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Abstract

The aim of this dissertation is to present and analyze several control and observation

schemes that rely on the joint use of neural network and sliding modes. In particu-

lar, it presents a novel framework which exploits deep neural networks (DNN)s and

integral sliding mode (ISM) to design control schemes able to control perturbed

nonlinear systems with fully unknown dynamics. Differently from other method-

ologies present in the literature, the DNNs are not trained offline, but, inspired by

the adaptive control framework, their weights are adjusted online while the system

is being controlled via adaptation laws that are derived from Lyapunov stability

analysis. Such a framework is then extended to the case in which the system must

satisfy some state or input constraints, presenting three modifications: one which

relies on a modified sliding variable, one that embeds model predictive control, and

one that makes use of barrier functions.

The joint use of DNNs and sliding modes is also explored in the domain of fault

diagnosis (FD). In particular, two FD schemes are presented. The former relies on

the aforementioned DNN based ISM framework to build an unknown input observer

(UIO) for the estimation of fault affecting a system. As for the latter, it consists of

a deep reinforcement learning (DRL) agent that aims to estimate the sensor fault

affecting the joints of a robotic manipulator. Such an estimate is used to clear the

faulted signal and build a battery of second order sliding mode UIOs that allows to

estimate the actuator fault acting on the robot joints.

Finally, application of DNN and sliding modes in the domain of physical human-

robot interaction are presented. In particular, an adaptive version of the DNN based

ISM control framework is developed to control a robotic manipulator so that it

performs the so-called ergonomic handover, i.e., exchanges object with the human

operator, adapting to her/his pose to reduce psychophysical stress. Moreover, a

collision avoidance architecture that relies on convolutional neural networks for

obstacle detection and ISM for obstacle avoidance is presented.

The control and observation methodologies present in this dissertation have been

theoretically analyzed and their validity is assessed in simulation or experimentally

obtaining more than satisfactorily results. The experiments are performed on a real

Franka Emika Panda robot, present in the Intelligent Robotics Lab at the University

of Pavia.
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Notation

The sets R>0 and R≥0 represent positive and non-negative real numbers, respec-

tively. Given a matrix A ∈ R
n×m, then A> ∈ R

m×n denotes its transpose, A(i) ∈

R
n its i-th column, while vec (A) ∈ R

nm is the vectorization operation, defined

as vec (A) =
[

(A(1))> (A(2))> · · · (A(m))>
]>

. Given a vector x ∈ R
n and a

matrix B ∈ R
n×n, then ‖x‖2

B = x>Bx. An identity matrix with n rows and

columns is denoted as In ∈ R
n×n, a matrix of zeros with p rows and q columns

as 0p×q ∈ R
p×q, while a vector of m zeros as 0m ∈ R

m. Given a time varying

vector v(t) ∈ R
n, v[ta,ta+N ] denotes the discrete time samples of the vector, i.e,

[v(ta), v(ta+1), . . . , v(ta+N )]. Note that, throughout the dissertation, function de-

pendencies may be omitted for sake of readability when obvious.
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Chapter 1

Introduction

In real world control applications, one has to deal with the problem of uncertainty.

Sources of uncertainty may be, for example, exogenous signals (e.g., faults, measure-

ment noise, etc.), or modeling mismatches. To cope with uncertainties, the literature

of control theory has been enriched with a large variety of methodologies, which be-

long to the so-called Robust Control field [1, 2]. Usually, such techniques generate

the control action while taking into consideration the worst realization of the un-

certainty. Depending on the specific methodology employed, this could result into

an-over conservative strategy, or into the generation of a control signal which could

be detrimental for the plant.

However, there are some cases in which the system model is completely unavail-

able to the controller designer and, in such a condition, devising control laws with

sufficient guarantees is not possible.

In the last decades, availability of data and the computational power have grown

exponentially. For this reason, Machine Learning (ML), and in particular the con-

cept of Artificial Neural Network (ANN), gained popularity in a wide variety of

fields, included control theory. Even though the popularity of ML has increased

quite recently, its origin can be traced back to the beginning of the XIX century,

when the least squares problem has been formulated. Nevertheless, the history of

the ML field, as it is intended today, starts more or less in the half of the last

century, when the so-called Perceptron model has been introduced in [3]. The pop-

ularity of ANNs comes from the fact that they are extremely convenient, since

they require a restricted number of hypotheses, and powerful, since they provide

important theoretical results. Above all of them, there is the so-called Universal

Approximation Theorem, proposed at the end of the eighties by George Cybenko in

[4], which proves that, in general, an ANN is a function capable of approximating
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any continuous function with a degree of approximation which is related to the ANN

structure. Indeed, in works like [5] and [6], it has been shown how an ANN with

a deeper architecture, referred to as Deep Neural Network (DNN), provides better

results than a network with a single layer of perceptrons.

Clearly, also the field of control theory has been influenced by ML, and specif-

ically by ANNs. Indeed, the universal approximation capabilities of this last one

become a powerful tool that enables the design of control laws even in the case

of unknown system dynamics. The ways in which ANNs have been employed are

different. For example, [7] proposes a methodology that performs the so-called iden-

tification of the system dynamics relying on ANNs. Moreover, in the case in which

a very large amount of data is available, one could train a network that estimates

the plant dynamics and treat it as an observer, as done in [8]. Another possibility

is to employ ANNs to directly estimate the optimal control law [9].

The main issue in many works involving ANNs is that the training phase is done

offline and the approximation error, which is dependent by the network structure

and by the quality of the gathered data, is not properly dealt with, preventing from

an effective control design. Moreover, the fact that the ANNs are trained offline

does not give any guarantees about the effects that the approximation has on the

behavior of the system.

