, D. Forti, A. Heinlein, A. Klawonn,

A. Quarteroni, O. Rheinbach, and J. Schroeder. Numerical modeling of fluid–

structure interaction in arteries with anisotropic polyconvex hyperelastic and

anisotropic viscoelastic material models at finite strains. International Jour-

nal for Numerical Methods in Biomedical Engineering, page e02756, 2016.

[12] A. T. Barker and X.-C. Cai. Scalable parallel methods for monolithic coupling

in fluid–structure interaction with application to blood flow modeling. Journal

of Computational Physics, 229:642–659, 2010.

[13] M. Bercovier and O. Pironneau. Error estimates for finite element method

solution of the Stokes problem in the primitive variables. Numerische Math-

ematik, 33(2):211–224, 1979.

[14] R. P. Beyer. A computational model of the cochlea using the immersed bound-

ary method. Journal of Computational Physics, 98(1):145–162, 1992.

[15] D. Boffi, F. Brezzi, and M. Fortin. Mixed finite element methods and applica-

tions, volume 44. Springer, 2013.

[16] D. Boffi, A. Cangiani, M. Feder, L. Gastaldi, and L. Heltai. A comparison

of non-matching techniques for the finite element approximation of interface

problems. Comput. Math. Appl., 151:101–115, 2023.

BIBLIOGRAPHY 141

[17] D. Boffi, N. Cavallini, F. Gardini, and L. Gastaldi. Local mass conservation of

Stokes finite elements. Journal of scientific computing, 52(2):383–400, 2012.

[18] D. Boffi, N. Cavallini, and L. Gastaldi. Finite element approach to immersed

boundary method with different fluid and solid densities. Mathematical Models

and Methods in Applied Sciences, 21(12):2523–2550, 2011.

[19] D. Boffi, N. Cavallini, and L. Gastaldi. The finite element immersed boundary

method with distributed Lagrange multiplier. SIAM Journal on Numerical

Analysis, 53(6):2584–2604, 2015.

[20] D. Boffi, F. Credali, and L. Gastaldi. On the interface matrix for

fluid–structure interaction problems with fictitious domain approach. Com-

puter Methods in Applied Mechanics and Engineering, 401:115650, 2022.

[21] D. Boffi, F. Credali, L. Gastaldi, and S. Scacchi. A parallel solver for

fluid structure interaction problems with Lagrange multiplier. arXiv preprint

arXiv:2212.13410, 2022.

[22] D. Boffi, F. Credali, L. Gastaldi, and S. Scacchi. A parallel solver for FSI

problems with fictitious domain approach. Mathematical and Computational

Applications, 28(2), 2023.

[23] D. Boffi and L. Gastaldi. A finite element approach for the immersed boundary

method. Computers & structures, 81(8-11):491–501, 2003.

[24] D. Boffi and L. Gastaldi. A fictitious domain approach with Lagrange multi-

plier for fluid-structure interactions. Numerische Mathematik, 135(3):711–732,

2017.

[25] D. Boffi and L. Gastaldi. On the existence and the uniqueness of the solution

to a fluid-structure interaction problem. Journal of Differential Equations,

279:136–161, 2021.

[26] D. Boffi and L. Gastaldi. Existence, uniqueness, and approximation of a ficti-

tious domain formulation for fluid-structure interactions. Rendiconti Lincei,

33(1):109–137, 2022.

142 BIBLIOGRAPHY

[27] D. Boffi, L. Gastaldi, and L. Heltai. Numerical stability of the finite element

immersed boundary method. Mathematical Models and Methods in Applied

Sciences, 17(10):1479–1505, 2007.

[28] D. Boffi, L. Gastaldi, and L. Heltai. On the CFL condition for the finite

element immersed boundary method. Computers & Structures, 85(11-14):775–

783, 2007.

[29] D. Boffi, L. Gastaldi, L. Heltai, and C. S. Peskin. On the hyper-elastic for-

mulation of the immersed boundary method. Computer Methods in Applied

Mechanics and Engineering, 197(25-28):2210–2231, 2008.

[30] D. Boffi, L. Gastaldi, and M. Ruggeri. Mixed formulation for interface prob-

lems with distributed Lagrange multiplier. Computers & Mathematics with

Applications, 68(12):2151–2166, 2014.

[31] D. Boffi, L. Gastaldi, and S. Wolf. Higher-order time-stepping schemes

for fluid-structure interaction problems. Discrete & Continuous Dynamical

Systems-B, 22(11):3807–3830, 2017.

[32] S. C. Brenner and L. R. Scott. The mathematical theory of finite element

methods, volume 3. Springer, 2008.

[33] J. Brezina and P. Exner. Fast algorithms for intersection of non-matching

grids using Plücker coordinates. Computers & Mathematics with Applications,

74(1):174–187, 2017.

[34] F. Brezzi. On the existence, uniqueness and approximation of saddle-point

problems arising from Lagrangian multipliers. Publications mathématiques et

informatique de Rennes, (S4):1–26, 1974.

[35] E. Burman and M. A. Fernández. An unfitted Nitsche method for incompress-

ible fluid–structure interaction using overlapping meshes. Computer Methods

in Applied Mechanics and Engineering, 279:497–514, 2014.

[36] P. Causin, J.-F. Gerbeau, and F. Nobile. Added-mass effect in the design

of partitioned algorithms for fluid–structure problems. Computer Methods in

Applied Mechanics and Engineering, 194(42):4506–4527, 2005.

BIBLIOGRAPHY 143

[37] Y.-C. Chang, T. Hou, B. Merriman, and S. Osher. A level set formulation of

Eulerian interface capturing methods for incompressible fluid flows. Journal

of computational Physics, 124(2):449–464, 1996.

[38] A. Chaudhuri, A. Hadjadj, and A. Chinnayya. On the use of immersed

boundary methods for shock/obstacle interactions. Journal of Computational

Physics, 230(5):1731–1748, 2011.

[39] W. Chen, M. Gunzburger, D. Sun, and X. Wang. Efficient and long-time

accurate second-order methods for the Stokes–Darcy system. SIAM Journal

on Numerical Analysis, 51(5):2563–2584, 2013.

[40] Z. Chen and C. S. Peskin. A Fourier spectral immersed boundary method with

exact translation invariance, improved boundary resolution, and a divergence-

free velocity field. arXiv preprint arXiv:2302.08694, 2023.

[41] P. G. Ciarlet. The finite element method for elliptic problems. SIAM, 2002.

[42] A. Cioncolini and D. Boffi. The MINI mixed finite element for the Stokes

problem: An experimental investigation. Computers & Mathematics with Ap-

plications, 77(9):2432–2446, 2019.

[43] A. Cioncolini and D. Boffi. Superconvergence of the MINI mixed finite element

discretization of the Stokes problem: An experimental study in 3D. Finite

Elements in Analysis and Design, 201:103706, 2022.

[44] P. Crosetto, S. Deparis, G. Fourestey, and A. Quarteroni. Parallel algorithms

for fluid-structure interaction problems in haemodynamics. SIAM Journal on

Scientific Computing, 33(4):1598–1622, 2011.

[45] A. Delfino, N. Stergiopulos, J. Moore Jr, and J.-J. Meister. Residual strain

effects on the stress field in a thick wall finite element model of the human

carotid bifurcation. Journal of biomechanics, 30(8):777–786, 1997.

[46] S. Deparis, M. A. Fernández, and L. Formaggia. Acceleration of a fixed

point algorithm for fluid-structure interaction using transpiration conditions.

ESAIM: Mathematical Modelling and Numerical Analysis, 37(4):601–616,

2003.

144 BIBLIOGRAPHY

[47] S. Deparis, D. Forti, G. Grandperrin, and A. Quarteroni. FaCSI: A block par-

allel preconditioner for fluid–structure interaction in hemodynamics. Journal

of Computational Physics, 327:700–718, 2016.

[48] J. Donéa, P. Fasoli-Stella, and S. Giuliani. Lagrangian and Eulerian finite

element techniques for transient fluid-structure interaction problems. 1977.

[49] J. Donea, A. Huerta, J.-P. Ponthot, and A. Rodríguez-Ferran. Arbitrary

Lagrangian-Eulerian methods. Encyclopedia of computational mechanics,

2004.

[50] S. Dong. BDF-like methods for nonlinear dynamic analysis. Journal of Com-

putational physics, 229(8):3019–3045, 2010.

[51] T. Dupont and R. Scott. Polynomial approximation of functions in Sobolev

spaces. Mathematics of Computation, 34(150):441–463, 1980.

[52] R. Durán, L. Gastaldi, and A. Lombardi. Analysis of finite element approxima-

tions of Stokes equations with nonsmooth data. SIAM Journal on Numerical

Analysis, 58(6):3309–3331, 2020.

[53] H. Eichel, L. Tobiska, and H. Xie. Supercloseness and superconvergence of

stabilized low-order finite element discretizations of the Stokes problem. Math-

ematics of computation, 80(274):697–722, 2011.

[54] P. Farrell and J. Maddison. Conservative interpolation between volume

meshes by local Galerkin projection. Computer Methods in Applied Mechanics

and Engineering, 200(1-4):89–100, 2011.

[55] L. J. Fauci and C. S. Peskin. A computational model of aquatic animal

locomotion. Journal of Computational Physics, 77(1):85–108, 1988.

[56] M. A. Fernández and M. Moubachir. A Newton method using exact Jacobians

for solving fluid–structure coupling. Computers & Structures, 83(2-3):127–

142, 2005.

[57] J. E. Fromm, N. Wunsch, R. Xiang, H. Zhao, K. Maute, J. A. Evans, and

D. Kamensky. Interpolation-based immersed finite element and isogeomet-

ric analysis. Computer Methods in Applied Mechanics and Engineering,

405:115890, 2023.

BIBLIOGRAPHY 145

[58] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh genera-

tor with built-in pre-and post-processing facilities. International journal for

numerical methods in engineering, 79(11):1309–1331, 2009.

[59] V. Girault and P.-A. Raviart. Finite element approximation of the Navier-

Stokes equations, volume 749. Springer Berlin, 1979.

[60] R. Glowinski, T.-W. Pan, T. I. Hesla, D. D. Joseph, and J. Periaux. A fictitious

domain approach to the direct numerical simulation of incompressible viscous

flow past moving rigid bodies: application to particulate flow. Journal of

computational physics, 169(2):363–426, 2001.

[61] R. Glowinski, T.-W. Pan, and J. Periaux. A Lagrange multiplier/fictitious

domain method for the numerical simulation of incompressible viscous flow

around moving rigid bodies:(i) case where the rigid body motions are known

a priori. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics,

324(3):361–369, 1997.

[62] S. Hartmann and P. Neff. Polyconvexity of generalized polynomial-type hy-

perelastic strain energy functions for near-incompressibility. International

journal of solids and structures, 40(11):2767–2791, 2003.

[63] A. Heinlein, A. Klawonn, and O. Rheinbach. A parallel implementation of a

two-level overlapping Schwarz method with energy-minimizing coarse space

based on Trilinos. SIAM Journal on Scientific Computing, 38(6):C713–C747,

2016.

[64] L. Heltai. The finite element immersed boundary method. PhD thesis, 2006.

[65] L. Heltai. On the stability of the finite element immersed boundary method.

Computers & Structures, 86(7-8):598–617, 2008.

[66] L. Heltai and F. Costanzo. Variational implementation of immersed finite

element methods. Computer Methods in Applied Mechanics and Engineering,

229:110–127, 2012.

[67] C. W. Hirt, A. A. Amsden, and J. Cook. An arbitrary Lagrangian-Eulerian

computing method for all flow speeds. Journal of computational physics,

14(3):227–253, 1974.

146 BIBLIOGRAPHY

[68] G. A. Holzapfel, T. C. Gasser, and R. W. Ogden. A new constitutive frame-

work for arterial wall mechanics and a comparative study of material models.

Journal of elasticity and the physical science of solids, 61:1–48, 2000.

[69] G. Hou, J. Wang, and A. Layton. Numerical methods for fluid-structure

interaction—a review. Communications in Computational Physics, 12(2):337–

377, 2012.

[70] T. J. Hughes, W. K. Liu, and T. K. Zimmermann. Lagrangian-Eulerian finite

element formulation for incompressible viscous flows. Computer methods in

applied mechanics and engineering, 29(3):329–349, 1981.

[71] D. Jodlbauer, U. Langer, and T. Wick. Parallel block–preconditioned mono-

lithic solvers for fluid-structure interaction problems. Internation Journal for

Numerical Methods in Engineering, 117:623–643, 2019.

[72] D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal,

Y. Bazilevs, M. S. Sacks, and T. J. Hughes. An immersogeometric variational

framework for fluid–structure interaction: Application to bioprosthetic heart

valves. Computer methods in applied mechanics and engineering, 284:1005–

1053, 2015.

[73] Y. Kim and C. S. Peskin. Penalty immersed boundary method for an elastic

boundary with mass. Physics of Fluids, 19(5), 2007.

[74] R. Krause and P. Zulian. A parallel approach to the variational transfer

of discrete fields between arbitrarily distributed unstructured finite element

meshes. SIAM Journal on Scientific Computing, 38(3):C307–C333, 2016.

[75] M.-C. Lai and C. S. Peskin. An immersed boundary method with formal

second-order accuracy and reduced numerical viscosity. Journal of Computa-

tional Physics, 160(2):705–719, 2000.

[76] C. Lang, D. Makhija, A. Doostan, and K. Maute. A simple and efficient pre-

conditioning scheme for heaviside enriched XFEM. Computational Mechanics,

54:1357–1374, 2014.

[77] C. Lehrenfeld and A. Reusken. Optimal preconditioners for Nitsche-XFEM

discretizations of interface problems. Numerische Mathematik, 135:313–332,

2017.

BIBLIOGRAPHY 147

[78] S. Lim and C. S. Peskin. Fluid-mechanical interaction of flexible bacterial

flagella by the immersed boundary method. Physical Review E, 85(3):036307,

2012.

[79] J. L. Lions and E. Magenes. Non-homogeneous boundary value problems and

applications: Vol. 1, volume 181. Springer Science & Business Media, 2012.

[80] Y. Maday, F. Rapetti, and B. I. Wohlmuth. The influence of quadrature

formulas in 2D and 3D mortar element methods. In Recent Developments in

Domain Decomposition Methods, pages 203–221. Springer, 2002.

[81] A. Massing, M. G. Larson, and A. Logg. Efficient implementation of finite el-

ement methods on nonmatching and overlapping meshes in three dimensions.

SIAM Journal on Scientific Computing, 35(1):C23–C47, 2013.

[82] D. M. McQueen and C. S. Peskin. A three-dimensional computational method

for blood flow in the heart. II. contractile fibers. Journal of Computational

Physics, 82(2):289–297, 1989.

[83] R. W. Ogden. Non-linear elastic deformations. Courier Corporation, 1997.

[84] Y. Okamoto, K. Fujiwara, and Y. Ishihara. Effectiveness of higher order

time integration in time-domain finite-element analysis. IEEE transactions

on magnetics, 46(8):3321–3324, 2010.

[85] C. S. Peskin. Flow patterns around heart valves: a numerical method. Journal

of computational physics, 10(2):252–271, 1972.

[86] C. S. Peskin. The immersed boundary method. Acta numerica, 11:479–517,

2002.

[87] C. S. Peskin and D. M. McQueen. A three-dimensional computational method

for blood flow in the heart. I. immersed elastic fibers in a viscous incompress-

ible fluid. Journal of Computational Physics, 81(2):372–405, 1989.

[88] A. Posa, A. Lippolis, R. Verzicco, and E. Balaras. Large-eddy simulations

in mixed-flow pumps using an immersed-boundary method. Computers &

Fluids, 47(1):33–43, 2011.

148 BIBLIOGRAPHY

[89] A. M. Roma, C. S. Peskin, and M. J. Berger. An adaptive version of the

immersed boundary method. Journal of Computational Physics, 153(2):509–

534, 1999.

[90] S. Roy, L. Heltai, and F. Costanzo. Benchmarking the immersed finite element

method for fluid–structure interaction problems. Computers & Mathematics

with Applications, 69(10):1167–1188, 2015.

[91] S. Roy, L. Heltai, C. Drapaca, and F. Costanzo. An immersed finite element

method approach for brain Biomechanics. In Mechanics of Biological Sys-

tems and Materials, Volume 5: Proceedings of the 2012 Annual Conference

on Experimental and Applied Mechanics, pages 79–86. Springer, 2013.

[92] R. Stenberg. Analysis of mixed finite elements methods for the Stokes prob-

lem: a unified approach. Mathematics of computation, 42(165):9–23, 1984.

[93] R. Temam. Navier-Stokes equations: theory and numerical analysis, volume

343. American Mathematical Soc., 2001.

[94] M. Wichrowski, P. Krzyżanowski, L. Heltai, and S. Stupkiewicz. Exploiting

high-contrast Stokes preconditioners to efficiently solve incompressible fluid-

structure interaction problems. arXiv preprint arXiv:2305.08986, 2023.

[95] Y. Wu and X.-C. Cai. A fully implicit domain decomposition based ALE

framework for three–dimensional fluid–structure interaction with application

in blood flow computation. Journal of Computational Physics, 258:524–537,

2014.

[96] J. Xu and L. Zikatanov. Some observations on Babuška and Brezzi theories.

Numerische Mathematik, 94(1):195–202, 2003.

[97] L. Zhu and C. S. Peskin. Simulation of a flapping flexible filament in a flow-

ing soap film by the immersed boundary method. Journal of Computational

Physics, 179(2):452–468, 2002.

Part II

Model order reduction in support of

the Virtual Element Method

149

Introduction

Numerical analysis of partial differential equations is a key tool for the study and

the approximation of mathematical models arising, for instance, in engineering,

physics and biological studies. Classical examples are fluid-structure interaction

problems, discussed in the first part of this thesis, fracture and contact problems,

blood flow and biological networks formation.

Finite element methods are used to solve a wide range of PDEs since they

provide accurate results in efficient way, with solid theoretical foundations, also

in terms of error quantification in a priori and a posteriori settings. Complex

computational geometries are treated by making use of spatial decompositions

made up, in two dimensions, of triangles and quadrilaterals on which polynomial

spaces are defined.

These aspects are at the base of the simplicity of finite elements, but in recent

years several studies have been focused on the possibility of extending the method

so that meshes consisting of more general polygonal elements can be considered

too. The use of polytopal meshes provides more flexibility: for instance, compli-

cated geometries can be represented with a minimal number of elements, reducing

the computational cost, and hanging nodes are allowed, so that mesh adaptivity

operations are relatively easy to carry out.

A first kind of generalization of finite elements are the so-called Composite Fi-

nite Elements, originally introduced in [88, 87]. In this case, polygonal elements are

constructed by agglomeration of classical shaped elements. Conforming extensions

such as Polygonal FEM [115, 92, 108] and Extended FEM [79] were obtained by

enriching standard polynomial spaces with special shape functions able to capture

jumps and singularities.

Hybrid High–Order methods [75, 76, 77, 61] are designed to support general

polytopal meshes and arbitrary polynomial accuracy. This is achieved using two

ingredients: in each cell, a potential reconstruction is carried out and then a sta-

151

152

bilization term on each face is constructed accordingly to the high order provided

by the reconstruction itself. This procedure relies on additional unknowns, which

are then eliminated by static condensation.

Discontinuous Galerkin Methods [54, 63, 74, 91, 113, 62] are based on a lack

of continuity between elements and extremely general meshes can be employed.

The use of general geometries comes naturally since the exchange of information

between elements is managed with numerical fluxes. Moreover, this construction

is also independent of the degree of accuracy under consideration, so that both

h−refinement and p−refinement are easy to be carried out. Let us also observe

that, in this setting, polynomials are defined by making use of less degrees of

freedom than in classical finite elements on quadrilaterals (or hexahedra in 3D). In

addition, this family of methods is directly constructed in the physical framework,

without the need of resorting to reference elements and affine maps.

Finally, Virtual Element Methods [6, 12, 17] have been recently introduced as

evolution of the mimetic finite difference method [20, 94]. The computational do-

main can be decomposed in polytopes of a very general shape and each function is

described via a set of degrees of freedom. The local virtual element space is defined

considering the polynomials of degree ≤ k plus additional contributions provided

by (nonpolynomial) smooth functions which are themselves solutions of a PDE

inside the element. These local problems are not explicitly solved and the quanti-

ties of interests, such as stiffness and mass matrices, are computed using suitable

projections onto polynomials which are then completed by a stabilization term

dealing with the nonpolynomial part. Thus, the discretization space is employed

for designing the method and carrying out its analysis, but it is never fully evalu-

ated at numerical level. Virtual element algorithms appear robust: the optimality

has been proved under mesh regularity assumptions, but also observed in practice

in case of badly shaped meshes. Despite that, the method has also some limitations

caused by the virtual approach: solutions can only be accessed in nonconforming

way by means of projection onto discontinuous polynomial spaces and standard

stabilization terms produce polluted results is some particular situations.

In Chapter 4, we review the main features of the standard virtual element

formulation for second order elliptic problems. Then, in Chapter 5, we present a

reduced basis technique we designed as support tool for the lowest order VEM [64].

