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Introduction

Luego estos viajes
y el mío mar de nuevo:

– Finale, Pablo Neruda (1923)

The players. The driving motivation of all the work contained in this thesis is
the following question.

Question A · Let G be a group, and let Γ be a d-valent connected graph. What
constraints must G obey to be a vertex-transitive group of automorphisms of Γ?

Before discussing the philosophy behind Question A, let us recall what a
vertex-transitive group of automorphisms is.

A graph Γ is a pair (VΓ,EΓ) where EΓ is an asymmetric binary relation on
VΓ. (The set VΓ is assumed to be finite throughout this thesis, unless explicitly
stated otherwise.) A graph is d-valent if the neighbourhood of every vertex con-
tains d elements, while a graph is connected if, for every pair of vertices, there
exists a path joining them. An automorphism of the graph Γ is a permutation of
the vertex-set VΓ that preserves the relation EΓ. As usual, the composition of
two automorphisms is an automorphism, and the inverse of an automorphism
is an automorphism. Hence, the set of all automorphisms with the operation of
composition forms a group, which we denote by Aut(Γ), and we call the auto-
morphism group of Γ. A group of automorphisms of Γ is any subgroup of Aut(Γ).
Our focus is on those groups of automorphisms whose action on VΓ is transi-
tive, and we call them vertex-transitive. Similarly, we define edge-transitive and
vertex-primitive.

The way we defined our players suggests that our focus is studying the sym-
metries of a given discrete geometry, but that is not the case. The flavour of
Question A is closer to that of questions in Geometric Group Theory: a geome-
try is associated to a group so that the geometric and combinatorial properties
of the former shed light on the algebraic aspects of the latter. Indeed, we can
also think of the opposite approach when introducing our d-valent connected
graphs. Let G be a transitive group on a permutation domain Ω. We define an
orbital graph for G as the graph whose vertex-set is Ω and whose edge-set is the
G-orbit of an arbitrary 2-subset {³,´} ∈ Ω{2}. If G is primitive, the graph de-
scribed is connected, and its valency d is the length of some suborbit of G, that
is,

d = |´G³ | .

In general, a connected graph with a transitive group of automorphisms G is ob-
tained by taking appropriate unions of different orbital graphs for G. Therefore,



Introduction

d gives a measure of how long the subdegrees of G are. Hence, Question A can
be interpreted as asking what do the subdegrees tell us about a transitive permuta-
tion group G?

To make Question A more concrete, we can answer it in the 2-valent case.
Every 2-valent connected graph is precisely a cycle of length r. Hence, G is a
transitive subgroup of the dihedral group of order 2r. In particular, G is solv-
able, and the order of G is at most 2r. We point out that such a satisfactory
answer becomes impossible as soon as the valency exceeds 3.

Number of automorphisms. The most interesting piece of information of the
solution to Question A for valency 2 is that the order of G is linear in the num-
ber of vertices of Γ. A similar behaviour is described by the celebrated Tutte’s
Theorem: if G is an arc-transitive group of automorphisms of a connected 3-
valent graph Γ, then the order of G divides 48|VΓ| (see Theorem 1.24). Here,
arc-transitive means that the action of G on the ordered pairs of adjacent ver-
tices is transitive.

This result does not generalise if we remove the hypothesis of arc-transitivity
or if we increase the valency to 4. The counterexamples are the ubiquitous
Praeger–Xu graphs for valency 4 and their split 3-valent counterpart for groups
which are not transitive on the arcs. Indeed, these graphs have exponentially
large groups of automorphisms with respect to the number of vertices, and this
fact causes various complications with regard to many natural questions. They
are the object of study in Sections 2.A to 2.D. For lack of a better place in this
introduction, we give here some novel result on this family of graphs and the
operations linking them.

Theorem C · For any positive integer r g 3 and for any positive integer s f r − 1,
the Praeger–Xu graph C(r, s) is a Cayley graph if, and only if, the polynomial tr + 1
has a divisor of degree r − s in Z2[t].

Corollary D · Let a be a non-negative integer, let b be an odd positive integer such
that r = 2ab, with r g 3, and let s be a positive integer with s f r −1. The Praeger–Xu
graph C(r, s) is a Cayley graph if, and only if, s can be written as

s =
∑

d |b

³dÉ(d), for some integers ³d with 0 f ³d f
2aϕ(d)
É(d)

.

The operations linking Praeger–Xu graphs and their splits are calledmerging
and splitting, and they can be used more generally to translate problems about
4-valent arc-transitive (but not 2-arc-transitive) graphs in analogue problems
about 3-valent vertex-transitive (but not arc-transitive) graphs, and vice versa.
By [115, Theorem 12], outside of some known degenerate scenarios, the merging
operator is the right-inverse of the splitting one. The following result shows that
the merging operation is also its left-inverse.

Theorem E · Let ∆ be a 4-valent graph, let C be a partition of E∆ into cycles, and
let G be an arc-transitive group of automorphisms of ∆ such that C is G-invariant.
Then the merging operation can be applied to the pair (s(∆,C),G) and it gives as a
result (∆,C).
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On the other hand, it has been conjecture that Tutte’s Theorem can be gen-
eralised under some mild local hypothesis. Let G be a vertex-transitive group
of automorphisms of Γ, and let ³ be an arbitrary vertex. The local group of the
pair (Γ,G) is the permutation group that the vertex-stabilzer G³ induces on the
neighbourhood of ³, that is,

G
Γ(³)
³ � G³/G

[1]
³ .

TheWeiss Conjecture states that there is a constantCd such that, if the local group
of G is primitive and the valency of the graph Γ is d, then |G| f Cd |VΓ|. We give
a survey of this conjecture and the subsequent generalisations in Section 1.K.

The feasibility of many algorithmic routines is based on finding a function
of the number of vertices of Γ which gives an upper bound on the order of G.
In Chapter 1, we explore how this kind of considerations affects the Graph Iso-
morphism Problem and the compilation of censuses of vertex-transitive graphs
of small valency.

Fixed point ratio. The Graph Isomorphism Problem asks what is the complexity
of the algorithmic problem of establishes whether two graphs are isomorphic or
not. Through the Group Theory Method (see Section 1.C), this problem has been
reduced to the case in which the automorphism group of the graph analysed is
vertex-primitive. In turn, nothing better that bounding the order of a primitive
permutation group with a function of its degree is known to complete the algo-
rithm. In Section 1.E, we focus on the solution that L. Babai has given to this
problem for the class of strongly regular graphs using the notion of fixed point
ratio (see [5, 6]). The fixed point ratio of a permutation group G of degree n is
defined by

fpr(G) = max
g∈G−{1}

(
1−

|supp(g)|
n

)
,

that is, the maximum proportion of points that a nonindentity permutation
fixes. L. Babai develops a general machinery that shows that, if the fixed point
ratio of an infinite family of primitive groups is bounded away from 1, then the
order of the group is a bounded by a quasipolynomial function of its degree. For
his application, he proves that every connected strongly regular graph either is
isomorphic to a Hamming graph or Johnson graph, or its fixed point ratio is at
most 7/8, thus obtaining a quasipolynomail bound on the number of automor-
phisms.

Relying on a recent classification of T. Burness and R. M. Guralnick con-
tained in [27], we extend this result by giving a classification of vertex-primitive
graphs with fixed point ratio exceeding 1/3. Theorem K relies on a quite in-
volved construction, which is explained in details in Section 3.C. Just to give a
glimpse of the underlying idea, a merged product action graph is the equivalent
for product action of what a wreath graph is for a wreath product in imprimitive
action. The proof of this theorem spans Sections 3.D to 3.F.

Theorem K · Let Γ be a finite vertex-primitive graph with at least one arc. Then

fpr(Aut(Γ)) >
1
3

if and only if one of the following occurs:

7
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(i) Γ is a generalised Hamming graph H(r,m,J ), with m g 4, and, if m is optimal
in the sense of Definition 3.20, then

fpr(Aut(Γ)) = 1−
2
m

;

(ii) Γ is a merged product action graph P (r,G,J ), where r g 1, where J is a non-
Hamming subset of Xr with X = {0,1, . . . , |G| − 1}, and where G is as in one of
the following:

(a) G = {J(m,k, i) | i ∈ {0,1, . . . , k}} is the family of distance-i Johnson graphs,
where k,m are fixed integers such that k g 2 and m g 2k + 2 (see Sec-
tion 3.E.2 for details), and

fpr(Aut(Γ)) = 1−
2k(m− k)
m(m− 1)

;

(b) G = {QJ(2m,m,i) | i ∈ {0,1, . . . ,+m/2,}} is the family of squashed distance-
i Johnson graphs, where m is a fixed integer with m g 4 (see Section 3.E.3
for details), and

fpr(Aut(Γ)) =
1
2

(
1−

1
2m− 1

)
;

(c) G = {Lm,Γ1,Γ2}, where Γ1 is a strongly regular graph listed in Section 3.E.4,
Γ2 is its complement, and

fpr(Aut(Γ)) = fpr(Aut(Γ1))

(the fixed point ratios are collected in Table 3.3).

We can attempt a more general attack based on fixed point ratios, although,
with our current knowledge, they are not enough to bound the size of a group of
automorphisms. The main idea is that having high fixed point ratio forces the
group to grow bigger (see Section 1.D). Therefore, we aim to show that, aside
of some well-understood exceptions, the fixed point ratio is arbitrarily close to
zero.

This approach has been used, for instance, by F. Lehner, P. Potočnik and
P. Spiga in [85]. Let d be a positive integer, and let ϵ and C be two positive
constants. We can consider the family F of pairs pairs (Γ,G) where

(a) Γ is a connected d-valent graph,

(b) the local group of the pair (Γ,G) is quasiprimitive,

(c) fpr(G) g ϵ and |G³ | f C.

Then, [85, Theorem 3.1] states that F is finite, and its cardinality only depends
on the parameters d,ϵ,C. We refer to Section 3.A for details.

Using the positive solution to the Sims Conjecture (see Section 1.J), we can
change the local hypothesis for a global one.

Theorem I · Let ϵ and C be two positive constants, and let F be a family of
quasiprimitive permutation groups G on Ω satisfying
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(a) fpr(G) f ϵ,

(b) |GÉ | f C for every É ∈Ω.

Then F is a finite family.

Corollary J · Let ϵ be a positive constant, and let d be a positive integer. There
are only finitely many vertex-primitive digraphs of valency at most d and fixed point
ratio exceeding ϵ.

Moreover, as a high fixed point ratio separate Hamming and Johnson graphs
from the other connected strongly regular graphs, fixed point ratios can also
be used to separate Praeger–Xu graphs and their splitting from other connected
graphs of the same valency. To be precise, in [112], P. Potočnik and P. Spiga
have proved that, apart from fourteen small exceptions, if the fixed point ratio
of a 3-valent vertex-transitive or 4-valent vertex- and edge-transitive connected
graph exceeds 1/3, then it is a split Praeger–Xu graph or a Praeger–Xu graph
(depending on the valency). Their proof is explained in Section 2.E. If we shift
our attention to the action on the edge, we can get rid of almost all exceptions
– unfortunately the complete graph on 5 vertices survives. The proof of the
following results is contained in Sections 2.F to 2.H.

Theorem F · Let Γ be a finite connected 4-valent vertex- and edge-transitive graph
admitting a nontrivial automorphism fixing more than 1/3 of the edges. Then one of
the following holds:

(a) Γ is isomorphic to K5, the complete graph on 5 vertices;

(b) Γ is isomorphic to a Praeger–Xu graph C(r, s), for some r and s with 3s < 2r−3.

Theorem G · Let Γ be a finite connected 3-valent vertex-transitive graph admitting
a nontrivial automorphism fixing more than 1/3 of the edges. Then Γ is isomorphic
to a split Praeger–Xu graph sC(r, s), for some r and s with 3s < 2r − 3.

Derangements and semiregular elements. Until now, we have focused on
permutations with fixed points, but these kind of elements are surprisingly rare.
A derangement is a permutation whose support coincides with the domain. The
proportion of derangements of a permutation group G is defined as the ratio

¶(G) =
# {g ∈ G | g is a derangement}

|G|
.

To exemplify their abundance, we recall the well-known Cameron–Cohen Bound
(see [32]). Let G be a transitive permutation group of degree n and permutation
rank r (which coincides with the number of distinct suborbits of G). Then

¶(G) g
r − 1
n

.

In Section 3.I, by pushing their proof in a different direction, we obtain the
following result.

9
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Theorem P · Let G be a finite transitive permutation group whose minimal non-
trivial subdegree is d. Then

¶(G) g
1
2d

+
n− 2
2|G|

.

Equality is attained if and only if G is a Frobenius group.

As an immediate consequence, every vertex-transitive group of automor-
phisms has its proportion of derangements bounded away from zero by a func-
tion of the valency alone.

Corollary Q · Let Γ be a finite digraph, and let G be a group of automorphisms of
Γ. If G is transitive, and Γ has valency d, then

¶(G) g
1
2d
.

A semiregular element is a derangement such that all its nontrivial powers are
also derangements. For instance, every derangement of prime order is semireg-
ular. A classical result of Jordan states that every transitive permutation group
contains a derangement, while something more is believed to be true for auto-
morphism groups of graphs. The Polycirculant Conjecture claims that any au-
tomorphism group of a graph contain a semiregular element. We focus on the
3-valent case. The conjecture is settled in this case, but what can we say about
the semiregular element? In [35], it has been mistakenly conjectured that, as
the number of vertices goes to infinity, the order of a semiregular element grows
to infinity. This has been disproved in [144], by exhibiting an infinite family of
3-valent graphs such that all the semiregular elements of their automorphism
groups have orders that does not exceed 6. In Sections 2.I and 2.J, we show that
6 is optimal in the following sense.

Theorem H · We have that

liminf
|VΓ|→∞

Γ 3-valent vertex-transitive

max{o(g) | g ∈ Aut(Γ), g semiregular} = 6 .

Amalgams. We now switch to the second algorithmic problem explored in
Chapter 1: Can we list all the pairs (Γ,G), where Γ is a connected 3-valent graph
with |VΓ| f n, and G is an arc-transitive group of automorphisms of Γ? Amalgams
are the main ingredient used in compiling censuses of arc-transitive.

An amalgam is a triplet of groups (L,B,R) such that B is subgroup of L and R.
We say that (L,B,R) is of index (d,2) if |L : B| = d and |R : B| = 2, that it is faithful if
B is core-free in ïL,Rð, and that it is finite if L and R are both finite. For every arc-
transitive graph (Γ,G), there is a universal cover of the form (Td ,G³ ∗G³´ G{³,´}),
where ³ and ´ are two adjacent vertices of Γ, and Td is the infinite d-valent tree.
The triplet (G³ ,G³´ ,G{³,´}) can be isomorphic to any finite faithful amalgam of
index (d,2). We explain this theory in Section 1.H.

As a consequence, to list all the 3-valent arc-transitive graphs up to n ver-
tices, it is enough to classify all the finite faithful amalgam of index (3,2) and to
take all the finite quotients of the universal cover, with the quotient graphs hav-
ing at most n vertices. The first step has been performed by D. Ž. Djokovic and
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G. L. Miller in [47], while the second one has been implemented byM. D. E. Con-
der and P. Dobcsányi in [39].

As soon as we increase the valency, it is not clear if the classification of the
amalgams is a reasonable problem to tackle. For instance, rather than seven
as in the 3-valent case, the number of finite faithful amalgam of index (4,2) is
infinite. On the other hand, all the known finite faithful amalgams of index
(d,2) have some desirable properties. Indeed, the minimal number of generators
of the amalgamated product is seemingly bounded by a constant Cd , depending
on the valency, and the same is true for the exponent of each one of the three
groups composing the amalgam.

In Section 3.H, we prove that the first property does not hold in general. We
denote by d(G) the minimal number of generators of the group G.

Theorem N · There exists no function f : N → N such that, for every pair (Γ,G),
where Γ is a connected d-valent graph, and G is an arc-transitive group of automor-
phisms of Γ,

d(G) f f(d) .

To prove the previous result, we exhibit an infinite family of d-valent arc-
transitive graphs such that d(G) is a linear function of the exponent of the group.
This suggests that the exponent of G could be a relevant parameter to consider.
Indeed, we note that the number of vertices of every vertex-transitive graph can
be bounded by a function of both the valency and the exponent.

Theorem O · There exists a function B : N ×N → N such that, for every vertex-
transitive graph (Γ,G) where the valency of Γ is d, and that the exponent of G is
e,

|VΓ| f B(d,e) and |G| f B(d,e)! .

A similar investigation for the exponent of a vertex-stabilizer has not pro-
duced many fruits yet. In Section 3.G, we are able to prove that the exponent
of a vertex-stabilizer is bounded under the assumption that the local group is
weakly p-subregular (see Definition 3.27).

Theorem M · Let p be a prime, and let L be a weakly p-subregular permutation
group. Then, for every pair (Γ,G) where Γ is a connected graph, G is a vertex-
transitive group of automorphisms, and the local group of (Γ,G) is isomorphic to
L, and for every vertex ³ ∈ VΓ,

exp(G³) f p
3 exp(L) .

Although this result is not trivial, these local groups are known to behave
surprisingly well regardless of the fact that the order of a vertex-stabilizer is
unbounded (see [157]). As a corollary, we obtain that the exponent of a vertex-
stabilizer is bounded by 16d for the pairs (Γ,G), where Γ is connected d-valent,
and the local group is dihedral.

Structure of the thesis. This thesis consists of three chapters.
Chapter 1 collects most of the tools and ideas we use in this work. The proofs

contained in it are selected either for clarity of exposition or to make themmore
accessible. We also point out that, in contrast with the other results of Chapter 1,
Theorem B is original. We state it here.

11
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Theorem B · Let G be a finite group, and let H and K be two maximal subgroups
whose intersection is core-free in G. Suppose that

h = |H :H ∩K | and k = |K :H ∩K | .

Then, if we denote by f the function that solves the Sims Conjecture,

|H ∩K | f f(hk)2 .

Chapter 2’s aim is to prove Theorems F to H. What sets these results apart
is that they pertain to graphs of small valency. All faithful amalgams of index
(d,2) have been classified for d f 4, hence we can extract precise information
on their local group from there. Moreover, Chapter 2 massively uses the normal
quotient method, which seems to stop being a useful tool for studying Question A
as the valency of the graph grows.

Finally, Chapter 3 deals with results where the valency of the graph can
be arbitrarily large. Most of the results presented there provide a bound on
some group-theoretical parameter that depends on the valency of the underly-
ing graph alone, in line with the philosophy of Question A. The techniques used
throughout Chapter 3 are considerablymore varied that those of Chapter 2, thus
we cannot give a brief account of them here.

12



1 Number of automorphisms

Time for you and time for me,
And time yet for a hundred indecisions,
And for a hundred visions and revisions,
Before the taking of a toast and tea.

– The Love Song of J. Alfred Prufrock,
Thomas S. Eliot (1915)

In this chapter, we present the main ingredients of this work. Tomake this chap-
ter more engaging, we are at the same time introducing two core problems in
which the tool we develop can find an application: the Graph Isomorphism Prob-
lem and the compilation of censuses of symmetric graphs. Moreover, these topics
can also be regarded as the leading motivations for the remaining chapters.

1.A Graph Isomorphism Problem

A digraph is a pair
Γ = (VΓ,AΓ)

where AΓ is a binary relation on VΓ. The elements of VΓ are called vertices,
while the elements of AΓ are called arcs. We assume that VΓ is finite unless
explicitly stated.

Furthermore, suppose that AΓ is a symmetric relation, that is, for every arc
(³,´) ∈ AΓ, the opposite arc (´,³) is also an element ofAΓ. The pairs {(³,´), (´,³)}
partition AΓ, thus we can consider the quotient relation EΓ where opposite arcs
are identified. A graph is a pair

Γ = (VΓ,EΓ) .

We can also see a graph as the most barren incidence structure: from this point
of view, two vertices ³ and ´ are adjacent if {³,´} is an element of EΓ. The
elements of EΓ are called edges.

We can describe as example two surprisingly simple graphs which will re-
main relevant for most of the work. For a positive integer m, let Lm and Km
denote the loop graph and the complete graph on a vertex-set V of cardinality m
and with arc-sets {(v,v) | v ∈ V } and {(u,v) | u,v ∈ V ,u , v}, respectively.

Let Γ be a graph, and let ³ ∈ VΓ be an arbitrary vertex of Γ. We denote
the neighbourhood of ³ by Γ(³), and we define the valency of ³ as the number of
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neighbours of ³, that is,
val(³) = |Γ(³)| .

If the valency is shared by all vertices, we call this number valency of Γ, and we
denote it by val(Γ).

Let Γ and ∆ be two graphs. A morphism of graphs is a map

g : VΓ → V∆

such that adjacent vertices are mapped to adjacent vertices, that is,

g(EΓ) ¦ E∆ .

Ourmain interest lies in isomorphisms, which are invertiblemorphisms of graphs.
Moreover, an automorphism is an isomorphism from a graph to itself. The set of
automorphisms of a graph is a group with respect to composition, and we de-
note this group by Aut(Γ). Lastly, we say that G is a group of automorphisms of Γ
if G is a subgroup of Aut(Γ).

The Graph Isomorphism Problem consists in giving an algorithm that estab-
lishes, in the least possible time, whether or not two arbitrary graphs are iso-
morphic. The naive algorithm – compare the number of vertices, and, if they
are equal, check for all the bijection of the vertex-set of the first into the vertex-
set of the second – has an exponential run time. What is usually tackled is the
polynomially equivalent problem of assigning a canonical labelling for the ver-
tices of the graphs. (The expression polynomially equivalent means that there
exists an algorithm that runs in polynomial time that takes as input the solu-
tion of one problem and produces as output the solution of the other problem.)
In fact, if a canonical labelling can be found in an efficient way, the Graph Iso-
morphism Problem is solved by applying this efficient algorithm to both graphs
and then comparing their labellings. For different algorithmic problems that are
polynomially equivalent to the Graph Isomorphism Problem, we refer to [101].

The Graph Isomorphism Problem has been first tackled with combinatorial
heuristics. The spotlight in this sense has been taken by the Weisfeiler–Leman
algorithm, introduced in [158]. Let Γ be the graph for which we want to produce
a canonical labelling. Suppose that |VΓ| = n, and consider the complete graph
with loops Kn ∪Ln. (By Kn we denote the complete graph on n vertices, while by
Ln we denote the loop graph on n vertices. Given two graphs Γ and ∆, their union
is the graph Γ ∪ ∆ whose vertex-set is Γ ∪ ∆ and whose edge-set is Γ ∪ ∆.) We
assign to the edges of Kn ∪ Ln a colouring c0 whose fibres are Ln, Γ and Kn − Γ

respectively. The algorithm refines the colouring to c1 so that two edges share
the same colours if the number of triangles with a given colour assignment in c0
containing the edge are the same. This process can be iterated by obtaining finer
and finer colourings. A special vertex ³ ∈ VΓ is chosen, and its loop is coloured
with a special colour. Applying the Weisfeiler–Leman algorithm spreads this
irregularity, giving a loose classification of the vertices and thereby reducing
the isomorphism search space. In [10], it is shown that this approach solves the
Graph Isomorphism Problem in linear time for almost all graphs. Clever choices
of the special vertex ³ give efficient algorithm for specific classes of graphs: an
example is the polynomial solution for the planar case by J. E. Hopcroft and
R. E. Tarjan in [70].
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1.B · Permutation groups

However, this combinatorial method alone cannot solve the general prob-
lem in less than exponential time: in [30], J.-Y. Cai, M. Fürer and N. Immerman
have built an infinite family of graphs for which the runtime of the described
algorithm has an exponential lower bound (see also [106]). To break this wall,
a massive use of group theory entered the picture in [3], where L. Babai has
introduced a Las Vegas algorithm that solves the Graph Isomorphism Problem
in polynomial time, outside of a small probability of failure. His algorithm is
based on a tower of groups that reveals, step by step, the automorphism group
of a coloured graph Γ. Each group of the tower, roughly speaking, extends the
previous group by the automorphisms of the connection set of two colours. To
guarantee an efficient generation of each extension, we take some uniformly dis-
tributed elements of the quotient. The probabilistic nature of this generation is
the cause of the chance of failure of the Las Vegas algorithm. The idea of taking
advantage of the symmetries of the graph – the so-called Group Theory Method –
has been later implemented by E. M. Luks in [94] to find an algorithm that solves
the Graph Isomorphism Problem in polynomial time for graphs of bounded va-
lency, and then refined by both authors in [11]. The results produced with this
approach have stayed unbeaten until, on these (and more) ideas, L. Babai built
his solution of the Graph Isomorphism Problem in quasipolynomial time (see,
for instance, [7, 8, 67]).

1.B Permutation groups

The Group Theory Method relies on some basic notions of permutation groups.
In Section 1.B, we are developing the basics of this theory.

Any subgroup of the symmetric group Sym(Ω) on the set Ω is a permutation
group. More generally, let G be an abstract group, and let Ä : G → Sym(Ω) be
a group homomorphism. The map Ä defines an action of G on Ω, that is, any
element of g can be identified with the bijection gÄ of Ω. We denote by

GΩ = G/ ker(Ä)

the image of the action Ä, which is a permutation group onΩ. If ker(Ä) is trivial,
we say that the action if faithful, and G itself is isomorphic to a subgroup of
Sym(Ω).

The set Ω on which the group G is acting is called permutation domain, and
the elements of Ω are called points. Furthermore, we write our actions with the
exponential notation, that is, the image of ³ ∈Ω under the permutation g ∈ G is
denoted by ³g .

Let G be a permutation group on Ω, and let ³ ∈Ω be a point. The G-orbit of
³ is defined as

³G = {³g | g ∈ G}.

The group G is transitive on Ω if it defines a single G-orbit. Observe that the
property two points belong to the same G-orbit defines an equivalence relation on
Ω, thus the action of G on Ω partitions the set in G-orbits.

Let ∆ ¦ Ω be a G-orbit. We call the permutation group G∆ a transitive con-
stituent ofG. The groupG is a sub-Cartesian product of its transitive constituents,
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1 · Number of automorphisms

that is, G is a subgroup of the direct product of its transitive constituents, and
the projection of G on each Cartesian component is surjective. In particular, if
we ignore the loss of information caused by the fact that we do not know how
the transitive constituents interact, the study of an arbitrary permutation group
reduces to that of its transitive constituents, that is, of transitive groups.

Let H be a subgroup of G. We can define a transitive action of G on the right
coset space G/H by, for any x,g ∈ G,

(Hx)g =Hxg.

This action is transitive by the definition of right coset space.
Let G be transitive on Ω. The stabilizer of ³ is defined by

G³ = {g ∈ G | ³g = ³} .

It is immediate to verify that G³ is a subgroup of G, and that the map

ϕ :Ω → G/G³ , ´ 7→ G³g´ ,

where g´ ∈ G is a permutation such that ³g´ = ´, is a well-defined bijection.
Therefore, the study of transitive groups is equivalent to that of actions by right
multiplication on right coset spaces.

We recall a surprisingly useful observation, which is now usually referred to
as Frattini’s Argument.

Theorem 1.1 ([45] Exercise 1.4.1) · For any point ³ ∈Ω, and for any subgroup H
of G, then

G = G³H =HG³ if, and only if, H is transitive.

In particular, the only transitive subgroup of G containing G³ is G itself.

Let G be a transitive group on Ω. A subset ∆ of Ω is a block of imprimitivity
for G if, for any permutation g ∈ G,

either ∆ = ∆g , or ∆∩∆g = ∅ .

For instance, singletons and Ω are blocks for every action. Because of this, they
are called trivial blocks. A transitive permutation group G is primitive if the only
blocks of imprimitivity for G are trivial blocks. It is imprimitive otherwise.

An easy computation shows that, for a fixed point ³ ∈ Ω, there is a one-to-
one inclusion preserving correspondence between the blocks of imprimitivity
containing ³ and the subgroups of G containing G³ as a subgroup (see [45,
Theorem 1.5A]). It follows that a transitive group is primitive if, and only if,
each point stabilizer is a maximal subgroup.

Observe that the G-orbit of a block ∆ defines a partition of Ω into blocks
of imprimitivity. Such a partition is called a system of imprimitivity for G. Note
that any G-invariant partition of Ω defines a system of imprimitivity. Thus,
a primitive group G is a primitive group such that Ω admits no nontrivial G-
invariant partitions.

We can reduce imprimitive actions to primitive action, mimicking what we
did to pass from intransitive to transitive permutation groups. Let G be an im-
primitive permutation group, let Σ be a system of imprimitivity for G, and let
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1.B · Permutation groups

∆ ∈ Σ be a block. Although we lose some information hidden in the kernels, the
comprehension of G relies on how well we can control the induced actions GΣ

and G∆
∆
.

Let N be a normal subgroup of G, then the partition of Ω in N -orbits is
G-invariant. Hence, any nontrivial normal subgroup of a primitive group is
transitive. This fact leads to a natural generalisation of the concept of primi-
tivity: we say that a transitive permutation group G is quasiprimitive if, for any
nontrivial normal subgroup N of G, N is transitive. For instance, every simple
group in imprimitive action is quasiprimitive and not primitive.

A permutation group G is called semiregular if, for every ³ ∈Ω, the stabilizer
of ³ is trivial, that is, G³ = 1. It is called regular if it is both transitive and
semiregular. Observe that, for every regular group G, the map ϕ previously
defined is now a bijection that identifies Ω with G. This defines an action of G
on itself by right multiplication, which we call the right regular representation of
G.

Lemma 1.2 ([164] Proposition 4.3, and Exercise 4.5) · Let G be a permutation
group on Ω, and let C be the centralizer of G in Sym(Ω). If G is transitive, then C
is semiregular. If G is semiregular, then C is transitive. In particular, G is regular if,
and only if, C is regular.

Proof. Suppose that G is a transitive permutation group, and choose a point
³ ∈ Ω. Aiming for a contradiction, let c ∈ C be a nontrivial element of the
centralizer such that ³c = ³. As G is transitive, for every ´ ∈ Ω, we can find a
permutation g ∈ G such that ´ = ³g . We compute

´c = ³gc = ³cg = ³g = ´ .

We obtain that c is contained in the kernel of the action of C on Ω. As C f

Sym(Ω), the action of C is faithful, thus c = 1, a contradiction. This proves that
C is semiregular.

Assume, now, that G is semiregular. Let {Ωi | i ∈ I } be a system of orbits for
G. By the Axiom of Choice, we can choose a section

i ∈ I 7→ Éi ∈Ω .

For every Ã ∈ Sym(I ), and for every Ä ∈ G, we can consider the map

c(Ã,Ä) : Égi 7→ É
Ä−1g
iÃ

Since G is semiregular, there is a one-to-one correspondence between the ele-
ments of the group and the elements of each orbit Ωi . Hence, each c(Ã,Ä) is a
well-defined permutation. Observe that, for every h ∈ G, and for every Égi ∈Ω,

(
É
g
i

)[c(Ã,Ä),h]
=

(
É
Ägh−1

iÃ−1

)c(Ã,Ä)h
= ÉÄ

−1Ägh−1h
iÃ−1Ã = Éi .

Therefore,
ïc(Ã,Ä) | Ã ∈ Sym(I ),Ä ∈ Gð f C .

Since the set of all c(Ã,1) is transitive on {Ωi | i ∈ I }, while the set of all c(1,Ä) is
transitive on each orbit Ωi , this is enough to conclude that C is transitive.
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Suppose that G contains a normal subgroup N whose action on Ω is regu-
lar. We may identify the permutation domain Ω with N . In particular, we can
choose a point ³ ∈Ω which we identify with 1, thus every other n ∈N is identi-
fied with ³n. The action of G³ on Ω is thus isomorphic to the action of G on N
by conjugation. (See [164, Theorem 11.2] for details.)

We briefly recall that the finite primitive groups can be divided into eight
families – this result is now known as the O’Nan–Scott Theorem. The original
result, proved independently by M. E. O’Nan and L. Scott, was a classification
of the maximal subgroup of the symmetric group. Using the Classification of Fi-
nite Simple Groups, their ideas extend to a classification of all primitive groups:
this observation can be found, for instance, in [31, Secton 4]. The first self-
contained proof was written by M. W. Liebeck, C. E. Praeger and J. Saxl in [89].
We are not going to explain the nature of the eight families: we will introduce
the key properties of some families as they will become relevant for our discus-
sion. Just to give a glimpse into this subdivision, recall that the socle of a finite
primitive groups is a direct product of pairwise isomorphic simple groups. Dif-
ferent families are distinguished by the nature of the socle (Is it abelian or not?
Is it a single direct factor or multiple? Is acting regularly or not?) and how it is
embedded in the group.

Theorem 1.3 · The set of all finite primitive permutation groups can be partitioned
in eight families as follows:

HA holomorphs of an abelian group;

HS holomorphs of a simple group;

HC holomorphs of a compound group;

TW twisted wreath products of two groups;

AS almost simple groups;

SD groups in simple diagonal action;

CD wreath products of groups in compound diagonal action;

PA wreath products of groups in product action.

We remark that Theorem 1.3 extends to quasiprimitive group with some
slight modification, as showed by C. E. Praeger in [124]. Indeed, types HA, HS
and HC stay the same, while the other types need some tweaking. For instance,
for types AS and CD, the socle does not need to be primitive, but it can just be
transitive.

Observe that, for any positive integer k, the action ofG onΩ can be naturally
extended to Ωk , by putting, for every g ∈ G,

(³1,³2, . . . ,³k)
g =

(
³
g
1 ,³

g
2 , . . . ,³

g
k

)
.

We say that a permutation group G is k-transitive if Ωk − diag(Ωk) is an orbit
of this action. For instance, the symmetric group of degree n, Sym(n), is n-
transitive, while the alternating group of degree n, Alt(n), is (n − 2)-transitive.

18



1.C · Group Theory Method

Observe that any 2-transitive group is primitive. Let k,h be two positive integers
such that k f h. If a group is h-transitive, then it is also k-transitive. Hence, 2-
transitive groups have been the main object of study for this property.

It turns out that the possibilities for 2-transitive groups are quite limited.
A classical result of W. Burnside states that the socle of a 2-transitive group is
either an elementary abelian group or a simple group (see [29, Theorem XIII]).
Building on this, many later works, and using the Classification of Finite Simple
Groups, P. J. Cameron has completed the classification of 2-transitive groups
in [31, Section 5]. We refer to [45, Section 7.7] for a description of the finite
2-transitive permutation group, and to [45, Chapter 7] for a description of the
richer situation if one allows the groups to be infinite.

1.C Group Theory Method

The Group Theory Method takes advantage of the natural refinement that can
be used to study permutation groups. Thus, the method consists in process-
ing an intransitive permutation group orbit by orbit, and a transitive but im-
primitive permutation group by the blocks of an invariant equivalence relation.
The Weisfeiler–Leman algorithm produces colourings that witness these refine-
ments in polynomial time. Further refinements in the hierarchy of permutation
groups are possible, but, to this day, no efficient algorithms to move down this
hierarchy are known. Hence, we run out of our divide et impera options when a
primitive group is encountered: before L. Babai’s breakthrough, nothing much
better than complete enumeration of those primitive groups had been used in
this case. Bounds on the order of a primitive permutation group, in turn, depend
on the thickness of the group, which was introduced by L. Babai, P. J. Cameron
and P. P. Pálfy in [9] for this precise purpose. The thickness of a finite group G
is the maximum integer ¹ such that Alt(¹) appears as a section of G. (The next
result is not stated in its original form: the fact that the exponent can be chosen
to be a linear function in ¹ can be easily obtained from [100, Corollary 1.4], and
there are examples meeting this bound.)

Theorem 1.4 ([9] Theorem 1.1) · Let G be a primitive permutation group of degree
n and thickness ¹. Then

|G| f nO(¹) .

We can reconstruct E. M. Luks’s bound in [94]. Let Γ be a k-valent graph,
and let ³ be a vertex. By our previous discussion, we can suppose that Aut(Γ)
is primitive. Let us denote by G the permutation group that Aut(Γ)³ induces on
the neighbourhood of ³. We want to apply [45, Theorem 3.2C] to Aut(Γ) (see
also Lemma 1.33). In our setting, this result states that all the simple sections of
Aut(Γ)³ appear as sections of G. Since the latter permutation group has degree
k by assumption, its thickness is at most k. As a consequence, the thickness of
Aut(Γ)³ cannot exceed k. Therefore, by Theorem 1.4,

|Aut(Γ)| = n|Aut(Γ)³ | f n
O(k) .
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In particular, we can produce a canonical labelling of the graph in polynomial
time, and this solves the Graph Isomorphism Problem for bounded valency.

On the other hand, without extra hypothesis, the thickness can be arbitrarily
close to n, thus needing to consider all the primitive groups up to n! elements.
This step is computationally unfeasible, and thus it is the bottleneck of the ap-
proach.

A primitive permutation group G is a Cameron group if

Alt(m)r f G f Sym(m)wrSym(r) ,

where the direct factors of the base group are endowed with the action on the k-
subsets of {1,2, . . . ,m}, Sym(r) is endowedwith the natural action on r points, and
the wreath product is endowed with the product action. In [31], P. J. Cameron
has pointed out that, among primitive groups of degree n, the order of Cameron
groups is significantly larger than any other group. Qualitatively, A. Maróti has
proved the following result.

Theorem 1.5 ([100] Corollary 1.2) · Let G be a primitive permutation group of
degree n g 25. Then either G is a Cameron group, or

|G| < 2n .

L. Babai has worked around this dichotomywith his theory of local certificates
in [7]. An efficient test (that runs in polynomial time) can establish whether the
(primitive) automorphism group is a Cameron group or not. In the former case,
an ad hoc polynomial algorithm solves the Graph Isomorphism Problem. If the
automorphism group is not a Cameron group, we can dive into an exhaustive
search and Theorem 1.5 guarantees that the algorithm comes to completion in
polylogarithmic time.

Fixed point ratios have been applied to the automorphism group of graphs
as a rudimental approach before the theory of local certificates was developed.
Section 1.D explores the permutation group theoretic concept in general, and
Section 1.E dives into how this parameter has been applied to the Graph Iso-
morphism Problem.

1.D Fixed point ratios

To overcome the bottleneck for strongly regular graphs, in [5, 6], L. Babai has
used the notion of fixed point ratio to bound the order of the automorphism
group of some graphs. In Section 1.D, we explore the concept of fixed point
ratio in the general context of permutation groups.

Let G be a permutation group of domainΩ, and let g ∈ G−{1} be a nontrivial
permutation. We define the fixed point ratio of g by

fpr(g,Ω) = 1−
|supp(g)|

n
.

Moreover, the fixed point ratio of G is the maximum among the fixed point ratios
of the elements of G, that is,

fpr(G,Ω) = max {fpr(g,Ω) | g ∈ G − {1}} .
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1.D · Fixed point ratios

If the permutation domain Ω is understood, we drop it from the notation.
A naive reader might believe that having a large fixed point ratio is corre-

lated with having large stabilizers. And this is not far from the truth. The first
evidence is given by this result.

Lemma 1.6 ([12] Lemma 3) · Let g ∈ Sym(Ω) be a permutation, and let ϵ > 0 be a
positive number such that o(g) = |Ω|ϵ. Then, there is a positive integer k such that

1−
1
ϵ
f fpr

(
gk ,Ω

)
< 1 .

Proof. Let |Ω| = n be the degree of Sym(Ω). We can write the order of g as

o(g) = nϵ =
r∏

i=1

qi ,

where qi = p
´i
i are powers of distinct primes pi . For each ³ ∈ Ω, let P(³) be the

set of indices i for which qi divides the length of the cycle of g through ³.
Observe that, for each ³ ∈Ω, as the longest cycle in Sym(Ω) has length n,

∏

i∈P(³)

qi f n .

Let n(i) be the number of points É ∈Ω such that i ∈ P(É). We can bound the
minimum of n(i) with the following weighted sum

min
i
n(i) f

∑r
i=1n(i) logqi∑r
i=1 logqi

=
r∑

i=1

n(i) logqi
ϵ logn

.

Indeed, the minimum n(i) is the term appearing with the lowest coefficient.
Moreover, we can split the last term using the definition of n(i)

min
i
n(i) f

∑

É∈Ω

∑

i∈P(É)

logqi
ϵ logn

f
n logn
ϵ logn

=
n

ϵ
.

It follows that, for some j ∈ {1,2, . . . , r}, n(j) f n/ϵ. Upon choosing k = nϵ/pj ,
we obtain that gk is not the identity and it fixes all but n(j) points.

Lemma 1.6 shows that the assumption that a permutation has exponential
order with respect to the degree implies that the fixed point ratio of the cyclic
group it generates is close to 1. On the other hand, we can prove that if a per-
mutation fixed multiple points, then the groups that contain it must have large
stabilizers, which, in turn, forces the permutation group to be big.

We recall that a base for a permutation group G on the domain Ω is a subset
of Ω whose pointwise stabilizer is trivial. For instance, the basis of a vector
space coincides with a base for the action of the general linear group on it. We
denote by b(G) the minimal size of a base for G. This quantity also arises in
combinatorial settings: for any graph Γ, b (Aut(Γ)) is the fixing number of Γ (also
known as the determining number of Γ, or as the rigidity index of Γ).
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Lemma 1.7 ([45] Exercise 3.3.7) · Let G be a permutation group. Then

1 f (1− fpr(G))b(G) .

Proof. Let Σ be a basis for G, let x ∈ G such that fpr(x) = fpr(G), and let ∆ be the
support of x. The proof consists of a double counting technique on the set

X = {(³,g) ∈ ∆×G | ³g ∈ Σ} .

On one hand, by the Orbit Stabilizer Lemma,

|X | =
∑

³∈Ω

|Σ||G³ | =
∑

³∈Ω

|Σ||G|

n
=
|∆||Σ||G|

n
= (1− fpr(G))b(G)|G| .

On the other hand, we have that, for every g ∈ G, | ∩ ∆| g 1. Indeed, Σg is a
minimal basis, and the support of any element has nontrivial intersection with
every given basis. Hence,

|X | =
∑

g∈G

|Σg ∩∆| g |G|

Therefore, we conclude because

(1− fpr(G))b(G)|G| g |G| .

This can be translated to a fairly general result about the order of G.

Lemma 1.8 ([42] Theorem 3.1) · Let G be a transitive nonregular permutation
group on Ω. Then

|G| g n · 22
−1(1−fpr(G))−1 .

Proof. Let
Σ =

{
É1,É2, . . . ,Éb(G)

}

be a minimal basis for G. Consider the chain of subgroups

GÉ1
g GÉ2

g . . . g GÉb(G)
= 1 .

Each index |GÉi : GÉi+1 | is at least 2. Hence, we find that

|GÉ1
| g 2b(G)−1 ,

and, by the Orbit Stabilizer Lemma,

|G| g n · 2b(G)−1 .

Finally, by using Lemma 1.7, we obtain the desired inequality.

We observe that equality in Lemma 1.8 is rarely satisfied, as a necessary
condition is for the stabilizer to be a 2-group.

The success of the approaches using fixed point ratios is caused by their key
role in the probabilistic approaches to permutation group theory. In particular,
once a problem is reduced to the primitive action of almost simple groups, a
thorough understanding of this parameter can help extract the desired solution.
The best asymptotic bound for this application is the following.
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1.E · Strongly regular graphs

Lemma 1.9 ([90] Theorem 1) · Let G be a transitive almost simple group of Lie
type over Fq. Either |G| f 51840, or the socle of G is PSL2(q), or

fpr(G) f
4
3q
.

Observe that the action of PGLd(q) on 1-subspaces, d g 3, has fixed point
ratio that is roughly 1/q. Moreover, the groups with fpr(G) g 4/3q have been
classified in [90]. Further results of this kind will be discussed in Section 3.B.

Lemma 1.9 is the main ingredient, together with Aschbacher’s classification
of maximal subgroups of linear groups, to prove the following fascinating prob-
abilistic result.

Theorem 1.10 ([65] Theorem 1) · Let Gn be a finite simple group of order n, let
x,y ∈ Gn be two elements chosen uniformly at random. Then

lim
n

P (Gn = ïx,xyð) = 1 .

In the following years, Lemma 1.9 has been refined for specific actions. It
has been extensively used to bound the size of minimal bases of primitive per-
mutation group. The following result is an example of these applications.

Theorem 1.11 ([91] Theorem 1.4) · There is a linear function f : N → N such
that, if G is a primitive group of thickness ¹, then

b(G) f f (¹) .

These tools are still relevant today: for instance, we can cite the following
result. We recall that a group G is 3/2-generated if every nontrivial element
belongs to a generating pair.

Theorem 1.12 ([28] Theorem 1) · A finite group is 3/2-generated if, and only if,
all its proper quotients are cyclic.

1.E Strongly regular graphs

In Section 1.E, we follow [5] to prove that the graph isomorphism problem can
be solved in quasipolynomial time for strongly regular graphs.

A general bound on the thickness of the automorphism group of a regu-
lar graph can be computed. The proof is based on Lemma 1.6 and the cele-
brated Expander Mixing Lemma, first proved by N. Alon and F. R. K. Chung as
[1, Lemma 2.3]. We recall that, for any digraph Γ, the eigenvalues of Γ are the
complex eigenvalues of the adjacency matrix of Γ. We recall that, if Γ is a graph,
then the adjacency matrix is symmetric, thus all its eigenvalues are real. More-
over, if Γ is k-valent, then k is the maximum eigenvalue of Γ, and its multiplicity
counts the number of connected components of Γ.
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Lemma 1.13 ([5] Theorem 4) · Let Γ be a connected k-valent graph with n vertices,
and let

À =max {|·| | · is an eigenvalue of Γ distinct from k} .

