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Abstract

This thesis explores innovative methodologies in two distinct areas of Ap-
plied Mathematics: Mathematical Modelling in Biosciences and Discrete Op-
timization. The work is structured into two parts, each addressing critical
challenges in its respective field while offering practical applications and ad-
vancements.

The first part focuses on Mathematical Modelling in Biosciences, presen-
ted in two chapters. The first chapter introduces a statistical monitoring
approach using funnel plots for the early detection of COVID-19 Variants of
Concern (VoCs). This methodology demonstrates remarkable utility in epi-
demiological surveillance by providing a simple, cost-effective, and real-time
tool for identifying anomalous patterns in regional reproduction numbers. Its
practical impact lies in its ability to complement genomic sequencing efforts
by enabling more targeted and efficient investigations, ultimately supporting
timely public health interventions.

The second chapter reconstructs the temporal profile of new COVID-19
cases in Italy during the first wave of 2020, addressing the significant under-
reporting that hindered accurate epidemiological assessments. By leveraging
dynamic system identification and regularized inverse problem-solving tech-
niques, this work not only offers a quantitative correction for underreported
data but also provides a robust framework for evaluating the impact of non-
pharmaceutical interventions.

The second part focuses on Discrete Optimization and consists of two
chapters. The first chapter addresses the design and optimization of few-
bit neural networks tailored for classification problems under few-shot learn-
ing scenarios. A novel voting structure is proposed to extend the framework
to multi-class classification, offering practical applications in scenarios where
computational efficiency and adaptability are paramount.

The second chapter investigates the unassigned Distance Geometry Prob-
lem in the Manhattan norm, applied to the Mobile Positioning Problem in
grid-like geometries. This formulation is particularly suited to scenarios such
as mobile device positioning in urban environments, where the assignment of
distances between devices is unknown.
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Preface

In this Preface, given the multifaceted nature of this paper collection thesis,
the content will be limited to the description of the structure of the thesis,
leaving the more appropriate and standard introductions to the beginning of
each chapter.

This thesis, along with my PhD journey, is divided into two major sections.
The first major section is dedicated to Mathematical modelling in Biosciences
and was supervised by Professor Giuseppe De Nicolao. It consists of two
chapters. The first chapter focuses on statistical monitoring and surveillance
using funnel plots applied to Early Detection of COVID-19 Variants of Con-
cern (VoCs) in Italy, India, South Africa and United Kingdom. The second
chapter concentrates on reconstructing the temporal profile of new positive
cases in Italy during the first wave of COVID-19 in 2020. This chapter em-
ploys tools for dynamic system identification and the regularized solution of
inverse problems.

The second major section is dedicated to Discrete Optimization and was
supervised by Professor Stefano Gualandi (University of Pavia), Professor Neil
Yorke-Smith (TU Delft), Professor Leo Liberti (École Polytechnique de Paris),
and Professor Carlile Lavor (University of Campinas). This section comprises
two chapters. The first chapter deals with the training and simultaneous op-
timization of a few-bit neural network designed to solve a classification prob-
lem in a few-shot regime. Alongside the training and optimization algorithm,
a voting structure is presented, which facilitates extending the setting to the
multi-classification case. A significant part of the project concerning Integer
Neural Networks was advanced during a one-month visit to the STARLab at
TU Delft. This work was carried out in collaboration with another PhD stu-
dent from the Department of Mathematics, XXXVII cycle, Ambrogio Maria
Bernardelli. The second chapter focuses on the unassigned Distance Geometry
Problem in the Manhattan norm applied to the Mobile Positioning Problem.
The writing of this work was completed during a six-month internship to LIX
at École Polytechnique de Paris.

All the material has been previously published or is currently in the process
of publication. Specifically, the content is derived from the following works,
enumerated in correspondence with their respective chapters:

(1) Early detection of variants of concern via funnel plots of regional re-
production numbers [96] is published in Scientific Reports and co-
authored by a team of engineers and physicians, namely, Francesca Ros-
set (Department of Mathematics, Computer Science and Physics, Uni-
versity of Udine), Marta Colaneri (Infectious Diseases and Immunopath-
ology, Department of Clinical Sciences, Università di Milano, L. Sacco
Hospital; and Centre for Multidisciplinary Research in Health Science,
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University of Milano), Giulia Giordano (Department of Industrial Engin-
eering, University of Trento), Kenneth Pesenti (Department of Medicine,
University of Trieste), Franco Blanchini (Department of Mathematics,
Computer Science and Physics, University of Udine), Paolo Bolzern (De-
partment of Electronics, Information and Bioengineering, Politecnico di
Milano), Patrizio Colaneri (Department of Electronics, Information and
Bioengineering, Politecnico di Milano; and Institute of Electronics, In-
formation Engineering and Telecommunication of the Italian National
Research Council, Turin, Italy), Paolo Sacchi (Division of Infectious
Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia), Giuseppe
De Nicolao (Department of Electrical, Computer, and Biomedical En-
gineering, University of Pavia; and Division of Infectious Diseases I,
Fondazione IRCCS Policlinico San Matteo, Pavia), and Raffaele Bruno
(Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences,
University of Pavia);

(2) Correction of Italian under-reporting in the first COVID-19 wave via
age-specific deconvolution of hospital admissions [95] is published in PLOS

ONE and co-authored by Giuseppe De Nicolao (Department of Electrical,
Computer, and Biomedical Engineering, University of Pavia; and Divi-
sion of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo,
Pavia);

(3) Multi-Objective Linear Ensembles for Robust and Sparse Training of
Few-Bit Neural Networks [19] is published in INFORMS Journal on Computing

and co-authored by Ambrogio Maria Bernardelli (Department of Math-
ematics, University of Pavia), Stefano Gualandi (Department of Math-
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France).
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Part I

Mathematical Modelling in

Biosciences
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1
Early detection of variants of

concern via funnel plots of regional

reproduction numbers

Early detection of the emergence of a new variant of concern (VoC) is es-
sential to develop strategies that contain epidemic outbreaks. For example,
knowing in which region a VoC starts spreading enables prompt actions to
circumscribe the geographical area where the new variant can spread, by con-
taining it locally. This section presents funnel plots as a statistical process
control method that, unlike tools whose purpose is to identify rises of the re-
production number (Rt), detects when a regional Rt departs from the national
average and thus represents an anomaly. The name of the method refers to
the funnel-like shape of the scatter plot that the data take on. Control limits
with prescribed false alarm rate are derived from the observation that regional
Rt’s are normally distributed with variance inversely proportional to the num-
ber of infectious cases. The method is validated on public COVID-19 data
demonstrating its efficacy in the early detection of SARS-CoV-2 variants in
India, South Africa, England, and Italy, as well as of a malfunctioning episode
of the diagnostic infrastructure in England, during which the Immensa lab
in Wolverhampton gave 43000 incorrect negative tests relative to South West
and West Midlands territories.

1.1 Introduction to Statistical Process Control

and Funnel Plots

Statistical process control, currently known as quality control, aims to com-
pare the performance of various institutions regarding a reliability parameter,
which can be, for instance, the size of the institution itself. Funnel plots
replace the traditional ranking methods that order institutions from best to
worst. Instead, funnel plots adopt an approach where institutions are divided
into just two groups: those exhibiting natural variability and those that are
out of statistical control. David Spiegelhalter, a world-renowned statistician,
has significantly contributed to the widespread use of funnel plots for meta-
analyses [127]. Funnel plots are not a new concept: they are a standard tool
in meta-analysis for graphically checking any relationship between effect es-
timates and their precision, which might indicate publication bias. They have
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Chapter 1

also been used for comparing clinical outcomes. Spiegelhalter’s work further
develops this tool by detailing their construction, assessing the association
between volume and outcome, and addressing issues related to overdispersion.
Funnel plots are a graphical tool with immediate interpretative power, making
it easy to identify areas that require attention. They are grounded in solid
statistical foundations, with control limits established based on specific math-
ematical and statistical assumptions. Furthermore, funnel plots allow for the
comparison of units of analysis while accounting for unmeasured risk factors,
thereby avoiding misleading rankings.

In a funnel plot, a measured or estimated quantity is plotted against an
interpretable measure of its precision. It is composed of four elements [127]:

(i) an indicator Y that represents the quantity to be monitored,

(ii) a reference value ¹ that specifies the expectation of the indicator,

(iii) a precision parameter Ä that determines the accuracy with which the
indicator is measured,

(iv) the control limits ylower and yupper that specify the boundaries of the
out-of-control regions.

An example of funnel plot can be seen in Fig. 1.1. The dot (Äi, yi) is
associated with the i− th region, where Äi is the number of infectious cases in
the region and yi is the region’s reproduction number Rt at a given time t. The
horizontal line y = ¹ shows the national average Rt and the funnel-shaped pair
of control limits ylower and yupper shows where we would expect the regions
to lie if their Rt’s were statistically indistinguishable from one another, see
Panel d in Fig. 1.1. In several circumstances, an exact or approximate normal
distribution of the indicator Y can be assumed

Y |¹, Ä ∼ N(¹, g(¹)/Ä) (1.1)

where g is a suitable function of ¹ [127] such that V ar[Y ] = g(¹)/Ä. Under
this null hypothesis, with probability 1− ³,

¹ − zα

2

√

g(¹)

Ä
≤ Y ≤ ¹ + zα

2

√

g(¹)

Ä

where zα/2 is such that P (Z ≤ zα/2)) = 1−³/2 for a standard normal variable
Z. For instance, zα/2 = 1.96, when ³ = 5%, and zα/2 = 3.09, when ³ = 0.2%.
This means that, in 100(1− ³)% of the cases, Y is expected to lie within the
lower and upper control limits defined as

ylower = ¹ − zα

2

√

g(¹)

Ä
,
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yupper = ¹ + zα

2

√

g(¹)

Ä
.

By introducing the Z-score zi = (yi − ¹)/
√

g(¹)/Ä we have that P (|zi| ≤
zα/2) = 1−³. In Statistical Process Control, the common practice is to select
a false alarm probability as small as ³ = 0.2%, corresponding to zα/2 ≥ 3.09.
A Z-score whose absolute value is greater than zα/2 is said to be out of (stat-
istical) control and deemed worthy of study to identify a special cause of
variation that explains its departure from the mean. Note that there is a
0.2% probability of reporting an out-of-control point when no special cause
of variation is actually perturbing the process and the outlier arises by pure
chance under common causes of variation. When monitoring n units of ana-
lysis, e.g., the Rt of n regions within a country, due to the multiple comparison
problem, the false positive rate could become unacceptably large. A simple
way to address this problem is the Bonferroni correction that replaces ³ with
³/n [100]. When the indicators yi measure a frequency of occurrence, e.g., the
mortality rates in heart surgery units, it is reasonable to assume a binomial
model, with ¹ representing the probability of the event and Äi the number
of surgeries in the i − th unit. For the binomial model, the variance of yi is
¹(1 − ¹)/Äi so that, given ¹, the variance of yi is completely specified. For
a large enough Ä, the binomial converges to a normal random variable that
follows distribution (1.1) with g(¹) = ¹(1− ¹). An analogous case is when the
products Äiyi are Poisson distributed with expectation Äi¹. If Äi¹ is greater
than 30, the indicators yi are then normally distributed as (1.1) with g(¹) = ¹.
Therefore, for both the ideal binomial and Poisson model, estimating the mean
of yi suffices to specify both the centerline and the alarm limits of the funnel
plot. However, as discussed in [128], if one lets the variance be specified by
the mean, it very often happens that the fraction of units of analysis that
lie outside the ideal alarm limits greatly exceeds the theoretical false positive
rate. This phenomenon, well known in the statistical literature, goes under
the name of overdispersion. This can be dealt with by modifying (1.1) with
the introduction of an overdispersion parameter ϕ to be estimated from data:

Y |¹, Ä ∼ N(¹, ϕg(¹)/Ä) (1.2)

The control limits and the Z-scores are redefined accordingly as

ylower = ¹ − zα

2

√

g(¹)

Ä
,

yupper = ¹ + zα

2

√

g(¹)

Ä
,

zi = (yi − ¹)/

√

ϕg(¹)

Äi
.
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When the indicators to be monitored are time series depending on a time
index t, i.e., yi = yi(t), a distinct funnel plot can be drawn for each time
instant. For the purpose of statistical monitoring, the relevant information
can be summarized in a Bonferroni control chart where the trends of the Z-
scores are plotted in time against Bonferroni limits, see for instance panel e in
Fig. 1.1. Under (1.2), we have that zi ∼ N(0, 1), so that, when the Z-scores
are plotted on a control chart with zero centerline and Bonferroni limits equal
to ±zα/(2n), the probability of one or more dots lying outside the limits is
equal to ³.

1.2 Funnel Plots applied to Early Detection of

COVID-19 Variants of Concern

All viruses, including SARS-CoV-2, evolve over time. Mutations happen fre-
quently and, in most cases, have little to no impact on the viral function.
However, a group of mutations with similar genetic lineage, denoted by public
health organizations as Variants of Concern (VoC), have gained global atten-
tion because of their faster spread and evidence for higher transmissibility and
possibly higher virulence [34]. Surveillance aimed at the early detection of a
new VoC is fundamental. The World Health Organization (WHO) and its
international networks of experts closely monitor SARS-CoV-2 variants [108],
but a surveillance system at a national and sub-national level is crucial to
identify the emergence of new variants with the potential to spread world-
wide, as well as the spread of already detected variants. Local authorities
are thereby currently encouraged to strengthen surveillance and sequencing
capacities, to early detect unusual epidemiological events. However, several
countries still have limited capacity, despite the enormous efforts to facilitate
the access to existing international networks [146] and the implementation of
low-cost whole genome sequencing (WGS) methods [57]. As happened with
SARS-CoV outbreaks [156], new SARS-CoV-2 variants with unforeseen muta-
tions continue to emerge [29, 64, 140], also with the potential risk of immune
evasion [30,44]. The Omicron variant (B.1.1.529 lineage), which contains over
30 mutations in the spike protein, including the same mutations of pre-existing
VoC, will definitely not be the last, and possibly not the most challenging we
will ever face [43]. The important task of designing early warning systems
requires a panoplia of tools, ranging from genome sequencing, epidemiological
surveillance, and machine learning applied to spike protein mutations [40,129].
To support monitoring based on epidemiological data, we propose a statistic-
ally based methodology that is easy to apply and enables the early detection
of anomalous events, consequently triggering further inquiries. With respect
to massive genomic sequencing, statistical methods based on epidemiological
data are faster and reduce costs and needed resources; of course, they do not
replace sequencing, but integrate it and may defer the genomic sequencing
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methods to a more targeted and purpose-driven framework, to effectively de-
tect potential VoCs and prevent their spread. The keystone of our approach is
the use of statistical quality control to monitor the homogeneity of the time-
varying estimated reproduction numbers of the disease in different regions of
a country (or, more in general, in different geographical areas). The novelty
of the approach consists in statistically comparing the reproduction numbers
of different regions in order to detect if some territories behave as outliers.
As a key feature of the proposed methodology, a rigorous statistical threshold
is derived, which accounts for the different sample sizes, i.e., the number of
infectious cases in a region. In the general context of healthcare monitor-
ing, this sample size issue had come under the spotlight in the early 2000,
in a series of works [5, 58, 99]. An example was the detection of abnormal
mortality rates in cardiac surgery wards [99]: through the characterization of
the baseline variability, one could build control charts with statistical limits
which, if exceeded, suggested the existence of an abnormal cause explaining
the anomalous mortality. When the key performance indicators were affected
by the sample size, it was shown that their monitoring could rely on so-called
funnel plots [127, 128]. In the case of epidemics, anomalies can be detected
by a comparative monitoring of the regional effective reproduction number,
Rt, whose variance depends on the number of new infected subjects in the
given region. Closely related to Rt is the so-called basic reproduction number
R0 (i.e. Rt at the beginning of the epidemic outbreak) whose expression is
obtained from mathematical models. For the analytical and numerical com-
putation of R0 for general structured population models, see [9,10,26]. A large
regional Rt may have a special cause, such as the emergence of a new VoC, or
may just be the effect of statistical fluctuations due to sampling noise. In this
work, to monitor the onset of statistical anomalies in regional Rt’s, we derive
suitable funnel plots whose control limits can reveal abnormal trends, while
keeping false alarms under control. We validate our proposed methodology
using publicly available epidemiological data from Italy, England, India and
South Africa: we show that the crossing of control limits promptly reveals the
emergence of new more transmissible variants or the malfunctioning of the dia-
gnostic infrastructure. In conclusion, we notice that the utility of funnel plots
is not limited only to epidemiological setting, but have also meaningful clinical
implications. Indeed, several papers [4, 130] show that VOCs have a reduced
sensitivity to both antiviral drugs and monoclonal antibodies. The capacity
to detect VOCs earlier means the possibility to improve the appropriateness
of early therapies and to reduce hospitalizations and deaths.

1.3 Results

We apply the funnel plot methodology to five case studies, corresponding to
different stages of the COVID-19 pandemic, chosen because of their relevance
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to the spread of VoC’s or to flaws of the diagnostic infrastructure. Two case
studies refer to England (initial spread of the Omicron variant in December
2021 and large failure of a diagnostic lab in September 2021), and the other
three to Italy (initial spread of the Omicron variant in December 2021), India
(first emergence of the Delta variant in February 2021), and South Africa (first
emergence of the Omicron variant in November 2021). In addition, the nine
English regions are monitored over a 18-month period from December 2020 to
June 2022. In all cases, we focus on four key dates. The first date corresponds
to a situation of statistical homogeneity: when variants are uniformly spread
in the country and contact rates do not vary much across regions, differences
between estimated Rt’s are exclusively due to natural variability and the re-
gional Rt’s are expected to lie within the funnel, centered around the national
Rt (see 1.5). The second and the third dates refer to the disruption of the
natural variability: when a new VoC starts spreading, at first it colonizes in
particular a few territories, whose behavior becomes abnormal with respect
to the national one. This is highlighted by the fact that the corresponding
Rt’s first cross the funnel limits and then clearly move outside the limits. The
last date corresponds to a new homogeneity, typically established around a
higher Rt: the VoC is now uniformly spread in the country, thus restoring
the condition of natural variability. Finally, to have a snapshot of the whole
period under study, the standardized Rt’s with ±3.09 sigma are plotted on a
Bonferroni control chart, which is a standard univariate control chart whose
control limits are adjusted according to the Bonferroni correction (see 1.5).
Due to its statistical background, the scope of the new control method is not
restricted to VoC monitoring, but can detect other kinds of anomalies, such
as those related to testing availability or malfunctioning buffer factories: we
discuss an example of such an anomaly in our Immensa case study. Hereafter,
the infectious cases at day t are the total number of individuals that are in-
fected and infectious at day t, while the new cases at day t are the number of
subjects who become infectious at that time.

1.3.1 Spread of the Omicron variant in Italy

We first apply the funnel plot methodology to the Italian regional data in
the period from 4 December to 3 January 2022, based on epidemiological
indicators released daily by the Civil Protection Department, which provides
21 regional time series (for 19 regions and the 2 autonomous provinces of
Trento and Bolzano). The Delta variant was dominant in Italy until December
2021, when the Omicron variant started to spread across the country. The
results are summarized in Fig. 1.1. In the Panels a-d, the estimates of Italian
regional Rt’s are plotted against the infectious cases on four selected dates.
On 7 December 2021 (see panel a), differences between estimated Rt’s were
due to natural variability alone and the 21 points lay within the funnel limits.
On 22 December 2021, Lombardy (dark red) crossed the alarm limit (see panel
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b) and on 24 December 2021 (see panel c) it was definitely outside the upper
alarm limit. In fact, as confirmed by a retrospective survey by the Italian
National Institute of Health published on 31 December 2021 [71], Lombardy
was the first Italian region to be colonized by the Omicron variant. As other
regions became increasingly colonized by the Omicron variant, their Rt’s rose
as well and, by 2 January 2022, Lombardy was absorbed again within a funnel,
now with a higher mean than in early December (see panel d). We can monitor
the trend by plotting the standardized Rt’s on a Bonferroni control chart with
±3.09 sigma limits (see panel e), where the arrival of the Omicron variant in
Lombardy in mid-December is clearly detectable.