The aim of this dissertation is to explore the combined use of ANNs and robust

control strategies, specifically Sliding Mode Control (SMC) [10], for control and

observer design with performance guarantees.

Throughout the years, the use of neural networks and sliding mode control

has been widely investigated. In particular, in works like [11, 12, 13] Radial Basis

Function neural networks are combined with sliding mode control for designing con-

trollers and observers, with applications to robotic manipulators, power converters,

and lithium-ion batteries. In other works [14, 15, 16], neural networks with fuzzy

logic have been employed to design controllers and observers for controlling and

observing motor drives and active suspension systems. Other interesting works that

analyze the combination of sliding mode controllers and neural networks are, among

others, [17, 18, 19, 20].

The existing literature presents two main flaws. The first is that the neural

networks are not used to estimate the complete model of the plant, but rather

to compensate small model mismatches or directly the disturbance. Second, the

majority of them present an offline training of the neural networks, which can lead

to the problems described earlier in this introduction.
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With the aim of coping with these aspects and enrich the existing literature,

this dissertation covers the following topics:

• design of a novel DNN based Integral Sliding Mode (ISM) control framework,

characterized by an online adaptation of the parameters, for controlling per-

turbed nonlinear system with fully unknown dynamics;

• extensions of the aforementioned control framework to the case in which the

system is affected by state and input constraints;

• development of fault detection schemes that rely on the joint use of DNN and

SMC observers, with application to industrial manipulators;

• joint use of DNNs and SMC for the development of control strategies for safe

and ergonomic physical-human robot interaction, with experiments on a real

collaborative robot.

1.1 Thesis Structure

This dissertation is divided into four parts and structured as follows:

(I) Introduction and Preliminaries: In this part, all the preliminary con-

cepts behind what presented in this dissertation, are introduced. In particular,

Chapter 2 introduces the basics about SMC, along with the main theorems,

Chapter 3 presents some preliminaries on neural networks and introduces the

notation that will be employed in the rest of the dissertation, while Chapter

4 recalls some fundamental concepts about robotics.

(II) Deep Neural Network based Integral Sliding Mode Control Frame-

work: In this part, the Deep Neural DNN-ISM control framework, which can

be seen as the core of this dissertation, is introduced. In particular, Chapter

5 presents the main concepts and theoretical results and it is based on the

published works

• N. Sacchi, G.P. Incremona, and A. Ferrara. “Neural network-based prac-

tical/ideal integral sliding mode control.” IEEE Control Systems Letters

6 (2022): 3140-3145.

• E. Vacchini, N. Sacchi, G.P. Incremona, and A. Ferrara. “Design of a

deep neural network-based integral sliding mode control for nonlinear

systems under fully unknown dynamics.” IEEE Control Systems Letters

7 (2023): 1789-1794.

5



1.1. Thesis Structure

• N. Sacchi, E. Vacchini, G.P. Incremona, and A. Ferrara. “On neural

networks application in integral sliding mode control.” Journal of the

Franklin Institute, Volume 361, Issue 13 (2024).

As for Chapter 6, it presents extensions of the aforementioned framework to

the case in which there are state and input constraints, and it is based on the

results published in

• N. Sacchi, E. Vacchini, A. Ferrara. “Neural network based integral sliding

mode control of systems with time-varying state constraints.” 2023 31st

Mediterranean Conference on Control and Automation (MED). IEEE,

2023.

• N. Sacchi, E. Vacchini, G.P. Incremona, and A. Ferrara. “Model Predic-

tive Control with Deep Neural Network Based Integral Sliding Modes

Generation for a Class of Uncertain Nonlinear Systems.”

IFAC-PapersOnLine 58.5 (2024): 84-89.

(III) Fault Diagnosis via Neural Networks and Sliding Mode Observers

In this part, two different fault detection schemes, which rely on the use of

neural networks and Sliding Mode Control, are presented. Specifically, Chapter

7 presents an Unknown Input Observer developed on the Deep Neural Network

based Integral Sliding Mode (DNN-ISM) framework introduced in Chapter 5

for the detection of faults acting on the input channel, and it is based on the

work in

• N. Sacchi, G.P. Incremona, and A. Ferrara. “Actuator Fault Diagnosis

With Neural Network-Integral Sliding Mode Based Unknown Input Ob-

servers.” IFAC-PapersOnLine 56.2 (2023): 773-778.

Moreover, Chapter 8 presents the combination of a Deep Reinforcement Learn-

ing agent and a Second Order Sliding Mode Unknown Input Observer for the

fault diagnosis of sensors and actuator faults acting on an industrial manipu-

lator. This Chapter is based on the results contained in

• N. Sacchi, G.P. Incremona, and A. Ferrara. “Sliding mode based fault

diagnosis with deep reinforcement learning add-ons for intrinsically re-

dundant manipulators.” International Journal of Robust and Nonlinear

Control 33.15 (2023): 9109-9127.
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(IV) Applications to Human-Robot Interaction In this part, neural networks

and SMC are employed to develop architectures for safe and ergonomic human

robot interaction. In particular, Chapter 9, which presents a strategy that

exploits a modified version of the DNN-ISM framework to design a controller

to perform ergonomic handover between a robot and a human operator, is

based on the work in

• N. Sacchi, E. Vacchini, and A. Ferrara. “Human-Robot Ergonomic Han-

dover via Deep Neural Network Based Adaptive Integral Sliding Mode

Control.” 2024 European Control Conference (ECC). IEEE, 2024.