Suppose that every pair of distinct vertices has at most q common neighbours, and
that q + À f k. Then,

fpr(Aut(Γ),VΓ) f
q + À
k

.

In particular, the thickness ¹ of Aut(Γ) can be bounded as

¹ f
(logn)2

2log(logn)
·
(
1−

q + À
k

)2
· (1 + o(1)) .

Proof. Let g ∈ Aut(Γ) − {1} be a nontrivial automorphism. For every vertex ³ ∈

VΓ, we denote by Γ[g](³) the neighbours of ³ that are fixed by g . Suppose that
g does not fix all vertices, and, without loss of generality, suppose that ³g is
distinct from ³. We have that

Γ[g](³) = Γ[g](³g ) ,

thus, by assumption on the number of shared neighbours,

|Γ[g](³)| f q . (1.1)

We claim that

|Γ[g](³)| g k
(
1−

|supp(g)|
n

)
− À . (1.2)

Let us denote by J the all onematrix and byA the adjacencymatrix of Γ. Further,
we write S for supp(g), which we identify with the induced subgraph of Γ, and
we write ÇS ∈ Rn for the characteristic vector of S . We compute

|AS | = ÇtSAÇS and |S |2 = ÇtSJÇS .

Hence, we get ∣∣∣∣∣|AS | −
k

n
|S |2

∣∣∣∣∣ =
∣∣∣∣∣∣Ç
t
S

(
A−

k

n
J

)
ÇS

∣∣∣∣∣∣ .

Observe that, if the eigenvalues ofA (thus Γ) are k,·2, . . . ,·n, then the eigenvalues
ofA−kJ/n are 0,·2, . . . ,·n. In particular, À is the spectral radius ofA−kJ/n. Now,
by applying the Cauchy–Schwarz inequality and dividing by |S |,

∣∣∣∣∣
|AS |

|S |
−
k

n
|S |

∣∣∣∣∣ f À .

(This is our version of the aforementioned Expander Mixing Lemma.) We can
interpret this inequality as saying that the average number of neighbours (in
the subgraph induced by S) of a vertex in S cannot be too far off from k|S |/n.
Therefore, by looking at the neighbours fixed by g , there exists a vertex ³ ∈ S
that satisfies Equation (1.2), which completes the proof of the claim.

By combining Equations (1.1) and (1.2), we obtain

n− |S | f n
q + À
k

,
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1.E · Strongly regular graphs

which proves the first proportion of the statement.
Suppose that ¹ is the thickness of Aut(Γ). In particular, Alt(¹) is a section of

Aut(Γ), thus Aut(Γ) contains an element whose order is the maximum among the
orders of elements of Alt(¹). Let us denote this maximum by z(¹). A classical
result by E. Landau [84] states that

z(¹) = exp
(√
¹ log¹(1 + o(1))

)
.

Therefore, not to contradict Lemma 1.6, we have that

exp
(

k

k − q − À
logn

)
g exp

(√
¹ log¹(1 + o(1))

)
.

The required asymptotic bound follows.

The hypotheses of Lemma 1.13 are quite harsh in general, and the lack of
control over the ratio (q + À)/k makes the bound impractical. Surprisingly, spe-
cializing it for strongly regular graphs does the bulk of the work in proving the
result we are pursuing.

We recall that a strongly regular graph of parameters (n,k,¼,µ) is a k-valent
graph on n vertices such that any two vertices have exactly ¼ common neigh-
bourhoods if they are adjacent, µ otherwise. Following [5, 6], a strongly regular
graph Γ is trivial if Γ or its complement is the disjoint union of cliques of equal
size, graphic if Γ or its complement is the line graph of a complete or a complete
bipartite graph. For a thorough survey on strongly regular graphs, we refer to
[24].

We start with a combinatorial result. Most of the ideas behind it are found
in [4, Section 3].

Lemma 1.14 · Let Γ be a nontrivial strongly regular k-valent graph with n vertices.
Suppose that k < n/2. Then

fpr(Aut(Γ),VΓ) < 1−
k

2n
.

Proof. Let g ∈ Aut(Γ)− {1} be a nontrivial automorphism, and let ³ ∈ supp(g) be
a vertex moved by g . Consider the pair ³ and ³g : either they are adjacent or not.

Suppose that ³ and ³g are adjacent. We note that, since they have ¼ neigh-
bours in common, there are 2(k − ¼) vertices that are not adjacent to neither ³
nor ³g . In particular,

|supp(g)| g 2(k −¼) .

Similarly, if ³ and ³g are not adjacent, we obtain that

|supp(g)| g 2(k −µ) .

Now, we need to prove that, if ¿ =max{¼, µ},

min
{
2(k −¼) , 2(k −µ)

}
g k − ¿ .

Let ´,µ,¶ be three vertices of Γ. Suppose that ´ and µ are adjacent. Since Γ is
nontrivial, we can choose ¶ which is not adjacent to neither ´ nor µ . Observe
that

Γ(´)− Γ(µ) ¦ (Γ(´)− Γ(¶))∪ (Γ(¶)− Γ(µ)) .
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It follows that
k − ¿ f k −¼ f 2(k −µ) .

Similarly, if ´ and µ are not adjacent, we can choose ¶ adjacent to both. Hence,
we obtain that

k − ¿ f k −µ f 2(k −¼) ,

and the claim is true.
Therefore, in all cases,

|supp(g)| g k − ¿ ,

thus

fpr(g,VΓ) f 1−
k − ¿

n
.

To complete the proof, we need to show that k/2 > ¿. To do so, we introduce
an auxiliary graph ∆. The graph ∆ is bipartite: one part contains all the vertices
³ of Γ, while the other contains all the neighbourhoods Γ(³). A generic vertex
of VΓ is connected to all the neighbourhoods in which it is contained. Let us
fix a vertex of ∆ of the form Γ(³). We count in two ways the number s of 2-
arcs starting from Γ(³). On one hand, Γ(³) contains k vertices, and each vertex
is contained in other k − 1 neighbours, thus s = k(k − 1). On the other hand,
any two neighbourhoods in Γ intersect in at least ¿ vertices, hence s g ¿(n − 1).
Putting the two relation on s together, we have that

k(k − 1) g ¿(n− 1) > ¿(2k − 1) .

This concludes the proof by dividing each side by 2k and ignoring the small
negative terms.

Strongly regular graphs shine when their eigenvalues are studied, but we do
not dare to dive into this extensive theory. We just report a lemma tailored for
our discussion. (For the reader’s convenience, we recall that a strongly regular
graph Γ is nontrivial if neither Γ nor its complement are the disjoint union of
cliques of equal size, and nongraphic if neither Γ nor its complement are the line
graph of a complete or a complete bipartite graph.)

Lemma 1.15 ([5] Theorem 5) · Let Γ be a a nontrivial, nongraphic strongly regular
k-valent graph with n vertices, and let

À =max {|·| | · is an eigenvalue of Γ distinct from k} .

Suppose that every pair of distinct vertex has at most q common neighbours, and that
k f n/4. Then

q + À <
7
8
k .

With the final pieces of the puzzle, we are ready to dive into the main result
of Section 1.E.

Theorem 1.16 ([5] Theorem 2 and Theorem 20) · Let Γ be a a nontrivial, non-
graphic strongly regular k-valent graph with n vertices, and let ¹ be the thickness of
Aut(Γ). Then,

fpr(Aut(Γ),VΓ) <
7
8

and ¹ fO

(
(logn)2

log(logn)

)
.
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1.E · Strongly regular graphs

Proof. Observe that the complement of a strongly regular graph is itself strongly
regular, and that the two graphs share the same automorphism group. Thus,
without loss of generality, we can suppose k < n/2. We split the discussion in
two: either k f n/4 or n/4 < k < n/2. The former case is taken care of by Lem-
mas 1.13 and 1.15. Hence, we suppose the latter holds. We can now apply
Lemma 1.14, thus obtaining

fpr(Aut(Γ),VΓ) < 1−
k

2n
< 1−

k

8k
=
7
8
.

By repeating the reasoning which we used to complete the proof of Lemma 1.13,
we obtain that

¹ f
(logn)2

2log(logn)
·
(1
8
+ o(1)

)
.

Therefore, the proof is complete.

Let us go back to the Graph Isomorphism Problem for strongly regular graphs.
As a first step, we apply an algorithm that recognizes if the graph is trivial
or graphic, and, in case of affirmative answer, recognizes it. It is known that
this problem can be solved in polynomial time. Otherwise, as the graph is nei-
ther trivial nor graphic, Theorem 1.16 implies that its automorphism group is
small. It follows that we can identify the automorphism group of the graph
in quasipolynomial time through an exhaustive search among all the primitive
groups. Therefore, the implementation of the Group Theory Method runs in
quasipolynomial time under the extra assumption that the last graph obtained
through its reductions is strongly regular.

To conclude Section 1.E, we mention that generalisations of Theorem 1.16
beyond strongly regular graphs are desirable regardless of the Graph Isomor-
phism Problem. A full survey on the relevant topics would lead us too much
astray. We must be content with knowing that this results goes in the direction
of proving [8, Conjecture 1.12], which can be interpreted as a combinatorial re-
laxation of Theorem 1.5. Moreover, it would provide a new approach for study-
ing the minimal degree of primitive permutation groups. (Some known group
theoretical results are surveyed in Section 3.B).

The class of distance-transitive graphs is an important open problem for this
sought-after generalisation. Recall that a distance-transitive graph has the prop-
erty that, given four vertices ³,´,µ,¶ such that dΓ(³,´) = dΓ(µ,¶), there is an
automorphism of the graph mapping (³,´) to (µ,¶). The first generalisation of
this result is due to B. Kivva.

Theorem 1.17 ([80] Theorem 1.12) · Let Γ be a distance-transitive graph on n
vertices of diameter d. Suppose that the automorphism group of Γ is not a Cameron
group. There is a function f :N→N such that

fpr(Aut(Γ),VΓ) f
(
1−

1
f(d)

)
n .

The function f appearing in the previous result grows exponentially with
the diameter. L. Pyber and S. V. Skresanov has brought the growth down to
polynomial.
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Theorem 1.18 ([132] Theorem 1.4) · Let Γ be a distance-transitive graph on n
vertices of diameter d. Suppose that the automorphism group of Γ is not a Cameron
group. There is a postive constant C such that

fpr(Aut(Γ),VΓ) f
(
1−

C

d2

)
n .

Last, we observe that the machinery of Section 1.E actually holds for all
graphs whose automorphism group is primitive on the vertices. Indeed, Sec-
tions 3.C to 3.F are devoted to classifying those vertex-primitive graphs whose
fixed point ratio exceeds 1/3.

1.F Orbital graphs

The bottleneck of the Group Theory Method for solving the Graph Isomorphism
Problem in efficient time consists in having automorphism groups of graphs
whose order is an exponential function of the number of vertices. The same
obstruction may arise while trying to compute all the symmetric graphs of a
certain class up to a given number of vertices. (In our discussion, symmetric
does not have a precise meaning, but it suggests that we impose some property
on the automorphism group of the graph.)

Let us assume that we want to enumerate all the arc-transitive digraphs up
to n vertices. Let G be a permutation group whose degree does not exceed n.
Then, for any pair of points, ³ and ´, we can build a graph Γ whose vertex-set
is Ω, and whose arc-set is the G-orbit of (³,´). This graph Γ is called an orbital
digraph for G. We remark that, for every pair (Γ,G), where Γ is a digraph and G
is a transitive group of permutation for Γ whose action on the arcs is transitive,
Γ is an orbital digraph for G. If we drop the assumption of arc-transitivity, and
we replace it by vertex-transitivity, then Γ is a union of orbital digraphs for G.

To compile the census, we just need to build all the possible orbital digraphs.
Let us be more explicit. First of all, we assume that a friend gives us a list of all
the possible transitive groups G of degree n. This list is itself quite lengthy.

Theorem 1.19 ([129] Theorem 4.2, and [93] Theorem 2) · LetM be the number
of transitive groups of degree n. Then

exp
(
O

(
n2

log(n)

))
fM f exp


O




n2√
log(n)





 .

Now, for every group G on the list, we need to compute the orbit of each pair
(³,´), where ³ is fixed, and ´ can vary among all the elements of Ω. This step
will take at least O(n2) operations for every transitive group of degree n. Upon
building the orbital digraph corresponding to each orbit, we need to verify that
it was not already included in the list. We ignore the time that this step takes.
In total, the algorithm runs in at least

O

(
n2 · exp

(
n2

log(n)

))
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1.F · Orbital graphs

steps. This task is unfeasible. Hence, we should be less greedy, and focus on a
smaller class of graphs.

Before attempting another census, let us spend some more ink discussing
orbital digraphs. Let G be a permutation group with domain Ω, and let ³ be
a point in Ω. (Observe that, if Ω is infinite, all the objects defined in the rest
of Section 1.F might also be infinite. In particular, orbital digraph are infinite
digraphs.) The orbits of the stabilizer G³ acting on Ω are called the suborbits of
G with respect to ³. Let

O1,O2, . . . ,Or

be the list of all suborbits of G. The integer r is called the permutational rank of
G, while the cardinalities

|O1| = d1, . . . , |Or | = dr

are called the subdegrees of G. Without loss of generality, we can suppose that
O1 = {³}: this is the trivial suborbit, and its cardinality d1 = 1 is the trivial sub-
degree. The orbital digraphs and the suborbits of G are in one-to-one correspon-
dence via the map

Oi = {´, . . .} 7→ Γi =
(
Ω, (³,´)G

)
. (1.3)

Note that the image of the suborbit Oi under this map is a regular digraph of
valency di .

Observe that d1, . . . ,dr are not necessarily distinct. Indeed, G has more than
one subdegree equal to 1 if, and only if, G³ fixes more than one point. For
instance, all the automorphism of the skeleton of a cube Q8 that are not de-
rangements fix (at least) two antipodal points, hence di = 1, for some index i.

We define the minimal nontrivial subdegree of G by

min {d2,d3, . . . ,dr} .

By the previous discussion, this is the least valency of a digraph (with at least
one arc) on which G acts vertex-transitively. We remark that the minimal non-
trivial subdegree is well-defined except when r = 1, that is, Ω = {³}.

An orbital digraph can be, a priori, disconnected: for instance, this is always
true for the diagonal orbital graph. D. G. Higman has proved in [68] that the
group G is primitive if, and only if, all its orbital digraphs are connected. In
particular, the number of connected arc-transitive digraphs on which a primi-
tive group acts is r − 1, while for an imprimitive group this number is at most
r − 2.

Let O be an orbital for G. We can define the paired orbital by

O∗ = {(´,³) | (³,´) ∈O} .

IfO andO∗ coincide, we say thatO is self-paired. We can now switch from orbital
digraph to orbital graphs by taking two paired orbitals as edges of the graph.
In particular, the correspondence between orbital digraphs and arc-transitive
digraphs can be restated for the undirected case. Upon identifying all orbitals
with their paired in the domain of the map of Equation (1.3), we find that there
is a one-to-one correspondence between self-paired orbitals of G and graphs on
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which G acts arc-transitively, and between pairs of orbitals of G, one paired to
the other, and graphs on which G acts vertex- and edge-transitively, but not arc-
transitively. (If a group of automorphisms has the latter property, it is said to be
half-arc-transitive.)

We refer to [45, Section 3.2] for a more exhaustive account on orbital graphs.

1.G Normal quotient graphs

The road ahead is dangerous, hence we must sharpen our tools before proceed-
ing. In Section 1.G, we introduce the normal quotient method to set up in-
ductive procedures for vertex-transitive graphs. Meanwhile, in Section 1.H, we
discuss faithful amalgams and their relation to arc-transitive graphs.

Definition 1.20 · Let (Γ,G) be a vertex-transitive graph, and let N be a normal
subgroup of G. We define the normal quotient graph Γ/N as the graph whose
vertex-set is the set of N -orbits on VΓ as vertices,

VΓ/N :=
{
³N | ³ ∈ VΓ

}
,

and we declare ³N and ´N to be adjacent if there is an edge of Γ between ³′ and
´′, for some ³′ ∈ ³N and ´′ ∈ ´N .

We remark that, if Γ is connected, then Γ/N is connected. Indeed, let ³N and
´N be two vertices in the quotient. Since Γ is connected, there is a path between
³ and ´. Finally, this path projects to a (possibly trivial) paths of Γ/N connecting
³N and ´N . Hence, the connectedness of Γ/N is proved.

By vertex-transitivity, we can suppose that ³ = ³′, and hence ´′ is a neigh-
bour of ³. As a consequence, we have that the valency of a normal quotient
cannot increase, that is,

val(Γ/N ) f val(Γ) .

Moreover, if G is also edge-transitive, we claim that either Γ/N is a collection of
isolated points or

val(Γ/N ) divides val(Γ) .

Let us assume that we are not in the former scenario. If ³N has a single neigh-
bour in Γ/N , then val(Γ/N ) = 1, which divides all positive integers. We can sup-
pose that ´ and µ are two distinct neighbours of ³ defining distinct N -orbits.
Let g ∈ G such that

{³, ´}g = {³, µ} .

Then
{³, ´}N³ → {³ ,µ}N³ , {³, ´}n 7→ {³, µ}g

−1ng

defines a bijection between the neighbours of ³ in ´N and those in µN . In par-
ticular, if m = |´N ∩ Γ(³)|,

m · val(Γ/N ) = val(Γ) ,

as claimed.
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We remark that Definition 1.20 is a special case of the usual graph quotient,
where the vertex-set is chosen to be the equivalence classes of some equivalence
relation on VΓ. What sets our definition apart is that it preserves more group
theoretical information. Indeed, the group G/N acts (possibly unfaithfully) on
Γ/N as a group of automorphisms. We denote by K the kernel of the action of G
on the N -orbits. Observe that N is a subgroup of K , and that G/K acts faithfully
on Γ/N as a group of automorphisms. Furthermore, if G is vertex-, edge- or arc-
transitive on Γ, then so are G/N and G/K on Γ/N . Finally, we observe that, for
any vertex ³ ∈ VΓ,

(G/K)³N = G³K/K is isomorphic to G³/K³ .

Hence, the stabilizer (and the local group, which we will define in Section 1.K)
of Γ and Γ/N are isomorphic if, and only if, K is semiregular. (In this case, N
must also be semiregular.) This is always the case when the valency does not
decrease, val(Γ/N ) = val(Γ).

As explained in the introduction of [104], normal quotients can break graph-
theoretical problems into surprisingly manageable pieces. The standard ap-
proach faces an inevitable dichotomy.

(a) If all theminimal normal subgroup ofG are transitive, thenG is quasiprim-
itive. These groups have been classified by C. E. Praeger in [124], and they
have a well-understood structure. In many applications, this knowledge
is sufficient to deal completely with these situations.

(b) Suppose that there is an intransitive normal subgroup N of G. Typically
(Γ/N,G/N ) lies in the family of vertex-transitive graphs under consider-
ation and, since Γ/N has fewer vertices than Γ, it is natural to try to use
an inductive approach. However, the most complicated and creative step
is to recover information about the starting pair (Γ,G) from the quotient
(Γ/N,G/N ).

To conclude Section 1.G, we give two impressive application of this method.
In [60], M. Giudici and J. Xu have proved that all vertex-transitive and locally-
quasiprimitive graphs have a semiregular automorphism, proving the Polycir-
culant Conjecture for those graphs. (We refer to Section 2.I for the statement of
the Polycirculant Conjecture and the definition of semiregular automorphism.)
Meanwhile, in [127], C. E. Praeger, P. Spiga and G. Verret have reduced the
Weiss Conjecture to a more complicated condition on graphs with simple auto-
morphism groups. (We introduce the Weiss Conjecture in Section 1.K).

1.H Amalgams

We define an amalgam as a triplet (L,B,R) of groups such that B = L∩R, and the
index of (L,B,R) is the couple of positive integers

(|L : B|, |R : B|) .
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We say that a group G realizes (L,B,R) if G contains both L and R and these
subgroups generate G. We observe that, by definition of amalgamated product,
L ∗B R is the universal covering of any group realizing (L,B,R). Moreover, the
amalgam (L,B,R) is faithful if no nontrivial subgroup of B is normal in ïL,Rð.
(By ïL,Rð, we denote the group generated by L and R.)

Here is a connecting result that brings us back to symmetric graphs. (Ob-
serve that the graph appearing in Lemma 1.21 can have vertex-sets of infinite
cardinalities.)

Lemma 1.21 ([110] Lemma 1) · Let (L,B,R) be a faithful amalgam of index (k,2).
There is a one-to-one correspondence between groups G that realize (L,B,R) and con-
nected arc-transitive k-valent graphs (Γ,G) such that L is isomorphic to the stabilizer
of a vertex, B of an arc, and R of an edge.

Proof. Let (Γ,G) be a connected arc-transitive k-valent graph, and let (³,´) ∈ AΓ
be an arc. We claim that

A(Γ,G) =
(
G³ ,G³´ ,G{³,´}

)

is a faithful amalgam of index (k,2) which G realizes. Observe that the choice of
the arc (³,´) is irrelevant due to arc-transitivity.

Let us first compute the index. Since G is arc-transitive, G{³,´} swaps (³,´)
and its inverse arc (´,³). Note that such an action is transitive on the two arcs,
and its stabilizer is G³´ . Hence

∣∣∣G{³,´} : G³´
∣∣∣ = 2 .

Similarly, the arc-transitivity of G implies that G³ acts transitively on Γ(³) with
point stabiliser G³´ . Thus

∣∣∣G³ : G³´
∣∣∣ = val(Γ) = k ,

which proves that A(Γ,G) has index (k,2).
The action of G on the arcs of Γ is faithful. It follows that G³´ , as the sta-

bilizer of an arc, is core-free. In particular, the unique subgroup of G³´ that is
simultaneously normal in G³ and G{³,´} is the trivial group. Therefore, A(Γ,G)
is a faithful amalgam.

Lastly, G realizes A(Γ,G). Indeed, G contains both G³ and G{³,´}, G³ and
G{³,´} intersects in G³´ , and, by a connectedness argument, G is generated by
G³ and G{³,´}. This complete the claim.

We need to deal with the remaining implication. Let G be a group that re-
alizes the amalgam (L,B,R). We define the graph ∆(G) whose vertex-set is G/L,
whose edge-set is G/R, and such that Lg is an endpoint of Rh, for some g,h ∈ G
whenever Lg ∩Rh is nonempty. (Alternatively, for who prefers a Bass–Serre the-
oretical approach, ∆(G) is the unique graph whose barycentric subdivision is
the universal covering of the graph of groups whose two vertices are labelled by
L and R and whose connecting edge is labelled by B. We refer to [136] for the
missing notation.)

The right multiplication of G on G/L preserves G/R, hence it induces an au-
tomorphism of ∆(G). By faithfulness of the amalgam, this action ofG on the arcs
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of ∆(G) is faithful, thus G is a group of automorphisms of ∆(G). Furthermore,
since G realizes (L,B,R), G is generated by L and R, thus ∆(G) is connected.

Let ³ ∈ V∆(G) be the vertex corresponding to the right coset L. Observe that
L is the vertex-stabilizer of ³. Moreover, as R is an edge incident with ³, we can
identify B = L∩R with a neighbour of ³. It follows that R is the stabilizer of the
edge connecting ³ with this prescribed neighbour, and that the neighbourhoods
of ³ can be identified with the elements of L/B. In particular,

val(∆(G)) = |L : B| = k .

The proof is complete by pointing out that

A (∆(G),G) = (L,B,R) .

Let us denote by Tk the infinite k-valent tree. Observe that, using the nota-
tion introduced in the previous proof, Tk is isomorphic to ∆(L ∗B R), and L ∗B R
is a group of automorphisms of Tk . Recalling that L ∗B R is the universal cover-
ing of any group G that realizes the amalgam (L,B,R), Lemma 1.21 implies that
(Tk ,L ∗B R) is the universal covering of any arc-transitive k-valent graph (Γ,G),
where L is isomorphic to the stabilizer of a vertex, B of an arc, and R of an edge.
Therefore, we have obtained a recipe for building all such pairs (Γ,G): every
(Γ,G) is a normal quotient of the pair (Tk ,L ∗B R) via a normal subgroup N of
L ∗B R.

We are only interested in finite graphs. Under the hypothesis of the finite-
ness of Γ, we obtain that

|L ∗B R :N | = |VΓ|

is finite. Thus, the pairs (Γ,G) that we are studying are in one-to-one correspon-
dence with finite index normal subgroups of L ∗B R.

Moreover, as the graph Γ is finite, L and R are also finite. We say that the
amalgam (L,B,R) is finite if both L and R is finite. In this case, both L and R
can be finitely presented, hence L ∗B R is also finitely presented. Our search for
amalgams, thus, can be limited to finite faithful amalgams.

To conclude Section 1.H, we list the amalgams that we are going to use in
the following. We need to introduce two preliminary definitions. An amalgam
(L,B,R) is 2-transitive if the action of L on the right cosets of B by right multi-
plication is 2-transitive, while it is dihedral if the action of L on the right cosets
of B by right multiplication is isomorphic to the natural action of the dihedral
group of degree k.

(a) A finite presentation for the groups appearing in a faithful dihedral amal-
gam of index (4,2) has been given in [46].

(b) The list of the 7 amalgams of the faithful amalgams of index (3,2) has been
compiled in [47].

(c) The list of the 9 amalgams of the faithful 2-transitive amalgams of index
(4,2) has been compiled in [110].
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We remark that, for these examples, faithful amalgams of index (d,2) seem to
present a generally tame behaviour. For instance, both the number of generators
of the amalgamated product L ∗B R and the exponent of the groups L and R are
bounded by a constant. Does this property generalise for higher valencies?

Question 1.22 · Let (L,B,R) be a faithful amalgam of index (d,2). Is the mini-
mal number of generators fo L ∗B R bounded by a function of d?

We are going to settle Question 1.22 in the negative in Section 3.H.

Question 1.23 · Let (L,B,R) be a faithful amalgam of index (d,2). Is the expo-
nent of L bounded by a function of d?

Question 1.23 remains quite open. In Section 3.G, we are going to show that
the answer is affirmative if we assume some extra properties on the action of L
on the right coset space L/B.

1.I Arc-transitive 3-valent graphs

Back to compiling censuses. The first class of symmetric graphs to receive a cen-
sus was the set of arc-transitive 3-valent graphs. We start by stating a celebrated
result by W. T. Tutte. (Theorem 1.24 is an immediate corollary of the two results
cited: this has been noted for the first time by C. C. Sims in [139].)

Theorem 1.24 ([154] Theorem XXII, and [155] Theorem) · Let Γ be a 3-valent
arc-transitive graph. Then the order of the stabilizer of a vertex in Γ divides 48.

Therefore, by the Orbit Stabilizer Lemma, the order of the group of automor-
phisms of an arc-transitive 3-valent graph Γ is linear in the number of vertices
n, that is,

|Aut(Γ)| f 48n .

Theorem 1.24 has been extended by D. Ž. Djoković and G. L. Miller in [47],
by diving the arc-transitive 3-valent graphs in 7 classes, depending on the s-
regularity and on the existence of an automorphism flipping the arcs. (An s-
arc is a sequence of s + 1 adjacent and nonrepeating vertices of VΓ. A group
G acting on Γ is s-regular if it is regular on the set of s-arcs.) These classes
correspond to the 7 possible amalgams. To compile the census, we need an
algorithm that produces all the normal subgroups of the amalgamated products
up to a prescribed finite index.

The first algorithmic approach to solve this problem has been performed by
M. D. E. Conder and P. Dobcsányi, and it is described in [39]. As we noted in
Section 1.H, all the amalgamated products which are universal covers of the au-
tomorphism group of an 3-valent arc-transitive graphs are finitely presented.
Computational Group Theory has many specialized algorithm for finitely pre-
sented groups. For instance, in [44], A. Dietze and M. Scahps have developed
the Low-Index Subgroups Algorithm, building on the ideas of C. C. Sims (see
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[140, Section 5.9]). This classical algorithm has been adapted for this case ex-
ploiting two new ideas: the normality of the subgroup forces additional rela-
tors in the group, and the original algorithm can be parallelized. The result of
M. D. E. Conder and P. Dobcsányi’s investigation is the census of all the arc-
transitive 3-valent graphs up to 768 vertices, and it is collected in [38].

An estimate of the computation time involved has never been computed.
The main reason lies in the fact that this adaptation has been superseded by a
much better one, described by D. Firth in his PhD thesis [51]. This procedure,
now known as Low-Index Normal Subgroups Algorithm, works by considering
all the possibilities for composition series for the quotient G/N where G is the
finitely-presented group and N is a normal subgroup of up to a given finite
index n in G. (I kindly thank F. Rober, who has implemented this algorithm in
GAP, for patiently explaining me how this routine works.) Using the package
LINS of GAP, the census can theoretically be extended up to 48−1 · 107 vertices.
The online version of the census, compiled by M. D. E. Conder in MAGMA,
currently contains graphs up to 48−1 · 105 vertices.

Although the run time of the algorithm described could be quite long if large
alternating section appears, this is not the case when applied to the amalga-
mated products involved in compiling a census of 3-valent arc-transitive graphs.
An analysis of the efficiency of the algorithm has never been performed, thus it
would make sense to consider the following question. (The hypothesis on the
thickness is still obscure, but it is suggested by Lemma 1.33.)

Question 1.25 · Let L, B and R be three finite groups whose thickness is
bounded from above by a constant d. Let t be the run time of the LINS algo-
rithm applied to the group L ∗B R for finding all the subgroup of index up to n.
Can we determine an upper bound on t depending on n and d? Or rather, can
we choose this upper bound so that the dependence on n is subexponential?

Can we extend this procedure beyond arc-transitive 3-valent graphs? Unfor-
tunately, there is no hope of generalising Theorem 1.24 to higher valencies in a
naive way. Indeed, its proof can be divided in two steps. First, it is proved that
the stabilizer G³ acts regularly on the set of s-arcs whose starting vertex is ³.
This implies that the order of the vertex-stabilizer is of the form 3 · 2s−1. The
second, and more involved, step consists in proving that s f 5.

In general, for every d-valent graph Γ, with d g 3, it is true that Aut(Γ) cannot
act transitive on the set of all s-arcs for large integer s. The precise result by
R. Weiss is as follows.

Theorem 1.26 ([162] Theorem) · Let Γ be an arc-transitive d-valent graph, with
d g 3, and let

s := max {t ∈N | Aut(Γ)³ is transitive on s-arcs starting at ³} .

Then either s f 5, or s = 7 and Γ belongs to a well-understood family of graphs.

Hence, the second step of the proof of Theorem 1.24 can be generalised for
every d-valent graph, with d g 3. On the other hand, the first step is highly
reliant on the fact that every t-arc can be prolonged to a (t + 1)-arc in just two
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ways, and there is a unique nontrivial permutation group on 2 points. Indeed,
there is no hope for a generalisation already for 4-valent graphs. Even worse, the
vertex-stabilizer of an arc-transitive 4-valent graph can be exponentially large
with respect to the number of points. (We have to patient until Section 2.A for
an example.)

Therefore, we find an intermediate question to produce censuses efficiently.
Observe that, if the order of a vertex-stabilizer has a growth that is faster than
polynomial, the algorithmic approach to compiling a census becomes quickly
unpractical. We have a specialization of Question A in this setting.

Question 1.27 · Let G be a group, and let Γ be a d-valent connected graph.
Under which extra assumption on (Γ,G) can we control the order of a vertex-
stabilizer G³?

1.J Sims Conjecture

The most significant family of permutation groups for which we know how to
answer Question 1.27 is that of finite primitive groups. In this case, the order
of the vertex-stabilizer is bounded above by a function of the valency d. More
precisely, in [139], C. C. Sims conjectured that the stabilizer in a primitive group
is bounded from above by a function of the minimal nontrivial subdegree. Set-
tling this conjecture has been one of the first results relying on the Classification
of Finite Groups. Indeed, P. J. Cameron, C. E. Praeger, J. Saxl and G. M. Seitz
have proved the following result.

Theorem 1.28 ([34] Theorem 1) · There is a function f : N → N such that, for
every finite primitive permutation group G of minimal nontrivial subdegree d, and
for every point ³,

|G³ | f f(d) .

Their proof relies on two reductions that greatly reduce the number of per-
mutation groups that must be considered. The first reduction consists, using the
O’Nan-Scott Theorem on the structure of primitive groups (see [31, 89]), in ex-
cluding all the cases where the group does not have a simple socle. The second
reduction relies on the following result by J. G. Thompson.

Theorem 1.29 ([149] Equation (∗∗)) · There is a function f :N→N such that, for
every finite primitive permutation group G of minimal nontrivial subdegree d, and
for every point ³,

|G³ :Op(G³)| f f(d) .

Since we want to bound |G³ |, in view of Theorem 1.29, we must take |Op(G³)|
to be the largest possible. Hence, it can be assumed that G³ is the normalizer
of a nontrivial p-group P. At this point, the p-local structure of finite simple
groups gives a solution to the problem.

The concrete functions f appearing in Theorems 1.28 and 1.29 have growth

f(d) = exp
(
d2o(d)

)
.
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This follows from the original proof of J. G. Thompson. It is unknown whether
this upper bound is optimal or not, and there has been no attempt to improve it.
Heuristically, by considering the natural action of the symmetric group Sym(d+
1), we find that

|Sym(d) :Op(Sym(d))| = |Sym(d)| f exp(d log(d) + o(d)) ,

and we cannot think of groups with a larger index. Hence, an interesting open
problem is to obtain a sharp version of Theorem 1.28. We can phrase it as fol-
lows.

Question 1.30 · What is the growth of the optimal function that solves Sims’s
Conjecture?

Theorem 1.28 has an amazing combinatorial corollary dealing with distance-
transitive graphs. Upon identifying antipodal vertices (that is, pair of points at
maximal distance) and breaking the bipartiteness by imposing that vertices at
distance 2 are adjacent, the automorphism group of a distance-transitive graph
is primitive. (This result is due to D. H. Smith and can be found in [141]). All the
locally finite distance-transitive graphs have been described by H. D. Macpher-
son in [95]. Therefore, using some model theoretical arguments, we can obtain
the following result.

Corollary 1.31 ([34] Theorem 2) · For every d g 3, the number of finite distance
transitive d-valent graphs is finite.

Therefore, it makes no sense to develop a theory of limits for distance-transitive
graphs. This is probably the reason why such a theory has not been developed
for vertex-primitive graphs. What is known about this topic is contained in
[59, 150]. The structure of the limit graphs of converging sequences of vertex-
primitive graphs are, to this day, completely mysterious.

We conclude this section with a bipartite version of Theorem 1.28. (The
following result has been proved with the invaluable help of L. Sabatini.)

Theorem B · Let G be a finite group, and let H and K be two maximal subgroups
whose intersection is core-free in G. Suppose that

h = |H :H ∩K | and k = |K :H ∩K | .

Then
|H ∩K | f f(hk)2 .

Proof. Observe that
core(H ∩K) =

⋂

g∈G

(H ∩K)g

is a normal subgroup of G contained in both H and K . This yields that

core(H)∩ core(K) f core(H ∩K) = 1 .

We compute

|H ∩K | = |H ∩K : core(H)∩ core(K)|

f |H ∩K : core(H)∩K | · |K ∩H :H ∩ core(K)| .
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Moreover,
|H ∩K : core(H)∩K | f |H : core(H)| ,

and
|K ∩H : core(K)∩H | f |K : core(K)| .

To conclude the proof, we consider four auxiliary graphs. We start with ∆: this
graph is bipartite, one part consists of the right coset space G/H , while the other
part consists of the right coset space G/K . Two cosets are adjacent if their in-
tersection is nonempty. We now consider the distance 2 graph of ∆, that is, a
graph ∆2 with the same vertices of ∆, two of which are declared adjacent if their
distance in ∆ is 2. Since H and K are at distance 1 in ∆, H and K belongs to
two distinct connected components of ∆2. By maximality of H and K in G, [68]
implies that its connected components are exactly two. We denote by ∆(H) the
connected component of ∆2 containing H , and by ∆(K) the one containing K .
Note that the valencies of ∆(H) and of ∆(K) cannot exceed hk. Moreover, G acts
primitively on the vertex-sets of ∆(H) and of ∆(K) with stabilizers isomorphic
to H and to K respectively. Therefore, by Theorem 1.28, we obtain

|H : core(H)| f f(hk) and |K : core(K)| f f(hk) .

Our chains of inequality leads us to

|H ∩K | f f(hk)2 ,

as desired.

With some patience, the proof can be adapted to allow any finite number of
maximal subgroups whose intersection is core-free.

1.K Weiss Conjecture

The beautiful hypothesis of vertex-primitivity, together with bounded valency,
implies that the stabilizer of a vertex has bounded order. But this solution has
one problem: it requires global information, that is, the lack of a nontrivial
system of imprimitivity for the automorphism group of the graph. What we
wish is a local to global approach mimicking Theorem 1.24: the local hypothesis
that a vertex-stabilizer acts transitively on the 3 neighbours of a point is enough
to obtain the global result of having bounded order for the vertex-stabilizer.

A graph Γ, where VΓ is allowed to be an infinite set, is said to be locally
finite if the valency of any vertex is bounded from above by a constant and the
size. If the automorphism group of Aut(Γ) is vertex-transitive, this condition is
equivalent to the valency of Γ being finite. Moreover, for the remainder of the
thesis, when we talk about a group of automorphisms of Γ, we only focus on
those groups whose vertex-stabilizer is finite.

The base ingredient for local to global procedures is the local group. Let Γ be
a locally finite graph, and let G be a group of automorphisms of Γ. Suppose that
G is transitive on the vertex-set VΓ, and choose a vertex ³. The local group of the
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pair (Γ,G) is the permutation groupGΓ(³)
³ thatG³ induces on the neighbourhood

Γ(³). In particular, if we denote by G [r]
³ the stabilizer of a ball of radius r, then

G
Γ(³)
³ � G³/G

[1]
³ .

Many global properties can be obtained from the local pair of (Γ,G). The
following lemma gives an astonishing example. (We recall that, for a group H ,
Ã(H) is the set of primes dividing the order of H .)

Lemma 1.32 · Let Γ be a connected graph, let G be a vertex-transitive group of
automorphisms of Γ, and let ³ ∈ VΓ be a vertex. Then

Ã
(
G
Γ(³)
³

)
= Ã(G³) .

Proof. Aiming for a contradiction, suppose that p is a prime that divides the

order of G³ but not of GΓ(³)
³ . This implies that there is an automorphism g of

order p such that g ∈ G
[1]
³ . Choose ´ to be a vertex at minimal distance from ³

such that g does not fix ´. By connectedness, there exists a path

³ = µ0 ∼ µ1 ∼ . . . ∼ µh ∼ µh+1 = ´ .

Note that g fixes µh. In particular, g belongs to the stabilizer of µh. Therefore,
p divides the order of Gµh . Finally, by vertex-transitivity, p divides the order of
G³ , a contradiction.

The proof of Lemma 1.32 showcases the use of the standard connectedness
argument. A polemic reader could complain that we used the hypothesis that Γ
is connected, that is not a local condition. Indeed, the local to global approach
works only on the family of connected graphs. A counterexample to most de-
sirable properties is usually obtained by taking a large number of isomorphic
copies of an arbitrary graph. In this case, a large symmetric groups acts on the
graph shuffling the components, and the local group cannot predict anything
about this.

We give some other examples of global properties that can be tested locally.
Let Γ be a d-valent graph, and let G be a vertex-transitive group of automor-
phisms of Γ. We denote by L the local group of the pair (Γ,G).

(a) The local group L is trivial if, and only if, the group of automorphisms
G acts regularly on the vertices VΓ. This fact is a direct consequence of
Lemma 1.32.

(b) The local group L is semiregular if, and only if, the group of automor-
phisms G acts semiregularly on the arcs. Indeed, if the local group is
semiregular, the only automorphism that stabilizer two adjacent vertices
is trivial.

(c) The local group L is transitive if, and only if, the group of automorphisms
G acts transitively on the arcs. To map the arc (³,´) to the arc (µ,¶), it is
enough to choose a map g ∈ G such that ³g = µ (which exists by vertex-
transitivity), and then we use the local assumption to move ´g to ¶ with
an element of Gµ .
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(d) The local group L is 2-transitive if, and only if, the group of automor-
phisms G acts 2-arc-transitively. The proof is quite similar to that of
part (c). Suppose you want to map the 2-arc (³0,³1,³2) in (´0,´1,´2). By
vertex-transitivity, we can map ³1 to ´1 via some g ∈ G. Then, using the 2-
transitivity of the local group, we can find a permutation h that stabilizes
´1 such that the ³gh0 = ´0 and ³

gh
2 = ´2.

We end this brief reviewwith a result that has already been anticipated twice
before.

Lemma 1.33 · Let Γ be a connected graph, let ³ ∈ VΓ be a vertex, and let G be a
vertex-transitive group of automorphisms of Γ. Suppose that X is the collection of all
simple sections of the local group. Then every simple section of G³ appears in X. In
particular,

(a) the local group is solvable if, and only if, the vertex-stabilizer is solvable,

(b) the local group and the vertex-stabilizer share the same thickness.

Proof. Let L be the local group of the pair (Γ,G). As G is vertex-transitive, the
action of G³ on the ball of radius 2 centred in ³ can be embedded in the wreath
product LwrL, where the top group corresponds to the action of G³ on Γ(³),

while the base group contains isomorphic images of some stabilizers in GΓ(³)
³ in

which the neighbour corresponding to ³ is fixed. Although it becomes increas-
ingly difficult to write down as the radius of the ball increases, the reader should
be convinced that, for any positive integer r,

G³/G
[r]
³ can be embedded in ((LwrL)wr . . .)wrL ,

where the wreath product is iterated r times. The result is now a consequence
of the fact that, for every group A and B, the set of simple sections of a wreath
product AwrB is the same as the set of simple sections of A and B.

The two consequences can be obtained recalling that both solvability and
thickness are completely determined by the set of simple sections X of the
group. The former corresponds to having only cyclic groups in X, while the
latter only depends on how large are the nonabelian factors in X.

We are interested in those local groups whose appearance forces the order of
a vertex-stabilizer to be bounded by a constant.

Definition 1.34 · Let L be a finite permutation group. We say that L is graph-
restrictive if there is a constant c(L) such that, for every pair (Γ,G), with Γ a con-
nected locally finite graph, G a vertex-transitive group of automorphism with
finite vertex-stabilizer, and local group isomorphic to L,

|G³ | f c(L) .

The Holy Grail of this local to global approach is the Weiss Conjecture.

Conjecture 1.35 ([159] Conjecture 3.12) · Every finite primitive group is
graph-restrictive.
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The conjecture has been settled for 2-arc-transitive graphs through a monu-
mental work spanning [57, 151, 152, 161, 163].

Theorem 1.36 · Every finite 2-transitive group is graph-restrictive. In particu-
lar, for every pair (Γ,G), where Γ is a locally finite connected graph, G is a vertex-
transitive group of automorphisms with finite vertex-stabilizer, and the local group
of (Γ,G) is 2-transitive, the stabilizer of a ball of radius 6 is trivial.

In the following years, further evidence has arisen and Conjecture 1.35 has
been extended. First, in [125], C. E. Praeger has noticed that almost all the
attempt depended on techniques relying on the local group being quasiprimi-
tive. Then, in [113], P. Potočnik, P. Spiga and G. Verret have proved that any
graph-restrictive group must be a semiprimitive permutation group. (A permu-
tation group G is semiprimitive if all its normal subgroups are either transitive
or semiregular. All quasiprimitive groups are also semiprimitive.) This has
prompted the current version of the conjecture.

Conjecture 1.37 ([113] Conjecture 3) · A finite permutation group is graph-
restrictive if, and only if, it it semiprimitive.

We devout the rest of Section 1.K to a short survey of what is know about
the Weiss Conjecture. Two different philosophies has been followed to tackle
the problem: using the O’Nan–Scott Theorem to tackle the families of primitive
groups in turn, or finding a reduction to an easier setting.

A key ingredient in all the O’Nan–Scott based attacks has been a general-
isation of Theorem 1.29, now known as the Thompson–Wielandt Theorem. The
original version of this result is due to A. Gardiner, generalising previous re-
sults of H. Wielandt and A. W. Knapp (see [56, Theorem 2.1 and Corollary 2.3]).
The result was extended to quasiprimitive local groups by J. van Bon in [156],
and later to semiprimitive local groups by P. Spiga in [143]. (We remark that, in
[143], Theorem 1.38 is proven in a slightly more general setting.) For every arc
(³,´) of a graph Γ, we denote byG [1]

³´ the pointwise stabilizer of BΓ(³,1)∪BΓ(´,1),
that is,

G
[1]
³´ = G [1]

³ ∩G
[1]
´ .

Theorem 1.38 · Let Γ be a connected graph, let G be a group of automorphisms for
Γ with finite vertex-stabilizer, and let (³,´) ∈ AΓ be an arc. Suppose that the local

group of the pair (Γ,G) is semiprimitive. Then G
[1]
³´ is a p-group.

Theorem 1.38 imposes tight restrictions on the structure of G³ . For instance,
if Γ has valency d, then G³ contains a normal p-subgroup of index at most d(d −
1)!2. Tinkering with these restrictions, it is possible to prove that either the
local group is regular or it contains a nonabelian normal subgroup whose action
is regular. Indeed, this argument has been used by P. Spiga in [142] to deal with
local groups of type TW, while V. I. Trofimov has done the same in [153] for
types HS and HC.

The next case solved has been local groups with elementary abelian socle,
that is, primitive groups of type HA. Indeed, in [160], R. Weiss has settled the
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conjecture for all characteristic but 2 and 3. The proof has been completed for
all primes by P. Spiga in [145] using the Local C(G,T ) Theorem (see [25]).