This technique can be exploited for different scopes and applied with different

degrees of accuracy and computational costs. In few words, since with this approach

153

we are able to compute rough approximations of the virtual basis functions, we

can design stabilization terms which are robust when standard choices show poor

performance. This happens, for instance, when anisotopic problems are considered.

Moreover, with this technique, we can reconstruct a virtual element solution in all

(or some) elements of the mesh to allow tasks like visualization and pointwise

evaluations of conforming solutions, which are not natural when the usual post-

processing technique based on polynomial projections is employed.

154

Chapter 4

The Virtual Element Method

Virtual element methods were introduced a decade ago by Beirão da Veiga, Brezzi

and collaborators in their pioneering works [6, 12, 1] as natural evolution of mimetic

finite difference schemes. During the design process, the nodal values characterizing

finite difference were replaced by degrees of freedom able to describe trial and test

functions as usual in Galerkin methods. For this reason, VEMs are commonly

considered as a generalization of the finite element method.

The virtual elements space, which can be constructed on polygonal/polyhedral

meshes even with very general shapes, is defined on each element of the decom-

position using polynomials of degree ≤ k, which are then enriched by additional

smooth functions so that unisolvence is ensured. These additional functions are

themselves solutions of suitable local PDE problems: at the beginning, the common

choice was a simple Laplace equation, but with the evolution of the methodology,

more complicated choices have been done, usually connected with the problem un-

der consideration. Anyway, these local problems are never required to be solved.

Indeed, if the space is properly defined, the bilinear form describing the considered

problem is exactly computed directly in terms of the degrees of freedom when at

least one of the entries is a polynomial of degree ≤ k. Thanks to this fact, suitable

projections onto polynomials are used to decompose the virtual space into the

direct sum of a polynomial space plus a residual space. In this way, the polyno-

mial contribution is exactly computed using only the information provided by the

degrees of freedom, while the nonpolynomial residual is dealt by means of stabi-

lization terms, which are just required to mimic the behavior of the bilinear form.

This stabilization term is basically arbitrarily chosen and influences stability and

conditioning of the method, as observed in [30, 55].

155

156 CHAPTER 4. THE VIRTUAL ELEMENT METHOD

The adjective virtual reflects the idea at the base of the discretization process:

indeed, the discrete space provides tools for constructing the method and its the-

oretical foundations, but it is never explicitly constructed at numerical level. The

method seeks for the solution in a conforming space, but using a non conforming

Galerkin approach based on approximate bilinear forms.

Since the resulting algorithms are flexible and guarantee optimal convergence of

the method, also when very badly shaped meshes are considered, virtual elements

gained particular attention by the scientific community and are being studied under

several aspects.

The development of mixed formulations is contextual to the birth of the method

itself. We mention the first work by Brezzi, Falk and Marini regarding the basic

principles of mixed virtual elements [52] and their application to general second

order elliptic problems [13]. Dassi and Vacca discussed the construction of projec-

tors and differential operators for high order mixed VEM [70], while the case of

curved edges in 2D has been addressed in [65].

Stability and a priori estimates for classical formulations have been studied

by Beirão da Veiga, Lovadina and Russo in [21] and by Chen and Huang [57]

contextually with Brenner, Guan and Sung [48]. Beirão da Veiga, Mascotto and

Meng recently focused on interpolation and stability properties for face and edge

virtual element spaces [26, 24], while serendipity elements have been introduced by

Beirão da Veiga, Brezzi, Marini and Russo in 2016 [14] and studied in subsequent

works [16, 10, 124, 25].

The a posteriori error analysis has been conducted by Cangiani, Georgoulis,

Pryer and Sutton in 2017 [55] and, two years later, by Beirão da Veiga, Manzini

and Mascotto [23]. In case of mixed formulations, we have the work by Cangiani

and Munar [56], whereas gradient recovery techniques are discussed in [86, 58, 122].

A first hp formulation on quasiuniform meshes has been presented by Beirão

da Veiga, Chernov and Mascotto [18] and following papers discussed, for instance,

the exponential convergence in presence of corner singularities [19], a posteriori

estimates and adaptivity [23].

Ayuso de Dios, Lipnikov and Manzini introduced a first nonconforming for-

mulation in [72], followed, for instance, by the work on nonconforming harmonic

virtual elements by Mascotto, Perugia and Pichler [100]. We also mention the work

by Di Pietro, Ern and collaborators about Hybrid High–Order methods [75, 76, 77],

which can be actually interpreted as nonconforming virtual elements.

157

The work of Bertoluzza, Pennacchio and Prada has been focused on curved

edges formulations [40], interior error estimates [42] as well as weakly imposed

Dirichlet conditions [43] and image-based domain approximations [38].

Finally, stabilization free formulations have been recently introduced and dis-

cussed by Berrone and collaborators [31, 32, 33].

Over the years, this family of methods has gained more and more attention from

engineers and mathematicians interested in applications, therefore implementation

techniques and computational libraries are widely discussed in literature. We refer

to the seminal hitchhiker’s guide [12], which has been recalled by Mascotto [98]

to describe how to construct the method with different monomial bases. Then,

we mention the 50 lines Matlab code by Sutton [116], the Matlab package mVEM

[127] and the recent work [89] focused on high order two dimensional VEM. We

finally cite the extensible object-oriented C++ library Veamy [109] and the popular

DUNE-VEM library by Dedner and Hodson [73].

Before listing some of the applications in which virtual elements have been

employed, we mention the paper [104], where VEM is analyzed with engineering

perspective, describing its interplay with the standard finite element methods.

We start citing the paper published in 2013 by Beirão da Veiga, Brezzi and

Marini about linear elasticity [11] and the work by Mora, Rivera and Rodriguez

about the Steklov eigenvalue problem [106], published in 2015. These two works,

beyond the application, contain important results in virtual elements theory.

Starting from [11], the studies regarding elasticity applications evolved during

the last decade thanks to the contribution of several groups: for instance, we have

papers focused on three dimensional problems [80], estimates for spectral analysis

[105], nonconforming formulations [128] and hybridization of virtual elements [67].

Regarding eigenvalue problems, Mora, Rivera, Rodriguez and collaborators

continued the analysis about the Steklov problem [107, 93], while problems origi-

nating from general elliptic equations have been tackled in conforming setting by

Gardini and Vacca [82], as well as by Boffi, Gardini and Gastaldi [46, 47]; noncon-

forming methods have been considered by Manzini, Gardini and Vacca [81].

Space-time formulations [84, 85], as well as virtual elements for the Helmholtz

equation [101, 102, 103] are under investigation by Perugia and collaborators.

Several formulations have been presented in the case of the Stokes equation.

For instance, Manzini and Mazzia adapted the popular Scott–Vogelius element

in virtual framework [96], while Beirão da Veiga, Lovadina and Vacca studied a

158 CHAPTER 4. THE VIRTUAL ELEMENT METHOD

divergence free method [22]. A stream formulation has been introduced in [3] by

Antonietti, Beirão da Veiga„ Mora and Verani. A theoretical study on the Stokes

complex have been conducted in [27].

Moving to more applied problems, we start mentioning the simulation of fluid

flow through porous media. Gatica, Sequeira and collaborators focused on the

Brinkman problem, in both linear and nonlinear framework [53, 83]. The work of

Berrone and collaborators regards two-phase flow of immiscible fluids in porous

media and fracture networks [34, 35], while Darcy flows have been considered, for

instance, in [118, 95, 121, 129, 66].

Wriggers, Reddy and collaborators applied virtual elements to contact and

deformations problems [126, 123, 125, 60], whereas geophysical applications and

discrete fracture networks are studied by Berrone and his group [29, 36, 35]. Ap-

plications to magnetostatic problems are discussed in [8, 7, 9].

Of course, the use of virtual elements to solve applied problems poses the issue

of the computational cost required to solve the linear system arising from the

discretization, especially when three dimensional problems are considered. This

aspect has led research towards the design of preconditioners. For instance, we

cite the works by Scacchi and collaborators about preconditioning of saddle point

problems [68, 69, 71, 45, 44] and Maxwell equations [5], as well as the results by

Bertoluzza, Pennacchio and Prada focused on preconditioners for general elliptic

problems [39, 111, 41].

At the end of this obviously non-exhaustive list, we mention the recent book

[2], the review article by Beirão da Veiga, Brezzi, Marini and Russo [17] and the

survey about stabilization terms by Mascotto [99].

In this chapter, we present the standard virtual elements formulation for sec-

ond order elliptic problems and it is structured as follows. The model problem is

described in Section 4.1, while in Section 4.2, we summarize the main geometrical

assumptions one should consider to obtain a working method. The construction

of discrete space, bilinear form and righ hand side is discussed in Section 4.3 and

Section 4.4 respectively. Finally, some basics theoretical estimates are discussed in

Section 4.5.

4.1. MODEL PROBLEM 159

4.1 Model problem

Let us consider as model problem a second order diffusion equation with homoge-

neous Dirichlet boundary conditions

− div
(
K ∇u

)
= f in Ω

u = 0 on ∂Ω,
(4.1)

where Ω ⊂ R2 is an open, bounded and connected polygonal domain and f ∈ L2(Ω)

the given right hand side. The diffusivity tensor K ∈ L∞(Ω) is a positive definite

matrix that we assume, for simplicity, to be constant.

The variational counterpart of (4.1) is given by the following formulation.

Problem 4.1.1. Find u ∈ V = H1
0(Ω) such that

∫

Ω

K∇u · ∇ v dx =

∫

Ω

f v dx ∀v ∈ V . (4.2)

This problem admits a unique solution thanks to the Lax–Milgram theorem [51]:

indeed, introducing the bilinear form

a : V × V −→ R

a(u, v) =

∫

Ω

K∇u · ∇ v dx
(4.3)

and the linear functional
F : V −→ R

F (v) =

∫

Ω

f v dx,
(4.4)

it is not difficult to see that the following properties are satisfied [78]:

• a is continuous, i.e. there exists a constant Ma = ‖K‖∞,Ω such that

a(u, v) ≤Ma |u|1,Ω |v|1,Ω ∀u, v ∈ V ; (4.5)

• a is coercive because, since K is positive definite, there exists a constant α

such that

a(v, v) ≥ α |v|21,Ω ∀v ∈ V ; (4.6)

• F is continuous because L2(Ω) ⊂ H−1(Ω), i.e there exists a constant MF such

that

F (v) ≤MF |v|1,Ω ∀v ∈ V. (4.7)

160 CHAPTER 4. THE VIRTUAL ELEMENT METHOD

4.2 Domain discretization

In order to numerically solve Problem 4.1.1, we will consider a family of decom-

positions for the domain Ω. From classical finite elements theory, we know that

assumptions on the regularity of the chosen triangulation are necessary to guar-

antee the convergence of the method [41]. The most common assumptions for

classical finite elements are the shape regularity condition and the minimum angle

condition.

1. Shape regularity condition. If {Th}h is a sequence of triangulations, there

exists a real number γ ∈ (0, 1), independent of h, such that for any triangle

T, the longest edge hT and its inradius rT satisfy

rT ≥ γ hT.

2. Minimum angle condition. If {Th}h is a sequence of triangulations, there

exists an angle θ0 > 0, independent of h, such that for any triangle T, its

minimal angle θT satisfies

θT ≥ θ0.

Even if virtual element methods allow the use of more general meshes, some

shape regularity conditions are still necessary. Since during the years and in de-

pendence of the application several conditions have been introduced [1, 19, 48, 50,

28, 37], we recall the assumptions presented in the first paper about the method

[6] with just some comments on possible extensions.

We remark that in [4, 114], the authors studied the behavior of the method

when the assumptions are stressed or violated.

Let us then consider a family of decompositions {Th}h for Ω made up of a finite

number of non-overlapping elements E.

Assumption 4.2.1 (Simple polygons). For every h, the decomposition is made

up of non overlapping simple polygons.

This means that each E ∈ Th is a simply connected open set without self-

intersections in the boundary.

For each element E, hE denotes its diameter, which is the maximum distance

between two points of E, that is

hE = sup
x,y∈E

|x − y|

4.2. DOMAIN DISCRETIZATION 161

and xE denotes the centroid. As usual, the mesh size h corresponds to maxE hE.

The notation ∂E is reserved for the boundary of E, which is supposed to be formed

by N straight edges, denoted by e; by abuse of notation e ∈ ∂E signifies that e is

an edge of E. The vertices are denoted by vn, for n =, 1 . . . , N . Moreover, |E| and

|e| denote the area of the element E and the length of the edge e respectively.

A second assumption, related to the shape of the elements, plays a crucial role

in the analysis of polygonal methods.

Assumption 4.2.2 (Star-shapedness). There exists a real number γ ∈ (0, 1),

independent of h, such that each element E is star-shaped with respect to a ball of

radius rE ≥ γ hE.

This statement can be weakened assuming that each element E is the union of

a finite number of sub-cells E1, . . . , EL each satisfying Assumption 4.2.2, with the

requirement that Ei and Ei+1 share a common edge, for i = 1, . . . , L.

Finally, another common assumption regards the length of the elemental edges.

In [6], the statement imposes a condition on the maximum point-to-point distance

between vertices.

Assumption 4.2.3. There exists a real number γ ∈ (0, 1), independent of h, such

that for each element E, the distance |vi − vj| between any two vertices vi,vj of

E satisfies

|vi − vj| ≥ γ hE i, j = 1, . . . , N.

Since this formulation was too restrictive, Assumption 4.2.4 has been intro-

duced [1, 21, 48] and is commonly used in VEM literature.

Assumption 4.2.4. There exists a real number γ ∈ (0, 1), independent from h,

such that for each element E, the length of every edge e satisfies

|e| ≥ γ hE.

Moreover, in [21, 50], the authors showed that the following Assumption 4.2.5

is implied by Assumption 4.2.4, but not equivalent.

Assumption 4.2.5. There exists a positive integer, independent from h, such that

the number of edges of every polygon E ∈ Th is uniformly bounded.

162 CHAPTER 4. THE VIRTUAL ELEMENT METHOD

Figure 4.1: Three examples of admissible meshes for virtual element methods.

From left to right: a Voronoi mesh of convex polygons, a quadrilateral mesh with

hanging nodes (the square in the center is treated as an octagon), a mesh of non

convex polygons [110].

It is important to notice that virtual element methods allow the presence of

non convex polygons and hanging nodes in Th. Indeed, a hanging node is seen as a

splitting of an edge into two edges at a π angle, increasing the number of edges of

the considered element. This fact makes this method versatile for operations such

as refinement and coarsening. Some examples of admissible meshes are collected

in Figure 4.1.

4.3 A class of non-conforming discretizations

We now discuss how to discretize the problem under consideration. Given a polyg-

onal decomposition Th of Ω satisfying the geometrical assumptions, we rewrite the

bilinear form a and the H1 semi-norm as the sum of all the local contributions of

E ∈ Th:

a(u, v) =
∑

E∈Th

aE(u, v) ∀u, v ∈ V and |v|1,Ω =

√∑

E∈Th

|v|21,E ∀v ∈ V . (4.8)

Before presenting the discrete version of Problem 4.1.1 in virtual elements frame-

work, we need to introduce some other ingredients. Let us consider a finite dimen-

sional subspace Vh of V and introduce the discrete bilinear form ah : Vh×Vh −→ R

ah(uh, vh) =
∑

E∈Th

aEh (uh, vh) ∀uh, vh ∈ Vh (4.9)

4.3. A CLASS OF NON-CONFORMING DISCRETIZATIONS 163

where each term aEh , approximating aE, is itself a bilinear form defined locally on

the element E. We denote by Vh(E) the restriction of Vh to E. Letting fh be an

approximation of f , the discrete problem can be stated as follows.

Problem 4.3.1. Given fh ∈ V ′
h, find uh ∈ Vh such that

ah(uh, vh) = (fh, vh) ∀vh ∈ Vh. (4.10)

In order to ensure the well-posedness of Problem 4.3.1, we introduce two hy-

potheses regarding the discrete bilinear form ah.

Hypothesis 4.3.1 (k–consistency). There exists an integer k ≥ 1 such that for

all h and for all E in Th, we have that Pk(E) ⊂ Vh(E) and

aEh (q, vh) = aE(q, vh) ∀q ∈ Pk(E), ∀vh ∈ Vh(E). (4.11)

Hypothesis 4.3.2 (Stability). There exist two constant α⋆, α⋆ > 0, independent

both from h and E, such that

α⋆ a
E(vh, vh) ≤ aEh (vh, vh) ≤ α⋆ aE(vh, vh) ∀vh ∈ Vh(E). (4.12)

We emphasize that Hypothesis 4.3.1 means that the discrete bilinear form is

computed exactly when one of the entries is a polynomial of degree ≤ k. Further-

more, if aEh is symmetric, from Hypothesis 4.3.2 and the definition of aE, we can

easily obtain the continuity

aEh (uh, vh) ≤
(
aEh (uh, uh)

)1/2(
aEh (vh, vh)

)1/2

≤ α⋆
(
aE(uh, uh)

)1/2(
aE(vh, vh)

)1/2

= α⋆Ma |uh|1,E |vh|1,E ∀uh, vh ∈ Vh(E).

(4.13)

We introduce the broken space

H1(Th) :=
∏

E∈Th

H1(E)

endowed with the semi-norm

|v|1,h,Ω :=

(∑

E∈Th

| ∇ v|20,E
)1/2

.

Notice that, when dealing with discontinuous functions, this object is not a norm

since, for instance, we have |vh|1,h,Ω = 0 for every piecewise constant function vh.

164 CHAPTER 4. THE VIRTUAL ELEMENT METHOD

Theorem 4.3.1 ([6]). Under Hypotheses 4.3.1 and 4.3.2, Problem 4.3.1 admits a

unique solution uh. Moreover, for every approximation uI ∈ Vh of u and for every

approximation uπ piecewise in Pk, the following estimate holds true

|u− uh|1,Ω ≤ C

(
|u− uI |1,Ω + |u− uπ|1,h,Ω + sup

v∈H1
0
(Ω)

|(f, v)− (fh, v)|
|v|1,Ω

)
(4.14)

where C is a constants depending only on K, α⋆ and α⋆.

Proof. The existence and the uniqueness of the solution for Problem 4.3.1 are

direct consequences of the Lax–Milgram Theorem.

Now, let us define δh = uh − uI . Exploiting coercivity and consistency of the

bilinear form, we can write

αα⋆|δh|21,Ω ≤ α⋆a(δh, δh) ≤ ah(δh, δh)

so that, using linearity, Problem 4.3.1 and again consistency, we have

αα⋆|δh|21,Ω ≤ ah(uh, δh)− ah(uI , δh)

= (fh, δh)−
∑

E∈Th

aEh (uI , δh)

= (fh, δh)−
∑

E∈Th

(
aEh (uI − uπ, δh) + aEh (uπ, δh)

)

= (fh, δh)−
∑

E∈Th

(
aEh (uI − uπ, δh) + aE(uπ, δh)

)

= (fh, δh)−
∑

E∈Th

(
aEh (uI − uπ, δh) + aE(uπ − u, δh)

)
− a(u, δh)

= (fh, δh)−
∑

E∈Th

(
aEh (uI − uπ, δh) + aE(uπ − u, δh)

)
− (f, δh)

= (fh, δh)− (f, δh)−
∑

E∈Th

(
aEh (uI − uπ, δh) + aE(uπ − u, δh)

)
.

(4.15)

By continuity of aE and aEh , we have the following local bounds

aE(uπ − u, δh) ≤Ma |uπ − u|1,E |δh|1,E ,
aEh (uI − uπ, δh) ≤Ma α

⋆ |uI − uπ|1,E |δh|1,E .
(4.16)

Putting everything together and making use of the broken norm, we get

|δh|21,Ω ≤ C

(
sup

v∈H1
0
(Ω)

|(f, v)− (fh, v)|
|v|1,Ω

+ |uI −uπ|1,Ω,h+ |u−uπ|1,Ω,h

)
|δh|1,Ω, (4.17)

4.4. THE VIRTUAL ELEMENT SPACE 165

where the constant C depends only on K, α⋆ and α⋆. Therefore, applying the

triangle inequality, we obtain the final estimate (4.14).

4.4 The Virtual Element space

Let us consider a generic polygonal element E. For a fixed order of accuracy k ≥ 1,

we introduce the space of continuous functions over ∂E which are polynomials of

degree less than or equal to k on each edge

Bk(∂E) = {v ∈ C0(∂E) : v|e ∈ Pk(e) ∀e ∈ ∂E}. (4.18)

The local VEM space is defined starting from Bk(∂E) considering an additional

property to describe functions in the interior of E

Vk(E) = {v ∈ H1(E) : v|e ∈ Bk(∂E), ∆v|E ∈ Pk−2(E)}, (4.19)

in particular, we are using the convention that P−1 = {0}.
It is not difficult to see that the dimension of the local VEM space defined in

(4.19) is given by

NE
k = Nk +

k(k − 2)

2
. (4.20)

Therefore, we define the degrees of freedom (DOFs) as follows.