1.3.2 Statistical monitoring of England for a year and a half

Fig. 1.2 displays the Bonferroni control chart of normalized Rt’s of the nine
English regions during 18 months, from the end of November 2020 to the
beginning of June 2022. Under natural variability conditions, irrespective of
the current national Rt, all the normalized curves are expected to lie within
the limits. Points outside the limits highlight a disruption of the statistical
homogeneity across regions, which should be investigated to unveil the root
cause of the anomaly. Fig. 1.2 reports seven major events, labelled from A to
G, along with plausible conjectured explanations: the emergence or the arrival
of the VoCs (Alpha [3, 144], Delta [138], Omicron [47, 141] and Omicron sub-
variants [43]), the malfunction of swab factories (further analyzed in Figure
4) [50, 139], some incidents of violation of lockdown restrictions [11, 12, 13],
and changes in the testing policies [125].

1.3.3 Emergence of the Delta variant in India

We applied our methodology to epidemic data from India in the period 13 Feb-
ruary - 5 March 2021, when the Delta variant emerged and started spreading
from the state of Maharashtra. Panels a-d of Fig. 1.3 show funnel plots at
four selected times, where colour-coded circles represent the Rt’s of the 36
Indian states. While on February 13 all circles fell within the funnel, on Feb-
ruary 16 the state of Maharashtra (dark red) crossed the alert threshold (in
correspondence with the initial spread of the Delta variant), further depart-
ing from the mean on February 22. Lastly, on 4 March 2021, the Rt’s of all
regions but Kerala (orange) shaped a new funnel with a higher mean, which
again incorporated Maharashtra. The peculiar dropping of Kerala’s Rt below
the lower alert threshold, despite the very high number of infectious cases,
might be explained by the co-circulation of Alpha and Delta variants during
the same period, resulting in a lower Rt than in the areas predominantly hit
by the Delta variant. In the Bonferroni control chart (see panel e), the rise of
the Delta variant in Maharashtra is clearly visible since mid-February 2021.
One month later, on March 17, it was disclosed that a 10-lab research consor-
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tium had alerted the Union Health Ministry about a new variant spreading in
Maharashtra [124], leading to a press release on the new VoC a week later [69].
This case study suggests that the use of statistical control methods would have
enabled an earlier detection of the variant.

1.3.4 Emergence of the Omicron variant in South Africa

From 7 November to 4 December 2021, the Omicron variant colonized South
Africa, starting with the province of Gauteng. Panels f-i of Fig. 1.3 show four
funnel plots, where colour-coded circles represent the Rt’s of the South African
provinces. Until the very beginning of November 2021, the Delta variant
was prevalent and the differences in Rt across provinces merely resulted from
natural fluctuations (see panel f). By mid-November the Gauteng province
crossed the upper alert threshold (see panel g) and then further diverged (see
panel h). This is precisely the timing when the Omicron variant was first
identified, as declared by the WHO [68], and became a threat [109]. By 3
December 2021, Gauteng was reabsorbed within the funnel, now with a much
higher mean, following the spread of Omicron in the other provinces and the
consequent rise of their Rt’s (see panel i). The Bonferroni control chart with
±3.09 sigma limits (panel j) clearly shows the out-of-control trajectory of the
Gauteng province (red).

1.3.5 Spread of the Omicron variant in England

From 4 December 2021 to 1 January 2022, the Omicron variant massively
spread in England. Panels k-n of Fig. 1.3 show four funnel plots, with colour-
coded circles corresponding to the Rt’s of the English regions. On December 4,
all the regions were within the alarm limits (panel k). By 10 December 2021,
the London region had crossed the funnel limits (panel l), further diverging
from the upper limit on 15 December (panel m). This suggests that Omicron
was more prevalent in London than in the rest of England and indeed, on
13 December 2021, 20% of the cases in England and over 44% of the cases in
London were attributed to Omicron [141]. As the other regions were colonized,
the distribution of their Rt’s moved upward and, on 23 December 2021, the
London region was again inside the funnel (panel n). An earlier detection
would have been allowed by the Bonferroni control chart, where London first
crossed the alarm limit in early December (panel o).

1.3.6 Immensa scandal in England

Our last case study concerns England in the period from 27 August to 25
September 2021. Panels a-d of Fig. 1.4 display four funnel plots in selec-
ted dates, with colour-coded circles corresponding to the Rt’s of the English
regions. On 5 September 2021, all English regions were within the funnel
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(panel a). By 9 September 2021, the South West (red) had crossed the lower
alarm limit (panel b) and remained below the lower limit for about two weeks
(panel e). The timing of this swing coincides with the period during which
the Immensa lab in Wolverhampton gave some 43,000 incorrect negative tests
relative to South West and West Midlands territories [50,139]. While the sus-
pension of lab operations came in mid-October, the Bonferroni control chart
indicated an out-of-control condition already in early September and would
have allowed a much earlier detection of the anomaly.

1.4 Discussion

We proposed funnel plots and the associated Bonferroni control chart as a
valuable framework for the early detection of a new emerging or imported
VoC and showed their effectiveness in six real-life scenarios based on epidemic
data from Italy, India, South Africa and England. These case studies demon-
strate that the proposed methodology, besides being direct and inexpensive,
allows the early detection of anomalies due to different root causes, ranging
from the emergence of a new VoC, and its colonization of a country, to flaws
in the diagnostic system, such as the Immensa COVID-19 testing scandal in
England. Once the method identifies anomalous patterns, further inquiries are
needed to assess their causes. Funnel plots provide an innovative and statistic-
ally rigorous tool for monitoring the statistical homogeneity of the distribution
of regional Rt’s. Our method can be seen as an extension to epidemiology of
the funnel charts advocated by Spiegelhalter in the assessment and compar-
ison of institutional performances in the healthcare sector [127]. Before then,
funnel plots were mainly known as a standard tool for investigating biases in
meta-analysis studies. As such, they have also been employed in the context
of COVID-19 meta-analyses, see e.g., [155]. Prompt identification of a VoC
before its large-scale spread, leading to impactful public health implications,
is a key goal in the control of the SARS-CoV-2 pandemic and in preventing
and controlling future pandemics. However, as the relentless and flashy world-
wide dissemination of the Omicron variant has largely proven, some doubts
remain about the most effective way to achieve this goal. Although some
rRT-PCR–based algorithms and/or NAAT-based screening assays have been
proposed for the early identification of VoCs [91,103] and might be implemen-
ted in routine laboratories [106], Whole Genome Sequencing, or at least the
complete or partial sequencing of the spike (S) protein-gene, remains the only
tool to both effectively identify the different variants and follow the evolution
of SARS-CoV-2 [25, 107]. However, WGS is time consuming, expensive, and
needs dedicated structures and personnel with technical expertise to be timely
implemented. Furthermore, it is challenging to be applied on low viral loads
samples [36]. Exactly in this breach, the potential support of surveillance
based on funnel plots and Bonferroni charts might accelerate the detection
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of a new VoC, without requiring, at least initially, the backup of a special-
ized microbiology laboratory. The value of WGS is undisputed, but, in a
setting with limited resources, easy and inexpensive data-driven statistical
methodologies for surveillance may support more targeted and focused gen-
omic sequencing. Therefore, besides being extremely useful where sequencing
is lacking due to scarce resources, the funnel plot framework is also precious
to inform and suggest where sequencing efforts should be concentrated. It
also allows the detection of anomalies that cannot be revealed by sequencing,
such as failures of the testing infrastructure, as shown by the Immensa case
study. The statistical underpinning of the methodology takes into account the
natural variability of the phenomenon, thus preventing false alarms even in
the presence of noisy data, e.g., due to late registration of new cases. While
polished data may be available with weeks of delay, funnel plots can work
in real-time using the latest data, a crucial feature to allow an early detec-
tion of anomalies and hence prompt interventions. For instance, the Italian
funnel plots of the first case study were fed by daily published unprocessed
data. Other authors have proposed the application of statistical process con-
trol methods for monitoring the evolution of the COVID-19 pandemic. For
instance, [111] proposed hybrid control charts to detect the start and end of
exponential growth in reported deaths within a geographic area. An inter-
esting use of hybrid control charts was investigated in [70], keeping under
control exponential and non-exponential growth and decline of cases, disag-
gregated at the regional and subregional level, to inform local mitigation and
containment strategies. Conversely, our approach leverages the characteriz-
ation of the collective distribution of regional Rt’s: we do not monitor each
region individually, but rather surveil the homogeneity of the distribution. In
view of its nature, the proposed method reveals the loss of statistical stability,
but cannot of course unravel its cause. Consistently with established quality
control practices, it should be used to trigger an inspection. Therefore, the
funnel plot is not a VoC-detector, but an anomaly detector: early detection
enables focused inquiries aimed at discovering the cause of the anomaly. In
funnel plots, a point lying outside the funnel limits is associated with high
confidence to some anomaly of the effective reproduction number. This may
be due to several special causes of variations, such as VoCs, outbreaks due to
violations of containment measures, failures of the diagnostic infrastructure
(such as the Immensa scandal). In the absence of special causes, all funnel
plots in the chapter are designed so that all points are inside the alarm limits
in 99.8% of the cases (or, equivalently, so that the false alarm probability is
0.2%).
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1.5 Material and Methods

Data. Data regarding new positive cases were obtained from publicly avail-
able sources:

• https://github.com/pcm-dpc/COVID-19/tree/master/dati-regioni

for Italian data,

• https://data.covid19bharat.org/ for Indian data,

• https://mediahack.co.za/datastories/coronavirus/data/# for South
African data,

• https://coronavirus.data.gov.uk/details/download for English data.

Following [61], we assumed a discretized lognormal distribution for the serial
interval, with parameters chosen in accordance with [53]. To correct system-
atic errors in the data, partly due to the weekly periodicity, partly due to
delays and other reporting errors, all data were filtered using a double seven-
day moving average.

Distribution of regional Rt’s. The reproduction number at time t, named
Rt, captures the number of secondary infections from a population including
both susceptible and immune individuals. For its estimation, a range of model
frameworks and estimation procedures have been proposed [1]. Herein we
adopt the approach of Cori et al. [38] that makes minimal assumptions about
the mathematical model of the epidemic process. Cori’s formula uses the time
series of the new cases and estimates of the distribution of the generation
time, i.e., the time between infections. According to [38] the estimate R̂t of
the instantaneous reproduction number Rt is obtained as

R̂t =
It

∑t
s=1wsIt−s

(1.3)

where It denotes the daily number of new infected cases and ws are the coeffi-
cients, adding up to one, of the infectivity profile, often approximated by the
distribution of the serial interval. The denominator

Λt =
t

∑

s=1

wsIt−s

can be interpreted as the total infectiousness of individuals that are currently
infected at time t. In view of the typical models of the infectivity profile, e.g.,
lognormal or gamma density functions, Λt is a smoothed version of the time
series It of daily new cases. If seven-day moving averages are used to filter
out weekly oscillations, It is already smooth, and the resulting Lambdat is
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insensitive to the precise shape of the infectivity profile. This feature may
prove helpful when a new VoC arises whose infectivity profile is unknown, or
only approximately known. To derive the distribution of R̂t, we only assume
that disease transmission follows a Poisson distribution with mean ΛtRt:

It|Rt,Λt ∼ Pois(RtΛt)

Typically, RtΛt > 30, so that a normal approximation can be used:

It|Rt,Λt ∼ N(RtΛt, RtΛt)

In view of 1.3, it follows that R̂t|Rt,Λt ∼ N(Rt, Rt/Λt). For the sake of
interpretability, rather than using the notion of total infectiousness Λt, it is
more intuitive to refer to the total number of infectious individuals. To this
aim, we introduce the parameter

µ :=
1

∑

∞

s=1 sws

i.e., the inverse of the mean serial interval, which, for the well-known SIR
model, corresponds to the removal rate [8]. Then, Ät = Λt/µ represents the
number of individuals that are infectious at time t. Letting ¹ = Rt, and
g(¹) = Rt/µ, it follows that

R̂t|¹, Ät ∼ N(¹, g(¹)/Ät).

Comparing the above distribution with 1.1, it follows that, for any given t,
the scatter plot of R̂t against Ät is indeed a funnel plot. Also in this case, it is
convenient to introduce an overdispersion parameter ϕ, so that, in accordance
with 1.2, the final model becomes

R̂t|¹, Ät ∼ N(¹, ϕg(¹)/Ät) (1.4)

A useful byproduct of introducing overdispersion is that ϕ takes into account
the effect that possible errors or uncertainties in the estimated mean serial
interval has on the variance of R̂t. Indeed, the variance of R̂t is inversely
proportional to µ, but the effect of a wrong µ is automatically compensated
when estimating ϕ from the data.

Parameter estimation. Under (1.2), the datum is

Yi = ¹ +
ϵi√
xi

(1.5)

where ϵi ∼ N(0, Ã2), i = 1, . . . , n are IID, and Ã2 = ϕg(¹).
Letting vi = ϵi/

√
xi, the model in matrix form becomes

Y = Φ¹ + v
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where Y = (Yi)i=1,...,n,Φ = (1)i=1,...,n, and v ∼ N(0, Ã2Σ), where

Σ =







1
x1

· · · 0
...

. . .
...

0 · · · 1
xn






.

Then, the generalized least squares technique [14] provides the minimum vari-
ance unbiased estimate and the estimated parameters are

¹̂ = (ΦTΣ−1Φ)−1ΦTΣ−1Y

Ã̂2 =
1

n
eTΣ−1e (1.6)

where e = Y −Φ¹̂ is the vector of the residuals. Then, the overdispersion para-
meter ϕ is estimated as ϕ̂ = Ã̂2/g(¹). Data winsorization can be performed,
as detailed in [127], to reduce the effect of possibly spurious outliers. The fol-

lowing lines provide specific details for this chapter. By defining Yi = R̂i
t, and

xi = Äit, we can add the following. Estimates ¹̂ and ϕ̂ are needed to compute
the funnel at time t, as well as the standardized residuals zi to be plotted in
the Bonferroni control chart. The estimate ϕ̂ is computed from (1.6) using
the set of R̂i

t that were in control at time t − 1. The centerline ¹̂ is obtained
by projecting at time t a weighted linear regression estimated from the set of
R̂i

t that were in control at times t− 1, t− 2, and t− 3. The weights are given
by the numbers xi of infectious individuals at the same times. This procedure
yields an estimate of the current ¹ that tracks the trends of the national Rt,
but is still fairly robust thanks to the use of the last three data points. At the
beginning (and in the rare cases when all units are out of control), the whole
sets {R̂i

t}, {Äit} are fed to the estimator.

1.6 Conclusions

In this study, we introduced an innovative approach based on funnel plots
and Bonferroni control charts for the early detection of emerging Variants of
Concern (VoCs) during the COVID-19 pandemic. The proposed methodology
proved effective across various real-world case studies in Italy, England, India,
and South Africa, detecting anomalies in regional reproduction numbers (Rt)
that were linked to both the emergence of new variants, such as Alpha, Omic-
ron and Delta, and failures in the diagnostic infrastructure, as illustrated by
the Immensa testing scandal in England.

The value of this method lies in its simplicity, cost-effectiveness, and ability
to promptly identify anomalous behaviors in real-time, reducing the need for
resource-intensive processes such as full genome sequencing. While it does not
replace sequencing, it serves as a useful complementary tool, enabling more
targeted sequencing efforts and further investigations.
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Lastly, the statistical rigor of funnel plots minimizes the risk of false alarms,
ensuring reliable detection of anomalies—crucial for timely interventions in
public health settings. This approach could also prove valuable in future
pandemics, enhancing epidemiological surveillance and optimizing the use of
limited resources.
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Figure 1.1: Monitoring regional reproduction numbers (Rt’s): funnel plots and
control chart. Panels a-d show the Italian regional Rt’s (colour-coded circles), plotted
against the infectious cases at four selected times. When the epidemic evolution is ho-
mogenous across regions, differences between Rt’s are exclusively due to natural statistical
variability and the circles are expected to lie inside the black alarm limits in 99.8% of the
cases. The alarm limits have the shape of a funnel because the variance of the estimated
Rt is inversely proportional to the number of infectious cases. The central dashed line
represents the average Rt. A circle is out of statistical control if it lies outside the black
funnel. Out-of-control circles might therefore reveal anomalies that disrupt the homogeneity
between regions. In Panels a-d, the majority of the points, lying in the funnel, are essentially
indistinguishable and therefore not even named. On 22 December 2021, Lombardy (dark
red) crossed the alarm limit and on 24 December 2021 it was completely outside the upper
alarm limit. As confirmed by a survey by the Italian National Institute of Health, Lombardy
was the first Italian region to be colonized by the Omicron variant. As the other regions
were colonized too, the distribution of their Rt’s moved upward and, on 2 January 2022,
Lombardy was again inside the funnel. The trend can be monitored by plotting the stand-
ardized Rt’s on a Bonferroni control chart with ±3.09 (Panel e), where the introduction of
the Omicron variant in Lombardy in mid-December is clearly visible.
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Figure 1.2: Monitoring regional homogeneity in England from December 2020 to
May 2022. The upper panel shows the Bonferroni control chart of the normalized Rt’s
of English regions during 18 months. In this period, seven major events, labelled from A
to G, are visible, whose plausible explanations are conjectured below. A – Alpha variant:
although no crossing is observed, the curves form two clusters, and the upper is formed
by the three regions where the alpha variant first became dominant. No crossing occurs
because, rather than starting in a unique region, the variant colonized three regions at the
same time, hindering out-of-control detection. B – Outbreaks in Yorkshire: during Spring
2021, the number of infection cases in the region was slowly decreasing and then it had
a huge peak, due to very high numbers of manufacturing jobs and related high-exposure
workplaces, leading to outstanding outbreaks such as the one in a Selby warehouse with
more than 700 employees. C – Delta variant first arrival in the North West: in May 2021
the Delta variant, originated in India, started its colonization of England from the North
West region. As a characteristic feature of the control chart, the curve that first crosses the
upper limit in correspondence of a new VoC, later on is often going to cross also the lower
limit if its Rt is the first one to decrease, as happened to the North West. D – Immensa
scandal: see Fig. 1.4 for a discussion of the massive lab malfunctioning that perturbed case
recording in the South West and South East. Compared to the rise of a new VoC, a specular
pattern is observed: when the malfunctioning is fixed, a fake outbreak is observed and the
red curve crosses the upper control limit. E – Omicron 1 variant first arrival in the London
region: see Fig. 1.3 (panels k-o) for a discussion. F – In mid February, the UK Government
announced that on April 1 free tests would be suspended, thus triggering social behaviors
that may explain the anomalous trends in the control chart. G – Omicron 4 variant first
arrival in the London region. For validation purposes, the four middle panels report the
number of weekly detected cases, in each region, of the main VoCs [117], Alpha (B.117,
Q) , Delta (B.1.617.2, AY), Omicron 1 (BA.1) and Omicron 4 (BA.4), during selected time
windows. In each case, the control chart correctly identifies the region where the spread
starts. The number of detected cases for Omicron 4 is far less than for the other VoCs,
due to cuts to genomic surveillance: the value of the control chart as a surveillance tool is
even more evident. Finally, the bottom panel reports the time profile of the national Rt, to
facilitate the connection with the different phases of the pandemic in UK.
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Figure 1.3: Funnel plots help detect anomalies: spread of the Delta variant in
India and of the Omicron variant in South Africa and England. India: Panels a-d
display the funnel plots at four selected times, with colour-coded circles corresponding to
the Rt’s of the Indian states. On 13 February 2021, all points are within the funnel, but on
16 February 2021, when the Delta variant starts spreading, there is an out-of-control point
corresponding to Maharashtra (dark red), which on 22 February 2021 is further apart from
the mean. Finally, on 4 March 2021 the Rt’s of all regions except Kerala (orange) converge
to a new distribution characterized by a higher Rt. The trend can be monitored by plotting
the standardized Rt’s on a Bonferroni control chart with ±3.09 sigma limits, see Panel e,
where the rise of the Delta variant in Maharashtra is clearly visible. South Africa: Panels
f-i display the funnel plots at four selected times, with colour-coded circles corresponding
to the Rt’s of the South African provinces. The rise of the Omicron variant in the Gauteng
province (red) is well visible both in the funnel plots and in the Bonferroni control chart
reported in Panel j. England: Panels k-n display the funnel plots at four selected times, with
colour-coded circles corresponding to the Rt’s of the English regions. The spread of Omicron
in England started from the London region (green), whose Rt had already crossed the alarm
limit on 10 December, when, as seen in Figure 3E of [47], the daily proportion of Omicron
infections did not exceed 25%. As the other regions were colonized, the distribution of their
Rt moved upward and, on 23 December, the London region was again inside the funnel, as
also seen in the Bonferroni control chart reported in Panel o.
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Figure 1.4: Funnel plots help detect anomalies: the incorrect negative tests of the
Immensa lab in England. Panels a-d display the funnel plots at four selected times, with
colour-coded circles corresponding to the Rt’s of the England regions. On 5 September 2021,
all circles were inside the funnel, but on 9 September 2021 there was an out-of-control point
below the lower alarm limit corresponding to South West (red), which was further apart
from the mean on 14 September 2021, when also West Midlands (brown) went below the
lower limit. Finally, on 20 September 2021 the Rt’s of all regions returned within the limits.
The anomalous decrease of Rt in the South West corresponds to the period during which the
Immensa lab (Wolverhampton) gave some 43000 incorrect negative tests relative to South
West and West Midlands. The whole trend can be monitored by plotting the standardized
Rt’s on a Bonferroni control chart with ±3.09 sigma limits, see Panel e. Lab operations
were suspended in mid-October as a consequence of the malfunction, while the control chart
indicated an out-of-control condition as early as late August.
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Correction of Italian