As for Chapter 10, it presents a collision avoidance scheme which exploits

a vision-based methodology for obstacle detection and uses Integral Sliding

Mode control for maintaining a safety distance between the robot and the

human operator.

Finally, some concluding remarks are gathered and possible future research paths

are proposed in Chapter 11.

1.2 List of peer-reviewed scientific publications

In the following, the complete list of peer-reviewed publications produced during

the Ph.D. course (October 2021 - September 2024) is reported.

Journal

• N. Sacchi, E. Vacchini, G. P. Incremona, and A. Ferrara. “On neural networks

application in integral sliding mode control.” Journal of the Franklin Institute,

Volume 361, Issue 13 (2024).

• E. Vacchini, N. Sacchi, G.P. Incremona, and A. Ferrara. “Design of a deep

neural network-based integral sliding mode control for nonlinear systems under

fully unknown dynamics.” IEEE Control Systems Letters 7 (2023): 1789-1794.

• N. Sacchi, G.P. Incremona, and A. Ferrara. “Neural network-based prac-

tical/ideal integral sliding mode control.” IEEE Control Systems Letters 6

(2022): 3140-3145.

• N. Sacchi, G.P. Incremona, and A. Ferrara. “Sliding mode based fault di-

agnosis with deep reinforcement learning add-ons for intrinsically redundant
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1.2. List of peer-reviewed scientific publications

manipulators.” International Journal of Robust and Nonlinear Control 33.15

(2023): 9109-9127.

Conference Proceeding

• A. Ferrara, G.P. Incremona, E. Vacchini and N. Sacchi. “Design of Neural

Networks Based Sliding Mode Control and Observation: An Overview.” 17th

International Workshop on Variable Structure Systems (VSS). IEEE, 2024.

• E. Vacchini, N. Sacchi, M. Cucuzzella, and A. Ferrara. “Robust Sliding Mani-

fold Design for Uncertain Linear Systems.” 2024 European Control Conference

(ECC). IEEE, 2024.

• N. Sacchi, E. Vacchini, and A. Ferrara. “Human-Robot Ergonomic Handover

via Deep Neural Network Based Adaptive Integral Sliding Mode Control.” 2024

European Control Conference (ECC). IEEE, 2024.

• N. Sacchi, E. Vacchini, G.P. Incremona, and A. Ferrara. “Model Predictive

Control with Deep Neural Network Based Integral Sliding Modes Generation

for a Class of Uncertain Nonlinear Systems.” IFAC-PapersOnLine 58.5 (2024):

84-89.

• N. Sacchi, E. Vacchini, A. Ferrara. “Neural network based integral slid-

ing mode control of systems with time-varying state constraints.” 2023 31st

Mediterranean Conference on Control and Automation (MED). IEEE, 2023.

• N. Sacchi, G.P. Incremona, and A. Ferrara. “Integral Sliding Modes Gen-

eration via DRL-Assisted Lyapunov-Based Control for Robot Manipulators.”

2023 European Control Conference (ECC). IEEE, 2023.

• N. Sacchi, G.P. Incremona, and A. Ferrara. “Actuator Fault Diagnosis With

Neural Network-Integral Sliding Mode Based Unknown Input Observers.” IFAC-

PapersOnLine 56.2 (2023): 773-778.
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Chapter 2

Preliminaries on Sliding Mode

Control

The aim of this chapter is to introduce the main concepts related to Sliding Mode

Control, instrumental for the understanding of the DNN based approach presented

later in Chapter 5.

2.1 Idea behind Sliding Mode Control

Sliding Mode Control is a nonlinear control technique belonging to the family of

Variable Structure Control (VSC), which alters the dynamics of a system by means

of a high frequency switching law [10, 21].

Consider a system characterized by a state vector x ∈ X ⊂ R
n, with X being

a compact set containing the origin. Then, let σi(x) = 0, with i ∈ {1, 2, . . . , κ},
be some suitably predefined surfaces, each defined as subspace of the state space.

The intersection of such surfaces is called sliding manifold (an illustrative example

is provided in Figure 2.1). If the system state forced on σi(x) = 0, then a sliding

motion is generated on that surface and this last one is referred to as switching

surface. The idea behind SMC is to design a controller which, starting from an

initial condition x(t0) = x0, with t0 ∈ R≥0 being the initial time instant, steers

the state onto the sliding manifold in finite time, generating a sliding motion on all

the surfaces, and hence on the sliding manifold. If this happens, then the system is

said to be in sliding mode. When a sliding mode is enforced, the controlled system

behaves like a system of reduced order, referred to as equivalent system, and whose

dynamics depends on the definition of the sliding manifold. Moreover, the system

becomes insensitive with respect to a significant class of parameter uncertainties
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and disturbances.

  

Figure 2.1: Illustrative example of the sliding manifold σ = 02 given by the inter-

section of κ = 2 switching surfaces

2.1.1 An illustrative example

In order to present some of the main concepts related to SMC, a simple example is

introduced. In particular, let us consider the Duffing oscillator, depicted in Figure,

2.2 and whose dynamics is

ẋ =





ẋ1

ẋ2



 =





x2

g
l

sin(x1)− α
ml2

x1 − k
ml2

x2 + τ
ml2



 , (2.1)

where x =
[

x1 x2

]>
∈ X ⊂ R

2 is the state vector, with x1 and x2 being the

position and velocity, respectively. The other elements appearing in (2.1) are the

gravity term g ∈ R, the mass attached to the rod m ∈ R, the length of the rod l ∈ R,

and the control torque τ ∈ R. As for α ∈ R>0 and k ∈ R>0, they are respectively,

the parameters regulating the restoring torque −αx1 and the damping torque −kx2.