The most recent progress consists in proving the Weiss Conjecture for local
groups of type SD and CD. To do so, V. I. Trofimov in [153] has relied on the
theory of offenders: we refer the curious reader to [37, 103].

Therefore, the only cases left are primitive local groups of type AS and PA.

Theorem 1.39 · Then there is a function f : N → N with the following property.
Let Γ be a d-valent connected graph, and let G be a group of automorphisms of Γ with
finite vertex-stabilizer. Suppose that the local group of the pair (Γ,G) is primitive of
type HA, HS, HC, TW, SD or CD. Then

|G³ | f f(d) < (d6)! .

We now switch to the reduction based approach. In [122], C. E. Praeger
has proved that, for nonbipartite graphs, we can assume that the automorphism
group of the graph is quasiprimitive. We underline that her result has pioneered
the normal quotient method. Building on this result, in [41], M. D. Conder,
C. H. Li and C. E. Praeger further reduced the problem for nonbipartite graphs
to the case of graphs with almost simple automorphism group. The last ex-
tension to these ideas is due to C. E. Praeger, P. Spiga and G. Verret in [127]:
through the normal quotient method, we can reduce the problem to automor-
phism groups which are either quasiprimitive or biquasiprimitive (that is, in-
transitive with two orbits, with quasiprimitive transitive constituents), and, to
solve this version of the problem, it is enough to consider automorphism groups
which are almost simple. This is a genuine reduction of the Weiss Conjecture to
the case with nonabelian finite simple automorphism groups.

The concept of growth in groups has also been ingeniously applied to tackle
this last scenario. The celebrated [133, Theorem 2] by L. Pyber and E. Szabó
(see also [23]) states that, for every simple group T of Lie type of rank r, and for
every generating set S of T , either T = S3, or there are two positive constants,
c(r) and ϵ(r), depending only on the rank r such that

|S |1+ϵ(r) f c(r)|S3| . (1.4)

Recall that the thickness of a group of Lie type is a linear function of its Lie
rank. Hence, we can replace Lie rank by thickness in the previous statement.

Suppose now that Γ is a finite d-valent connected graph, and T is an arc-
transitive group of automorphisms of Γ. Moreover, suppose that T is of Lie type
and thickness ¹. Let us choose a vertex ³ ∈ Γ, so we can choose

S = {g ∈ T | ³g ∈ Γ(³)} .

By connectedness of Γ, we have that S is a generating set for T (see the proof
of Theorem O). Since S is a union of d right coset of T³ ,

|S | = d |T³ | .

Furthermore, |S3| counts the number of paths of length 3 starting from ³. Thus
(skipping some intermediate computations)

|S3| f d3|T³ | .
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Now, we split the discussion according to whether S3 = T or not. In the former
case,

|VΓ| = |T : T³ | =
|S3|

|T³ |
f d3.

Therefore, T³ can be embedded into Sym(d3 − 1). Hence

|T³ | f (d3 − 1)! .

Suppose now that S3 does not coincide with T . By Equation (1.4), we have that

(k|T³ |)
1+ϵ(¹) = |S |1+ϵ(¹) f c(¹)|S3| f c(¹)k3|T³ |

3 .

Hence, a direct computation leads to

|T³ | = c(¹)
1/(ϵ(¹)−2)k f c(¹)1/(ϵ(¹)−2)d .

Since we are dealing with a function increasing with thickness, there is noth-
ing to discuss about the alternating groups, and, since our goal is asymptotic in
nature, the sporadic groups do not enter the picture. Therefore, we have ob-
tained the following result by L. Pyber, C. E. Praeger, P. Spiga and E. Szabó.

Theorem 1.40 ([131] Theorem 2) · There exists a function g :N×N→Nwith the
following property. Let Γ be a finite d-valent connected graph, and let G be a group of
automorphisms of Γ. Suppose that the local group of the pair (Γ,G) is primitive, and
that the thickness of G is ¹. Then

|G³ | f g (d,¹) .

1.L Vertex-transitive 3-valent graphs

In Section 1.L, following [115], we ask ourselves if we can broaden our census to
include all vertex-transitive 3-valent graphs. The local group partitions the fam-
ily according to the number of orbits it defines. If the local group is transitive,
then the graph is arc-transitive, thus it already appears in the census described
in Section 1.I. The interesting cases are when the local group is intransitive. Two
scenarios need to be analysed: either the local group is trivial, and hence it de-
fines three orbits, or it is isomorphic to a cyclic group of order two, and so it has
an orbit of length two and a fixed point.

We start by dealing with the hypothesis of trivial local group. Since we can-
not use amalgams, we must fall back to the naive approach described in Sec-
tion 1.F. Rather than considering all the orbital graphs, a first reduction can be
obtained from the following observation of G. Sabidussi.

Theorem 1.41 ([135] Theorem 3) · There is a one-to-one correspondence between
Cayley graphs Cay(G,S) and pairs (Γ,G), where G is a vertex-regular group of auto-
morphism of Γ.
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Therefore, our task can be translated to compiling a census of 3-valent Cay-
ley graphs. Observe that, rather than a list of all the transitive permutation
groups up to given degree, we are satisfied with a friend that gives us the list of
all the abstract groups up to a given order. Now, [130, Corollary] states that the
number of groups of order n does not exceed

exp
(( 2
27

+ o(1)
)
log(n)3

)
.

Hence, the size of the list of all groups up to order n is quasipolynomial in the
number of vertices n. Although this task is considerably faster than comput-
ing all the orbital digraphs, our algorithm is still not viable for implementation.
This is caused by the abundance of p-groups, whose number asymptotically co-
incides with the upper bound. This is a consequence of the famous lower bound
that G. Higman proved in [69] (see also [138]). Therefore, when n is a prime
power, the number of abstract groups to consider grows too large for our com-
putational capabilities.

Rather than building all the orbital graphs of the regular actions of the
groups on themselves, we shall take advantage of Theorem 1.41, and focus on
finding a suitable connection set S . The following two results go in this direc-
tion.

Lemma 1.42 ([115] Lemma 2) · Let G be a finite group, and let Cay(G,S) be a
connected Cayley graph of valency at most 3. Then, G/G′ is isomorphic to either C3

2
or to C2 ×Cr or to Cr , for some positive integer r.

Lemma 1.43 ([2] Lemma 3.1) · Let G be a group, let ϕ be a group automorphism
of G, and let S be a symmetric subset of G. Then Cay(G,S) and Cay(G,Sϕ) are
isomorphic.

Lemma 1.42 drastically reduces the number of group that need to be consid-
ered. For instance, there are 1090235 groups of order 768 (up to isomorphism),
while only 4810 of them satisfy this condition on the abelian quotient. Further-
more, Lemma 1.43 gives us a recipe to greatly reduce the number of connec-
tion sets S we must consider for each group G. Observe that the converse of
Lemma 1.43 does not hold, thus, if we want a representative for each class of
isomorphism of graphs, we still need to run an algorithm that checks for iso-
morphisms.

Combining these results, we find that, to build our census of 3-valent Cayley
graphs, it is sufficient to determine the Aut(G)-orbits of inverse-closed generat-
ing 3-subsets of G. Still, our last refinement of the algorithm has two critical
aspects.

Computing Aut(G) can take a long time. The complexity of the algorithm
devised by B. Eick, C. R. Leedham-Green and E. A. O’Brien in [49] depends
heavily on the number of generators of G and on the rank of the elementary
abelian sections ofG. In our case, since the groups we deal with are 3-generated,
the algorithm takes a reasonable amount of time.

The second critical point is related to 2-groups. The list of 2-groups of order
512 is already too large to handle, while there is no exhaustive list of groups of
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order 1024. This case has been dealt with in [115] using cohomological meth-
ods, which we will not explore here.

We now turn to the case with local group isomorphic to C2. The main tool to
deal with this scenario is a one-to-one correspondence between 3-valent graphs
whose local group is isomorphic to C2 and 4-valent graphs whose local group
is transitive and imprimitive: the so-called splitting and merging operations.
To prove some results of Chapter 2, we need an extensive study of this corre-
spondence. Hence, rather than give a partial explanation here, we will devote
Sections 2.C and 2.D to develop this subject in details.

Through this reduction, to find all the 3-valent vertex-transitive graphs, we
need to compile the census of 4-valent arc-transitive graphs whose local group
is imprimitive up to half the number of vertices. We can follow the same set of
ideas we used for the arc-transitive 3-valent case. We need to describe the amal-
gams that can appear, and then we need to apply the LINS routine to produce
the normal subgroups by which to quotient the universal covering of the graph.

The are three possible local groups: C2 × C2, C4 or D8. In the former two
cases, the permutation group is regular, thus G is arc-regular. In particular, it is
immediate to find that the only two amalgams (L,B,R) arising in these cases are
of the form

(C2 ×C2,1,C2) and (C4,1,C2) .

We now have to deal with the last scenario. The amalgams corresponding to
the local group D8 have been described by D. Ž. Djoković in [46]. Since the local
group is not graph-restrictive, the vertex-stabilizer has order 2s, where s is an
unbounded positive integer, thus infinitely many amalgams indexed by s arise.
A significant bound on s depending on the number of vertices is needed before
venturing further.

Theorem 1.44 ([117] Theorem 1.2) · Let Γ be a 4-valent graph, let ³ be a vertex
of Γ, and let G be an arc-transitive group of automorphisms of Γ. Suppose that the
local group of the pair (Γ,G) is D8. Then either

2|G³ | log2

(
|G³ |

2

)
f |VΓ| ,

or the pair (Γ,G) is known.

Theorem 1.44 tells us that only finitely many amalgams have to be consid-
ered depending on the choice of the target number of vertices. Observe that,
apart from the known exceptions, this result states that the order of a vertex-
stabilizer grows linearly with the number of vertices. This, rather than the lo-
cal group being graph-restrictive, is what we need to compile a census of arc-
transitive graphs.

We conclude Section 1.L by pointing out that the ideas we have explored to
deal with the local group D8 have been used by P. Potočnik, P. Spiga and G. Ver-
ret in [118] to build a census of 4-valent edge-transitive but not arc-transitive
graphs. The result that plays the role of Theorem 1.44 has been proved in [147].
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1 · Number of automorphisms

1.M Unbounded vertex-stabilizers

Inspired by the second half of Section 1.L, we can propose a general strategy to
compile the census of arc-transitive graphs of a given valency in two steps.

(a) Obtain all the faithful amalgams of index (d,2).

(b) Prove that, outside of a family of well-understood graphs, the number of
automorphisms of our graphs does not grow too fast with respect to the
number of vertices.

We underline that both steps are highly nontrivial, and the second step might
even be impossible in general. Still, this approach explains why bounding the
size of a vertex-stabilizer by a function of the number of vertices might be an
interesting question to consider.

Theorem 1.45 ([116] Section 6, and [71] Theorem 1.1) · Let Γ be a locally finite
connected d-valent graph with n vertices, let ³ be a vertex of Γ, and let G be an arc-
transitive group of automorphisms of Γ with |G³ | finite. Suppose that d is at most 7,
and that the local group of the pair (G,Γ) is isomorphic to L. Then one of the following
happens:

(a) if L is either primitive or regular, then |G³ | is bounded by a constant;

(b) if L is isomorphic to the dihedral group of degree 6, then there exists a positive
integer ϵ1 such that

|G³ | fO (nϵ1) ,

and there is an infinite family of such pairs (Γ,G) such that, for a positive
integer ϵ2,

O (nϵ2) f |G³ | ;

(c) if L does not appear in the previous points, then there exists a positive constant
c such that

exp(cn+ o(1)) f |G³ | f d
n−1 .

Many open questions remain. For instance, we have no significant result
about transitive local groups of degree 8.

We need some extra notation to state the most fascinating problem. We say
that a function f :N→N is subpolynomial if

f(n) is unbounded and lim
n

log(f(n))
log(n)

= 0 ,

while we say that f is subexponential if

log(f(n))
log(n)

is unbounded and lim
n

log(f(n))
n

= 0 .

Note that, according to this definition, the classes of subpolynomial and subex-
ponential functions are disjoint from the classes of constant, polynomial and
exponential functions.
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Problem 1.46 ([116] Question 4) · Let Γ be a locally finite connected graph,
let ³ be a vertex of Γ, and let G be an arc-transitive group of automorphisms of
Γ with |G³ finite. Does there exist a permutation group L such that, if the local
group of the pair (G,Γ) is isomorphic to L, then we can find two subpolynomial
functions f1,f2 :N→N such that

f1 (|VΓ|) f |G³ | f f2 (|VΓ|) ?

Does the same hold for subexponential functions?
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2 Small valency

Tout ceci parce que tu sais que j’étais voleuse autrefois

– Séance tenante, Joyce Mansour (1953)

We say that the valency of a graph is small if we have control of the local
group: as a consequence, we can exploit powerful tools such as amalgams (see
Section 1.H) and normal quotients (see Section 1.G).

The first proportion of Chapter 2 is devoted to sharpening our tools to deal
with Praeger–Xu graphs and their splitting. The second part tackles two sepa-
rate problems. In Sections 2.E and 2.F, we show that the Praeger–Xu graphs and
their splitting can be characterized as being those 4-valent and 3-valent graphs
whose fixed point ratio exceeds 1/3. In Section 2.I, we prove that, if the num-
ber of vertices is large enough, the vertex-transitive automorphism group of a
3-valent graph contains a semiregular element of order at least 6.

(We would also like to emphasize now that all the permutation groups and
all the graphs in Chapter 2 are finite.)

2.A Praeger–Xu graphs

While dealing with small valencies, two infinite families of graphs will pose the
most intricate challenge: the Praeger–Xu graphs and their splittings. That is due
to the fact that they have exponentially large groups of automorphisms with
respect to the number of vertices, and this fact causes various complications
with regard to many natural questions.

Section 2.A is devoted to introducing the ubiquitous 4-valent Praeger–Xu
graphs C(r, s) and their automorphism groups. This infinite family had been
originally defined in [128] while studying graphs whose automorphism group
contains a normal elementary abelian subgroup whose action is not semiregular.
Praeger–Xu graphs have been studied in detail by A. D. Gardiner, C. E. Praeger
and M. Xu in [58, 123, 128], and more recently in [14, 15, 73, 74]. Here, we
introduce them through their directed counterparts defined in [123].

We need to recall the definition of wreath product of graphs.

Definition 2.1 · Let Γ and ∆ be two digraphs. The wreath product of Γ and ∆,
denoted by Γwr∆, is the graph of vertex-set VΓ×V∆, where (¶1,µ1) and (¶2,µ2)
are adjacent if either ¶1 = ¶2 and (µ1,µ2) ∈ AΓ, or (¶1,¶2) ∈ A∆.
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This name is due to the fact that

Aut(Γ)wrAut(∆) is a subgroup of Aut(Γwr∆) .

For further information on wreath products of digraphs, we refer the curious
reader to [48].

Moreover, we recall that the neighbours of a digraph Γ can be distinguished
in two classes: for any vertex ³ ∈ VΓ, the out-neighbours of ³ are the ´ ∈ VΓ such
that (³,´) ∈ AΓ, while the in-neighbours of ³ are the µ ∈ VΓ such that (µ,³) ∈ AΓ.
In such fashion, the valency of a digraph is the sum of its out-valency and its
in-valency.

Let r be a positive integer with r g 3. We define C⃗(r,1) to be the wreath
product of an edgeless graph on 2 vertices, 2K1, by a directed cycle of length r.
In other words,

V C⃗(r,1) =Zr ×Z2

with the out-neighbours of the vertex (x, i) being (x +1,0) and (x +1,1). We will
identify the (s − 1)-arc

(x,ϵ0) ∼ (x +1,ϵ1) ∼ . . . ∼ (x + s − 1,ϵs−1)

with the pair (x;k) where k = ϵ0ϵ1 . . .ϵs−1 is a string in Z2 of length s. Let s be a
positive integer with s g 2. We let V C⃗(r, s) be the set of all (s − 1)-arcs of C⃗(r,1).
For every string h in Z2 of length s − 1, and for any ϵ ∈ Z2, we define the out-
neighbours of (x;ϵh) ∈ V C⃗(r, s) to be (x+1;h0) and (x+1;h1). Hence, the Praeger–
Xu graph C(r, s) is defined as the underlying graph of C⃗(r, s). Observe that C(r, s)
is a connected 4-valent graph with r2s vertices (see [123, Theorem 2.8]).

Let us now discuss the automorphisms of the graphs C(r, s). Every automor-
phism of C⃗(r,1) (or C(r,1), respectively) acts naturally as an automorphism of
C⃗(r, s) (or C(r, s), respectively) for every s g 2. For i ∈ Zr , let Äi be the transpo-
sition on V C⃗(r,1) swapping the vertices (i,0) and (i,1) while fixing every other
vertex. This is an automorphism of C⃗(r,1), and thus also of C⃗(r, s) for s g 2. We
set

K := ïÄi | i ∈Zrð ,

and we observe that K is isomorphic to Cr2. Furthermore, let Ä and Ã be the
permutations on V C⃗(r,1) defined by

(i,ϵ)Ä := (i +1,ϵ) and (i,ϵ)Ã := (−x,ϵ) .

Then Ä is an automorphism of C⃗(r,1) or order r, and Ã is an involutory auto-
morphism of C(r,1) (but not of C⃗(r,1)). Observe that Ä cyclically permutes the
generators of K , while Ã is a permutation of such set of order 2. It follows that
the group ïÄ,Ãð normalises K . We define

H := K ì ïÄ,Ãð and H := K ì ïÄð .

Hence, for every r g 3 and s g 1,

C2wrDr �H f Aut(C(r, s)) and C2wrCr �H
 f Aut(C⃗(r, s)) .
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Moreover, H (or H , respectively) acts arc-transitively on C(r, s) (or C⃗(r, s), re-
spectively) whenever 1 f s f r − 1. With three exceptions, the groups H and H 

are, in fact, the automorphism groups of C(r, s) and C⃗(r, s), respectively.

Lemma 2.2 ([58] Theorem 2.13, and [123] Theorem 2.8) · The automorphism
group of a directed Praeger–Xu graph is

Aut(C⃗(r, s)) =H .

If r , 4, the automorphism group of a Praeger–Xu graph is

Aut(C(r, s)) =H .

Moreover,

|Aut(C(4,1)) :H | = 9 ,

|Aut(C(4,2)) :H | = 3 ,

|Aut(C(4,3)) :H | = 2 .

We note that the peculiarity of r = 4 is given by the fact that C(4,1) is iso-
morphic to the complete bipartite graph on 8 vertices K4,4, while C(4,2) is the
tesseract graph. We have not found C(4,3) elsewhere in the literature.

To conclude, we point out that the Praeger–Xu graphs also admit the fol-
lowing characterizations. We remark that Lemma 2.3 builds on the less general
[123, Theorem 2.9] and [128, Theorem 1].

Lemma 2.3 ([112] Lemma 1.13) · Let Γ be a finite connected 4-valent graph,
and let G be a vertex- and edge-transitive group of automorphisms of Γ. Suppose
that G has an abelian normal subgroup which is not semiregular on VΓ. Then Γ is
isomorphic to a Praeger–Xu graph C(r, s), for some positive integers r and s.

Lemma 2.4 ([112] Lemma 1.11) · Let Γ be a finite connected 4-valent graph, let G
be a vertex- and edge-transitive group of automorphisms of Γ, and letN be a minimal
normal subgroup of G. If N is a 2-group and Γ/N is a cycle of length at least 3, then
Γ is isomorphic to a Praeger–Xu graph C(r, s) for some positive integers r f 3 and
s f r − 1.

2.B Cayleyness

In [74], R. Jajcay, P. Potočnik and S. Wilson gave a sufficient and necessary con-
dition for a Praeger–Xu graph to be a Cayley graph. Explicitly, [74, Theorem 1.1]
states that, for any positive integer r g 3, with r , 4, and for any positive integer
s f r −1, the Praeger–Xu graph C(r, s) is a Cayley graph if, and only if, one of the
following holds

(a) the polynomial tr +1 has a divisor of degree r − s in Z2[t];

(b) r is even, and there exist polynomials f1, f2, g1, g2,u,v ∈Z2[t] such that u,v
are palindromic of degree r − s, and

tr +1 = f1(t
2)u(t) + tg1(t

2)v(t) = f2(t
2)v(t) + tg2(t

2)u(t) . (2.1)
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Section 2.B strengthens this result. Following [14], our aim is to prove that
(b) implies (a), thus obtaining the following refinement. We remark that it can
be verified explicitly that C(4,1), C(4,2) and C(4,3) are Cayley graphs, hence we
will ignore the case r = 4 in the proof of Theorem C.

Theorem C · For any positive integer r g 3 and for any positive integer s f r − 1,
the Praeger–Xu graph C(r, s) is a Cayley graph if, and only if, the polynomial tr + 1
has a divisor of degree r − s in Z2[t].

Proof. Suppose (b) holds. We aim to show that tr +1 is divisible by a polynomial
of degree r − s in Z2[t], implying (a). Working in characteristic 2, Equation (2.1)
can be written as

tr +1 = f 21 (t)u(t) + tg
2
1 (t)v(t) = f

2
2 (t)v(t) + tg

2
2 (t)u(t) .

From here on, we drop the indeterminate t, and we write

tr +1 = f 21 u + tg
2
1v = f

2
2 v + tg

2
2u . (2.2)

If either g1 or g2 is the trivial polynomial, then the result follows from Equa-
tion (2.2) and the fact that u and v have degree r − s. Therefore, for the rest of
the argument, we may suppose that g1, g2 are not trivial. Moreover, observe that
neither f1 nor f2 is the trivial polynomials, because t does not divide tr +1.

We introduce four polynomials ue,uo, ve, vo ∈Z2[t] such that

u := u2e + tu
2
o , v := v2e + tv

2
o .

Substituting these expansions for u and v in Equation (2.2), we get

tr +1 = f 21 u
2
e + t

2g21v
2
o + t(f

2
1 u

2
o + g

2
1v

2
e ) ,

tr +1 = f 22 v
2
e + t

2g22u
2
o + t(f

2
2 v

2
o + g

2
2u

2
e ) .

Recall that r is even. By splitting the equalities in even and odd degree terms,
we obtain

tr +1 = f 21 u
2
e + t

2g21v
2
o , 0 = t(f 21 u

2
o + g

2
1v

2
e ) ,

tr +1 = f 22 v
2
e + t

2g22u
2
o , 0 = t(f 22 v

2
o + g

2
2u

2
e ) .

Set m = r/2. Since we are working in characteristic 2, we get

tm +1 = f1ue + tg1vo , tm +1 = f2ve + tg2uo , (2.3)

f1uo = g1ve , f2vo = g2ue . (2.4)

Since u and v are palindromic by assumption, we get 1 = u(0) = ue(0) and
1 = v(0) = ve(0). In particular both ue and ve are not zero. From Equation (2.3)
and Equation (2.4), we obtain

f1 =
tm +1

ueve + tuovo
ve, g1 =

tm +1
ueve + tuovo

uo,

f2 =
tm +1

ueve + tuovo
ue, g2 =

tm +1
ueve + tuovo

vo.
(2.5)
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Our candidate for the required divisor of tr + 1 is h = ueve + tuovo. Let us
show first that deg(h) = r − s. Since ueve and uovo have even degree, we deduce

deg(h) = max{deg(ueve),deg(tuovo)} .

Recall u = u2e + tu
2
o and v = v2e + tv

2
o . If r − s is even, then

deg(ue) = deg(ve) =
r − s

2
, and deg(uo) = deg(vo) <

r − s − 1
2

.

On the other hand, if r − s is odd, then

deg(ue) = deg(ve) <
r − s

2
, and deg(uo) = deg(vo) =

r − s − 1
2

.

Therefore, in both cases, deg(h) = r − s.
It remains to prove that h divides tr + 1. Since f1, g1, f2, g2 are polynomials,

by Equation (2.5), h divides

gcd((tm +1)ve, (t
m +1)vo, (t

m +1)ue, (t
m +1)uo) = (tm +1)gcd(ve, vo,ue,uo).

Observe that gcd(ve, vo,ue,uo) divides f1ue + tg1vo, hence, in view of the first
equation in Equation (2.3), gcd(ve, vo,ue,uo) divides tm + 1. Therefore, h divides
(tm +1)2 = tr +1.

Using the factorization of tr + 1 in Z2[t], we give a purely arithmetic condi-
tion for the Cayleyness of C(r, s). Let ϕ be the Euler’s totient ϕ-function and, for
every positive integer d, let

É(d) := min {c ∈N | d divides 2c − 1}

be the multiplicative order of 2 modulo d.

Corollary D · Let a be a non-negative integer, let b be an odd positive integer such
that r = 2ab, with r g 3, and let s be a positive integer with s f r −1. The Praeger–Xu
graph C(r, s) is a Cayley graph if, and only if, s can be written as

s =
∑

d |b

³dÉ(d), for some integers ³d with 0 f ³d f
2aϕ(d)
É(d)

. (2.6)

Proof. By Theorem C, deciding if a Praeger–Xu graph C(r, s) is a Cayley graph
is tantamount to deciding if tr + 1 admits a divisor of order s in Z2[t]. An im-
mediate way to proceed is to study how tr + 1 can be factorized in irreducible
polynomials.

Let r = 2ab, with gcd(2, b) = 1. Since we are in characteristic 2 we have

tr +1 = t2
ab +1 =

(
tb +1

)2a
.

Furthermore, if ¼d(t) ∈Z[t] denotes the d-th cyclotomic polynomial, then

tb +1 =
∏

d |b

¼d(t)
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is the factorization of tb + 1 in irreducible polynomials over Q[t], by Gauss’s
theorem. Since the Galois group of any field extension of Z2 is a cyclic group
generated by the Frobenius automorphism, the degree of an irreducible factor
of ¼d(t) in Z2[t] is the smallest c such that a d-th primitive root · elevated to
2c is ·, that is, É(d). Hence ¼d(t) in Z2[t] factorizes into ϕ(d)/É(d) irreducible
polynomials, each having degree É(d).

Therefore, tr + 1 ∈ Z2[t] has a divisor of degree s if, and only if, s can be
written as the sum of some É(d)’s, each summand repeated at most 2aϕ(d)/É(d)
times, which is exactly Equation (2.6).

2.C Splitting and merging

To introduce the split Praeger–Xu graphs and analyse their properties, we need
first to focus on the splitting operation and its converse, the merging operation.
Section 2.C is devoted to the study of these constructions.

The operation of splitting was introduced in [115, Construction 11]. Let ∆
be a 4-valent graph, let C be a partition of E∆ into cycles. By applying the
splitting operation to the pair (∆,C), we obtain the graph, denoted by s(∆,C),
whose vertices are

V s(∆,C) := {(³,C) ∈ V∆×C | ³ ∈ VC} ,

and such that two vertices (³,C) and (´,D) are declared adjacent if either C ,D
and ³ = ´, or C = D and ³ and ´ are adjacent in ∆. Morally, this operation sep-
arates with a new edge the two cycles of C passing through ³, and this explains
its name.

Observe that, since ∆ is 4-valent, there are precisely 2 cycles in C passing
through ³, thus s(∆,C) is 3-valent and

|V s(∆,C)| = 2|V∆| .

Note that, for every G f Aut(∆) such that G fixes the edge-partition C setwise,

G is a subgroup of Aut(s(∆,C)) .

Moreover, ifG is also arc-transitive on ∆, thenG can swap the two cycles passing
through each vertex, thus it is vertex-transitive on s(∆,C). Observe that, the fact
that C is G-invariant forces the action of G³ on the neighbourhood of ³ to be
either the Klein four group, or the cyclic group of order 4, or the dihedral group
of order 8, because these are the only imprimitive permutation groups of degree
4. For any vertex (³,C) ∈ s(∆,C),

G(³,C) = G³ ∩G{C} ,

where G{C} is the setwise stabilizer of the cycle C. In particular, whenever G is
arc-transitive on ∆, as G³ switches the two cycles passing through ³,

|G³ : G(³,C)| = 2 .
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Now, we introduce the tentative inverse of the splitting operator: the op-
eration of merging (see [115, Construction 7]). Before, we need to recall two
graph-theoretical definitions. For a graph Γ, a perfect matching is a subgraph of
Γ containing all the vertices of Γ such that any two edges of the perfect matching
are disjoint, while a 2-factor is a subgraph of Γ containing all the vertices of Γ
such that all its connected components are cycles.

Let Γ be a connected 3-valent graph, and let G be a vertex-transitive group of
automorphisms such that the action of G³ on the neighbourhood of ³ is cyclic
of order 2. In particular, G³ is a nontrivial 2-group. Hence, G³ fixes a unique
neighbour of ³, which we denote by ³′. It follows that (³′)′ = ³ and G³ = G³′ .
Thus, the set

M :=
{
{³,³′} | ³ ∈ VΓ

}

is a perfect matching of Γ, while the edges outside M form a 2-factor, which
we denote by F . The group G in its action on EΓ fixes setwise both F and M,
and acts transitively on the arcs of each of these two sets. Let ∆ be the graph
with vertex-set M and two vertices e1, e2 ∈ M are declared adjacent if they are
(as edges of Γ) at distance 1 in Γ. We may also think of ∆ as being obtained by
contracting all the edges in M. Let C be the decomposition of E∆ into cycles
given by the connected components of the 2-factor F . The merging operation
applied to the pair (Γ,G) gives as a result the pair (∆,C).

The merging operation generates 4-valent graphs outside some pathologi-
cal cases. Indeed, only two infinite families of 3-valent graph have degenerate
merged graphs. These are the circular and Möbius ladders. For any n g 3, a
circular ladder graph is a graph isomorphic to the Cayley graph

Cay(Zn ×Z2, {(0,1), (1,0), (−1,0)}),

and, for any n g 2, a Möbius ladder graph is a graph isomorphic to the Cayley
graph

Cay(Z2n, {1,−1,n}).

Observe that we consider the complete graph on 4 vertices to be aMöbius ladder
graph.

Remark 2.5 · Let Γ be a connected 3-valent graph that is neither a circular
nor a Möbius ladder, and let G be a vertex-transitive group of automorphisms
of Γ such that the action of G³ on the neighbourhood of ³ is cyclic of order 2.
Then [115, Lemma 9 and Theorem 10] imply that the merging operator applied
to the pair (Γ,G) gives a pair (∆,C) such that ∆ is 4-valent, the action of G on ∆

is faithful and arc-transitive, and C is G-invariant. This result motivates the use
of the word degenerate when referring to the circular and Möbius ladders.

We state here an auxiliary lemma that we will need in the following to deal
with the ladders.

Lemma 2.6 · UnlessΛ is isomorphic to the skeleton of the cube or the complete graph
on 4 vertices, the automorphism group of a (circular or Möbius) ladder Λ contains
N f Aut(Λ), a normal cyclic subgroup of order 2, such that the normal quotientΛ/N
is a cycle.
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Proof. Suppose that Λ is a circular ladder, and its vertex-set is Zn ×Z2, where
n g 3 is an integer. Note that the subgraphs induced by Zn × {0} and Zn × {1} are
two cycles of length n, which form an Aut(Λ)-invariant 2-factor. The map

g : Λ →Λ, (x,ϵ) 7→ (x,ϵ +1)

is a central involution in Aut(Λ) that swapsZn×{0} andZn×{1}. Hence, N = ïgð
is the desired normal subgroup.

Suppose now that Λ is a Möbius ladder, thus its vertices are the elements of
Z2n, for some integer n g 2. Similarly, if n , 2,

g : Λ →Λ, x 7→ x +n

is a central involution of Aut(Λ). In this case, N = ïgð defines n orbits of the
form {x,x +n}. Thus Λ/N is a cycle of length n, as requested.

In view of [115, Theorem 12], the merging operator is the right-inverse of
the splitting one, or, more explicitly, unless Γ is a (circular or Möbius) ladder,
splitting a pair (∆,C) obtained via the merging operation on (Γ,G) results in the
starting pair. For our purposes, we need to show that the merging operator is
also the left-inverse of the splitting one.

Theorem E · Let ∆ be a 4-valent graph, let C be a partition of E∆ into cycles, and
let G be an arc-transitive group of automorphisms of ∆ such that C is G-invariant.
Then the merging operation can be applied to the pair (s(∆,C),G) and it gives as a
result (∆,C).

Proof. Let (³,C) be a vertex of s(∆,C), letD ∈ C be the other cycle of the partition
passing through ³, and let ´,µ ∈ V∆ be the neighbours of ³ in C. Then, using
the arc-transitivity of G,

(³,D)G(³,C) = {(³,D)} and (´,C)G(³,C) = (µ,C)G(³,C) = {(´,C), (µ,C)}.

Therefore, for any vertex (³,C) ∈ V s(∆,C), G(³,C) acts on the neighbourhood of
(³,C) as a cyclic group of order 2. Hence, we can apply the merging operation
to the pair (s(∆,C),G). Furthermore, we deduce that

M = {{(³,C), (³,D)} | ³ ∈ VC ∩VD}

is a perfect matching for (s(∆,C),G). Thus the connected components of the
resulting 2-factor F = Es(∆,C)−M can be identified with the cycles of C. Now,
consider the map defined as

¹ :M→ V∆, {(³,C), (³,D)} 7→ ³.

Since a generic vertex ³ ∈ V∆ belongs to precisely two distinct cycles, ¹ is bi-
jective. Moreover, ´ is adjacent to ³ in ∆ if, and only if, either {(³,C), (´,C)} or
{(³,D), (´,D)} is an edge in s(∆,C). In particular, ¹ also induces the bijection

¹̂ : F → E∆, {(³,C), (´,C)} 7→ {³,´},

which sends the connected components ofF into disjoint cycles of C. This shows
that ¹ is a graph isomorphism between ∆ and the 4-valent graph obtained by
merging the pair (s(∆,C),G).
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Corollary 2.7 · Let ∆ be a 4-valent graph, let C be a partition of E∆ into cycles, and
let G be an arc-transitive group of automorphisms of ∆ such that C is G-invariant,
thusG f Aut(s(∆,C)). Suppose thatG f A f Aut(s(∆,C)) is a vertex-transitive group
such that, for any vertex ³ ∈ V s(∆,C), the action of A³ on the neighbourhood of ³ is
cyclic of order 2, then A f Aut(∆).

Proof. Note that, as G is a subgroup of A, the actions of G and A on the neigh-
bourhood of any vertex ³ coincide. In particular, applying the merging op-
eration to the pair (s(∆,C),A) yields the same result as doing it on the pair
(s(∆,C),G), that is, by Theorem E, in both cases we obtain (∆,C). The result
follows by Remark 2.5.

2.D Split Praeger–Xu graphs

Finally, we have all the tools to define the infinite family of split Praeger–Xu
graphs.

All the partitions of the edge set of a Praeger–Xu graph into disjoint cycles
were classified in [73, Section 6]. Regardless of the choice of the parameters r
and s, there exists a decomposition into disjoint cycles of length 4 of the form

(x;0h) ∼ (x +1;h0) ∼ (x;1h) ∼ (x +1;h1)

for some x ∈ Zr , and for some string h in Z2 of length s − 1. We denote this
partition by S .

Definition 2.8 · The split Praeger–Xu graph sC(r, s) is the 3-valent graph obtained
from the pair (C(r, s),S ) by applying the splitting operation.

Recall that, by Lemma 2.2, the automorphism group of C(r, s) is of the form
(or contains as a subgroup if r = 4) H = K ì D2r , where K is the elementary
abelian 2-group generated by the automorphisms Äx that swaps the vertices
(x;0h) and (x;1h) while fixing all the others. Observe that the only two neigh-
bours of (x;0h) in the K-orbit containing (x + 1;h0) are (x + 1;h1) and (x + 1;h0)
itself, and similarly the only two neighbours of (x+1;h0) in the K-orbit contain-
ing (x;0h) are (x;1h) and (x;0h) itself. Therefore, S is the unique decomposition
such that each cycle intersects exactly two K-orbits.

Lemma 2.9 · For every positive integers r g 3 and s f r − 1, the automorphism
group of the split Praeger–Xu graph is

Aut(sC(r, s)) =H,

and it acts transitively on V sC(r, s).

Proof. Note that H acts on the set of K-orbits in VC(r, s), thus each automor-
phism ofH maps any cycle of S to a cycle intersecting exactly two K-orbits, that
is, to an element of S . Thus, S is H-invariant, and

H f Aut(sC(r, s)) .
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2 · Small valency

We now show the opposite inclusion. Let ³ ∈ V sC(r, s) be a vertex, aiming
for a contradiction we suppose that Aut(sC(r, s))³ does not act on the neighbour-
hood of ³ as a cycle of order 2. Let ³′ ,´,µ be the neighbours of ³ where ³′ is
fixed by the action of H³ , and let ¶ be the unique vertex at distance 1 from both
´ and µ . Since

H³ f Aut(sC(r, s))³ ,

our hypothesis implies that

there is an element g ∈ Aut(sC(r, s))³ such that ´g = ³′ and µg = µ .

This yields a contradiction because ¶g is ill-defined: in fact there is no vertex of
sC(r, s) at distance 1 from both µg and ¶g . Recall that, from Lemma 2.2, if r , 4,
then H = Aut(C(r, s)), and so, by Corollary 2.7,

Aut(sC(r, s)) fH .

On the other hand, if r = 4, observe that H is vertex-transitive on sC(r, s) and
Aut(sC(r, s))³ =H³ , hence the equality holds by Frattini’s argument.

To conclude Section 2.D, we show two results mimicking the characteriza-
tion of Praeger–Xu graphs. The first is an adaptation of Lemma 2.4 for 3-valent
graphs.

Lemma 2.10 · Let Γ be a connected 3-valent vertex-transitive graph, let G f Aut(Γ)
be a vertex-transitive group such that the action of G³ on the neighbourhood of ³ is
cyclic of order 2, and let N be a minimal normal subgroup of G. If N is a 2-group
and Γ/N is a cycle of length at least 3, then Γ is isomorphic either to a circular ladder,
or to a Möbius ladder, or to sC(r, s), for some positive integers r g 3 and s f r − 1.

Proof. We already know by Lemma 2.6 that both ladders admit a cyclic quotient
graph, thus we can suppose that Γ is not isomorphic to a circular ladder or to
a Möbius ladder. By hypothesis, we can apply the merging operator to (Γ,G),
obtaining the pair (∆,C). Since we have excluded the possibility of Γ being a
ladder, by Remark 2.5, ∆ is 4-valent, and the action of G on ∆ is faithful and
arc-transitive, and it fixes C setwise. Since the action of N cannot map edges in
M to edges in F , the quotient graph Γ/N retains a partition into two disjoint
sets of edges, namely M/N and F /N . Moreover, since M is a perfect matching,
each edge in M/N is adjacent to precisely two edges in F /N , and vice versa.
This implies that the edges of ∆/N coincide with the elements of F /N , two of
which are adjacent if they share the same neighbour inM/N . If r g 6, then ∆/N
is a cycle of length r/2. From Lemma 2.4, we deduce that ∆ is isomorphic to
C(r, s), for some positive integers r g 3 and s f r −1. Observe that, as C coincides
with the connected components of F , each cycle in C intersects precisely two
K-orbits. This implies that C = S , and so [115, Theorem 12] yields that Γ is
isomorphic to

s(∆,C) = s(C(r, s),S ) = sC(r, s) .

Now, suppose that r = 4. In this case, we have that G is a 2-group, hence |N | = 2
and |VΓ| = 8, and so the only possibility is for Γ to be a (circular or Möbius)
ladder, which we already excluded.
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The second result is the analogue of [112, Lemma 1.13] for 3-valent graphs.

Lemma 2.11 · Let Γ be a connected 3-valent graph, let ³ be a vertex of Γ, let G be
a vertex-transitive subgroup of Aut(Γ), and let N be a semiregular normal subgroup
of G. Suppose that the local group of the pair (Γ,G) is isomorphic to C2, and that the
normal quotient Γ/N is a cycle of length r g 3. Denote by K the kernel of the action
of G on the N -orbits on VΓ. Then

(a) either G³ has order 2 and K³ is trivial;

(b) or r is even and G³ = K³ is an elementary abelian 2-group of order at most
2r/2.

Proof. Let
∆0, ∆1, . . . , ∆r−1

be the orbits of N in its action on VΓ. Since Γ/N is a cycle, we may assume
that ∆i is adjacent to ∆i−1 and ∆i+1 with indices computed modulo r. Moreover,
without loss of generality, we suppose that ³ ∈ ∆0.

As the local group is a nontrivial 2-group, by Lemma 1.32, G³ is a 2-group.
Furthermore, by assumption, G³ fixes a unique neighbour of ³. As usual, for
each ´ ∈ VΓ, let ´′ be the unique neighbour of ´ fixed by G´ .

Suppose that {³,³′} is contained in an N -orbit. Since ³ ∈ ∆0, we deduce
³′ ∈ ∆0. Let ´ and µ be the other two neighbours of ³. As Γ/N is a cycle of
length r g 3, we have ´ ∈ ∆1 and µ ∈ ∆r−1. Since Aut(Γ/N ) is a dihedral group
of order 2r and since G³ contains an element swapping ´ and µ , we deduce
that |G³ : K³ | = 2. Observe that K³ fixes by definition each N -orbit and hence it
fixes setwise ∆1 and ∆r−1. Therefore, K³ fixes ´ and µ , because ´ is the unique
neighbour of ³ in ∆1 and µ is the unique neighbour of ³ in ∆r−1. This shows
that K³ fixes pointwise the neighbourhood of ³. Thus, Lemma 1.32 implies that
K³ is trival. In particular, Lemma 2.11 (a) is satisfied.

For the rest of the argument, we suppose that {³,³′} is not contained in an
N -orbit. This means that ³ has two neighbours in an N -orbit, say ∆1, and only
one neighbour in the other N -orbit, say ∆r−1. (Thus ³′ ∈ ∆r−1 and ´,µ ∈ ∆1.)
This implies that r is even and, for every i ∈ {0, . . . , r/2−1}, each vertex in ∆2i has
two neighbours in ∆2i+1 and only one neighbour in ∆2i−1. Therefore, G/K is a
dihedral group of order r when r g 8 and G/K is elementary abelian of order 4
when r = 4. Moreover, G/K acts regularly on Γ/N and hence G³ = K³ .

It remains to show that K³ is an elementary abelian 2-group of order at most
2r/2. Since N is normal in G, the orbits of N on the edge-set EΓ form a G-
invariant partition of EΓ.

We claim that, no two edges incident to a fixed vertex of Γ belong to the
same N -edge-orbit. We argue by contradiction, and we suppose that ³ has two
distinct neighbours ´ and µ such that the edges {³,´} and {³,µ} are in the same
N -edge-orbit. In particular, there exists n ∈ N with {³,´}n = {³,µ}. This gives
³n = ³ and ´n = µ , or ³n = µ and ´n = ³. Since there are no edges inside an
N -orbit, we cannot have ³n = µ and ´n = ³. Therefore, ³n = ³ and ´n = µ . Since
N acts semiregularly on VΓ, we have n = 1 and hence ´ = ´n = µ , which is a
contradiction.
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2 · Small valency

Since G is vertex-transitive, the edges between ∆2i and ∆2i+1 are partitioned
into precisely twoN -edge-orbits (let us call these two orbitsΘ2i andΘ′

2i ), whereas
the edges between ∆2i and ∆2i−1 form one N -edge-orbit (which we call Θ′′

2i ).
An element of K (fixing setwise the sets ∆2i and ∆2i+1) can map an edge in

Θ2i only to an edge in Θ2i or to an edge in Θ′
2i . On the other hand, as G³ is not

the identity group, for every vertex ´ ∈ ∆2i there is an element g ∈ G´ which
maps an edge of Θ2i incident to ´ to the edge of Θ′

2i incident to ´. This element
g is clearly an element of K , because G/K acts semiregularly on Γ/N . This shows
that the orbits of K on EΓ are precisely the sets Θ2i ∪Θ′

2i ,Θ
′′
2i , i ∈ {0, . . . , r/2− 1}.

In other words, each orbit of the induced action of K on the set

EΓ/N = {eN | e ∈ EΓ}

has length at most 2. Consequently, if X denotes the kernel of the action of K on
EΓ/N , then K/X embeds into Sym(2)r/2 and is therefore an elementary abelian
2- group of order at most 2r/2.

Let us now show, via a connectedness argument, that X = N . By definition,
N is a subgroup of X. Let ¶ ∈ ∆0. Since N is transitive on ∆0, it follows that
X = NX¶. Suppose that X¶ is nontrivial and let g be a nontrivial element of X¶.
Further, let ¶′ be a vertex which is closest to ¶ among all the vertices not fixed
by g , and let

¶ = ¶0 ∼ ¶1 ∼ . . . ∼ ¶m = ¶′

be a path of minimal length from ¶ to ¶′. Then ¶m−1 is fixed by g . Since g fixes
each N -edge-orbit setwise and since every vertex of Γ is incident to at most one
edge in eachN -edge-orbit, it follows that g fixes all the neighbours of ¶m−1, thus
also ¶m = ¶′. This contradicts our assumptions and proves that X¶ is a trivial
group, and hence that X =N . This proves that Lemma 2.11 (b) holds.

2.E Fixed point ratios

In Section 2.E, we review how P. Potočnik and P. Spiga in [112] have studied
the fixed point ratio for graphs of small valencies. We postpone their results for
now, and we instead focus on the ingredients needed to achieve them.

As usual in this setting, the main obstruction has arisen when the vertex-
stabilizers were 2-groups. Hence, Praeger–Xu and split Praeger–Xu graphs come
into play. We start with two preliminary group-theoretic results: the first one
significantly shortens the proof, while the second one is the cornerstone of the
inductive argument. We recall thatO2(G) denotes themaximal normal 2-subgroup
of G.