under-reporting in the first
COVID-19 wave via age-specific

deconvolution of hospital admission

When the COVID-19 pandemic first emerged in early 2020, healthcare and
bureaucratic systems worldwide were caught off guard and largely unprepared
to deal with the scale and severity of the outbreak. In Italy, this led to a
severe underreporting of infections during the first wave of the spread. The
lack of accurate data is critical as it hampers the retrospective assessment of
nonpharmacological interventions, the comparison with the following waves,
and the estimation and validation of epidemiological models. In particular,
during the first wave, reported cases of new infections were strikingly low if
compared with their effects in terms of deaths, hospitalizations and intens-
ive care admissions. In this chapter, we observe that the hospital admissions
during the second wave were very well explained by the convolution of the
reported daily infections with an exponential kernel. By formulating the es-
timation of the actual infections during the first wave as an inverse problem,
its solution by a regularization approach is proposed and validated. In this
way, it was possible to compute corrected time series of daily infections for
each age class. The new estimates are consistent with the serological survey
published in June 2020 by the National Institute of Statistics (ISTAT) and
can be used to speculate on the total number of infections occurring in Italy
during 2020, which appears to be about double the number officially recorded.

2.1 The problem of estimating the size of the
pandemic outbreak accurately

The availability of accurate data on a pandemic outbreak is essential, as the
data provide key information on the spread of the disease and enable authorit-
ies to assess and compare public health policies. Available data on COVID-19
cases can be used, e.g., for forecasting and analyzing deaths, hospitalizations,
and occupation of intensive care beds, thereby deciding if and what contain-
ment measure to take. Also, estimating the size of an outbreak can predict
the outbreak’s future trajectory, thus informing planning about resources and
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interventions.
In Italy, the Istituto Superiore di Sanità (ISS) [72], was in charge of the

official recording of COVID-19 data, based on which government committees
were informed about the status of the pandemic phases and and advices were
issued on non-pharmaceutical interventions (NPIs). It is widely recognized
that, during the first outbreak, these official statistics largely underestimated
the true number of cases [81]. The Italian national Institute of Statistics
(ISTAT) estimated the under-reporting during the first wave by conducting a
seroprevalence survey published by ISTAT [73]. It was found that the number
of positive subjects was about six times larger than the number of registered
cases. Knowing this ratio, however does not provide a reliable correction
for the daily time series, apart from knowing that they suffer from a severe
underdetection.

The issue of correcting for the underreporting has been addressed by sev-
eral authors using a variety of approaches. Giordano and colleagues [55] em-
ployed a compartmental model that incorporated the potential presence of
undetected symptomatic and asymptomatic COVID-19 cases. The model’s
parameters were calibrated empirically using data on reported cases. Their
simulations predicted that during the first phases as many as 35% of the
cases were not reported. Alternatively, also Bayesian methods have been
employed [150]. Since they require a number of assumptions on the prior
distributions of key parameters, these methods suffer from some subjectivity.

An approach more grounded on evidence is to leverage the health effects of
the outbreak in order to trace back to the infections. For instance, whenever
COVID-19 related deaths, hospitalization and ICU admissions or occupancy
are less prone to underreporting, their recordings can be used to reconstruct
the causes, i.e. the infections. Of course, this is possible provided that a
reliable cause-effect model is available. For instance, in the delay-adjusted
CFR (Case Fatality Ratio) model [142], deaths are modeled as a fraction of
new cases delayed by some interval, see [113]. More precisely, letting u(t)
denote new cases at time t, the delay adjusted model predicts deaths at time
t as d(t) = CFRu(t−T ), where T is the average delay between case recording
and deaths. In this case, the CFR must be known in advance or estimated from
a dataset where new cases do not suffer from underreporting [132]. Correction
of underreporting by the delay-adjusted CFR method is easily achieved letting
the estimated time series of infections be equal to the time shift of the time
series of deaths divided by the CFR. Of course, the same method can be used
replacing deaths with other health effects such as hospital or ICU admissions or
also hospital or ICU occupancy. In these cases, the cause-effect model consists
of the fraction of severe cases leading either to hospital or ICU admission as
well as the typical delay from infection to the admission.

The main shortcoming of these delay adjusted methods is that they do
not account for the nondeterministic nature of the delay between infection
and the considered outcome, such as death or hospital/ICU admission. In-
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deed, the delay changes from patient to patient according to some probability
distribution. In fact, due to the randomness of the delay, the time series of
the outcome is not just a shifted version of the new cases, as recognized by
Noh and Danuser, who devise an ingenious method, based on Expectation-
Maximization, in order to improve the estimate of the ascertainment rate of
new cases [105]. It is worth noting that the use of a unique Case Fatality
Ratio, that makes no distinction for age, widens the confidence intervals of
the reconstructed new cases.

A key observation, in order to achieve a better reconstruction of actual in-
fections, is that hospitalizations could be better modeled as the convolution of
new cases with a kernel function proportional to the random lag distribution.
The proportionality coefficient is equal to the fraction of cases experiencing
the given outcome: in the case of death it is the apparent CFR, and in the
case of hospitalization it is the fraction of cases admitted.

The implementation of more rigorous correction methods has been hampered
by the need of enhanced approaches for both the identification and correction
procedures. Specifically, in the identification phase, the estimation of the
delay distribution must be taken into consideration in addition to the two
parameters of delay and gain. This estimation could be performed utilizing
epidemiological data not impacted by underreporting. Furthermore, in the
correction step, scaling and shifting techniques need to be replaced by the
resolution of an inverse problem, namely a deconvolution problem, which in-
creases the complexity of the correction procedure.

In the present work, we address both steps: a technique based on linear
system identification and regularization for inverse problems is proposed as a
method to correct underreporting and used to reconstruct the time profile of
new positives during the first COVID-19 wave in Italy.

The chapter is organized as follows. In the Material and Methods section,
we introduce the system identification technique used to learn the cause-effect
relationship between new positive cases and hospitalizations. We then de-
scribe the deconvolution problem and the algorithm for its solution. Finally,
we present a method for assessing the uncertainty of the proposed reconstruc-
tion. The Results and Discussion sections present our main findings and their
interpretation, as well strengths and limitations of the proposed approach.
The Conclusions end the chapter.

2.2 Materials and methods

Data

Data were downloaded from a publicly available platform (see Data Availab-

ility Statement). A centered seven-day moving average was applied [118] to
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filter noise errors in the data, mostly due to weekly oscillations but also caused
by random delays and recording errors.

2.2.1 Identification of input-output model of hospital
admissions

Letting the t (days) be the integer time, ut will denote the observed time series
of the daily number of new positive subjects (at swab time) and yt the number
of daily hospital admissions. It is assumed that yt obeys a convolution model:

yt =
∞
∑

k=0

gkut−k−D + ϵt,

where D is an integer delay, ϵt is a zero-mean white noise and the kernel gt is
the impulse response of the linear system with input ut and output yt.

A useful constant related to the impulse response is the gain

µ :=
∞
∑

t=0

gt

which represents the expected fraction of observed positive subjects that will
eventually be hospitalized. The normalized function g̃t = gt/µ can be inter-
preted as the probability distribution of the random time Th elapsed from D
days after the swab day to the day of hospital admission. A particular case is
given by an exponential distribution:

gt =

{

0 if t < 0

´³t if t g 0
(2.1)

where ´ > 0 and 0 f ³ < 1. The average of Th is T̄h = E[Th] = log(³). Note
also that

µ =
´

1− ³

In order to estimate the parameters ³ and ´ of the impulse response,
the oe.m function of the MATLAB System Identification Toolbox was em-
ployed [93]. The MATLAB function oe.m relies on prediction error minimiz-
ation carried out by means of a Levenberg-Marquardt nonlinear least squares
algorithm [88].

Reconstruction of new cases via deconvolution

An inverse problem is the process of estimating from a set of observations the
unknown causal factors that produced them. In the context of the present
chapter, the set of observations are the hospital admissions, while the un-
known causal factor is the time series of new cases. When the cause-effect
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relationship is described by a linear time-invariant system, the output signal
is the convolution of the input with an impulse response and the inverse prob-
lem is called deconvolution. Observing that during 2020 new variants were
not observed in Italy, it is assumed that the impulse response did not change
from the first to the second wave.

In order to formulate the deconvolution problem, it is worth introducing a
matrix representation of the convolution model. Let U = (ut−D)t=1...n ∈ R

n,
Y = (yt)t=1...n ∈ R

n be the vectors of new cases and hospital admissions
during the n days of the first wave. Moreover, E = (ϵt)t=1...n ∈ R

n will denote
the vector of the errors.

Assuming ut = 0, t f −D, if the impulse response gt is as in (2.1), we have
that

Y = GU + E (2.2)

G =













g0 0 . . . 0

g1 g0
...

...
. . . 0

gn−1 gn−2 . . . g0













(2.3)

Then, for a known impulse response gt, the problem of estimating the new
cases from the hospitalization admissions can be written as

C = argmin
U

{ϕ(Y,GU) + ¼J(U)} (2.4)

where

C ∈ R
n is the vector of estimated new cases;

G ∈ R
n×n is the convolution matrix obtained by the impulse response gt

identified from the second wave data;

ϕ : Rn × R
n → R≥0 is the loss function, whose purpose is to measure the

data fitting;

J : R
n → R≥0 is a regularization penalty function, whose purpose is to

measure irregularity of U ;

¼ g 0 is the hyperparameter that adjusts the relative importance between of
ϕ and J .

In order to relax the assumption ut = 0, t f −D, we can include as additional
unknowns the L + 1 input values ut,−(D + L) f t f −D, so that U =
(ut−D)t=−L,...n ∈ R

n+L+1 In this case, the matrix G in (2.3) has to be updated
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as follows

G =











gL+1 . . . g0 0 0 0
gL+2 . . . . . . g0 0 0

...
. . . 0

gL+n . . . . . . . . . . . . g0











Although the number of unknowns is greater than the number of observations,
by a proper choice of the loss ϕ and the regularization term J one can still
ensure that (2.4) is convex so that a unique solution exists.

Concerning the cost function, a classical choice is to use a quadratic loss
ϕ(v) = ||v||22 =

∑n
i=1

v2i and a regularization penalty J equal to the squared 2-
norm of a linear operator applied to the input, i.e. J = ||Pu||22. Some possible
choices for P are:

• P = In ∈ R
n×n or ridge penalty;

• P = ∆n ∈ R
n×n or penalty on first differences;

• P = ∆2
n ∈ R

n×n or penalty on second differences.

where In is the identity matrix of order n and

∆n =





















1 0 · · · · · · · · · 0
−1 1 0 · · · · · · 0
0 −1 1 0 · · · 0
...

. . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 −1 1





















Under these assumptions, (2.4) is a quadratic programming problem whose
closed form solution is

C = (GTG+ ¼P TP )−1GTY

Observe that there is no guarantee that ct g 0 ∀t = 1 . . . n. Whenever viol-
ated, the nonnegativity constraint is dealt with by reformulating the problem
as a constrained quadratic programming one, solved via Matlab’s Optimiza-
tion Toolbox [92].

Finally, regardless of the selected approach, the tuning of the regulariza-
tion penalty has to be properly addressed. Herein, Mallow’s Cp criterion is
adopted, assuming E[E] = 0,Var[E] = Ã2In [90]. The variance Ã2 is estim-
ated by fitting an overparametrized model, i.e., a 20-degree polynomial, to the
hospital admission data, capturing random noise by overfitting and isolating
it from systematic trends.
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2.2.2 Assessing uncertainty via boostrap

In order to assess the uncertainty of the estimated impulse response, we resor-
ted to a wild bootstrap resampling scheme [149], which allows for heterosche-
dastic data, like the hospital admissions whose variance is possibly nonuni-
form.

Concerning the uncertainty of the impulse response identified from the
second wave data, the idea is to start from the predicted time series ŷt of
hospital admissions obtained by convoluting the new cases with the identified
impulse response ĝt:

ŷt =
∞
∑

k=0

ĝkut−k−D

Then, letting et = |yt − ŷt|, the bootstrapped datasets are obtained by gener-
ating resampled data as

y∗t = ŷt + etvt

where {vt} are indipendent and identically distributed standard normal vari-
ables. Each boostrapped series of hospital admissions is then fed into oe.m

to obtain a new realization ĝ∗t of the identified impulse response. Given a
sufficient number of realizations, for any given time t, it is then possible to
compute percentiles for gt. Moreover percentiles for the gain µ and the time
constant T̄h can also be obtained.

For what concerns the uncertainty of the reconstructed profile of first wave
new cases, knowing the uncertainty of the impulse response is not sufficient,
because a second source of uncertainty must be accounted for, namely the
noise affecting the daily hospital admissions during the first wave. To account
for both sources, a double wild boostrap scheme can be used: not only is
the deconvolution replicated on the boosted hospital admissions but, in each
replication, a different impulse response from the previously described wild
boostrap performed on the second wave is used. As a result, several realiza-
tions of the reconstructed new cases are obtained, so that percentiles can be
computed both pointwise or relative to the total cases.

2.3 Results

2.3.1 Hospitalization model during the second wave

The daily new cases and daily hospital admissions for the different age groups
during the second wave in the period 1 October - 15 December 2020 are dis-
played in Fig 2.1. For all ages, the time series of the new cases exhibit an
increase until the beginning of November when the progression slows down
and a declining phase starts in correspondence with the containment meas-
ures taken by the Italian Government. The time series of the daily hospital
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admissions show a similar profile. Depending on the age group, their maxima
range from some tens (e.g. age 0-9) to some hundreds (e.g. age 70-79).
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Figure 2.1: Identification of input-output model of hospital admissions. In the first
and fourth columns, the daily new cases (black dots) during the second wave are plotted for
the ten age groups. The new cases for all age groups showed an upward trend until early
November, when the growth rate slowed down and a declining phase began in correspondence
of the government’s NPIs. An exponential impulse response model was identified for all age
groups using Matlab’s oe.m function. The impulse responses (green) are shown in the second
and fifth columns, along with pointwise confidence intervals calculated via wild bootstrap.
The new cases were convoluted with the estimated impulse response to produce the predicted
hospital admissions (red) for all ten age groups that are plotted in the third and sixth columns
together with the actual admissions (black dots).

The exponential impulse response models and the delay parameters D
were identified for all age groups from the new positives and hospital admis-
sions via Matlab’s oe.m function. It resulted that the delay parameters D
were negative for all age groups and ranged from -10 to -6. This does not
violate causality, because D would be strictly positive is new cases were re-
corded at infection time, while the positive cases were actually recorded at
swab time. The obtained impulse responses are displayed in Fig 2.1 together
with pointwise confidence bands computed via wild boostrap. The differences
between the ten impulse responses can be appreciated from the upper panel
of 2.5, where they are displayed together. Each exponential impulse response
is characterized by two parameters: its area, i.e. the gain µ, and the time con-
stant T̄h, whose estimated values are reported in Table 2.1 together with their
2.5th and 97.5th percentiles. The gains ranged from 0.68% for the age group
10 − 19 to 30.62% for the age group 80 − 89, reflecting how illness severity
varied with age. Concerning the time constant, it ranged from 4.8 days (age
0− 9) to 12.8 days (age 90− 99). Both parameters were estimated with good
precision. If impulse is normalized to have unit area, it can be interpreted as
a probability density function of elapsed time. The ten density functions are
displayed together in lower panel of 2.5 in the Supplementary Materials. The
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age groups until 49 year-old exhibit a very similar distribution with shorter
mean compared to the three age groups from 50 to 79 year-old. Finally the
last two age groups have the longest time constants.

In order to assess the convolution model, the new cases were convoluted
with the estimated impulse response, thus the time series of predicted hospital
admissions for all the ten age groups. As seen in Fig 2.1, in all cases there is
very good agreement between the predicted and observed items.

2.3.2 Reconstruction of first-wave infections via
deconvolution

The new cases during the first wave (7 January - 15 May 2020) were recon-
structed via regularized deconvolution applied to the time series of first wave
hospital admissions. The estimated new cases per 100, 000 subjects are dis-
played in Fig 2.2, together with pointwise 95% bands. The shapes are similar
with steep rise, a peak at the beginning of March and a subsequent decay. In
all age groups the time series of the reconstructed new positives is uniformly
larger than that of official ones, except for the age group 80-89, where official
cases exceed the reconstructed ones in the second half of March, and the age
group 90-99 where the phenomenon, occurring since mid March, is even more
apparent. In the lower right corner of Fig 2.2, the ten profiles are plotted
together to form a surface, giving new cases per 100, 000 as a function of date
and age.