Defining u = τ
ml2

and approximating sin(x1) ≈ x1 − x3
1

6 , the dynamics in (2.1) can

be rewritten as

ẋ =





ẋ1

ẋ2



 =





x2
(

g
l
− α

ml2

)

x1 − g
6lx

3
1 − k

ml2
x2 + u



 . (2.2)
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mg

x1

S
N

S
N

Figure 2.2: Graphical representation of the Duffing oscillator system.

For sake of simplicity in the analysis, it is possible to set g
l
− α

ml2
= 1, g

6l = 1, and
k
ml2

= η to simplify the above dynamics as

ẋ =





ẋ1

ẋ2



 =





x2

x1(1− x2
1)− ηx2 + u



 . (2.3)

The design of SMC consists in two phases, i.e., manifold design and control law

design. The sliding manifold is designed so that, while in sliding mode, the dynamics

of the controlled system exhibits some desired properties (e.g., asymptotic stability).

As for the control law, it is chosen so that a sliding mode is enforced.

With the aim of steering the system state toward the origin, the sliding manifold

can be selected as a linear combination of the state elements, i.e.,

σ(x) = cx1 + x2 = 0, (2.4)

where σ : X → R is referred to as sliding variable.

To bring the systems states on the sliding manifold, the control law

u = −ρ sign (σ) , (2.5)

can be used. In particular, the term ρ ∈ R>0 is the control gain, while the sign (·)
function is defined as

sign (σ) =











1 if σ > 0

−1 if σ < 0

To prove that the control law (2.5) successfully steers the system state on the sliding

manifold σ = 0 and to properly select the control gain ρ, stability analysis must be

performed [22]. Let v : X → R be a candidate Lyapunov function defined as

v =
1

2
σ2. (2.6)
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Then, asymptotic stability of the equilibrium point σ = 0 is ensured if, for σ 6= 0,

it holds that v̇ < 0. Moreover, finite-time convergence is achieved if it holds

v̇ ≤ −γ√v = − γ√
2
|σ|, (2.7)

with γ ∈ R>0. Since v̇ = σσ̇, the above expression can be conveniently rewritten as

σσ̇ ≤ − γ√
2
|σ|. (2.8)

The left hand-side of the inequality can computed explicitly as

σσ̇ = σ(c x2 + x1 − x3
1 − ηx2 + u). (2.9)

Since x ∈ X , with X being compact, then it holds that |c x2 + x1 − x3
1 − ηx2| ≤ F̄ ,

with F̄ ∈ R>0. Then, substituting u as in (2.5), the above expression can be upper

bounded as

σσ̇ ≤ σ(F̄ − ρ sign (σ))

≤ (F̄ − ρ)|σ|. (2.10)

Then, to satisfy (2.8), which is referred to as γ-reaching condition, it is sufficient to

choose the control gain ρ so that the condition

(F̄ − ρ)|σ| = − γ√
2
|σ|

is satisfied. Hence, finite-time convergence to σ = 0 is ensured if

ρ = F̄ +
γ√
2
. (2.11)

By virtue of to the choice of the sliding variable (2.4), when at time tr > t0 the

sliding mode σ = 0 is enforced, it holds that x2 = −c x1 and the dynamics of the

controlled system has a reduced order, i.e.,




ẋ1(t)

x2(t)



 = −c x1(t)





1

1



 , (2.12)

whose solution is




ẋ1(t)

x2(t)



 = e−c(t−tr)





x1(tr)

−c x1(tr)



 . (2.13)

From the above equation, it is evident how the properties of the system is sliding

mode are strictly dependent on the choice of the sliding manifold, in the form of

the parameter c. In particular, asymptotic stability of the origin is ensured if c is

positive, with a rate of convergence that is equal to this last one.
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2.2 Control-Affine Systems

In classical SMC theory, the class of control-affine systems is considered. A control-

affine system is a system which is nonlinear with respect to the state and affine with

respect to the control variable. Hence, as detailed in [22], it can be described by

ẋ(t) = f(x(t), t) +B(x(t), t)u(t), (2.14)

where x ∈ R
n is the state vector, u ∈ R

m is the control input vector, t ∈ R≥0 is time,

f : Rn × R≥0 → R
n is the so-called drift dynamics, while B : Rn × R≥0 → R

n×m is

the so-called control effectiveness matrix. In the domain of SMC theory is common

to assume that both f and B are smooth and norm bounded vector fields. Moreover,

the system state is assumed to be limited in a compact set X ⊂ R
n containing the

origin, i.e., x ∈ X .

The class of control-affine systems is one of the most studied in the literature, as

it includes the majority of electromechanical systems (e.g., motors [23] and robotic

manipulators [24]).

2.2.1 Canonical forms

The analysis of VSC, and more specifically SMC, is simpler when the considered

nonlinear system is expressed in one of the canonical forms [22, 25, 26]. To discuss

them, it is fundamental to introduce the concept of relative degree.

Consider the nonlinear system (2.14) with associated output function










ẋ(t) = f(x(t), t) +B(x(t), t)u(t)

y(t) = ψ(x(t), t)
(2.15)

where y ∈ R
m is the output vector, while ψ : Rn×R→ R

m is a smooth enough vector

field. The definition for Single Input Single Output (SISO) and its generalization

for Multi Input Multi Output (MIMO) systems are introduced.