Theorem 2.12 ([111] Theorem 1.1) · Let G be a transitive permutation group on
Ω such that O2(G) is trivial, and let É ∈Ω be a point with GÉ 2-group. Then

|{³ ∈Ω | ³g = ³}| f
|Ω|

3
, for every g ∈ G − {1} .
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2.E · Fixed point ratios

Lemma 2.13 ([112] Lemma 1.17) · Let G be a group acting transitively on Ω and
let Σ be a system of blocks of imprimitivity. For g ∈ G, let gΣ be the permutation of Σ
induced by g . Then

fpr(g) f fpr
(
gΣ

)
.

In particular, if N is a normal subgroup of G, then

fpr(g) f fpr(Ng) .

Proof. Let us denote by Fix(g,Ω) the set of points inΩ fixed by g , and by Fix(gΣ,Σ)
the set of fixed blocks in Σ. We note that, if ³ ∈ Fix(g,Ω), and if we denote by A
the block containg ³, then, A ∈ Fix(gΣ,Σ), because ³ ∈ A∩Ag . Hence,

Fix(g,Ω) =
∑

B∈Fix(gΣ,Σ)

|B∩Fix(g,Ω)| f b|Fix(gΣ,Σ)| , (2.7)

where b is the size of an arbitrary block of Σ. Observe that, by transitivity of
G, b|Σ| = |Ω|. Therefore, the first proportion of the statement is obtained by
dividing both sides of Equation (2.7) by |Ω|. The proof is complete by recalling
that the orbits of a normal subgroup are a G-invariant partition of Ω.

Let Γ be a connected 4-valent graph, and letG be a vertex- and edge-transitive
group of automorphisms of Γ with fpr(G) g 1/3. Note that, by Lemma 2.13, if N
is a semiregular normal subgroup of G, then fpr(G) f fpr(G/N ). This allows an
inductive approach on the number of vertices by considering subsequent nor-
mal quotients.

Suppose that Γ is not 2-arc-transitive, that is, in view of Lemma 1.32, the sta-
bilizer of a vertex is a 2-group. Aiming for a contradiction, suppose that Γ is not
a Praeger–Xu graph, and, among the graphs with these properties, it is minimal
with respect to the number of vertices. We have that O2(G) is either trivial or
not. In the former case, by Theorem 2.12, fpr(G) f 1/3, which goes against our
hypothesis. Hence, we must assume that there is a minimal normal subgroup
N of G which is an elementary abelian 2-group. If N is not semiregular, by
Lemma 2.3, Γ is isomorphic to a Praeger–Xu graph. Thus, we are left to deal with
the case that N is semiregular. If N defines one orbit, then Γ is a Cayley graph
of an elementary abelian 2-group with at most 4 generators, hence |VΓ| f 24. A
similar argument work if N defines two orbits, and we find that |VΓ| f 27 (see
[112, Lemma 1.15]). In both cases, a direct inspection of the census of 4-valent
vertex- and edge-transitive graphs (see, for instance, [118]) shows that such a
counterexample does not exist. Therefore, N defines at least three orbits. Since
fpr(G) f fpr(G/N ), the minimality of Γ with respect to |VΓ| implies that Γ/N is
either a cycle or a Praeger–Xu graph. In the former scenario, Lemma 2.4 forces Γ
to be a Praeger–Xu graph. In the latter scenario, some careful considerations on
the nature of the elementary abelian covers of a Praeger–Xu graph show that Γ
must be, once again, a Praeger–Xu graph. We refer the reader who is interested
in abelian covers of graphs to [97]. To sum up, in all the possible scenarios, we
can prove that Γ is a Praeger–Xu graph, a contradiction.

On the other hand, if Γ is 2-arc-transitive, then the local group is graph-
restrictive by Theorem 1.36, thus the size of a vertex-stabilizer is bounded from
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above by a constant. The proof is then reduced to an examination of the scenar-
ios where G is an almost simple group. In this case, 6 sporadic graphs with high
fixed point ratio appear.

Ψ1 The first graph is the complete graph on 5 vertices K5, whose automor-
phism group is Sym(5). A permutation g ∈ Sym(5) fixing 2 or 3 points
gives rise to a nonidentity automorphism with fpr(g) g 2/5.

Ψ2 The second graph is the complete bipartite graph on 10 vertices minus a
perfect matching, K5,5 − 5K2, whose automorphism group is Sym(5)×C2.
A permutation of Sym(5) fixing 2 or 3 points gives rise to a nonidentity
automorphism fixing 4 or 6 vertices, thus fpr(g) g 2/5.

Ψ3 The third graph is the bipartite complement of the Heawood graph H: its
vertices are the 7 points and the 7 lines of the Fano plane PG2(2), and a
pair of vertices (p,L) are connected if p is a point, L is a line and p < L. The
automorphism group of the bipartite complement of the Heawood graph
is isomorphic to the automorphism group of the Fano plane, Aut(PGL3(2)).
An involution g ∈ PGL3(2) gives rise to a nonidentity automorphism fixing
6 vertices, hence fpr(g) = 3/7.

Ψ4 The fourth graph also arises from an incidence structure. Its vertices are
the 13 points and the 13 lines of PG2(3), and a pair of vertices (p,L) are
connected if p is a point, L is a line and p ∈ L. The automorphism group of
this graph is isomorphic to Aut(PGL3(3)). An involution g ∈ Aut(PGL3(3))
gives rise to a nontrivial automorphism fixing 10, hence fpr(g) = 10/23.

Ψ5 The fifth graph is the Kneser graph of parameter (7,3). The vertices corre-
spond to the 35 3-subsets of {1,2, . . . ,7}, two of which are declared adjacent
if they have trivial intersection. Its automorphism group is isomorphic to
Sym(7), and a transposition g fixes 15 vertices, hence fpr(g) = 3/7.

Ψ6 The last graph is the regular double cover of the graph inΨ5. Its automor-
phism group is isomorphic to Sym(7)×C2, and a noncentral transposition
g fixes 30 vertices, hence fpr(g) = 3/7.

Once all ingredients are thoroughly mixed, we obtain the following result.

Theorem 2.14 ([112] Theorem 1.1) · Let Γ be a connected vertex- and edge-
transitive 4-valent graph admitting a nonidentity automorphism fixing more than
1/3 of the vertices. Then Γ is arc-transitive and one of the following holds:

(a) |VΓ| f 70, and Γ is one of the six exceptions in Ψ1, . . . ,Ψ6;

(b) Γ is isomorphic to a Praeger–Xu graph C(r, s) with 1 f s < 2r/3 and r g 3.

The proof of Theorem 2.14 can be translated to valency 3. Let Γ be a con-
nected 3-valent graph, and let G be a vertex-transitive group of automorphisms
of Γ with fpr(G) g 1/3. Once again, we can argue by induction on the number of
vertices by taking subsequent normal quotients.
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Suppose that the local group of (Γ,G) is isomorphic to the cyclic group of
order 2. By applying the splitting operation, we observe that

fpr(g,VΓ) g fpr(g,V sΓ) >
1
3
.

Therefore, in view of Theorem 2.14 and Remark 2.5, Γ can either be a split
Praeger–Xu graph, or a circular ladder, or a Möbius ladder. All these cases are
easily dealt with by direct inspection.

In view of Theorem 1.24, the case with transitive local group can be treated
in the same way as the 2-arc-transitive case for valency 3. Chance decided that
also in this case 6 sporadic examples appear. We remark that Φ1 and Φ3 are a
Möbius and circular ladder respectively, so they already appeared in the previ-
ous case.

Φ1 The first graph is the complete graph on 4 vertices K4, whose automor-
phism group is Sym(4). A transposition g ∈ Sym(4) gives rise to a non-
identity automorphism with fpr(g) = 1/2.

Φ2 The second graph is the utility graph K3,3, whose automorphism group is
Sym(3)wrSym(2). A transposition g from the base group fixes 4 vertices,
hence fpr(g) = 2/3.

Φ3 The third graph is the 1-skeleton of the 3-cube Q8, whose automorphism
group is Sym(2)wrSym(3) = Sym(4)× Sym(2). A transposition g ∈ Sym(4)
gives rise to a nonidentity automorphism fixing 4 vertices, hence fpr(g) =
1/2.

Φ4 The fourth graph is the Petersen graph, whose automorphism group is
Sym(5). A transposition g ∈ Sym(5) fixes 4 vertices, hence fpr(g) = 2/5.

Φ5 The fifth graph is the Heawood graph, whose automorphism group is iso-
morphic to Aut(PGL3(2)). An involution g ∈ PGL3(2) gives rise to a non-
identity automorphism fixing 6 vertices, hence fpr(g) = 3/7.

Φ6 The last graph is the regular double cover of the Petersen graph. Its auto-
morphism group is isomorphic to Sym(5)×C2, and a noncentral transpo-
sition g fixes 8 vertices, hence fpr(g) = 4/15.

Theorem 2.15 ([112] Theorem 1.2) · Let Γ be a connected vertex-transitive 3-
valent graph admitting a nonidentity automorphism fixing more than 1/3 of the ver-
tices. Then Γ is arc-transitive and one of the following holds:

(a) |VΓ| f 20, and Γ is one of the six exceptions in Φ1, . . . ,Φ6;

(b) Γ is isomorphic to a split Praeger–Xu graph sC(r, s)with 1 f s < 2r/3 and r g 3.

Theorem 2.14 has found a remarkable application due to P. Potočnik, M. Toledo
and G. Verret in [120]. This paper shows that the order of an automorphism of a
vertex-transitive 3-valent graph cannot exceed the number of vertices, and that,
apart from the utility graph K3,3 and the split Praeger–Xu graphs, the propor-
tion of automorphisms of such a graph that admit a regular orbit is at least 5/12.
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We note that the bound of 1/3 in both Theorem 2.14 and Theorem 2.15 is
sharp. We consider the graph DWm with vertex-set Zm ×Z3 and edge-set

{{(x, i), (x +1, j)} | x ∈Zm, i, j ∈Z3, i , j} .

The graphs DWm are 4-valent, connected and arc-transitive. Moreover, there ex-
ists an automorphism g of DWm which fixes every vertex of the form (x,0) while
swapping the vertices in each pair {(x,1), (x,2)}, for some x ∈ Zm. Therefore,
fpr(g) = 1/3, and the infinite family DWm meets the bound of Theorem 2.14.
Applying the splitting operation, we obtain the infinite family sDWm, consist-
ing of 3-valent graphs achieving the bound of Theorem 2.15.

We conclude Section 2.E by reporting the following question, which has a
partial solution in Section 3.A.

Problem 2.16 ([112] Problem 1.6) · Let d be a positive integer. Find a constant
Cd and a well-understood family of special graphs Fd such that every finite con-
nected d-valent vertex-transitive graph Γ admitting a nontrivial automorphism
fixing more than Cd |VΓ| vertices belongs to Fd .

2.F Fixed edge ratios

Since the automorphism group of a graph naturally defines an action on the
edge-set, a shift of focus can be performed considering the fixity for the edges
rather that for the vertices. In this direction, P. Potočnik and P. Spiga proposed
the following problem.

Problem 2.17 ([112] Problem 1.7) · Determine the connected 4-valent arc-
transitive graphs and the connected 3-valent vertex-transitive graphs admitting
an automorphism fixing more than 1/3 of the edges.

Sections 2.F to 2.H answer this question, following [15]. More precisely, we
prove the following results.

Theorem F · Let Γ be a finite connected 4-valent vertex- and edge-transitive graph
admitting a nontrivial automorphism fixing more than 1/3 of the edges. Then one of
the following holds:

(a) Γ is isomorphic to K5, the complete graph on 5 vertices;

(b) Γ is isomorphic to a Praeger–Xu graph C(r, s), for some r and s with 3s < 2r−3.

Theorem G · Let Γ be a finite connected 3-valent vertex-transitive graph admitting
a nontrivial automorphism fixing more than 1/3 of the edges. Then Γ is isomorphic
to a split Praeger–Xu graph sC(r, s), for some r and s with 3s < 2r − 3.

We remark that the graphs appearing as exceptions in Theorems F and G
form a proper subset of the exceptions of Theorems 2.14 and 2.15.

The bound in Theorem G is sharp. For instance, each 3-valent graph ad-
mitting a nontrivial automorphism fixing setwise a perfect matching has the
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aforementioned property. For valency 4, we cannot prove sharpness. The proof
of Theorem F shows that, if such an infinite family of graphs meeting the bound
exists, those graphs cannot be 2-arc-transitive. In view of Theorem 2.19, we pose
the following question.

Question 2.18 · Can the bound in Theorem F be strengthened to 1/4, by even-
tually including some extra small exceptional graphs in Theorem F (a)?

We remark that Theorems 2.14, 2.15, F and G show that, besides small ex-
ceptions or well-understood families of graphs, nontrivial automorphisms of 3-
valent or 4-valent vertex-transitive graphs cannot fix too many vertices or edges,
where too many in this context has to be considered as a linear function on the
number of vertices (and, even then, with a small caveat for 4-valent graphs,
because of the assumption of edge-transitivity). The difficulty in having a uni-
fying theory of vertex-transitive graphs of small valency admitting nontrivial
automorphisms fixing too many vertices or edges seems to arise from our lack
of understanding possible generalisations of Praeger–Xu graphs (that is, vertex-
transitive graphs of bounded valency playing the role of Praeger–Xu graphs).
This is a recurrent problem in the theory of groups acting on finite graphs of
bounded valency, and one of the reasons why we limit our definition of small to
less than 5.

Before dealing with the proofs, we need some explicit computation for the
fixed point ratios of the action of the automorphism group on edges for some
recurring families of graphs.

2.F.1 Cayley graphs

While talking about fixed point ratio on vertices, Cayley graph have not entered
into the picture due to Theorem 1.41.

In the case of edge-fixity, we can give a sharp bound that depends on the
valency alone. We recall that we denote the set of all edges fixed by g with the
symbol Fix(g,EΓ).

Theorem 2.19 · Let G be a finite group, let S be an inverse closed nonempty subset
of G, and let Γ = Cay(G,S) be the Cayley graph of G of connection set S . Suppose that
g ∈ G − {1} is a nontrivial element fixing at least one edge. Then g is an involution
and

fpr(g,EΓ) =
|gG ∩ S |

|S ||gG |
.

In particular,

fpr(g,EΓ) f 1/ |S | ,

and equality is attained if, and only if, the conjugacy class gG is a subset of the con-
nection set S .

Proof. For each s ∈ S , we define

X(s) = {{x,sx} | x ∈ G} .
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Observe that, for any s ∈ S , X(s) is either a perfect matching or a 2-factor of Γ,
and that

{X(s) | s ∈ S}

is a partition of the edge-set EΓ.
Let s ∈ S be your favourite generator, and suppose that X(s) contains some

edges fixed by g , say
{y,sy} ∈ X(s)∩Fix(g,EΓ) .

It follows that
yg = sy and syg = y ,

thus
g2 = 1 and s = ygy−1 .

In other words, g has order 2, and S contains a conjugate of g .
For every other {x,sx} ∈ X(s), with a similar computation, we obtain that

{x,sx} ∈ Fix(g,EΓ) if, and only if, s = xgx−1. Thus ygy−1 = xgx−1 and x ∈ yCG(g).
In particular, X(s) and Fix(g,EΓ) have nonempty intersection if, and only if, s
lies in the conjugacy class gG, and

X(s)∩Fix(g,EΓ) = {{yh,syh} | h ∈ CG(x)} ,

hence

|X(s)∩Fix(g,EΓ)| =
|CG(g)|

2
.

Therefore,

fpr(g,EΓ) =
|gG ∩ S ||CG(g)|

2|EΓ|

=
|gG ∩ S ||CG(g)|

|S ||G|

=
|gG ∩ S |

|S ||G : CG(g)|

=
|gG ∩ S |

|S ||gG |
.

Since |gG ∩ S | f |gG |, we have

fpr(g,EΓ) f 1/ |S | .

Finally, equality is attained if, and only if, gG ∩ S = gG, that is, gG ¦ S .

2.F.2 Praeger–Xu graphs

We now turn our attention to the nature of fixed edges in a Praeger–Xu graph
C(r, s).

Recall, from Section 2.A, that K is the group generated by the centres of all
vertex-stabilizers, and that H = K ì ïÄ,Ãð is the extension of K with a rotation Ä
and an axial symmetry Ã of the underlying cycle.
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2.F · Fixed edge ratios

Lemma 2.20 · Let Γ = C(r, s) be a Praeger–Xu graph, and let g ∈ Aut(Γ) be a
nontrivial automorphism such that fpr(g,EΓ) > 1/3. Then 3s < 2r − 3 and, either
g ∈ K or (r, s) = (r,1). In particular, g fixes an edge if, and only if, g fixes both of its
ends.

Proof. We suppose that r = 4. The wreath product C(4,1) is isomorphic to K4,4,
which admits automorphisms h fixing 8 edges and hence

fpr(h,EΓ) =
8
16

=
1
2
>
1
3
.

Observe that the nonidentity elements in Aut(C(4,1)) with fpr(h,EΓ) > 1/3 are
not necessarily in K , but they fix an edge if, and only if, they fix both of its ends.
Similarly, it can be explicitly verified that, for every h ∈ Aut(C(4,2)) − {1}, we
have

fpr(h,EΓ) f
8
32

=
1
4
<
1
3
.

Furthermore, for every h ∈ Aut(C(4,3))− {1}, we have

fpr(h,EΓ) =
8
64

=
1
8
<
1
3
.

These computation exhaust the cases with r = 4.
We now suppose that r , 4. By Lemma 2.2, Aut(Γ) =H , thus every automor-

phism of the graph can be written as

g = ÄÄiÃϵ, for some Ä ∈ K, i ∈Zr , ϵ ∈Z2 .

We define A(x) as the union of the sets of (s − 1)-arcs in C⃗(r,1) starting at (x,0)
or at (x,1). From the definition of the vertex set of C(r, s), we have that A(x) ¦
VC(r, s), |A(x)| = 2s and

VC(r, s) =
⋃

x∈Zr

A(x) .

Moreover, by definition of K , A(x) is a K-orbit, and the subgraph induced by Γ

on A(x)∪A(x + 1) is the disjoint union of cycles of length 4. Indeed, this is the
property we have used in Section 2.D to define the standard cycle decomposition
S (see also [73]). Observe that, for any x ∈Zr ,

A(x)Ä = A(x +1) , and A(x)Ã = A(−x − s +1) . (2.8)

We start by proving that g ∈ K . We split the discussion in two cases: either
ϵ = 0 or ϵ = 1.

Suppose ϵ = 0. Let {a,b} ∈ Fix(g,EΓ). Replacing a with b if necessary, we may
suppose that a ∈ A(x) and b ∈ A(x +1), for some x ∈Zr .

If ag = a and bg = b, then A(x)g = A(x) and A(x + 1)g = A(x + 1). Now, Equa-
tion (2.8) yields x + i = x and (x +1) + i = x +1, that is, i = 0. Therefore g ∈ K .

Similarly, if ag = b and bg = a, we have A(x)g = A(x +1) and A(x +1)g = A(x).
Now, Equation (2.8) yields x+ i = x+1 and (x+1)+ i = x, that is, 2 = 0. However,
this implies r = 2, which is a contradiction because r g 3.
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2 · Small valency

Suppose ϵ = 1. Since ïÄ,Ãð is a dihedral group of order 2r, replacing g by a
suitable conjugate if necessary, we may suppose that either r is odd and i = 0, or
r is even and i ∈ {0,1}.

Assume i = 0. Let {a,b} ∈ Fix(g,EΓ). As above, replacing awith b if necessary,
we may suppose that a ∈ A(x) and b ∈ A(x +1), for some x ∈Zr .

If ag = a and bg = b, we have A(x)g = A(x) and A(x + 1)g = A(x + 1). Now,
Equation (2.8) yields −x − s + 1 = x and −(x + 1) − s + 1 = x + 1, that is, 2 = 0.
However, this gives rise to the contradiction r = 2.

Similarly, if ag = b and bg = a, we have A(x)g = A(x +1) and A(x +1)g = A(x).
Now, Equation (2.8) yields −x − s + 1 = x + 1 and −(x + 1) − s + 1 = x, that is,
2x + s = 0. When r is odd, the equation 2x + s = 0 has only one solution in Zr

and, when r is even, the equation 2x + s = 0 has either zero or two solutions in
Zr depending on whether s is odd or even. Recalling that the subgraph induced
by Γ on A(x)∪A(x +1) is a disjoint union of cycles of length 4, we obtain that

|fpr(g,EΓ)| f



|A(x)|
|EΓ|

=
1
2r

if r is odd ,

2|A(x)|
|EΓ|

=
1
r

if r is even .

In both cases, we have fpr(g,EΓ) f 1/4, which is a contradiction.
Assume i = 1. Observe that this implies that r is even. Here the analysis is

entirely similar. Let {a,b} ∈ Fix(g,EΓ). As above, replacing a with b if necessary,
we may suppose that a ∈ A(x) and b ∈ A(x +1), for some x ∈Zr .

If ag = a and bg = b, we have A(x)g = A(x) and A(x + 1)g = A(x + 1). Now,
Equation (2.8) yields −(x + 1) − s + 1 = x and −(x + 2) − s + 1 = x, that is, 2 = 0.
However, this gives rise to the usual contradiction r = 2.

Similarly, if ag = b and bg = a, we have A(x)g = A(x +1) and A(x +1)g = A(x).
Now, Equation (2.8) yields −(x + 1)− s + 1 = x + 1 and −(x + 2)− s + 1 = x, that is,
2x+s+1 = 0. As r is even, the equation 2x+s+1 has either zero or two solutions in
Zr depending on whether s is even or odd. Recalling that the subgraph induced
by Γ on A(x)∪A(x +1) is a disjoint union of cycles of length 4, we obtain that

|fpr(g,EΓ)| f
2|A(x)|
|EΓ|

=
1
r
.

Thus, we have fpr(g,EΓ) f 1/4, which is a contradiction.

Since g ∈ K , if g fixes the edge {a,b} ∈ EΓ, then g fixes both end-vertices a and
b. It remains to show that 3s < 2r−3. Notice that Äi moves precisely those (s−1)-
arcs of C⃗(r,1) that pass through one of the vertices (i,0) or (i,1). Therefore, Äi ,
as an automorphism of C(r, s), fixes all but s2s vertices, thus it fixes all but those
(s+1)2s+1 edges which are incident with such vertices. Recall that {Äi | i ∈Zr} is a
set of generators for K whose elements all have disjoint supports. It follows that,
among the elements of K , these generators have minimal support size. Hence

1
3
< fpr(EΓ, g) f fpr(EΓ,Äi ) =

(r − (s +1))2s+1

r2s+1
=
r − s − 1

r
.

We conclude Section 2.F with two auxiliary lemmas.
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Lemma 2.21 · Let Γ = C(r, s) be a Praeger–Xu graph, let G be a vertex- and edge-
transitive group of automorphism of Γ. Suppose that G contains a nontrivial element
g fixing more that 1/3 of the edges, and that G is not 2-arc-transitive. Then G is
Aut(Γ)-conjugate to a subgroup of H .

Proof. By Lemma 2.20, 3s < 2r −3. If r , 4, then, in view of Lemma 2.2, we have

G f Aut(Γ) =H .

When r = 4, then inequality 3s < 2r − 3 implies s = 1. Now, the veracity of
this lemma can be verified with an explicit computation in

Aut(C(4,1)) = Aut(K4,4) = S4wrS2 .

Lemma 2.22 ([112] Lemma 2.3) · Let Γ be a connected 4-valent graph, let G be
a vertex- and edge-transitive group of automorphism of Γ, and let g be a nontrivial
element of G such that

fpr(g,VΓ) >
1
3
.

Suppose that G contains a minimal normal 2-subgroup N of such that Γ/N is iso-
morphic to C(r, s) for some r and s, and that G/N is a subgroup of H . Then Γ is
isomorphic to C(r ′ , s′), for some positive integers r ′ and s′ with s′ f 2r ′/3.

2.G Rigid cells

Section 2.G deals with the proof of Theorems F andG in the cases with Γ 4-valent
and 2-arc-transitive, or with Γ 3-valent and arc-transitive. The rich symmetric
structure arising in these scenarios can be exploited for proving the result via
mostly combinatorial means.

Definition 2.23 · Let Γ be a finite connected graph, and let g be an automor-
phism of Γ. The action of g partitions EΓ in three sets:

(i) edges that are fixed as an arc, that is,

A[g] := {{a,b} ∈ EΓ | ag = a and bg = b} ;

(ii) edged that are fixed as an edge but not as an arc, that is,

F[g] := Fix(g,EΓ)−A[g] = {{a,b} ∈ EΓ | ag = b and bg = a} ;

(iii) edges that are not fixed, that is,

N [g] := EΓ −Fix(g,EΓ) = EΓ − (A[g]∪F[g]) .

The rigid cell of g , in symbols Γ[g], is the subgraph of Γ on the vertices which
are incident with edges in A[g]. For every positive integer i, we denote by ViΓ[g]
the set of vertices of Γ[g] having valency i.
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2 · Small valency

Observe that, under the assumption that Γ has valency 3 or 4, since the va-
lency of the vertices of a rigid cell Γ[g] cannot be equal to val(Γ) − 1, we obtain
that their valencies divide the valency of Γ. In particular, in the 3-valent case
VΓ[g] is partitioned by V1[g] and V3[g], while in the 4-valent case by V1[g], V2[g]
and V4[g].

Rigid cells have been introduced by K. Kutnar and D. Marušič in [83] to
tackle the odd/even problem for 3-valent arc-transitive graphs. Broadly speak-
ing, the odd/even problem consists in establishing, given a graph Γ with n ver-
tices, whether Aut(Γ) embeds in Alt(n) (that is, all the automorphisms are even
permutation) or not (that is, there is an automorphism which is an odd permu-
tation). Their proof relies on the interplay between the possible local groups
of a 3-valent arc-transitive graph and the corresponding rigid cells. To a lesser
extent, the philosophy of our proof will be the same. A further investigation of
rigid cells for 3-valent arc-transitive graphs can be found in [40].

The discussion of Section 2.G is divided in three cases:

(a) 4- and 3-valent graphs of girth at most 4 (see Section 2.G.1),

(b) 4-valent graphs of girth at least 5 (see Section 2.G.2),

(c) 3-valent graphs of girth at least 5 (see Section 2.G.3).

2.G.1 Small girth

We recall that the girth of a graph Γ, in symbols girth(Γ), is the minimal length
of a cycle in Γ. We start by pointing out that symmetrical graphs cannot be too
sparse or have too small of a girth.

Lemma 2.24 ([63] Lemma 4.1.3) · Let Γ be a connected k-valent graph, with k g 3,
and let G be an s-arc-transitive group of automorphisms of Γ. Then

2s f girth(Γ) + 2 .

In particular, the girth of Γ is greater than s.

Lemma 2.25 ([63] Lemma 3.3.3) · Let Γ be a finite connected vertex-transitive
graph of valency k. Then Γ is k-edge-connected, that is, Γ remains connected upon
eliminating any m edges, with m f k − 1.

The 4-valent 2-arc-transitive graphs of small girth fly under the radar of the
strategy we are going to use to prove Theorem F. The 4-valent vertex-transitive
graphs have been studied by P. Potočnik and S. Wilson in [121]. We give a spe-
cialized version of [121, Theorem 3.3].

Lemma 2.26 · Let Γ be a 4-valent vertex- and edge-transitive graph. Then one of
the following holds

(i) each vertex in Γ is contained in exactly one 4-cycle;

(ii) there are two distinct vertices sharing the same neighbourhood, that is,

³,´ ∈ VΓ with Γ(³) = Γ(´) ;
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2.G · Rigid cells

(iii) Γ is isomorphic to either K5,5 − 5K2, or Q16, or H.

Pivoting on this result, we obtain the following characterization.

Lemma 2.27 · Let Γ be a finite connected 4-valent 2-arc-transitive graph of girth
at most 4, that is,

girth(Γ) ∈ {3,4} .

Then one of the following holds:

(a) girth(Γ) = 3 and Γ is isomorphic to the complete graph K5;

(b) girth(Γ) = 4 and Γ is isomorphic to either K4,4 � C(4,1), or K5,5−5K2, orQ16,
or H.

Proof. Let ³ be your favourite vertex of Γ, let

Γ(³) = {´1,´2,´3,´4}

be its neighbourhood, and let us write G for Aut(Γ).
First, assume girth(Γ) = 3. Without loss of generality, suppose ´1 and ´2

are adjacent. Since G is 2-arc-transitive, G³ is 2-transitive on Γ(³). Hence ´i is
adjacent to ´j for any i , j . Thus Γ �K5, proving Lemma 2.27 (a).

Now, suppose girth(Γ) = 4. We consider the three possibilities of Lemma 2.26
in turn.

Consider Lemma 2.26 (i). Up to a permutation of the indices, there is a
vertex µ ∈ Γ(´1)∩ Γ(´2) such that

³ ∼ ´1 ∼ µ ∼ ´2 is a 4-cycle .

Since the local group is 2-transitive, there exists g ∈ G³ with (´1,´2)g = (´3,´4).
Therefore, by applying g to the 4-cycle, we obtain

³ ∼ ´3 ∼ µ
g ∼ ´4 ,

which is a 4-cycle different from

³ ∼ ´1 ∼ µ ∼ ´2 .

This gives a contradiction.
Suppose that Γ satisfies Lemma 2.26 (ii). Since Γ is arc-transitive, [121,

Lemma 4.3] gives that Γ is isomorphic to C(r,1) for some positive integer r. From
Lemma 2.2, C(r,1) is 2-arc-transitive if, and only if, r = 4. Therefore, we obtain
that Γ is taken into account in Lemma 2.27 (b).

Finally, suppose that Γ appears in Lemma 2.26 (iii), By a routine compu-
tation, one can check that Aut(Γ) is 2-arc-transitive in these cases. Hence, we
obtain the remaining possibilities in Lemma 2.27 (b).

It is worth to spend some ink to compute the fixed point ratio of the action of
the automorphism groups of the graphs arising in Lemma 2.27 for their action
on the edges.
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2 · Small valency

(a) The complete graphK5 is the only sporadic example arising in Theorem F:
its automorphism group is Sym(5), and each transposition fixes 4 edges
out of 10.

(b) The automorphism group of the graphK5,5−5K2 is Sym(5)×C2, and every
nontrivial automorphism fixes at most 6 edges out of 20.

(c) Every nontrivial automorphism of the skeleton of the hypercube Q16 fixes
at most 8 edges out of 32.

(d) The automorphism group of the bipartite complement of the Heawood
graph H is isomorphic to SL3(2)ìC2: a nontrivial automorphism of H fixes
at most 4 edges out of 28.

We remark that K5 is the only 4-valent 2-arc-transitive graph with

fpr(Aut(Γ),EΓ) g
1
3
.

We can obtain a similar characterization for 3-valent 2-arc-transitive graphs.
(The girth is irrelevant in the arc-transitive case.)

Lemma 2.28 · Let Γ be a finite connected 3-valent 2-arc-transitive graph of girth
at most 4, that is,

girth(Γ) ∈ {3,4} .

Then either girth(Γ) = 3 and Γ is isomorphic to the complete graphK4, or girth(Γ) = 4
and Γ is isomorphic to K3,3 or to K4,4 − 4K2.

Proof. Suppose girth(Γ) = 3. Let ³ ∈ VΓ be a vertex, and let

Γ(³) = {´1,´2,´3}

be its neighbourhood. Without loss of generality, suppose ´1 and ´2 are adja-
cent. Since Aut(Γ) is arc-transitive, both ´1 and ´2 are also adjacent to ´3. It
follows that Γ is isomorphic to K4.

Suppose girth(Γ) = 4. Since Aut(Γ) is s-arc-transitive, for some s g 2, [109,
Theorem 1.1 and Table I] implies that Γ is isomorphic to either K3,3 or K4,4−4K2.
This completes the proof.

A direct computation shows that all the graphs appearing in Lemma 2.28
satisfy

fpr(Aut(Γ),EΓ) < 1/3 .

2.G.2 Valency 4
We are now ready to tackle the proof of Theorem F for 2-arc-transitive graphs.
For the reader’s convenience, we extract some preliminary lemmas.

We start by giving a lower bound on the number of vertices depending on
the combinatorial information of the rigid cell of g .
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2.G · Rigid cells

Lemma 2.29 · Let Γ be a finite connected 4-valent arc-transitive graph with
girth(Γ) g 5, and let g be an automorphism of Γ. Then

2|F[g]|+4|V1Γ[g]|+3|V2Γ[g]|+ |V4Γ[g]| f |VΓ| .

Proof. We define

F := {³ ∈ VΓ | {³,´} ∈ F[g] for some ´ ∈ VΓ} ,

N := {³ ∈ VΓ − (V1Γ[g]∪V2Γ[g]) | {³,´} ∈N [g] for some ´ ∈ VΓ} .

Observe that the sets

V1Γ[g], V2Γ[g], V4Γ[g], F , N

are pairwise disjoint and partition the vertex-set of Γ. Hence, we obtain

|VΓ| = |V1Γ[g]|+ |V2Γ[g]|+ |V4Γ[g]|+ |F |+ |N | .

Furthermore, we have that |F | = 2|F[g]|. Hence, to prove the statement, it suf-
fices to show that

|N | g 3|V1Γ[g]|+2|V2Γ[g]| . (2.9)

We construct an auxiliary graph ∆. The vertex set of ∆ is

V∆ = V1Γ[g]∪V2Γ[g]∪N ,

and we declare a vertex ³ ∈ V1Γ[g]∪V2Γ[g] adjacent to a vertex ´ ∈ N if {³,´} ∈
EΓ. By construction, ∆ is bipartite with parts V1Γ[g]∪V2Γ[g] and N .

Given ³ ∈ V1Γ[g], the automorphism g acts as a 3-cycle on Γ(³). Let

´1,´2,´3 ∈ Γ(v)

be the three neighbours permuted by g . By definition,

{³,´1}, {³,´2}, {³,´3} ∈N [g].

Thus, ´1,´2,´3 ∈ N . This shows that each vertex in V1Γ[g] has three neighbours
in N . Repeating the same reasoning, each vertex in V2Γ[g] has two neighbours
in N . As girth(Γ) g 5, we have that girth(∆) g 5. Suppose that, for two distinct
³,³′ ∈ V1Γ[g]∪V2Γ[g], we can find a vertex ´ ∈ ∆(³)∩∆(³′). It follows that

³ ∼ ´ ∼ ³′ ∼ ´g

is a 4-cycle in ∆, against the fact that girth is 5. It follows that, for any two dis-
tinct ³,³′ ∈ V1Γ[g]∪V2Γ[g], the intersection ∆(³)∩∆(³′) is empty. In particular,
by the Handshake Lemma, Equation (2.9) is true, thus the proof is complete.

Finite faithful 2-transitive amalgams of index (4,2) have been studied in de-
tail by P. Potočnik in [110]. We highlight the information we are going to use in
the sequel.
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2 · Small valency

Consider the finite faithful amalgam (L,B,R). With our usual notation, we
have that the stabilizer of a ball of radius 1 is isomorphic to

⋂

g∈L

Bg .

We now explain how we can explicitly find a shunt s in G using the presen-
tation given in [110]. Let ³ be a vertex of the infinite 4-valent tree, and identify
Lwith the stabilizer of ³. We can choose a generator in L that does not appear in
B, and we call it f . Similarly, we can observe that the generator a only appears
in R, hence it defines the nontrivial element in R/B. We call ´ the neighbour of
³ such that ³a = ´. Without loss of generality, we can also suppose that ´ is not
a fixed point for the action of f . We claim that f −1a is a shunt. Indeed,

(´f ,³)f
−1a = (³,´) .

Therefore, as the graph is 2-arc-transitive, for any two vertices ³,µ ∈ VΓ at
distance at most 2,

G
[1]
³ ∩G

[1]
µ is isomorphic to

⋂

g∈L

Bg ∩



⋂

g∈L

Bg




(f −1a)dΓ (³,µ)

.

Using a calculator, as all the groups are finitely presented, we can now per-
form a case-by-case computation on the finite faithful 2-transitive amalgams of
index (4,2) classified in [110], and we find out the following dichotomy. (This
computation is possible because the amalgams involved are finite and in finite
number.)

Remark 2.30 · For any two distinct vertices ³,µ ∈ VΓ at distance at most 2,

(i) either G [1]
³ ∩G

[1]
µ is a (possibly trivial) 3-group;

(ii) or the pair (Γ,G) has the amalgam type

(Sym(3)× Sym(4),Sym(3)× Sym(3), (Sym(3)× Sym(3))ìC2) :

moreover, in this case, if dΓ(³,µ) = 1, thenG [1]
³ ∩G

[1]
µ = 1, while, if dΓ(³,µ) =

2, then G [1]
³ ∩G

[1]
µ is isomorphic to C2.

To make this more concrete to the reader, we prove this for two amalgams
by hand.

Example 2.31 · Consider the amalgam of type

(C3 ì Sym(4), (C3 ×C3)ìC2, (C3 ×C3)ì (C2 ×C2)) .

We report the presentation of L and B as given in [110]:

L = ïx,y,c,d, t | x2 = y2 = [x,y] = c3 = d3 = [c,d] = [c,x] = [c,y] =

= xdy = ydyx = t2 = ctc = dtd = xty = 1ð ,

B = ïc,d, t | c3 = d3 = [c,d] = t2 = ctc = dtd = 1ð ,

R = ïc,d, t,a | c3 = d3 = [c,d] = t2 = ctc = dtd = a2 = cad−1 = [a, t] = 1ð .
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As c,d, t are elements of B, we only need to compute Bx and By . As x and y
centralize c but not d and t, we get

Bx = ïc,dx, txð and By = ïc,dy , tyð .

We claim that
X = B∩Bx ∩By = ïc, tdð .

Observe that ïd, tð is a subgroup of NL(ïcð). This implies that, for every word
v in three variables, there exists a word w in two variables such that, for an
appropriate integer h,

v(c,d, t) = chw(d, t) .

Since CL(ïcð) contains the subgroup ïx,yð, the same holds (with the same w) if
we evaluate on dx or dy instead of d, and on tx or ty instead of t. Therefore, as c
is an element in B, Bx and By , to prove the claim it is enough to show that

ïd, tð ∩ ïdx, txð ∩ ïdy , tyð = ïtdð .

Let w be a word in two variables. We observe that

w(dx, tx) = xw(d, t)x and w(dy , ty) = yw(d, t)y .

Without loss of generality, we may assume thatw(d, t) is a reduced word. As the
action of t by conjugation on ïdð inverts the elements, we obtain that there exist
two integers h ∈ {0,1,2} and k ∈ {0,1} such that

w(d, t) = thdk .

xw(d, t)x k = 0 k = 1
h = 0 1 xtx = txy
h = 1 xdx = dxy xtdx = tydx = tdy
h = 2 xd2x = d2y xtd2x = tyd2x = td

Table 2.1: Reduced forms for xw(d, t)x.

yw(d, t)y k = 0 k = 1
h = 0 1 yty = txy
h = 1 ydy = dx ytdy = txdy = td
h = 2 yd2y = d2xy ytd2y = txd2y = td2x

Table 2.2: Reduced forms for yw(d, t)y.

In Tables 2.1 and 2.2, we compute all the possibilities for xw(d, t)x and
yw(d, t)y. Since ïd, tð and ïx,yð intersect trivially, it follows that the only two
words in the alphabet {d, t} that can be written using the symbols {dx, tx} or
{dy , ty} are the trivial word and td. The claim is thus proved.

Before proceeding, we need a shunt. By the discussion preceding Remark 2.30,
every shunt is of the form f −1a, where f is either x or y. Since L ∗B R acts transi-
tively on the right coset space of L, it is irrelevant if we choose f = x or f = y. To
fix the notation, we make the first choice, thus xa is our shunt.
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We start by computing

Xxa = ïc, tdyða = ïd, tcyað .

We observe that the Xxa is isomorphic to Sym(3), where o(d) = 3 and o(tcya) = 2.
It follows that

O3(X)∩O3(X
xa) = ïcð ∩ ïdð is trivial.

Furthermore, all the involutions of Xxa can be written as dhtcya, for some h ∈

{0,1,2}. Hence, as X is a subgroup of ïc,d, tð, while dhtcya is an element of
ïc,d, tðya, X and Xxa share no transposition. It follows that

X ∩ xxa is trivial.

We can apply the second shunt. We obtain

Xxaxa = ïdxy, tcyyaxða = ïcxaya, tcyayxað .

This old dog has not learned any new tricks. Note that

ïc,dtð f ïc,d, tð, cxaya ∈ ïc,d, tðxaya, tcyayxa ∈ ïc,d, tðyayxa .

This implies that
X ∩Xxaxa is trivial.

By the discussion preceding Remark 2.30, this proves that every pair (Γ,G),
where Γ realized the amalgam

(C3 ì Sym(4), (C3 ×C3)ìC2, (C3 ×C3)ì (C2 ×C2)) ,

satisfies part (i) of Remark 2.30 (where the 3-groups are trivial).

Example 2.32 · Consider the amalgam of type

(Sym(3)× Sym(4),Sym(3)× Sym(3), (Sym(3)× Sym(3))ìC2) .

The presentations of L, B and R as given in [110] read

L = ïx,y,c,d, r, s | x2 = y2 = [x,y] = c3 = d3 = [c,d] = [c,x] = [c,y] =

= xdy = ydyx = r2 = s2 = [r, s] = [x,r] = [y, r] =

= xsy = crc = [c, s] = [d,r] = dsd = 1ð ,

B = ïc,d, r, s | c3 = d3 = [c,d] = r2 = s2 = [r, s] = crc =

= [c, s] = [d,r] = dsd = 1ð ,

R = ïc,d, r, s,a | c3 = d3 = [c,d] = r2 = s2 = [r, s] = crc = [c, s] =

= [d,r] = dsd = a2 = cad−1 = sar = 1ð ,

Repeating the same discussion as in Example 2.31, we see that

X = B∩Bx ∩By = ïc, rð × ïsdð .

To obtain part (ii) of Remark 2.30, we need to compute the intersection of X
with its conjugate by a shunt and by a square of a shunt. By the discussion
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preceding Remark 2.30, we know that a shunt can be written ad f −1a, where f
is either x or y. Without loss of generality, we choose f = x.

Let us compute

Xxa = ïc, rða × ïsdyða = ïd,sð × ïrcyað .

We know that ïc, rð and ïd,sð intersect in 1, and that rcya is an involution in the
right coset Xya. Therefore,

X ∩Xxa is trivial ,

as desired.
Shunting once more, we get

Xxaxa = ïdyx,syxða × ïrcxyaxða = ïcyaxa, ryaxað × ïsdxayxað .

We want to compute X ∩Xxaxa. We claim that the intersection is contained in
ïc, rð. Indeed, sdxayxa is an involution in Xxayxa, which is a proper right coset
of X.

Observe that, by construction, o(cyaxa) = 3 and o(ryaxa) = 2. Moreover, the
action of ryaxa by conjugation inverts the elements of ïcyaxað. Hence, any word
in the alphabet {cyaxa, ryaxa} can be reduced to the form

(cyaxa)h(ryaxa)k ,

where h ∈ {0,1,2} and k ∈ {0,1}.
We start by observing that, for h = 0 and k = 0, we find the identity element,

which belongs to the intersection. Thus, we can suppose that one of these in-
tegers is nonzero. We want to find two integers n and m, not both zero, such
that

cnrm = (cyaxa)h(ryaxa)k . (2.10)

Let us assume that h , 0. Using the properties of ryaxa and the analogues for
r, by raising to the power of 2, we obtain

c2n(1−¶(m,1)) = (cyaxa)2h(1−¶(k,1)) , (2.11)

where ¶(x,y) denotes the Kronecker delta between x and y. We split the discus-
sion according to k = 1 or k = 0.

Let us assume that k = 1. We obtain, from Equation (2.11),

c2n(1−¶(m,1)) = 1 ,

which can hold only if n = 0 or m = 1. In the former scenario, Equation (2.10)
becomes

rm = (cyaxa)h(ryaxa) = (cyaxa)h(xayar) = (cyaxa)h−1cr .

If m = 0,
cr = (cyaxa)h−1 ,

which is a contradiction because o(cr) = 2 and o(cyaxa) = 3. Similarly, if h = 1,

rm = cr ,
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which is not the case as ïc, rð is isomorphic to Sym(3). Hence, h − 1 , 0, and we
can rearrange the equality as

c−1 = (cyaxa)h−1 .

If h = 0, we find
1 = xaya ,

but ïxa, yað is isomorphic to the Klein group C2 ×C2. Meanwhile, if h = 2,

c−2 = yaxa ,

but a nontrivial 2-element and a nontrivial 3-element cannot coincide. There-
fore, we have that n , 0 and m = 1. We can rewrite Equation (2.10) as

cn−1 = (cyaxa)h−1 .

We go through the possible choices of h. If h = 0, then

cn = xaya .

If h = 1, then
cn−1 = 1 .

If h = 2, then
cn−2 = yaxa .

Unless h = 1 and n = 1, the left hand side and the right hand side have different
orders. Otherwise, we find that

cr ∈ ïc, rð ∩ ïcyaxa, ryaxað . (2.12)

This concludes the case k = 1.
Let us assume that k = 0. We now compute

(cyaxa)2 = cyaxacyaxa = cayxdyxa = caydyyxa = cadxyxa = cdaya = c2ya .

Substituting this in Equation (2.11), we get

c2n(1−¶(m,1)) = (c2y)h .