Figure 2.2: Reconstruction of first-wave infections through regularized deconvolu-
tion. The new cases during the first wave were reconstructed via regularized deconvolution,
starting from the daily hospital admissions. The estimated new cases per 100, 000 indi-
viduals (blues) are shown along with pointwise 95% confidence intervals (light blue). The
recorded cases (black) are also plotted for comparison. The patterns are similar across the
age groups, featuring a rapid increase, a peak in early March, and a subsequent decline. In
the bottom right corner, the ten profiles are combined to form a surface, providing the new
cases per 100, 000 as a function of date and age.
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Fig 2.3 provides a simultaneous look at all the age groups for both abso-
lute number (upper panel) and cases per 100, 000 (lower panel). Concerning
absolute numbers, the largest numbers of daily cases referred, for both waves,
to the age groups from 40 to 59, with higher values reached in the first wave.
Concerning the cases per 100, 000, the two waves show some differences. In
the first one, the first two peak values are again reached by the age groups 40-
49 and 50-59, while in the second wave the first two peak values are reached
by the 90-99 and 20-29 age groups. In both waves, the 90-99 group is the
one exhibiting a slower decay. Another major difference regards the younger
age groups. In the first wave the 0-9 and 10-19 groups show the lowest peak
values, below 10 and 15 cases per 100, 000, respectively. In the second wave,
instead, the group 0-9 has still the lowest peak value, but reaches 27 daily
cases per 100, 000, while the new cases of group 10-19, not only rise earlier
but their peak value exceeds 50 daily new cases, more than the peak values
of the 60-69 and 70-79 age groups. In Table 2.2, additional information about
the underestimation factor is provided.
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Figure 2.3: Comparison between the reconstructed first-wave cases and official
second-wave ones. A simultaneous view of all age groups is provided, where the upper
panel shows the absolute values and the lower panel displays the cases per 100, 000 indi-
viduals. With regards to absolute numbers, the highest daily case count for both waves was
among the age groups 40-59, with higher values seen in the first wave. When looking at
cases per 100, 000, some differences between the two waves should be noticed. During the
first wave, the 40-49 and 50-59 age groups had the highest peaks, while in the second wave
the 90-99 and 20-29 age groups had the highest peaks. The 90-99 age group showed the
slowest decline in both waves. The 0-9 and 10-19 age groups had the lowest peaks in the
first wave, but in the second wave the 0-9 group had a higher peak of 27 daily cases per
100, 000. The peak value for the 10-19 group was early and exceeded 50 daily new cases,
surpassing the 60-69 and 70-79 age groups.

The estimated new cases for all age groups can be summed to obtain a
corrected version of the global time series of the new cases during the first
wave, displayed in Fig 2.4, together with the official recorded new cases from
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7 January to 15 December. Thanks to the reconstruction procedure, is appears
that the official data severerely underestimated the number of new cases during
the first wave, whose peak values appeared much smaller than that observed
during the second one. As a matter of fact, the reconstructed peak value
reached at the beginning of March is about equal to the 35, 000 cases observed
in mid October 2020. In spite of the similar peak values, the two waves have
different slopes: both the rise and the decay of the new cases during the
first wave are steeper. In the lower panel of Fig 2.4, it is shown that the
hospital admissions (black dots) are well fitted by the admissions predicted by
the convolution (red curve). The prediction of hospital admission for all age
groups are displayed in 2.6, where the fit appears good except for youngest
age groups (up to 39 year-old) during the late summer period, while for older
age groups the fit appears satisfactory even during that period.

It is of some interest to assess the daily values of the underestimation
factor, defined as the ratio of the reconstructed number of new cases to the
number of official ones. It is seen that the daily underestimation factor was
much larger than one, reaching a six-fold underestimation at the beginning of
March, followed by a decrease until three and some further wandering around
four.
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Figure 2.4: Corrected and reconvoluted dataset. The estimated new cases for all age
groups can be summed to get a corrected version of the overall new cases during the first
wave. The upper panel compares the corrected series (blue) with the officially recorded new
cases (black dots) from 7 January to 15 December, 2020. The analysis confirms that the
official data significantly underestimated the number of new cases during the first wave,
whose peak value was much lower than those observed during the second wave. The rise and
decay of new cases during the first wave were steeper compared to the second wave, even
though the peak values were similar. The lower panel shows that the hospital admissions
(black dots) match well with the admissions predicted by the convolution model (red).
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2.4 Discussion

In this chapter we addressed the underreporting of Italian COVID-19 cases
during the first wave, by exploiting a convolution model of hospital admissions.

2.4.1 Modeling hospital admissions and reconstructing
first-wave cases

A first assumption underpinning our study is that the second wave was not
subject to a massive underreporting as that occurred during the first one. A
second assumption is that in both the first and second wave, for each age-
class, the hospital admissions were explained with good approximation by a
convolution model involving the time series of the new cases and a suitable
kernel function. Under these assumptions, the new cases during the first wave
were reconstructed by solving two inverse problem. The first one, formulated
on the second wave data, yielded the kernel function of the hospital admission
model as the solution of a parameter estimation problem involving hospital
admissions and new cases. In the second step, the new cases during the first
wave were obtained via deconvolution, using the first-wave hospitalizations
and the kernel function estimated in the first step.

Concerning hospital admissions, the results showed that a simple 3-parameter
kernel, consisting of a delayed and scaled exponential function, predicted re-
markably well the hospital admissions of all age groups, thus validating the
convolution model. The kernel parameter estimates shown in Table 2.1 seem
meaningful: for instance, the kernel areas, representing the fraction of hospit-
alizations among the positive subjects, tend to increase with the age, ranging
from a minimum of 0.7% (10-19 year-old) to a maximum of 30.7% (80-89 year-
old). Also the delay between swab time and hospital admission as well as the
time constant tend to be rather homogeneous across age groups. The negative
delays, ranging from -6 to -10 days, are likely explained by different delays in
the two pipelines of infection and hospitalization registries.

The solution of the second inverse problem yielded the reconstructed time
series of daily new cases during the first wave. Differently from the first inverse
problem, a simple parametric model describing the unknown signal was not
available, so that the solution hinged on a regularization approach. The use
of a penalty on the squared second differences proved effective.

As seen in Fig 2.2, it turned out that, for all ages, the reconstructed profiles
of daily new cases were definitely higher than the official data, thus confirming
the massive underreporting, highlighted by several authors, see e.g. [55], and
confirmed by the serological survey published in June 2020 by the National
Institute of Statistics (ISTAT) [73]. For all age groups the peak value was
reached almost simultaneously in the first half of March 2020. Apart from
younger (until 29 year-old) and older (from 80 year-old) subjects, the steep
rise of cases was followed by a quick decline during the enforcement of NPIs.
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Younger and older groups showed a somehow slower decline. In any case, the
shape of the curves changed gradually between adjacent age groups, as seen
in the surface plot in the lower right corner of Fig 2.2.

The lower panel of Fig 2.3, displaying new cases per 100,000, makes it
possible to compare the impact of the first and second wave on the different
age groups. A first observation is that during the first wave the time series of
new cases exhibited high and narrow profiles, with an acute angle while the
profiles during the second wave appeared definitely smoother. This change of
behavior is consistent with the different severity of the containment measures
that passed from strict national lockdown established by the Government on
March 9, 2020, to a region-based and adjustable set of measures adopted
during the second wave. Major differences between the waves were observed
for the younger age groups until 29 year-old: during the most severe phase
of the first wave they exhibited the lowest values, while in the second wave a
different behavior was observed. In fact, the 0-9 age group, while still having
the lowest peak, tripled its value. In the second wave, the 10-19 and 20-29
age groups, not only more than doubled their peak values but rised more
quickly. These observations are consistent with early closure of schools and
universities in the first wave [147], while closures were not so prompt during
the second one. Another major difference between the two waves regards the
oldest age group, i.e. 90-99. During the second wave the peak value was
the highest one among all age groups and more than 1.5 times higher than
the reconstructed peak value for the same age group during the first wave.
However, our reconstruction is based on hospitalization data, so the profile of
the first wave could be distorted if hospital bed eligibility changed from wave
to wave for specific age groups, such as older individuals. [35].

2.4.2 Assessing uncertainty in estimated data

A crucial issue regards the assessment of uncertainty affecting our estimates.
In order to account for the eteroskedasticity of observed hospital admissions,
uncertainty propagation was assessed by means of a wild boostrap scheme. It
was found that the 3-parameter kernel was estimated with a very good confid-
ence, see Fig 2.1 for a visual appraisal, and Table 2.1 for the 95% confidence
intervals of the kernel parameters, which were narrow for all age groups. As
expected, wider ranges were observed for age groups with fewer hospitaliza-
tions.

2.4.3 Alternative approaches in selecting the model inputs

The main idea behind our reconstruction scheme is modeling the effect of
contagions on hospitalization during the second wave and then inverting this
causal model to obtain the contagions during the first wave from the observed
effect. As observed effect we used the hospital admissions, but other choices
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could be the ICU admissions or the deaths. There are several reasons suggest-
ing that hospital admissions are to be preferred. First of all, the number of
deaths and ICU admissions are definitely smaller, which, in view of the Pois-
sonian nature of these occurrences yields noisier signals. Also, deaths may
not be a completely reliable metric to compare the impact of the first and
second waves of COVID-19 because the assumption of comparability may not
be valid. In fact, not all deaths caused by COVID-19 during the first wave
were accurately recorded as such [98]. Moreover, the average time elapsed
from diagnosis to death is longer than that to hospitalization, so that the
kernel function has a slower decay. As a consequence, the deconvolution prob-
lem becomes more ill-conditioned [45]. In an analogous way, using hospital
occupancy as observed effect, in place of admissions, would entail a slower
kernel function, worsening again the ill conditioning. Finally, concerning ICU
admissions, it is also possible that during the first wave the availability of ICU
beds reached saturation [35, 60, 118], which would again violate the compar-
ability assumption. Of course, some degree of saturation during the first wave
may have occurred also for hospital beds, which implies that our estimates
are somehow conservative, in the sense that the reconstructed cases, though
much greater than official ones, might still underestimate the actual ones.

2.4.4 Main findings

Our analysis led to three main findings. The first one regards the possibility
of accurately predicting hospital admissions by means of a simple convolution
model whose exponential kernel depends on three meaningful parameters, the
scale factor, the delay, and the decay rate. From the scale factor and the decay
rate, the percentage of positive subjects, for each age group, that are hospital-
ized can be derived as a secondary parameter. The prediction of the impact of
COVID-19 on the healthcare system has emerged as a key issue since the early
phase of the pandemic, see e.g. [114], where the fitting of ICU occupancy by
means of an exponential curve was used to obtain a short term prediction of
the strain on critical care facilities. Several authors derived simplified causal
models that predict healthcare outcomes as delayed and scaled versions of the
time series of the new cases [113,142]. A more realistic modeling approach de-
scribes the outcomes as the convolution of the new cases with suitable kernel
functions. This approach was pursued in [56] in order to assess the healthcare
system costs associated with different vaccination rollout scenarios. Differ-
ently from the present chapter, where hospital admissions have been modeled,
in [56], besides deaths, hospital and ICU occupancy were predicted. A pos-
sible future development may regard the identification of analogous models
for the ICU admissions and the COVID-19 related deaths, as well as for hos-
pital and ICU bed occupancy. Due to the convolution, these time series follow
with varying delays the time profile of the new cases. Therefore the availab-
ility of reliable predictive models may help to take decisions and manage the
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healthcare resources, see e.g. the role played by disease severity parameters
in COVID-19 Pandemic Planning Scenarios [33].

It should be noted that these predictive models are distinct from and
complementary to classical epidemiological models, which are geared toward
describing the evolution of the number of susceptible, infected, and recovered
people in a population where the virus is spreading. Given the structural
uncertainty related to the difficulty of predicting policy decisions and their
effects on the spreading of the virus, it is inevitable to propose a range of
scenarios with varying degrees of severity. It is precisely this variety of scen-
arios, which included worst-case catastrophic outcomes, that is at the origin
of some controversy in the media about the models developed by Imperial
College in England [49] and the Kessler Foundation in Italy [52]. In contrast,
as shown in this chapter, the day-to-day cause-and-effect relationship between
numbers of infections and hospital admissions can be predicted with a high
degree of reliability.

The second main finding regards the assessment of the underreporting
ratio during the first wave, defined as the ratio between the actual infected
subjects to the official cases. Our methodology makes it possible to equalize
underreporting between the first and second wave. In particular, in order to
restore comparability, the official cases of the first wave should be multiplied
by a factor 4.5. Moreover, as seen in Fig 2.2, such ratio factor did not re-
main constant during the first wave. This means that, without some form of
correction, the data from February to May 2020 are unusable for almost all
epidemiological purposes. It is worth observing that, even after equalization,
there remains some underdetection, given that a significant fraction of cases
were not recorder also during the second wave. Differently from UK, where
the ONS monitored a statistical sample throughout the pandemic, the Italian
national institute of statistics, ISTAT, carried out only one survey, just after
the first wave [73]. According to this survey, the actual cases were 6.2 times
larger than the official ones. This means that, even after our reconstruction,
a further 1.4 fold underdetection should be accounted for before arriving at
the true number of cases. This suggests that also during the second wave at
least one third of the cases were not recorded and the total number of cases
during 2020 was about 4 million. In other words it is estimated that about
7% of the Italian population had been infected by the end of 2020 against
the official 3.5%. This means that by the end of 2020, there were twice as
many actual cases as officially registered ones. For the sake of comparison,
in early December 2020, the ONS estimated that in England about 7 mil-
lion people had antibodies, corresponding to around 13%(10% − 16%) of the
English population [126].

The third finding has to do with the comparison of age groups in the
two waves. Indeed, it was found that some age groups exhibited notable
differences. In particular, the 0-9 and 10-19 age groups had the lowest peaks
in the first wave, below 10 and 15 cases per 100, 000, respectively. In the second
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wave, instead, the group 0-9 had still the lowest peak value, but reached 27
daily cases per 100, 000, while the new cases of group 10-19, not only rose early
but their peak value exceeded 50 daily new cases, more than the peak values
of the 60-69 and 70-79 age groups. These differences may be worth some
further investigation, being associated with school reopening in September
2020, compared with early closure in Northern regions during the first wave
[147]. Another notable difference between the two waves concerns the time
series of positive cases in the age group 90− 99: the peak value of daily cases
per 100, 000 passed from 62 in the first wave to 95 in the second one. Before
drawing any conclusions on the management of resthomes, it must be kept into
account that our estimate may biased by a change in eligibility for hospital
beds for infected elderly individuals, motivated by saturation that occurred
during the first wave. The issue could be explored further by replicating our
deconvolution approach using deaths in place of hospital admissions, under
the assumption that deaths related to COVID-19 were recorded with uniform
criteria during the two waves.

Additional information are displayed in 2.5 and 2.6. In particular, the
comparison between impulse responses from different age and the reconvoluted
dataset for each age group are provided.

2.4.5 Strenghts and limitations

This study introduces a method to correct the underreporting of new cases
during the first COVID-19 wave, taking into account the differences between
age groups, so that the temporal evolution of the underreporting factor can be
estimated for each age group. An expensive serological survey was conducted
in Italy at the end of the first wave to determine the accurate overall count
of new cases, but it could not provide a daily estimate. The present study
introduces a cost-effective method to correct underreporting, which not only
complements serological tests but yields daily time series. Our findings rely
on the assumption that the cause-effect links between new cases and hospital
admissions of the first and second waves were comparable. This assumption
is quite plausible, given that no variants emerged and no vaccines were intro-
duced during the early months of the pandemic.

2.5 Conclusions

This chapter highlights the critical importance of accurate data in controlling
a pandemic outbreak. The COVID-19 pandemic caught the healthcare and
bureaucratic systems off-guard, resulting in severe underreporting of infec-
tions during the first wave in Italy. The lack of accurate data hampers the
retrospective assessment of nonpharmacological interventions and the estima-
tion and validation of epidemiological models. The approach proposed in this
chapter, based on system identification and regularization for inverse problem,
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Table 2.1: Gains (percentage) and average time before hospitalization (days) with
2.5th and 97.5th percentiles, by age group.

Gain (%) Delay (days) Time constant (days)

00− 09 1.76 (1.73, 1.79) -10 (-10, -8) 4.3 (2.5, 5.2)
10− 19 0.68 (0.67, 0.69) -10 (-10, -9) 5.4 (3.9, 6.3)
20− 29 1.44 (1.41, 1.45) -10 (-10, -8) 5.3 (3.1, 6.2)
30− 39 2.3 (2.26, 2.34) -10 (-10, -9) 5.2 (3.8, 6.1)
40− 49 3.19 (3.17, 3.2) -10 (-10, -10) 5.5 (5.3, 5.8)
50− 59 5.72 (5.68, 5.75) -7 (-8, -6.5) 5.3 (4.7, 6.3)
60− 69 11.98 (11.87, 12.05) -7 (-8, -7) 5.7 (5.4, 6.9)
70− 79 22.54 (22.39, 22.66) -6 (-6.5, -6) 5.2 (4.9, 5.8)
80− 89 30.62 (30.3, 30.83) -8 (-9, -8) 8.2 (8, 9.2)
90− 99 25.06 (24.66, 25.33) -10 (-10, -9) 12.8 (11.1, 13.5)

The gains, expressed as a percentage, and the average times before
hospitalization with their 2.5th and 97.5th percentiles, vary greatly
depending on the age group and reflect the differences in illness severity
across different age groups. Both parameters appear to be estimated with
good precision.

Table 2.2: Integrals of new positives (thousands) by ISS, our estimate and the
respective underestimation factors.

ISS Reconstructed U.C.