Definition 4.4.1 (Local degrees of freedom). The degrees of freedom for vh ∈ Vk(E)

are given by:

• the values of vh at the vertices,

• for k > 1, the values of vh at k − 1 points on each edge e ∈ ∂E,

• for k > 1, the internal moments

1

|E|

∫

E

m(x) vh(x) dx ∀m ∈ Mk−2(E). (4.21)

For a generic E ∈ R2 and given a multi-index β, we let mβ denote the scaled

monomial of degree |β| defined as

mβ =

(
x− xE

hE

)β

, (4.22)

166 CHAPTER 4. THE VIRTUAL ELEMENT METHOD

k = 1 k = 2 k = 3

Figure 4.2: Schematic representation of the degrees of freedom of a pentagon for

k = 1, 2, 3. The DOFs at the vertices are marked in red, the DOFs on the edges in

cyan and the internal moments in orange.

and we denote by Mk(E) the set of scaled monomials of degree less or equal than k

Mk(E) = {mβ : 0 ≤ |β| ≤ k}. (4.23)

A schematic representation of the degrees of freedom is reported in Figure 4.2.

We have the following theorem.

Theorem 4.4.1 ([6]). Let us consider a simple polygon E with N edges and the

space Vk(E) defined in (4.19). The set of degrees of freedom presented in Defini-

tion 4.4.1 is unisolvent for Vk(E).

Remark 4.4.1. Regarding the degrees of freedom on each edge, several choices are

possible. For instance, they can be k − 1 uniformly spaced points [6] or Gauss–

Lobatto points [12]. Also the scaled moments up to degree k − 2

1

|e|

∫

e

mvh da ∀m ∈ Mk−2(e)

are an admissible choice [1]. In general, we can consider any set of parameters

that, together with the values at the vertices, uniquely identifies a polynomial of

degree k on each edge.

Remark 4.4.2. As observed by Mascotto [98], the definition of the space Vk(E)

is completely independent of the choice of basis for the polynomial space. Indeed,

we introduced the scaled monomial just as a mathematical tool for defining the

internal degrees of freedom. Consequently, any polynomial basis can be employed

for this scope. Let us remark that, although the monomial basis is the most popular

4.4. THE VIRTUAL ELEMENT SPACE 167

choice, it has bad effects on the condition number of the stiffness matrix for high

polynomial degrees and in presence of extremely badly shaped polygons. In order to

mitigate this negative behavior, the monomial basis can be replaced by an L2(E)

orthonormal basis for Pk(E).

From the mathematical point of view, a degree of freedom is defined as a linear

functional [41]. We will use this notion at the end of this chapter.

Definition 4.4.2. Given E in Th, we define the family of local operators

DOFi : Vk(E) −→ R for i = 1, . . . , NE
k (4.24)

such that

DOFi(vh) = the ith degree of freedom of vh (4.25)

for all vh ∈ Vk(E).

At this point, we are able to construct the global virtual element space: glueing

together by continuity all the local spaces, we have

V k
h = {v ∈ V : v|∂E ∈ Bk(∂E) and ∆v|E ∈ Pk−2(E) ∀E ∈ Th}. (4.26)

In this case, to determine the dimension of the space, we take into account that

the degrees of freedom on ∂Ω do not play a role due to the Dirichlet boundary

conditions, therefore we have

Nh = dim(V k
h) = NV +Ne(k − 1) +NT

k(k − 1)

2
(4.27)

where NV is the number of internal vertices, Ne the number of internal edges

and NT the number of elements of Th. Consequently, the choice of the degrees of

freedom for vh ∈ V k
h is naturally given by

• the values of vh at the internal vertices,

• for k > 1, the values of vh at k − 1 points on each internal edge e,

• for k > 1, the moments

1

|E|

∫

E

m(x)vh(x) dx ∀m ∈ Mk−2(E) in each element E; (4.28)

168 CHAPTER 4. THE VIRTUAL ELEMENT METHOD

which extends the unisolvency proved locally in Theorem 4.4.1.

Once the discrete space is defined, we can discuss how the discrete bilinear form

ah and the right hand side are constructed in practice: to this aim, we introduce

the notion of computability . In virtual element methods, a quantity is said to

be computable if it can be determined directly from information provided by the

degrees of freedom.

4.4.1 The discrete bilinear form ah

Exploiting the degrees of freedom, we can compute exactly aE(q, v) for any poly-

nomial q ∈ Pk(E) and vh ∈ Vk(E), indeed, integrating by parts, we have

aE(q, vh) =

∫

E

K∇ q·∇ vh dx = −
∫

E

div(K∇ q) vh dx+

∫

∂E

(K∇ q·n)vh da (4.29)

where n denotes the outer normal of ∂E. In particular, notice that div(K∇ q) ∈
Pk−2(E), so that the last two integrals can be computed exactly without know-

ing the behavior of vh inside the polygon. We emphasize that, if uh, vh are not

polynomials, then aE(uh, vh) is not computable: we replace it with a computable

approximate bilinear form.

An ingredient we need to successfully build a computable bilinear form is a

projection operator from the local VEM space to the polynomials of degree up to

k. The definition reads as follows.

Definition 4.4.3. The projection operator Π∇
k : Vk(E) → Pk(E) ⊂ Vk(E) is

solution of the problem
∫

E

∇Π∇
k vh · ∇ q dx =

∫

E

∇ vh · ∇ q dx ∀q ∈ Pk(E)
∫

∂E

Π∇
k vh da =

∫

∂E

vh da

(4.30)

for all vh ∈ Vk(E).

A fundamental property of the projector Π∇
k is that it preserves polynomials,

indeed

Π∇
k q = q ∀q ∈ Pk(E). (4.31)

Through Π∇
k , we obtain a computable decomposition of Vk(E) as

Vk(E) = Pk(E)⊕ V⊥(E) (4.32)

4.4. THE VIRTUAL ELEMENT SPACE 169

where V⊥(E) denotes the kernel of Π∇
k , which is orthogonal to the polynomial space

Pk(E) with respect to the scalar product underlying (4.30). As a consequence, since

we can write

vh = Π∇
k vh + (vh − Π∇

k vh) ∀vh ∈ Vk(E), (4.33)

the continuous bilinear form is decomposed as follows

aE(uh, vh) = aE(Π∇
k uh,Π

∇
k vh) + aE(Π∇

k uh, (I− Π∇
k)vh)

+ aE((I− Π∇
k)uh,Π

∇
k vh) + aE((I− Π∇

k)uh, (I− Π∇
k)vh) (4.34)

We remark that the first three terms at the right hand side are directly com-

putable by means of the degrees of freedom since Π∇
k is computable. On the other

hand, the term aE((I− Π∇
k)uh, (I− Π∇

k)vh) is not computable.

If we did not consider the last term and chose

aEh (uh, vh) = aE(Π∇
k uh,Π

∇
k vh) + aE(Π∇

k uh, (I− Π∇
k)vh) + aE((I− Π∇

k)uh,Π
∇
k vh),

we would obtain a k–consistent discrete bilinear form that is not stable in general.

For this reason, we need to replace the fourth term in (4.34) with a computable

term able to mimic its behavior and endowed with appropriate properties in such

a way that the resulting bilinear form satisfies both Hypotheses 4.3.1 and 4.3.2.

This new term is referred to as stabilization.

Let us consider any symmetric positive definite bilinear form SE that scales

like aE in V⊥(E), i.e. satisfying

c⋆ a
E(w⊥, w⊥) ≤ SE(w⊥, w⊥) ≤ c⋆ aE(w⊥, w⊥) ∀w⊥ ∈ V⊥(E) (4.35)

for some c⋆, c
⋆ > 0 independent of E and of its size hE. The local discrete aEh can

be defined as

aEh (uh, vh) = aE(Π∇
k uh,Π

∇
k vh) + aE(Π∇

k uh, (I− Π∇
k)vh)

+ aE((I− Π∇
k)uh,Π

∇
k vh) + SE((I− Π∇

k)uh, (I− Π∇
k)vh) (4.36)

Theorem 4.4.2 ([6]). The bilinear form defined in (4.36) is consistent and stable

as required by Hypotheses 4.3.1 and 4.3.2.

Remark 4.4.3. In Section 4.3, we proved continuity of the generic aEh assuming

its symmetry. On the other hand, considering the definition in (4.36), continuity

170 CHAPTER 4. THE VIRTUAL ELEMENT METHOD

can be proved just assuming that aEh is symmetric in V⊥(E). Indeed, the first three

terms at the right hand side of (4.36) are continuous since aE is continuous,

whereas the virtual term aE((I−Π∇
k)uh, (I−Π∇

k)vh) is replaced by the stabilization

SE, which is symmetric by construction.

Corollary 4.4.1. If aEh is defined as in (4.36), then Problem 4.3.1 admits a unique

solution.

The choice of stabilization term strongly depends both on the problem un-

der consideration and on the definition of discrete space. We recall some popular

choices which have been introduced for the Poisson equation. Their application can

be then extended to more general problems, as done, for instance, in [12, 15, 32].

The first stabilization term we mention is usually called dofi–dofi [6] since is

locally defined as

SE
dofi(vh, wh) =

NE
k∑

i=1

DOFi(vh)DOFi(wh) ∀vh, wh ∈ V⊥(E). (4.37)

In [21], the authors presents H1 error estimates studying the effects of this choice

on the solution.

Another possible choice, more robust than dofi–dofi, is called D–recipe [98] and

is defined as

SE
D−rec(vh, wh) =

NE
k∑

i=1

ωiDOFi(vh)DOFi(wh) ∀uh, vh ∈ V⊥(E), (4.38)

where the weight ωi is defined through the bilinear form as

ωi = max{1, aE(Π∇
k (ϕi),Π

∇
k (ϕi))}.

In [21], the authors present a stabilization term which is given by summing two

contributions

SE
◦,∂(vh, wh) = SE

∂ (vh, wh) + SE
◦ (vh, wh) ∀uh, vh ∈ V⊥(E). (4.39)

The first term SE
∂ involves only the boundary degrees of freedom and can be

defined in two different ways: the classical choice is the dofi–dofi restricted to the

boundary, whereas the second option [126] is given by

SE
∂ (vh, wh) = hE

∫

∂E

∂τvh ∂τwh da

4.4. THE VIRTUAL ELEMENT SPACE 171

where ∂τ denotes the tangential derivative along ∂E. The internal contribution SE
◦

is usually set to be the dofi–dofi restricted to the internal degrees of freedom. Notice

that, when both contributions are defined through the dofi–dofi stabilization, we

obtain SE
dofi.

Remark 4.4.4. In general, the stiffness matrix Kh constructed from aEh is not

close to the exact stiffness matrix K, which we would be able to assemble if we

knew the basis functions of Vk(E) [12]. Indeed, Kh is not an approximation of K in

standard sense due to the stabilization term. Standard choices of SE are only able to

mimic the behavior of the nonpolynomial term aE((I−Π∇
k)uh, (I−Π∇

k)vh), without

producing an actual approximation. A practical example showing this feature can

be found in the next Chapter (see Section 5.5.1).

4.4.2 The right hand side

Also the linear operator at the right hand side is not computable in general, there-

fore for its construction we introduce the local L2 projection onto polynomials.

Definition 4.4.4. The projection operator Π0
k : Vk(E) → Pk(E) ⊂ Vk(E) is

solution of the problem

∫

E

Π0
kvh q dx =

∫

E

vh q dx ∀q ∈ Pk(E) (4.40)

for all vh ∈ Vk(E).

When dealing with Vk(E) for k ≥ 2, we project f onto the polynomial space

Pk−2(E), whereas for k = 1, the projection is done onto the space P0(E) of con-

stants. Hence, for k ≥ 2 we define fh as

fh = Π0
k−2f (4.41)

on each element E ∈ Th. Notice that Π0
k−2 is exactly computable through the

internal moments.

For k = 1, f is approximated by piecewise constants and vh is replaced by its

average over ∂E, therefore

(fh, vh) =
∑

E∈Th

∫

E

Π0
0f

(
|∂E|−1

∫

∂E

vh da

)
dx =

∑

E∈Th

Π0
0f

|E|
|∂E|

∫

∂E

vh da. (4.42)

172 CHAPTER 4. THE VIRTUAL ELEMENT METHOD

On the other hand, for k ≥ 2, we have

(fh, vh) =
∑

E∈Th

∫

E

fh vh dx =
∑

E∈Th

∫

E

(Π0
k−2f) vh dx =

∑

E∈Th

∫

E

f (Π0
k−2vh) dx

(4.43)

which can be exactly computed as Π0
k−2 is itself computable.

Approximation estimates for the consistency term |(f, vh)− (fh, vh)|, discussed

for instance in [6] and [11], are recalled in the next section.

Remark 4.4.5. In [1], the authors present an alternative way of defining the

discrete bilinear form by replacing Π∇
k with the L2–projection Π0

k−1, which is also

computable. In this case, aEh is defined as

aEh (uh, vh) =

∫

E

KΠ0
k−1(∇uh) · Π0

k−1(∇ vh) dx

+

∫

E

KΠ0
k−1(∇uh) · (I− Π0

k−1)(∇ vh) dx

+

∫

E

K(I− Π0
k−1)(∇uh) · Π0

k−1(∇ vh) dx

+ SE((I− Π∇
k)uh, (I− Π∇

k)vh)

Notice that, for k = 1, the new definition is equivalent to (4.36), whereas this is not

true for k ≥ 2. This alternative definition is often preferred for k ≥ 3 in presence

of variable coefficients: in this situation, the Π∇
k operator produces a loss of order

of convergence [15].

4.5 Some estimates

In this section, we report local estimates for the projection error, the interpolation

error and the approximation error for the right hand side.

Projection error

Under shape regularity assumptions, classical results for finite elements [32] can be

extended to virtual elements. This is the case of the following estimate regarding

local projection onto polynomials.

4.5. SOME ESTIMATES 173

Proposition 4.5.1. Let us consider a simple polygon E satisfying the geometrical

Assumption 4.2.2. There exists a constant C, depending on γ and k, such that for

every s, 1 ≤ s ≤ k + 1, and for every w ∈ Hs(E) there exists a wπ ∈ Pk(E) such

that

‖w − wπ‖0,E + hE|w − wπ|1,E ≤ ChsE|w|s,E. (4.44)

Interpolation error

Recalling Definition 4.4.2, we can construct the canonical basis {ϕ1, . . . , ϕNE
k
} of

Vk(E) satisfying

DOFi(ϕj) = δij i, j = 1, . . . , NE
k , (4.45)

where δij is the Kronecker delta. We can then express a discrete function vh ∈ Vk(E)

using an interpolation identity in Lagrangian setting, that is

vh =

NE
k∑

i=1

DOFi(vh)ϕi. (4.46)

For every smooth enough w there exists a unique element wI ∈ Vk(E) such that

DOFi(w − wI) = 0 i = 1, . . . , NE
k . (4.47)

The following interpolation error estimate has been stated in [6] and then

formally proved in [57]. A version for less regular functions has been discussed

in [106] by extending the Scott–Dupont theory.

Proposition 4.5.2. Let us consider a mesh Th satisfying the geometrical Assump-

tion 4.2.2. There exists a constant C, depending on γ and k, such that for every

s, 2 ≤ s ≤ k + 1, for every h, for all E ∈ Th and for every w ∈ Hs(E) there exists

a wI ∈ Vk(E) such that

‖w − wI‖0,E + hE|w − wI |1,E ≤ ChsE|w|s,E. (4.48)

Approximation estimates for the right-hand side

We now recall error estimates for the right hand side [6]. As we did in Section 4.4.2,

we distinguish the case k = 1 from k ≥ 2.

174 CHAPTER 4. THE VIRTUAL ELEMENT METHOD

Proposition 4.5.3. Given f ∈ L2(Ω), the following estimates hold true. For

k = 1, there exists a positive constant C such that

sup
v∈H1

0
(Ω)

|(f, v)− (fh, vh)|
|v|1,Ω

≤ C h |f |1,Ω (4.49)

while, for k ≥ 2, there exists a positive constant C such that

sup
v∈H1

0
(Ω)

|(f, v)− (fh, vh)|
|v|1,Ω

≤ C hk |f |k−1,Ω (4.50)

VEM approximation error

Combining all the estimates presented in this section with the abstract result of

Theorem 4.3.1, we can easily deduce the approximation error estimate for the

global virtual element space V k
h [15].

Theorem 4.5.1. Let u ∈ Hk+1(Ω) be the solution of Problem 4.1.1 and let uh ∈ V k
h

the solution of Problem 4.3.1. Under mesh regularity assumptions, the following

estimate holds true

|u− uh|1,Ω ≤ Chk |u|k+1,Ω (4.51)

Proof. From the general Theorem 4.3.1, we have the following estimate

|u− uh|1,Ω ≤ C

(
|u− uI |1,Ω + |u− uπ|1,h,Ω + sup

v∈H1
0
(Ω)

|(f, v)− (fh, vh)|
|v|1,Ω

)
(4.52)

where uI denotes any interpolant of u in V k
h and uπ is the L2 projection of u onto

piecewise polynomials of degree up to k. In particular, thanks to the estimates

summarized in this section, we have

|u− uI | ≤ Chk |u|k+1,Ω

|u− uπ|1,h,Ω ≤ Chk |u|k+1,Ω

and

sup
v∈H1

0
(Ω)

|(f, v)− (fh, vh)|
|v|1,Ω

≤ C hk |f |cojns1,Ω

so that, putting everything together, the final estimate is easily derived.

Chapter 5

Reduced Basis approach to the

Virtual Element Method

In the previous chapter, we recalled the main features of the standard virtual

element formulation for second order elliptic problems. In particular, we discussed

the construction of the method recalling basic theoretical results.

Clearly, beyond all the appealing features, the method has also some limita-

tions directly descending from the construction of the approach itself. Indeed, we

saw that virtual element methods are constructed on conforming spaces which

are actually treated in a nonconforming way: each local space is split into direct

sum of a polynomial space plus a space consisting of smooth functions which are

themselves solution of PDEs. Therefore, bilinear forms are approximated via poly-

nomial projections and stabilization terms. This implies that, even if a numerical

solution belongs to the conforming VEM space (which means that it is continu-

ous), only a projection onto a discontinuous polynomial space is available, since

the reconstruction of a conforming object would require the explicit knowledge

of the virtual basis functions. Furthermore, it is well known that the stabiliza-

tion terms, commonly used for dealing with the nonpolynomial component, are of

isotropic nature. For this reason, the standard virtual elements formulation shows

poor performance when applied to strongly anisotropic problems [32]: indeed, the

stabilization terms currently available are not able to catch the anisotropy of the

problem under consideration and the results appear polluted.

In order to overcome the limitations we have just mentioned, the explicit com-

putation of the basis functions would be desiderable but is of course unfeasible

175

176 CHAPTER 5. REDUCED BASIS FOR VEM

because it is prohibitive from the computational point of view. Therefore, it would

be desirable to have a possibly cheap machinery for locally constructing more or

less accurate approximations of the basis functions when needed. Resorting to

model order reduction techniques could help us in this sense.

One of the most popular model order reduction techniques is the so-called

Reduced Basis (RB) method [90, 112], which has been introduced during the last

few decades. The aim of this method is to provide an efficient and robust tool for

numerically solving parametrized PDEs for a large amount of different values of

the involved parameters. The RB method consists in a computationally intensive

offline phase, which is carried out once for all to solve the equation for a large

enough sample of parameters. This solutions are commonly called snapshots. Then,

a new discretization space (of reduced dimension) is spanned by a small number

of linear combinations of the snapshots, so that an online phase leveraging such

a space allows to cheaply solve the parametric problem for each new value of the

parameter.

Our proposal is to use the RB method in its “geometric” version (see [90, Chap.

6, Sec. 2]) . Indeed, the elemental PDE associated to virtual basis functions on el-

ements with different geometries can be reformulated as a parametric problem

defined on a fixed reference element. In other words, the shape of polygons belong-

ing to a virtual element mesh is treated as a parameter. Applying this approach, we

are then in condition to efficiently reconstruct the nonpolynomial part of virtual

element functions with different degrees of accuracy which allows to retrieve sev-

eral other quantities of interests. We point out that, since each polygon is treated

independently from the others, the entire procedure is highly parallelizable and

applicable only where really needed.

We have in mind two possible ways for exploiting this new approach in the de-

sign and implementation of VEM. First, in a post-processing framework, it allows

the reconstruction of an actual conforming solution: an object of this kind is useful

for performing tasks such as visualization, pointwise evaluation and full evaluation

of the error, overcoming the standard procedures based on projections onto poly-

nomials. Second, since we are able to actually reconstruct the nonpolynomial part,

we can design stabilization terms which are a true approximation of the residual

contribution. In this case, the virtuality of the method is retained when a very

small number of reduced basis functions is employed. For example, we anticipate

here that the use of a single reduced basis function will be sufficient to improve the

5.1. VEM FUNCTIONS AS SOLUTIONS TO PARAMETRIC PDES 177

performance of VEM for anisotropic PDEs. Let us also observe that, by means of

the RB reconstruction, we can also define a fully conforming method based on the

virtual element space, in the spirit of the approach proposed by Manzini, Russo

and Sukumar [97]. In this case, the entire VEM machinery is used to manage

the polynomial part, while the RB method focuses on the nonpolynomial compo-

nent. This kind of “finite element approach” dealing the stabilization term is not

completely new to the VEM community, since a similar idea has been used by

Wriggers, Reddy and collaborators for a nonlinear virtual elements formulation

for finite deformations [125].