Definition 2.1 (Relative degree of SISO systems). Let the system (2.15) be

a SISO system, i.e., m = 1. Then, the relative degree r ∈ N>0 of the system is the

minimum order of the time-derivative of the output, namely y(r) = dry
dtr

, in which

the control u explicitly appears.

Definition 2.2 (Relative degree of MIMO systems). Let the system (2.15)

be a MIMO system, i.e., m > 1. Then, each component yi, with i ∈ {1, 2, . . . ,m}
must be considered. In particular, define ri ∈ N the minimum order of the deriva-

tive of the output element, namely, y
(ri)
i = driyi

dtri
in which any component of the
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control vector explicitly appears. The result is the so-called relative degree vector

r̄ =
[

r1 r2 · · · rm

]>
∈ N

m and its 1-norm defines the total relative degree of the

system, i.e., r = ‖r̄‖1 =
∑m
i=1 |ri|.

It is now possible to introduce the so-called canonical forms.

Reduced form Consider a control-affine system like the one in (2.14). If the

control effectiveness matrix has a structure

B(x(t), t) =





0(n−m)×m

B̄(x(t), t)



 , (2.16)

with B̄ : X ×R≥0 → R
m×m, then the state vector can be split into two components,

namely x1 ∈ X1 ⊂ R
n−m and x2 ∈ X2 ⊂ R

m, and the system can be rewritten as

ẋ(t) =





ẋ1(t)

ẋ2(t)



 =





f1(x(t), t)

f2(x(t), t) + B̄(x(t), t)u(t)



 , (2.17)

where f1 : X × R≥0 → R
n−m and f2 : X × R≥0 → R

m are the two components of

the drift dynamics of (2.14).

Controllability form In this form, the control-affine system (2.15) can be split

into m subsystems, each of them being a perturbed chain of integrators. Consider

the state vector expressed as

x(t) =
[

x>
1 (t) x>

2 (t) . . . x>
m(t)

]>
,

where xi ∈ R
ni , for i ∈ {1, 2, . . . ,m}, with ni ∈ N being the degree of the i-th

subsystem such that
∑m
i=1 = n. Each subsystem is characterized by the dynamics

ẋi = Aixi(t) + fi(x(t), t) + bi(x(t), t)u(t), (2.18)

where Ai ∈ R
ni×ni , fi(x(t), t) ∈ R

ni , and bi(x(t), t) ∈ R
ni×m are defined as

fi(x(t), t) =





0ni−1

fi,0(x(t), t)



 , bi(x(t), t) =





0(ni−1)×m

b>
i,0(x(t), t)



 , Ai =





0ni−1 Ini−1

0 0>
ni−1



 ,

with fi,0(x(t), t) ∈ R and bi,0(x(t), t) ∈ R
m. Then, the overall system is written as

ẋ(t) = Ax(t) + f̄(x(t), t) + B̄(x(t), t)u(t), (2.19)

where A = diag{Ai}mi=1, f̄(x(t), t) =
[

f>
1 (x(t), t) f>

2 (x(t), t) . . . f>
m(x(t), t)

]>
,

and B̄(x(t), t) =
[

b>
1 (x(t), t) b>

2 (x(t), t) . . . b>
m(x(t), t)

]>
.
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Normal form Consider a control-affine system in the form (2.15), characterized

by a relative degree vector r̄ =
[

r1 r2 · · · rm

]>
and relative degree r ≤ n. Let

zi,j , with (i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . , ri − 1}, denote the (j − 1)-th derivative

of the i-th output variable yi = ψi(x(t), t). Then, the normal canonical form of the

system is























żi,j = zi,j+1 if j ∈ {1, 2, . . . , ri − 1}
żi,ri

= αi(z, η) +
∑m
k=1 βi,k(z, η)uk(t) if j = ri

η̇ = γ(z, η)

(2.20)

where z ∈ R
m×(r−1) is the matrix collecting the external variables, η ∈ R

n−r is

the vector of the so-called internal variables. Their dynamics is defined by αi, βi,k :

R
m×(r−1) × R

n−r → R and γ : Rm×(r−1) × R
n−r → R

n−r. In particular, γ(·, ·) is

a design function that describes the internal behavior of the system when input

and initial conditions have been chosen to keep the output identically zero. For this

reason, the term γ(0m×(r−1), η) is called zero-dynamics.

2.3 Elements of classical Sliding Mode Control

2.3.1 The Sliding Manifold

As already mentioned in Section 2.1, the sliding manifold is the subspace of state

space toward which the systems states are steered by the SMC controller. In the

following, a more formal definition, along with some design examples, is provided.

Consider a control-affine system (2.14) and let σi : X → R, with i ∈ {1, 2, . . . ,m},
be the sliding variables. Then, for each σi, it is possible to define the corresponding

sliding surface as the set

{x ∈ X : σi(x(t)) = 0}. (2.21)

Since the sliding manifold is the intersection of all the m sliding surfaces, it is

possible to define the a new sliding variable σ : X → R
m that collects the sliding

variables associated with the sliding surfaces, i.e.,

σ(x(t)) =
[

σ1(x(t)) σ2(x(t)) . . . σm(x(t))
]>
, (2.22)

and then define the sliding manifold as

{x ∈ X : σi(x(t)) = 0,∀i ∈ {1, 2, . . . ,m}} . (2.23)
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The sliding manifold σ(x(t)) = 0m can be designed as any nonlinear function of the

states x [27, 28]. It is common do define it as the linear combination of the system

states

{x ∈ X : σ(x(t)) = Cx(t) = 0}, (2.24)

where C ∈ R
m×n is a design matrix.