00− 09 2 23 (22, 24) 11.5
10− 19 4 47 (45, 48) 11.75
20− 29 13 102 (100, 105) 7.846
30− 39 18 139 (136, 142) 7.722
40− 49 31 221 (219, 223) 7.129
50− 59 42 236 (233, 238) 5.619
60− 69 31 132 (131, 133) 4.258
70− 79 33 89 (88, 90) 2.697
80− 89 41 63 (63, 64) 1.537
90− 99 19 21 (21, 22) 1.105
All ages 234 1073 (1058 - 1089) 4.585

The first two columns of the table respectively display the sum of the new
cases recorded by ISS and reconstructed by the regularized deconvolution
model (with their 2.5-th and 97.5-th percentiles). The last column shows the
underestimation factor.

is valuable under two respects. First, it offers a valuable tool for analyzing
the human and health costs of COVID-19 over a given period. Moreover, it

37



Chapter 2

enables a quantitative correction of underreporting. Our study shows that
cause-and-effect relationships between numbers of infections and hospitaliza-
tion admissions can be predicted with a high degree of reliability. This feature
may prove critical to better respond to future epidemics in terms of safeguard-
ing economic and health systems and implementing vaccine plans. In fact, the
nature of the methodology is not strictly linked to the nature of COVID-19
or to one particular of its strains, although Alpha and Omicron variants are
expected to require an update of the kernel function. One option is to conduct
a piecewise-constant analysis, discontinuously studying each period associated
with a particular variant. An alternative solution and a potential future re-
search direction would be to replace the exponential parametric model with a
time-varying impulse response. This approach can be modeled using identific-
ation techniques such as kernel methods [112], which would allow the model
parameters to be time-dependent functions and not constrained to be constant
over short periods. Finally, we highlight that correcting the underestimation
of Italian cases during the first wave is valuable in several ways. According to
the recorded data, Italy was one of the countries with the highest mortality
rate, a fact that has prompted commentary and interpretation on the polit-
ical and health management of epidemics. The availability of a more realistic
estimate of actual cases is crucial to arrive at a fair assessment of the Italian
response to the epidemic. Another point is the possibility of estimating the
number of susceptible individuals at the beginning of the vaccination cam-
paign. Again, without a reliable estimate, it is difficult or even impossible to
quantify the impact of vaccines on overall mortality. In particular, we notice
that some retrospective analysis were conducted by using official and under-
estimated data, e.g., [120], which makes problematic the assessment of public
health interventions, including lockdowns and vaccination campaigns. For in-
stance, without knowing the fraction of susceptible subjects it is impossible
to run counterfactual simulations relative to NPIs and vaccination deploy-
ment. Our correction method is believed to prove useful also in connection
with studies of the early and cryptic transmission [32] and those employing
mobility data to study the spatial spread [6]: in both cases the reliability of
the results would be compromised if heavily underreported cases were input
in the models.
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Figure 2.5: Comparison between impulse responses from different age groups.
The upper panel shows the ten different impulse responses. The lower panel of the figure
shows ten different probability distributions of elapsed time from positivity. Among these
distributions, the age groups up to 49 years old share a similar pattern, with a shorter mean
compared to the three age groups between 50 and 79 years old. The last two age groups
exhibit the slowest decay rates.
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Figure 2.6: Reconvoluted dataset for each age group. The hospital entry predictions
for all age groups are presented. The model fits well, except for the younger age groups that,
however, account for a smaller proportion of hospitalizations. Conversely, the fit for older
age groups is satisfactory during the whole period.
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Discrete Optimization
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3
Multi-Objective Linear Ensembles
for Robust and Sparse Training of

Few-Bit Neural Networks

Training neural networks using combinatorial optimization solvers has
gained attention in recent years. In low-data settings, the use of state-of-
the-art mixed integer linear programming solvers, for instance, has the poten-
tial to train exactly a neural network (NN), while avoiding intensive GPU-
based training and hyper-parameter tuning, and simultaneously training and
sparsifying the network. We study the case of few-bit discrete-valued neural
networks, both Binarized Neural Networks (BNNs), whose values are restric-
ted to ±1, and Integer Neural Networks (INNs), whose values lie in a range
{−P, . . . , P}. Few-bit NNs receive increasing recognition due to their light-
weight architecture and ability to run on low-power devices, for example being
implemented using boolean operations. This paper proposes new methods to
improve the training of BNNs and INNs. Our contribution is a multi-objective
ensemble approach, based on training a single NN for each possible pair of
classes and applying a majority voting scheme to predict the final output.
Our approach results in the training of robust sparsified networks, whose out-
put is not affected by small perturbations on the input, and whose number
of active weights is as small as possible. We empirically compare this BeMi
approach to the current state-of-the-art in solver-based NN training, and to
traditional gradient-based training, focusing on BNN learning in few-shot con-
texts. We compare the benefits and drawbacks of INNs versus BNNs, bringing
new light to the distribution of weights over the {−P, . . . , P} interval. Finally,
we compare multi-objective versus single-objective training of INNs, showing
that robustness and network simplicity can be acquired simultaneously, thus
obtaining better test performances. While the previous state-of-the-art ap-
proaches achieve an average accuracy of 51.1% on the MNIST dataset, the
BeMi ensemble approach achieves an average accuracy of 68.4% when trained
with 10 images per class and 81.8% when trained with 40 images per class,
whilst having up to 75.3% NN links removed.

3.1 Introduction

State-of-the-art deep neural networks (NNs) contain a huge number of neur-
ons organized in many layers, and they require an immense amount of data
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for training [82]. The training process is computationally demanding and
is typically performed by stochastic gradient descent algorithms running on
large GPU- or even TPU-based clusters. Whenever the trained (deep) neural
network contains many neurons, also the network deployment is computation-
ally demanding. However, in some real-life applications, extensive GPU-based
training might be infeasible, training data might be scarce with only a few data
points per class, or the hardware using the NN at inference time might have
a limited computational power, as for instance, whenever the NN is executed
on an industrial embedded system [23].

Binarized Neural Networks (BNNs) were introduced in [66] as a response
to the challenge of running NNs on low-power devices. BNNs contain only
binary weights and binary activation functions, and hence they can be im-
plemented using only efficient bit-wise operations. However, the training of
BNNs raises interesting challenges for gradient-based approaches due to their
combinatorial structure. In previous works [136], it is shown that the training
of a BNN can be performed by using combinatorial optimization solvers: a
hybrid constraint programming (CP) and mixed integer programming (MIP)
approach outperformed the stochastic gradient approach proposed by [66] if
restricted to a few-shot-learning context [143]. Some of these works, e.g., [136],
have been furthered by a number of authors more recently, as we survey in
the next section.

Indeed, combinatorial approaches (principally MIP) for training neural
networks, both discrete and continuous, have been employed in the literat-
ure, as demonstrated in subsequent works, e.g., [80, 110]. MIP optimization
has been explored in the machine learning community, as in [65, 84, 152] for
instance. Various architectures and activation functions have been utilized
in these studies. Solver-based training has the advantage that, in principle,
the optimal NN weights can be found for the training data and that network
optimization (e.g., pruning) or adversarial hardening can be performed.

The main challenge in training a NN by an exact MIP-based approach is
the limited amount of training data that can be used since, otherwise, the
size of the optimization model explodes. In the recent work of [133], the
combinatorial training idea was further extended to Integer-valued Neural
Networks (INN). Exploiting the flexibility of MIP solvers, the authors were
able to (i) minimize the number of neurons during training and (ii) increase
the number of data points used during training by introducing a MIP batch
training method.

We remark that training a NN with a MIP-based approach is more chal-
lenging than solving a verification problem, as in [2,51], even if the structure of
the nonlinear constraints modelling the activation functions is similar. In NNs
verification [79], the weights are given as input, while in MIP-based training,
the weights are the decision variables that must be computed.

We note several lines of work aiming at producing compact and simple
NNs that maintain acceptable accuracy, e.g., in terms of parameter pruning
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[28,46,121,154], loss function improvement [131], gradient approximation [116]
and network topology structure [87].

In the context of MIP-based training and optimization of NNs, this pa-
per proposes new methods to improve the training of BNNs and INNs. In
summary, our contributions are (i) the formulation of a MILP model with a
multi-objective target that consists of already existing single-objective steps
in a lexicorgraphic order, (ii) the implementation of an ensemble of few-bits
NNs in which each of them is specialized in a specific classification task, (iii)
the proposal of a voting scheme inspired by One-Versus-One (OVO) strategy,
tailored specifically for the constructed ensemble of NNs. Our computational
results using the MNIST and the Fashion-MNIST dataset show that the BeMi
ensemble permits to use for training up to 40 data points per class, thanks to
the fact that the OVO strategy results in smaller MILPs, reaching an average
accuracy of 81.8% for MNIST and 70.7% for Fashion-MNIST. In addition,
thanks to the multi-objective function that minimizes the number of links, i.e.
the connections between different neurons, up to 75% of weights are set to zero
for MNIST, and up to 48% for Fashion-MNIST. We also perform additional
experiments on the Heart Disease dataset, reaching an average accuracy of
78.5%. A preliminary report of this work appeared at the LION’23 confer-
ence [17]. This paper better motivates and situates our approach in the state
of the art, develops our ensemble approach for INNs (not only BNNs), presents
more extensive and improved empirical results, and analyses the distribution
of INN weights.

Outline. The remainder of this paper is as follows. Section 3.2 situates
our work in the literature. Section 3.3 introduces the notation and defines
the problem of training a single INN with the existing MIP-based methods.
Section 3.4 presents the BeMi ensemble, the majority voting scheme, and the
improved MILP model to train a single INN. Section 3.5 presents the compu-
tational results on the MNIST, Fashion-MNIST and Heart Disease datasets.
Finally, Section 3.6 concludes the paper with a perspective on future work.

3.2 Related Works

Recently, there has been a growing research interest in studying the impact of
machine learning on improving traditional operations research methods (e.g.,
see [15] and [31]), in designing integrated predictive and modelling frame-
works, as in [16], or in embedding pre-trained machine learning model into an
optimization problem (e.g., see [89,97,137]). In this work, we take a different
perspective, and we study how an exact MILP solver can be used for train-
ing Machine Learning models, more specifically, to train (Binary or Integer)
Neural Networks. In the following paragraphs, we first review two recent
applications to MILP solvers in the context of neural networks (i.e., weight
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pruning and NN verification), and later, we review the few works that tackled
the challenge of training an NN using an exact solver.

MIP-based Neural Networks Pruning. Recent works have shown in-
teresting results on pruning a trained neural network using an optimization
approach based on the use of MIP solvers [28,46,59,121,154]. While pruning
a trained neural network, the weights are fixed, and the optimization variables
represent the decision to keep or remove an existing weight different from zero.

MIP-based Neural Networks Verification. Another successful applic-
ation of exact solvers in the context of Neural Networks is for tackling the
verification problem, that is, to verify under which conditions the accuracy of
a given trained neural network does not deteriorate. In other words, in NN
verification, the optimization problem consist in finding adversial examples
using a minimal distortion of the input data. The use of MIP solvers for this
application was pioneered in [135], and later studied in several papers, as for
instance, [2,24,51,134,135]. For a broader discussion of the use of polyhedral
approach to verification, see Section 4 in [67]. In NN verification, the weights
of the NN are given as input, and the optimization problem consists of assess-
ing how much the input can change without compromising the output of the
network. Indeed, also verification is a different optimization problem than the
exact training the we discuss in the following sections.

Exact training of Neural Networks. The utilization of MIP approaches
for training neural networks has already been explored in the literature, primar-
ily in the context of few-shot learning and NNs with low-bit parameters
[133, 136]. One of the main advantages of these approaches is the ability to
simultaneously train and optimize the network architecture. While the model-
ling that defines the structure of the neural network is rigid and heavily relies
on the discrete nature of the parameters, the choice of the objective function
provides more flexibility and allows for the optimization of various network
characteristics. For instance, it enables minimizing the number of connections
in a fixed architecture network, thereby promoting lightweight architectures.

From now on, by INN we indicate a general NN whose weights take value
in the set {−P, . . . , P}, where integer P g 1. Notice this choice include the
special case of BNNs (P = 1). When referring to an INN with P > 1, we will
write non-trivial INN.

By incorporating the power of both CP and MIP, [136]’s study showcased
the effectiveness of leveraging combinatorial optimization methods for training
BNNs in a few-shot learning context. Two types of objective functions were
selected to drive the optimization process. The first objective function aimed
at promoting a lightweight architecture by minimizing the number of non-zero
weights. This objective sought to reduce the overall complexity of the neural
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network, allowing for efficient computation and resource utilization. Note that
with this choice, pruning is not necessary: the possibility of setting a weight to
zero is equivalent to removing the corresponding weight (i.e., connection). In
contrast, the second objective function focused on enhancing the robustness
of the network, particularly in the face of potential noise in the input data.
Robustness here refers to the ability of the network to maintain stable and
reliable performance even when the input exhibits variations or disturbances.
[133]’s research extends [136]’s single-objective approach to the broader class
of Integer Neural Networks (INNs). In addition to leveraging the objectives of
architectural lightness and robustness, a novel objective aimed at maximizing
the number of correctly classified training data instances is introduced. It is
worth noting that this type of objective shares some similarities with the goals
pursued by gradient descent methods, albeit with a distinct formulation. An
interesting observation is that this objective formulation remains feasible in
practice, ensuring that a valid solution can be obtained. We remark that both
papers propose single-objective models that involve training a single neural
network to approximate a multi-classification function.

Ensembles of neural networks are well-known to yield more stable predic-
tions and demonstrate superior generalizability compared to single neural net-
work models [145]. In this paper, we aim to redefine the concept of structured
ensemble by composing our ensemble of several networks, each specialized in
a distinct task. Given a classification task over k classes, the main idea is
to train k(k−1)

2 INNs, where every single network learns to discriminate only
between a given pair of classes. When a new data point (e.g., a new image)
must be classified, it is first fed into the k(k−1)

2 trained INNs, and later, using
a Condorcet-inspired majority voting scheme [153], the most frequent class is
predicted as output. This method is similar to and generalizes the Support
Vector Machine - One-Versus-One (SVM-OVO) approach [21], while it has
not yet been applied within the context of neural networks, to the best of our
knowledge.

For training every single INN, our approach extends the methods intro-
duced in [136] and [133], described above.

3.3 Few-bit Neural Networks

In this section, we formally define a Binarized Neural Network (BNN) and an
Integer Neural Network (INN) using the notation as in [136] and [133], while,
in the next section, we show how to create a structured ensemble of INNs.

3.3.1 Binarized Neural Networks

The architecture of a BNN is defined by a set of layers N = {N0, N1, . . . , NL},
where Nl = {1, . . . , nl}, and nl is the number of neurons in the l-th layer.
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Let the training set be X := {(x1, y1), . . . , (xt, yt)}, such that x
i ∈ R

n0 and
yi ∈ {−1,+1}nL for every i ∈ T = {1, 2, . . . , t}. The first layer N0 corres-
ponds to the size of the input data points x

k. Regarding nL, we make the
following consideration. For a classification problem with |I| classes, we set
nL := +log[2]|I|,. For the case |I| = 2, therefore, nL will be equal to 1. This
is consistent with binary classification problems, as the two classes can be
represented as +1 and −1. When |I| = 4, then nL will be equal to 2, and the
four classes will be represented by (+1,+1), (+1,−1), (−1,+1), and (−1,−1).
When |I| is a power of 2, the procedure generalizes in an obvious manner.
However, when the number of classes is not a power of 2, we still choose nL

as the nearest integer greater than or equal to the base-2 logarithm of that
number, with the caveat that a single network may opt not to classify. For
example, if |I| = 3, then nL = 2, and (+1,+1) will be associated with the
first class, (+1,−1) will be associated with the second class, (−1,+1) will be
associated with the third class, while (−1,−1) will be interpreted as ‘unclas-
sified’.

The link between neuron i in layer Nl−1 and neuron j in layer Nl is mod-
elled by weight wilj ∈ {−1, 0,+1}. Note that the binarized nature is encoded
in the ±1 weights, while when a weight is set to zero, the corresponding link
is removed from the network. Hence, during training, we are also optimizing
the architecture of the BNN.

The activation function is the binary function

Ä(x) := 2 · 1(x g 0)− 1, (3.1)

that is, a sign function reshaped such that it takes ±1 values. Here the
indicator function 1(p) outputs +1 if proposition p is verified, and 0 otherwise.
This choice for the activation function has been made in line with the literature
[66].

In this paper, we aim to build different MILP models for the simultaneous
training and optimization of a network architecture. To model the activation
function (3.1) of the j-th neuron of layer Nl for data point x

k, we introduce
a binary variable uklj ∈ {0, 1} for the indicator function 1(p). To re-scale the

value of uklj in {−1,+1} and model the activation function value, we introduce

the auxiliary variable zklj = (2uklj−1). For the first input layer, we set zk0j = xkj ;

for the last layer, we account in the loss function whether zkLh is different from
ykh. The definition of the activation function becomes

zklj = Ä





∑

i∈Nl−1

zk(l−1)iwilj



 = 2 · 1





∑

i∈Nl−1

zk(l−1)iwilj g 0



− 1 = 2uklj − 1.

Notice that the activation function at layer Nl gives a nonlinear combination
of the output of the neurons in the previous layer Nl−1 and the weights wilj

between the two layers. Section 3.4.1 shows how to formulate this activation
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function in terms of mixed integer linear constraints. We remark that the
modelling we proposed has already been presented in the literature by [136].

The choice of a family of parameters W := {wilj}l∈{1,...,L},i∈Nl−1,j∈Nl
de-

termines the function
fW : Rn0 → {±1}nL .

The training of a neural network is the process of computing the family
W such that fW classifies correctly both the given training data, that is,
fW (xi) = yi for i = 1, . . . , t, and new unlabelled testing data.

In the training of a BNN, we follow two machine learning principles for
generalization: robustness and simplicity [136]. In doing so, we target two
objectives: (i) the resulting function fW should generalize from the input data
and be robust to noise in the input data; (ii) the resulting network should be
simple, that is, with the smallest number of non-zero weights that permit to
achieve the best accuracy.

Regarding the robustness objective, there is argument that deep neural
networks have inherent robustness because mini-batch stochastic gradient-
based methods implicitly guide toward robust solutions [77,78,104]. However,
as shown in [136], this is false for BNNs in a few-shot learning regime. On
the contrary, MIP-based training with an appropriate objective function can
generalize very well [133,136], but it does not apply to large training datasets,
because the size of the MIP training model is proportional to the size of the
training dataset.

One possible way to impose robustness in the context of few-shot learn-
ing is to maximize the margins of the neurons, that is, fixing one neuron, we
aim at finding an ingoing weights configuration such that for every training
input, the entry of the activation function evaluated at that neuron is confid-
ently far away from the discontinuity point. Intuitively, neurons with larger
margins require larger changes to their inputs and weights before changing
their activation values. This choice is also motivated by recent works showing
that margins are good predictors for the generalization of deep convolutional
NNs [75].

Regarding the simplicity objective, a significant parameter is the number
of connections [101]. The training algorithm should look for a NN fitting the
training data while minimizing the number of non-zero weights. This approach
can be interpreted as a simultaneous compression during training, and it has
been already explored in recent works [115,122].

MIP-based BNN training. In [136], two different MIP models are intro-
duced: the Max-Margin, which aims to train robust BNNs, and the Min-Weight,
which aims to train simple BNNs. These two models are combined with a CP
model into two hybrid methods HW and HA in order to obtain a feasible solu-
tion within a fixed time limit. [136] employ CP because their MIP models
do not scale as the number of training data increases. We remark that in
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that work, the two objectives, robustness and simplicity, are never optimized
simultaneously.

Gradient-based BNN training. In [66], a gradient descent-based method
is proposed, consisting of a local search that changes the weights to minimize
a square hinge loss function. Note that a BNN trained with this approach
only learns ±1 weights. An extension of this method that exploits the same
loss function but admits zero-value weights, called GDt, is proposed in [136],
to facilitate the comparison with the other approaches.

3.3.2 Integer Neural Networks

A more general discrete NN can be obtained when the weights of the network
lie in the set {−P,−P + 1, . . . ,−1, 0, 1, . . . , P − 1, P}, where P is a positive
integer. The resulting network is called INN, and by letting P = 1, we obtain
the BNN presented in the previous subsection. The activation function Ä
and the binary variables uklj are defined as above. The principles leading the
training are again simplicity and robustness.

An apparent advantage of using more general integer neural networks lies
in the fact that the parameters have increased flexibility while still maintaining
their discrete nature. Additionally, by appropriately selecting the parameter
P , one can determine the number of bits used for each parameter. For instance,
P = 1 corresponds to 1-bit, P = 3 corresponds to 2-bit, P = 8 corresponds to
3-bit, and in general, P = 2n−1 corresponds to n-bit.

MIP-based INN training. In [133], three MIP models are proposed in
order to train INNs. The first model, Max-Correct, is based on the idea of
maximizing the number of corrected predicted images; the second model, Min-

Hinge, is inspired by the squared hinge loss (compare [66]); the last model,
Sat-Margin, combines aspects of both the first two models. These three models
always produce a feasible solution but use the margins only on the neurons of
the last level, obtaining, hence, less robust NNs.