This chapter consists of several sections. In Section 5.1, we describe how the

elemental PDE associated to the basis functions of the lowest order VEM can

be written as parametric problem. Then, after recalling in Section 5.2 the main

features of the RB method, we describe in Section 5.3 how it is exploited to design

our approach to VEM. The validation of this new method is described by means

of several numerical tests in Section 5.4. The design of a new kind of stabilization

term is discussed in Section 5.5, while in the last Section 5.6, we show how the

reduced basis approach is used for post-processing VEM solutions.

5.1 Virtual nodal basis functions as solutions to

parametric equations

The method we are going to present and discuss in this chapter is designed for the

lowest order virtual element space; its extension to high order polynomial degrees

will be subject of future studies. Therefore, given a generic polygon E with N

vertices, we consider the discrete space

V1(E) = {v ∈ H1(E) : v|e ∈ P1(e) ∀e ∈ ∂E, ∆v = 0 inside E}. (5.1)

The degrees of freedom of vh ∈ V1(E) are given by the values of vh at the N

vertices of E.

Remark 5.1.1. The space V1(E) coincides with the conforming polygonal finite

element method based on harmonic barycentric coordinates introduced by Sukumar

and Tabarraei [115]. However, the construction in the virtual elements setting is

different [12].

178 CHAPTER 5. REDUCED BASIS FOR VEM

Figure 5.1: Profile of a nodal basis function for V1(E) on a regular pentagon.

The space V1(E) can be spanned by making use of N nodal basis functions

{ϕ1, . . . , ϕN}, where ϕj is the nodal basis function associated to the vertex vj.

Consequently, any wh ∈ V1(E) can be written as

wh =
N∑

j=1

wh(vj)ϕj. (5.2)

The profile of such basis functions is visualized in Figure 5.1 in the case of a

regular pentagon. From the definition of V1(E), we see that the basis functions

ϕ1, . . . , ϕN are solutions of the following boundary value problem, where δ denotes

the Kronecker delta.

Problem 5.1.1. For j = 1, . . . , N , find ϕj such that

−∆ϕj = 0 in E

ϕj = gj on ∂E
(5.3)

with gj ∈ Bk(∂E) such that gj(vi) = δij for i = 1, . . . , N .

It is well known that in classical finite elements several procedures are easily

carried out since the basis functions, usually polynomials, are known in their ana-

lytical form: for instance, stiffness, mass and other type of matrices are assembled

with explicit evaluation of the basis functions for quadrature purposes or, in post-

processing framework, shape functions are used to evaluate quantities of interests

for the final user, such as reconstruction in subdomains, pointwise evaluation and

computation of the error when benchmarking the method. On the contrary, we

5.1. VEM FUNCTIONS AS SOLUTIONS TO PARAMETRIC PDES 179

have already mentioned that in the case of virtual element methods, all the quan-

tities of interest must be computed without explicitly knowing the basis functions:

the method is then constructed in an approximate way: suitable choices of de-

grees of freedom and polynomial projectors allow the exact computation of the

polynomial contribution, while stabilization terms take care of the nonpolynomial

part.

In certain situations, this kind of construction may negatively affect the con-

vergence for the method. This generally depends on the nature of the problem

under consideration, but, for instance, this happens when dealing with anisotropic

problems, since standard stabilization terms are inherently isotropic. Moreover, the

final user might wish to access the continuous discrete solution, while, once the

degrees of freedom of the solution are computed, only several kind of projections

onto discontinuous piecewise polynomial are available.

The ability of reconstructing in a cheap and efficient way a possibly rough

approximation of the virtual basis functions should instead allow the design of

stabilization terms able to catch the anisotropy of the problem. Moreover, with the

same approach, we can reconstruct the continuous solution, also enabling pointwise

evaluations.

In order to efficiently carry out this kind of tasks, we resort to a model order

reduction technique. In particular, we choose the reduced basis method, which has

been designed for solving parametric PDEs. More precisely, for fixed N , all the

different instances of Problem 5.1.1 corresponding to different N edges elements

E can be treated as a collection of parametric equations where the parameter is

the geometry of the element E. To this aim, we reformulate Problem 5.1.1 on a

reference element Ê by a change of variable.

Let us consider as reference domain the N vertices regular polygon Ê centered

in the origin. The vertices v̂1, . . . , v̂N are ordered counterclockwise and we denote

by x̂ = (0, 0) the barycenter.

We introduce the following parameter space

P = {E : E polygon with N vertices, ker(E) 6= ∅, dE = 1, xE = (0, 0)}, (5.4)

where we denote by dE the diamater of the circumscribed circle to E, and by xE

the barycenter of the kernel of E. The kernel ker(E) is the set of points with

respect to which the polygon is star shaped; in particular, in case of convex poly-

gons, the kernel coincides with the polygon itself. The restriction to the case of

180 CHAPTER 5. REDUCED BASIS FOR VEM

T̂iTi

BE

Figure 5.2: An example of affine mapping BE between a random pentagon and its

regular counterpart.

polygons with unit circumscribed diameter and centered in the origin is reasonable

since the behavior of the problem under consideration with respect to translations

and rescaling of the domain is well known. Let us observe that the considered pa-

rameter space can be further restricted in dependence of the features of the VEM

tessellations: for instance, when the virtual element space is defined on Voronoi

meshes, one may consider a parameter space consisting only of convex polygons.

Exploiting the fact that polygons considered in virtual elements framework are

star shaped, we partition both E and the reference Ê inN triangles. More precisely,

if we assume that also the vertices v1, . . . ,vN of E are ordered counterclockwise,

using the convention that vN+1 = v1 and v̂N+1 = v̂1, we denote by Ti the triangle

with vertices vi,vi+1 and xE, while T̂i is similarly constructed in Ê. Therefore, we

have the following decompositions

E =
N⋃

i=1

Ti and Ê =
N⋃

i=1

T̂i. (5.5)

This procedure is sketched in Figure 5.2.

At this point, we introduce the following continuous piecewise affine transfor-

mation from the generic E to Ê

BE : E −→ Ê, BE(x) = BE,i x on Ti, (5.6)

where BE,i are invertible 2×2 matries defined in such a way that BE maps vertices

and centroid of E to the corresponding vertices and centroid of Ê, i.e. BE(vi) = v̂i

for all the vertices vi of E, and BE(xE) = x̂. By construction we then have that

5.1. VEM FUNCTIONS AS SOLUTIONS TO PARAMETRIC PDES 181

B(Ti) = T̂i, for i = 1, . . . , N . It is easy to see that each matrix BE,i can be

expressed in terms of the coordinates of the vertices, indeed we have

BE,i =

[
vi,x vi+1,x

vi,y vi+1,y

][
v̂i,x v̂i+1,x

v̂i,y v̂i+1,y

]−1

, (5.7)

where v̂i = (v̂i,x, v̂i,y) and vi = (vi,x,vi,y).

Before transferring Problem 5.1.1 to the reference domain, let us write it in

variational form.

Problem 5.1.2. For j = 1, . . . , N , find ϕj ∈ H1(E) such that
∫

E

∇ϕi · ∇ v dx = 0 ∀v ∈ H1
0(E)

ϕj = gj on ∂E

(5.8)

with gj piecewise linear function on ∂E such that gj(vi) = δij for i = 1, . . . , N .

In order to move Problem 5.1.2 to a problem with solution in H1(Ê), we perform

a change of variable in the integral of Equation (5.8)

∫

E

∇u · ∇ v dx =
N∑

i=1

∫

Ti

∇u · ∇ v dx =
N∑

i=1

∫

T̂i

| det(B−1
E,i)|B⊤

E,iBE,i ∇ û · ∇ v̂ dx̂.

After this operation, we introduce the parameter dependent bilinear form A defined

as

A(û, v̂;E) =
N∑

i=1

∫

T̂i

| det(B−1
E,i)|B⊤

E,iBE,i ∇ û · ∇ v̂ dx̂, (5.9)

so that we can write an equivalent formulation of Problem 5.1.2 as parametric

equation on the reference element.

Problem 5.1.3. For j = 1, . . . , N , find ϕ̂E
j ∈ H1(Ê) such that

A(ϕ̂E
j , v̂;E) = 0 ∀v̂ ∈ H1

0(Ê)

ϕ̂E
j = ĝj on ∂Ê

(5.10)

with ĝj piecewise linear function on ∂Ê such that ĝj(v̂i) = δij for i = 1, . . . , N .

As we anticipated, we are going to tackle this problem by resorting to the re-

duced basis method, which have been introduced for efficiently solving parametric

PDEs for large numbers of instances of the parameter.

182 CHAPTER 5. REDUCED BASIS FOR VEM

5.2 The reduced basis method

In this section, we recall the main features of the reduced basis method basing our

discussion on two monographs by Hesthaven, Rozza, Stamm [90] and Quarteroni,

Manzoni, Negri. [112]. We describe the general method to tackle parametrized

PDEs, introducing the idea of solution manifold and affine decomposition, which

are the building blocks we need to design an accurate and efficient model order

reduction approach.

5.2.1 General idea

Let us consider the following family of parameter dependent problems.

Problem 5.2.1. Find u[µ] ∈ V such that

A(u[µ], v;µ) = F (v;µ) ∀v ∈ V . (5.11)

We denote by µ a vector parameter belonging to the parameter set P ⊂ RL.

This set may represent physical coefficients related to the considered problem, sev-

eral boundary conditions, right hand sides or the geometry of the computational

domain. Then, A(·, ·;µ) : V ×V → R is a continuous and parameter dependent bi-

linear form which we assume to be coercive for all values µ ∈ P. For the right hand

side, we have F (·;µ) : V → R denoting a parameter dependent linear operator,

continuous in V for all values of the parameter µ.

If we need to numerically solve this problem, for instance by a Galerkin method,

we usually introduce a large finite dimensional space Vδ, included in V , defined as

Vδ = span{ψ1, . . . , ψN} (5.12)

and, for each value of µ, we seek for the approximation uδ[µ] ∈ Vδ to u[µ] ∈ V .

It is clear that solving Problem 5.2.1 in Vδ for a large set of parameters is

extremely costly. In order to mitigate the computational cost, one should use

model order reduction techniques, such as the reduced basis method.

The reduced basis method is built on the assumption that the solution manifold,

that is the set

M = {uδ[µ] : µ ∈ P} ⊂ Vδ

of all the approximate solutions uδ[µ] in variation of the parameter, can be ap-

proximated using a lower dimensional linear space

W = span{ξ1, . . . , ξM} ⊂ Vδ (5.13)

5.2. THE REDUCED BASIS METHOD 183

M

uδ(µ1)

uδ(µ2)

uδ(µR−1)

uδ(µR)

Figure 5.3: Intuitive representation of the solution manifold M with some chosen

snapshots.

with M ≪ N , where the functions ξℓ, for ℓ = 1, . . . ,M are constructed as linear

combinations of discrete snapshots uδ[µr] computed for suitably chosen parameters

µr ∈ P.

Once the reduced space W is constructed, for each new value of µ, we seek

for the corresponding approximate solution urb[µ] =
∑M

ℓ=1 xℓ ξℓ of Problem 5.2.1

in W : the cost for carrying out this operation is independent from the dimension

N of the full space Vδ and depends only on the dimension M of W . Indeed, the

discrete problem is equivalent to a small M ×M linear system of the form

A [µ] x = F [µ] , (5.14)

where x = (xℓ)ℓ denotes the coefficient vector of the solution in W with respect to

ξ1, . . . , ξM and where matrix and right hand side are defined as

(A [µ])ℓ,ℓ′ = A(ξℓ′ , ξℓ;µ), (F [µ])ℓ = F (ξℓ;µ). (5.15)

Under the so-called affine decomposition assumption, the reduced system (5.14)

is assembled with a very cheap procedure by making use of some quantities we

can precompute at the time of the snapshots construction. Let us assume that

both the bilinear form A and the right hand side F can be written in terms of

parameter independent bilinear forms Aq, q = 1, . . . , QA and linear functionals

F q, q = 1, . . . , QF respectively, as

A(u, v;µ) =

QA∑

q=1

αq
A[µ]A

q(u, v), F (v;µ) =

QF∑

q=1

αq
F [µ]F

q(v), (5.16)

184 CHAPTER 5. REDUCED BASIS FOR VEM

where the dependence on the parameter is confined to the coefficients only, which

are determined by given functions αq
A : P → R and αq

F : P → R. Thanks to this

construction, once the reduced basis is built, we can precompute and store the

matrices Aq with (Aq)ℓ,ℓ′ = Aq(ξℓ′ , ξℓ) and Fq with (Fq)ℓ = F q(ξℓ), in such a way

that A [µ] and F [µ] in (5.14) are easily obtained as

A [µ] =

QA∑

q=1

αq
A[µ]A

q, F [µ] =

QF∑

q=1

αq
F [µ]F

q.

Remark 5.2.1. We observe that the matrix A [µ] is generally full, while the one

associated to the full space Vδ is usually sparse. In general, this is not an issue

for the method: System (5.14) is small, hence its solution is less computationally

intensive than solving a system in Vδ.

5.2.2 How to construct a reduced basis

We have mentioned above that the construction of the reduced basis is done by

suitably combining snapshots uδ[µ] for a sample of values of µ. These snapshots

are computed offline in the fine space Vδ by solving N ×N linear systems. To this

aim, we first select a sample of parameters

S = {µ1, . . . , µR} ⊂ P, (5.17)

which is usually randomly generated, accordingly to a certain probability distribu-

tion. If S is large enough, the set {u[µ] : µ ∈ S} is hopefully a good representation

of the solution manifold M.

Once we have computed the snapshots uδ[µ1], . . . , uδ[µR], we select a suitable

W ⊂ Vδ of dimension M spanned by linear combinations of elements of S. In

order to carry out this task, several algorithms have been designed: we mention,

for instance, the greedy selection and the proper orthogonal decomposition (POD).

We focus on the POD algorithm, recalling its main features. The POD is called

explore-and-compress strategy since it is based on a compression of the computed

snapshots with the aim of retaining only the essential information given by the

sample S. Each snapshots uδ[µr] can be represented as a column vector containing

the values of the N degrees of freedom of the solution itself in Vδ. Therefore, we

can collect all the snapshots in a matrix U of dimension N ×R

U =
[
uδ[µ1] . . . uδ[µR]

]
. (5.18)

5.3. COMPUTING VIRTUAL FUNCTIONS WITH REDUCED BASIS 185

At this point, we compute the correlation matrix C = R−1U⊤SU, where S denotes

the stiffness matrix for a scalar product of Vδ, and compute its eigenvalues and

eigenvectors (λℓ, zℓ) for ℓ = 1, . . . , R. We assume that the sequence of eigenvalues

{λℓ} is sorted in non increasing order, hence λ1 ≥ λ2 ≥ · · · ≥ λR. In order to

obtain a new basis {ξ1, . . . , ξR} for the span of the snapshots, we set

ξℓ =
1√
R

R∑

r=1

zrℓ uδ[µr] for ℓ ≤ R, (5.19)

where zrℓ denotes the rth entry of the eigenvector zℓ, where zℓ = (zrℓ)
R
r=1. Then, the

reduced basis is easily obtained by truncation of the new basis {ξ1, . . . , ξR} to the

first M ≤ R elements, so that we finally have

W = span{ξℓ, ℓ = 1, · · · ,M}.

Once the space is constructed, we can precompute and store (once for all) the

building blocks for the affine decomposition

(Aq)ℓ,ℓ′ = Aq(ξℓ′ , ξℓ), (Fq)ℓ = F q(ξℓ), (5.20)

so that, for each new value of the parameter µ, we can efficiently solve Problem 5.2.1

in the reduced space W .

5.3 Computation of virtual basis functions with re-

duced basis method

In this section we describe how to apply the reduced basis method for solving

the parameter dependent Problem 5.1.3, which represents the elemental elliptic

equation solved by the virtual basis functions of V1(E), for a given element E with

N vertices. By parametrization, the problem under consideration is defined on the

reference polygon Ê and E represents the parameter.

Let us fix the number of vertices N and introduce a fine triangulation Tδ for Ê

with mesh size δ. We then denote by Vδ the associated finite element space made

up of piecewise linear polynomials

Vδ = {ûδ ∈ H1(Ê) : ûδ|τ ∈ P1(τ), ∀τ ∈ Tδ}.

186 CHAPTER 5. REDUCED BASIS FOR VEM

We observe that Problem 5.1.3 is endowed with non homogeneous boundary

conditions: it will be convenient to reformulate the mentioned equation as a prob-

lem with homogeneous Dirichlet boundary conditions. To this aim, let us introduce

the discrete harmonic lifting Λ̂j ∈ Vδ of the boundary function ĝj, defined as

∫

Ê

∇ Λ̂j · ∇ v̂ dx̂ = 0 ∀v̂ ∈ Vδ ∩ H1
0(Ê)

Λ̂j = ĝj on ∂Ê

(5.21)

for j = 1, . . . , N . Each virtual basis ϕ̂E
j of E constructed in the reference Ê can

be written as

ϕ̂E
j = Λ̂j + χ̂j[E],

where χ̂j[E] ∈ H1
0(Ê) is solution of the following parametrized problem.

Problem 5.3.1. Find χ̂j[E] ∈ H1
0(Ê) such that

A(χ̂j[E], v̂;E) = −A(Λ̂j, v̂;E) ∀v̂ ∈ H1
0(Ê). (5.22)

5.3.1 The offline phase: snapshots computation

We extract a random sample S of polygons in P and then for each E ∈ S we

compute the associated snapshots χ̂j[E] by solving Problem 5.3.1 for j = 1, . . . , N .

We observe that the sample S may contain badly shaped polygons, associated

to a mapping B characterized by strong gradients. In this case, the bilinear form

A(·, ·;E) on Ê may be ill conditioned: then it is not convenient to solve such

a problem by finite elements on the triangulation Tδ. In order to overcome this

problem, we proceed as follows. We solve the equivalent Problem 5.1.2 on the

physical polygon E via finite element method on a triangulation T E
δ , with size δE,

directly constructed in E. Notice that T E
δ is independent from Tδ. At this point, we

have computed a set of N finite element functions ϕE
j,δ ∈ H1(E) which are the pull

back of functions ϕ̃E
j ∈ H1(Ê). Given ϕ̃E

j , we know its values at the nodes obtained

by applying a push forward to the nodes of the triangulation T E
δ . In general, these

mapped nodes do not coincide with the nodes of Tδ. Then, in order to compute

the snapshots χ̂j,δ[E] on Tδ, we introduce the standard Lagrangian interpolation

operator Iδ : C
0(Ê) −→ Vδ, and we let

χ̂j,δ[E] = Iδ ϕ̃
E
j − Λ̂j j = 1, . . . , N. (5.23)

5.3. COMPUTING VIRTUAL FUNCTIONS WITH REDUCED BASIS 187

T E
δ

Step 1: compute eEj,δ Step 2: ẽEj = eEj,δ ◦ B−1

Step 3: interpolate Iδẽ
E
j

Tδ

Step 4: χ̂j,δ[E] = Iδẽ
E
j − Λ̂j

Figure 5.4: Sketch of snapshots computation: functions are computed on a mesh

T E
δ for E and then interpolated on the fixed mesh Tδ of Ê

This procedure is sketched in Figure 5.4.

Once we have computed the snapshots, we are able to construct the reduced

basis functions. We believe that in order to design stabilization terms able to

deal with anisotropic problems, it is important that we take into account the

relation between different basis functions. For this reason, in our method, the

POD algorithm is applied on the local basis taken as a whole and not on N

individual basis functions taken one by one. Let us denote by Er the rth polygon

in S and set χ̂r
j,δ = χ̂j,δ[E

r]. Moreover, with abuse of notation, let us indicate with

the same symbol both the functions in Vδ and the corresponding vector of finite

element degrees of freedom. We construct the rth column of the snapshots matrix

U defined in (5.18) by stacking on top of each other the finite element coordinates

χ̂r
1,δ, . . . , χ̂

r
N,δ so that each column contains all the basis functions for the associated

polygon. We set

U =



χ̂1
1,δ · · · χ̂R

1,δ
...

...

χ̂1
N,δ · · · χ̂R

N,δ




We then apply the POD to this matrix and we obtain an ordered sequence of

N-tuples (ξ̂ℓ1, · · · , ξ̂ℓN)⊤ constructed as



ξ̂ℓ1
...

ξ̂ℓN


 =

1√
R

R∑

r=1

zrℓ




χ̂r
1,δ
...

χ̂r
N,δ


 for ℓ = 1, . . . , R, (5.24)

where (λℓ, zℓ) for ℓ = 1, . . . , R, represents the set of eigenpairs of the correlation

matrix C = R−1U⊤SU.

188 CHAPTER 5. REDUCED BASIS FOR VEM

Finally, the M dimensional reduced basis space in which we will look for an ap-

proximation of the virtual function corresponding to the jth node of a new polygon

E is defined as

Wj,M = span{ξ̂1j , . . . , ξ̂Mj } ⊂ Vδ ∩ H1
0(E), j = 1, . . . , N. (5.25)

The entire offline phase is summarized in Algorithm 5.1.