Recall that h cannot be zero, otherwise we find the identity of ïcyaxa, ryaxað.
Then either h = 1, or h = 2. In the former case, we have that

c−2n¶(m,1) = y ,

which is impossible, as o(c) = 3 while o(y) = 2. In the latter case, we obtain

c2n(1−¶(m,1)) = c2yc2y = c .

Therefore, as 2n (1− ¶(m,1)) ≡ 1 (mod 3), m = 0 and n = 2. Finally, Equa-
tion (2.10) reads

c2 = (cyaxa)2 = c2y ,

but y is nontrivial. This is the final contradiction.
To sum up, if the reader can still remember Equation (2.12), we have proved

that
ïc, rð ∩ ïcyaxa, ryaxað = ïcrð .

This is precisely what part (ii) of Remark 2.30 asks, and it concludes this exam-
ple.
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We can squeeze a last piece of information from the faithful amalgams of
index (4,2).

Lemma 2.33 · Let Γ be a finite connected 4-valent graph, letG be an s-arc-transitive
group of automorphisms of Γ with s g 2, and let g ∈ G fixing pointwise the s-arc

³0 ∼ . . . ∼ ³s−1 .

Suppose that G is not (s+1)-arc-transitive, and that g fixes pointwise Γ(³0)∪Γ(³s−1).
Then g = 1 is trivial.

Proof. If G is s-arc-regular, then g = 1 is trivial, because g fixes an s-arc. Us-
ing [110], we see that there are 6 amalgams such that G is not s-arc-regular. For
each of these remaining amalgams, via a computer-assisted calculation, we can
show that

G
[1]
³0 ∩G

[1]
³s−1 �

⋂

g∈L

Bg ∩



⋂

g∈L

Bg




(f −1a)s

= 1 .

Therefore, the only automorphism leaving the neighbourhood of each end of a
given s-arc fixed is the identity map, as claimed.

We have built all the machinary to conclude Section 2.G.2.

Proof of Theorem F for Γ 2-arc-transitive. Let Γ be a 4-valent 2-arc-transitive graph
with

fpr(Aut(Γ),EΓ) >
1
3
.

If girth(Γ) f 4, in view of Lemma 2.27 and the consideration at the end of
Section 2.G.1, we have that Γ is isomorphic to K5, the complete graph on 5
vertices. This is Theorem F (a).

Hence, we can suppose for the rest of the proof that girth(Γ) g 5. From here
on, we fix a nontrivial automorphism g ∈ Aut(Γ). We can compute a general
upper bound for fpr(EΓ, g) based on the combinatorics of the rigid cell of g .
Since 4|VΓ| = 2|EΓ|, using the inequality in Lemma 2.29, we obtain

fpr(EΓ, g) =
|F[g]|+ |A[g]|

|EΓ|

=
2|F[g]|+2|A[g]|

4|VΓ|

f
2|F[g]|+ |V1Γ[g]|+2|V2Γ[g]|+4|V4Γ[g]|

8|F[g]|+16|V1Γ[g]|+12|V2Γ[g]|+4|V4Γ[g]|
.

(2.13)

Assume that the vertices inV4Γ[g] are at pairwise distancemore than 2. Then
any two such vertices share no common neighbour. In particular,

⋃

³∈V4Γ[g]

Γ(³)

has cardinality 4|V4Γ[g]| and it is contained in V1Γ[g]∪V2Γ[g]. Therefore,

4|V4Γ[g]| f |V1Γ[g]|+ |V2Γ[g]| .
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By substituting this last inequality in Equation (2.13), we obtain

fpr(EΓ, g) f
2
(
|F[g]|+ |V1Γ[g]|+

3
2
|V2Γ[g]|

)

8
(
|F[g]|+ |V1Γ[g]|+

3
2
|V2Γ[g]|

)
+8|V1Γ[g]|+4|V4Γ[g]|

<
1
4
,

a contradiction.
Hence, we must suppose that there exist two distinct vertices ³ and ´ of

V4Γ[g] having distance at most 2. We split our discussion according to Re-
mark 2.30.

Suppose that Remark 2.30 (i) holds. In this case, g is a 3-element, because, via
direct inspection of the possible amalgams, we find that

g ∈ G
[1]
³ ∩G

[1]
´ is a 3-group .

Observe that V2Γ[g] is empty: indeed, an element of order 3 cannot have an
orbit of even length, so in a local group cannot fix exactly two elements.

We claim that Γ[g] is a forest. Let s g 2 such that G is s-arc-transitive, but
not (s + 1)-arc-transitive. Aiming for a contradiction, suppose that Γ[g] is not a
forest. Then Γ[g] contains an ℓ-cycle C. As V2Γ[g] is empty, the vertices of C are
elements of V4Γ[g]. From Lemma 2.24,

girth(Γ[g]) g girth(Γ) g s +1 .

Hence, from C, we can extract an s-arc whose ends lie in V4Γ[g]. Lemma 2.33 is
in contradiction with the fact that g is nontrivial. The claim is proved.

Let c be the number of connected components of Γ[g]. From Euler’s Formula,
we have

|VΓ[g]| − |EΓ[g]| = c .

Moreover, by the Handshake Lemma,

2|EΓ[g]| = |V1Γ[g]|+4|V4Γ[g]| .

It follows that, as |VΓ[g]| = |V1Γ[g]|+ |V4Γ[g]|,

2|V4Γ[g]| = |V1Γ[g]| − 2c < |V1Γ[g]| .

This last inequality together with Equation (2.13) generates a contradiction. In
fact, recalling that |V2Γ[g]| = 0,

fpr(EΓ, g) f
2
(
|F[g]|++

3
2
|V1Γ[g]|

)

8
(
|F[g]|++

3
2
|V1Γ[g]|

)
+4|V1Γ[g]|+4|V4Γ[g]|

<
1
4
.

Suppose that Remark 2.30 (ii) holds. Recall that, if two distinct vertices ³ and
´ are at distance 1 and lie in V4Γ[g], then g is trivial, which is a contradiction.
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Thus, we can suppose, without loss of generality, that ³ and ´ are two distinct
vertices in V4Γ[g] with dΓ(³,´) = 2. Since

g ∈ G
[1]
³ ∩G

[1]
´ is isomorphic to C2 ,

g has order 2. This implies that V1Γ[g] is empty, because an involution in a
local group cannot fix only one element. The condition that any two elements of
V4Γ[g] are never adjacent implies that the number of neighbours of the vertices
in V4Γ[g] is at most the number of edges, that is,

4|V4Γ[g]| f |EΓ[g]| .

As before, from the Handshake Lemma, we also have

2|EΓ[g]| f 2|V2Γ[g]|+4|V4Γ[g]| .

Hence
2|V4Γ[g]| f |V2Γ[g]| .

Using this inequality in (2.13), we obtain

fpr(EΓ, g) f
2(|F[g]|+2|V2Γ[g]|)

6(|F[g]|+2|V2Γ[g]|) + 2|F[g]|+4|V4Γ[g]|
<
1
3
.

This is the final contradiction: we have, thus, proved that the only 4-valent 2-
arc-transitive graph with fpr(Aut(Γ),EΓ) exceeding 1/3 is K5.

2.G.3 Valency 3
We now turn our attention to finite connected 3-valent arc-transitive graphs.
In this case, the local group is transitive, and we can use the celebrated re-
sult of Tutte concerning the structure of a vertex-stabilizer (see Theorem 1.24).
Since the tools employed are analogue, the proof mimics closely the one in Sec-
tion 2.G.2.

Proof of Theorem G for Γ arc-transitive. Aiming for a contradiction, let Γ be a fi-
nite connected 3-valent arc-transitive graph with

fpr(g,EΓ) >
1
3
.

We fix a nontrivial automorphism g ∈ Aut(Γ), and we claim that Γ[g] is a for-
est. Let s be a positive integer such that G is s-arc-transitive but not (s + 1)-arc-
transitive. Suppose that the claim is false. Then Γ[g] contains an ℓ-cycle C. In
view of Lemma 2.24, we have

girth(Γ[g]) g girth(Γ) g s +1 .

Thus, we can extract an s-arc

³0 ∼ ³1 ∼ . . . ∼ ³s−1

81



2 · Small valency

from C. As g fixes this s-arc, and as Theorem 1.24 implies that Aut(Γ) is s-arc-
regular, we deduce that g = 1 is trivial. This is a contradiction, hence Γ[g] is a
forest.

Let us start by assuming that s g 2. Moreover, by Lemma 2.28, we can as-
sume that girth(Γ) g 5. We let

F := {³ ∈ VΓ | {³,´} ∈ F[g] for some ´ ∈ VΓ} ,

N := {³ ∈ VΓ −V1Γ[g] | {³,´} ∈N [g] for some ´ ∈ VΓ} .

We want to give a lower bound on the number of vertices of Γ that does not
depend on |N |.

We construct an auxiliary graph∆whose vertex-set is V1Γ[g]∪N . We declare
a vertex ³ ∈ V1Γ[g] adjacent to a vertex ´ ∈ N if {³,´} ∈ EΓ. By construction, ∆
is bipartite with parts V1Γ[g] and N . For every vertex ³ ∈ V1Γ[g], the auto-
morphism g acts as a 2-cycle on Γ(³). Let ´1,´2 ∈ Γ(³) be the two neighbours
swapped by g . Thus

{³,´1}, {³,´2} ∈N [g] and ´1,´2 ∈ N .

This shows that each vertex in V1Γ[g] has two neighbours in N . As girth(Γ) g 5,
we also have that girth(∆) g 5. Hence, for any pair of distinct vertices ³,³′ ∈

V1Γ[g], the intersection ∆(³)∩∆(³′) is empty. Therefore,

2|V1Γ[g]| f |N | .

Recalling that
V1Γ[g], V3Γ[g], F , N

is a partition of VΓ, and that |F | = 2|F[g]|, we obtained the sought after bound

2|F[g]|+3|V1Γ[g]|+ |V3Γ[g]| f |VΓ| . (2.14)

Let us now assume that s = 1. Since Aut(Γ) acts regularly on the arcs and g
is nontrivial, A[g] is the empty set, and thus V1Γ[g] and V3Γ[g] are also empty.
Moreover, since two edges of F[g] cannot be incident, |F[g]| f |EΓ|/3. Combining
the last two observations with the Handshake Lemma for Γ, we obtain

2|F[g]|+3|V1Γ[g]|+ |V3Γ[g]| = 2|F[g]| f
2
3
|EΓ| = |VΓ| .

In particular, Equation (2.14) holds also in this scenario.
With Equation (2.14) in our hands, and recalling that 2|EΓ| = 3|VΓ|, we ob-

tain the upper bound,

fpr(EΓ, g) =
|F[g]|+ |A[g]|

|EΓ|

=
2|F[g]|+2|A[g]|

3|VΓ|

f
2|F[g]|+ |V1Γ[g]|+3|V3Γ[g]|
6|F[g]|+9|V1Γ[g]|+3|V3Γ[g]|

.

(2.15)
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Let c be the number of connected components of Γ[g]. From Euler’s Formula,
we have

|VΓ[g]| − |EΓ[g]| = c .

and, from the Handshake Lemma for Γ[g], we have

2|EΓ[g]| = |V1Γ[g]|+3|V3Γ[g]| .

Combining them,
|V3Γ[g]| = |V1Γ[g]| − 2c < |V1Γ[g]| .

Finally, using Equation (2.15) and this last inequality, we obtain

fpr(EΓ, g) f
2|F[g]|+3|V1Γ[g]|+ |V3Γ[g]|
6|F[g]|+9|V1Γ[g]|+3|V3Γ[g]|

−
2(|V1Γ[g]−V3Γ[g])

6|F[g]|+9|V1Γ[g]|+3|V3Γ[g]|
f

1
3
.

This is our final contradiction.

2.H Quotienting

For the remaining cases, we can set up an inductive approach similar to [112].
In broad terms, we are quotienting until we obtain a cyclic graph, and then we
are proving that the only lift with the desired property is either a Praeger–Xu or
a split Praeger–Xu graph.

2.H.1 Valency 4
Proof of Theorem F for Γ not 2-arc-transitive. Let Γ be a finite connected 4-valent
vertex- and edge-transitive but not 2-arc-transitive graph admitting a nontrivial
automorphism g fixing more than 1/3 of the edges of Γ. If Γ is isomorphic to
a Praeger–Xu graph, then Theorem F (b) holds. Therefore, for the rest of the
argument, we suppose that Γ is not isomorphic to C(r, s), for any choice of r
and s with r g 3 and 1 f s f r − 1. Moreover, aiming for a contradiction, we
suppose that Γ is a counterexample of Theorem F minimal with respect to |VΓ|,
the number of vertices of Γ.

The assumption on Aut(Γ) implies that the local group is either transitive
but not 2-transitive, or it defines two orbits of cardinality 2. In both cases, by
Lemma 1.32, we deduce that the local group is a 2-group. As Γ is connected, it
follows that, for every ³ ∈ VΓ, G³ is a 2-group.

If Aut(Γ) does not have any nontrivial normal 2-subgroups, Theorem 2.12
(applied to the faithful and transitive action of Aut(Γ) on EΓ) contradicts

fpr(g,EΓ) > 1/3 .

Thus, Aut(Γ) has a minimal normal 2-subgroup N .
Since Γ is not isomorphic to a Praeger–Xu graph, Lemma 2.3 yields that N

acts semiregularly on VΓ. Consider the quotient graph Γ/N and observe that, as
G is vertex- and edge-transitive, Γ/N has valency 0, 1, 2 or 4 (see Section 1.G for
a general proof of this implication).
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2 · Small valency

If Γ/N has valency 0, then N is transitive on VΓ. Thus N is vertex-regular
on Γ. As Γ is connected of valency 4, N is generated by at most 4 elements and
hence |VΓ| = |N | divides 24.

If Γ/N has valency 1, then N has two orbits on VΓ. In particular, Γ is a bi-
Cayley graph, that is, a bipartite graph such that N acts regularly on both parts.
Our approach here can mimic what we did for Cayley graphs: indeed, [112,
Lemma 1.15] implies that |VΓ| = 2|N | divides 27.

In both cases, the statement can be checked computationally by inspecting
the candidate graphs from the census of all 4-valent vertex- and edge-transitive
graphs of small order (see Section 1.L and [115, 119]).

If Γ/N has valency 2, then we contradict Lemma 2.4. Therefore, for the rest
of the proof, we may suppose that Γ/N has valency 4.

Let K be the kernel of the action of G on VΓ/N . Since the quotient graph is
4-valent, the local group that K³ induces on Γ(³) is trivial. Hence, Lemma 1.32
implies that K³ is trivial. By Frattini’s Argument,

K = K³N =N .

In particular, Aut(Γ)/N acts faithfully as a group of automorphisms on Γ/N .
Moreover, Aut(Γ)/N acts vertex- and edge-transitively on Γ/N , but not 2-arc-
transitively.

We claim that g is not an element of N . Recall that N is a normal subgroup
of the edge-transitive automorphisms group. It follows that, if g ∈ N , then, by
conjugating by elements of Aut(Γ), g would fix all the edges of the graph. This
is impossible, because the action of Aut(Γ) is faithful. Hence, the claim is true,
and g <N .

Thus Ng is not the identity automorphism of Γ/N . By Lemma 2.13, we ob-
tain that

fpr(Ng,EΓ/N ) >
1
3
.

By minimality of |VΓ|, we have that Γ/N is isomorphic to either K5 or to a
Praeger–Xu graph C(r, s) with 3s < 2r − 3.

Assume that Γ/N is isomorphic to K5. We have that Ng is an element of
Aut(K5) whose fixed point ratio exceeds 1/3. The only possibility for Ng is a
transposition of Aut(K5) = Sym(5). We observe that the group Sym(5) contains a
unique conjugacy class of subgroups which are vertex- and edge-transitive, but
not 2-transitive (namely, the Frobenius groups of order 20). On the other hand,
such subgroups contain no transpositions. This contradiction excludes this case.

Assume that Γ/N is isomorphic to C(r, s), for some r and s with 3s < 2r −
3. From Lemma 2.21, Aut(Γ)/N is Aut(Γ/N )-conjugate to a subgroup of H as
defined in Section 2.A.Without loss of generality, we can identify Aut(Γ)/N with
such a subgroup, so that Aut(Γ)/N is a subgroup of H .

We first deal with the exceptional case (r, s) = (4,1). As Aut(Γ)/N is a 2-group
and N is a minimal normal subgroup of G, we deduce that |N | = 2, and hence

|VΓ| = |VΓ/N ||N | = 8 · 2 = 16 .

The proof follows inspecting the vertex- and edge-transitive graphs of order 16.
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Therefore, for the rest of the argument, we suppose (r, s) , (4,1). Lemma 2.20
implies that

Ng ∈ K fH .

We denote by X the group Aut(Γ)/N ∩H . This group is a half-arc-transitive
group of automorphisms of Γ/N . Since |H :H | = 2, we have

|Aut(Γ)/N : X | f 2 .

Denote by G the preimage of X with respect to the quotient projection

Aut(Γ)→ Aut(Γ)/N

so that G/N is isomorphic to X. We remark that G acts half-arc-transitively on
Γ, and, from Ng ∈ X, we see that g ∈ G.

By Lemma 2.20, all the edges fixed in Γ/N byNg are fixed as arcs. Therefore,
all the edges fixed in Γ by g are fixed as arcs. Considering the subgraph of Γ
induced by the fixed vertices, we deduce that

2|Fix(g,EΓ)| f 4|Fix(g,VΓ)| .

Observe that, if fpr(g,VΓ) f 1/3, then

1
3
< fpr(g,EΓ) =

|Fix(g,EΓ)|
|EΓ|

f
2|Fix(g,VΓ)|

|EΓ|
f

2|VΓ|

3|EΓ|
=

|EΓ|

3|EΓ|
=
1
3
,

which is a contradiction. Therefore, fpr(g,VΓ) > 1/3. We can, thus, apply
Lemma 2.22 to the group G. This implies that Γ is a Praeger–Xu graph, which is
our final contradiction.

2.H.2 Valency 3
Our last effort consists in proving Theorem G for 3-valent graphs whose local
group is not transitive.

When the local group is trivial, the connectivity of Γ implies that all vertex-
stabilizers are trivial, hence G acts regularly on VΓ (as usual, see Lemma 1.32).
In this case, Theorem 1.41 yields that Γ is Cayley graph over G. Theorem 2.19
states that fpr(g,EΓ) f 1/3. Therefore, Theorem G holds in this case.

When the local group is cyclic of order 2, the situation becomes more del-
icate, and we are exploiting the merging operation. This calls for an ad hoc
treatment of our beloved ladders.

Lemma 2.34 · Let Λ be a (circular or Möbius) ladder, and let G f Aut(Λ) be a
vertex-transitive group. Then

fpr(G,EΛ) f
1
3
.

Proof. Suppose that Λ is a circular ladder which is not isomorphic to the skele-
ton of the cubeQ8. The automorphism group ofΛ is isomorphic toDn×C2 (with
n = 4 excluded). An automorphism with some fixed edges is either a noncentral
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2 · Small valency

involutions of the dihedral group Dn or the involution of the central factor C2.
Thus, for each nontrivial automorphism g ∈ Aut(Λ), we can compute

fpr(g,EΛ) f
2 · (2,n)

3n
f

2
9
.

The skeleton of the cube Q8 (which correspond to n = 4) is exceptional because
the graph is 2-arc-transitive. The result follows from the cases already analysed
of Theorem G.

Similarly, suppose that Λ is a Möbius ladder whose vertex-set contains at
least 8 points. The automorphism group of Λ is isomorphic to D2n, and its
involutions are the only automorphisms with a fixed edge. It can be verified
that, for each nontrivial g ∈ Aut(Λ)− {1},

fpr(g,EΛ) f
2 · (2,n)

3n
f

1
3
.

Once again, the cases with 4 and 6 vertices are exceptional, because both of
them are 2-arc-transitive. Hence, since Theorem G has been established for arc-
transitive graphs, these graphs are of no concern to us here.

At last, we can tackle the last proportion of the proof.

Proof of Theorem G for Γ not arc-transitive. We have already discussed how the
case with trivial local group reduces to Theorem 2.19. Therefore, we suppose
that Γ is a connected 3-valent graph with local group isomorphic to C2 with

fpr(Aut(Γ),EΓ) >
1
3
.

Moreover, Lemma 2.34 guarantees that Γ is not isomorphic to a ladder.
By Remark 2.5, we can apply the merging operation to the pair (Γ,Aut(Γ)),

and the resulting graph∆ is 4-valent and arc-transitive (but not 2-arc-transitive).
Recall that, if the local group has order 2, Aut(Γ) partitions EΓ in a perfect
matching and a 2-factor, and that the merging operator maps the former in V∆

and the latter in E∆. (We recall that all the details are contained in Section 2.C.)
It follows that, for every nontrivial g ∈ Aut(Γ),

fpr(g,EΓ) =
|Fix(g,V∆)|+ |Fix(g,E∆)|

|V∆|+ |E∆|

=
|Fix(g,V∆)|

3|V∆|
+
2|Fix(g,E∆)|

3|E∆|

=
1
3
fpr(g,V∆) +

2
3
fpr(g,E∆) .

Observe that either fpr(g,V∆) > 1/3 or fpr(g,E∆) > 1/3, otherwise

1
3
< fpr(g,EΓ) f

1
3
·
1
3
+
2
3
·
1
3
=
1
3
.

Using Theorem 2.14when fpr(g,V∆) > 1/3, and using Theorem Fwhen fpr(g,E∆)
exceeding 1/3, we find that either ∆ is isomorphic to a Praeger–Xu graph C(r, s)
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2.I · Semiregular elements of 3-valent graphs

with 3s < 2r, or |V∆| f 70. The latter case yields |VΓ| f 140, and the veracity of
Theorem G follows with an inspection on the connected 3-valent graphs having
at most 140 vertices.

Therefore, we must suppose that ∆ is isomorphic to C(r, s). Recall that, by
[115, Theorem 12], the merging operator is the right-inverse of the splitting
one. In particular, the graph Γ can be uniquely reconstructed from ∆ and the
decomposition C of E∆ arising from the initial 2-factor via the splitting opera-
tion. Therefore, recalling Definition 2.23, Γ is isomorphic to sC(r, s), for some
positive integers r and s. Finally, we observe that

1
3
< fpr(g,EΓ) f

1
3
fpr(Äi ,V∆) +

2
3
fpr(Äi ,E∆) =

r − s

3r
+
2(r − s − 1)

3r
.

(The Äi ’s are defined in Section 2.A.) Hence, a direct computation leads to

3s < 2r − 2 .

This concludes the proof of Theorem G.

2.I Semiregular elements of 3-valent graphs

A permutation on the setΩ is a derangement if it fixes no points inΩ. A permu-
tation is semiregular if all of its cycles have the same length. For instance, any
derangement of prime order is semiregular.

A fascinating old-standing question in the theory of group actions on graphs
is the so-called Polycirculant Conjecture. We recall that a permutation group G is
2-closed if it is the automorphism group of some of its orbital digraphs.

Question 2.35 · Does every nontrivial 2-closed transitive permutation group
contain nontrivial semiregular elements?

This formulation of the conjecture has been introduced by M. Klin in [81].
However, the original question in terms of graphs has been previously posed
independently by D. Marušič in [99, Problem 2.4] and by D. Jordan in [78]

Question 2.36 · Does every vertex-transitive graph having more than one ver-
tex admit nontrivial semiregular automorphisms?

Section 2.I focuses on 3-valent graphs. D. Marušič and R. Scappellato have
given a positive answer to Question 2.36 for 3-valent vertex-transitive graphs.

Theorem 2.37 ([98] Theorem 3.3) · Each 3-valent vertex-transitive graph admits
a nontrivial semiregular automorphism

Surprisingly, their proof is essentially based on Lemma 1.32. Indeed, by a
connectedness argument, the vertex-stabilizer of a 3-valent graph Γ is a {2,3}-
group. If Aut(Γ) does not contain any semiregular element, then Aut(Γ) is itself
a {2,3}-group. Hence, by Burnside’s paqb Theorem, Aut(Γ) is solvable. In partic-
ular, its minimal normal subgroups are elementary abelian. A bit of extra work
produces the desired contradiction.
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2 · Small valency

D. Marušič’s and R. Scappellato’s proof does not take into account the or-
der of the semiregular elements. In this direction, P. J. Cameron, J. Sheehan
and P. Spiga have proved the following by exploiting the power of the normal
quotient method.

Theorem 2.38 ([35] Theorem 3) · Let Γ be a 3-valent vertex-transitive graph.
Then Aut(Γ) contains a semiregular automorphism of order at least 3.

The challenging cases in their analysis actually turn out to be graphs con-
taining semiregular elements whose order is equal to the exponent of Aut(Γ).
Moreover, they have conjectured as [35, Conjecture 2] that, as the number of
vertices of Γ tends to infinity, the maximal order of a semiregular automorphism
tends to infinity.

The conjecture is true for 3-valent Cayley and arc-transitive graphs, as proved
by P. Spiga in [144, Theorem 1.2]. The keystone of his proof is the positive solu-
tion of the Burnside Restricted Problem. (This problem was posed by W. Magnus
in [96] as a restriction to the finite case of the 1902 Burnside Problem.)

Question 2.39 · Let (d,e) be a pair of positive integers. Is the number of finite
groups G such that d(G) f d and exp(G) f e finite?

Observe that Question 2.39 can be solved by finding an upper bound on
the order of G depending upon the pair (d,e). The problem was solved by
E. I. Zel’manov in [165, 166] as follows.

Theorem 2.40 · Let (d,e) be a pair of positive integers, and let G be a finite group
such that d(G) f d and exp(G) f e. Then, there is a constant B(d,e) such that the
order of |G| f B(d,e). In particular, Question 2.39 has an affirmative answer.

On the other hand, in [144] it is also shown that the conjecture of P. J. Cameron,
J. Sheehan and P. Spiga is false when the local group is cyclic of order 2.

Theorem 2.41 ([144] Theorem 1.1) · There exists an infinite family of 3-valent
vertex-transitive graphs Γm whose local group is cyclic of order 2 such that

max{o(g) | g ∈ Aut(Γm), g semiregular} = 6 .

In light of these results, it is unclear whether 6 is optimal in the sense of
minimizing the maximal order of a semiregular element.

Theorem H · We have that

liminf
|VΓ|→∞

Γ 3-valent vertex-transitive

max{o(g) | g ∈ Aut(Γ), g semiregular} = 6 .

Theorem H is a consequence of the following result and Theorem 2.41.

Theorem 2.42 · Let Γ be a connected 3-valent graph, and letG be a vertex-transitive
group of automorphisms of Γ. Then either G contains a semiregular automorphism
of order at least 6 or the pair (Γ,G) appears in Table 2.3.

Following [16], Section 2.J is devoted to prove Theorem 2.42, and hence The-
orem H.
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2.J · Proof of Theorem H

2.I.1 Exceptional pairs

In Section 2.I.1, we record the exceptional pairs appearing in Theorem 2.42. If
the graph Γ has less than 1280 vertices, the information in Table 2.3 is enough to
uniquely identify the pair (Γ,G). For the few outliers, we are giving some extra
comments.

Let us begin by explaining the entries of Table 2.3. In the first column, we
report the number of vertices of the exceptional 3-valent vertex-transitive graph
Γ. In the second column, we report the order of the transitive subgroups G of
Aut(Γ) with G not containing semiregular elements of order at least 6: each
subgroup is reported up to Aut(Γ)-conjugacy class. In the third column, we
report the cardinality of Aut(Γ). In the fourth column, when the number of
vertices |VΓ| does not exceed 1280, we report the number of the graph in the
database of small 3-valent vertex-transitive graphs in [119]. Finally, in the fifth
column of Table 2.3, we write the symbol ✓ when the graph is arc-transitive,
and the symbol  when the graph is a split Praeger–Xu graph.

The fourth column of Table 2.3 contains a hyphen when the number of ver-
tices |VΓ| exceeds 1280. Here we report some comments to guide the under-
standing of these last graphs.

(a) The graph with 2560 vertices is the canonical double cover of the graph
with 1280 vertices.

(b) The graphs with 6250 vertices are two nonisomorphic covers of the graph
with 1250 vertices: these graphs are covers of the Petersen graphs (the
graph with 10 vertices of database number 3), which is the source of al-
most all our exceptions.

(c) The graphs with 31250 vertices are five nonisomorphic covers of the graphs
with 6250 vertices: these graphs are covers of the Petersen graph.

(d) The graph with 65610 vertices is a cover of the graph with 810 vertices,
and, due to computational limitation, we cannot establish how large its
automorphism group is.

(e) The graphs with 2 · 5ℓ vertices, with 7 f ℓ f 34, are covers of graphs with
2 · 5ℓ−1 vertices, the smaller one being a cover of a graph with 31250 ver-
tices: these graphs are covers of the Petersen graph, we can describe their
automorphism groups, but we do not know which is the maximum ℓ that
can appear (the upper bound we give is a theoretical bound obtained from
the upper bound to the size of a 2-generated group of exponent 5, see [66]).

2.J Proof of Theorem H

As we have pointed out in Section 2.I, TheoremH is a corollary of Theorems 2.41
and 2.42. Therefore, our objective here is to prove Theorem 2.42.

First, we remark that we can use a calculator to deal with the small excep-
tions (see Section 1.L).
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2 · Small valency

Remark 2.43 · The veracity of Theorem 2.42 for graphs with at most 1280
vertices has been proven computationally using the database of small 3-valent
vertex-transitive graphs in [119]. Therefore, in the course of the proof of Theo-
rem 2.42 whenever we reduce to a graph having at most 1280 vertices we simply
refer to this computation.

We will ease into the proof with two preliminary results. Recall that a p-
element is an element of a group whose order is a power of the prime p.

Lemma 2.44 · Let G be a permutation group on Ω, and let p be a prime. If all the
elements of G of order p are derangements, then all p-elements of G are semiregular.

Proof. Let g ∈ G be an element of order pk , for some positive integer k. Aiming
for a contradiction, assume that g is not semiregular, that is, there exists ³ ∈ Ω

such that
|³ïgð| f pk−1 .

Hence gp
k−1

fixes ³, which implies gp
k−1

is not a derangement, a contradiction.

Lemma 2.45 · Let G be a permutation group acting on Ω, and let p and q be
two distinct primes. If G has a semiregular element g of order p and a semiregular
element h of order q with gh = hg , then gh is a semiregular element of order pq.

Proof. Since g and h commute, o(gh) = pq, and hence it remains to prove that
gh is semiregular. Note that (gh)p = hp is semiregular, and also (gh)q = gq is
semiregular. Therefore, each orbit of ïghð has size pq, proving that gh is semireg-
ular.

We can now tackle the proof of Theorem 2.42.
Proof of Theorem 2.42. We argue by contradiction, thus assuming the following.

Hypothesis 2.46 · Let (Γ,G) be a connected 3-valent vertex-transitive graph
which is a minimal counterexample to Theorem 2.42, first with respect to the
cardinality of VΓ, and then to the order of G. From Remark 2.43, we have |VΓ| >
1280. Moreover, let ³ be an arbitrary vertex of Γ, and letN be a minimal normal
subgroup of G.

Since Γ is connected, by Lemma 1.32, the stabilizer G³ is a {2,3}-group.
Moreover, G must be a {2,3,5}-group, otherwise we can find derangements of
prime order at least 7, hence semiregular elements.

Since N is a minimal normal subgroup of G, N is a direct product of simple
groups, any two of which are isomorphic. By our previous discussion, N is a
{2,3,5}-group, and N³ is a {2,3}-group. Thus N is a direct product Sℓ, for some
positive integer ℓ and for some simple {2,3,5}-group S . Using the Classifica-
tion of Finite Simple Groups, we see that the collection of simple {2,3,5}-groups
consists of

C2, C3, C5, Alt(5), Alt(6), PSp(4,3) .

(We refer, for instance, to [87].)

Lemma 2.47 · Under Hypothesis 2.46, if N³ is a 2-group (eventually trivial), then
N is an elementary abelian p-group, for some prime p ∈ {2,3,5}.
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2.J · Proof of Theorem H

Proof. IfN is abelian, then there is nothing to prove. Thus, suppose thatN = Sℓ,
where

S ∈ {Alt(5),Alt(6),PSp(4,3)} and ℓ g 1 .

Assume ℓ g 2. Let S and T be two distinct direct factors of N . Then S³
and T³ are 2-groups, because so is N³ . Thus, by Lemma 2.44, all the 3- and
5-elements of S and T are semiregular. Applying Lemma 2.45, we obtain that
S×T , contains a semiregular element of order 15. ThusG contains a semiregular
element of order exceeding 6, contradicting Hypothesis 2.46.

Assume ℓ = 1. IfN = PSp(4,3), then Lemma 2.44 implies that the 3-elements
in N are semiregular. As PSp(4,3) contains elements of order 9, G contains
a semiregular element of order 9, contradicting Hypothesis 2.46. Thus, N is
either Alt(5) or Alt(6).

We claim that G is almost simple, that is, N is the unique minimal normal
subgroup ofG. Aiming for a contradiction, letM be aminimal normal subgroup
of G distinct from N . If Γ/M is a 3-valent graph, then M³ = 1, and hence each
element of M is semiregular. Since [N,M] = 1, by Lemma 2.45, G contains a
semiregular element of order at least 10, against Hypothesis 2.46.

On the other hand, suppose that Γ/M is not 3-valent. Regardless of the va-
lency of Γ/M , the group that G induces in its action on the vertices of Γ/M is a
subgroup of a dihedral group, hence such a permutation group is soluble. It fol-
lows that, as N is a nonabelian simple group, N acts trivially on the vertices of
Γ/M . This means that N fixes setwise eachM-orbit. Recall that, by Lemma 1.2,
if X f Sym(Ω) is an abelian group and X acts regularly on Ω, then X coincides
with its centralizer in Sym(Ω), that is, X = CSym(Ω)(X). If M is abelian, then M
acts regularly on each of its orbits. However, as N commutes with M and fixes
eachM-orbit, this contradicts the fact that N is not abelian.

Therefore,M is not abelian. In particular, there is a prime p g 5 that divides
the order of M , and the elements of M of order p are semiregular. As before,
applying Lemma 2.45, we get that NM contains a semiregular element of order
3p, a contradiction. We conclude thatN is the uniqueminimal normal subgroup
of G.

Therefore, we are left with few possibilities: either Alt(5) f G f Sym(5), or
Alt(6) f G f Aut(Alt(6)). An explicit calculator-assisted computation in each of
these cases shows that, if G f Aut(Γ) has no semiregular elements of order at
least 6, then

|VΓ| ∈ {30,60,90,180,360} ,

which contradicts Hypothesis 2.46.

From here on, we divide the proof in the following cases:

(a) G³ is trivial (see Section 2.J.1);

(b) G³ is not trivial, and Γ/N contains either 1 or 2 vertices (see Section 2.J.2);

(c) G³ is not trivial, and Γ/N is a cycle of length at least 3 (see Section 2.J.3);

(d) G³ is not trivial, and Γ/N is a 3-valent graph (see Section 2.J.4).
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2 · Small valency

2.J.1 Cayley graphs

Some obstructions in the following cases of the proof can be avoided if we pre-
emptively deal with case with trivial vertex-stabilizer. This problem is essen-
tially group-theoretic, as we need to analyse all the groups which admit a 3-
valent connected Cayley graph and whose elements have orders bounded from
above by 5.

Suppose that G³ is trivial, and hence, by Theorem 1.41, Γ is a Cayley graph
over G. Let S be an inverse-closed subset of G such that Γ is isomorphic to
Cay(G,S). Since Γ has valency 3, we have |S | = 3. Moreover, since Γ is connected,
we have that G is generated by S . In particular, G is generated by at most 3
elements. More precisely, either S consists of three involutions, or S consists of
an involution and an element of order greater than 2 together with its inverse.

Property P · We say that a finite group X satisfies Property P if X is gener-
ated by either three involutions, or by an involution and by an element of order
greater than 2.

In particular, G satisfies Property P .
As every element of G is semiregular, and as G has no semiregular elements

of order at least 6, we deduce that each element of G has order at most 5. As
customary, we let

É(G) := {o(g) | g ∈ G}

be the spectrum of G. Observe that

{1,2} ¦ É(G) ¦ {1,2,3,4,5} .

Since G is generated by at most 3 elements, we deduce from Theorem 2.40,
Zel’manov’s solution of the restricted Burnside problem, that |G| is bounded
above by an absolute constant. We divide the proof depending on É(G).

Assume É(G) = {1,2}. In this case, G is elementary abelian. Since G is generated
by at most 3 elements, we deduce |G| f 8, which contradicts Hypothesis 2.46.

Assume É(G) = {1,2,3}. The groups having spectrum {1,2,3} are classified in
[107]. If we only consider groups with Property P , the list in [107, Theorem]
boils down to two possibilities: G is isomorphic either to (C2 ×C2)ìC3 (where
the elements of order 3 cyclically permutes the elements of order 2 in C2 ×C2),
or to Sym(3). Hence, we obtain that |G| f 12, which contradicts Hypothesis 2.46.

Assume É(G) = {1,2,4}. We need to consider two cases: either G is generated
by an element of order 2 and an element of order 4, or G is generated by three
involutions. We resolve both cases with the aid of a computer.

Suppose first thatG is generated by an involution and by an element of order
4. We consider the free group F := ïx,yð. We can construct the setW of words in
x,y of length at most 6, and then we can construct the finitely presented group

F̄ := ïF | x2 = y4 = w4 = 1, ∀w ∈W ð .

We use the bar notation for the projection of F onto F̄. Now, x̄ has order 2 and ȳ
has order 4. Furthermore, each element of F̄ that can be written as a word in x̄
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2.J · Proof of Theorem H

and ȳ of length at most 6 has order at most 4. The number 6 is a magic number:
for our purposes, it needs to be large enough to guarantee that F̄ has a bounded
cardinality, but not too large to exceed the memory limit of our computer. (Fur-
ther tests have showed that any number from 3 to 6 are such that F̄ is a finite
group, and its order is always 64, while F̄ is infinite if we only force words of
length 1 and 2 to have order 4.) With the aid of a calculator, we can see that F̄
has order 64 and exponent 4. This proves that the largest group of exponent 4
and generated by an involution and by an element of order 4 has order 64. Now,
G is a quotient of F̄, and hence |G| f |F̄ | f 64. This contradicts Hypothesis 2.46.

Now, suppose that G is generated by three involutions. The argument here
is very similar. We consider the free group F = ïx,y,zð, and we can build the set
W of words in x,y,z of length at most 6. Once again, the magic number 6 works
for bounding the order of F̄. (Further computation showed that if we change 5
for 6 we obtain the same result, while any number lesser or equal to 4 exceeds
the memory of our computer). Indeed, we can verify that

F̄ := ïF | x2 = y2 = z2 = w4 = 1, ∀w ∈W ð

has order 1024 and exponent 4. This shows that |G| f |F̄ | f 1024, which contra-
dicts Hypothesis 2.46.

Assume É(G) = {1,2,5}. The groups having spectrum {1,2,5} are classified in
[108]. As G satisfies Property P , we have that G can be written as V ì P, where
V is an elementary abelian p-group, with p ∈ {2,5}, and P is a cyclic group of
order q, with q ∈ {2,5} − {p}, whose action on V is irreducible. In particular, we
have that |G| f 80, which contradicts Hypothesis 2.46.

Assume É(G) = {1,2,3,4}. The groups having spectrum {1,2,3,4} are classified
in [21]. The list of groups in [21, Theorem] consists of

(i) G =N ìC3, where N has exponent 4 and nilpotency class at most 2,

(ii) G = (C2 ×C2)ℓ ì Sym(3), with ℓ ∈N,

(iii) G = (C3 ×C3)ℓ ìC4, with ℓ ∈N.

As above, since G satisfies Property P , the list shortens significantly.
To deal with part (i), we can use the same approach as the one we have used

for É(G) = {1,2,4}. We take the free group F = ïx,y,z, tð, and we consider the set
W of all the words in the alphabet {x,y,z} of length 9. (We have not performed
any test to verify that this choice is optimal.) We define the quotient

F̄ := ïF | x2 = y2 = z2 = w4
i = [[w1,w2],w3] = t

3 = xty = ytz = ztx = 1, ∀wi ∈W ð .

We can verify that |F̄ | = 96. Hence, every G arising in part (i) does not satisfy
Hypothesis 2.46.

We now consider part (ii) and (iii). Here, G is a crown-based product (we refer
to [92] for the definition and a review of related topics). A rich theory has been
developed to compute the number of generators of a crown-based product (see
[92, Theorem 3]). Our application is limited enough that we can deal with these
cases with a calculator. Indeed, observe that every group V ℓ

ìK projects onto
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V ℓ−1
ìK . It follows that the number of generators for the former is at least the

number of generators of the latter. Hence, we can compute the minimal integer
ℓ0 such that the number of generator exceeds what Property P prescribes. For
part (ii) we find ℓ0 = 3, while for part (iii) ℓ0 = 2. Therefore, we have only 3
possibilities for G. In particular, |G| f 96„ which contradicts Hypothesis 2.46.

Assume É(G) = {1,2,4,5}. The groups having spectrum {1,2,4,5} are classified
in [105]. This case is sligthly more involved, and hence we need to give more
details. The three cases to consider are the following.

(i) G = T ìD10 where T is a nontrivial elementary abelian normal 2-subgroup
and D10 is the dihedral group of degree 5,

(ii) G = F ì T where F is an elementary abelian normal 5-subgroup and T is
isomorphic to a subgroup of the quaternion group Q8,

(iii) G contains a normal 2-subgroup T which is nilpotent of class at most 6
such that G/T is a 5-group.

Suppose Item (i) holds. Here, T is a module for D10 over the field F2. The
dihedral group D10 has two irreducible modules over F2 up to equivalence: the
trivial module and a 4-dimensional moduleW . SinceG has no elements of order
10, we deduce that T is isomorphic to W ℓ, for some ℓ g 1. Once again, this is
a crown-based product. We can verify with a calculator-aided computation that
W 3

ìD10 does not satisfy Property P , and hence G is isomorphic to W ℓ
ìD10

with ℓ f 2. In particular,

|G| = |VΓ| ∈ {10 · 16,10 · 162} = {160,2560} .

From Hypothesis 2.46, we have that |VΓ| > 1280, and hence G is isomorphic
to W 2

ìD. By constructing all connected 3-valent Cayley graphs over W 2
ìD,

we find that there is a single one up to isomorphism. Therefore, we obtain the
graph in Table 2.3 having 2560 vertices.

Suppose Item (ii) holds. Since G satisfies Property P , while the quaternion
group of order 8 does not, we deduce that T is cyclic of order 4. Thus G = Fìïxð,
for some x having order 4. As G satisfies Property P , this means that G = ïx,yð,
for some involution y. Note that y = f x2 for some f ∈ F. As

G = ïx,yð = ïx, f x2ð = ïx, f ð ,

we have that
F = ïf , f x, f x

2
, f x

3
ð .

Since y = f x2 has order 2 and x has order 4, we deduce that

1 = y2 = f x2f x2 = f f x
2
,

that is, f x
2
= f −1. Now,

F = ïf , f x, f x
2
, f x

3
ð = ïf , f x, f −1, (f x)−1ð = ïf , f xð .

96



2.J · Proof of Theorem H

Thus, as F is elementary abelian, |F | f 25. Therefore, |G| f 100, which contra-
dicts Hypothesis 2.46.

Suppose Item (iii) holds. Since G satisfies Property P , we deduce that G/T is
cyclic of order 5. Thus G = T ì ïxð, for some x having order 5. This means that
G = ïx,yð for some involution y. By assumption, y ∈ T . Let N be a minimal nor-
mal subgroup of G. We have N f T and N is an irreducible F2ïxð-module. The
cyclic group of order 5 has two irreducible modules over F2 up to equivalence:
the trivial module and a 4-dimensional module. Since G has no elements of or-
der 10, x does not centralize N , and hence N is the irreducible 4-dimensional
module for the cyclic group of order 5. In particular, |N | = 24.

Consider Ḡ := G/N . Observe that

{1,2,5} ¦ É(Ḡ) ¦ É(G) = {1,2,4,5} .

Assume É(Ḡ) = {1,2,5}. From the discussion above regarding the finite groups
having spectrum {1,2,5} and satisfying Property P , we have |Ḡ| f 80 and hence
|G| = |G : N ||N | f 80 · 16 = 1280. Recall that, from Hypothesis 2.46, we have
|G| = |VΓ| > 1280. Thus, we have found a contradiction.

Therefore, É(Ḡ) = {1,2,4,5}. Since (Γ,G) was chosen minimal in Hypothe-
sis 2.46, we have |Ḡ| f 1280. Therefore the quotient graph (Γ/N,Ḡ) appears in
Table 2.3. A direct inspection on the groups appearing in this table shows that
there is only one group having spectrum {1,2,4,5}, and it is the group of order
1280. Thus we know precisely Ḡ. Now, the group G is an extension of Ḡ by N .
With the aid of a computer-assisted calculation, we can compute all the exten-
sions E of Ḡ via N . Then, we can verify that none of the extensions E has the
property that É(E) = {1,2,4,5} while satisfying Property P . This concludes this
scenario.

Assume É(G) = {1,2,3,5}. The main result of [102] states that, if G is a group
sharing the same spectrum as PSL2(2f ), with f g 2, then G and PSL2(2f ) are iso-
morphic. Therefore, it follows that the unique group having spectrum {1,2,3,5}
is Alt(5) � PSL2(4). In particular, |G| = 60, which contradicts Hypothesis 2.46.