Relations to Quantized Neural Networks. By using an exact MIP
solver for training Integer NNs, we are dealing directly with the problem of
training a quantized neural network, where all the weights are restricted to
take values over a small domain, as discussed above. For instance, as reviewed
in [54], there is a growing trend in training NNs using floating point numbers
in low precision , that is, using only as few as 8 bits per weight (see for ex-
ample [7]). However, most of the work in the ML literature either focuses on
the impact of low-precision arithmetic on the computation of the (stochastic)
gradient and in the backpropagation algorithm or focuses on how to quantize
a trained NN by minimizing the deterioration in the accuracy. In our work,
we take a different perspective on quantization methods, since we do not rely
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on a gradient-based method to train our INN, but we model and directly
solve the problem of training the NN using only a restricted number of integer
weights, which is called Integer-only Quantization in [54]. Moreover, by using
an exact MIP solver, we can directly find the optimal weights of our (small)
INN without running the risks to be trapped into a local minima as stochastic
gradient-based methods.

3.4 The BeMi ensemble

This section first introduces a multi-objective model that allows a simultan-
eous training and optimization for an INN (Section 3.4.1), and then proposes
a method for combining a set of neural networks for classification purposes
(Section 3.4.2).

3.4.1 A multi-objective MILP model for training INNs

For ease of notation, we denote with L := {1, . . . , L} the set of layers and with
L2 := {2, . . . , L}, LL−1 := {1, . . . , L − 1} two of its subsets. We also denote
with b := maxk∈T,j∈N0

{|xkj |} a bound on the values of the training data.

The multi-objective target. A few MIP models are proposed in the lit-
erature to train INNs efficiently. In this work, to train a single INN, we use
a lexicographic multi-objective function that results in the sequential solu-
tion of three different state-of-the-art MIP models: the Sat-Margin (SM) de-
scribed in [133], the Max-Margin (MM), and the Min-Weight (MW), both described
in [136]. The first model SM maximizes the number of confidently correctly
predicted data. The other two models, MM and MW, aim to train a INN fol-
lowing two principles: robustness and simplicity. Our model is based on a
lexicographic multi-objective function: first, we train a INN with the model
SM, which is fast to solve and always gives a feasible solution. Second, we use
this solution as a warm start for the MM model, training the INN only with the
images that SM correctly classified. Third, we fix the margins found with MM,
and minimize the number of active weights with MW, finding the simplest INN
with the robustness found by MM.

Problem variables. The critical part of our model is the formulation of
the nonlinear activation function (3.1). We use an integer variable wilj ∈
{−P,−P+1, . . . , P} to represent the weight of the connection between neuron
i ∈ Nl−1 and neuron j ∈ Nl. Variable uklj models the result of the indicator
function 1(p) that appears in the activation function Ä(·) for the training in-
stance x

k. The neuron activation is actually defined as 2uklj−1. We introduce

auxiliary variables ckilj to represent the products ckilj = (2uklj − 1)wilj . Note
that, while in the first layer, these variables share the same domain of the
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inputs, from the second layer on, they take values in {−P,−P + 1, . . . , P}.
Finally, the auxiliary variables ŷk represent a predicted label for the input
x
k, and variable qkj are used to take into account the data points correctly

classified.
The procedure is designed such that the parameter configuration obtained

in the first step is used as a warm start for the (MM). Similarly, the solution of
the second step is used as a warm start for the solver to solve (MW). In this case,
the margins lose their nature as decision variables and become deterministic
constants derived from the solution of the previous step.

Sat-Margin (SM) model. We first train our INN using the following SM

model.

max
∑

k∈T

∑

j∈NL

qkj (3.2a)

s.t. qkj = 1 =⇒ ŷkj · ykj g
1

2
∀j ∈ NL, k ∈ T,

(3.2b)

qkj = 0 =⇒ ŷkj · ykj f
1

2
− ϵ̂ ∀j ∈ NL, k ∈ T,

(3.2c)

ŷkj =
2

P · (nL−1 + 1)

∑

i∈NL−1

ckiLj ∀j ∈ NL, k ∈ T,

(3.2d)

uklj = 1 =⇒
∑

i∈Nl−1

ckilj g 0 ∀l ∈ LL−1, j ∈ Nl, k ∈ T,

(3.2e)

uklj = 0 =⇒
∑

i∈Nl−1

ckilj f −ϵ ∀l ∈ LL−1, j ∈ Nl, k ∈ T,

(3.2f)

cki1j = xki · wi1j ∀i ∈ N0, j ∈ N1, k ∈ T,

(3.2g)

ckilj = (2uk(l−1)j − 1)wilj ∀l ∈ L2, i ∈ Nl−1, j ∈ Nl, k ∈ T,

(3.2h)

qkj ∈ {0, 1} ∀j ∈ NL, k ∈ T,

(3.2i)

wilj ∈ {−P,−P + 1, . . . , P} ∀l ∈ L, i ∈ Nl−1, j ∈ Nl,
(3.2j)

uklj ∈ {0, 1} ∀l ∈ LL−1, j ∈ Nl, k ∈ T,

(3.2k)
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cki1j ∈ [−P · b, P · b] ∀i ∈ N0, j ∈ N1, k ∈ T,

(3.2l)

ckilj ∈ {−P,−P + 1, . . . , P} ∀l ∈ L2, i ∈ Nl−1, j ∈ Nl, k ∈ T,

(3.2m)

with ϵ̂ := ϵ
2P ·(nL−1+1) . The objective function (3.2a) maximizes the number of

data points that are correctly classified. Note that ϵ is a small quantity stand-
ardly used to model strict inequalities. The implication constraints (3.2b)
and (3.2c) and constraints (3.2d) are used to link the output ŷkj with the cor-
responding variable qkj appearing in the objective function. The implication
constraints (3.2e) and (3.2f) model the result of the indicator function for the
k-th input data. The constraints (3.2g) and the bilinear constraints (3.2h)
propagate the results of the activation functions within the neural network.
We linearize all these constraints with standard big-M techniques [148].

The solution of model (3.2a)–(3.2m) gives us the solution vectors cSM, uSM,
wSM, ŷSM, qSM. We then define the set

T̂ = {k ∈ T | qkj SM = 1, ∀j ∈ NL}, (3.3)

of confidently correctly predicted images. We use these images as input for
the next Max-Margin MM, and we use the vector of variables cSM,uSM,wSM to
warm start the solution of MM.

Max-Margin (MM) model. The second level of our lexicographic multi-
objective model maximizes the overall margins of every single neuron activa-
tion, with the ultimate goal of training a robust INN. Starting from the model
SM, we introduce the margin variables mlj , and we introduce the following
Max-Margin model.

max
∑

l∈L

∑

j∈Nl

mlj (3.4a)

s.t. (3.2g)–(3.2m) ∀k ∈ T̂ ,
∑

i∈NL−1

ykj c
k
iLj g mLj ∀j ∈ NL, k ∈ T̂ , (3.4b)

uklj = 1 =⇒
∑

i∈Nl−1

ckilj g mlj ∀l ∈ LL−1, j ∈ Nl, k ∈ T̂ , (3.4c)

uklj = 0 =⇒
∑

i∈Nl−1

ckilj f −mlj ∀l ∈ LL−1, j ∈ Nl, k ∈ T̂ , (3.4d)

mlj g ϵ ∀l ∈ L, j ∈ Nl. (3.4e)

Again, we can linearize constraints (3.4c) and (3.4d) with standard big-M
constraints. This model gives us the solution vectors cMM,uMM,wMM,mMM. We

53



Chapter 3

then evaluate vMM as

viljMM =

{

0 when wiljMM
= 0,

1 otherwise,
∀l ∈ L, i ∈ Nl−1, j ∈ Nl. (3.5)

Min-Weight (MW) model. The third level of our multi-objective function
minimizes the overall number of non-zero weights, that is, the connections of
the trained INN. We introduce the new auxiliary binary variable vilj to model
the presence or absence of the link wilj . Starting from the solution of model
SM, we fix m̂ = mMM, and we pass the solution cMM,uMM,wMM,vMM as a warm
start to the following MW model:

min
∑

l∈L

∑

i∈Nl−1

∑

j∈Nl

vilj (3.6a)

s.t. (3.2g)–(3.2m) ∀k ∈ T̂ ,
∑

i∈NL−1

ykj c
k
iLj g m̂Lj ∀j ∈ NL, k ∈ T̂ , (3.6b)

uklj = 1 =⇒
∑

i∈Nl−1

ckilj g m̂lj ∀l ∈ LL−1, j ∈ Nl, k ∈ T̂ , (3.6c)

uklj = 0 =⇒
∑

i∈Nl−1

ckilj f −m̂lj ∀l ∈ LL−1, j ∈ Nl, k ∈ T̂ , (3.6d)

− vilj · P f wilj f vilj · P ∀l ∈ L, i ∈ Nl−1, j ∈ Nl, (3.6e)

vilj ∈ {0, 1} ∀l ∈ L, i ∈ Nl−1, j ∈ Nl. (3.6f)

Note that whenever vilj is equal to zero, the corresponding weight wilj is set
to zero due to constraint (3.6e), and, hence, the corresponding link can be
removed from the network.

Lexicographic multi-objective. By solving the three models SM, MM, and
MW, sequentially, we first maximize the number of input data that is correctly
classified, then we maximize the margin of every activation function, and
finally, we minimize the number of non-zero weights. The solution of the
decision variables wilj of the last model MW defines our classification function
fW : Rn0 → {±1}nL .

3.4.2 The BeMi structure

Having explained the various MIP models of INNs, we next introduce our
ensemble approach for MIP-based training of INNs.

Ensemble. Define P := {{i, j} s.t. i ̸= j, i, j ∈ I} as the set of all the
subsets of the set I that have cardinality 2, where I is the set of the classes
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of the classification problem. Then our structured ensemble is constructed in
the following way.

1. We train a INN denoted by Nij for every {i, j} ∈ P, i.e. for each possible
pair of elements of I.

2. When testing a data point, we feed it to our list of trained INNs obtaining
a list of predicted labels, namely we obtain the predicted label eij from
the network Nij .

3. We then apply a majority voting system.

The idea behind this structured ensemble is that, given an input xk labelled
l (= yk), the input is fed into

(

n
2

)

networks where n − 1 of them are trained
to recognize an input with label l. If all of the networks correctly classify the
input x

k as l, then at most n − 2 other networks can classify the input with
a different label l′ ̸= l, and so the input is correctly labelled with the most
occurring label l. With this approach, if we plan to use r ∈ N inputs for each
label, we are feeding each of our INNs a total of 2 · r inputs instead of feeding
n · r inputs to a single large INN. Clearly, when training the networks Nij and
the network Nik, the inputs of the class i are the same, so we only need a
total of r inputs for each class. When n k 2, it is much easier to train our
structured ensemble of INNs rather than training one large INN because of
the fact that the MILP model size depends linearly on the number of input
data.

Majority voting system. After the training, we feed one input x
k to our

list of INNs, and we need to elaborate on the set of outputs.
First, we define what a Dominant label is. For every b ∈ I, we define

Cb = {{i, j} ∈ P | eij = b},

and we say that a label b is a dominant label if |Cb| g |Cl| for every l ∈ I. We
then define the set of dominant labels

D := {b ∈ I | b is a dominant label}.

Using this definition, we can have three possible outcomes.

(a) There exists a label i ∈ I such that D = {i} =⇒ our input is labelled
as i.

(b) There exist j, k ∈ I such that D = {j, k} =⇒ our input is labelled as
ejk.

(c) There exist more than two dominant labels =⇒ our input is not clas-
sified.
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While case (a) is straightforward, we can label our input even when we do not
have a clear winner, that is, when we have trained a INN on the set of labels
that are the most frequent (i.e., case (b)). Note that the proposed structured
ensemble alongside its voting scheme can also be exploited for regular NNs.
Secondly, we define what Label Statuses are. In our labelling system, when
testing an input, seven different cases (herein called label statuses) can arise.
The statuses names are of the form ‘number of the dominant labels + fairness
of the prediction’. The first parameter can be 1, 2, or o, where o means ‘other
cases’. The fairness of the prediction is C when it is correct, or I when it
is incorrect. The superscripts related to I ′ and I ′′ only distinguish between
different cases. These cases are described through the following tree diagram.

(

n

2

)

networks vote

there is exactly one
dominant label i

i is correct
(1C)

i is incorrect
(1I)

there are exactly two
dominant labels j and k

ejk

votes for j

j is correct
(2C)

k was the
correct one

(2I′)

neither of the two
is correct
(2I′′)

there are more than two
dominant labels

one of them
is correct

(oI′)

none of them
is correct
(oI′′)

The cases in which the classification algorithm classifies correctly are there-
fore only (1C) and (2C). Note that every input test will fall into exactly one
label status.

Example 1. Let us take I = {bird, cat, dog, frog}. Note that, in this case,
we have to train

(

4
2

)

= 6 networks:

N{bird, cat}, N{bird, dog}, N{bird, frog}, N{cat, dog}, N{cat, frog}, N{dog, frog},

the first one distinguishes between bird and cat, the second one between bird
and dog, and so on. A first input could have the following predicted labels:

e{bird, cat} = bird, e{bird, dog} = bird, e{bird, frog} = frog,

e{cat, dog} = cat, e{cat, frog} = cat, e{dog, frog} = dog.

We would then have

Cbird = {{bird, cat}, {bird, dog}}, Ccat = {{cat, dog}, {cat, frog}},
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Cdog = {{dog, frog}}, Cfrog = {{bird, frog}}.

In this case D = {bird, cat} because |Cbird| = |Ccat| = 2 > 1 = |Cdog| =
|Cfrog| and we do not have a clear winner, but since |D| = 2, we have trained
a network that distinguishes between the two most voted labels, and so we use
its output as our final predicted label, labelling our input as e{bird, cat} = bird.
If bird is the right label we are in label status (2C), if the correct label is cat,
we are in label status (2I ′). Else we are in label status (2I ′′).

Example 2. Let us take I = {0, 1, . . . , 9}. Note that, in this case, we have
to train

(

10
2

)

= 45 networks and that |Cb| f 9 for all b ∈ I. Hence, an input
could be labelled as follows:

C0 = ({0, i})i=1,2,3,5,7,8 , C1 = ({1, i})i=5,6 , C2 = ({2, i})i=1,5,8 ,

C3 = ({3, i})i=1,2,4,5 , C4 = ({4, i})i=0,1,2,5,6,7,9 , C5 = ({5, i})i=6,7 ,

C6 = ({6, i})i=0,2,3,7 , C7 = ({7, i})i=1,2,3 ,

C8 = ({8, i})i=1,3,4,5,6,7 , C9 = ({9, i})i=0,1,2,3,5,6,7,8 .

Visually, we can represent an input being labelled as above with the following
scheme:

input

N{0,1}

N{0,2}

...

N{8,9}

e{0,1}

e{0,2}

...

e{8,9} C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

where we have omitted the name of each element of the set Ci for simplicity:
for example, the dots above C1 represent the sets {1, 5}, {1, 6}. Since D = {9},
our input is labelled as 9. If 9 is the right label, we are in label status (1C), if it
is the wrong one, we are in label status (1I). If instead Ĉj = Cj , j = 0, . . . , 7,
and

Ĉ8 = ({8, i})i=1,3,4,5,6,7,9 , Ĉ9 = ({9, i})i=0,1,2,3,5,6,7 ,

then |D̂| = |{4, 8, 9}| = 3, so that our input was labelled as −1. If the correct
label is 4, 8 or 9, we are in label status (mI ′), else we are in label status (mI ′′).
Lastly, if C̄j = Cj , j ∈ {0, 1, 2, 4, 5, 6, 7, 8}, and

C̄3 = ({3, i})i=1,2,4,5,9 , C̄9 = ({9, i})i=0,1,2,5,6,7,8

then |D̄| = |{4, 9}| = 2 and since {4, 9} ∈ C̄4 our input is labelled as 4. If 4 is
the correct label, we are in label status (2C), if 9 is the correct label, we are

57



Chapter 3

in label status (2I ′), else we are in label status (2I ′′). Note that, for brevity,
in this example we used the notation ({j, i})i=i1,...,in = {{j, i1}, . . . , {j, in}},
j, i1, . . . , in ∈ {0, . . . , 9}.

3.5 Empirical Study

Having introduced the BeMi approach, we now undertake a series of six ex-
periments in order to explore the following questions:

- Experiment 1: What is the impact of a three-fold multi-objective
model compared to a two-fold or single objective model? (Recall Sec-
tion 3.4.)

- Experiment 2: How does the BeMi ensemble compare with the pre-
vious state-of-the-art MIP models for training BNNs in the context of
few-shot learning?

- Experiment 3: How does the BeMi ensemble scale with the number
of training images, considering two different types of BNNs?

- Experiment 4: How does the BeMi ensemble perform on various data-
sets, comparing the running time, the average gap to the optimal training
MILP model, and the percentage of links removed?

- Experiment 5: What are the performance differences between a non-
trivial INN and a BNN? Do INN exhibit particular weights distribution
characteristics? A state-of-the-art comparison is also provided.

- Experiment 6: How does the BeMi ensemble perform on a continu-
ous, low-dimension dataset, comparing BNNs and non-trivial INNs? Do
INN exhibit the same weights distribution characteristics found in Ex-
periment 5?

Datasets. Three datasets are adopted for the experiments. We use first
the standard MNIST dataset [83] for a fair comparison with the literature,
and second the larger Fashion-MNIST dataset [151]. For these two MNIST
datasets, we test our results on 800 images for each class in order to have the
same amount of test data for every class. Note that the MNIST dataset has
10 000 test data but they are not uniformly distributed over the 10 classes. For
each experiment, we report the average over five different samples of images,
i.e., we perform five different trainings and we report the average over them,
while testing the same images. The images are sampled uniformly at random
in order to avoid overlapping between different experiments. Beyond MNIST,
we use the Heart Disease dataset [74] from the UCI repository. Table 3.1
summarizes the datasets.
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Dataset Number of classes Input Dimension Data Values # Training Set # Test Set

MNIST 10 28 × 28 Integers 60 000 10 000

Fashion-MNIST 10 28 × 28 Integers 60 000 10 000

Heart Disease 2 13 Continuous 920 − x x

Table 3.1: Details of the different datasets exploited in the experiments.

Implementation details. As the solver we use Gurobi version 10.0.1 [62]
to solve our MILP models. The solver parameters are left to the default values
if not specified otherwise. Apart from the first experiment, where we chose
to consider every model equally, the fraction of time given to each step of
the multi-objective model has been chosen accordingly to the importance of
finding a feasible and robust solution. All the MILP experiments were run on
an HPC cluster running CentOS, using a single node per experiment. Each
node has an Intel CPU with 8 physical cores working at 2.1 GHz, and 16 GB
of RAM. In all of our experiments concerning integer-value datasets, we fix
the value ϵ = 0.1. Notice that, because of the integer nature of the weights, of
the image of the activation function, and of the data, setting ϵ equal to any
number smaller than 1 is equivalent. When using continuous-value datasets,
we fix the value ϵ = 1 · 10−6 in accordance with the default variable precision
tolerance of the Gurobi MILP solver we will use. The source code is available
on GitHub [18].

Time limit management. Concerning the time limits for the different
optimization models, the following choices have been made. In Experiment 1
and 6, the time limit is equally distributed between the three models to have
a fair comparison. In Experiment 2, 3, 4, and 5, the majority of the imposed
time limit was given to the first two models. The first model ensures feasibility
of the whole pipeline and maximises the number of correctly classified images
in the training phase, and it was considered important in the context of few-
shot learning, since we do not have lots of images as training inputs. The
second model was given a bigger time limit too because preliminary results,
also shown in previous works, highlight the fact that the maximization of the
margin ensures a better test accuracy with respect to the minimization of the
links. In addition to this, the overall time limits have been chosen based on
two criteria. Where comparisons with the literature are made, the selection
ensures a fair comparison. In the remaining cases, the choice of time limit has
been empirical, aiming to highlight the algorithm’s quality.