Algorithm 5.1 The offline phase

Data:

S: sample of R polygons with N vertices

Ê: regular polygon with N vertices

ĝj: boundary conditions on ∂Ê, j = 1, . . . , N

Λ̂j ∈ Vδ: harmonic lifting of ĝj

Snapshots computation:

for E ∈ S do
Compute eEj,δ solving Problem 5.1.1 with FEM on triangulation T E

δ of E

Set ẽEj = eEj,δ ◦ B−1 defined on B(T E
δ) in Ê

Compute Iδẽ
E
j interpolating ẽEj on Tδ

Compute snapshots χ̂j,δ[E] = Iδẽ
E
j − Λ̂j ∈ Vδ

end

Proper Orthogonal Decomposition:

Build snapshots matrix U and correlation matrix C = R−1U⊤ SU

Compute sequence (λℓ, zℓ), ℓ = 1, . . . , R, solving the eigenvalue problem Cz = λz

Build (ξ̂ℓ1, · · · , ξ̂ℓN)⊤ according to (5.24)

Compute and store affine decomposition building blocks Aν
i , F

ν
i (see Sec. 5.3.2)

5.3.2 The affine decomposition

We know that the efficiency of the reduced basis method relies on the affine de-

composition assumption. Therefore, we need to provide an affine decomposition

for Problem 5.3.1, in particular for the bilinear form A(·, ·;E) and the right hand

side operator A(Λ̂j, ·;E). Let us observe that, using the notation introduced in

5.3. COMPUTING VIRTUAL FUNCTIONS WITH REDUCED BASIS 189

Section 5.1, we have

A(û, v̂;E) =
N∑

i=1

A(û, v̂; Ti) where A(û, v̂; Ti) =

∫

T̂i

| det(B−1
E,i)|B⊤

E,i BE,i∇û·∇v̂ dx̂.

Since the matrix | det(B−1
E,i)|B⊤

E,i BE,i is symmetric, we introduce a basis for the

space of 2× 2 symmetric matrices

S1 =

[
1 0

0 0

]
, S2 =

[
0 0

0 1

]
, S3 =

[
0 1

1 0

]
, (5.26)

so that we can write

| det(B−1
E,i)|B⊤

E,i BE,i =
3∑

ν=1

ciν [E]Sν . (5.27)

Consequently, we obtain the following affine decomposition

A(û, v̂;E) =
N∑

i

3∑

ν=1

ciν [E]A
i,ν(û, v̂), with Ai,ν(û, v̂) =

∫

T̂i

Sν∇û · ∇v̂ dx̂.

which is applied in the same way also for the term at the right hand side, yielding

A(Λ̂j, v̂;E) =
N∑

i=1

3∑

ν=1

ciν [E]F
i,ν
j (v̂) with F i,ν

j (v̂) =

∫

T̂i

Sν∇Λ̂j · ∇v̂ dx̂.

At this point, we have selected a reduced basis and constructed the building

blocks for the affine decomposition, therefore we can compute and store once for all

some further bricks we need to implement an efficient online phase. In particular,

since we may need to evaluate also non symmetric bilinear forms, we add an

element to the basis of symmetric matrices, that is

S4 =

[
0 1

−1 0

]
,

and, given Wj,M for j = 1, . . . , N , we compute and store the following quantities

A
ν
i (j, j

′, ℓ, ℓ′) =

∫

T̂i

Sν∇ξ̂ℓj · ∇ξ̂ℓ
′

j′ , F
ν
i (j, j

′, ℓ) =

∫

T̂i

Sν∇ξ̂ℓj · ∇Λ̂j′ (5.28)

for ℓ, ℓ′ = 1, · · · ,M , j, j′ = 1, · · · , N , and for ν = 1, · · · , 4.

190 CHAPTER 5. REDUCED BASIS FOR VEM

5.3.3 The online phase: reconstruction of basis functions

We are now able to compute approximations of the virtual basis functions for the

local space V1(E). Given a new polygon E with N vertices, we look for χ̂j,δ[E]

solving Problem 5.3.1 in the form

χ̂j,δ[E] =
M∑

ℓ=1

x
E,j
ℓ ξ̂ℓj . (5.29)

Exploiting the affine decomposition, the linear system we need to solve for getting

the coefficients x
E,j
ℓ , ℓ = 1, . . . ,M is assembled with a very cheap procedure, as

described in Section 5.2. Moreover, if the number of reduced basis M is small, then

the system is also cheaply solved. Then, the virtual basis functions ϕE
j is obtained

via the pull back ϕ̂ rb

M,j[E] ◦ BE of the function

ϕ̂ rb

M,j[E] = Λ̂j +
M∑

ℓ=1

x
E,j
ℓ ξ̂ℓj ∈ Vδ. (5.30)

All these steps are summarized in Algorithm 5.2.

Let us point out that the computation of a very rough approximation of the

virtual bases may be enough to reach our goals, such as the design of a stabilization

term for anisotropic problems (see Section 5.5). Moreover, we observe that the

polynomial part of the virtual functions can be exactly computed making use of

standard tools, therefore the reduced basis technique can be used just to handle

the nonpolynomial part, reducing the impact of the error we commit with the

proposed approach. Consequently, the use of few reduced basis (small values of

M) should be enough.

Remark 5.3.1. We observe that, in general, the reduced basis method described

in Section 5.2 would consist in looking for a coefficient vector xE so that

χ̂j,δ[E] =
M∑

ℓ=1

x
E
ℓ ξ̂

ℓ
j j = 1, . . . , N,

where each xEℓ is independent of the index j. On the other hand, in our construction,

we build each χ̂j,δ[E] independently of the others: a priori, this may imply a better

approximation of the exact virtual basis functions.

5.4. NUMERICAL VALIDATION 191

Algorithm 5.2 The online phase

Data:

ĝj: boundary condition on ∂Ê, j = 1, . . . , N

Λ̂j ∈ Vδ: harmonic lifting of ĝj
E: polygon with N vertices

Set M ≤ R and consider reduced basis (ξ̂ℓ1, · · · , ξ̂ℓN)⊤, ℓ = 1, · · · ,M

Approximating basis functions for V1(E):

Assemble reduced system A[E] xE = F[E], with affine decomposition bricks Aν
i , F

ν
i

Solve for w and construct ê rb

M,j[E] = Λ̂j +
∑M

ℓ=1 x
E,j
ℓ ξ̂ℓj ∈ Vδ

5.4 Numerical validation

In this section we discuss accuracy and efficiency of the RB technique we introduced

in this chapter. Starting from now on, we restrict our discussion to the case of

convex polygons. Despite that, we describe two algorithms to generate datasets of

convex and general star shaped polygons respectively. The procedure to generate

star shaped polygons is reported for completeness and it will be exploited of future

studies. We then build a reduced basis for each value of N between 4 and 14 and

we study the accuracy of the method comparing the reduced basis reconstructions

with the standard projection onto polynomials. Moreover, the efficiency of the

method is assessed by measuring the average CPU time required to carry out the

online phase on the considered datasets. We point out that the reduced basis we

construct in this section will be used later for performing the tests we present in

Sections 5.5 and 5.6.

5.4.1 Dataset generation

Convex polygons

If we need to generate datasets made up of convex polygons, we adopt a differ-

ent algorithm. There are many options and we decide to work with a sampling

algorithm [120] developed by exploiting the theory presented in [119]. For fixed

N , it generates random polygons in the unit square which are then translated and

scaled to satisfy the defining properties of the parameter space P.

192 CHAPTER 5. REDUCED BASIS FOR VEM

We now describe the procedure one has to carry out in order to obtain a

random convex polygons with N edges. The text is accompanied by illustrations

providing a simple example of how the procedure works, while the pseudocode

can be found in Algorithm 5.3. We report in Figure 5.5 some examples of convex

polygons generated with the described algorithm.

We first generate two random vectors X and Y with uniform distribution in

(0, 1)N . Then, we sort their elements in non decreasing order.

X

Y

Once this is done, we let EX and EY denote the set of exterior points of X and

Y respectively, and we randomly divide the interior points of each set into two

disjoint subsets I1X, I
2
X and I1Y, I

2
Y. Then, we set Xj = EX ∪ IjX and Yj = EY ∪ IjY

for j = 1, 2.

X2

X1 Y1

Y2

From X1 and X2 we can identify a set of vectors {ai}Ni=1 such that
∑N

i=1 ai = 0.

Similarly, from Y1 and Y2, we can create the set of vectors {bi}Ni=1 such that∑N
i=1 bi = 0.

a4 a5

a1 a2 a3

b3

b1

b2

b4

b5

5.4. NUMERICAL VALIDATION 193

We randomly pair up the obtained vectors to obtain a set ofN pairs {(ai,bi)}Ni=1

so that we can construct {ei}Ni=1 where ei = ai+bi. We sort {ei}Ni=1 with respect to

the angle they form when centered in the origin and we finally lay them end-to-end

so that the convex polygon is constructed.

e5

θ5
e3 θ3

e4

θ4
e1

θ1

e2

θ2

a1 + b4 = e5 a2 + b3 = e3 a3 + b5 = e4

a4 + b1 = e1 a5 + b2 = e2

θ1 ≤ θ2 ≤ θ3 ≤ θ4 ≤ θ5

e1

e2

e3
e4

e5

E

Proposition 5.4.1 ([119]). For fixed N , the described algorithm provides a convex

polygon with N vertices.

Figure 5.5: Four examples of random convex polygons generated by means of

Algorithm 5.3.

194 CHAPTER 5. REDUCED BASIS FOR VEM

Algorithm 5.3 Generating random convex polygons in the unit square

Generate X and Y uniformly in (0, 1)N

Sort the elements of X and Y with non decreasing order

Isolate the extreme points of X and Y in two sets EX, EY

Randomly divide the interior points of X into two disjoint subsets I1X, I
2
X

Repeat the same operation on Y to get I1Y, I
2
Y

Set Xj = EX ∪ IjX and Yj = EY ∪ IjY for j = 1, 2

Extract vectors {ai}Ni=1 from X1,X2 such that
∑N

i=1 ai = 0

Extract vectors {bi}Ni=1 from Y1,Y2 such that
∑N

i=1 bi = 0

Randomly pair up elements from {ai}Ni=1, {bi}Ni=1 to get a set of pairs {(ai,bi)}Ni=1

Compute {ei}Ni=1 as ei = ai + bi

Sort {ei}Ni=1 with respect to the angle they form when centered in the origin

Lay end-to-end the ordered vectors to obtain a convex polygon

General star-shaped polygons

In this section, we describe the algorithm we designed for generating random star-

shaped polygons centered at the origin and with unit diameter dE. Given the N

vertices regular polygon Ê centered at the origin, the algorithm consists of applying

random deformations to Ê so that a generic polygon E is obtained.

We represent a polygon E ∈ P by the vectors ρ = (ρi)
N
i=1 and θ = (θi)

N
i=1,

where (ρi, θi) are the polar coordinates of the vertex vi. We construct the random

instances ρ and θ of the parameter E by applying a sequence of deformations to

the reference polygon, which is represented by the vectors

ρ̂ = (1, . . . , 1) and θ̂ =

(
0,

2π

N
, . . . ,

2π(N − 1)

N

)
.

We introduce three parameters tρ, tθ, s ∈ [0, 1], which will allow to control the

shape regularity of the polygons in P. The vector ρ ∈ RN for a random E is

generated with the following transformation

ρ = ρ̂+ tρX (5.31)

where X is a random vector uniformly distributed in (−1, 1)N .

5.4. NUMERICAL VALIDATION 195

Figure 5.6: Four examples of random star shaped polygons generated by means of

Algorithm 5.4.

The vector θ of angular coordinates is given by the sum of two contributions

θ = γ + 2πZ. (5.32)

The variable Z is simply uniformly distributed in (0, 1), while γ = (γi)
N
i=1 is

generated in several steps. At the beginning, we set γ = θ̂. For fixed index i,

we then apply a random perturbation: we generate a uniform random variable

Y ∈ (−1, 1), so that we can write

γi = γi + πtθY.

We next perform two safety checks to avoid that γi ≤ γi−1 and that the new value

γi is too close (or coincides) with the previous and the subsequent angles. How

much γi can be close to the the previous and the subsequent angles is controlled

by the parameter s. More precisely, we introduce the following two limiting angles

γ⋆,i = γi−1 +
2π

N
s and γ⋆,i = 2π

N − s(N − i+ 1)

N

and then we finally choose

γi = min{max{γi, γ⋆,i}, γ⋆,i}.

We report in Algorithm 5.4 the entire procedure, while in Figure 5.6 we depict

some examples of star shaped polygons generated the presented algorithm.

5.4.2 Construction of the reduced basis

In order to construct our reduced basis spaces, we generate a dataset consisting

of 5000 random polygons with N vertices (N = 4, . . . , 14), by making use of

196 CHAPTER 5. REDUCED BASIS FOR VEM

Algorithm 5.4 Generating random star shaped polygons in P

Data:

ρ̂ = (1, . . . , 1)

θ̂ =
(
0, 2π

N
, . . . , 2π(N−1)

N

)

tρ, tθ, s ∈ [0, 1]

Output:

ρ, θ

Initialize γ = θ̂, γ = (γi)
N
i=1

Generate X uniformly in (−1, 1)N

Compute ρ = ρ̂+ tρX

for i = 2, . . . , N do
Set γ⋆,i = γi−1 +

2π
N
s

Set γ⋆,i = 2πN−s(N−i+1)
N

Generate Y uniformly in (0, 1)

γi = γi + πtθY

γi = max{γi, γ⋆,i}
γi = min{γi, γ⋆,i}

end

Generate Z uniformly in (0, 1)

Compute θ = γ + 2πZ

the algorithm described in Section 5.4.1 (the case N = 3 will not be considered

since the basis functions of lowest order VEM on triangles coincide with the finite

element shape functions, which are known in their analytical form).

Once the required datasets are generated, we are able to construct the reduced

basis for each value of N . The offline phase described in Section 5.3.1 is performed

on a sample of R = 300 polygons {Eℓ}300ℓ=1 randomly selected out of the database.

We apply the POD algorithm so that we can construct the ordered sequence of

N -tuples (ξ̂ℓ1, . . . , ξ̂
ℓ
N)

⊤ for ℓ = 1, . . . , 60. Then, the reduced bases with M ≤ 60

elements are easily obtained by truncation of these tuples.

The snapshots computation is performed on triangulations T E
δ and Tδ for E

and Ê respectively with mesh size set to δ = δE = 0.01. In order to map the snap-

5.4. NUMERICAL VALIDATION 197

shots from T E
δ onto Tδ we implement an interpolation rule based on barycentric

coordinates. To this aim, we map T E
δ onto Ê by simply applying the affine map

B. Then, given a node p ∈ Tδ, it is easy to identify the triangle T ∈ B(T E
δ) con-

taining p. Denoting by v1,v2,v3 the vertices of T, we interpolate ϕ̃E
j at p making

use of the following formula

Iδϕ̃
E
j (p) ≈

3∑

i=1

ηi ϕ̃
E
j (vi) j = 1, . . . , N,

where η1, η2, η3 are the barycentric coordinates of p with respect to T.

Finally, for each value of N , we test the reduced basis of dimension M over

a set of 500 polygons randomly selected out of our database. In particular, we

consider M = 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, 60.

5.4.3 Accuracy

In this section, we study the accuracy of the RB method when used to reconstruct

a virtual function uh ∈ V1(E). For our analysis, we consider two different situations

in which the nonpolynomial part of V1(E) has two different magnitudes. We have

a) polynomial DOFs: the function uh ∈ V1(E) is obtained by interpolation of

the polynomial p(x, y) = x5 + y5. This means that the reconstruction is done

imposing as degrees of freedom for V1(E) the evaluation of p at the vertices

of E;

b) random DOFs: we reconstruct a function uh ∈ V1(E) whose degrees of free-

dom are randomly generated in the unit interval with normal distribution; in

this case, the nonpolynomial contribution dominates.

Since the polynomial projection Π∇
1 uh is always exactly computed, we apply the

reduced basis method just to reconstruct the nonpolynomial residual uh − Π∇
1 uh.

Hence, for each test polygon under consideration, the validation process is carried

out with the following four steps:

i) we compute the projection onto polynomials Π∇
1 uh;

ii) we approximate the nonpolynomial residual σrb
M ≈ uh−Π∇

1 uh by applying the

reduced basis method with precision M . Then, we construct urbM ≈ uh, where

urbM = Π∇
1 uh + σrb

M ;

198 CHAPTER 5. REDUCED BASIS FOR VEM

iii) we compute the “exact” reconstruction ufeh by solving Problem 5.1.1 by means

of the finite element method on a triangulation T E
δ ;

iv) we compute the error committed by approximating uh respectively with the

polynomial and RB reconstructions for several values of M . More precisely,

we consider
∥∥Π∇

1 uh − ufeh
∥∥
1,E

/
∥∥ufeh

∥∥
1,E

and
∥∥urbM − ufeh

∥∥
1,E

/
∥∥ufeh

∥∥
1,E

.

The data obtained at the end of the described procedure is then processed to

produce statistical plots of the errors. These plots are collected in Figure 5.7 for the

test case a) of polynomial DOFs and in Figure 5.8 for the test case b) of random

generated DOFs. For each value of M , we mark the maximum and minimum value

by a circle and a diamond respectively. Then, the 95th and 5th percentiles are

connected by a straight line on which the mean value is marked by a square.

From both figures, it is clear that in the 95% of cases the reduced basis re-

construction performs better than the projection onto polynomials. In some cases

there are instances in which Π∇
1 uh produces a better approximation than urbM : we

consider this results acceptable, since errors have the same order of magnitude.

Conversely, if we particularly look at test case b), the use of just two reduced basis

functions (M = 2) produces already a slight improvement also for the worst case

scenario, which makes sense since the nonpolynomial part is dominating. For the

best case scenario, the use of a single reduced basis (M = 1) produces a gain of one

order of magnitude. For the largest degree of precision M = 60, the improvement

is significant: from Figure 5.7, we gain one order of magnitude with respect to

Π∇
1 uh even for the worst case scenario, while the order of magnitudes are almost

two if we look at the the best case scenario. The mean value behaves accordingly.

The same behavior is similarly observed in Figure 5.8 for the test case b).

In Figure 5.9, we visualize some polygons realizing the maximum values of

error accordingly to the statistical plots. A common feature of these polygons is

the presence of very small edges, which are associated to badly shaped triangles

Ti: this may be the cause that weakens the accuracy of the reduced basis method.

It would be interesting to understand a priori which polygons need a special

treatment and further studies will be focused on this aspect.

5.4.4 Computational efficiency

Once we established that the reconstruction of virtual functions via reduced basis

method produces accurate results, we study the efficiency of the method. To this

5.4. NUMERICAL VALIDATION 199

1 2 3 4 5 10 15 20 2530 40 5060
10

-4

10
-3

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060
10

-4

10
-3

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060
10

-4

10
-3

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060
10

-3

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060
10

-3

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060
10

-3

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060

10
-2

10
-1

10
0

Figure 5.7: Statistical plots of the errors committed by the RB approach for

N = 5, . . . , 14, increasing the precision M . a) The degrees of freedom are im-

posed evaluating p(x, y) = x5 + y5 at the vertices of each E. The first blue data,

related to M = 0, refers the error between uh and Π∇
1 uh. The maximum values are

represented with circles, while the minimum values are marked with diamonds.

Squares represent mean values. Vertical lines connects the 95th and 5th percentiles

200 CHAPTER 5. REDUCED BASIS FOR VEM

1 2 3 4 5 10 15 20 2530 40 5060
10

-4

10
-3

10
-2

10
-1

10
0

10
1

1 2 3 4 5 10 15 20 2530 40 5060
10

-4

10
-3

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060
10

-3

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060
10

-3

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060

10
-2

10
-1

10
0

1 2 3 4 5 10 15 20 2530 40 5060
10

-2

10
-1

10
0

Figure 5.8: Statistical plots of the errors committed by the RB approach for N =

5, . . . , 14, increasing the precision M . b) The degrees of freedom are randomly

generated in (0, 1). Same format as Table 5.7

5.4. NUMERICAL VALIDATION 201

(a) N = 6

(b) N = 9

(c) N = 11

(d) N = 14

Figure 5.9: Some polygons realizing the maximum values in Figures 5.7 and 5.8

for N = 6, 9, 11, 14. Since some edges are very short, the associated triangles

appears to be very badly shaped. Due to this feature, the reduced basis method

may underperform.

202 CHAPTER 5. REDUCED BASIS FOR VEM

aim we compare the computational cost deriving from the construction and evalu-

ation of urbM for different values of M with both the cost of evaluation of Π∇
1 uh and

the “exact” reconstruction ufeh . Of course, the “exact” reconstruction cannot be car-

ried out in practical situations since it requires the solution of N different PDEs

per each E: in this case, this technique is taken into account just for academic

purpose.

The average times for each phase and each value of N from 4 to 14 are reported

in Table 5.1. For the construction of Π∇
1 uh we measure the time Tbuild we need to

build the stiffness matrix involved in the projection [12] and the time Tapply spent to

evaluate the projection at the nodes of the triangulation. Also for the computation

of the finite element function ufeh we measure the time of two different phases: we are

interested in the time Tasm we need to assemble the finite element stiffness matrix

and in Tsol, which is the time needed to solve the full linear system. In terms of

reduced basis approximation, we focus on M = 1, 5, 30, 60 and we measure the

time Tasm and Tsol we spend in constructing and solving the reduced linear system

during the online phase.