Assume É(G) = {1,2,3,4,5}. The groups having spectrum {1,2,3,4,5} are classi-
fied in [21]. We deduce from [21, Theorem] that G is isomorphic to either Alt(6)
or to V ℓ

ìAlt(5) where V is a 4-dimensional natural module over the finite field
of size 2 for Alt(5) � PSL2(4) and ℓ g 1. The group V 2

ìAlt(5) does not satisfy
Property P (this can be verified with a computer). Therefore, G is either Alt(6)
or G � V ìAlt(5). Thus |G| = |VΓ| f 960, which contradicts Hypothesis 2.46.

2.J.2 Small quotients

We need to tackle the case where the quotient Γ/N contains either a single vertex
or a single edge. In all cases, our approach consists in showing that the graph Γ

is small enough, and we can find the orders of its semiregular elements with the
aid of a computer

Suppose that Γ/N is a single vertex. It follows that N is transitive on VΓ. By
Hypothesis 2.46, (Γ,G) is a minimal counterexample. This minimality and the
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fact that N is transitive on VΓ imply that G = N . As N is a minimal normal
subgroup of G, we have that G is simple. Thus

G ∈ {Alt(5),Alt(6),PSp(4,3)} .

A calculator-assisted computation in each of these cases shows that, ifG f Aut(Γ)
has no semiregular elements of order at least 6, then

|VΓ| ∈ {10,20,30,60,90,180,360} ,

which contradicts Hypothesis 2.46.

Suppose that Γ/N is an edge. We have that N defines two orbits on VΓ. We
need to further divide our discussion according to N being abelian or not.

Assume thatN is abelian. By [112, Lemma 1.15], either Γ is complete bipartite,
or Γ is a bi-Cayley graph overN and the minimal number of generators ofN is at
most 4. Once again, what is really relevant is the fact that, by [112, Lemma 1.15],
N is generated by at most 4 elements. Recalling that N is a {2,3,5}-group, it
follows that

|VΓ| = 2|N | f 2 · 54 = 1250 ,

and the equality is realized for N = C4
5 . In particular, this contradicts Hypothe-

sis 2.46.

Assume that N is not abelian. By Lemma 2.47, 3 divides the order of N³ . A
fortiori, 3 divides the order of G³ , hence G acts arc-transitively on Γ. We can
extract information on the local group of G by consulting the amalgams in [47,
Section 4]. In particular, with a direct inspection (on a case-by-case basis) on
these amalgams, it can be verified that, for any edge {³,´} of Γ, G contains an
element y that swaps ³ and ´ and its order is either 2 or 4. As ³ and ´ belong to
distinct N -orbits, y maps ³N to ´N . Moreover, as N has two orbits on VΓ, the
subgroup Nïyð is vertex-transitive on Γ. Therefore, by minimality of G, we have
G =Nïyð. We split the discussion according to the order of y.

Suppose that o(y) = 2. Thus |G : N | = 2. As N = Sℓ is a minimal normal sub-
group of G, ℓ ∈ {1,2}. If ℓ = 1, then G is an almost simple group whose socle is
either Alt(5), Alt(6) or PSp(4,3). by the same computation we did for the simple
case, (Γ,G) satisfies Theorem 2.42, a contradiction. If ℓ = 2, then ïyð permutes
transitively the two simple direct factors of N . Let s ∈ N be a 5-element in a
simple direct factor of N , and notice that t := sy is a 5-element in the other sim-
ple direct factor of N . Thus [s, t] = 1. We claim that ys is a semiregular element
of order 10. We get

(ys)2 = ysys = ts ∈N,

(ys)5 = ysysysysys = ys(ts)2 ∈ yN.

We have that (ys)2 is a 5-element in N , thus semiregular, and that (ys)5 has
order 2 and, being an element of yN = Ny, it has no fixed points, hence it is
semiregular. Therefore ys is a semiregular element of order 10, contradicting
Hypothesis 2.46.

Suppose that o(y) = 4. As |G : N | = 4 and N = Sℓ is a minimal normal subgroup
of G, ℓ ∈ {1,2,4}. Observe that, since Γ is 3-valent and G is arc-transitive, we can
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apply Theorem 1.24. It follows that a Sylow 3-subgroup of G³ has order 3. Let
x ∈ G³ be an element of order 3. As |G :N | = 4, we have that

x ∈N ∩G³ =N³ f Sℓ .

In particular, we may write x = (s1, . . . , sℓ), for some si ∈ S . Let » be the number
of coordinates of x different from 1, we call » the type of x. Since ïxð is a Sylow
3-subgroup of G³ , from Sylow’s Theorem, we deduce that each element of order
3 in G fixing some vertex of Γ has type ». Let s ∈ S be an element of order 3 and
let t ∈ S be an element of order 5. We consider some easy to deal with cases.
Suppose that ℓ = 4. If » , 1, then g = (s, t,1,1) has order 15 and it is semiregular,
because g5 = (s5,1,1,1) has order 3 but it is not of type ». Similarly, if ℓ = 4 and
» = 1, then g = (s, s, t,1) has order 15 and it is semiregular. Analogously, when
ℓ = 2, if » , 1, then g = (s, t) has order 15 and is semiregular. When ℓ = 2, » = 1
and S = PSp(4,3), the group S contains an element r having order 9, and hence
g = (r, r) is a semiregular element having order 9.

Summing up, from these reductions, we may suppose that either ℓ = 1, or
ℓ = 2 and S ∈ {Alt(5),Alt(6)}. These cases can also be dealt with a computer.
Hence, the invaluable help of a calculator shows that no counterexample to The-
orem 2.42 arises.

2.J.3 Cyclic quotients

In this section, we deal with the cases where Γ/N is a cycle. This scenario con-
tains the most involved proportion of the proof.

Suppose that Γ/N is a cycle of length r g 3. The automorphism group of
Γ/N is the dihedral group of order 2r. Let K be the kernel of the action of G on
the N -orbits. The quotient G/K acts faithfully on Γ/N , that is, it is a transitive
subgroup of the dihedral group of order 2r.

We claim that

G/K is regular in its action on the vertices of Γ/N . (2.16)

Assume G/K acts on the vertices of Γ/N transitively but not regularly. In par-
ticular, G/K is isomorphic to the dihedral group of order 2r. Thus, by the Cor-
respondence Theorem, G has an index 2 subgroup M such that M is vertex-
transitive and M/K is isomorphic to the cyclic group of order r. By minimality
of G, we have G =M , which goes against the choice ofM . Hence G/K is regular.
In particular, either G/K is isomorphic to the cyclic group of order r, or r is even
and G is isomorphic to the dihedral group of order r. (Later in this proof we
resolve this ambiguity and we prove that r is even and G/K is dihedral of order
r, see Equation (2.20).)

As G/K acts regularly on the vertices of Γ/N , we have

1G/K = (G/K)³N = G³K/K .

Therefore
K³ = K ∩G³ = G³ . (2.17)
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Aiming for a contradiction, assume G is arc-transitive. Let ´ be a neighbour
of ³. We claim that G = ïG³ ,G{³,´}ð. We note that, by arc-transitivity, G{³,´} con-
tains an edge-flip, that is, a permutation g ∈ G such that (³,´)g = (´,³). It follows
that ïG³ ,G{³,´}ð contains G´ . Hence, Lemma 3.2 implies ïG³ ,G{³,´}ð defines ei-
ther one or two orbit on the vertices. Moreover, if it defines two orbits, then the
orbits of ³ and ´ would be disjoint, which goes against the existence of an edge-
flip. Therefore, ïG³ ,G{³,´}ð is transitive, and, since it contains a vertex-stabilizer,
by Frattini’s Argument, G = ïG³ ,G{³,´}ð.

We can thus consider the following chain of inclusions

G = ïG³ ,G{³,´}ð = ïK³ ,G{³,´}ð f ïK,G{³,´}ð = KG{³,´} .

Hence, as both K and G{³,´} are subgroups of G, G = KG{³,´}. Observe that ³N

and ´N are distinct N -orbits. Recalling that K fixes all the N -orbits,

|G : K | = |KG{³,´} : K | = |G{³,´} : K{³,´}| = |G{³,´} : G³´ | = 2 .

Thus G/K is the cyclic group of order 2 and r = 2, which is a contradiction.
Therefore, G is not arc-transitive. This implies that G³ does not act transi-

tively on the neighbourhood of ³. Thus, by Lemma 1.32, G³ is a 2-group. By
Equation (2.17), we deduce that G³ = K³ is a 2-group. Actually, Lemma 2.11
shows that

G³ = K³ is an elementary abelian 2-group . (2.18)

If N is an elementary abelian 2-group, then, by Lemma 2.10, Γ is either a
circular ladder, or a Möbius ladder, or a split Praeger–Xu graph sC(r/2, s). We
can explicitly compute the order of the semiregular elements in both scenarios.

Lemma 2.48 · Let Λ be a (circular or Möbius) ladder, and let G f Aut(Λ) be a
vertex-transitive group. Then either |VΛ| f 16 or G contains a semiregular element
of order at least 6.

Proof. Recalling the definition of the ladders, under the assumption that |VΛ| g

10, we have that Aut(Λ) contains a unique abelian regular subgroup of index 2.
We call such subgroup H , and we note that H contains a semiregular element
of order |VΛ|/2. Moreover, for every vertex-transitive subgroup G f Aut(Λ), we
have that G ∩H has index at most 2 in H . It follows that G must contain the
square of a semiregular element of order |VΛ|/2 in H . Therefore, if |VΛ| g 24,
we can find in G an element with the desired property. To close the gap between
10 and 24, we can just invoke Remark 2.43.

Lemma 2.49 · Let G be a vertex-transitive subgroup of Aut(sC(r, s)). Then either
G contains a semiregular element of order at least 6, or (sC(r, s),G) is one of the
examples in Table 2.3 marked with the symbol  .

Proof. We use the notation for the automorphism group of Aut(sC(r, s)) devel-
oped in Section 2.A. From Lemma 2.9, we have that G is a subgroup of H =
K ì ïÄ,Ãð. Observe that

G/G∩K is isomorphic ïÄ,Ãð ,
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otherwise G is not transitive on the vertices of the split graph sC(r, s). From this,
it follows that

G = V ì ïÄf ,Ãgð ,

for some f ,g ∈ K , where V = G∩K . Since Ä has order r, we get that

(Äf )r = Äf Ä . . . (Äf Ä)f

= Äf Ä . . . (Ä2Ä−1f Ä)f

= Äf Ä . . .Ä2f Äf

= Äf Är−1 . . . f Äf

= f Ä
r−1
. . . f Äf

is an element of V . Since V is an elementary abelian 2-group, the element Äf
has order either r or 2r. Recalling that V is a subgroup of K ,

(Äf )r =
r−1
∏

i=0

Äaii

with ai ∈ {0,1}. Furthermore,

(Äf )rÄ = Ä(f Ä . . .Äf Äf Ä)

= Ä(f f Ä . . . f Ä
r−2
f Ä

r−1
)

= Ä(f Ä
r−1
. . . f Äf )

= Ä(Äf )r ,

thus Ä centralizes (Äf )r . From this, and from the fact that ïÄð acts transitively
on {Ä0, . . . ,Är−1}, we deduce that

(Äf )r =
r−1
∏

i=0

Äai =















r−1
∏

i=0

Äi















a

,

where a is either 0 or 1. If a = 0, then Äf is a semiregular element of order
r. In particular, either r g 6, or the number of vertices of sC(r, s) is r2s, which
is bounded by 5 · 25 = 160, and we finish by using Remark 2.43. On the other
hand, if a = 1, Äf has order 2r, and it corresponds to the so-called super flip of
the Praeger–Xu graph C(r, s). Since (Äf )r does not fix any vertex in C(r, s), and
since the vertex-stabilizer for a split graph has index 2 in the vertex-stabilizer of
the starting graph, for any vertex ³ ∈ V sC(r, s), we obtain that (Äf )r < G³ . Hence
Äf is semiregular of order 2r g 6.

Therefore, if Γ is a ladder, the proof follows from Lemma 2.48, while, if Γ
is a split Praeger–Xu graph, we conclude by Lemma 2.49. In particular, for the
rest of the proof we may suppose that N is not an elementary abelian 2-group.

For any minimal normal subgroup M of G, M³ =M ∩G³ is also a 2-group.
Thus, in view of Lemma 2.47,M is an elementary abelian p-group, for some p ∈
{2,3,5}. This is true, in particular, for N . LetM be a minimal normal subgroup
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distinct from N . Since [N,M] = 1, Lemma 2.45 gives a contradiction unless N
andM are both p-groups for the same prime p. Thus,

the socle of G is an elementary abelian p-group, for some p ∈ {3,5} . (2.19)

Before going any further, we need some extra information on the local group
of G on Γ. Since G³ is a nontrivial 2-group, there exists a unique vertex ³′ ∈ VΓ

adjacent to ³ that is fixed by the action of G³ (see Section 2.C). It follows that
{³,³′} is a block of imprimitivity for the action of G on the vertices. Hence,

G³ f G{³,³′} and |G{³,³′} : G³ | = 2 .

We obtain that, for any vertex ´ ∈ VΓ which is a neighbour of ³ distinct from ³′,

|G{³,³′} : G³´ | = 4 and |G{³,´} : G³´ | = 2 .

Let {³′ ,´,µ} be the neighbourhood of ³.
Assume G/K is cyclic of order r. As Γ/N is a cycle of length r, this means

that G/K acts transitively on the vertices and on the edges of Γ/N . Now, ´ and
µ are in the same K-orbit because K³ = G³ and G³ acts transitively on {´,µ}. In
particular, each element in ³N has two neighbours in ´N . As G/K is transitive
on edges, we reach a contradiction, because each element in ³N would have two
neighbours in (³′)N , contradicting the fact that ³ has valency 3. Thus

r is even and G/K is dihedral of order r . (2.20)

Recall that N is an elementary abelian p-group with p ∈ {3,5}. Thus N is
semiregular. We consider CK (N ). Since N is a subgroup of CK (N ) and since, by
Frattini’s Argument, K = K³N , we deduce that there is a subgroup Q of K³ such
that CK (N ) = N ×Q. As K³ is a 2-group, so is Q. Therefore, Q coincides with
O2(CK (N )), which is characteristic in CK (N ). It follows that Q is normal in K .
Since K³ is a core-free subgroup of K , we get that Q is trivial. Thus, CK (N ) =N .

Since N is a minimal normal abelian subgroup of G, we have that G acts ir-
reducibly by conjugation on it, that is, N is an irreducible FpG-module. As K is
normal inG, by Clifford’s Theorem (see, for instance, [134, Theorem 8.1.3]),N is
a completely reducible FpK-module. By Frattini’s Argument, K = NG³ , which
implies that N is a completely reducible FpG³-module. As G³ is abelian, by
Schur’s Lemma (see, for instance, [134, Theorem 8.1.6]), G³ induces on each ir-
reducible FpG³-submodule a cyclic group action. Now, recall that Lemma 2.45
gives us that the exponent of G³ is 2. We deduce that each irreducible FpG³-
submodule has dimension 1 andG³ induces on each irreducibleFpG³-submodule
the scalars ±1. Therefore, G³ acts on N by conjugation as a group of diago-
nal matrices having eigenvalues in {±1}. In other words, there exists a basis
(n1, . . . ,ne) of N as a vector space over Fp such that,

for each g ∈ G³ and for each ni , we have ngi ∈ {ni ,n
−1
i } . (2.21)

Furthermore, the action of G by conjugation on N preserves the direct product
decomposition N = ïn1ð × · · · × ïneð.
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We claim that

CG{³,´}
(N ) = 1 , and CG{³,³′ }

(N ) = 1 . (2.22)

In other words, G{³,´} and G{³,³′} both act faithfully by conjugation on N . Let
¶ ∈ {³′ ,´} and suppose, arguing by contradiction, that CG{³,¶}

(N ) is not trivial.
Recall that CK (N ) is trivial, and, by applying the Orbit Stabilizer Lemma, we
obtain that

|G{³,¶} : K ∩G{³,¶}| = 2 .

We deduce that CG{³,¶}
(N ) = ïxð, where x is an involution. Since x is not an

element ofK , and since the length of Γ/N is even by Equation (2.20), the fact that
Nx swaps ³N and ¶N implies that Nx acts semiregularly on Γ/N . Hence, x acts
semiregularly on Γ. Furthermore, from the fact that x centralizes N , we deduce
that G contains some semiregular elements of order 2p g 6. This contradicts
Hypothesis 2.46, thus Equation (2.22) is proven.

Observe that Equation (2.22) implies that an element of G{³,³′} or of G{³,´}

is the identity if, and only if, its action on N by conjugation is trivial. We show
that

G{³,´} −G³´ contains an involution . (2.23)

Before proceeding in the proof, we need a little detour to prove that

G = ïG{³,³′},G{³,´}ð . (2.24)

Recall that the local group of the pair (Γ,G) is C2. We can apply the merging op-
eration, thus obtaining a 4-valent graph ∆ such that G is an arc-transitive group
of automorphisms of ∆. Moreover, the stabilizer of vertices in ∆ is isomorphic to
G{³,³′}, while the stabilizer of edges in ∆ is isomorphic to G{³,´} (see Section 2.C).
Therefore, applying to the pair (∆,G) the argument that combines Lemma 3.2
and the existence of an edge-flip we have explained a few lines before in this
proof, we obtain the desired Equation (2.24).

Let H be the permutation group induced by G{³,³′} in its action on the four
right cosets of G³´ in G{³,³′}. Since H is a 2-group, H is isomorphic to either the
cyclic group C4, or the Klein Group C2×C2, or to the dihedral group of degree 4
D8. In the first two cases, G³´ is a normal subgroup of both G{³,³′} and G{³,´}. In
view of Equation (2.24) and of the fact that G³´ is core-free in G, we have that
G³´ = 1 is trivial. In particular, G{³,´} is cyclic of order 2, hence it contains an
involution. Therefore, Equation (2.23) follows in this case.

In the latter case, we have that the triple
(

G{³,³′}, G³´ , G{³´}

)

is a locally dihedral faithful group amalgam of index (4,2) and G is one of its
realizations (see Section 1.H). Indeed, from the classification in [46], we see that
either G{³,³′} −G³ or G{³,´} −G³´ contains an involution. If G{³,´} −G³´ contains
an involution, then Equation (2.23) holds true also in this case. Therefore, we
suppose that Ä1 ∈ G{³,³′} − G³ is an involution. We investigate the action by
conjugation of Ä1 on N . By Equation (2.16), Ä1 is a semiregular automorphism
of Γ/K , because Ä1 lies outside the kernel K . Therefore, Ä1 is a semiregular
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2 · Small valency

automorphism of Γ. Note that no semiregular involution can commute with
a nontrivial element of N , otherwise, by Lemma 2.45, we find a semiregular
element of order 2p g 6. Hence, Ä1 acts by conjugation on N without fixed
points. In particular, for any n ∈N ,

nÄ1 = n−1 .

It follows from Equation (2.21) that Ä1 commutes with G³ . Hence,

G{³,³′} = ïG³ ,Ä1ð

is an elementary abelian 2-group. Now, as G³´ is normal in both G{³,³′} and
G{³,´}, we can conclude, as before, that G{³,´} is cyclic of order 2. Hence, it
contains an involution G{³,´}, and, in any case, Equation (2.23) holds true.

Let e be the positive integer such that N = Cep. We aim to show that

e ∈ {1,2}. (2.25)

Let Ä2 ∈ G{³,´}−G³´ be an involution: the existence of Ä2 is guaranteed by Equa-
tion (2.23). Now, we look at the action by conjugation of Ä2 on N . Observe that
Ä2 does not lie in K , thus, as K³ = G³ , Ä2 is a semiregular automorphism of Γ.
Therefore, arguing as in the previous paragraph (with the involution Ä1 replaced
by Ä2), we deduce that

nÄ2 = n−1 for every n ∈N .

Let us define
L := ïÄ

g
2 | g ∈ Gð .

Since G/K is a dihedral group and Ä2 is a noncentral involution, we deduce that

|G/K : LK/K | f 2 , that is, |G : LK | f 2 .

Observe now that, for any n ∈N ,

nÄ
g
2 = n−1 .

Therefore, the group induced by the action by conjugation of L onN has order 2.
This together with Equation (2.21) shows that the subgroup LK of G preserves
the direct sum decomposition

N = ïn1ð × · · · × ïneð .

However, since G acts irreducibly on N and since |G : LK | f 2, we finally obtain
e f 2, as claimed in Equation (2.25). Observe that from this it follows that

|N | = pe ∈ {3,9,5,25} .

Observe that G³ contains an element x with nx = n−1 for every n ∈ N . This
is immediate from Equation (2.21) when e = 1, or when e = 2 and |G³ | = 4.
When e = 2 and |G³ | < 4, we have |G³ | = 2, and hence, recalling that CG³ (N ) is
trivial, the nontrivial element of G³ acts by conjugation on N inverting each of
its elements. Now, x and Ä2 both induce the same action by conjugation on N .
It follows that the kernel of the action of G³ on N is not trivial, contradicting
Equation (2.22). This final contradiction concludes the analysis of this case.
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2.J.4 Nondegenerate quotients

The last scenario we have to deal with is the case in which the quotient is 3-
valent. Here, a possible counterexample can only spread as a covering of an
already known case. Thus, we manage to handle most cases with a computer
algorithm.

Suppose that Γ/N is a 3-valent graph. Under this assumption, any two
distinct neighbours of ³ are in distinct N -orbits, thus N³ = 1. In particular,
Lemma 2.47 gives that N is elementary abelian. Since |VΓ/N | < |VΓ|, by Hy-
pothesis 2.46, the pair (Γ/N,G/N ) is not a counterexample to Theorem 2.42.
Hence, (Γ/N,G/N ) is one of the pairs appearing in Table 2.3. Moreover, since
the vertex-stabilizer G³ is not trivial, we have the additional information that a
vertex-stabilizer

(G/N )³N = G³N/G � G³/N³ = G³

is not the identity.
We now outline the algorithm we used to resolve this case.

(1) Take as input a pair (Γ/N,G/N ) appering in Table 2.3.

(2) For each prime p ∈ {2,3,5}, construct all the irreducible modules of G/N
over the field Fp.

We denote by V these irreducible modules. Such modules V correspond to our
putative minimal normal subgroup N of G.

(3) For all the irreducible modules V , construct all the distinct extensions of
G/N via V .

We denote by E one of these group extensions. Such extension E corresponds to
our putative abstract group G. Let Ã : E → G/N be the natural projection with
ker(Ã) = V .

(4) Compute all the subgroupsH of E with the property that Ã|H is an isomor-
phism between H and (G/N )³/N .

This subgroup H is our putative vertex-stabilizer G³ .

(5) Construct the permutation representation EÄ of E acting on the right cosets
of H in E.

This permutation group EÄ is our putative permutation group G.

(6) Check if the semiregular elements of EÄ have order at most 5. If not, dis-
card EÄ from further consideration.

(7) For each permutation group EÄ, build all the orbital graphs for EÄ, and
store the connected 3-valent graphs Γ.

This is our putative graph Γ. This last step is by far the most expensive step in
the computation.

(8) Give as output the set of all the constructed pairs (Γ,EÄ).
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2 · Small valency

This whole process had to be applied repeatedly, starting with the pairs aris-
ing from the census of connected 3-valent graphs having at most 1280 vertices,
and adding to Table 2.3 each novel graph having more than 1280 vertices.

For instance, the graphs having 65610 vertices were found by applying this
procedure starting with the graph having 810 vertices and its transitive group
of automorphisms having 1620 elements: here the elementary abelian cover
N has cardinality 81 = 34. Incidentally, we have found only one pair up to
isomorphism. Next, by applying this procedure to this pair, we found no new
examples.

The procedure comes to termination as in the previous example for all start-
ing pairs but for an exceptional family. Consider the unique graph ∆ in Ta-
ble 2.3 having 1250 = 2 ·54 vertices and with its corresponding vertex-transitive
group H having order 2500 = 22 · 54. When we applied this procedure, we have
obtained graphs having 2 · 55 = 6250 vertices and admitting a group of auto-
morphisms having 22 ·55 = 12500 elements, and we have found that this pair is
unique up to isomorphism. We have repeated this procedure two more times,
obtaining graphs having 2 · 56 = 31250 and 2 · 57 = 156250 vertices. We were
not able to push this computation further. Therefore, to complete the proof of
Theorem 2.42, we need to show that any new pair (Γ,G) has the property that
|VΓ| = 2 · 5ℓ and |G| = 4 · 5ℓ, with ℓ f 34.

From the discussion above, we may suppose that

|VΓ/N | = 2 · 5ℓ and |G/N | = 4 · 5ℓ with ℓ f 34 .

Moreover, Γ/N is a regular cover of the graph ∆ having 1250 vertices, and G/N
is an extension of H , the vertex-transitive group of automorphisms of ∆ with
|H | = 2500. We can observe that H has a cyclic Sylow 2-subgroup, and that
the Sylow 5-subgroup is normal. Since H is a quotient of G/N via a normal
5-subgroup, G/N inherits the same properties. Let P0 be a Sylow 5-subgroup
of G/N . Observe that every nontrivial element of P0 has order 5, because every
semiregular element of G/N has order at most 6. Let P be the subgroup of G
such that P/N = P0. Assume N is not an elementary abelian 5-group. Then,
by Lemma 2.47, N is an elementary abelian p-group for some p ∈ {2,3}. Let
Q be a Sylow 5-subgroup of P. We obtain that P = N ì Q. The elements in
P are semiregular: indeed, all the 5-elements are semiregular by Lemma 1.32,
while all the p-elements, with p ∈ {2,3}, are semiregular because N³ = 1. Hence,
each element of P has order at most 6. This implies that the elements of P
have order 1, 5 or p. It follows that the action by conjugation of Q on N is fixed-
point-free. Thus, P is a Frobenius group with Frobenius kernelN and Frobenius
complementQ. The structure theorem of Frobenius complements gives thatQ is
cyclic and hence |Q| = 5, which is a contradiction. This contradiction has shown
that N is an elementary abelian 5-group and hence P is a Sylow 5-subgroup of
G. Moreover, G = P ì ïxð, where ïxð is a cyclic group of order 4. We have shown
that |VΓ| = 2 · 5ℓ

′
and |G| = 22 · 5ℓ

′
. Therefore, it remains to show that ℓ′ f 34.

Since |G³ | = 2,G³ fixes a unique neighbour of ³. Let us call ³′ this neighbour.
Note that G{³,³′} has order 4, because {³,³′} is a block of imprimitivity for the
action of G on VΓ. Therefore, by Sylow’s Theorem, we may suppose that

G{³,³′} = ïxð .
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2.J · Proof of Theorem H

In particular, by the Orbit Stabilizer Lemma,

G³ = ïx2ð .

Let ´ and µ be the neighbours of ³ that distinct from ³′. As ´ and µ are swapped
by x2, |G{³,´}| = 2. Hence, by Sylow’s Theorem,

G{³,´} = ï(x2)yð, for some y ∈ P .

Since Γ is connected (see Equation (2.24)), we have

G = ïG{³,³′}, G{³,´}ð = ïx, (x2)yð = ïx, y−1yx
2
ð .

As P is normal in G and o(x) = 4, we deduce that

P = ïy−1yx
2
, (y−1yx

2
)x, (y−1yx

2
)x

2
, (y−1yx

2
)x

3
ð .

We can compute

(y−1yx
2
)x

2
= (yx

2
)−1yx

4
= (yx

2
)−1y = (y−1yx

2
)−1 .

Therefore,
P = ïy−1yx

2
, (y−1yx

2
)xð

is a 2-generated group of exponent 5. In view of Theorem 2.40, the order of P is
limited by a function B(2,5). Moreover, in [66], it is shown that

B(2,5) f 534 .

Therefore, ℓ′ f 34, and the proof of Theorem 2.42 is complete.
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I look at my watch. Sunday at 10.
You stand and smile
and almost glide out of the door.
What could I tell you?–
that in 1943 I was thirty,
a member of the Reich,
that Paris was mine
and I didn’t want it.

– The psychiatrist, Ai Ogawa (1980)

This chapter collects result which holds for vertex-transitive graphs of un-
bounded valency. We start by studying how the valency affects the fixed point
ratio of automorphism groups of graphs. Then we study some properties that
negatively affect the possibility of efficiently enumerating the amalgams.

(Some preliminary comments about the finiteness hypothesis in Chapter 3.
In Sections 3.A to 3.C, 3.E, 3.F and 3.I, all graphs and all permutation groups
are finite. In Sections 3.G and 3.H, all graphs are locally finite and, most of
the time, the vertex-stabilizer of the groups of automorphism is supposed to be
finite. Last, in Section 3.D, we build graphs that may not be locally finite.)

3.A Bounding the fixed point ratio

How is the fixed point ratio affected by the minimal subdegree of a permutation
group? Or, rather, what can we say about the fixed point ratio of a group G
acting on a connected d-valent graph?

The answer to this problem cannot be too thrilling in general. Indeed, the
fixed point ratio of a split Praeger–Xu C(r, s) is

fpr(Aut(C(r, s))) =
r − s

r

(see [112, Lemma 1.10] and Section 2.A). For every ϵ > 0, by choosing r g ϵ−1s,

fpr(Aut(C(r, s))) = 1− ϵ .

Hence, their fixed point ratio is arbitrarily close to 1.
On the other hand, if the local group is graph-restrictive, as Lemma 1.8 sug-

gests, the fixed point ratio of the group of automorphism could tend to zero as
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the number of vertices grows. This has been proved by F. Lehner, P. Potočnik and
P. Spiga in [85] under the extra assumption that the local group is quasiprimi-
tive.

Theorem 3.1 ([85] Theorem3.1) · There exists a function f :N×N→N such that,
for every pair (Γ,G), where Γ is a d-valent connected graph, G is an arc-transitive
group of automorphism, and the local group of the pair is quasiprimitive and graph-
restrictive, and for every positive constant ϵ,

if |VΓ| > f(d,ϵ), then fpr(G) < ϵ .

Althought a complete proof of Theorem 3.1 would lead us too much astray,
we want to give a sketch of it to highlight where the hypothesis of quasiprimitive
and graph-restrictive local group are used. Let (Γ,G) be a pair as described, and
let ϵ be a positive constant. Suppose that fpr(G) g ϵ. Further, in view of the
asymptotic nature of the claimed result, we can assume that

|VΓ| gmax
{1
ϵ
,2d +1

}

.

This assumption on the number of vertices has two consequences: the graph Γ

is not isomorphic to a complete bipartite graph, and, for all elements g ∈ G such
that fpr(g) g ϵ, g fixes at least one vertex. Let us choose such an automorphism
g , and let us pick a vertex ³ such that ³g = ³. We define H as the subgroup of G
generated by the G-conjugates of g , that is,

H = ïgGð .

Observe that H is a normal subgroup of G, thus, for every vertex ³ ∈ VΓ, H³ is
a normal subgroup of G³ . Moreover, it also follows that

H
Γ(³)
³ is a normal subgroup of GΓ(³)

³ .

(Note that, since H is not transitive, we cannot talk about the local group of the
pair (Γ,H), as the permutation group that H³ induces on the neighbourhood of
³ might depend on ³.) Since we assume that the local group is quasiprimitive,
this implies that

H
Γ(³)
³ is transitive on Γ(³) .

We can thus apply the following result.

Lemma 3.2 · Let Γ be a connected graph, and let H be a group of automorphisms.
Suppose that,

for every vertex ³ ∈ VΓ, H
Γ(³)
³ is transitive .

Then H defines either one or two orbits on the vertices of Γ.

Proof. Let us choose two adjacent vertices, say ³,´. We claim thatH+ = ïH³ ,H´ð
has at most two orbits on VΓ. SinceH+ contains the stabilizers of ³ and of ´, and
since the actions that H+ induces on Γ(³) and Γ(´) are transitive, we obtain that
³H

+
∪´H

+
contains the union of the neighbourhoods of ³ and ´. In particular, for

any µ ∈ Γ(³)∪Γ(´), there exists an automorphism h ∈H+ such that either ³h = µ
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3.A · Bounding the fixed point ratio

or ´h = µ . By conjugating either H³ or H´ by h, we get that Hµ is a subgroup
of H+. By repeating the same consideration with all the µ ∈ Γ(³)∪ Γ(´), we see
that ³H

+
∪´H

+
contains all the elements at distance at most 2 from ³ or from ´.

By iterating the process as many times as the diameter, it follows that ³H
+
∪´H

+

contains the connected component of Γ containing the edge {³,´}. But, as Γ is
connected, we just proved that all the vertices of the graphs are contained in the
two H+-orbits of ³ and of ´. Moreover, H+ is a subgroup of H , thus the proof is
complete.

Therefore, H defines at most two orbits on VΓ. Recall that the local group is
graph-restrictive, thus there exists a constant Cd (depending on the valency d)
such that |G³ | f Cd . We compute

|G :H | =
|VΓ||G³ |

|³H ||H³ |
f 2|G³ :H³ | f |G³ | f Cd .

We now need to invoke another result, but we will not give a proof, as it
uses tools we have not developed in this work. We stress that the hypothesis of
quasiprimitivity of the local group is needed to use Lemma 3.2.

Lemma 3.3 ([85] Corollary 2.5 and Lemma 2.7) · There exists a strictly decreasing
function

g :N→ R with lim
n

g(n) = 0

such that, for every pair (Γ,G), where Γ is a d-valent connected graph, G is an arc-
transitive group of automorphism, and the local group of the pair is quasiprimitive,
then, for every g ∈ G,

fpr(g) f |ïgGð³ | · |G : ïgGð| · g
(

|ïgGð|
)

.

Specializing Lemma 3.3 to our setting,

ϵ f fpr(g) f |H³ | · |G :H | · g (|H |) f |G³ | · |G :H | · g (|H |) f C2
dg (|H |) .

Upon diving both sides by C2
d and taking the inverse of g,

|H | f g−1












ϵ

C2
d













.

(Recall that, as g−1 is strictly decreasing, by applying it we reverse the inequal-
ity.) We conclude, using the Orbit Stabilizer Lemma,

|VΓ| f 2|H :H³ | f |H | f g−1












ϵ

C2
d













.

Although the proof of Theorem 3.1 heavily relies on the assumption of quasiprim-
itivity, we have no reason to think that, with a different set of ideas, graph-
restrictiveness is not enough. Assuming the veracity of Conjecture 1.37, check-
ing if the result can be extended to semiprimitive local groups is enough.
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Question 3.4 · Consider all the pairs (Γ,G), where Γ is a d-valent connected
graph, G is an arc-transitive group of automorphism, such that the local group
of the pair is graph-restrictive. Is there a function f : N × (0,1) → N such that,
for every such pair (Γ,G), and for every positive constant ϵ,

if |VΓ| > f(d,ϵ), then fpr(G) < ϵ ?

Since this problem appears to be related to graph-restrictiveness, it makes
sense to ask if a similar result can be proven with the global hypothesis of
vertex-primitivity. We conclude Section 3.A with the analogue of Theorem 3.1
for vertex-primitive permutation group, as proved in [17].

Lemma 3.5 ([45] Exercise 1.7.6) · Let G be a transitive permutation group on Ω,
let x ∈ G be a permutation, and let É ∈Ω be a point. Then

fpr(x) =
|xG ∩GÉ |

|xG |
.

Proof. Our proof proceeds by double counting the set

X =
{

(³,g) ∈Ω × xG | ³g = ³
}

.

On one hand, by the transitivity of G,

|X | =
∑

³∈Ω

|xG ∩G³ | = |Ω| · |xG ∩GÉ | .

On the other hand, as the number of fixed point is constant con conjugacy
classes,

|X | =
∑

g∈xG

|Ω − supp(g)| = |xG | · |Ω − supp(x)| .

Therefore, we obtain

fpr(x) =
|Ω − supp(x)|

|Ω|
=
|xG ∩GÉ |

|xG |
,

as desired

Theorem I · Let ϵ and C be two positive constants, and let F be a family of
quasiprimitive permutation groups G on Ω satisfying

(a) fpr(G) g ϵ,

(b) |GÉ | f C for every É ∈Ω.

Then F is a finite family.

Proof of Theorem I. Let G be a quasiprimitive permutation group on a setΩ, and
let x ∈ G be a nontrivial element achieving |supp(x)| f (1 − ϵ)|Ω|. For any point
É ∈Ω, we obtain

ϵ f
|xG ∩GÉ |

|xG |
f

|GÉ |

|xG |
f

C

|xG |
.
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3.A · Bounding the fixed point ratio

It follows that |xG | f ϵ−1C. Now, let us consider the normal subgroup of G
defined by

N :=
⋂

g∈G

CG(x
g ) .

Recall that |G : CG(x)| = |xG |. Observe that G acts by conjugation on the set

{CG(x
g ) | g ∈ G} ,

it defines a single orbit of size at most |xG |, and N is the kernel of this action.
Therefore

|G :N | f |{CG(x
g ) | g ∈ G}|! f |xG |! f

⌈C

ϵ

⌉

! ,

that is, N is a bounded index subgroup of G. Since G is quasiprimitive, either N
is trivial or N is transitive.

Aiming for a contradiction, we suppose that N is transitive. We note that
|supp(x)| < |Ω|. In particular, x fixes at least one point, and we choose É ∈ Ω to
be a point that is fixed by x. Since [N,x] = 1, for any n ∈N ,

Énx = Éxn = Én .

The transitivity of N implies that x = 1, against our choice of x.
Therefore, N is trivial. It follows that

|G| = |G :N | f
⌈C

ϵ

⌉

! .

Since there are finitely many abstract groups of bounded size (see, for in-
stance, [130]), the proof is complete.

We observe that the affirmative solution to the Sims Conjecture (see The-
orem 1.28) implies that the hypothesis of vertex-primitivity is enough to con-
clude.

Corollary J · Let ϵ be a positive constant, and let d be a positive integer. There
are only finitely many vertex-primitive digraphs of valency at most d and fixed point
ratio exceeding ϵ.

Proof. Let Γ be a vertex-primitive digraphs of valency at most d and relative
fixity exceeding ³, and let G = Aut(Γ). The hypothesis on the out-valency im-
plies that, for any É ∈ VΓ, |GÉ | f f(d), where f(d) is the function appearing in
Theorem 1.28. The result thus follows by choosing C = f(d) in Theorem I.

We observe that the fixed point ratio can be arbitrarily close to 1. Indeed, in
Lemma 3.21, we will prove that, if H(r,m) is the Hamming graph of rank r on a
set of cardinality m, then

fpr(Aut(H(r,m))) g 1−
2
m
.

In particular, for any positive constant 0 < ϵ < 1, upon choosing m f 2ϵ−1, we
get

fpr(Aut(H(r,m))) g 1− ϵ ,
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which is arbitrarily close to 1.
We conclude Section 3.A by observing that the proofs developed to study

fixed point ratio for small valency and for unbounded valency are widely differ-
ent. Out of curiosity, one might pose the following problem.

Question 3.6 · Can the normal quotient method be applied to study the fixed
point ratio of vertex-transitive group automorphisms of graphs even though the
valency of the underlying graphs is unbounded?

3.B Minimal degree for primitive groups

Let G be a finite permutation group on Ω. We define the minimal degree (or
motion) by

µ(G) = min
g∈G−{1}

|supp(g)| .

The study of minimal degree can be traced back to the classical result by
C. Jordan in [36] stating that, for any positive integer C g 2, the number of
primitive groups such that µ(G) f C is finite. As a well known consequence,
Sym(Ω) and Alt(Ω) (in their natural action) are the only primitive groups of
minimal degree 2 and 3 respectively.

Observe that, for every permutation group G of degree n,

fpr(G) = 1−
µ(G)
n

.

Therefore, the wide range of application has been already explored in Section 1.D.
As a consequence, classifications of primitive group of bounded minimal degree
are desirable. In [90], M. W. Liebeck and J. Saxl proved that any primitive group
G such that µ(G) f |Ω|/3 is of type AS or PA and of socle type Alt(m) in its action
on k-subsets. (If G is a primitive permutation group, all direct factors of its so-
cle are isomorphic. We refer to the isomorphism class of these subgroups as the
socle type of G. For a detailed discussion of this result, see [45, Section 4.3].) The
primitive groups G with µ(G) f |Ω|/2 were determined by R. M. Guralnick and
K. Magaard in [64], adding the possibility of socle types SO+

2m(2) and SO−
2m(2)

and the possibility that the whole group is of type HA. Finally, the most recent
list was compiled by T. C. Burness and R. M. Guralnick in [27], and it accom-
plishes the task of describing those primitive groups G such that µ(G) < 2|Ω|/3.

Since we are also exploiting this last classification in the proof of Theorem K,
we report it here. We observe that, also in this refined classification, we have
that G is either or type AS, PA or HA. Moreover, we explicitly write the permu-
tational rank of the almost simple groups of Lie type. This information can be
easily obtained combining the complete list of 2-transitive finite permutation
groups, first described by P. J. Cameron in [31, Section 5], and the complete
list of classical finite permutation groups of permutational rank 3, compiled by
W. M. Kantor and R. A. Liebler in [79, Theorem 1.1].
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Theorem 3.7 ([27] Theorem 4) · Let G be a finite permutation group of degree n
with

µ(G) <
2n
3
.

Then one of the following holds:

(a) Alt(m) f G f Sym(m), for some m g 3, in its action on k-subsets, for some
k < m/2;

(b) G = Sym(2m), for some m g 2, in its primitive action with stabilizer G³ =
Sym(m)wrC2;

(c) G =M22 : 2 in its primitive action of degree 22 with stabilizer G³ = L3(4).22;

(d) G is an almost simple group of permutational rank 2 and socle described in
Table 3.1;

(e) G is an almost simple group of permutational rank 3 and socle described in
Table 3.2;

(f ) G f KwrSym(r) is a primitive group of type PA, where K is a permutation
group appearing in points (a) − (e), the wreath product is endowed with the
product action, and r g 2;

(g) G is an affine group with a regular normal socle N , which is an elementary
abelian 2-subgroup.

Socle Action Comments
(i) Lm(2) Natural module m g 3
(ii) Lm(3) Natural module m g 3, and G contains an el-

ement of the form (−In−1, I1)
(iii) Sp2m(2) Singular points m g 3
(iv) Sp2m(2) Right coset space of SO−

2m(2) m g 3
(v) Sp2m(2) Right coset space of SO+

2m(2) m g 3

Table 3.1: Description of the groups in Theorem 3.7 (d).

3.C Vertex-primitive digraphs

It is now time for us to state the classification of vertex-primitive digraphs with
large fixed point ratio. The notation is quite heavy, thus we use Section 3.C to
introduce and explain it.

Recall that the direct product of the family of digraphs Γ1, . . . ,Γr (sometimes also
called the tensor product or the categorical product) is the digraph Γ1×. . .×Γr whose
vertex-set is the Cartesian product VΓ1 × . . .×VΓr and whose arc-set is

A(Γ1 × . . .× Γr ) = {((u1, . . . ,ur ), (v1, . . . , vr )) | (ui , vi ) ∈ AΓi for all i ∈ {1, . . . , r}} .
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Socle Action Comments
(i) U4(q) Totally singular 2-

dimensional subspaces
q ∈ {2,3}, and G contains
the graph automorphism Ä

(ii) Ω2m+1(3) Singular points m g 3, and G contains
an element of the form
(−I2m, I1) with a "+"-type
(−1)-eigenspace

(iii) Ω2m+1(3) Nonsingular points whose
orthogonal complement is
an orthogonal space of "−"-
type

m g 3, and G contains
an element of the form
(−I2m, I1) with a "−"-type
(−1)-eigenspace

(iv) PΩϵ
2m(2) Singular points ϵ ∈ {+,−}, and G = SOϵ

2m(2)
(v) PΩϵ

2m(2) Nonsingular points ϵ ∈ {+,−}, and G = SOϵ
2m(2)

(vi) PΩ+
2m(3) Nonsingular points G contains an element

of the form (−I2m−1, I1)
such that the discriminant
of the 1-dimensional 1-
eigenspace is a nonsquare

(vii) PΩ−
2m(3) Singular points G contains an element of

the form (−I2m−1, I1)
(viii) PΩ−

2m(3) Nonsingular points G contains an element
of the form (−I2m−1, I1)
such that the discriminant
of the 1-dimensional 1-
eigenspace is a square

Table 3.2: Description of the groups in Theorem 3.7 (e).

Recall also that a union of digraphs Γ1 and Γ2 is the digraph whose vertex-set and
arc-set are the sets VΓ1∪VΓ2 and AΓ1∪AΓ2, respectively. Note that when Γ1 and
Γ2 share the same vertex-set, their union is then obtained simply by taking the
union of their arc-sets.

We now have all the ingredients needed to present a construction yielding
the digraph appearing in our main result.

Construction 3.8 · Let G = {Γ0,Γ1, . . . ,Γk} be a list of k + 1 pairwise distinct
digraphs sharing the same vertex-set ∆. Further, let r be a positive integer, and
let J be a subset of the r-fold Cartesian power Xr , where X = {0,1, . . . , k}. Given
this input, we construct the digraph

P (r,G,J ) =
⋃

(j1,j2,...,jr )∈J

Γj1 × Γj2 × . . .× Γjr

and we call it the merged product action digraph.

Our interest lies in applying Construction 3.8 with G being the set of all
orbital digraphs for a primitive permutation group. In this case, we may assume
that Γ0 is the diagonal orbital digraph, that is, that Γ0 is the loop graph Lm where
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3.C · Vertex-primitive digraphs

m = |∆|. Meanwhile the union of the remaining digraphs in G is the complete
graph, that is,

Km =
k

⋃

i=1

Γi .

For the sake of a simpler and more compact presentation, we assume that, from
here onwards, this property holds for all the families G.

Remark 3.9 · We give some example to give a flavour of what can be obtained
using Construction 3.8.