3.5.1 Experiment 1

The goal of the first experiment is to study the impact of the multi-objective
model composed by SM, MM and MW with respect to the models composed by
SM and MM, the one composed by by SM and MW, and only SM, respectively.
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The results refer to a BNN specialised in distinguishing between digits 4
and 9 of the MNIST dataset. These two digits were chosen because their
written form can be quite similar. Indeed, among all ten digits, 4 and 9 are
very often mistaken for each other.

The NN architecture consists of two hidden layers and has [784, 4, 4, 1]
neurons. The architecture is chosen to mimic the one used in [136], that is
[784, 16, 16, 10], but with fewer neurons. The number of training images varies
between 2, 6 and 10, while the test images are 800 per digit, so 1600 in total.
The imposed time limit is 30 minutes, equally distributed in the steps of each
model: 30 minutes for the SM, 15 + 15 for the SM+MW, 15 + 15 for the SM+MM,
and 10 + 10 + 10 for SM+MM+MW.

In Figure 3.1, the plot in the left compares the test accuracy of the four
hierarchical models, showing how the MM model ensures an increase in accuracy,
while the MW allows the network to be pruned without performance being
affected. The plot in the right displays the percentages of non-zero weights of
the three trained models. Note that in this case the training accuracy is always
100% and so we did not add it to the plot. Also, dotted lines represent the
average accuracy obtained over 5 instances, while the shaded areas highlight
the range between the minimum and maximum values. This will be the case
for every other plot if not specified otherwise. The MW step allows the number
of non-zero weights to drop without accuracy being affected, hence resulting
in an effective pruning. This behaviour is also observed for other couples of
digits, even the ones that are easier to distinguish, namely, 1 and 8.

Based on these reasons, for the remaining experiments, we will exclusively
employ the model that incorporates all three steps.
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Figure 3.1: The SM+MM+MW achieve the same accuracy of the SM+MM model, outperforming
the SM model, while having the smallest percentage of non-zero weights, a part from the
SM+MW model, which has an almost-zero percentage of non-zero weights, but also a lower
accuracy of the models that maximize the margins. The dotted lines represent the average
accuracy obtained over 5 instances, while the shaded areas highlight the range between the
minimum and maximum values.
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3.5.2 Experiment 2
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Figure 3.2: Comparison of published approaches vs BeMi, in terms of accuracy over the
MNIST dataset using few-shot learning with 2, 6, and 10 images per digit.

The goal of the second experiment is to compare the BeMi ensemble
with the following state-of-the-art methods: the pure MIP model in [136];
the hybrid CP–MIP model based on Max-Margin optimization (HA) [136]; the
gradient-based method GDt introduced in [66] and adapted in [136] to deal
with link removal; and the Min-hinge (MH) model proposed in [133]. For the
comparison, we fix the setting of [136], which takes from the MNIST up to 10
images for each class, for a total of 100 training data points, and which uses
a time limit of 7 200 seconds to solve their MIP training models.

In our experiments, we train the BeMi ensemble with 2, 6 and 10 samples
for each digit. Since our ensemble has 45 BNNs, we leave for the training
of each single BNN a maximum of 160 seconds (since 160 · 45 = 7 200). In
particular, we give a 75 seconds time limit to the solution of SM, 75 seconds to
MM, and 10 seconds to MW. In all of our experiments, whenever the optimum is
reached within the time limit, the remaining time is added to the time limit
of the subsequent model. We remark that our networks could be trained in
parallel, which would highly reduce the wall-clock runtime. For the sake the
completeness, we note that we are using 45 · (784 · 4 + 4 · 4 + 4 · 1) = 142 020
parameters (all the weights of all the 45 BNNs) instead of the 784·16+16·16+
16 · 10 = 12 960 parameters used in [136] for a single large BNN. Note that,
in this case, the dimension of the parameter space is 312 960(∼= 106 183), while,
in our case, it is 45 · 33 156(∼= 101 507). In the first case, the solver has to find
an optimal solution between all the 106 183 different parameter configurations,
while with the BeMi ensemble, the solver has to find 45 optimal solutions,
each of which lives in a set of cardinality 101 507. This significantly improves
the solver performances. We remark that a parameter configuration is given
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by a weight assignment Ŵ = (ŵijl)ijl since every other variable is uniquely
determined by Ŵ .

Figure 3.2 compares the results of our BeMi ensemble with the four other
methods presented above. Note that the pure MIP model in [136] can handle a
single image per class in the given time limit, and so only one point is reported,
and note also that for the minimum hinge model MH presented in [133] only
the experiment with 10 digits per class was performed. We report the best
results reported in the original papers for these four methods.

The BeMi ensemble obtains an average accuracy of 68%, outperforms all
other approaches when 2, 6 or 10 digits per class are used. Note that our
method attains 100% accuracy on the training set, that is, the SM model
correctly classifies all the images. In this case, the first model is not needed
to ensure feasibility, but it serves mainly as a warm start for the MM model.

3.5.3 Experiment 3

The goal of the third experiment is to study how our approach scales with the
number of data points (i.e., images) per class, and how it is affected by the
architecture of the small BNNs within the BeMi ensemble. For the number of
data points per class, we use 10, 20, 30, 40 training images per digit. We use
the layers Na = [784, 4, 4, 1] and Nb = [784, 10, 3, 1] for the two architectures.
While the first architecture is chosen as to be consistent with the previous
experiments, the second one can be described as an integer approximation of
[N, log2N, log2(log2N), log2(log2(log2N))]. Herein, we refer to Experiments
3a and 3b as the two subsets of experiments related to the architectures Na

and Nb. In both cases, we train each of our 45 BNNs with a time limit of 290s
for model SM, 290s for MM, and 20s for MW, for a total of 600s (i.e., 10 minutes
for each BNN).

In Figure 3.3, the plot in the left shows the results for Experiments 3a and
3b: the dotted and dashed lines refer to the two average accuracies of the two
architectures, while the coloured areas include all the accuracy values obtained
as the training instances vary. The two architectures behave similarly and the
best average accuracy exceeds 81%.

Table 3.2 reports the results for the BeMi ensemble where we distinguish
among images classified as correct, wrong, or unclassified. These three con-
ditions refer to different label statuses specified in Definition II: the correct
labels are the sum of the statuses (1C) and (2C); the wrong labels of statuses
(2I ′), (2I ′′), and (1I); the unclassified labels (n.l.) of (oI ′) and (oI ′′). Notice
that the vast majority of the test images have only one dominant label, and so
falls into statuses (1C) or (1I). The unclassified images are less than 2.31%.
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Figure 3.3: Average accuracy for the BeMi ensemble tested on two architectures, namely
Na = [784, 4, 4, 1] and Nb = [784, 10, 3, 1], using 10, 20, 30, 40 images per class. The left plot
refers to the MNIST dataset, while the right plot refers to the Fashion-MNIST dataset.

Table 3.2: Percentages of MNIST images classified as correct, wrong, or unclassified (n.l.),
and of label statuses, for the architecture Na = [784, 4, 4, 1]. The vast majority of the test
images have only one dominant label, and so falls into statuses (1C) or (1I). The unclassified
images are less than 2.31%.

Images Classification (%) Label status (%)
per class correct wrong n.l. (1C) (1I) (2C) (2I′) (2I′′) (oI′) (oI′′)

10 70.12 27.65 2.23 68.43 24.53 1.69 1.21 1.91 1.88 0.35
20 75.37 22.32 2.31 73.79 19.33 1.58 1.39 1.60 2.02 0.29
30 80.90 17.46 1.64 79.64 15.01 1.26 1.25 1.20 1.46 0.18
40 81.66 16.68 1.66 80.34 14.36 1.32 1.09 1.23 1.45 0.21

Table 3.3: Aggregate results for Experiments 2 and 3: the 4-th column reports the runtime
to solve the first model SM; Gap (%) refers to the mean and maximum percentage gap at the
second MILP model MM; Links (%) is the percentage of non-zero weights after the solution
of models MM and MW; Active links is the total number of non-zero weights after the solution
of model MW, as always averaged over five instances.

Dataset Layers
Total Images Model SM Gap (%) Links (%) Active
links per class time (s) mean max (MM) (MW) links

MNIST

Na 3156

10 3.00 12.06 20.70 49.13 29.21 921.80
20 6.47 14.81 22.18 54.70 28.41 896.60
30 10.60 16.04 24.08 56.44 30.46 961.40
40 15.04 15.98 26.22 57.92 29.27 923.80

Nb 7873

10 6.04 4.52 7.37 49.28 24.72 1946.20
20 15.01 5.46 8.40 54.97 24.40 1921.00
30 22.68 5.92 11.00 56.73 26.96 2122.60
40 33.97 6.21 20.87 58.29 24.66 1941.40

F-MNIST

Na 3156

10 4.83 13.34 26.48 87.75 58.76 1854.40
20 9.77 14.05 28.91 90.73 59.97 1892.60
30 36.10 19.95 136.33 92.41 58.12 1834.20
40 72.15 30.36 333.70 93.57 59.46 1876.60

Nb 7873

10 11.42 4.87 9.14 87.90 51.57 4060.20
20 21.46 5.11 9.86 91.05 52.29 4116.80
30 35.12 6.30 40.07 92.78 52.62 4142.80
40 52.37 8.99 56.14 94.01 53.38 4202.60
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3.5.4 Experiment 4

The goal of the fourth experiment is to revisit the questions of Experiments 3a
and 3b with the two architectures Na and Nb, using the more challenging
Fashion-MNIST dataset.

In Figure 3.3, the plot in the right shows the results of Experiments 3a
and 3b. As in Figure 3.2, the dotted and dashed lines represent the average
percentages of correctly classified images, while the coloured areas include all
accuracy values obtained as the instances vary. For the Fashion-MNIST, the
best average accuracy exceeds 70%.

Table 3.3 reports detailed results for all Experiments 2 and 3. The first
two columns give the dataset and the architecture, the third column reports
the total number of links, i.e., the total number w variables, for each ar-
chitecture, and the fourth column specifies the number of images per digit
used during training. The 5-th column reports the runtime for solving model
SM. Note that the time limit is 290 seconds; hence, we solve exactly the first
model, consistently achieving a training accuracy of 100%. The remaining five
columns give: Gap (%) refers to the mean and maximum percentage gap at
the second MILP model (MM) of our lexicographic multi-objective model, as
reported by the Gurobi MIPgap attribute; Links (%) is the percentage of non-
zero weights after the solution of the second model MM, and after the solution
of the last model MW. Active links is the total number of non-zero weights after
the solution of the last model MW. The results show that the runtime and the
gap increase with the size of the input set. However, for the percentage of
removed links, there is a significant difference between the two datasets: for
MNIST, our third model MW removes around 70% of the links, while for the
Fashion-MNIST, it removes around 50% of the links. Note that in both cases,
these significant reductions show how our model is also optimizing the BNN
architecture. Furthermore, note that even if the accuracy of the two architec-
tures is comparable, the total number of non-zero weights of Na is about half
the number of non-zero weights of Nb.

3.5.5 Experiment 5

The goal of the fifth experiment is to compare the performances of BNNs
and non-trivial INNs. The results refer to five different runs of an INN of
architecture [784, 4, 4, 1] specialised in distinguishing between digits 4 and 9
of the MNIST dataset. The number of training images varies between 2, 6,
10, 20, 30, and 40, while the test images are 800 per digit, so 1600 in total.
The imposed time limit is 290s + 290s + 20s.

As Figure 3.4 shows, different INNs are comparable not only in the aver-
age accuracy, represented by the dotted lines, but also in the maximum and
minimum accuracy, reported by the shaded areas.
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Figure 3.4: Comparison of accuracy for different values of P . Note how using an exponen-
tially larger research space, namely, using values of P greater than 1, does not improve the
accuracy.

Table 3.4: Weights distributions of the INNs whose accuracy is depicted in Figure 3.4. The
column w = −P indicates the percentage of weights that are equal to −P , and so on. The
networks have different values but similar extremal weights distributions, where less than
2% of the weights attain a value that is not P , −P , or zero, indicated as others

value of P Images per class w = −P w = 0 w = P others

1

2 4.06 73.66 22.28 -
6 4.75 73.70 21.55 -

10 5.15 74.02 20.83 -
20 7.12 61.31 31.57 -
30 6.21 74.89 18.90 -
40 13.16 64.98 21.86 -

3

2 3.86 75.91 20.15 0.08
6 4.60 73.46 21.63 0.31

10 6.25 73.50 19.72 0.53
20 12.48 69.58 17.19 0.75
30 13.06 74.00 11.89 1.05
40 13.99 65.51 19.31 1.19

7

2 3.90 75.89 20.10 0.11
6 4.46 73.40 21.76 0.38

10 8.82 68.00 22.60 0.58
20 12.46 65.56 21.06 0.92
30 14.99 73.82 9.95 1.24
40 18.05 70.90 9.40 1.65

15

2 3.69 75.89 20.30 0.12
6 4.68 73.31 21.64 0.37

10 5.53 73.28 20.61 0.58
20 7.43 69.34 22.19 1.04
30 13.76 67.64 17.23 1.37
40 17.34 70.86 10.13 1.67

In order to study why different values of P lead to comparable accuracy,
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Table 3.5: Average accuracy and weight distribution for the Heart Disease dataset. The
column Average accuracy depicts the average percentage of correctly classified test data.
The column w = −P indicates the percentage of weights that are equal to −P , and so on.
For each value of P , the best result in terms of accuracy with respect to the model is written
in bold. Notice that in the majority of the cases, the multi-objective function performs
better than the single-objective one. Notice also that even if the percentage of the non-zero
and non-extremal weights, indicated as others, is higher than the one obtained with the
MNIST dataset, the distribution is still not uniform.

Models value of P Average accuracy w = −P w = 0 w = P others

SM

1 74.00 35.43 45.14 19.43 -
3 75.00 21.43 27.43 16.57 34.57
7 77.00 27.43 14.86 16.86 40.85
15 77.00 18.86 11.71 12.86 56.57

SM+ MM

1 75.00 14.57 18.29 67.14 -
3 75.50 10.57 13.43 63.14 12.86
7 73.50 12.29 9.43 52.57 25.71
15 78.50 11.71 5.71 46.86 35.72

SM+ MM+ MW

1 75.50 9.43 27.43 63.14 -
3 76.00 5.43 25.43 57.43 11.71
7 73.50 7.43 18.57 49.71 24.29
15 78.50 8.57 13.43 45.71 32.29

we report the weights distributions of the INNs whose accuracy is depicted
in Figure 3.4. Table 3.4 highlights not only the role of the MW model but
also the extreme-valued nature of the distributions. In fact, it can be seen
that apart from the percentage of weights set to zero, the vast majority of
the remaining weights have a value of either P or −P , with less than 1.67%
of the weights attaining one of the other intermediate values. We remark
that this type of phenomenon is recurrent in the literature under the name
of magnitude pruning, see [22, 63, 102]. In our setting, such a phenomenon
occurs spontaneously.

3.5.6 Experiment 6

The goal of the sixth experiment is to study the impact of the multi-objective
model and the weight distributions over a different dataset, namely the Heart
Disease Dataset by [74].

Table 3.5 reports the average accuracy and weights distributions of this ex-
periment. The average was performed over 5 instances, and for each instance
200 data samples were used, where 80% was used for the training and 20%
was used for the test. All the networks have the same architecture, namely
[13, 5, 1], and each network’s imposed time limit is 60 minutes, equally distrib-
uted in the steps of each model: 60 minutes for the SM, 30+30 for the SM+MM,
and 20 + 20 + 20 for SM+MM+MW.
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3.6 Conclusion and Future Work

This chapter introduced the BeMi ensemble, a structured architecture of INNs
for classification tasks. Each network specializes in distinguishing between
pairs of classes and combines different approaches already existing in the lit-
erature to preserve feasibility while being robust and simple. These features
and the nature of the parameters are critical to enabling neural networks to
run on low-power devices. In particular, binarized NNs can be implemented
using Boolean operations and do not need GPUs to run.

The output of the BeMi ensemble is chosen by a majority voting system
that generalizes the one-versus-one scheme. Notice that the BeMi ensemble
is a general architecture that could be employed using other types of neural
networks.

An interesting conclusion from our computational experiments is a counter-
intuitive result: that the greater flexibility in the search space of INNs does
not necessarily result in better classification accuracy compared to BNNs. We
find it noteworthy that our computational evidence supports the idea that
simpler BNNs are either superior or equal to INNs in terms of accuracy.

A current limitation of our approach is the strong dependence on the ran-
domly sampled data used for training. In future work, we plan to improve the
training data selection by using a k-medoids approach, dividing all images of
the same class into disjoint non-empty subsets and consider their centroids as
training data. This approach should mitigate the dependency on the sampled
training data points.

Second, we also plan to better investigate the scalability of our method
with respect to the number of classes of the classification problem training
fewer BNNs, namely, one for every J ∈ Q ¢ P, with |Q| j |P|. Besides
the datasets we exploited, in future, we intend to investigate datasets more
appropriate for the task of few-shot learning [27].

Third, another possible future research direction is to exploit the general-
isation of our ensemble, allowing to have networks which distinguishes between
m classes instead of 2, where the total number of classes of the problem is
n k m.

Fourth, an interesting future research direction regards stochastic/robust
optimization and scenario generation, in the following sense. In the case of
the MNIST/FashionMNIST for example, the images can be seen as samples of
many unknown probability distributions, one for each class: if one would like
to train a neural network with a MIP, using few images, the selection of these
samples with which the training is performed is crucial, and so the study of
this problem from a stochastic point of view could lead to interesting results.
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4
The Mobile Positioning Problem as
an unassigned Distance Geometry

Problem

The Mobile Positioning Problem is at the intersection of technology and
communication networks. It asks for the 2-D geographical position of mo-
bile devices, such as cell phones or GPS units, given a subset of their pair-
wise distances. In this chapter, we see this problem as a special case of the
Manhattan-norm unassigned Distance Geometry Problem, which we formu-
late by means of mixed-integer linear programming. Computational results
within different time-limits are provided, and mean and largest distance errors
analyzed. Possible research directions are hence outlined.

4.1 The mobile positioning problem

The Mobile Positioning Problem (MPP) arises in the field of technology and
communication networks. Its objective is to determine the position of a set of
mobile devices, such as cell phone or GPS, within a specified 2-D geographical
area [119], given a subset of their pairwise distances. The positions can be
expressed in geographic coordinates (latitude and longitude) or other refer-
ence systems. The MPP is fundamental to many applications, including GPS
navigation, location-based apps, emergency services, and more. A well stud-
ied version of MPP considers the presence of base stations, i.e. stations of
known position than can compute the distances between themselves and the
mobile devices [37]. In this chapter, we will consider instead the version of the
problem where the number of points (i.e., mobile devices) and the distances
between them are known, but the specific pairings of points and distances is
unknown. This could occur if some distance measurements are incomplete or
lack specific associations between landmarks or sensors. In the line-of-sight
scenario, where there are no obstacles between both mobile devices, the un-
obstructed distance is simply the Euclidean distance, i.e. ||x||2 =

√

x21 + x22.
However, in non-line-of-sight conditions, the unobstructed distance is greater
or equal. More specifically, if the obstacles are rectangular and have longer
sides than the widths of the streets, the unobstructed distance can be approx-
imated by the Manhattan distance, i.e. ||x||1 = |x1| + |x2|. An example of
the prototype of the geographical area and the physical meaning of the two
distances can be found in Fig 4.1. This chapter will focus on this last case, in
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Figure 4.1: Comparison between Euclidean norm and Manhattan norm. In a
geographical area with grid-based geometry, it is not suitable to compute distances by the
Euclidean norm, since mobile devices can move only on the grid. Hence, it is appropriate to
compute distances by the Manhattan norm.

which the territory has a grid-based geometry.