From Table 5.1, we see that in general the computation of urbM presents run

times which are comparable with the evaluation of Π∇
1 uh also when we consider

the most expensive case with M = 60. Moreover, if, for the sake of comparison,

we look at the total time Ttot required by the evaluation of ufeh and we compare it

with the total time of the reduced basis procedure, we see that the latter is faster

of at least two orders of magnitude. Let us, for instance, focus on the case N = 14:

if M = 1, the time required to evaluate urbM is 3.96 × 10−3 s, which is almost half

of Ttot for computing Π∇
1 uh, which requires 6.27× 10−3 s. Moreover, for M = 60, a

total time of 1.41×10−2 s is spent to build urbM which is a very good approximation

of ufeh , whereas the explicit computation of ufeh requires 2.81 s.

At the end, it is evident that we designed an accurate and efficient method to

reconstruct virtual functions living in V1(E) with the same cost of projecting onto

polynomials through Π∇
1 .

Remark 5.4.1. Let us observe that, in practical situations, the online phase of the

reduced basis approach is highly parallelizable, since each polygon E can be treated

independently from the others. Moreover, thanks to the affine decomposition and

the precomputed objects, the online phase does not require to generate or refer to

any kind of triangulation in physical or reference elements.

5.4. NUMERICAL VALIDATION 203

Comparison in time of post–processing techniques

Π∇
1 uh ufeh urbM , M = 60

N Tbuild(s) Tapply(s) Ttot(s) Tasm(s) Tsol(s) Ttot(s) Tasm(s) Tsol(s) Ttot(s)

4 1.50e-3 1.76e-3 3.26e-3 3.61e-1 4.04e-1 7.65e-1 1.53e-3 7.57e-4 2.29e-3

5 1.27e-3 2.31e-3 3.58e-3 4.54e-1 5.50e-1 1.00 2.15e-3 8.35e-4 2.99e-3

6 1.25e-3 2.90e-3 4.14e-3 4.42e-1 6.68e-1 1.21 2.76e-3 8.58e-4 3.63e-3

7 1.26e-3 3.39e-3 4.65e-3 6.99e-1 8.73e-1 1.57 3.96e-3 1.05e-3 5.01e-3

8 1.19e-3 3.48e-3 4.67e-3 7.20e-1 8.95e-1 1.61 4.50e-3 1.05e-3 5.56e-3

9 1.40e-3 3.96e-3 5.36e-3 8.44e-1 1.13 1.97 5.71e-3 1.16e-3 6.87e-3

10 1.37e-3 4.19e-3 5.56e-3 9.34e-1 1.26 2.20 7.00e-3 1.33e-3 8.33e-3

11 1.34e-3 4.15e-3 5.50e-3 9.32e-1 1.34 2.27 8.15e-3 1.34e-3 9.49e-3

12 1.57e-3 4.67e-3 6.26e-3 1.06 1.54 2.60 9.88e-3 1.49e-3 1.14e-2

13 1.47e-3 4.66e-3 6.13e-3 1.06 1.55 2.60 1.08e-2 1.52e-3 1.23e-2

14 1.49e-3 4.78e-3 6.27e-3 1.11 1.70 2.81 1.25e-2 1.63e-3 1.41e-2

urbM , M = 1 urbM , M = 5 urbM , M = 30

N Tasm(s) Tsol(s) Ttot(s) Tasm(s) Tsol(s) Ttot(s) Tasm(s) Tsol(s) Ttot(s)

4 6.69e-4 6.58e-5 7.35e-4 7.19e-4 2.22e-4 9.41e-4 9.94e-4 4.11e-4 1.41e-3

5 8.74e-4 5.85e-5 9.33e-4 9.64e-4 2.32e-4 1.20e-3 1.41e-3 4.48e-4 1.86e-3

6 1.05e-3 5.40e-5 1.10e-3 1.18e-3 2.28e-4 1.41e-3 1.76e-3 4.65e-4 2.23e-3

7 1.39e-3 6.19e-5 1.45e-3 1.60e-3 2.60e-4 1.86e-3 2.44e-3 5.37e-4 2.97e-3

8 1.55e-3 5.52e-5 1.60e-3 1.82e-3 2.55e-4 2.07e-3 2.80e-3 5.56e-4 3.36e-3

9 2.04e-3 6.21e-5 2.10e-3 2.32e-3 2.82e-4 2.60e-3 3.52e-3 5.81e-4 4.10e-3

10 2.36e-3 7.01e-5 2.43e-3 2.75e-3 3.03e-4 3.06e-3 4.41e-3 6.69e-4 5.08e-3

11 2.57e-3 6.16e-5 2.64e-3 2.98e-3 2.96e-4 3.27e-3 4.89e-3 6.66e-4 5.56e-3

12 3.13e-3 7.40e-5 3.20e-3 3.63e-3 3.24e-4 3.96e-3 5.94e-3 7.21e-4 6.66e-3

13 3.37e-3 6.85e-5 3.44e-3 3.89e-3 3.11e-4 4.21e-3 6.42e-3 7.18e-4 7.13e-3

14 3.89e-3 7.08e-5 3.96e-3 4.50e-3 3.30e-4 4.83e-3 7.39e-3 7.71e-4 8.16e-3

Table 5.1: Average CPU times required to evaluate Π∇
1 uh, u

fe
h and urbM for M =

1, 5, 30, 60 on 500 test polygons for each value of N . Each polygon is considered

twice since we take into account both polynomial and random DOFs. Tbuild =

CPU time to build the projection matrix associated to Π∇
1 ; Tapply = CPU time

to evaluate Π∇
1 uh on mesh nodes. For the exact reconstruction ufeh : Tasm = CPU

time to assemble the FEM linear system; Tsol = CPU time to solve it. For the

reduced basis approximations: Tasm = CPU time to assemble the linear system of

the online phase; Tsol = CPU time to solve it. The linear systems are solved with

the backslash command provided by Matlab. The serial code was ran on a Intel

Xeon Gold 6230R core running at 2.10GHz.

204 CHAPTER 5. REDUCED BASIS FOR VEM

5.5 Design of a new VEM stabilization

We previously mentioned that we would like to exploit the reduced basis recon-

struction of the virtual functions for the design of stabilization terms able to deal

with anisotropic problems. In this section, we describe how to explicitly construct

such terms, also discussing the relation between this RB–VEM formulation and

conforming polygonal Galerkin methods. We then present some numerical tests to

compare the convergence properties of the RB stabilization with respect to the

standard dofi–dofi and D–recipe.

Given a polygon E, we denote by âE the bilinear form on the reference element

Ê obtained from aE by change of variable:

âE(v, w) =
N∑

i=1

∫

T̂i

∣∣detB−1
E,i

∣∣B⊤
E,iKBE,i ∇ û · v̂ dx̂.

The idea at the basis of our method, is to define SE as

SE(ϕi, ϕj) = âE(ϕ̂ rb

M,i[E], ϕ̂
rb

M,j[E]). (5.33)

In (5.30), we saw that the RB approximation of the V1(E) basis reads

ϕ̂ rb

M,j[E] = Λ̂j +
M∑

ℓ=1

x
E,j
ℓ ξ̂ℓj

so that, using this expansion for SE, we easily have

SE(ϕi, ϕj) =â
E(Λ̂i, Λ̂j) +

M∑

ℓ=1

x
E,j
ℓ âE(ξ̂ℓi , Λ̂j)

+
M∑

ℓ=1

x
E,j
ℓ âE(Λ̂i, ξ̂

ℓ
j) +

M∑

ℓ,ℓ′=1

x
E,j
ℓ âE(ξ̂ℓ

′

i , ξ̂
ℓ
j).

(5.34)

For efficiently constructing this object, we can exploit again the affine decom-

position. We can express the matrix
∣∣detB−1

E,i

∣∣B⊤
E,iKBE,i as linear combination of

Sν for ν = 1, . . . , 4 defined in Section 5.3.2:

∣∣detB−1
E,i

∣∣B⊤
E,iKBE,i =

4∑

ν=1

γiν [E]Sν .

5.5. DESIGN OF A NEW VEM STABILIZATION 205

Then, we obtain the following expression

âE(ξ̂ℓ
′

j , ξ̂
ℓ
j′) =

N∑

i=1

4∑

ν=1

γiν [E]A
ν
i (j, j

′, ℓ, ℓ′), (5.35)

which also allow us to efficiently compute the right hand side of (5.34) thanks to

the precomputed objects Aν
i for i = 1, . . . , N and ν = 1, . . . , 4. Therefore, the local

bilinear form is constructed as

aEh (ϕi, ϕj) = aE(Π∇
1 ϕi,Π

∇
1 ϕj) + SE

rb(ϕi, ϕj), i, j = 1, . . . , N

where

SE
rb(ϕi, ϕj) = âE(ϕ̂ rb

M,i[E]− Π∇
1 ϕi, ϕ̂

rb

M,j[E]− Π∇
1 ϕj). (5.36)

Algorithm 5.5 describes how to construct the RB stabilization term when as-

sembling the virtual elements stiffness matrix.

Algorithm 5.5 Reduced basis stabilization in V1(E)

Data:

Th: VEM mesh for Ω

for E ∈ Th with N vertices do
Compute aE(Π∇

1 ϕi,Π
∇
1 ϕj) for i, j = 1, . . . , N

Go to Online phase and compute ϕ̂ rb

M,i[E]

Build stabilization SE
rb(ϕi, ϕj) = âE(ϕ̂ rb

M,i[E]− Π∇
1 ϕi, ϕ̂

rb

M,j[E]− Π∇
1 ϕj) on Ê

Set aEh (ϕi, ϕj) = aE(Π∇
1 ϕi,Π

∇
1 ϕj) + SE

rb(ϕi, ϕj)

end

5.5.1 The RB–stabilized VEM as a fully conforming method

Before analyzing some numerical tests, we remark that we can interpret the method

we obtain by applying the RB stabilization with M reduced basis functions as a

fully conforming method in a non standard discrete space V rb
h . Given E, let us

first define the following space on the boundary

B
⊥(∂E) =

{
v ∈ H1/2(∂E) :

∫

∂E

v∇ q · n da = 0, ∀q ∈ P1(E),

∫

∂E

v da = 0

}
.

(5.37)

206 CHAPTER 5. REDUCED BASIS FOR VEM

In particular, Π∇
1 v = 0 if and only if v ∈ B⊥(∂E). Now, considering the RB space

W rb(E) ⊂ H1(E) defined as

W rb(E) =
{
v ∈ span{ϕrb

1 , . . . , ϕ
rb
N} : v|∂E ∈ B

⊥(∂E)
}
, (5.38)

we can construct V rb
h (E) as

V rb
h (E) = P1(E)⊕W rb(E). (5.39)

By construction, we have that the polynomials are included in V rb
h (E), i.e.

P1(E) ⊂ V rb
h (E). Moreover, the restriction of V rb

h (E) on the boundary ∂E co-

incides with the boundary space B1(E). Finally, notice that discretizing Prob-

lem 4.3.1 in

V rb
h = {v ∈ H1

0(Ω) : v|E ∈ V rb
h (E) ∀E ∈ Th}, (5.40)

by a Galerkin method, we get the same linear system as for VEM with reduces

basis stabilization.

We can also exploit the RB virtual basis reconstruction to design an efficient

implementation of the polygonal finite element method in the VEM space. Indeed,

by choosing M large enough, we can obtain good approximations of the exact

stiffness matrix.

We show here an example: we consider the pentagon depicted in Figure 5.10

and we build its stiffness matrix in four different ways: Kdofi is the standard matrix

in V1(E) built with dofi–dofi stabilization, Krb
1 and Krb

60 are built applying the

procedure in Algorithm 5.5 choosing M = 1, 60 respectively and Kfe is the stiffness

matrix computed with an “exact” computation of the virtual functions.

• Stiffness matrix constructed with dofi–dofi stabilization

K
dofi =




+0.7422 −0.1966 −0.3412 −0.2578 +0.0534

−0.1966 +0.7422 −0.3412 −0.1354 −0.0690

−0.3412 −0.3412 +0.9896 +0.0364 −0.3437

−0.2578 −0.1354 +0.0364 +0.8646 −0.5078

+0.0534 −0.0690 −0.3437 −0.5078 +0.8672




• Stiffness matrix constructed with RB stabilization, M = 1

K
rb
1 =




+0.7151 −0.1463 −0.3876 −0.2654 +0.0843

−0.1463 +0.6586 −0.2746 −0.1013 −0.1364

−0.3876 −0.2746 +0.9495 −0.0164 −0.2708

−0.2654 −0.1013 −0.0164 +0.9022 −0.5190

+0.0843 −0.1364 −0.2708 −0.5190 +0.8419




5.5. DESIGN OF A NEW VEM STABILIZATION 207

v1 v2

v3

v4v5

xE

v1 = (0, 0)
v2 = (3, 0)
v3 = (3, 2)
v4 = (3/2, 4)
v5 = (0, 4)

xE = (19/14, 38/21)
hE = 5

Figure 5.10: The pentagon we use to compare several constructions of the stiffness

matrix

• Stiffness matrix constructed with RB stabilization, M = 60

K
rb
60 =




+0.7111 −0.1410 −0.3902 −0.2711 +0.0911

−0.1410 +0.6488 −0.2656 −0.0997 −0.1425

−0.3902 −0.2656 +0.9365 −0.0085 −0.2723

−0.2711 −0.0997 −0.0085 +0.8830 −0.5038

+0.0911 −0.1425 −0.2723 −0.5038 +0.8274




• Exact stiffness matrix

K
fe =




+0.7110 −0.1409 −0.3902 −0.2711 +0.0912

−0.1409 +0.6487 −0.2654 −0.0997 −0.1425

−0.3902 −0.2654 +0.9363 −0.0083 −0.2723

−0.2711 −0.0997 −0.0083 +0.8828 −0.5036

+0.0912 −0.1425 −0.2723 −0.5036 +0.8273




As expected, Krb
60 is a very good approximation of Kfe. Of course, as observed

in [12] and in Remark 4.4.4, Kdofi is not close to the exact stiffness Kfe, while the

cheaply constructed Krb
1 is something “halfway” between Kdofi and Kfe.

5.5.2 Numerical tests

It is well known that standard formulations of lowest order VEM show poor con-

vergence properties when applied for solving strongly anisotropic problems [32].

208 CHAPTER 5. REDUCED BASIS FOR VEM

Figure 5.11: Examples of Voronoi meshes on the unit square generated by means

of Polymesher.

In this section, we compare the performance of our RB stabilization with classical

dofi–dofi and D–recipe.

We present three numerical tests in which Problem 4.1.1 is solved on the unit

square discretized by a sequence of Voronoi meshes generated by means of Poly-

mesher [117]. See Figure 5.11 for some examples. In particular, the first two tests

have been used in [32] to compare classical VEM with the stabilization free for-

mulation.

The analysis we conduct in this and in the next section is based on three relative

discrete errors. For ♠ = uh,Π
∇
1 uh, u

rb
M and ♣ = uh, u

rb
M , we set

err
⋆(♠) =

(∑
E∈Th

‖u−♠‖2⋆,E
)1/2

‖u‖⋆,Ω
for ⋆ = 0, 1

err
K(♠) =

(∑
E∈Th

∥∥∥
√
K∇

(
u−♠

)∥∥∥
2

0,E

)1/2

∥∥∥
√
K∇u

∥∥∥
0,Ω

err
∞(♣) =

maxx∈Ω |u−♣|
maxx∈Ω |u|

(5.41)

In particular, in this section, the discussion is based on the evaluation of

err
1(Π∇

1 uh) and err
K(Π∇

1 uh) as usual in virtual element methods.

Test 1

For the first test, we consider a problem in which the diffusivity tensor K is strongly

anisotropic and the solution is characterized by a boundary layer in x-direction

next to the right edge of the domain. More precisely, we compute the right hand

5.5. DESIGN OF A NEW VEM STABILIZATION 209

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10
4

Figure 5.12: Surface and contour plots for the exact solution u for Test 1. We can

see a strong boundary layer next to the right edge of Ω = [0, 1]2.

side f accordingly to the following choices:

u(x, y) = 10−2xy(1− x)(1− y)(e20x − 1), K =

[
8× 10−3 0

0 1

]
. (5.42)

A graphical representation of the solution u is reported in Figure 5.12. The plots

depicting the convergence history of the three VEM formulations under consid-

eration are reported in Figure 5.13, while the data related to dofi–dofi and RB

stabilization (M = 1) are collected in Table 5.2. Looking at err1(Π∇
1 uh), we notice

that the method endowed with dofi–dofi and D–recipe presents the same conver-

gence curves, while using the reduced basis stabilization, in this case with M = 1

and M = 10, we obtain an improvement in terms of value of the error, whereas

the convergence rate is the same as for standard stabilization terms. The same

behavior is registered for err
K(Π∇

1 uh) and confirms our idea that a stabilization

built using a rough approximation of the virtual shape functions is able to catch

the anisotropy of the problem, unlike the classical stabilization terms, which are

of isotropic type.

Test 2

For this second test, we increase the anisotropy of the solution. Indeed, we choose

a function u highly oscillating in y-direction with the law described in Figure 5.14.

More precisely, we choose the right hand side of Problem 4.1 in such a way that

u(x, y) = sin(2πx) sin(zπy), z = 80, (5.43)

210 CHAPTER 5. REDUCED BASIS FOR VEM

10
-2

10
-2

10
-1

10
-2

10
-2

10
-1

Figure 5.13: Comparison of stabilization terms: convergence plots for Test 1. We

represent in blue and yellow the convergence history of dofi–dofi and D–recipe

stabilizations respectively. The green curve is related to the RB stabilization with

M = 1, while the red curve is for M = 10. The RB stabilization catches the

anisotropy of the problem slightly improving the method.

Test 1 - Convergence history

dofi–dofi Reduced Basis, M = 1

h err
1(Π∇

1 uh) Rate err
K(Π∇

1 uh) Rate err
1(Π∇

1 uh) Rate err
K(Π∇

1 uh) Rate

3.021e-2 3.382e-1 – 2.229e-1 – 2.623e-1 – 1.707e-1 –

1.536e-2 1.812e-1 0.92 1.164e-1 0.96 1.229e-1 0.99 8.561e-2 1.02

7.569e-3 8.927e-2 0.99 5.895e-2 0.96 6.401e-2 1.04 4.223e-2 0.99

5.548e-3 5.958e-2 1.30 4.006e-2 1.25 4.256e-2 1.32 2.863e-2 1.26

4.094e-3 3.856e-2 1.43 2.729e-2 1.26 2.809e-2 1.37 1.960e-2 1.25

3.219e-3 2.569e-2 1.69 1.871e-2 1.56 1.921e-2 1.58 1.360e-2 1.52

2.063e-3 1.675e-2 0.96 1.286e-2 0.84 1.288e-2 0.90 9.421e-3 0.83

Table 5.2: Convergence history for Test 1: we compare dofi–dofi and RB stabiliza-

tion built with M = 1.

5.5. DESIGN OF A NEW VEM STABILIZATION 211

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 5.14: Surface and contour plots for the exact solution u for Test 2. The

parameter z is responsible of the oscillations in y-direction. In this case, we set

z = 10.

is the solution, with diffusivity tensor defined as

K =

[
1 0

0 6.25× 10−4

]
. (5.44)

Convergence results are collected in Figure 5.15 and Table 5.3, confirming the

general behavior already observed in the previous test. Indeed, looking at both

err
1(Π∇

1 uh) and err
K(Π∇

1 uh), the results of standard stabilization terms are im-

proved by the reduced basis approach. The improvement is evident already with

M = 1, in this case also in terms of convergence rate. Due to the strong anisotropy,

we also check the behavior of the method when M = 10 and M = 60 are consid-

ered. However, the increase in precision is not reflected in the results, which do not

show a significant gain with respect to M = 1. This confirms that it is possible to

obtain good results with little additional computational effort.

Test 3

In this last test, we consider a less regular solution. We choose the right hand

side in such a way that the following piecewise continuous u with discontinuous

212 CHAPTER 5. REDUCED BASIS FOR VEM

10
-2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10
-2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.15: Comparison of stabilization terms: convergence plots for Test 2. Same

color code used in Figure 5.13. In addition, black circles denote the convergence

history of the RB stabilization built with M = 60. Also in this case the RB sta-

bilization is able to catch the strong anisotropy of the problem improving the

performance obtained by standard stabilization terms. We observe almost coin-

cident results for M = 1, 10, 60, therefore the method is effective already in the

cheapest and rough case.

Test 2 - Convergence history

dofi–dofi Reduced Basis, M = 1

h err
1(Π∇

1 uh) Rate err
K(Π∇

1 uh) Rate err
1(Π∇

1 uh) Rate err
K(Π∇

1 uh) Rate

3.021e-2 9.971e-1 – 9.989e-1 – 9.945e-1 – 9.966e-1 –

1.536e-2 9.822e-1 0.02 9.841e-1 0.02 9.643e-1 0.05 9.671e-1 0.04

7.569e-3 9.269e-1 0.08 9.304e-1 0.08 8.586e-1 0.16 8.641e-1 0.16

5.548e-3 8.625e-1 0.23 8.683e-1 0.22 7.498e-1 0.44 7.583e-1 0.42

4.094e-3 7.561e-1 0.43 7.659e-1 0.41 5.968e-1 0.75 6.095e-1 0.72

3.219e-3 6.088e-1 0.90 6.239e-1 0.85 4.264e-1 1.40 4.436e-1 1.32

2.063e-3 4.365e-1 0.74 4.578e-1 0.70 2.709e-1 1.02 2.919e-1 0.94

Table 5.3: Convergence history for Test 2: we compare dofi–dofi and RB stabiliza-

tion built with M = 1.