In the case in which the system can be expressed in one of the canonical forms,

then some specific structures for the sliding variable are known. In the following,

the canonical forms introduced in Section 2.2.1 are considered.

Reduced form Since the vector of the system states can be split in two compo-

nents x1 ∈ X1 ⊂ R
n−m and x2 ∈ X2 ⊂ R

m, one can conveniently define the sliding

manifold as the linear combination

σ(x(t)) = σ(x1(t), x2(t)) = C1x1(t) + C2x2(t), (2.25)

where C1 ∈ R
m×(n−m) and C2 ∈ R

m×m, with the latter being non-singular. When

the system is in sliding mode, it exhibits the reduced order dynamics





x2(t)

ẋ1(t)



 =







−C−1
2 C1x1(t)

f1

(

[

x>
1 (t) −(C−1

2 C1x1(t))>
]>
, t

)






, (2.26)

where f1 is defined in (2.17). In addition, if f1 is a linear function of the system

states, i.e.,

f1(x(t), t) = F1x1(t) + F2x2(t), (2.27)

with F1 ∈ R
(n−m)×(n−m) and F2 ∈ R

(n−m)×m, the reduced order dynamics becomes





x2(t)

ẋ1(t)



 =





−C−1
2 C1x1(t)

(F1 − F2C
−1
2 C1)x1



 . (2.28)

Then, if the pair F1, F2 is controllable, the desired dynamics of the system in sliding

mode can be imposed by suitably defining the matrix C−1
2 C1 using classical control

techniques, e.g., pole, assignment, optimal control, etc. [26].

Controllability form Since the system in this form can be split in m different

subsystems, one can design a sliding surface for each subsystem given by the sliding

variable σi : Rni → R

σi(xi(t)) = c>
i xi(t), (2.29)
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for all i ∈ {1, 2, . . . ,m}, where ci ∈ R
ni is a design vector. When a sliding motion

is exhibited the i-th surface, i.e., σi(xi) = 0, the associated subsystem exhibits a

reduced order dynamics











ẋi,j = xi,j+1, if j ∈ {1, 2, . . . , ni − 1}

xi,ni
= − 1

ci,ni

∑ni−1
j=1 ci,jxi,j if j = ni,

(2.30)

for i ∈ {1, 2, . . . ,m}. Hence, the vectors ci must be chosen so that the polynomial

defining xi,ni
is Hurwitz.

Normal form For a system in this form, the stability is related to the one of the

zero dynamics, which coincides with the equivalent system. Hence, it is convenient

to design m different sliding variables σi : Rr−1 → R as the linear combination of

the external variables, i.e,

σi(zi(t)) = c>
i zi, (2.31)

for all i ∈ {1, 2, . . . ,m}, with ci ∈ R
r−1.

2.3.2 The Control Law

As anticipated at the beginning of this chapter, the control laws generated by SMC

are characterized by high frequency switching behavior. Depending on the type of

system, different control laws have been proposed in the literature. In the following,

some of the available options are presented.

Relay form For this type of controller, the i-th component of the control input

vector u(t) may assume two distinct values, depending on the sliding variable asso-

ciated with i-th sliding variable. Let σ : X → R
m be the sliding variable vector in

(2.22), then the control law is defined as

ui(t) =











u+
i (x(t), t) if σi(x(t)) > 0,

u−
i (x(t), t) if σi(x(t)) < 0,

(2.32)

with i ∈ {1, 2, . . . ,m}. The values u+
i ∈ R and u−

i ∈ R must be defined during the

design phase.

Unit Vector approach Suitable in the case of MIMO systems, the unit vector

approach [27] exploits a control law that relies on a unit vector which indicates the

17
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direction toward the sliding manifold. In particular, the control law u(t) ∈ R
m is

given by

u(t) = K(x(t), t)
σ(x(t))

‖σ(x(t))‖2
, (2.33)

where σ : X → R
m is the sliding variable vector in (2.22) and K(x(t), t) ∈ R

m×m is

a design gain matrix.

State Feedback Control with Switching Gain The control law is given by

u(t) = Γ(x(t))x(t), (2.34)

where Γ : X → R
m×n is a state-dependent gain matrix, whose elements depend on

the sliding variable vector σ : X → R
m, defined as in (2.22). In particular

Γi,j(x(t)) =











γ+
i,j if σi(x)xj > 0

γ−
i,j if σi(x)xj < 0

(2.35)

for i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}. In this case, the design parameters are

the values γ+
i,j ∈ R and γ−

i,j ∈ R.

Augmented control The control law is obtained by combining the so-called

equivalent control ueq ∈ R
m, i.e., the control law obtained by imposing the first

derivative of sliding variable vector to zero (refer to the corresponding paragraph

in Section 2.3.4 for more details). In particular

ui(t) = ueq,i(t) + ur,i(t), (2.36)

with i ∈ {1, 2, . . . ,m}, where ur,i ∈ R is a discontinuous control like the relay type

or the unit vector.

2.3.3 Existence and Reaching conditions

A fundamental aspect that one must consider when dealing with SMC is the exis-

tence of the sliding mode. In simple words, a sliding mode exists if in the vicinity

of the sliding manifold σ(x(t)) = 0m, the tangent vector of the controlled system

trajectory is always directed toward the sliding manifold. Moreover, let tr ∈ R≥0

denote the so-called reaching time, i.e., the time in which the system states reach

the sliding manifold starting from some initial conditions x(t0) = x0 ∈ X . Then, if

the condition σ(x(t)) = 0m is satisfied for t ≥ tr, then the sliding mode is said to be

ideal. Note that, the existence of a reaching time allows to distinguish between two
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phases of the system motion: the so-called reaching phase, during which the system

states are approaching the manifold, and the sliding phase, in which the system

evolves on the sliding manifold.