A toy problem. In a Manhattan-like area, four mobile devices {A,B,C,D}
at a fixed instant have the following pairwise distance values

{2, 2, 2, 2, 4, 4} (4.1)

but we are not aware of which distance is associated to which pair of devices.
In general, this problem does not warrant solution uniqueness: two possible
solutions are indeed depicted in Fig 4.2. In the first one, the four distance
values equal to 2 refer to the length of the square edges AB,BC,CD,DA,
while the two distance values equal to 4 refer to the length of the diagonals
AC,BD . In the second one, the distance values A′C ′, A′D′ are equal to 4,
while the remaining ones are equal to 2. The main difference between the
two proposed solutions is the assignment of distance values to pairs of mobile
devices.

4.2 Assigned and unassigned Distance Geometry
Problems

The toy problem described in the previous section is a particular case of the
unassigned Distance Geometry Problem (uDGP), a variant of the Distance
Geometry Problem (DGP) [86]. In this section, we will summarize some rel-
evant aspects of the DGP and uDGP.
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Figure 4.2: Different solutions are possible. Different assignments between the distances
and couple of points have been made. In both cases, the set of reciprocal distances between
the mobile devices is {2,2,2,2,4,4}.

The (assigned) Distance Geometry Problem

Given a positive integer K, and a simple undirected edge-weighted graph
G = (V, E , d), with d : E → R

+, the DGP asks to determine if there are
position vectors {xu}u∈V ¦ R

K such that ||xu − xv|| = duv for all {u, v} ∈ E .
From now on, for the sake of notation convenience, we will represent the edge
{u, v} as the ordered pair (u, v), subject to the constraint 1 f u < v f N .

In most application settings, K ∈ {1, 2, 3}. For example,

• in one dimension, it is possible to estimate and exchange the time dif-
ference between specific clocks in specific network synchronization pro-
tocols. The problem here is the determination of the absolute times and
the solution consists in a sequence of scalars [123].

• in wireless networks, devices typically move within a two-dimensional
space. Certain pairwise distances, particularly those that are close
enough, can be approximated by assessing the battery power consump-
tion during peer-to-peer communication. The network provider’s primary
concern is determining the precise 2-D locations of these devices [48].

• three-dimensional protein structures and nanostructures can be achieved
by using distance data between pairs of atoms [39], which is supplied by
experimental methods like nuclear magnetic resonance [86] and the pair
distribution function technique [76], respectively.

Concerning the norm, the choice depends on the application of interest. As
previously emphasized, the Manhattan norm is an appropriate choice for the
MPP. Conversely, for various other engineering and scientific applications, the
Euclidean norm is better suited [85].
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The unassigned Distance Geometry Problem

Studies on DGP mostly focus on the case where the graph structure is known
and the provided distances are uniquely associated to the graph edges. How-
ever, this is not the case of some practical applications, such as the molecular
reconstructions via the pair-distribution function (PDF) method [20], or the
problem presented at the beginning of the chapter, i.e., the MPP. In this case,
the data consist of a set of vertices V = {1, . . . , N} and a multiset of distances
D = {d1, ..., dM} with no particular instruction on which distance is associ-
ated with which edge. In order for the problem to be feasible, it is important
to note that the number of weights must be less than or equal to the number
of possible edges, i.e., M f N(N − 1)/2. The uDGP problem is two-fold:
one has to find an assignment between dk’s and the edges, and to determine
a position in R

K for the vertices [41]. In other words, we want to find an
injection ³ : D → {(u, v) | 1 f u < v f N} and {(xu)u∈V } ¦ R

K such that

||xu − xv|| = ³−1(u, v) ∀(u, v) ∈ Im(³) =: E (4.2)

where E completes the graph structure. In the case of the MPP, the vertices
represent the mobile devices, and the unassociated weights correspond to the
distances between them.

In the following subsection we will describe in a more detailed way which
is our contribution.

4.3 A MILP formulation for the uDGP

This section will focus on a Mixed-Integer Linear Programming (MILP) for-
mulation for the uDGP with the Manhattan norm. While this approach has
already been implemented in literature for the DGP, e.g., in [42], we are un-
aware of any work in this field covering the uDGP case.

In our formulation, the target is to minimize the error made in embedding
points in R

K by consistent assignment, which is also an unknown of the prob-
lem. Constraints, on the other hand, define the structure of the problem or
are algebraic manipulations with the aim of linearizing non-linear constraints.

The target is

minimize
N−1
∑

u=1

N
∑

v=u+1

M
∑

k=1

akuv | ||xu − xv||1 − dk |, (4.3)

where the decision variable akuv is such that

akuv = 1 ⇐⇒ dk is assigned to (u, v), and 0 otherwise.

As one can deduce, the objective function is always non-negative and reaches
its minimum at 0. Furthermore, from now on, we will refer to an assignment
as a family of 0-1 parameters {akuv}u,v,k.
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Hence, the objective function (4.3) is the sum of errors associated with a
specific assignment. This choice of the target enables the solver to search for
the assignment that achieves a faithful embedding of the available weights,
i.e., the dk’s.

We introduce the following variables in order to linearize the objects in-
volved. First, we define the Manhattan distance between the embedded nodes
xu and xv as muv := ||xu − xv||1, by obtaining

min
N−1
∑

u=1

N
∑

v=u+1

M
∑

k=1

akuv |muv − dk |.

Second, we define ekuv := |muv − dk |, that is the discrepancy bewteen such
distance and a weight dk:

min

N−1
∑

u=1

N
∑

v=u+1

M
∑

k=1

akuv e
k

uv.

Finally, ckuv := akuv e
k
uv filters out only the errors of interest, ∀ 1 f u < v f N ,

∀k = 1, . . . ,M . One hence obtains

min

N−1
∑

u=1

N
∑

v=u+1

M
∑

k=1

c
k

uv. (4.4)

The constraints of the MILP formulation with the target (4.4) are listed below:

N−1
∑

u=1

N
∑

v=u+1

akuv f 1 ∀k = 1, . . . ,M (4.5a)

M
∑

k=1

akuv f 1 ∀ 1 f u < v f N (4.5b)

mi
uv g xiu − xiv ∀i = 1, . . . ,K ∀ 1 f u < v f N (4.5c)

mi
uv g −xiu + xiv ∀i = 1, . . . ,K ∀ 1 f u < v f N (4.5d)

mi
uv f M̃¹iuv + xiu − xiv ∀i = 1, . . . ,K ∀ 1 f u < v f N (4.5e)

mi
uv f M̃(1− ¹iuv)− xiu + xiv ∀i = 1, . . . ,K ∀ 1 f u < v f N (4.5f)

muv :=
d

∑

i=1

mi
uv g ϵ ∀ 1 f u < v f N (4.5g)

ekuv g
d

∑

i=1

mi
uv − dk ∀ 1 f u < v f N ∀k = 1, . . . ,M (4.5h)

ekuv g −
d

∑

i=1

mi
uv + dk ∀ 1 f u < v f N ∀k = 1, . . . ,M (4.5i)
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ckuv g 0 ∀ 1 f u < v f N ∀k = 1, . . . ,M (4.5j)

ckuv − Eakuv f 0 ∀ 1 f u < v f N ∀k = 1, . . . ,M (4.5k)

ckuv − ekuv f 0 ∀ 1 f u < v f N ∀k = 1, . . . ,M (4.5l)

ckuv − Eakuv g 0 ∀ 1 f u < v f N ∀k = 1, . . . ,M (4.5m)

xu ∈ R
K ∀u = 1, . . . , N (4.5n)

akuv ∈ {0, 1} ∀ 1 f u < v f N ∀k = 1, . . . ,M (4.5o)

mi
uv ∈ R ∀ 1 f u < v f N ∀i = 1, . . . ,K (4.5p)

¹iuv ∈ {0, 1} ∀ 1 f u < v f N ∀i = 1, . . . ,K (4.5q)

ekuv ∈ R ∀ 1 f u < v f N ∀k = 1, . . . ,M (4.5r)

ckuv ∈ R ∀ 1 f u < v f N ∀k = 1, . . . ,M (4.5s)

In the following, each constraint is described:

• The constraints (4.5a) and (4.5b) model the injective assignment ³ in
(4.2).

• The contraints (4.5c)-(4.5g) define the modules muv. Note that ϵ is a
small quantity standardly used to model strict inequalities.

• The constraints (4.5h) and (4.5i) compute the errors of a feasible solu-
tion. The two inequalities are sufficient because of the optimization
structure: if we want to minimize

∑

u,v,k a
k
uve

k
uv and the akuv’s are either

0 or 1, then ekuv = |muv − dk| each time it appears.

• The constraints (4.5j)-(4.5m) linearize the bilinear term akuve
k
uv. They

are known as McCormick cuts [94].

• Finally, the constraints (4.5n)-(4.5s) define the domain of the decision
variables.

M̃ and E are big-M constraints and depend on the analyzed data. If one can
estimate a parameter S such that xu ∈ [−S, S]K ∀u = 1, . . . , N , geometric
considerations lead to set ˜M := 2S + ϵ and E := maxk{max{KM̃ + dk, dk}}.
We notice that the problem has O(N4) variables and O(N4(3+d)) constraints.

A toy problem. In order to better explain the decision variables we in-
troduced, we refer to the toy problem (4.1). In this case, the four devices
are the vertices of the graph V = {1, 2, 3, 4}, and the reciprocal distances are
d1 = d2 = d3 = d4 = 1, and d5 = d6 = 2. In Fig 4.2, two different assignments
have been made. By using the notation of the figure, we highlight that

• in the first case, xA = (2, 2), xB = (2, 4), xC = (4, 4), xD = (4, 2). Also,
a1AB, a

2
BC , a

3
CD, a

4
DA, a

5
AC , a

6
BD = 1;
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• in the second case, xA′ = (0, 2), xB′ = (2, 2), xC′ = (4, 2), xD′ = (3, 3).
Furthermore, a1A′B′ , a2B′C′ , a3C′D′ , a4B′D′ , a5A′C′ , a6A′D′ = 1.

In these examples, since the number of distances is equal to the number of
possible edges, none of the akuv’s is equal to 0. The two assignments create two
different weighted graph structures. For example, the first one is such that the
edge (A,D) is associated to d4 = 1, while in the second one the edge (A′, D′)
is associated to d6 = 2. As one can easily check, these decision variables
values satisfy the constraints of the formulation and realize the minimum for
the target function (4.3), i.e.

∑N−1
u=1

∑N
v=u+1

∑M
k=1 akuv | ||xu−xv||1−dk | = 0.

4.4 Computational results

The formulation (4.4) belong to the MILP class, and can be solved by several
existing MILP solvers. We employ Gurobi Optimizer version 9.1.0 on a 11th
Gen Intel Core i7-1185G7 processor running at 3.00 GHz using 16,0 GB of
RAM.

The exploited dataset has been randomly generated within an integer
grid [0, 30]× [0, 30]. It consists of a set of (feasible) random uDGP instances
{(N,D)} where N ∈ N and D = {d1, . . . , dM} is a multiset of real numbers,
with M = N(N−1)

2 . For each N ∈ {5, 10, 15, 20}, five different instances have
been tested with different time-limits. The errors are evaluated by employing
two well known measures: the scaled Mean Distance Error (MDE) and the
scaled Largest Distance Error (LDE), i.e.,

MDE(x) =
1

|E|

∑

(u,v)∈E

| ||xu − xv||1 − duv|

duv
,

LDE(x) = max
(u,v)∈E

| ||xu − xv||1 − duv|

duv
,

where E is given by the assignment function ³, or, in other words, by the
akuv’s, and |E| = M . Hence, we can re-formulate in the following way by using
the notation introduced in (4.4):

MDE(x) =
1

M

∑

1fu<vfN

∑

k=1,...,M

ckuv
dk

,

LDE(x) = max
1fu<vfN

∑

k=1,...,M

ckuv
dk

.

In a intuitive manner, the scaled Mean Discrepancy Estimation (MDE) provides
insight into the average percentage discrepancy between the observed realiz-
ation and the provided data. On the other hand, the scaled Largest Discrep-
ancy Estimation (LDE) offers an indication of the average worst error across
all edges. By construction, the LDE is bigger than the MDE.
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The computational results are shown in Tables 4.1 and 4.2. Each row of
the table reports the instance statistics, followed by the time taken by Gurobi
to run, the target value reached within the time-limit, and the scaled MDE
and LDE scores.

N Time (s) Target MDE LDE

5 0.72 0 0 0
5 0.22 0 0 0
5 0.59 0 0 0
5 0.22 0 0 0
5 0.24 0 0 0

10 time-limit 54 0.28 4.00
10 time-limit 61 0.06 0.53
10 time-limit 39 0.15 1.50
10 time-limit 45 0.04 0.37
10 time-limit 58 0.10 1.00

15 time-limit 58 0.06 2.00
15 time-limit 84 0.08 1.40
15 time-limit 56 0.03 1.00
15 time-limit 88 0.11 2.00
15 time-limit 98 0.04 0.40

20 time-limit 328 0.14 1.33
20 time-limit 276 0.14 1.70
20 time-limit 201 0.07 0.91
20 time-limit 149 0.04 0.56
20 time-limit 289 0.13 2.11

Table 4.1: Time limit of 10 minutes. For each N , each row represents a different instance.
In the case of 5 vertices, the problem is solved at the optimum and within the time-limit. In
the cases of 10, 15 and 20 vertices, the solver reaches the time-limit of 600s before getting
the optimum. MDE and LDE values are reported.

76



Chapter 4

N Time (s) Target MDE LDE

5 0.72 0 0 0
5 0.22 0 0 0
5 0.59 0 0 0
5 0.22 0 0 0
5 0.24 0 0 0

10 time-limit 53 0.30 4.00
10 time-limit 61 0.06 0.54
10 time-limit 39 0.15 1.50
10 time-limit 45 0.04 0.40
10 time-limit 58 0.10 1.00

15 time-limit 58 0.06 2.00
15 time-limit 84 0.06 0.80
15 time-limit 56 0.03 1.00
15 time-limit 88 0.11 2.00
15 time-limit 94 0.03 0.40

20 time-limit 197 0.08 1.00
20 time-limit 270 0.14 1.60
20 time-limit 139 0.05 0.80
20 time-limit 135 0.04 1.20
20 time-limit 289 0.13 2.10

Table 4.2: Time limit of 20 minutes. For each N , each row represents a different instance.
In the case of 5 vertices, the problem is solved at the optimum and within the time-limit. In
the cases of 10, 15 and 20 vertices, the solver reaches the time-limit of 1200s before getting
the optimum. MDE and LDE values are reported.

Moreover, the solver’s time requirement for finding a solution exceeds 4
hours, even for the case where N = 10. For the GDP version of the problem,
where the assignment is known a priori, a similar experiment shows that, for
N=20 and within a time frame of 300 seconds, the order of magnitude of the
MDE is 10−6 (e.g., in [42], Appendix B, Table 1). This suggests that the
utilization of heuristics that employ the GDP version could be mandatory,
mostly to address larger instance sizes.

4.5 Conclusions

In this work, we have introduced a MILP formulation for the unassigned Dis-
tance Geometry Problem that exploits the Manhattan norm. This kind of
norm is more suitable for problems whose domains present a gridded-like geo-
metry, e.g., the Mobile Positioning Problem of mobile devices in a Manhattan-
like area, in the hypothesis in which it is not known which distance is associ-
ated with which pair of devices.
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While the literature extensively covers MILP formulations for the assigned
DGP, there is a gap in terms of the unassigned version. The purpose of this
chapter is to address this gap. A set of computational results is presented and
it is emphasized that the model size is a barrier to solving the problem. This
fact paves the way for potential research directions, with one of the primary
options being the utilization of heuristics that leverage the assigned version of
the problem.
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Conclusions

This thesis is divided into two main parts, each focusing on a distinct area
of applied mathematics: Mathematical Modelling in Biosciences and Discrete
Optimization. Each part contains two chapters, each contributing with novel
methodologies or already existing methodologies applied to novel contexts, and
solutions to real-world problems. While the main conclusions are presented
at the end of each chapter, this section provides a summarized overview to
highlight the key ideas and results discussed throughout the thesis.

The first part of this thesis focused on the application of mathematical
modelling to address challenges in the biosciences, particularly in the context
of the COVID-19 pandemic.

The first chapter introduced an innovative approach for early detection of
emerging Variants of Concern (VoCs) using funnel plots and Bonferroni control
charts. This methodology provided a statistical framework for monitoring
regional reproduction numbers, allowing for the identification of anomalous
patterns that can signal the emergence of new variants. Through case studies
in Italy, England, India, and South Africa, it was demonstrated that the
approach is simple, cost-effective, and can complement genomic sequencing
efforts, thus facilitating more targeted surveillance and interventions. The
ability to detect anomalies in real-time significantly enhances public health
responses without the need for resource-intensive genomic sequencing.

The second chapter extended the scope of mathematical modelling by
addressing the critical issue of underreporting during the first wave of the
COVID-19 pandemic in Italy. Using dynamic system identification and inverse
problem-solving techniques, this chapter proposed a method to reconstruct
the true temporal profile of new COVID-19 cases, accounting for significant
underreporting. This correction provided a more accurate representation of
the pandemic’s progression, which is crucial for evaluating the effectiveness of
non-pharmaceutical interventions and planning future public health responses.
The methodology not only aids in understanding the historical impact of the
pandemic but also offers a framework that can be adapted to future epidemic
outbreaks, enhancing decision-making in terms of health and economic policy.

The second part of the thesis transitioned into the domain of Discrete
Optimization, with an emphasis on optimization problems arising in machine
learning and mobile positioning applications. The first chapter introduced
the BeMi ensemble, an architecture of Binarized Neural Networks (BNNs) de-
signed to solve classification problems under few-shot learning scenarios. The
chapter explored how the ensemble method leverages a majority voting sys-
tem to combine specialized BNNs, each trained to distinguish between pairs
of classes. This approach allowed the model to operate efficiently on low-
power devices, such as mobile phones, which is crucial in resource-constrained
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environments. The computational experiments revealed that simpler BNNs
can outperform more flexible and complex networks, offering valuable insights
into the trade-offs between model flexibility and computational efficiency. The
chapter concluded with a discussion on future directions, including improve-
ments to training data selection and scalability to multi-class classification
problems.

The second chapter focused on the unassigned Distance Geometry Problem
(DGP) in the context of the Manhattan norm, a problem with applications
in mobile device positioning within grid-like environments. Unlike traditional
approaches that deal with assigned DGPs, this chapter presented a MILP
formulation for the unassigned version of the problem, addressing the challenge
of positioning mobile devices when the distances between them are unknown.
This formulation filled a significant gap in the existing literature on DGPs, and
the computational results highlighted the challenges posed by the problem’s
size, which limits the applicability of exact solutions. The chapter concluded
by proposing potential future research directions, such as the use of heuristics
to improve the scalability of the model and adapt it to larger, more complex
scenarios.
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