5.5. DESIGN OF A NEW VEM STABILIZATION 213

Figure 5.16: Surface and contour plots for the exact solution u for Test 3. The

parameter z1 is responsible of the oscillations in y-direction, while z2 is responsible

of the oscillations in x-direction. In this case, we set z1 = 10 and z2 = 15.

gradient along the line x = 1/2 is the solution:

u(x, y) =




sin(2πx) sin(z1πy) cos(πx) x ≤ 1

2

cos(z1πx) cos(πx) sin(z2(π − y)π) x > 1
2

, z1 = 80, z2 = 30.

(5.45)

The function u presents strong oscillations in y-direction for x ≤ 1/2, as well as

oscillations in both x and y direction when x > 1/2. An example of this functions

is depicted in Figure 5.16 for z1 = 10 and z2 = 15. Moreover, we consider a non

symmetric diffusivity tensor:

K =

[
1 10−2

5× 10−3 10−4

]
.

The behavior of the stabilization terms under consideration is compared in Fig-

ure 5.16 and Table 5.4. The convergence history is basically consistent with the

results of the previous Test 2. If we look at err1(Π∇
1 uh), the RB stabilization with

M = 1 improves the results of dofi–dofi and D–recipe (they coincide also in this

case), both in terms of value of the error and convergence rate. On the contrary,

we obtain slightly different results for the energy error errK(Π∇
1 uh): indeed, all the

methods under consideration perform equivalently until the two finest case, where

the RB approach presents a slight improvement.

214 CHAPTER 5. REDUCED BASIS FOR VEM

10
-2

0.4

0.5

0.6

0.7

0.8

0.9

10
-2

10
-1

10
0

Figure 5.17: Comparison of stabilization terms: convergence plots for Test 3. Same

color code used in Figure 5.13 and 5.15. In this case the diffusivity tensor is not

symmetric. The RB stabilization clearly improves the results of dofi–dofi and D–

recipe if we look at err
1(Π∇

1 uh). Conversely, if we look at the error in energy

norm, all the approaches behave in similar way, with a slight improvement of the

RB stabilization in the two finest cases.

Test 3 - Convergence history

dofi–dofi Reduced Basis, M = 1

h err
1(Π∇

1 uh) Rate err
K(Π∇

1 uh) Rate err
1(Π∇

1 uh) Rate err
K(Π∇

1 uh) Rate

3.021e-2 9.077e-1 – 7.833e-1 – 9.255e-1 – 7.787e-1 –

1.536e-2 7.589e-1 0.26 4.595e-1 0.79 7.576e-1 0.30 4.584e-1 0.78

7.569e-3 6.736e-1 0.17 2.522e-1 0.85 6.468e-1 0.22 2.501e-1 0.85

5.548e-3 6.327e-1 0.20 1.893e-1 0.93 5.842e-1 0.33 1.853e-1 0.97

4.094e-3 5.779e-1 0.30 1.443e-1 0.89 5.049e-1 0.48 1.377e-1 0.98

3.219e-3 5.062e-1 0.55 1.108e-1 1.09 4.133e-1 0.83 1.019e-1 1.25

2.063e-3 4.165e-1 0.44 8.364e-2 0.63 3.148e-1 0.61 7.360e-2 0.73

Table 5.4: Convergence history for Test 3: we compare dofi–dofi and RB stabiliza-

tion built with M = 1.

5.6. POST-PROCESSING OF VEM WITH RB METHOD 215

5.6 Post-processing of VEM with RB method

The reduced basis machinery we successfully validated and applied for the design

of a new stabilization term can be also used to post-process virtual elements solu-

tions. Indeed, by reconstructing the basis functions of V1(E), we are able to build

the actual uh ∈ V1(E), so that a conforming solution is obtained from the degrees

of freedom. This can be useful for several purposed: visualization, pointwise eval-

uation or to compute the actual error in H1(Ω) with respect to a known solution

when benchmarking the method in academic research. In Algorithm 5.6, we sketch

how to post-process a VEM solution by means of the reduced basis method.

Algorithm 5.6 Reduced basis virtual functions reconstruction

Data:

Th: VEM mesh for Ω

{uh(vj)}j=1,...,N : DOFs of numerical solution in E ∈ Th (values at vertices)

for E ∈ Th do
Go to Online phase and compute ϕ̂ rb

M,i[E] on Tδ

Pull back ϕE
j = ϕ̂ rb

M,j[E] ◦ BE on T E
δ = B−1(Tδ) in E

Build Π∇
1 uh evaluating on T E

δ

Compute urbM = Π∇
1 uh +

∑N
j=1(uh(vj)− Π∇

1 uh(vj))ϕ
E
j in E

end

In this section, we show three possible applications: in the first test, we apply

the reduced basis method to reconstruct and visualize the conforming solution. In

the second test, we carry out the reconstruction along a line, while in the last test

we perform a convergence analysis comparing urbM , Π∇
1 uh and the “exact” ufeh .

For all the considered examples, we solve Problem 4.3.1 with K = I by means

of the lowest order VEM defined on the unit square discretized by Voronoi meshes.

In this section, the chosen stabilization is dofi–dofi.

5.6.1 Visualization

In this test, Ω = [0, 1]2 is discretized by a relatively coarse Voronoi mesh Th

consisting of 100 polygons, which is depicted in Figure 5.19a. Problem 4.3.1 is

216 CHAPTER 5. REDUCED BASIS FOR VEM

(a) u (b) Π∇
1
uh (c) urb

M
, M = 1

Figure 5.18: Visualization of post-processed solution on the Voronoi mesh depicted

in Figure 5.19a. (a) The exact solution u. (b) Π∇
1 uh computed projecting onto

polynomials in each element; the obtained function is discontinuous across the

elements. (c) The reconstructed solution urbM , computed with a single reduced basis

in each element; in this case the solution is conforming in the global virtual element

space.

solved considering the right hand side f so that an approximation of the following

exact solution is obtained

u(x, y) =
1

32π2
sin(4πx) sin(4πy). (5.46)

Once the degrees of freedom are computed, in the standard VEM approach, the

solution can be reconstructed by evaluating a projection onto polynomials. This

reconstruction is depicted in Figure 5.18b, that shows the evident discontinuities.

If for any reason, the final user requires a continuous solutions, we can instead

reconstruct the solution urbM using even a single reduced basis, i.e. M = 1. The

post-processed solution thus obtained is represented in Figure 5.18c.

5.6.2 Local reconstruction

We now show how the reduced basis method can be used to locally reconstruct

a VEM solution in a subdomain. We solve again the Poisson problem on the

Voronoi mesh Th drawn in Figure 5.19a and we then reconstruct the solution on a

one dimensional grid of the diagonal y = x of the unit square. To this aim we only

need to post-process the solution in the polygons E intersecting the considered

line.

5.6. POST-PROCESSING OF VEM WITH RB METHOD 217

In particular, for our test, we consider

u(x, y) = x3 − xy2 + yx2 + x2 − xy

− x+ y − 1 + sin(5x) sin(7y) + log(1 + x2 + y4).
(5.47)

The reduced basis reconstruction is performed in each involved element E using

both M = 1 and M = 3. For the sake of comparison, we also perform a full

finite element reconstruction on local triangulations T E
δ with size δE = hE/100.

The results are reported in Figure 5.19. In particular, in Figure 5.19b, we plot

in magenta the RB reconstruction urbM with M = 3 and in black ufeh : notice that,

although we use few reduced basis functions, the two reconstructions coincide. In

Figure 5.19c, we plot again ufeh , and compare it with the projection Π∇
1 uh (denoted

by blue segments): as already observed in the previous visualization test, also Π∇
1 uh

is a good approximation, but characterized by discontinuity across the elements.

Finally, in Figure 5.19d, we zoom in the interval [0.4, 0.6] to compare all the post-

processed solutions, taking also into account urbM with M = 1, which is denoted by

a green line.

5.6.3 Convergence test

As mentioned before, in this test we carry out a convergence analysis. We solve

again the Poisson problem with exact solution u defined in (5.46) for the visual-

ization test. This time, the domain is discretized with a sequence {Th}h of seven

Voronoi meshes with decreasing size and the post-processing is performed element

by element in the entire Ω, with a procedure similar to the one adopted in the

previous reconstruction test. In particular, we compare the convergence history of

ufeh , Π∇
1 uh and urbM , M = 1 in terms of err0(⋄), err1(⋄), err∞(⋄) and the results

are collected in Figure 5.20. The reduced basis reconstruction, represented with an

orange line, behaves as the “exact” ufeh (black line) in terms of all the considered er-

ror indicators. These conforming reconstructions slightly improve the convergence

properties of Π∇
1 uh. Moreover, if we look at err

∞(⋄), the results are in line with

the previous test since the reduced basis reconstruction is optimal also from a

pointwise perspective.

218 CHAPTER 5. REDUCED BASIS FOR VEM

(a) Geometry

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

(b) urb

M
vs uh

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

(c) Π∇
1
uh vs uh

0.4 0.45 0.5 0.55 0.6

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

(d) Zoom

Figure 5.19: Reconstruction in subdomain. (a) Geometric configuration for visu-

alization and reconstruction tests. The reconstruction in subdomain is performed

on the red line computing the virtual functions in the yellow elements. (b) Com-

parison between the “exact” reconstruction ufeh (black line) and the reduced basis

approximation urbM ,M = 3 (magenta line). (c) Comparison between ufeh and the

projection Π∇
1 uh (blue line). (d) Zoom on the interval [0.4, 0.6] comparing ufeh ,

Π∇
1 uh, u

rb
M ,M = 3 and in addition urbM ,M = 1 (green line). The RB approach pro-

duces very good approximations, basically coincident with ufeh even if small values

of M are considered.

5.6. POST-PROCESSING OF VEM WITH RB METHOD 219

10
-1

10
0

10
-2

10
-1

10
0

10
-1

10
0

10
-1

10
0

10
-1

10
0

10
-2

10
-1

10
0

Figure 5.20: Convergence test. Convergence analysis comparing the reduced basis

approximation urbM computed with M = 1 (orange line) with the standard poly-

nomial projection Π∇
1 uh (blue line) and the “exact” reconstruction ufeh (black line).

We observe that urbM and ufeh behave equivalently.

220 CHAPTER 5. REDUCED BASIS FOR VEM

Bibliography

[1] B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini, and A. Russo. Equivalent

projectors for virtual element methods. Computers & Mathematics with Ap-

plications, 66(3):376–391, 2013.

[2] P. F. Antonietti, L. Beirão da Veiga, and G. Manzini. The virtual element

method and its applications, volume 31. Springer Nature, 2022.

[3] P. F. Antonietti, L. Beirão da Veiga, D. Mora, and M. Verani. A stream

virtual element formulation of the Stokes problem on polygonal meshes. SIAM

Journal on Numerical Analysis, 52(1):386–404, 2014.

[4] M. Attene, S. Biasotti, S. Bertoluzza, D. Cabiddu, M. Livesu, G. Patanè,

M. Pennacchio, D. Prada, and M. Spagnuolo. Benchmarking the geometrical

robustness of a virtual element Poisson solver. Mathematics and Computers

in Simulation, 190:1392–1414, 2021.

[5] N. A. Barnafi, F. Dassi, and S. Scacchi. Parallel block preconditioners for vir-

tual element discretizations of the time-dependent Maxwell equations. Journal

of Computational Physics, 478:111970, 2023.

[6] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and

A. Russo. Basic principles of virtual element methods. Mathematical Models

and Methods in Applied Sciences, 23(01):199–214, 2013.

[7] L. Beirão da Veiga, F. Brezzi, F. Dassi, L. Marini, and A. Russo. Lowest

order virtual element approximation of magnetostatic problems. Computer

Methods in Applied Mechanics and Engineering, 332:343–362, 2018.

221

222 BIBLIOGRAPHY

[8] L. Beirão da Veiga, F. Brezzi, F. Dassi, L. D. Marini, and A. Russo. Virtual

element approximation of 2D magnetostatic problems. Computer Methods in

Applied Mechanics and Engineering, 327:173–195, 2017.

[9] L. Beirão da Veiga, F. Brezzi, F. Dassi, L. D. Marini, and A. Russo. A family

of three-dimensional virtual elements with applications to magnetostatics.

SIAM Journal on Numerical Analysis, 56(5):2940–2962, 2018.

[10] L. Beirão Da Veiga, F. Brezzi, F. Dassi, L. D. Marini, and A. Russo. Serendip-

ity virtual elements for general elliptic equations in three dimensions. Chinese

Annals of Mathematics, Series B, 39(2):315–334, 2018.

[11] L. Beirão da Veiga, F. Brezzi, and L. D. Marini. Virtual elements for linear

elasticity problems. SIAM Journal on Numerical Analysis, 51(2):794–812,

2013.

[12] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. The hitchhiker’s

guide to the virtual element method. Mathematical models and methods in

applied sciences, 24(08):1541–1573, 2014.

[13] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. Mixed virtual ele-

ment methods for general second order elliptic problems on polygonal meshes.

ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Math-

ématique et Analyse Numérique, 50(3):727–747, 2016.

[14] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. Serendipity nodal

VEM spaces. Computers & Fluids, 141:2–12, 2016.

[15] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. Virtual element

method for general second-order elliptic problems on polygonal meshes. Math-

ematical Models and Methods in Applied Sciences, 26(04):729–750, 2016.

[16] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. Serendipity face

and edge VEM spaces. Rendiconti Lincei, 28(1):143–180, 2017.

[17] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. The virtual element

method. Acta Numerica, 32:123–202, 2023.

BIBLIOGRAPHY 223

[18] L. Beirão da Veiga, A. Chernov, L. Mascotto, and A. Russo. Basic principles

of hp virtual elements on quasiuniform meshes. Mathematical Models and

Methods in Applied Sciences, 26(08):1567–1598, 2016.

[19] L. Beirão da Veiga, A. Chernov, L. Mascotto, and A. Russo. Exponential con-

vergence of the hp virtual element method in presence of corner singularities.

Numerische Mathematik, 138(3):581–613, 2018.

[20] L. Beirão da Veiga, V. Gyrya, K. Lipnikov, and G. Manzini. Mimetic finite

difference method for the Stokes problem on polygonal meshes. Journal of

computational physics, 228(19):7215–7232, 2009.

[21] L. Beirão da Veiga, C. Lovadina, and A. Russo. Stability analysis for the vir-

tual element method. Mathematical Models and Methods in Applied Sciences,

27(13):2557–2594, 2017.

[22] L. Beirão da Veiga, C. Lovadina, and G. Vacca. Divergence free virtual el-

ements for the Stokes problem on polygonal meshes. ESAIM: Mathematical

Modelling and Numerical Analysis, 51(2):509–535, 2017.

[23] L. Beirão da Veiga, G. Manzini, and L. Mascotto. A posteriori error estimation

and adaptivity in hp virtual elements. Numerische Mathematik, 143(1):139–

175, 2019.

[24] L. Beirão da Veiga and L. Mascotto. Interpolation and stability properties of

low-order face and edge virtual element spaces. IMA Journal of Numerical

Analysis, 43(2):828–851, 2023.

[25] L. Beirão da Veiga and L. Mascotto. Stability and interpolation properties of

serendipity nodal virtual elements. Applied Mathematics Letters, 142:108639,

2023.

[26] L. Beirão da Veiga, L. Mascotto, and J. Meng. Interpolation and stability

estimates for edge and face virtual elements of general order. Mathematical

Models and Methods in Applied Sciences, 32(08):1589–1631, 2022.

[27] L. Beirão da Veiga, D. Mora, and G. Vacca. The Stokes complex for vir-

tual elements with application to Navier–Stokes flows. Journal of Scientific

Computing, 81:990–1018, 2019.

224 BIBLIOGRAPHY

[28] L. Beirão da Veiga and G. Vacca. Sharper error estimates for virtual ele-

ments and a bubble-enriched version. SIAM Journal on Numerical Analysis,

60(4):1853–1878, 2022.

[29] M. F. Benedetto, S. Berrone, A. Borio, S. Pieraccini, and S. Scialo. A hy-

brid mortar virtual element method for discrete fracture network simulations.

Journal of Computational Physics, 306:148–166, 2016.

[30] S. Berrone and A. Borio. A residual a posteriori error estimate for the vir-

tual element method. Mathematical Models and Methods in Applied Sciences,

27(08):1423–1458, 2017.

[31] S. Berrone, A. Borio, and F. Marcon. Lowest order stabilization free virtual

element method for the Poisson equation. arXiv preprint arXiv:2103.16896,

2021.

[32] S. Berrone, A. Borio, and F. Marcon. Comparison of standard and stabiliza-

tion free virtual elements on anisotropic elliptic problems. Applied Mathemat-

ics Letters, 129:107971, 2022.

[33] S. Berrone, A. Borio, F. Marcon, and G. Teora. A first-order stabilization-free

virtual element method. Applied Mathematics Letters, 142:108641, 2023.

[34] S. Berrone and M. Busetto. A virtual element method for the two-phase flow

of immiscible fluids in porous media. Computational Geosciences, 26(1):195–

216, 2022.

[35] S. Berrone, M. Busetto, and F. Vicini. Virtual element simulation of two-phase

flow of immiscible fluids in discrete fracture networks. Journal of Computa-

tional Physics, 473:111735, 2023.

[36] S. Berrone and A. Raeli. Efficient partitioning of conforming virtual element

discretizations for large scale discrete fracture network flow parallel solvers.

Engineering Geology, 306:106747, 2022.

[37] S. Bertoluzza, G. Manzini, M. Pennacchio, and D. Prada. Stabilization of

the nonconforming virtual element method. Computers & Mathematics with

Applications, 116:25–47, 2022.

BIBLIOGRAPHY 225

[38] S. Bertoluzza, M. Montardini, M. Pennacchio, and D. Prada. The virtual

element method on image-based domain approximations. arXiv preprint

arXiv:2206.03449, 2022.

[39] S. Bertoluzza, M. Pennacchio, and D. Prada. BDDC and FETI-DP for the

virtual element method. Calcolo, 54:1565–1593, 2017.

[40] S. Bertoluzza, M. Pennacchio, and D. Prada. High order VEM on curved

domains. Rendiconti Lincei, 30(2):391–412, 2019.

[41] S. Bertoluzza, M. Pennacchio, and D. Prada. FETI-DP for the three di-

mensional virtual element method. SIAM Journal on Numerical Analysis,

58(3):1556–1591, 2020.

[42] S. Bertoluzza, M. Pennacchio, and D. Prada. Interior estimates for the virtual

element method. arXiv preprint arXiv:2204.09955, 2022.

[43] S. Bertoluzza, M. Pennacchio, and D. Prada. Weakly imposed Dirichlet

boundary conditions for 2D and 3D virtual elements. Computer Methods

in Applied Mechanics and Engineering, 400:115454, 2022.

[44] T. Bevilacqua, F. Dassi, S. Zampini, and S. Scacchi. BDDC preconditioners

for virtual element approximations of the three-dimensional Stokes equations.

arXiv preprint arXiv:2304.09770, 2023.

[45] T. Bevilacqua and S. Scacchi. BDDC preconditioners for divergence free

virtual element discretizations of the Stokes equations. Journal of Scientific

Computing, 92(2):63, 2022.

[46] D. Boffi, F. Gardini, and L. Gastaldi. Approximation of PDE eigenvalue

problems involving parameter dependent matrices. Calcolo, 57(4):41, 2020.

[47] D. Boffi, F. Gardini, and L. Gastaldi. Virtual element approximation of eigen-

value problems. In The Virtual Element Method and its Applications, pages

275–320. Springer, 2022.

[48] S. C. Brenner, Q. Guan, and L.-Y. Sung. Some estimates for virtual element

methods. Computational Methods in Applied Mathematics, 17(4):553–574,

2017.

226 BIBLIOGRAPHY

[49] S. C. Brenner and L. R. Scott. The mathematical theory of finite element

methods, volume 3. Springer, 2008.

[50] S. C. Brenner and L.-Y. Sung. Virtual element methods on meshes with

small edges or faces. Mathematical Models and Methods in Applied Sciences,

28(07):1291–1336, 2018.

[51] H. Brézis. Functional analysis, Sobolev spaces and partial differential equa-

tions, volume 2. Springer, 2011.

[52] F. Brezzi, R. S. Falk, and L. D. Marini. Basic principles of mixed virtual

element methods. ESAIM: Mathematical Modelling and Numerical Analysis,

48(4):1227–1240, 2014.

[53] E. Cáceres, G. N. Gatica, and F. A. Sequeira. A mixed virtual element method

for the Brinkman problem. Mathematical Models and Methods in Applied

Sciences, 27(04):707–743, 2017.

[54] A. Cangiani, E. H. Georgoulis, and P. Houston. hp-version discontinuous

Galerkin methods on polygonal and polyhedral meshes. Mathematical Models

and Methods in Applied Sciences, 24(10):2009–2041, 2014.