From a theoretical point of view, the existence problem of sliding mode can be

treated as a stability problem. In particular, it must be ensured that the sliding

manifold is attractive for some initial initial conditions x(t0) = x0 ∈ X . To prove

the attractiveness of the manifold one can rely on Lyapunov’s second method [25].

In the case of SISO systems, a simple, but often effective, choice to prove the

existence of a sliding mode is

v(x(t)) =
1

2
σ2(x(t)), (2.37)

for which we aim to obtain that the first time-derivative satisfies

v̇(x(t)) = σ(x(t))σ̇(x(t)) < 0. (2.38)

The condition (2.38) is referred to as reaching condition [27]. In order to attain a

sliding mode in a finite time tr, it is fundamental that the the γ-reaching condition

v̇(x(t)) ≤ −γ
√

2v(x(t)), (2.39)

which translates in to

σ(x(t))σ̇(x(t)) ≤ −γ|σ(x(t))|, (2.40)

with γ ∈ R>0, is satisfied. Condition (2.40) expresses the fact that the sliding

variable and its first time-derivative σ̇ always have opposite sign, meaning that,

when σ < 0, it will grow since σ̇ > γ and, on the contrary, if σ > 0, this last one

will decrease because σ̇ < −γ.

Theorem 2.1 (Finite time reaching). Consider a control-affine system (2.14)

with m = 1, initial conditions x(t0) = x0 and sliding variable σ : X → R. If the

condition (2.40) holds, then the reaching time tr ≥ t0 is bounded above as

tr ≤ t0 +
|σ(x0)|
γ

. (2.41)

Proof. First, recall that, since m = 1, during the reaching phase, the sliding variable

keeps the same sign as its initial condition, i.e., sign (σ(x(t))) = sign (σ(x0)) all

t ∈ [t0, tr). Then, two sub-cases can be distinguished which depend on the value of

σ(x0):
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1. If σ(x0) > 0, then σ(x(t)) > 0 for all t ∈ [t0, tr) and it holds that

σ̇(x(t)) ≤ −γ.

Integrating with respect tot time between t0 and tr, one obtains
∫ tr

t0

σ̇(x(t))dt ≤ −
∫ tr

t0

γdt,

σ(x(tr))− σ(x(t0)) ≤ −γ(tr − t0).

Since the reaching time is defined as the time instant in which the sliding mode

is enforced, then σ(x(tr)) = 0. Hence, rearranging the terms and substituting

σ(x(t0)) = σ(x0), one obtains

tr ≤ t0 +
σ(x0)

γ
= t0 +

|σ(x0)|
γ

. (2.42)

2. If σ(x0) < 0, then σ(x(t)) < 0 for all t ∈ [t0, tr) and one has that

σ̇(x(t)) ≥ γ.

Similarly to what done in the previous sub-case, one can integrate with respect

tot time between t0 and tr to obtain
∫ tr

t0

σ̇(x(t))dt ≥
∫ tr

t0

γdt,

σ(x(tr))− σ(x(t0)) ≥ γ(tr − t0).

Recalling σ(x(tr)) = 0, rearranging the terms and substituting σ(x(t0) =

σ(x0) lead to

tr ≤ t0 −
σ(x0)

γ
,

which, since σ(x0) < 0, can be rewritten as

tr ≤ t0 +
|σ(x0)|
γ

.

For MIMO systems, the reaching condition can be obtained easily. The MIMO

version of (2.37) is the quadratic Lyapunov function

v(x(t)) =
1

2
σ>(x(t))σ(x(t)), (2.43)

for which the aim is to obtain that the first-time derivative satisfies

v̇(x(t)) = σ>(x(t))σ̇(x(t)). (2.44)
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As for the reaching condition, in the case of a MIMO system, it can be chosen to

decide the convergence rate of the sliding variable having

σ̇(x(t)) = −Qsign (σ(x(t)))−Kφ(σ(x(t))), (2.45)

where Q ∈ R
m×m and K ∈ R

m×m are two positive definite diagonal matrices, while

φ(σ(x(t))) =
[

φ1(σi(x(t))) φ2(σ2(x(t))) · · · φm(σm(x(t)))
]>

, with φi : R → R

satisfying

σi(x(t))φi(σi(x(t))) > 0, (2.46)

for σi(x(t)) > 0 and i ∈ {1, 2, . . . ,m}. The first term in (2.45) expresses a constant

rate, while the second a variable one. A common choice is to make the second term

an exponential rate by setting φ(σi(x(t))) = σi(x(t)).

2.3.4 Solutions of the controlled system

The control law that keeps the system states on the sliding manifold is a discon-

tinuous one. The dynamics of a system controlled via VSC, or more in general via

VSC, is given by

ẋ(t) = ϕ(x(t), u(t), t), (2.47)

where ϕ : X × R
m × R≥0 → R

n is a piece-wise continuous function, which makes

the system in (2.47) behave like a continuous nonlinear system in different regions

of the state space, with a discontinuous change of dynamics at the boundaries of

such regions. Due to such a change of dynamics, a system controlled via VSC is

generally referred to as Variable Structure System (VSS).

Since the dynamics of a VSS is dictated by nonlinear differential equations with

discontinuous right hand side, classical results on solutions of differential equations

do not hold. However, the evolution of a system on the sliding manifold is unique and

approaches to achieve an analytical solution have been proposed. In the following,

the Filippov’s method [29] and the so-called equivalent control approach [10, 27] are

presented.