If r = 1, then P (1,G,J ) is simply the union of some digraphs from the set G.
If r = 2 and J = {(1,0), (0,1)}, then P (2,G,J ) = Lm × Γ1 ∪ Γ1 × Lm, which is,

in fact, the Cartesian product Γ1□Γ1. (This product is sometimes called the box
product, and we refer to [72] for its general definition and further details.)

More generally, if J = {ei | i ∈ {1, . . . , r}}, where ei = (0, . . . ,0,1,0, . . . ,0) is the r-
tuple with 1 in the i-th component and zeroes elsewhere, then P (r,G,J ) = (Γ1)□r ,
the r-th Cartesian power of the graph Γ1 ∈ G. More specifically, if Γ1 =Km and J

is as above, then P (r,G,J ) is the Hamming graph H(r,m) =K□rm .

While J can be an arbitrary set of r-tuples in Xr , we will be mostly inter-
ested in the case where J ¦ Xr is invariant under the induced action of some
permutation group H f Sym(r) on the set Xr given by the rule

(j1, j2, . . . , jr )
h = (j1h−1 , j2h−1 , . . . , jrh−1) .

(We choose to write ih−1 instead of ih
−1

for improved legibility.) We shall say
that J is an H-invariant subset of Xr in this case. A subset J ¦ Xr which is
H-invariant for some transitive subgroup of Sym(r) will be called homogeneous.

The last example of Remark 3.9 justifies the introduction of the following
new family of graphs.

Definition 3.10 · Let r,m be two positive integers, and let J ¦ {0,1}r be a ho-
mogeneous set. The graph P (r, {Lm,Km},J ) is called generalised Hamming graph
and is denoted by H(r,m,J ).

Remark 3.11 · The generalised Hamming graphs H(r,m,J ), where J is H-
invariant, are precisely the unions of orbital digraphs for the group Sym(m)wrH
endowed with the product action (see Lemma 3.19 for further details).

Since the union of all nondiagonal orbital digraphs is Kmr , all the complete
graphs are generalised Hamming graphs. Furthermore, Kmr can be explicitly
build from Definition 3.10 upon choosing J containing only the vectors with
all entries equal to 1.

A homogeneous set J is said to be Hamming if,

J =
⋃

h∈H

(

(X − {0})a ×Xb × {0}r−a−b
)h
,

for some nonnegative integers a,b such that a + b f r and a transitive group
H f Sym(r). It is said to be non-Hamming otherwise.
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3 · Unbounded valency

Remark 3.12 · Let P (r,G,J ) be a merged product action digraph where J is
a Hamming set. Since the union of all the digraphs that are not labelled by 0
is Km by assumption, upon switching the order of the unions and of the direct
products in Construction 3.8, we obtain that every factor of P (r,G,J ) (which
we can now think of as a direct product of digraphs) is isomorphic either to
Lm, to Km or to Lm ∪Km. We can be more precise with this observation. Build
J ′ ¦ {0,1}r from J by substituting any nonzero entry of a sequence in J with 1.
Then

P (r,G,J ) = P (r, {Lm,Km},J
′) .

In particular, a generalised Hamming graph arises from Construction 3.8 if and
only if J is a Hamming set.

Remark 3.13 · The ordering of the Cartesian components in the definition
of a Hamming set does not matter: indeed, a permutation of the components
corresponds to a conjugation of the groupH in Sym(r), thus defining isomorphic
digraphs in Construction 3.8.

One last piece of notation: when computing the fixed point ratio of the au-
tomorphism group of a graph Γ, rather than writing fpr(Aut(Γ)), from here on
we will use fpr(Γ). We are ready to state our main characterization.

Theorem K · Let Γ be a finite vertex-primitive digraph with at least one arc. Then

fpr(Γ) >
1
3

if and only if one of the following occurs:

(i) Γ is a generalised Hamming graph H(r,m,J ), with m g 4, and, if m is optimal
in the sense of Definition 3.20, then

fpr(Γ) = 1−
2
m

;

(ii) Γ is a merged product action graph P (r,G,J ), where r g 1, where J is a non-
Hamming subset of Xr with X = {0,1, . . . , |G| − 1}, and where G is as in one of
the following:

(a) G = {J(m,k, i) | i ∈ {0,1, . . . , k}} is the family of distance-i Johnson graphs,
where k,m are fixed integers such that k g 2 and m g 2k + 2 (see Sec-
tion 3.E.2 for details), and

fpr(Γ) = 1−
2k(m− k)
m(m− 1)

;

(b) G = {QJ(2m,m,i) | i ∈ {0,1, . . . ,+m/2,}} is the family of squashed distance-
i Johnson graphs, where m is a fixed integer with m g 4 (see Section 3.E.3
for details), and

fpr(Γ) =
1
2

(

1−
1

2m− 1

)

;
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3.D · Orbital digraphs for product actions

(c) G = {Lm,Γ1,Γ2}, where Γ1 is a strongly regular graph listed in Section 3.E.4,
Γ2 is its complement, and

fpr(Γ) = fpr(Γ1)

(the fixed point ratios are collected in Table 3.3).

Remark 3.14 · Although we do not assume that a vertex-primitive digraph Γ

in Theorem K is a graph, the assumption of large fixed point ratio forces it to
be such. In other words, every vertex-primitive digraph of relative fixity larger
than 1

3 is a graph.

By analysing the vertex-primitive graphs of fixed point ratio exceeding 1/3,
one can notice that the valency of these graphs must grow as the number of
vertices grows. More explicitly, a careful inspection of the families in TheoremK
leads to the following result.

Corollary L · There exists a constant C such that every finite connected vertex-
primitive digraph Γ with

fpr(Γ) >
1
3

satisfies

val(Γ) g C log(|VΓ|) .

Observe that, for the Hamming graphs H(r,m) with m g 4, we have that

val(H(r,m)) = r(m− 1) g r log(m) = log(|VH(r,m)|) .

In particular, as both expressions are linear in r, a logarithmic bound in Corol-
lary L is the best that can be achieved. Moreover, as the function f(d) appearing
in Theorem 1.28 grows exponentially with d, Corollary L gives a significantly
better growth than what we have found in Corollary J (although the latter also
holds in a considerably larger class of digraphs).

3.D Orbital digraphs for product actions

In Section 3.D, we are interested in reconstructing the orbital digraphs for a
wreath product KwrH endowed with product action once the orbital digraphs
for K are known. Since the concept of wreath product and its product action will
be key in what follows, we start by recalling their definition and basic concepts.
We refer to [45, Section 2.6 and 2.7] for the details we will miss.

Let H be a permutation group on a finite set Ω of degree r. Without loss of
generality, we can identify Ω with the set {1,2, . . . , r}. For an arbitrary set X, we
may define a permutation action of H of rank r over X as the the action of H on
the set Xr given by the rule

(x1,x2, . . . ,xr )
h = (x1h−1 ,x2h−1 , . . . ,xrh−1) .
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3 · Unbounded valency

Let K be a permutation group on a set ∆. (Note that we will not put any
assumption of finiteness on ∆.) We can consider the permutation action of H of
rank r over K by letting

(k1, k2, . . . , kr )
h = (k1h−1 , k2h−1 , . . . , krh−1) for all (k1, k2, . . . , kr ) ∈ K

r , h ∈H .

If we denote by ϑ the homomorphismH → Aut(K r ) corresponding to this action,
then the wreath product of K by H , in symbols KwrH , is the semidirect product
K r ìϑ H . We call K r the base group, and H the top group of this wreath product.

Note that the base and the top group are both embedded into KwrH via the
monomorphisms

(k1, k2, . . . , kr ) 7→ ((k1, k2, . . . , kr ),1H )

and
h 7→ ((1K ,1K , . . . ,1K ),h) .

In this way, we may view the base and the top group as subgroups of the wreath
product and identify an element ((k1, k2, . . . , kr ),h) ∈ KwrH with the product
(k1, k2, . . . , kr )h of (k1, k2, . . . , kr ) ∈ K r and h ∈ H (both viewed as elements of the
group KwrH).

The wreath product KwrH can be endowed with an action on ∆r by letting

(¶1,¶2, . . . ,¶r )
(k1,k2,...,kr )h =

(

¶
k1
1 ,¶

k2
2 , . . . ,¶

kr
r

)h
=

(

¶
k1h−1
1h−1 ,¶

k2h−1
2h−1 , . . . ,¶

krh−1
rh−1

)

,

for all (¶1,¶2, . . . ,¶r ) ∈ ∆r , (k1, k2, . . . , kr ) ∈ K r , and h ∈ H . We call this action the
product action of the wreath product KwrH on ∆r .

We recall the condition for a wreath product endowed with product action
to be primitive.

Lemma 3.15 ([45] Lemma 2.7A) · Let K be a permutation group on ∆ and let H
be a permutation group on Ω, with |Ω| = r. The wreath product KwrH endowed
with the product action on ∆r is primitive if and only if H is transitive on Ω and K
is primitive but not regular on ∆.

We now introduce some notation to deal with a generic subgroup G of the
wreath product Sym(∆)wrSym(Ω) endowed with product action on ∆r .

By abuse of notation, we identify the set ∆ with

{

{¶} ×∆r−1
∣

∣

∣¶ ∈ ∆
}

via the mapping ¶ 7→ {¶} ×∆r−1. We denote by G∆
∆
the permutation group that

G∆ induces on ∆, that is,
G∆
∆ � G∆/G(∆) .

Moreover, recalling that every element of G can be written uniquely as gh,
for some g ∈ Sym(∆)r and some h ∈ Sym(Ω), we can define the group homomor-
phism

È : G→ Sym(Ω), gh 7→ h .
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3.D · Orbital digraphs for product actions

This map defines a permutational representation of G acting on Ω. We denote
byGΩ the permutation group corresponding to the faithful action thatG defines
on Ω, that is,

GΩ
� G/ ker(È) .

A detailed description of primitive wreath product in product action has
been given by L. G. Kovács in [82]. Building on his work, C. E. Praeger and
C. Schneider have given a strong embedding property, which we will implicitly
use quite often.

Theorem 3.16 ([126] Theorem 1.1 (b)) · Let G f KwrH be a permutation group
embedded in a wreath product in product action. Then G is permutationally iso-
morphic to a subgroup of G∆

∆
wrGΩ . Therefore, up to a conjugation in Sym(∆r ), the

group K can always be chosen as G∆
∆
, and H as GΩ .

Lemma 3.17 · Let KwrH be a wreath product endowed with the product action on
∆r , and let

G = {Γ0,Γ1, . . . ,Γk}

be the complete list of the orbital digraphs for K . Then any orbital digraph for KwrH
is a merged product action digraph of the form

P
(

r,G, (j1, j2, . . . , jr )
H
)

,

for a sequence of indices (j1, j2, . . . , jr ) ∈ Xr , where X = {0,1, . . . , k}.

Proof. Let Γ be an orbital digraph for KwrH . Suppose that (u,v) ∈ AΓ, where
u = (u1,u2, . . . ,ur ) and v = (v1, v2, . . . , vr ). We aim to compute the KwrH-orbit of
(u,v), and, in doing so, proving that there is a sequence of indices (j1, j2, . . . , jr ) ∈
Xr such that

AΓ = AP
(

r,G, (j1, j2, . . . , jr )
H
)

.

We start by computing the K r-orbit of (u,v) (where by K r we refer to the base
group of KwrH). Since this action is componentwise, we obtain that

(u,v)K
r
=

{(

(uk11 ,u
k2
2 , . . . ,u

kr
r ), (v

k1
1 , v

k2
2 , . . . , v

kr
r )

)

∣

∣

∣

∣
(k1, k2, . . . , kr ) ∈ K

r
}

=
{

((u′1, . . . ,u
′
r ), (v

′
1, . . . , v

′
r ))

∣

∣

∣ (u′i , v
′
i ) ∈ (ui , vi )

K for all i ∈ {1, . . . , r}
}

= A
(

Γj1 × Γj2 × . . .× Γjr

)

where the last equality follows from the fact that there is a unique index ji ∈ X
such that (ui , vi ) is an arc of Γji . (Recall that orbital graphs partition the arc-set
of the complete digraph on ∆, see Section 1.F.)

The top group H acts by permuting the components, so that

(u,v)KwrH =
⋃

(j ′1,j
′
2,...,j

′
r )∈(j1,j2,...,jr )H

A
(

Γj ′1 × Γj ′2 × . . .× Γj ′r

)

Therefore, the arc-sets of Γ and P
(

r,G, (j1, j2, . . . , jr )H
)

coincide.
As their vertex-sets are both ∆r , the proof is complete.
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According to the O’Nan–Scott classification (see Theorem 1.3), a primitive
permutation group G is said to be of type PA if there exists a transitive group
H f Sym(Ω) and a primitive almost simple group K f Sym(∆) with socle T such
that, for some integer r g 2,

T r f G f KwrH ,

where T r is the socle of G, thus contained in the base group K r . (Be careful!
Type PA in the literature can also refer to primitive group of type CD.) For
our application, we need to build the orbital digraphs for primitive groups of
type PA.

Theorem 3.18 · Let G f Sym(∆)wrSym(Ω) be a primitive group of type PA, and
let T be the socle of G∆

∆
. Suppose that T and G∆

∆
share the same orbital digraphs.

Then the orbital digraphs for G coincide with the orbital digraphs for G∆
∆
wrGΩ , or,

equivalently, for T wrGΩ .

Proof. Since G is a primitive group of product action type, we can suppose that
G is a subgroup ofG∆

∆
wrGΩ with socle T r , where r = |Ω|. Further, we setK = G∆

∆
,

H = GΩ .
As G f KwrH , the partition of ∆r × ∆r in arc-sets of orbital digraphs for

KwrH is coarser than the one for G. Hence, our aim is to show that a generic
orbital digraph for KwrH is also an orbital digraph for G.

Let
G = {Γ0,Γ1, . . . ,Γk}

be the complete list of orbital digraphs for T acting on ∆, and let X = {0,1, . . . , k}.
Observe that the set of orbital digraphs for T r can be identified with the Carte-
sian product of r copies of G: indeed, we can bijectively map the generic orbital
digraph for T r , say Γj1 × Γj2 × . . . × Γjr , for some (j1, j2, . . . , jr ) ∈ Xr , to the generic
r-tuple of the Cartesian product Gr of the form (Γj1 ,Γj2 , . . . ,Γjr ). This point of view
explains why H can act on the set of orbital digraphs for T r with its action of
rank r.

Observe that the set of orbital digraphs for T r is equal to the set of orbital
digraphs for K r . Moreover, T r is a subgroup of G, and K r is a subgroup of
KwrH . Thus the orbital digraphs forG and for KwrH are obtained as a suitable
unions of the elements of Gr .

By Lemma 3.17, the orbital digraphs for KwrH are of the form
⋃

(j ′1,j
′
2,...,j

′
r )∈(j1,j2,...,jr )H

Γj ′1 × Γj ′2 × . . .× Γj ′r ,

for some (j1, j2, . . . , jr ) ∈ Xr . Aiming for a contradiction, suppose that

Γj1 × Γj2 × . . .× Γjr and Γi1 × Γi2 × . . .× Γir

are two distinct orbital digraphs for T r that are merged under the action of the
top group H , but they are not under the action of G. The first proportion of the
assumption yields that there is an element h ∈H such that

(

Γj1 × Γj2 × . . .× Γjr

)h
= Γi1 × Γi2 × . . .× Γir .
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3.E · Daily specials

By definition of H = GΩ , there is an element in G of the form

(g1, g2, . . . , gr )h ∈ G.

Recalling that, for any i = 1,2, . . . , r, gi ∈ K , we get

(

Γj1 × Γj2 × . . .× Γjr

)(g1,g2,...,gr )h = Γi1 × Γi2 × . . .× Γir .

Therefore, the merging among these orbital graphs is also realised under the
action of G, a contradiction.

By the initial remark, the proof is complete.

3.E Daily specials

The aim of Section 3.E is to give a descriptions of the digraphs appearing in The-
orem K. We also compute the fixed point ratio for their automorphism groups.

3.E.1 Generalised Hamming graphs

We start by clarifying Remark 3.11.

Lemma 3.19 · LetH f Sym(r) be a transitive permutation group, letG = Alt(∆)wrH
endowed with the product action on ∆r , and let Γ be a digraph with vertex-set VΓ =
∆r . Then G f Aut(Γ) if and only if Γ is a generalised Hamming graph H(r,m,J ),
where |∆| =m and J ¦ {0,1}r is H-invariant.

Proof. By applying Lemma 3.17 to the group G, we obtain, in view of Defini-
tion 3.10, that Γ is a generalised Hamming graphH(r,m,J ), with the prescribed
properties that |∆| = m and J ¦ {0,1}r is H-invariant. This completes the proof
of the left-to-right direction of the equivalence.

Let us now deal with the converse implication. Let Γ = H(r,m,J ), where
|∆| = m and J ¦ {0,1}r is H-invariant. Remark 3.13 gives us the opportunity
of writing a normal form for the Hamming graph H(r,m,J ). Indeed, consider
the rearrangement of the entries of the vectors in J such that the representative
of each orbit is a vector whose first entries are all 1, while the last ones are all
0. More explicitly, up to reordering of the Cartesian components, there are two
nonnegative integers a,b with a+ b f r such that

J =



















a+j
∑

i=a

ei

∣

∣

∣

∣

∣

∣

∣

∣

j ∈ {0, . . . , b}



















H

,

where ei denotes the r-tuple whose only nonzero entry is in the i-th position.
Substituting this J in Construction 3.8 and Definition 3.10, we obtain

H(r,m,J ) =
⋃

h∈H















b
⋃

i=0

Ka+im ×Lr−a−im















h

.
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Observe that the automorphism group of a Cartesian product of digraphs con-
tains the Cartesian product of the automorphism group of the factors. Since
the automorphism groups of Km,Lm or Km ∪Lm are isomorphic to Sym(m), the
previous observation implies

Alt(m)r f Aut















b
⋃

i=0

Ka+im ×Lr−a−im















.

Moreover, as J is H-invariant, the action of rank r that H induces on ∆r pre-
serves the arc-set of H(r,m,J ). As G is generated by Alt(m)r and H in their
actions on ∆r , this implies that G f Aut(Γ), as claimed.

For the sake of clarity, we would like to stress the fact that, in Lemma 3.19,
the parameters m and r are not unique and they do not depend on Γ alone, but
rather they depend on the Cartesian product ∆r which G preserves. It follows
that multiple groups with such property for distinct Cartesian products can be
found in Aut(Γ). For instance, we can consider H(2,4), whose automorphism
group is isomorphic to Sym(2)wrSym(4). Let P be the Sylow 2-subgroup of
Sym(4) (which is isomorphic to the dihedral group of degree 4), and let G =
Sym(2)wrP. Since P defines two blocks of imprimitivity of size 2, we find that
G fixes both the usual Cartesian product, and a Cartesian decomposition on two
parts.

On the other hand, note that, for every generalised Hamming graph Γ, as
|VΓ| is finite, the integer

m(Γ) := max {m ∈N|Γ is isomorphic to H(m,r,J )}

is well-defined. We would like to always choosem in such a way, as this guaran-
tees that

Alt(m)r f Aut(Γ) f Sym(m)wrSym(r) .

Definition 3.20 · We say that the parameterm of a generalised Hamming graph
H(m,r,J ) is optimal whenever

m =m (H(m,r,J )) .

Instead of directly computing the relative fixity of H(r,m,J ), we prove the
following, slightly stronger, result.

Lemma 3.21 · Let KwrH be a wreath product endowed with the product action on
∆r , and let Γ be a digraph with vertex set ∆r . Suppose that

KwrH f Aut(Γ) f Sym(∆)wrSym(r) .

Then

fpr(Γ) = 1−
µ (Aut(Γ)∩ Sym(∆)r )

|VΓ|
.

In particular, whenever the parameter m is optimal in the sense of Definition 3.20,
the fixed point ratio of a generalised Hamming graph is

fpr(H(r,m,J )) = 1−
2
m
.
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Proof. For simplicity’s sake, let us write |∆| = m. We claim that the automor-
phism that realizes the minimal support size must be contained in Aut(Γ) ∩
Sym(m)r (where Sym(m)r is the base group of Sym(m)wrSym(r)). Indeed, upon
choosing an element of minimal support size in K × {id} × . . . {id} and a transpo-
sition from the top group in Sym(m)wrSym(r), we obtain the inequalities

µ (Aut(Γ)∩ Sym(m)r ) f µ(K)mr−1

f (m− 1)mr−1

fmin {|supp(g)| | g ∈ Aut(Γ)− Sym(m)r}

This is enough to prove the first proportion of the statement.
Since H(r,m,J ) could be realized by multiple choices of the parameters m

and r, we choose m to be optimal in the sense of Definition 3.20. This as-
sumption guarantees that the automorphism group of the graph embeds into
Sym(m)wrSym(r). In particular, it is enough to look at the action of Sym(m) on a
single component. Thus, upon choosing a transposition in Sym(m)×{id}×. . . {id},
we obtain

fpr(H(r,m,J )) = 1−
2mr−1

mr
= 1−

2
m
.

3.E.2 Distance-i Johnson graphs

The nomenclature dealing with possible generalisations of the Johnson graph is
surprisingly lush. Here, we are adopting the one from [76].

Let m,k, i be integers such that m g 1, 1 f k f m and 0 f i f k. A distance-i
Johnson graph, denoted by J(m,k, i) is a graph whose vertex-set is the family of
k-subsets of {1,2, . . . ,m}, and such that two k-subsets, say X and Y , are adjacent
whenever |X ∩ Y | = k − i. The usual Johnson graph is then J(m,k,1), and two
k-subsets X and Y of {1,2, . . . ,m} are adjacent in J(m,k, i) if and only if they are
at distance i in J(m,k,1).

Lemma 3.22 · Let m,k be two positive integers such that m g 2k + 2. The orbital
digraphs of Alt(m) and of Sym(m) in their action on k-subsets are the distance-i
Johnson graphs J(m,k, i), one for each choice of i ∈ {0,1, . . . , k}.

Proof. Suppose that two k-subsets X and Y of {1,2, . . . ,n} are such that (X,Y ) is
an arc of the considered orbital digraph and |X ∩ Y | = k − i, for a nonnegative
integer i f k. Since Alt(m) is (m − 2)-transitive and 2k f m − 2, the Alt(m)-orbit
of the arc (X,Y ) contains all the pairs (Z,W ), where Z andW are k-subsets with
|Z ∩W | = k − i. Therefore, the statement is true for the alternating group. The
same proof can be repeated verbatim for Sym(m).

Lemma 3.23 · Let m,k, i be three positive integers such that m g 2k + 2 and i < k.
Then the fixed point ratio of the distance-i Johnson graphs J(m,k, i) is

fpr(J(m,k, i)) = 1−
2k(m− k)
m(m− 1)

.

Proof. Under our assumption, by [75, Theorem 2 (a)], the automorphism group
of J(m,k, i) is Sym(m) in its action on k subsets. Its minimal degree is achieved
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3 · Unbounded valency

by any transposition (see [64, Section 1]), where

µ (Sym(m)) = 2
(

m− 2
k − 1

)

.

Hence, we find that

fpr(J(m,k, i)) = 1−
2k(m− k)
m(m− 1)

.

3.E.3 Squashed distance-i Johnson graphs

As we have seen in Section 1.J, a routine construction in the realm of distance
transitive graphs consists in obtaining smaller example starting from a distance
transitive graph and identifying antipodal vertices. We need to apply this idea
to a family of generalised Johnson graphs.

Consider the distance-i Johnson graph J(2m,m,i), for some integers m and
i, with m positive and 0 f i f m. We say that two vertices of J(2m,m,i) are dis-
joint if they have empty intersection as m-subset. Observe that being disjoint
is an equivalence relation, and our definition coincides with the usual notion
of antipodal for J(2m,m,1) seen as a metric space. We can build a new graph
QJ(2m,m,i) whose vertex-set is the set of equivalence classes of the disjoint re-
lation, and such that, if [X] and [Y ] are two vertices, then ([X], [Y ]) is an arc in
QJ(2m,m,i) whenever there is a pair of representatives, sayX ′ ∈ [X] and Y ′ ∈ [Y ],
such that (X ′ ,Y ′) is an arc in J(2m,m,i). We callQJ(2m,m,i) a squashed distance-i
Johnson graph.

Observe that J(2m,m,i) is a regular double cover of QJ(2m,m,i). Further-
more, QJ(2m,m,i) and QJ(2m,m,m − i) are isomorphic graphs, thus we can re-
strict the range of i to {0,1, . . . ,+m/2,}.

Lemma 3.24 · Let m g 3 be an integer. The orbital digraphs of Alt(2m) and of
Sym(2m) in their primitive actions with stabilizer (Sym(m)wrC2) ∩ Alt(2m) and
Sym(m)wrC2 respectively are the squashed distance-i Johnson graphs QJ(m,k, i),
one for each choice of i ∈ {0,1, . . . ,+m/2,}.

Proof. To start, we note that the set Ω on which the groups are acting can be
identified with the set of partitions of the set {1,2, . . . ,2m} with two parts of
equal size m. Suppose that {X1,X2} and {Y1,Y2} are two such partitions and that
({X1,X2}, {Y1,Y2}) is an arc of the orbital digraph we are building, with

min{|X1 ∩Y1|, |X1 ∩Y2|} =m− i ,

for a nonnegative integer i f +m/2,. To determine the image of ({X1,X2}, {Y1,Y2})
under the group action, it is enough to know the images of X1 and Y2, that is,
of at most 2m − +m/2, f 2m − 2 distinct points. By the (2m − 2)-transitivity of
Alt(2m), the Alt(2m)-orbit of ({X1,X2}, {Y1,Y2}) contains all the arc of the form
({Z1,Z2}, {W1,W2}), where {Z1,Z2}, {W1,W2} ∈Ω and

min{|Z1 ∩W1|, |Z1 ∩W2|} =m− i .
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To conclude, observe that Ω is the set of m-subsets of {1,2, . . . ,2m} in which two
elements are identified if they are disjoint, and that

min{|X1 ∩Y1|, |X1 ∩Y2|} =m− i ,

is the adjacency condition in an squashed distance-i Johnson graph. As in the
proof of Lemma 3.22, the same reasoning can be exteneded to Sym(2m). There-
fore, the orbital digraphs of Alt(2m) and of Sym(2m) in these primitive ac-
tions are the squashed distance-i Johnson graphs QJ(2m,m,i), for some index
i ∈ {0,1, . . . ,+m/2,}.

Lemma 3.25 · Let m,i be two positive integers such that m g 3 and i < +m/2,.
Then the fixed point ratio of the distance-i Johnson graphs QJ(2m,m,i) is

fpr(QJ(2m,m,i)) = 1−
2k(m− k)
m(m− 1)

.

Proof. Consider J(2m,m,i), the regular double covering of QJ(2m,m,i). In view
of [75, Theorem 2 (e)], the automorphism group of J(2m,m,i) is Sym(2m) ×
Sym(2), where the central involution swaps pairs disjoint vertices. It follows
that the automorphism group of QJ(2m,m,i) is Sym(2m). Now, we can imme-
diately verify that the stabilizer of the vertex {{1,2, . . . ,m}, {m + 1,m + 2, . . . ,2m}}

is Sym(m)wrC2. The minimal degree of the primitive action of Sym(2m) with
stabilizer Sym(m)wrC2 is

µ (Sym(2m)) =
1
4

(

1+
1

2m− 1

) (2m)!
m!2

(see [27, Theorem 4]). Thus, we find that

fpr(QJ(2m,m,i)) =
1
2

(

1−
1

2m− 1

)

.

3.E.4 Strongly regular graphs

We list all the strongly regular graphs appearing as Γ1 in Theorem K (c). We
divide them according to the socle L of the almost simple group that acts on
them. (We point out that this list keeps the same enumeration as the one of the
corresponding socles in Theorem 3.7 (e).)

(i) L = U4(q), q ∈ {2,3}, acting on totally singular 2-dimensional subspaces
of the natural module, two vertices of Γ are adjacent if there is a third 2-
dimensional subspace that intersect both vertices in a 1-dimensional sub-
space (see [24, Section 2.2.12]);

(ii) L = Ω2m+1(3),m g 2, acting on the singular points of the natural mod-
ule, two vertices of Γ are adjacent if they are orthogonal (see [24, Theo-
rem 2.2.12]);

(iii) L =Ω2m+1(3),m g 2, acting on the nonsingular points of the natural mod-
ule, two vertices of Γ are adjacent if the line that connects them is tangent
to the quadric where the quadratic form vanishes (see [24, Section 3.1.4]);
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(iv) L = PΩϵ
2m(2),ϵ ∈ {+,−},m g 3, acting on the singular points of the natu-

ral module, two vertices of Γ are adjacent if they are orthogonal (see [24,
Theorem 2.2.12]);

(v) L = PΩϵ
2m(2),ϵ ∈ {+,−},m g 2, acting on the nonsingular points of the nat-

ural module, two vertices of Γ are adjacent if they are orthogonal (see [24,
Section 3.1.2]);

(vi) L = PΩ+
2m(3),m g 2 acting on the nonsingular points of the natural mod-

ule, two vertices of Γ are adjacent if they are orthogonal (see [24, Sec-
tion 3.1.3]);

(vii) L = PΩ−
2m(3),m g 3 acting on the singular points of the natural mod-

ule, two vertices of Γ are adjacent if they are orthogonal (see [24, Theo-
rem 2.2.12]);

(viii) L = PΩ−
2m(3),m g 2 acting on the nonsingular points of the natural mod-

ule, two vertices of Γ are adjacent if they are orthogonal (see [24, Sec-
tion 3.1.3]).

All the permutation groups described have rank 2. We recall that all the
groups of rank 3 define two strongly regular graphs as their nondiagonal orbital
graph. Hence, we do not need to waste any ink to show that these graphs are
actually strongly regular.

Table 3.3 collects the usual parameters of a strongly regular graph, (v,d,¼,µ),
and their relative fixity. Recall that v is the number of vertices, d is the valency
of the graph, ¼ is the number of common neighbours between two adjacent ver-
tices, and µ is the number of common neighbours between two nonadjacent ver-
tices. As µ(G) can be found in [27, Theorem 4], the fixed point ratio is computed
as

fpr(Γ) = 1−
µ(G)
v

.

3.F Proofs of Theorem K and Corollary L

All our tools are sharp enough to prove Theorem K. This proof takes most of
Section 3.F.

Proof of Theorem K. The proof is split in two independent chunks. First, we
prove that every vertex-primitive digraph whose fixed point ratio exceeds 1

3 be-
longs to one of the families appearing in Theorem K. Then, we tackle the prob-
lem of computing the relative fixities of the graphs appearing in Theorem K,
thus showing that they indeed all have fixed point ratios larger than 1

3 .
Assume that Γ is a digraph on n vertices with at least one arc and with

fpr(Γ) > 1
3 such that G = Aut(Γ) is primitive. If Γ is disconnected, then the prim-

itivity of G implies that Γ is isomorphic to the loop graph Ln. Hence, we may
assume that Γ is connected. Moreover, fpr(Γ) > 1

3 implies that µ(G) < 2n
3 . Hence

G is one of the groups determined in [27] and described in Theorem 3.7.
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Suppose that G is an almost simple group. Then G is one of the groups ap-
pearing in parts (a)− (e) of Theorem 3.7. Since any G-vertex-primitive graph is
a union of orbital digraphs for G, the digraphs arising from these cases will be
merged product action digraphs P (1,G,J ) (see Remark 3.9). Hence, our goal is
to consider these almost simple groups in turn and compile their list of orbitals
digraphs G.

Let G be a group as described in Theorem 3.7 (a). Lemma 3.22 states the
orbital digraphs for G are the distance-i Johnson graph J(m,k, i).

Assume that k = 1, that is, consider the natural action of either Alt(m) or
Sym(m) of degree m. Since this action is 2-transitive, their set of orbital di-
graphs is G = {Lm,Km}. In particular, P (1,G,J ) = H(1,m,J ). This case exhausts
the generalised Hamming graphs with r = 1, which appear in Theorem K (i).
Therefore, in view of Remark 3.12, for as long as we suppose r = 1, we can also
assume that J is a non-Hamming homogeneous set. Observe m g 4, otherwise,
we go against our assumption on the fixed point ratio.

Going back to distance-i Johnson graphs, we have to take k g 2 to guarantee
that J is non-Hamming. Thus,

G = {J(m,k, i) | i ∈ {0,1, . . . , k}} ,

which corresponds to Theorem K (ii)(a).
Let G = Sym(2m) be a permutation group from Theorem 3.7 (b). Ifm = 2, the

degree of G is 3, and the relative fixity of any action of degree 3 can either be 0
or 1

3 . Hence, we must suppose that m g 3: by Lemma 3.24, the orbital digraphs
for G are the squashed distance-i Johnson graph QJ(2m,m,i). We obtain that

G = {QJ(2m,m,i) | i ∈ {0,1, . . . ,+m/2,}} ,

as described in Theorem K (ii)(b).
Let G = M22 : 2 in the action described in Theorem 3.7 (c). Consulting the

list of all the primitive groups of degree 22 in Magma [20] (which is based on
the list compiled in [43]), we realize that they are all 2-transitive. Hence, the set
of orbital digraphs is G = {K22,L22}. In particular, all the graphs are generalised
Hamming graphs.

Let G be an almost simple of Lie type appearing in Theorem 3.7 (d). Since all
these groups are 2-transitive with a 2-transitive socle L, their orbital digraphs
are either Km or Lm, where m g 7 is the degree of G. Once again, we obtain only
generalise Hamming graphs.

Let G be an almost simple of Lie type described in Theorem 3.7 (e). Any
group of permutational rank 3 defines two nondiagonal orbital digraphs, and,
as such digraphs are arc-transitive and one the complement of the other, they
are strongly regular digraphs (see, for instance, [24, Section 1.1.5]). The set of
orbital digraphs is of the form G = {Lm,Γ1,Γ2}, where we listed the possible Γ1
in Section 3.E.4, and where m = |VΓ1|. The graphs described in this paragraph
appear in Theorem K (ii)(c).

We have exhausted the almost simple groups from Theorem 3.7.

Suppose that G f KwrSym(r) is a primitive group of type PA. Recall that G
appears in Theorem 3.7 (f ). We want to apply Theorem 3.18 to G. The only
hypothesis we miss is that T and G∆

∆
share the same set of orbital digraphs.
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We claim that T and K induces the same set of orbital digraphs. If K is either
alternating or symmetric, the claim follows from Lemmas 3.22 and 3.24. If K
is 2-transitive, then we can observe that its socle L is also 2-transitive: the socle
of M22 : 2 is T =M22 in its natural 3-transitive action, while the socle T of the
almost simple groups of Lie type of rank 2 is 2-transitive by [31, Section 5]. In
particular, K and T both have G = {Lm,Km} as their set of orbital graphs. Finally,
suppose that K is an almost simple group of permutational rank 3. We have that
its socle T is also of permutational rank 3 by [79, Theorem 1.1]. Observe that,
since any orbital digraph for T is a subgraph of an orbital digraph for K , the fact
that K and T both have permutational rank 3 implies that they share the same
set of orbital digraphs. Therefore, the claim is true.

By our claim together with the double inclusion

T f G∆
∆ f K ,

we obtain that T ,G∆
∆
and K all induce the same set of orbital digraphs. There-

fore, we can apply Theorem 3.18 to G: we obtain that G shares its orbital graphs
with T wrGΩ .

Therefore, all the G-vertex-primitive digraphs are union of orbital digraphs
for T wrH , with T the socle type of G and H a transitive permutation group
isomorphic to GΩ . In other words, we found all the graphs P (r,G,J ) with r g
2 described in Theorem K. (Recall that, by Definition 3.10, among the graphs
P (r,G,J ), we find all the generalised Hamming graphs.)

Suppose that G is an affine group. Then the regular socle N is an elementary
abelian 2-subgroup. We have that G can be written as the split extension N ìH ,
where H is a group of matrices that acts irreducibly on N . It follows that G is 2-
transitive onN , hence, as |N | g 4, the graphs arising in this scenario are L|N |,K|N |

and L|N | ∪K|N |, which are generalised Hamming graphs.

We have completed the first part of the proof, showing that the list of vertex-
primitive digraphs appearing in Theorem K is exhaustive. As all the orbital
digraphs in G are actually graphs, the same property is true for the graphs in
the list, as we have underlined in Remark 3.14.

We can now pass to the second part of the proof, that is, we can now tackle
the computation of fixed point ratios. We already took care of the generalised
Hamming graphs in Lemma 3.21. Thus, we can suppose that Γ is a merged
product action graph P (r,G,J ) appearing in Theorem K (ii).

Suppose that r = 1, that is, Γ is a union of graphs for some primitive al-
most simple group K . (We are tacitly assuming that K is maximal among the
groups appearing in a given part of Theorem 3.7.) In view of [88, Theorem], we
have that K is a maximal subgroup of either Alt(|VΓ|) or Sym(|VΓ|). Therefore,
there are just two options for Aut(Γ): either it is isomorphic to K or it contains
Alt(|VΓ|). In the latter scenario, as Alt(|VΓ|) is 2-transitive on the vertices, we
obtain that Γ ∈ {Lm,Km,Lm ∪Km}. All those graphs are generalised Hamming
graphs, against our assumption on Γ. Therefore, we have K = Aut(Γ). In par-
ticular, the relative fixity for Γ are computed in Lemma 3.23, Lemma 3.25 or
Table 3.3 given that G is described in Theorem K (ii)(a), (ii)(b) or (ii)(c) respec-
tively.
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Suppose now that r g 2. The automorphism group of Γ either embeds into
Sym(m)wrSym(r), where m = |VΓi | for any Γi ∈ G, or, by maximality of the
wreath product Sym(m)wrSym(r), Aut(Γ) = Sym(mr ). In the latter scenario,
Γ ∈ {Lm,Km,Lm ∪ Km}. All these graphs can be written as a merged product
graph where r = 1 and J is a Hamming set. This goes against our assumption
on Γ, thus we must suppose Aut(Γ) , Sym(mr ).

As a consequence, we obtain that, for some almost simple group K listed in
Theorem 3.7 (a)−(e), and for some transitive groupH f Sym(r), KwrH f Aut(Γ).
Note that, as K f Aut(Γ)∆

∆
, by [88, Theorem], Aut(Γ)∆

∆
is either K or it contains

Alt(m). If the latter case occurs, then Alt(m)rwrH f Aut(Γ). By Lemma 3.19, Γ
is a generalised Hamming graph, which contradicts our choice of Γ. Therefore,
Aut(Γ) f KwrSym(r).

Observe that we can apply Lemma 3.21. We obtain that

fpr(Γ) = 1−
µ(K)mr−1

mr
= 1−

µ(K)
m

= fpr(P (1,G,J ′)) ,

for some non-Hamming homogeneous set J ′. In particular, the fixed point ra-
tios for r g 2 coincides with those we have already computed for r = 1. This
complete the proof.

We conclude Section 3.F with the proof of Corollary L.

Proof of Corollary L. Note that, upon taking union of digraphs, the valency can
only increase. Thus, to give a lower bound to the valency, we can assume, with-
out loss of generality, that Γ is an orbital graph (that is, we chose J in TheoremK
to be a single orbit). We split the discussion between the cases r = 1 and r g 2.

Assume that r = 1. If Γ is a generalised Hamming graph as in Theorem K (i),
then Γ is either Km or Lm ∪Km, for some m g 4. In particular,

|VΓ| =m− 1 g log(m) = log(|VΓ|) .

Suppose that Γ = P (1,G,J ) is a merged product action graph. If G is as in
Theorem K (ii)(a), then Γ is isomorphic to a distance-i Johnson graph. Among
them, the minimal valency is achieved by the proper Johnson graph, that is,
i = 1, whose valency is k(m− k). Hence, we obtain

val(Γ) g k(m− k) g k
m

2
g k log(m) g log

((

m

k

))

= log(|VΓ|) .

Suppose that G is described in Theorem K (ii)(b), that is, if Γ is a squashed
distance-i Johnson graph. As the Johnson distance-i graph with k = m/2 is a
regular double cover of Γ, and the previous inequalities holds also if k = m/2,
we conclude in the same way.

To conclude the case r = 1, we have to choose G as in Theorem K (ii)(c). A
direct inspection of Table 3.3 reveals that |VΓ| g 6 and

val(Γ) g
|VΓ|

3
g log(|VΓ|) .
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Observe that, in all the cases, we showed that the constant C is greater than
1.

Assume that r g 2. Suppose that Γ is either a generalised Hamming graph
H(r,m,J ) or a merged product action graph P (r,G,J ), where J = jH for some
transitive H f Sym(r) and some j = (j1, j2, . . . , jr ) ∈ Xr . Recall that we have sup-
pose that Γ0 = Lm, thus val(Γ0) = 1. Observe that, by applying the Orbit Stabilizer
Lemma on the rank r action,

val(Γ) =
∣

∣

∣jH
∣

∣

∣ · val
(

Γj1

)

val
(

Γj2

)

. . .val
(

Γjr

)

.

For any x = (x1,x2, . . . ,xr ) ∈ Xr , we define

w(x) =
r

∑

i=1

1− ¶(0,xi ) .

(By ¶(a,b) we are denoting the Kronecker delta between a and b.) To guarantee
connectedness, at least one of the indices ji must be nonzero, which implies that
w(j) g 1. Moreover, since H is transitive, we can compute

|jH |w(j) =
∑

x∈jH

w(x) g r .

Hence,
|jH | g

r

w(j)
.

Therefore, upon setting w = w(j) and d =min{val(Γi ) | Γi ∈ G, i , 0}, we obtain

val(Γ) gmin
{

dw
r

w

∣

∣

∣

∣
1 f w f r

}

.

Recall that, by Construction 3.8, |VΓ| = |VΓj1 |
r . By the case with r = 1, we have

d g C log(|VΓj1 |), for a universal constant C g 1. Also, for any m g 4 and for any
w g 1, a direct computation shows that

log(m)w−1

w
g
e log(log(4))

log(4)
g 0.64.

We conclude

val(Γ) gmin
{

dw
r

w

∣

∣

∣

∣
1 f w f r

}

gmin
{

Cw log(|VΓj1 |)
w r

w

∣

∣

∣

∣
1 f w f r

}

=min
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











log(|VΓ|)

gmin















log(|VΓj1 |)
w−1

w

∣

∣

∣

∣

∣

∣

1 f w f r















log(|VΓ|)

g 0.64 · log(|VΓ|)

This concludes the proof with the universal constant C = 0.64.
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3.G Bounding the exponent

Let G be a finite group. The exponent of G is the minimal positive integer e such
that, for every g ∈ G, ge = 1, and we denote it by exp(G).

LetG be a group of automorphisms of a connected d-valent graph with finite
vertex-stabilizer. (In this section, we need not to require the graph to be finite:
indeed, all the results mentioned holds for locally finite graphs.) The exponent
ofG is loosely related to the diameter of the graph. In particular, no information
about exp(G) can be gathered from local information on G.

On the other hand, the situation seems different if we consider the exponent
of a vertex-stabilizer. For instance, let ³ be a vertex, and suppose that the local
group of the pair (Γ,G) is graph-restrictive. Then, if f(d) is a function such that
|G³ | f f(d), then, as the exponent divides the order of the group,

exp(G³) f |G³ | f f(d) .

Moreover, a direct inspection of the amalgams described in Section 1.H shows
that there is a universal constant C that bounds from above the order of G³ for
all graphs of order 3 and 4.

As for Definition 1.34, we introduce a name for the local groups showing
this behaviour.

Definition 3.26 · Let L be a permutation group. We say that L is exponent-
restrictive if there is a constant e(L) such that, for every pair (Γ,G) with Γ a locally
finite connected graph, G a vertex-transitive group of automorphism with finite
vertex-stabilizer, and local group L,

|G³ | f e(L) .

We are aware of one class of local group that are not graph-restrictive but
are exponent-restrictive. The following notion, introduced in [157], is quite in-
volved, so we number it for future reference.

Definition 3.27 · Let p be a prime and let L be a transitive permutation group
acting on a set Ω. Then L is weakly p-subregular provided that there exist points
x,y ∈Ω such that |Lx | = |Ly | = p and xM ∪ yM =Ω, whereM = ïLx,Lyð.

For instance, any dihedral group in its natural action is weakly 2-subregular.
Indeed, choose any two points, say x and y, and, if the degree is even, impose
that y does not belong to the orbit of x under the cyclic subgroup whose degree
is half of the original. We have that Lx = C2, and thatM is, if the degree is odd,
the whole dihedral group or, when the degree is even, the dihedral subgroup of
index 2 while x and y belong to the two distinct orbits.

Theorem M · Let p be a prime, and let L be a weakly p-subregular permutation
group. Then L is exponent-restricitive of constant

e(L) = p3 exp(L) .

In particular, every dihedral group is exponent-restrictive.
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3.G.1 Proof of Theorem M

This proof of Theorem M is taken from an unpublished note of P. Potočnik and
P. Spiga. It heavily relies on two theorems of G. Glauberman (see Theorem 3.28
below). We start by introducing the notation needed to state them.

Let G be a group, and let i be a positive integer. We denote by µi(G) the i-th
term of the lower central series, which is defined inductively by putting µ1(G) = G,
and for every i g 2, µi(G) = [µi−1(G),G]. Furthermore, suppose that G is a p-
group. We define

Ωi(G) = ïg | g ∈ G,gp
i
= 1ð

and
℧
i(G) = ïgp

i
| g ∈ Gð .

Finally, the Thompson subgroup of G, denoted by J(G), is the subgroup generated
by all abelian subgroups of maximal order.