[55] A. Cangiani, E. H. Georgoulis, T. Pryer, and O. J. Sutton. A posteriori error

estimates for the virtual element method. Numerische mathematik, 137:857–

893, 2017.

[56] A. Cangiani and M. Munar. A posteriori error estimates for mixed virtual

element methods. arXiv preprint arXiv:1904.10054, 2019.

[57] L. Chen and J. Huang. Some error analysis on virtual element methods.

Calcolo, 55:1–23, 2018.

[58] H. Chi, L. Beirão da Veiga, and G. H. Paulino. A simple and effective gradi-

ent recovery scheme and a posteriori error estimator for the virtual element

method (VEM). Computer Methods in Applied Mechanics and Engineering,

347:21–58, 2019.

[59] P. G. Ciarlet. The finite element method for elliptic problems. SIAM, 2002.

BIBLIOGRAPHY 227

[60] M. Cihan, B. Hudobivnik, J. Korelc, and P. Wriggers. A virtual element

method for 3D contact problems with non-conforming meshes. Computer

Methods in Applied Mechanics and Engineering, 402:115385, 2022.

[61] B. Cockburn, D. A. Di Pietro, and A. Ern. Bridging the hybrid high-order and

hybridizable discontinuous Galerkin methods. ESAIM: Mathematical Mod-

elling and Numerical Analysis, 50(3):635–650, 2016.

[62] B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization of

discontinuous Galerkin, mixed, and continuous Galerkin methods for second

order elliptic problems. SIAM Journal on Numerical Analysis, 47(2):1319–

1365, 2009.

[63] B. Cockburn, G. E. Karniadakis, and C.-W. Shu. The development of dis-

continuous Galerkin methods. In Discontinuous Galerkin methods: theory,

computation and applications, pages 3–50. Springer, 2000.

[64] F. Credali, S. Bertoluzza, and D. Prada. Reduced basis stabilization and post-

processing for the virtual element method. arXiv preprint arXiv:2310.00625,

2023.

[65] F. Dassi, A. Fumagalli, D. Losapio, S. Scialò, A. Scotti, and G. Vacca. The

mixed virtual element method on curved edges in two dimensions. Computer

Methods in Applied Mechanics and Engineering, 386:114098, 2021.

[66] F. Dassi, A. Fumagalli, A. Scotti, and G. Vacca. Bend 3D mixed virtual

element method for Darcy problems. Computers & Mathematics with Appli-

cations, 119:1–12, 2022.

[67] F. Dassi, C. Lovadina, and M. Visinoni. Hybridization of the virtual element

method for linear elasticity problems. Mathematical Models and Methods in

Applied Sciences, 31(14):2979–3008, 2021.

[68] F. Dassi and S. Scacchi. Parallel block preconditioners for three-dimensional

virtual element discretizations of saddle-point problems. Computer Methods

in Applied Mechanics and Engineering, 372:113424, 2020.

[69] F. Dassi and S. Scacchi. Parallel solvers for virtual element discretizations of

elliptic equations in mixed form. Computers & Mathematics with Applications,

79(7):1972–1989, 2020.

228 BIBLIOGRAPHY

[70] F. Dassi and G. Vacca. Bricks for the mixed high-order virtual element

method: projectors and differential operators. Applied Numerical Mathemat-

ics, 155:140–159, 2020.

[71] F. Dassi, S. Zampini, and S. Scacchi. Robust and scalable adaptive BDDC

preconditioners for virtual element discretizations of elliptic partial differen-

tial equations in mixed form. Computer Methods in Applied Mechanics and

Engineering, 391:114620, 2022.

[72] B. A. de Dios, K. Lipnikov, and G. Manzini. The nonconforming virtual

element method. ESAIM: Mathematical Modelling and Numerical Analysis,

50(3):879–904, 2016.

[73] A. Dedner and A. Hodson. A framework for implementing general virtual

element spaces. arXiv preprint arXiv:2208.08978, 2022.

[74] D. A. Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin

methods, volume 69. Springer Science & Business Media, 2011.

[75] D. A. Di Pietro and A. Ern. A hybrid high-order locking-free method for

linear elasticity on general meshes. Computer Methods in Applied Mechanics

and Engineering, 283:1–21, 2015.

[76] D. A. Di Pietro and A. Ern. Hybrid high-order methods for variable-diffusion

problems on general meshes. Comptes Rendus Mathématique, 353(1):31–34,

2015.

[77] D. A. Di Pietro, A. Ern, and S. Lemaire. An arbitrary-order and compact-

stencil discretization of diffusion on general meshes based on local reconstruc-

tion operators. Computational Methods in Applied Mathematics, 14(4):461–

472, 2014.

[78] L. C. Evans. Partial differential equations, volume 19. American Mathemat-

ical Society, 2022.

[79] T.-P. Fries and T. Belytschko. The extended/generalized finite element

method: an overview of the method and its applications. International journal

for numerical methods in engineering, 84(3):253–304, 2010.

BIBLIOGRAPHY 229

[80] A. L. Gain, C. Talischi, and G. H. Paulino. On the virtual element method for

three-dimensional linear elasticity problems on arbitrary polyhedral meshes.

Computer Methods in Applied Mechanics and Engineering, 282:132–160, 2014.

[81] F. Gardini, G. Manzini, and G. Vacca. The nonconforming virtual element

method for eigenvalue problems. ESAIM: Mathematical Modelling and Nu-

merical Analysis, 53(3):749–774, 2019.

[82] F. Gardini and G. Vacca. Virtual element method for second-order elliptic

eigenvalue problems. IMA Journal of Numerical Analysis, 38(4):2026–2054,

2018.

[83] G. N. Gatica, M. Munar, and F. A. Sequeira. A mixed virtual element method

for a nonlinear Brinkman model of porous media flow. Calcolo, 55:1–36, 2018.

[84] S. Gómez, L. Mascotto, A. Moiola, and I. Perugia. Space-time virtual elements

for the heat equation. arXiv preprint arXiv:2212.05343, 2022.

[85] S. Gómez, L. Mascotto, and I. Perugia. Design and performance of a space–

time virtual element method for the heat equation on prismatic meshes. Com-

put. Methods Appl. Mech. Engrg., 418:Paper No. 116491, 2024.

[86] H. Guo, C. Xie, and R. Zhao. Superconvergent gradient recovery for virtual

element methods. Mathematical Models and Methods in Applied Sciences,

29(11):2007–2031, 2019.

[87] W. Hackbusch and S. A. Sauter. Composite finite elements for problems

containing small geometric details: Part II: Implementation and numerical

results. Computing and Visualization in Science, 1(1):15–25, 1997.

[88] W. Hackbusch and S. A. Sauter. Composite finite elements for the approx-

imation of pdes on domains with complicated micro-structures. Numerische

Mathematik, 75:447–472, 1997.

[89] C. Herrera, R. Corrales-Barquero, J. Arroyo-Esquivel, and J. G. Calvo. A

numerical implementation for the high-order 2D virtual element method in

MATLAB. Numerical Algorithms, 92(3):1707–1721, 2023.

[90] J. S. Hesthaven, G. Rozza, and B. Stamm. Certified reduced basis methods

for parametrized partial differential equations, volume 590. Springer, 2016.

230 BIBLIOGRAPHY

[91] J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods:

algorithms, analysis, and applications. Springer Science & Business Media,

2007.

[92] Y. Kuznetsov and S. Repin. New mixed finite element method on polygonal

and polyhedral meshes. 2003.

[93] F. Lepe, D. Mora, G. Rivera, and I. Velásquez. A virtual element method

for the Steklov eigenvalue problem allowing small edges. Journal of Scientific

Computing, 88:1–21, 2021.

[94] K. Lipnikov, G. Manzini, and M. Shashkov. Mimetic finite difference method.

Journal of Computational Physics, 257:1163–1227, 2014.

[95] X. Liu, R. Li, and Z. Chen. A virtual element method for the coupled Stokes–

Darcy problem with the Beaver–Joseph–Saffman interface condition. Calcolo,

56(4):48, 2019.

[96] G. Manzini and A. Mazzia. Conforming virtual element approximations of the

two-dimensional Stokes problem. Applied Numerical Mathematics, 181:176–

203, 2022.

[97] G. Manzini, A. Russo, and N. Sukumar. New perspectives on polygonal and

polyhedral finite element methods. Mathematical Models and Methods in Ap-

plied Sciences, 24(08):1665–1699, 2014.

[98] L. Mascotto. Ill-conditioning in the virtual element method: Stabilizations

and bases. Numerical Methods for Partial Differential Equations, 34(4):1258–

1281, 2018.

[99] L. Mascotto. The role of stabilization in the virtual element method: A survey.

Comput. Math. Appl., 151:244–251, 2023.

[100] L. Mascotto, I. Perugia, and A. Pichler. Non-conforming harmonic virtual el-

ement method: h-and p-versions. Journal of Scientific Computing, 77(3):1874–

1908, 2018.

[101] L. Mascotto, I. Perugia, and A. Pichler. A nonconforming Trefftz virtual el-

ement method for the Helmholtz problem. Mathematical Models and Methods

in Applied Sciences, 29(09):1619–1656, 2019.

BIBLIOGRAPHY 231

[102] L. Mascotto, I. Perugia, and A. Pichler. A nonconforming Trefftz virtual

element method for the Helmholtz problem: numerical aspects. Computer

Methods in Applied Mechanics and Engineering, 347:445–476, 2019.

[103] L. Mascotto, I. Perugia, and A. Pichler. The nonconforming Trefftz virtual

element method: general setting, applications, and dispersion analysis for the

Helmholtz equation. In The Virtual Element Method and its Applications,

pages 363–410. Springer, 2022.

[104] M. Mengolini, M. F. Benedetto, and A. M. Aragón. An engineering perspec-

tive to the virtual element method and its interplay with the standard finite

element method. Computer Methods in Applied Mechanics and Engineering,

350:995–1023, 2019.

[105] D. Mora and G. Rivera. A priori and a posteriori error estimates for a

virtual element spectral analysis for the elasticity equations. IMA Journal of

Numerical Analysis, 40(1):322–357, 2020.

[106] D. Mora, G. Rivera, and R. Rodríguez. A virtual element method for the

steklov eigenvalue problem. Mathematical Models and Methods in Applied

Sciences, 25(08):1421–1445, 2015.

[107] D. Mora, G. Rivera, and R. Rodríguez. A posteriori error estimates for a

virtual element method for the Steklov eigenvalue problem. Computers &

Mathematics with Applications, 74(9):2172–2190, 2017.

[108] L. Mu, J. Wang, and X. Ye. Weak Galerkin finite element methods on

polytopal meshes. International Journal of Numerical Analysis & Modeling,

12(1), 2015.

[109] A. Ortiz-Bernardin, C. Alvarez, N. Hitschfeld-Kahler, A. Russo, R. Silva-

Valenzuela, and E. Olate-Sanzana. Veamy: an extensible object-oriented C++

library for the virtual element method. Numerical Algorithms, 82:1189–1220,

2019.

[110] G. H. Paulino and A. L. Gain. Bridging art and engineering using

Escher-based virtual elements. Structural and Multidisciplinary Optimization,

51:867–883, 2015.

232 BIBLIOGRAPHY

[111] D. Prada, S. Bertoluzza, M. Pennacchio, and M. Livesu. FETI-DP precon-

ditioners for the virtual element method on general 2D meshes. In Numerical

Mathematics and Advanced Applications ENUMATH 2017, pages 157–164.

Springer, 2019.

[112] A. Quarteroni, G. Rozza, and A. Manzoni. Certified reduced basis approxi-

mation for parametrized partial differential equations and applications. Jour-

nal of Mathematics in Industry, 1(1):1–49, 2011.

[113] B. Rivière. Discontinuous Galerkin methods for solving elliptic and parabolic

equations: theory and implementation. SIAM, 2008.

[114] T. Sorgente, D. Prada, D. Cabiddu, S. Biasotti, G. Patanè, M. Pennacchio,

S. Bertoluzza, G. Manzini, and M. Spagnuolo. VEM and the Mesh. In The

Virtual Element Method and its Applications, pages 1–57. Springer, 2022.

[115] N. Sukumar and A. Tabarraei. Conforming polygonal finite elements. In-

ternational Journal for Numerical Methods in Engineering, 61(12):2045–2066,

2004.

[116] O. J. Sutton. The virtual element method in 50 lines of MATLAB. Numerical

Algorithms, 75(4):1141–1159, 2017.

[117] C. Talischi, G. H. Paulino, A. Pereira, and I. Menezes. PolyMesher: a general-

purpose mesh generator for polygonal elements written in Matlab. Structural

and Multidisciplinary Optimization, 45:309–328, 2012.

[118] G. Vacca. An H1-conforming virtual element for Darcy and Brinkman equa-

tions. Mathematical Models and Methods in Applied Sciences, 28(01):159–194,

2018.

[119] P. Valtr. Planar point sets with bounded ratios of distances. Dissertation,

Freie Univ., 1994.

[120] S. Vendoschot. Generating random convex polygons, 2017.

[121] G. Wang, F. Wang, L. Chen, and Y. He. A divergence free weak virtual

element method for the Stokes–Darcy problem on general meshes. Computer

Methods in Applied Mechanics and Engineering, 344:998–1020, 2019.

BIBLIOGRAPHY 233

[122] H. Wei, Y. Deng, and F. Wang. Gradient recovery type a posteriori error

estimates of virtual element method for an elliptic variational inequality of the

second kind. Nonlinear Analysis: Real World Applications, 73:103903, 2023.

[123] P. Wriggers and B. Hudobivnik. A low order virtual element formulation for

finite elasto-plastic deformations. Computer Methods in Applied Mechanics

and Engineering, 327:459–477, 2017.

[124] P. Wriggers, B. Hudobivnik, and F. Aldakheel. Serendipity virtual elements

for general element shapes. Computer Methods in Applied Mechanics and

Engineering, 2020.

[125] P. Wriggers, B. D. Reddy, W. Rust, and B. Hudobivnik. Efficient virtual

element formulations for compressible and incompressible finite deformations.

Computational Mechanics, 60:253–268, 2017.

[126] P. Wriggers, W. T. Rust, and B. D. Reddy. A virtual element method for

contact. Computational Mechanics, 58(6):1039–1050, 2016.

[127] Y. Yu. mVEM: A MATLAB software package for the virtual element meth-

ods. arXiv preprint arXiv:2204.01339, 2022.

[128] B. Zhang, J. Zhao, Y. Yang, and S. Chen. The nonconforming virtual element

method for elasticity problems. Journal of Computational Physics, 378:394–

410, 2019.

[129] J. Zhao, B. Zhang, S. Mao, and S. Chen. The nonconforming virtual ele-

ment method for the Darcy–Stokes problem. Computer Methods in Applied

Mechanics and Engineering, 370:113251, 2020.

234 BIBLIOGRAPHY

Appendix A

Curriculum vitae

Personal details

Name Fabio Credali

Date of birth June 18, 1996

Place of birth Pavia, Italy

Citizenship Italian

Education

09/2010 - 06/2015 High school: Istituto Tecnico “G. Cardano”,

Pavia, Italy

10/2015 - 09/2018 Bachelor degree in Mathematics,

Università degli Studi di Pavia, Italy

10/2018 - 09/2020 Master degree in Mathematics,

Università degli Studi di Pavia, Italy

10/2020 - 11/2023 Doctoral studies in Computational Mathematics and Decision Sciences,

Università degli Studi di Pavia, Italy,

and Università della Svizzera Italiana, Lugano, Switzerland

01/2021 - 11/2023 Doctoral studies in Applied Mathematics and Computer Science,

King Abdullah University of Science and Technology,

Thuwal, Saudi Arabia

235

236 APPENDIX A. CURRICULUM VITAE

Appendix B

Academic activity

B.1 Papers

The doctoral studies reported in this thesis have contributed to the publication of

the following papers:

• D. Boffi, F. Credali, and L. Gastaldi. On the interface matrix for fluid-

structure interaction problems with fictitious domain approach, Computer

Methods in Applied Mechanics and Engineering, 401 (2022): 115650. (Chap-

ter 2)

• D. Boffi, F. Credali, L. Gastaldi, and S. Scacchi. A parallel solver for

fluid structure interaction problems with Lagrange multiplier, arXiv preprint

arXiv:2212.13410, submitted, 2022. (Chapter 3)

• D. Boffi, F. Credali, L. Gastaldi, and S. Scacchi. A parallel solver for FSI

problems with fictitious domain approach, Mathematical and Computational

Applications, 28.2 (2023): 59. (Chapter 3)

• D. Boffi, F. Credali, and L. Gastaldi. Quadrature error estimates for a fic-

titious domain formulation of fluid–structure interaction problems, in prepa-

ration. (Chapter 2)

237

238 APPENDIX B. ACADEMIC ACTIVITY

• F. Credali, S. Bertoluzza, and D. Prada. Reduced basis stabilization and

post-processing or the virtual element method, arXiv preprint arXiv:2310.00625,

submitted, 2023. (Chapter 5)

Off-topic papers:

• C. Astuto, D. Boffi, and F. Credali, Finite element discretization of a

biological network formation system: a preliminary study, arXiv preprint

arXiv:2303.10625, to appear in Proceeding of the XVIII International Con-

ference on Hyperbolic Problems: Theory, Numerics, Applications, 2023

B.2 Conferences

The work presented in this thesis has been presented in the following conferences:

• CompMath 2022 - Spring Workshop Joint PhD UniPV–USI.

Università degli Studi di Pavia, Italy. 16-17/03/2022.

Talk: Model order reduction in support of the Virtual Element Method.

• European Finite Element Fair 2022.

Aalto University, Finland. 03-04/06/2022.

Talk: Numerical approximation of fluid-structure interaction problem: a fic-

titious domain approach.

• Second Young Applied Mathematicians Conference.

Arenzano, Italy. 17-23/09/2022.

Mini-course: Numerical approximation of fluid-structure interaction problem.

• Africomp5 - 5th African Conference on Computational Mechanics.

Cape Town, South Africa. 02-04/11/2022.

Talk: A parallel solver for FSI problems with fictitious domain approach.

• 5th KAUST CEMSE MaS Workshop on Modelling and Simulation.

King Abdullah University of Science and Technology. 19/03/2023 - 22/03/2023.

Talk: A Lagrange multiplier formulation for finite element discretization of

FSI problems.

B.2. CONFERENCES 239

• European Finite Element Fair 2023.

University of Twente, Netherlands. 12-13/05/2023.

Talk: Model order reduction in support of the virtual element method.

• YIC 2023 - ECCOMAS Young Investigators Conference.

University of Porto, Portugal. 19/06/2023 - 21/06/2023.

Talk: Finite element discretization of fluid-structure interaction problems

with fictitious domain approach.

• SIMAI 2023 - Bi-annual congress of the Italian Society of Applied and In-

dustrial Mathematics.

Università degli Studi della Basilicata, Matera, Italy. 27/08/2023 - 01/09/2023.

Talk: Finite element discretization of fluid–structure interaction problems

with Lagrange multiplier: how to deal with the coupling term.

• ENUMATH 2023 - European Conference on Numerical Mathematics and

Advanced Applications.

Lisbon, Portugal. 04/09/2023 - 08/09/2023.

Talk: A parallel solver for fluid structure interaction problems with Lagrange

multiplier.

	Abstract
	Sommario
	Acknowledgements
	Ringraziamenti
	Functional analysis notation
	I Fluid-structure interaction problems
	Introduction
	Immersed boundary with Lagrange multiplier
	The immersed boundary method
	Problem setting
	Derivation of the model
	Stability estimate

	Fictitious domain approach with DLM
	Time semi-discretization
	Finite element discretization
	Analysis of the stationary problem

	The interface matrix
	Assembly techniques
	Assembly with mesh intersection
	Assembly without mesh intersection
	Generalization

	A numerical investigation
	Model problem
	Finite element spaces
	Mesh generation
	Mesh intersection
	Quadrature rules for the interface matrix
	Numerical results

	The effect of numerical integration
	Error estimates for the inexact coupling term
	Numerical tests

	Inf–sup conditions for inexact coupling

	A parallel solver
	The numerical method
	Parallel preconditioners
	The interface matrix

	Numerical results
	Linear solid model
	Nonlinear solid model

	Final remarks

	Bibliography

	II Model order reduction in support of VEM
	Introduction
	The Virtual Element Method
	Model problem
	Domain discretization
	A class of non-conforming discretizations
	The Virtual Element space
	The discrete bilinear form ah
	The right hand side

	Some estimates

	Reduced Basis for VEM
	VEM functions as solutions to parametric PDEs
	The reduced basis method
	General idea
	How to construct a reduced basis

	Computing virtual functions with reduced basis
	The offline phase: snapshots computation
	The affine decomposition
	The online phase: reconstruction of basis functions

	Numerical validation
	Dataset generation
	Construction of the reduced basis
	Accuracy
	Computational efficiency

	Design of a new VEM stabilization
	The RB–stabilized VEM as a fully conforming method
	Numerical tests

	Post-processing of VEM with RB method
	Visualization
	Local reconstruction
	Convergence test

	Bibliography
	Curriculum vitae
	Academic activity
	Papers
	Conferences