Theorem 3.28 ([61] Theorem 1, and [62] Theorem 1) · Let p be a prime, let P
be a finite p-group, let Q and R be subgroups of P of index p, let ϕ : Q → R be a
group isomorphism, and let N be the group generated by all subgroups T of P such
that Tϕ = T . Then N is normal in P. Let c be the nilpotency class of P/N . Then P
satisfies at least one of the following conditions:

(i) Ω1(Z(P)) =Ω1(Z(Q)) =Ω1(Z(R));

(ii) J(P) = J(Q) = J(R);

(iii) P/N is abelian;

(iv) one of the following holds:

(a) p = 2, c f 2 and

µc+2(P)℧
c+1(P) = µc+2(Q)℧c+1(Q) = µc+2(R)℧

c+1(R);

(b) p = 3, c f 3, and

µc+2(P)℧
2(P) = µc+2(Q)℧2(Q) = µc+2(R)℧

2(R);

(c) p g 5, c f 3, and

µc+2(P)℧
1(P) = µc+2(Q)℧1(Q) = µc+2(R)℧

1(R).

The normality of N in P is essentially due to Sims (see [139]), and the proof
can be found in [61, Proposition 2.1].

What wewill be using is actually the following consequence of Theorem 3.28.

Corollary 3.29 · Let G be a group, let P be a p-subgroup of G, and let Q be a
subgroup of P of index p. Further, let g ∈ G and let N be the group generated by all
the subgroups of Q normalised by g . Then N is normal in P. Furthermore, one of the
following holds:
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3 · Unbounded valency

(i) there exists a nontrivial subgroup of Q which is characteristic in P and Q and
is normalised by g ;

(ii) the exponent of P is at most p3 (more precisely, it is at most p2 if p = 3 and is
p if p g 5);

(iii) P/N is abelian.

Proof. We are considering each of the cases of Theorem 3.28 in turn.

Suppose Theorem 3.28 (i) occurs. Note thatΩ1(Z(P)) is characteristic in both P
and Q. Compute

Ω1(Z(P))
g =Ω1(Z(Q))g =Ω1(Z(Q

g )) =Ω1(Z(Q)) =Ω1(Z(P)).

The previous equality implies that Ω1(Z(P)) is normalized by g (thus it is also
characteristic in Pg ). Moreover, as P is a p-group, Ω1(Z(P)) is the non-trivial
subgroup of Q described in Corollary 3.29 (i).

Suppose Theorem 3.28 (ii) occurs. By applying the same reasoning, we get that
J(P) is the non-trivial subgroup of Q described in Corollary 3.29 (i).

Suppose Theorem 3.28 (iii) occurs. This is the same as asking that Corol-
lary 3.29 (iii) holds.

Suppose Theorem 3.28 (iv) occurs. Since the prime p is already understood, let
us write µ(P) and ℧(P) without their appropriate indices. We have two possi-
bilities: either µ(P)℧(P) is trivial, or it is not. In the former case, as µ(P)℧(P) is
trivial, a fortiori℧(P) is trivial, hence Corollary 3.29 (ii) holds. In the latter case,
if µ(P)℧(P) is a nontrivial characteristic subgroup of Q and of P. Hence, we can
replicate the reasoning we used for the first and second item, thus obtaining
that Corollary 3.29 (i) holds.

We can now dive in the proof of Theorem M.

Proof of Theorem M. Let Γ be a connected graph, and let G be an arc-transitive
group of automorphisms. We can choose a vertex ³ whose associated local group
is weakly p-subregular for some prime p. Recall that by G [1]

³ we denote the
kernel of the action of G³ on the neighbourhood Γ(³). By Definition 3.27, there
exist two neighbours of ³, say ´ and µ , such that

|G
Γ(³)
³´ | = |G

Γ(³)
³µ | = p ,

and such that ´M ∪µM = Γ(³), where

M = ïG
Γ(³)
³´ ,G

Γ(³)
³µ ð .

To simplify the notation (and to foreshadow howwewill apply Corollary 3.29),
we let

P = G³´ and Q = G [1]
³ .

Note that, since the point-stabilizer of the local group has order p, by the Orbit
Stabilizer Lemma, the index of Q in P is p. Moreover, by adapting the proof

136



3.G · Bounding the exponent

of Lemma 1.32, we can show that P is a p-group. Indeed, aiming for a contra-
diction, let t ∈ P be a nontrivial element of P whose order is coprime with p.
Observe that, as |P : Q| = p, t fixes the neighbourhood of ³. Let ¶ be a vertex at
minimal distance from ³ such that ¶t and ¶ are distinct. By connectedness of Γ,
there is a path (¶′′ ,¶′ ,¶) such that (¶′′ ,¶′) is an edge fixed by t. In particular,

t ∈ G
Γ(¶′)
¶′′¶′ .

As p does not divide the order of t, this contradicts the fact that the order of the
group underlying the local group is p. Hence, the claim is proved.

Now, let g be an element of G mapping the arc (´,³) to the arc (³,µ). We
define

H = ïP,gð .

We observe that G³µ = Pg is a subgroup of H .

Let us show that H acts transitively on the edge-set of Γ. By the way of
contradiction, suppose that this is not the case. Suppose that {µ,¿} is an edge of
Γ such that, among those edges outside of {³,´}H , µ is an endpoint at minimal
distance from ³. Note that, as Γ is connected, our choice of µ yields that there is
a vertex É such that {É,µ} ∈ {³,´}H .

We let
E³ = {{³,¶} | ¶ ∈ Γ(³)}

be set of edges incident with ³. We observe that, since Definition 3.27 requires
ïP,Pgð to be transitive on the neighbourhood of ³, E³ is contained in theH-orbit
of {³,´}.

By the choice of µ, there exists an automorphism h ∈H such that

{É,µ}h = {³,´} .

If µh = ´, we put t = hg−1, and if µh = ´, we put t = h. In either case, we see that
t ∈H and µt = ³. Moreover t maps {µ,¿} in E³ . Thus

{µ,¿} ∈ {³,´}H ,

contradicting our assumptions. This proves our claim that H acts transitively
on the edges of Γ.

We can now consider the cases of Corollary 3.29 in turn.

Suppose Corollary 3.29 (i) occurs. Then there exists a non-trivial character-
istic subgroup K of P contained in Q such that Kg = K . In particular, K is
normal in H , and hence fixes every arc of Γ, contradicting the assumption that
G acts faithfully on the vertices of Γ. This contradiction shows that the case (i)
of Lemma 3.29 cannot occur.

Suppose Corollary 3.29 (ii) occurs. Then the exponent of P, and hence of Q, is
at most p3. Recalling that Q is the kernel of the action of G³ on the neighbour-
hood of ³, we obtain that

exp(G³) f p
3 exp

(

G
Γ(³)
³

)

.
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Suppose Corollary 3.29 (iii) occurs. The normal group N appearing in the
statement of Corollary 3.29, in this case, is generated by all the subgroups of
Q normalised by g . Since N is normalised by both P and g by construction, N
is normal in the edge-transitive group H = ïP,gð. On the other hand, N is a
subgroup of Q, and thus fixes the edge {³,´}. As a normal subgroup in an edge-
transitive group, every element of N fixes every edge of Γ, implying that N is
trivial.

By our assumption, it follows that G³´ is abelian. By the arc-transitivy of G,
this is true for all the arc-stabilizers. In particular, G³µ is also abelian. We split
our discussion in two cases.

Assume that
Ω1(G³´) =Ω1

(

G
[1]
³

)

=Ω1(G³µ ) . (3.1)

By computing

Ω1

(

G
[1]
³

)g
=Ω1(G³´)

g =Ω1(G³µ ) =Ω1

(

G
[1]
³

)

,

we obtain that
Ω1

(

G
[1]
³

)

is a normal subgroup H .

By the edge-transitivity of H , we have that such a group is trivial. Thus, by
Equation (3.1), Ω1(G³´) is trivial. It follows that the local group is semiregular.
but a semiregular permutation group cannot satisfy any condition of Defini-
tion 3.27. This contradiction implies that Equation (3.1) is false.

Hence, we must assume (after swapping ´ and µ , if necessary) that

Ω1(G³´) ,Ω1

(

G
[1]
³

)

.

Since G³´ is abelian and G [1]
³ is of index p in G³´ , we have that G³´ contains an

element of prime order p not contained in G [1]
³ , that is,

G³´ is isomorphic Cp ×G
[1]
³ .

Therefore, we have that

℧
1(G³´) =℧

1
(

G
[1]
³

)

.

Further more, since conjugation by g maps isomorphically G³´ in G³µ , the same
argument yields also

℧
1(G³´) =℧

1
(

G
[1]
³

)

.

We can compute

℧1

(

G
[1]
³

)g
=℧1(G³´)

g =℧1(G³µ ) =℧1

(

G
[1]
³

)

.

It follows that
℧

1
(

G
[1]
³

)

is normalised by g ,
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3.H · Bounding the number of generators

and hence by H . As above, since H is transitive on the edges of Γ,

℧
1
(

G
[1]
³

)

is trivial .

Hence, as G³ is an extension of G [1]
³ by the local group,

exp(G³) f p exp
(

G
Γ(³)
³

)

.

3.H Bounding the number of generators

Let Γ be a locally finite d-valent connected graph, let G be an arc-transitive
group of automorphisms with finite vertex-stabilizer. Our initial goal is to
bound the number of generators of G (which we denote by the symbol d(G))
with a function that depends on the valency of Γ alone. This can be done, for
instance, if the local group is graph-restrictive. (The results contained in Sec-
tion 3.H have been published in [19].)

Lemma 3.30 · There exists a function f : N → N such that, for every pair (Γ,G),
where Γ is a locally finite connected d-valent graph, G is an arc-transitive group of
automorphisms of Γ, and the local group of the pair (Γ,G) is graph-restrictive,

d(G) f f(d) .

Proof. Let us choose a vertex ³. For any of its neighbours ´, we consider an
automorphism g´ ∈ G such that

³g´ = ´ .

Recall that these elements exist by the transitivity of G on VΓ. We can define
the subgroup of G

H := ïg´ | ´ is a neighbour of ³ð .

We now prove, via a connectedness argument, that H is transitive on the
vertex-set of Γ. Aiming for a contradiction, suppose that H is not transitive on
VΓ. We can choose a vertex µ at minimal distance from ³ which is not contained
in the H-orbit of ³. As Γ is connected, we can choose a vertex ¶ adjacent to µ
such that

dΓ(³,¶) + 1 = dΓ(³,µ) .

By our choice of µ , there is an element h ∈H such that ³h = ¶. Observe that

X :=
{

h−1g´h | ´ is a neighbour of ³
}

is a subset of H with the property that

¶X = Γ(¶) .

In particular, the set hX contains an automorphism of H mapping ³ to µ . Thus,
µ belongs to the H-orbit of ³, a contradiction.
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By Frattini’s Argument, G = G³H . In particular, |G³ | + d elements are suf-
ficient to generate G. Since the local group is graph-restrictive, we can find a
positive constant Cd (depending on the valency d alone) such that |G³ | f Cd . To
conclude,

d(G) f Cd + d .

The function f arising in the proof of Lemma 3.30 is far from being optimal.
For instance, by observing that the local group is transitive, we can see that one
generator of H , rather than the d we take, are enough.

More surprisingly, for valency at most 4, d(G) is bounded by a constant for
every transitive local groups. If d = 1, Γ is isomorphic to a segment, thus the
automorphism group is a subgroup of the cyclic group of order 2. If d = 2, Γ is
isomorphic to a cycle, thusG is either a dihedral group or a cyclic group. In both
cases, d(G) f 2. For d ∈ {3,4}, we need to use amalgams (see Section 1.H). Indeed,
for every amalgamated product arising, we can directly check the number of
generators in the presentation, which in turn is an upper bound for d(G). This
direct inspection proves that d(G) f 10. With a bit of extra hustle, we can prove
a sharp bound.

Lemma 3.31 · Let Γ be a d-valent graph, with d ∈ {3,4}, and let G be an arc-
transitive group of automorphisms of Γ. Then

d(G) f 3 ,

and this bound is sharp.

The bulk of the proof of Lemma 3.31 relies on the following observation.

Lemma 3.32 · Let Γ be a locally finite graph, let G be an arc-transitive group of
automorphisms of Γ, and let ³ ∈ VΓ be a vertex. Then

d(G) f d(G³) + 1 .

Proof. Let {³,´} be an edge of Γ and let x ∈ G{³,´} −G³´ be an edge-flip, that is,
an automorphism satisfying ³x = ´ and ´x = ³. (Examples of such elements are
the generators y in the presentations of [47] and the generators a in [110]). We
define two subgroups of G as

H := ïG³ ,xð and K := ïG³ ,G´ð .

Repeating the proof of Lemma 3.2, we can show that K defines either one or
two orbits on VΓ, and, if they are distinct, ³ and ´ lie in distinct K-orbits. As
x swaps ³ and ´, we have that K f H , and that H is transitive on VΓ. Since
G³ fH , by Frattini’s Argument, G =H . In particular, by construction of H ,

d(G) = d(H) f d(G³) + 1 .

Proof of Lemma 3.31. Let us assume that Γ is 3-valent. The five possible amal-
gam types for this case have been collected in [47]. We observe that the possi-
bility for a vertex-stabilizer are

G³ ∈ {1, C3,Sym(3), D6, Sym(4), Sym(4)×C2} .
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3.H · Bounding the number of generators

It is easy to check that all these groups are 2-generated. Hence, Lemma 3.32
concludes the proof in this case.

We turn to the scenario where the valency of Γ is 4. We need to consider
three cases.

First, we suppose that the local group is dihedral. There are infinitely many
amalgams whose local group is isomorphic to D4, and these amalgams are clas-
sified in [46]. Using the notation from [46], we deduce that G³ ∗G³´ G{³,´} ad-
mits a generating set of the form {x,a0, a1, . . . , an−1, y}, with n g 2. (Note that
{x,a0, a1, . . . , a+(n−1)/2,} is a minimal generating set for G³ , thus we cannot apply
Lemma 3.32.) We also recall, from [46], that

axi = an−1−i for every 0 f i f n− 1 ,

a
y
i = an−i for every 1 f i f n− 1 .

We compute, for every 0 f i f n− 2,

a
xy
i = a

y
n−1−i = an−n+i+1 = ai+1 .

It follows that {x,a0, y} is a generating set for G³ ∗G³´ G{³,´}, and hence d(G) f 3.
Now, we assume that the local group is not dihedral and that G is s-arc-

transitive, for some s g 1. Without loss of generality, replacing s if necessary, we
may also assume that G is not (s + 1)-arc-transitive. If s = 1, then every vertex-
stabilizer is isomorphic either to C4 or to C2 ×C2. If s g 2, then the amalgams
have been classified in [110]. If s = 1, or if s g 2 and

G³ ∈ {Alt(4), Sym(4), C3 ×Alt(4), Sym(3)× Sym(4)} ,

then G³ is 2-generated. In all cases under consideration, by Lemma 3.32, d(G)
is at most 3, as desired.

To conclude, there are precisely four amalgams of index (4,2) left. To com-
plete the proof for the upper bound, it is enough to manipulate their explicit
presentations in [110] to identify a generating set of cardinality 3. There are
two amalgams with G³ isomorphic to C3 ì Sym(3). In the first case, {x, t,ac} is a
generating set for G³ ∗G³´ G{³,´} in view of

a = acdcd−1c = acacacac−1ac = (ac)3(ac)t(ac) ,

c = a(ac) , y = xt , d = ca .

In the second case, we find that {x,c,a} generates G³ ∗G³´ G{³,´} as

t = a2 , y = xt , d = ca .

For the 4-arc-transitive case, we find that {t, c,a} is a generating set for G³ ∗G³´
G{³,´} in view of

d = (ct)−1 , e = da ,

x = (et)−4 , y = xa .
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Meanwhile, for the 7-arc-transitive amalgams, G³ ∗G³´G{³,´} can be generated by
{h,p,a}, because

k = h−2 , v = kak−1 , q = (pa)−1 ,

r = qqh , s = (ra)−1 ,

t = (sh)−1pq−1r−1s−1 , u = (ta)−1 .

We have thus proved that a minimal generating set for G contains at most 3
elements. To prove that this bound is sharp it is sufficient to inspect the cen-
sus of arc-transitive graphs of valency 3 and 4 (see [39, 115] or Sections 1.I
and 1.L). In doing so, we discover that most graphs have 3-generated automor-
phism groups. This completes the proof of Lemma 3.31.

One could dare to conjecture that there exists a function f : N → N that
takes the valency of the graph Γ as input, and returns an upper bound for d(G).
In Section 3.H.1, we prove that such a function cannot exist.

Theorem N · There exists no function f : N → N such that, for every pair (Γ,G),
where Γ is a connected d-valent graph, and G is an arc-transitive group of automor-
phisms of Γ,

d(G) f f(d) .

Remark 3.33 · To prove the veracity of Theorem N, we will exhibit an infi-
nite family F of pairs (Γh,Gh) such that the valency of the graphs is a constant
(at least 8), while d(Gh) grows linearly with the exponent of the group. We
would like to remark that, although the philosophies of the constructions are
profoundly different, the graphs Γh carry an oustanding similiarity with those
built in [71, 114, 116] to prove that, for some imprimitive local groups of degree
6, the order of the vertex-stabilizers grows exponentially with the number of
vertices of the graph.

We also observe that, in our construction, G is not the automorphism group
of Γ. This prompts the following question.

Problem 3.34 · Is there a function f : N → N such that, if Γ is a connected
arc-transitive graph of valency d, then

d (Aut(Γ)) f f(d) ?

Moreover, for our current and limited knowledge, having d(G) bounded ap-
pears to be quite common. Therefore, we ask the following.

Problem 3.35 · Which assumptions on the pair (Γ,G) are needed to bound d(G)
with a function of the valency (or of the local group)?

Apart from the case we have already discussed, M. Lekše has showed in [86,
Corollary 7.5.] that the number of generators of G is bounded by d if the local
group is weakly p-subregular (see Definition 3.27).

Observe that the infinite family we build is characterized by the fact of hav-
ing unlimited exponent. If we decide to bound the exponent of G a priori, we
get a bound on the number of vertices of Γ, and hence on the order of G.
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Theorem O · There exists a function B : N ×N → N such that, for every pair
(Γ,G). where Γ is a connected d-valent graph, and G is an automorphism group of Γ
of exponent e,

|VΓ| f B(d,e) and |G| f B(d,e)! .

Two comment before the proof. The function B appearing in Theorem O is
the solution of the Burnside Restricted Problem, that is, B(d,e) is the order of
the largest group G with d(G) = d and exp(G) = e. We recall that the existence of
this function was proved by E. Zel’manov in [165, 166]. (We refer to Section 2.I
for further details on the Burnside Restricted Problem.)

We also remark that the bound on the number of vertices is sharp. Indeed,
let G be the largest finite group with d(G) = d and exp(G) = e, and let S be a
generating set of cardinality d. Then Cay(G,S) has precisely B(d,e) vertices.

Proof of Theorem O. Let ³ be a vertex of Γ, and, for every neighbour ´ ∈ Γ(³),
denote by g´ the automorphism mapping ³ to ´. As we have seen in the proof
of Lemma 3.30,

H := ïg´ | ´ is a neighbour of ³ð

is a vertex-transitive subgroup of G.
Observe that, as H is a subgroup of G, and as the exponent of G is e, the

exponent ofH divides e. Therefore, we find that the order ofH is bounded from
above by B(d,e). Moreover, since H is transitive on the vertex-set of Γ,

|VΓ| f |H | f B(d,e) .

This proves the first part of Theorem O.
To complete the proof, it is enough to observe that G can be embedded into

Sym(VΓ), which in turn embeds into Sym(B(d,e)). Therefore,

|G| f B(d,e)! ,

as desired.

3.H.1 Proof of Theorem N

Proof of Theorem N. Let h be a positive integer, and let p be a prime. The proof
is divided in three steps. First, we build an abstract p-group whose number of
generators is linear in the exponent. Second, we build a graph Γh whose auto-
morphism group contains the previously constructed group. Last, we consider
a group extension of the previous group, say Gh, and we prove that Gh is an arc-
transitive group of automorphisms for Γh whose number of generator is, again,
a linear function of its exponent.

Let us build a p-group whose number of generators is linear in the exponent.

We set
H := Cph ×Cph = ïa,b | ap

h
= bp

h
= [a,b] = 1ð .

Let us consider the group algebra Fp[H] over the finite field with p elements.
We define recursively the following chain of Fp[H]-modules:

µ0 := Fp[H], and, for any i g 1 ,
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µi := [µi−1,H] = ïv − vh | v ∈ µi−1,h ∈HðFp .

Recall that the natural basis for the group algebra Fp[H] is
(

aibj | i, j ∈
{

0,1, . . . ,ph − 1
})

.

For all x,y ∈
{

0,1, . . . ,ph − 1
}

, we write exy = (a−1)x(b−1)y ∈ Fp[H]. We claim that

B =
(

exy | x,y ∈
{

0,1, . . . ,ph − 1
})

is also a basis. As B and the natural basis have the same cardinality, to prove the
claim we show that every element of the natural basis can be written as a linear
combinations of the elements of B. First we prove, by induction on i, that

ai =
i

∑

x=0

¼xex0 . (3.2)

Observe that 1 = e00 = a0 is an element of the natural basis and of B. We can
write

ai = (a− 1)pi(a) + 1 ,

where pi is a polynomial in one variable with coefficients in Fp and degree i −1.
By inductive hypothesis, for some suitable coefficients,

pi(a) =
i−1
∑

x=0

µxex0 .

Hence,

ai = (a− 1)pi(a) + 1 =
i−1
∑

x=0

µxe(x+1)0 + e00 ,

which proves Equation (3.2). Repeating the same argument for bj , we can show
that

bj =
j

∑

y=0

¼ye0y .

Therefore, for some suitable coefficients,

aibj =















i
∑

x=0

¼xex0































j
∑

y=0

¼ye0y

















=
i−1
∑

x=0

j−1
∑

y=0

¼x¼yexy ,

which completes the proof of the claim.
For convenience, we set exph = ephy = 0, for every x,y ∈

{

0,1, . . . ,ph − 1
}

. Ob-
serve that

exy · a = (a− 1)x(b − 1)y · a

= (a− 1)x(1 + a− 1)(b − 1)y

= (a− 1)x(b − 1)y + (a− 1)x+1(b − 1)y

= exy + e(x+1)y ,
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3.H · Bounding the number of generators

and

exy · b = (a− 1)x(b − 1)y · b

= (a− 1)x(b − 1)y(1 + b − 1)

= (a− 1)x(b − 1)y + (a− 1)x(b − 1)y+1

= exy + ex(y+1) .

By a direct computation, we get that

µi = ïexy | x + y g iðFp , and

µi /µi+1 = ïexy +µi+1 | x + y = iðFp .

Indeed, the formula holds for µ0 = Fp[H], and by induction on i

µi = ïexy · a− exy , exy · b − exy | x + y g i − 1ðFp
= ïe(x+1)y , ex(y+1) | x + y +1 g iðFp .

Recall that, for any Fp[H]-module V , we denote by dH (V ) the minimal num-
ber of generators of V as an Fp[H]-module. Since, by construction, µi /µi+1 is a
trivial section of Fp[H], we have that

dH (µi /µi+1) = dimFp
(µi /µi+1) =























i +1 if 0 f i f ph − 1

2ph − i − 1 if ph f i f 2(ph − 1)

0 if 2ph − 1 f i .

(3.3)

We use this to compute the number of generators of µph ìH . Indeed, we claim
that

d
(

µph−1 ìH
)

= ph +2 . (3.4)

First, we recall that, as µph−1 ìH is a p-group,

d
(

µph−1 ìH
)

= dimFp

(

µph−1 ìH

Φ(µph−1 ìH)

)

,

where Φ(µph−1 ìH) is the Frattini subgroup of µph−1 ìH . Second, we note that

Φ(µph−1 ìH) = [µph−1 ìH,µph−1 ìH](µph−1 ìH)p .

Since H is abelian, using standard commutator computations, we have

[µph−1 ìH,µph−1 ìH] = µph .

Moreover,
(µph−1 ìH)p gHp .

This shows that
Φ(µph−1 ìH) g µph ìH

p .

It is now time to recall that H acts trivially on the section µph−1/µph : this fact
implies that the quotient

µph−1 ìH

µph ìH
p
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3 · Unbounded valency

is abelian of exponent p. Therefore,

Φ(µph−1 ìH) = µph ìH
p ,

and Equation (3.4) immediately follows from Equation (3.3).

Let us build a graph Γh whose automorphism group contains µph−1 ìH . By
Theorem 1.41, the group H acts regularly on the vertex-set of the Cayley graph
defined by

∆ := Cay(H, {a,a−1, b,b−1}) .

Recall that, for any two graphs Γ,∆, the wreath product of Γ by ∆, denoted
by Γwr∆, is the graph having vertex-set VΓ×V∆, where (µ1,¶1) and (µ2,¶2) are
adjacent if either ¶1 = ¶2 and {µ1,µ2} is an edge of Γ, or {¶1,¶2} is an edge of ∆.
We define Γh as the wreath product of the empty graph on p vertices, pK1, by
the Cayley graph ∆, that is,

Γh := pK1wr∆ .

Note that, unless p = 2 and h = 1, ∆ has valency 4, hence Γh has valency 4p.
Observe that, as abstract groups, CpwrH and Fp[H] ìH are isomorphic. It

follows that µph−1 ìH is identified with a subgroup of CpwrH , which in turn is
a subgroup of Aut(Γh). Moreover, VΓh can be partitioned as

X := {V (pK1)× {¶} | ¶ ∈ V∆} .

Note that X is µph−1-invariant, because the latter embeds in the base group of
CpwrH . As µph−1 is a nontrivial p-group, it must induce a transitive action on at
least one part ofX, whileH permutes regularly the elements ofX. It follows that
µph−1 ìH is transitive on the vertices of Γh, thus µph−1 ìH is a vertex-transitive
group of automorphisms of Γh. On the other hand, since µph−1 ìH preserves the
lifting of the labels {a,a−1, b,b−1} from the Cayley graph ∆, this action is not arc-
transitive. In particular, the local group of the pair (Γh,µph−1 ìH) is intransitive
with four distinct orbits.

Let us extend µph−1 ì H to an arc-transitive group of automorphisms. To
achieve the desired arc-transitivity, we extend the group H with some outer
automorphisms. We consider the automorphisms ϕ and È of H defined on the
generators by

ϕ : a 7→ b, b 7→ a, and È : a 7→ a−1, b 7→ b−1 .

Observe that ϕ and È are commuting involutions, thus ïϕ,Èð is isomorphic to
the Klein group. We extend the multiplication on Fp[H] by putting, for every
ε,¶ ∈Z2,















∑

h∈H

¼hh















·
(

ϕεÈ¶
)

=
∑

h∈H

¼hh
ϕεÈ¶ .

With this operation, Fp[H] is an Fp[H ì ïϕ,Èð]-module. Our putative subgroup
of Aut(Γh) is

Gh := µph−1 ì (H ì ïϕ,Èð) .
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3.H · Bounding the number of generators

Note that

Fp[H]ìH g Fp[H] = µ0 g µ1 g . . . g µ2(ph−1) g µ2ph−1 = 1

is the central lower series of Fp[H]ìH , and hence, for all indices i, µi is a charac-
teristic subgroup of Fp[H]ìH . It follows that µi is an Fp[Hìïϕ,Èð]-submodule,
and hence Gh is well-defined.

First, we give a lower bound on d(Gh), then we prove that Gh is an arc-
transitive group of automorphisms of Γh.

Let S be a generating set for Gh. The set S ∪ {ϕ,È} also generates Gh. By
multiplying each element of S by a (possibly trivial) element of ïϕ,Èð, we can
produce a new generating set for Gh of the form T ∪ {ϕ,È} where T is a subset
of µph−1 ìH . We claim that

U := T ïϕ,Èð ¦ µph−1 ìH

is a generating set for µph−1 ìH . For every g ∈ µph−1 ìH , g can be written as a
word in T ∪{ϕ,È}. Whenever ϕ appears in this word, we can move it to the right
end of the word by conjugating by ϕ all the generators from its initial position
to the end of the string. The same procedure can be applied to È. Once we have
completed these operations, we find that g can be expressed as the product of
two words: one in U and the other in {ϕ,È}. As g ∈ µph−1 ìH , the latter word
must be trivial. This proves that we can express g as a word in U , and hence U
generates µph−1 ìH . By construction, since |ïϕ,Èð| = 4,

|U | f 4|T | = 4|S | .

Hence, by choosing |S | to be minimal,

1
4
d(µph−1 ìH) f

1
4
|U | f d(Gh) .

Therefore, using Equation (3.4),

d(Gh) g
ph

4
.

Let us go back to the Cayley graph ∆. Observe that ïϕ,Èð is transitive on the
connection set {a,a−1, b,b−1} of ∆. This implies thatHìïϕ,Èð is an arc-transitive
subgroup of Aut(∆). Therefore,

Gh f Cpwr(H ì ïϕ,Èð) f Aut(Γh) .

Moreover, the local group of (Γh,Gh) transitively permutes the four orbits de-
fined by the local group of (Γh,µph−1 ìH). Hence, the pair Gh is an arc-transitive
group of automorphisms of Γh.

To wrap up, for a fixed prime p, the family

Fp := {(Γh,Gh) | h g 2}
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3 · Unbounded valency

contains pairs such that every Γh is a (4p)-valent graph, meanwhile

lim
h→+∞

d(Gh) g lim
h→+∞

ph

4
= +∞.

This family is a counterexample to the existence of function f that, for every pair
(Γ,G), where Γ is a connected d-valent graph, and G is an arc-transitive group of
automorphisms of Γ, d(G) can be bounded in terms of d alone. Hence, the proof
of Theorem N is complete.

3.I Bounding the number of derangements

In the 10th PhD Summer School in Discrete Mathematics in Rogla, I has been asked
by G. Korchmáros whether or not, for every graph Γ of valency d and transitive
automorphism group Aut(Γ), the proproportion of derangements in Aut(Γ) is
bounded away from zero by a function of d alone. I would like to thank him for
inspiring me with this fascinating problem. The results of Section 3.I have been
proven in [18].

Before presenting our solution, we need to recall some notation. Let G be a
finite transitive permutation groupwith domainΩ. We recall that a derangement
of G is a permutation g without any fixed points, that is, for any ³ ∈ Ω we
have that ³ and ³g are distinct points of Ω. We let ¶(G) be the proportion of
derangements of G, that is, the ratio between the number of derangements and
the size of G. Our notation is a bit sloppy: observe that ¶(G) depends on the
action of G, thus it is not a parameter of the abstract group G, but rather of a
permutational representation of it.

The interest in derangements predates the existence of groups themselves.
In 1708, P. de Montmort’s published his highly influential book on probability,
Essay d’analyse sur les jeux de hazard. There, he presents a systematic combina-
torial analysis of games of chance that were popular at the time, and through
studying the card game treize, he calculates the proproportion of derangements
in the symmetric group Sym(13) in its natural action on 13 points. A few years
later, N. Bernoulli, by means of the inclusion-exclusion principle, generalised
the formula to any symmetric group of degree n obtaining

¶(Sym(n)) =
n

∑

i=2

(−1)i

i!
.

Jumping forward 150 years, C. Jordan has first noticed in [77] that every
nontrivial finite transitive permutation group G contains a derangement, that
is,

¶(G) > 0 .

This observation has far reaching consequences ranging from number theory to
topology (see, for instance, [50, 137]). For further information, we refer to the
extensive review in [26, Chapter 1].

An outstanding property of derangements in transitive groups is their abun-
dance. We can give two impressive examples of lower bounds for ¶(G). In [33],
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3.I · Bounding the number of derangements

P. J. Cameron, L. G. Kovács, M. F. Newman and C. E. Praeger have proven that,
if G is a p-group, then

¶(G) >
p − 1
p +1

.

On the other end of the spectrum, there exists an absolute constant ϵ > 0 such
that, for every simple group T endowed with a transitive action, ¶(T ) g ϵ. This
result has been obtained by J. E. Fulman and R. M. Guralnick by an extensive
study of primitive actions of finite simple groups [52, 53, 54, 55].

The last result cannot even be extended to almost simple groups. In fact,
there are infinite families of almost simple groups of Lie type containing a field
automorphism whose proportion of derangements tends to zero as the size of
the group grows. To give a concrete example, let Gp = PΓL2(2p), for some odd
prime p, and let Gp act on the right cosets of the subgroup C2p+1 ìC2p. We have
that the set of derangement is a normal subset: indeed, the number of fixed
points is an invariant on conjugacy classes. Hence, all the derangements are
trapped in PGL2(2p). Therefore,

lim
p
¶(Gp) f lim

p

1
p
= 0 .

We refer to [13] for other examples and further details.
On the other hand, introducing the permutational rank in the equation, all

transitive groups can be captured at once. This has been shown in [32], where
P. J. Cameron and A. M. Cohen prove that, for every transitive groups G with
permutational rank r,

¶(G) g
r − 1
|Ω|

.

Furthermore, this bound is sharp: indeed, equality is achieved if and only if G is
a Frobenius group. (For our purposes, a Frobenious group is a permutation group
such that every nontrivial element either fixes one point or is a derangement.
See [45, Section 3.4] for more details.) The first steps of the proof of Theorem P
take enormous inspiration from this result (see Section 3.I.1). Because of this,
we devote Section 3.I.2 to compare our bound with the Cameron–Cohen bound.

Indeed, we prove the following.

Theorem P · Let G be a finite transitive permutation group whose minimal non-
trivial subdegree is dG. Then

¶(G) g
1

2dG
+
n− 2
2|G|

.

Equality is attained if and only if G is a Frobenius group.

In view of the one-to-one correspondence explored in Section 1.F, Theorem P
gives at once an affirmative answer to G. Korchmáros’s question.

Corollary Q · Let Γ be a finite digraph, and let G be a group of automorphisms of
Γ. If G is transitive, and Γ has valency d, then

¶(G) g
1
2d
.
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3.I.1 Proof of Theorem P

We start by establishing some notation for the proof. Let G be a nonidentity
finite transitive group of degree n and of minimal nontrivial subdegree d, and
let ³ be a point of its domain Ω. Given g ∈ G, we let

Fix(g) = {É ∈Ω | Ég = É} ,

and, given i ∈ {0, . . . ,n}, we let

Fi(G) = {g ∈ G | |Fix(g)| = i} .

In particular, F0(G) is the set of all derangements of G.

Proof of Theorem P. Our aim to show that

¶(G) =
|F0(G)|
|G|

g
1
2d

+
n− 2
2|G|

,

and that the equality is attained if and only if G is a Frobenius group.
Since the sets Fi(G) partition G, we get

|G| =
n

∑

i=0

|Fi(G)| . (3.5)

Moreover, from the Orbit Counting Lemma, we have

|G| =
n

∑

i=0

i |Fi(G)| . (3.6)

Observe that Fn(G) contains a single element, which is the identity of G. By
subtracting Equation (3.5) from Equation (3.6), we deduce

|F0(G)| =
n

∑

i=1

(i − 1)|Fi(G)|

=
n−1
∑

i=1

(i − 1)|Fi(G)|+n− 1

g

n−1
∑

i=2

|Fi(G)|+n− 1

=
n

∑

i=2

|Fi(G)|+n− 2

= |G| − |F0(G)| − |F1(G)|+n− 2 .

Therefore,

|F0(G)| g
|G|

2
−
|F1(G)|

2
+
n− 2
2

. (3.7)
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3.I · Bounding the number of derangements

Observe that the sets F1(GÉ), as É runs through the elements of Ω, are pair-
wise disjoint and cover the whole of F1(G). This means that

{F1(GÉ) | É ∈Ω}

is a partition of F1(G) and hence, for every fixed ³ ∈Ω,

|F1(G)| =
∑

É∈Ω

|F1(GÉ)| = |Ω||F1(G³)| =
|G|

|G³ |
|F1(G³)| . (3.8)

Now, we can choose ´ ∈ Ω − {³} such that |´G³ | = d. Since G³´ and F1(G³)
have empty intersection, we get

F1(G³) ¦ G³ −G³´ .

Therefore, using the Orbit Stabilizer Lemma on the action of G³ on ´G³ , we get

|F1(G³)| f |G³ | − |G³,´ | = |G³ |

(

1−
|G³´ |

|G³ |

)

= |G³ |
(

1−
1
d

)

. (3.9)

Finally, combining Equations (3.7), (3.8) and (3.9), we get

¶(G) =
|F0(G)|
|G|

g
1
2
−
1
2

(

1−
1
dG

)

+
n− 2
|G|

=
1
2d

+
n− 2
2|G|

,

which is the desired inequality.
Moreover, if the equality is attained, then Equation (3.7) holds with an equal

sign, thus we deduce that

G = F0(G)∪F1(G)∪Fn(G) ,

that is, G is a Frobenius group. Conversely, if G is a Frobenius group, all the
estimates we have done in the proof are actually equalities. This completes the
proof.

3.I.2 Comparison

In this section, we compare the bound obtained in Theorem Pwith the Cameron–
Cohen bound from [32].

For every ³ ∈Ω, we note that

(|G³ |+ dG)n = (|G³ |+ d)
r

∑

i=1

di

= |G³ |+ d + |G³ |















r
∑

i=2

(di − d) + d(r − 1)















+ d















r
∑

i=2

(di − |G³ |) + |G³ |(r − 1)















= |G³ |+ d +2d |G³ |(r − 1)

+ d |G³ |
r

∑

i=2

(

di
d
+
di
|G³ |

− 2
)

.
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By substituting this equality in the difference of the two bounds, we obtain

1
2d

+
n− 2
2|G³ |n

−
r − 1
n

=
|G³ |n+ d(n− 2)

2d |G³ |n
−
r − 1
n

=
(|G³ |+ d)n− 2d

2d |G³ |n
−
r − 1
n

=
1
2n















1
d
−

1
|G³ |

+
r

∑

i=2

(

di
d
+
di
|G³ |

− 2
)















.

Therefore, the sign of

1
dG

−
1

|G³ |
+

r
∑

i=2

(

di
dG

+
di
|G³ |

− 2
)

(3.10)

determines which bound gives the best estimate for ¶(G). In particular, the
Cameron–Cohen bound is better when Equation (3.10) is negative, while our
bound is stronger otherwise. We remark that the sign of Equation (3.10) de-
pends on the distribution of the nontrivial subdegrees of G: a predominance of
subdegrees proximate to |G³ | results in a positive expression, whereas a preva-
lence of subdegrees closer to the minimal nontrivial subdegree leads to a nega-
tive sign.

We conclude this section by giving two examples of infinite families of tran-
sitive permutation groups: two in which the bound in Theorem P is stronger,
and one in which the Cameron–Cohen bound is better.

Let us work out in details the first example.

Example 3.36 · Let G = PSL2(p) be the projective special linear group of di-
mension 2 over the field with p elements, p prime, and suppose that p ≡ 43
(mod 120). This condition guarantees that the alternating group Alt(4) is a
maximal subgroup of PSL2(p) (see, for instance, [22, Section 3.1]) and simplifies
some computations. Observe that, as the subdegrees are the lengths of Alt(4)-
orbits, the possible subdegrees of this action are 1,2,3,4,6,12. Let us denote by
µi the number of suborbits having cardinality i.

Since G is primitive, all the orbital digraph but the diagonal one are con-
nected. Hence, µ1 = 1.

From here on, we fix a point ³ in the permutation domain. We claim that
µ2 = µ3 = 0. Observe that, if there is a point ´ so that it lies in a G³-orbit of
length 2 or 3, then, by the Orbit Stabilizer Lemma, we can choose a subgroup
S of G³ whose index is either 2 or 3. Furthermore, as S is the stabilizer of ´ in
the action of G³ , S is also a subgroup of G´ , and, from immediate arithmetic
considerations, |G´ : S | = |G³ : S |. If |G³ : S | = 2, then S is normal in both G³ and
G´ . If |G³ : S | = 3, then, recalling that G³ = Alt(4),

S =O2(G³) =O2(G´) ,

and hence S is normal in both G³ and G´ . In both cases, S is a normal subgroup
of the group generated by G³ and G´ , which, by primitivity, is G itself. We con-
clude that, although it is core-free, G³ contains a nontrivial normal subgroup, a
contradiction. Thus ´ does not exist, and µ2 = µ3 = 0.
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3.I · Bounding the number of derangements

Our aim now is to compute µ4. Let S be a Sylow 3-subgroup in G³ . Ob-
serve that S , in its action by right multiplication on Alt(4)/S − {S}, is transitive.
Hence, once we fix S , there is a single ´ in each suborbit of length 4 such that
S = G³´ . Since G is transitive, we can choose a g ∈ G that maps ³ to ´. As
a consequence, Sg is a Sylow 3-subgroup of G´ . By Sylow’s Theorem, we can
choose n ∈ G´ such that Sgn = S . Hence, we have that gn ∈ NG(G³´), and that
g ∈ NG(G³´)n−1. Note that p ≡ 43 (mod 120) implies that p ≡ 1 (mod 3). Thus,
from [148, Lemma 6.23], NG(G³´) is isomorphic to a dihedral group of order
p − 1. Last, observe that, as Sg = G´´g , rather than n, we may also choose G´n.
Everything is in place to perform our counting argument. The number of possi-
ble g with the properties described is

|NG(G³´)G´ | − |G³ | ,

hence the number of possible ´ is

|NG(G³´)G´ | − |G³ |

|G´ |
=

|NG(G³´)||G´ |

|NG´ (G³´)||G´ |
− 1 =

p − 1
3

− 1 =
p − 4
3

.

Therefore, recalling that there is a one-to-one correspondence between the pos-
sible points ´ and the suborbits of length 4, we have proved that

µ4 =
p − 4
3

.

We can perform a similar counting argument for µ6. Let S be a cyclic sub-
group of order 2 in G³ . Observe that S , in its action by right multiplication on
Alt(4)/S , fixes two right cosets (namely, S itself and the other coset containing
only involutions). Hence, once we fix S , there are two points ´ in each suborbit
of length 6 such that S = G³´ . By transitivity of G, let g ∈ G be a permutation
that sends ³ to ´, so that Sg is a cyclic subgroup ofG´ of order 2. Since the action
of Alt(4) by conjugation on the set of its cyclic subgroups of order 2 is transitive,
we can choose n ∈ G´ such that Sgn = S . Hence, as before, gn ∈ NG(G³´), and
thus g ∈ NG(G³´)n−1. Further, p ≡ 43 (mod 120) implies that p ≡ −1 (mod 4).
[148, Lemma 6.23] states that NG(G³´) is isomorphic to a dihedral group of or-
der p+1. Finally, as Sg = G´´g , rather than n, wemay also chooseG´n. Therefore,
the number of possible g with the properties described is

|NG(G³´)G´ | − |G³ | ,

hence the number of possible ´ is

|NG(G³´)G´ | − |G³ |

|G´ |
=

|NG(G³´)||G´ |

|NG´ (G³´)||G´ |
− 1 =

p +1
4

− 1 =
p − 3
4

.

As we have noticed at the beginning of this paragraph, the number of points ´
is twice the number of suborbits of length 6. Thus,

µ6 =
p − 3
8

.
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3 · Unbounded valency

Finally, as 12 is the last possible subdegree, if n denotes the degree of the
permutation group, we get

µ12 =
1
12

(n− 1− 4µ4 − 6µ6) ≃
p3

24 · 12
.

To sum up, the subdegrees of the primitive action of PSL2(p) with stabilizer
Alt(4) are

µ1 = 1 ,

µ4 =
p − 4
3

,

µ6 =
p − 3
8

,

µ12 ≃
p3

24 · 12
.

Moreover, if r denotes the permutation rank,

r = 1+µ4 +µ6 +µ12 and n = 1+4µ4 +6µ6 +12µ12 .

Therefore,

lim
p→∞

r − 1
n

=
1
12

<
1
8
=

1
2d
.

Since most subdegrees are equal to the cardinality of a point stabilizer, as ex-
pected, our bound is stronger, for sufficiently large primes p.

The remaining examples cover two infinite families.

Example 3.37 · P. Spiga in [146] gives remarkable examples of transitive per-
mutation groups where most points lie in a suborbit of cardinality 2: examples
of this type are relevant for the enumeration of vertex-transitive graphs of given
valency. In these examples, |G³ | = 4, and hence the subdegrees of G are 1, 2 or
4. Let µi be the number of subdegrees of G having cardinality i. From [146], we
deduce that µ1 = n/6, µ2 = n/3 and µ4 = n/24, and hence

r = µ1 +µ2 +µ4 =
13n
24

.

Therefore,
1
2d

+
n− 2
2|G|

=
1
2
+
n− 2
8n

and
r − 1
n

=
13n− 24

24n
.

In particular, the bound in Theorem P is stronger than the Cameron–Cohen
bound.

Example 3.38 · Let G be a non-Frobenius 2-transitive permutation group of
degree n. The Cameron–Cohen bound is 1/n, while the bound in Theorem P is

1
2dG

+
n− 2
2|G|

<
1

2(n− 1)
+

n− 2
2n(n− 1)

=
1
n
.

Hence, for this family of groups, the Cameron–Cohen bound is stronger than
ours.
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3.I · Bounding the number of derangements

We conclude Section 3.I with a question.

Problem 3.39 · Is there a function f :N→N such that, for every permutation
group G of degree n, minimal nontrivial subdegree d and rank r, if n g f (d),
then

r − 1
n

f
1
2d

+
n− 2
2|G|

?

In essence, Problem 3.39 revolves around determining whether our bound
exhibits asymptotic superiority over the Cameron–Cohen bounds when d re-
mains fixed.
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