Filippov’s method This method provides a good interpretation but it is not

used in practical application. Hence, only the SISO case is analyzed. Consider the

SISO system of the n-th order

ẋ(t) = ϕ(x(t), u(t), t),

with ϕ : Rn × R × R≥0 → R
n, control law u(t) ∈ R of the relay type (2.32). Then,

it is possible to show that the controlled system on σ(x(t)) = 0 behaves so that it
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follows the manifold. In particular, the the dynamics of the system on the manifold

is coincides with a vector ϕσ : Rn × [0, 1]→ R
n belonging to the convex hull of two

vectors ϕ+ : Rn → R
n and ϕ− : Rn → R

n, defined as

ϕ+(x(t)) = ϕ(x(t), u+, t), ϕ−(x(t)) = ϕ(x(t), u−, t),

where u+ and u− are defined as in (2.32). The dynamics of the system is given by

ẋ(t) = ϕσ(x(t), α) = αϕ+(x(t)) + (1− α)ϕ−(x(t)), (2.48)

where α ∈ [0, 1]. A graphical representation of (2.48) is provided in Figure 2.3. The

value of α can be found solving for α the equation

∂σ(x(t))

∂x
· ϕσ(x(t), α) = 0, (2.49)

which highlights the fact that, since the gradient ∂σ(x(t))
∂x

is orthogonal to the level

lines, the vector ϕσ(x(t), α) follows the level line σ(x(t)) = 0 that defines the man-

ifold. Substituting the definition of ϕσ(x(t), α), one has

∂σ(x(t))

∂x
·
(

αϕ+(x(t)) + (1− α)ϕ−(x(t))
)

, (2.50)

which, rearranging the terms to isolate α, leads to

α
∂σ(x(t))

∂x
·
(

ϕ+(x(t))− ϕ−(x(t))
)

=
∂σ(x(t))

∂x
σ(x(t)) · ϕ−(x(t)). (2.51)

Then, the value of α for the computation of (2.48) is

α =
∂σ(x(t))
∂x

· ϕ−(x(t))
∂σ(x(t))
∂x

· (ϕ+(x(t))− ϕ−(x(t)))
. (2.52)

It is important to remark that the solution provided by (2.48) is valid only when

the system is in sliding mode and exhibits a dynamics described by a differential

equation with discontinuous right hand side. During the reaching phase, classical

results on solutions of differential equations can be adopted as the controller is a

continuous function outside the sliding manifold.

Equivalent Control Method Consider the control-affine system in (2.14) with

m > 1, with u(t) chosen as the relay form controller in (2.32). Then, assume that

a sliding mode is enforced on the sliding manifold σ(x(t)) = 0m from the time

instant tr ≥ t0. Since in sliding mode, the state trajectories are forced on the sliding

manifold, σ̇(x(t)) = 0m for all t ≥ tr. From this observation, the idea behind of the

equivalent control method is to find the so-called equivalent controller ueq ∈ R
m,
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Figure 2.3: Graphical interpretation of the Filippov’s solution.

i.e., the continuous control law that keeps the system states on the sliding manifold.

To do so, one can impose σ̇(x(t)) = 0 and solve for u(t). Computing the time

derivative of the sliding variable leads to

σ̇(x(t)) =
∂σ(x(t))

∂x
ẋ(t) =

∂σ(x(t))

∂x
[f(x(t), t) +B(x(t), t)u(t)] = 0m. (2.53)

If one assumes that
∂σ(x(t))

∂x
B(x(t), t) > 0m, (2.54)

for all (x, t) ∈ X × R≥0, then the equivalent controller can be computed as

ueq(t) = −
(

∂σ(x(t))

∂x
B(x(t), t)

)−1 (∂σ(x(t))

∂x
f(x(t), t)

)

. (2.55)

Then, substituting (2.55) in (2.14) it is possible to define the dynamics of the con-

trolled system while in sliding mode as

ẋ(t) = f(x(t), t) +B(x(t), t)ueq(t)

= f(x(t), t)−B(x(t), t)

(

∂σ(x(t))

∂x
B(x(t), t)

)−1 (∂σ(x(t))

∂x
f(x(t), t)

)

=

(

In −B(x(t), t)

(

∂σ(x(t))

∂x
B(x(t), t)

)−1 ∂σ(x(t))

∂x

)

f(x(t), t). (2.56)

2.3.5 Robustness Property and SMC Design

The main context of application of SMC is the one of systems affected by uncer-

tainties and external disturbances. Consider the control-affine system affected by
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uncertainties given by

ẋ(t) = f(x(t), t) + ∆f(x(t), θ(t), t) + (B(x(t) + ∆B(x(t), θ(t), t)))u(t), (2.57)

where x ∈ X ⊂ R
n and u ∈ R

m represent the state and the input of the system,

respectively, f : X ×R≥0 → R
n is the nominal drift dynamics, and B : X ×R≥0 →

R
n×m is the nominal control effectiveness matrix. As for ∆f : X ×Θ× R≥0 → R

n

and ∆B : X ×Θ× R≥0 → R
n×m, they represent the model uncertainties, they are

dependent on a time-varying unknown parameter vector θ ∈ Θ ⊂ R
p, with Θ being

a compact set, and they satisfy the so-called matching condition.

Definition 2.3 (Matching condition). A vector v ∈ R
n is said to be matched if

v ∈ span{B(x(t), t)},

for all x ∈ X and t ∈ R≥0.

The uncertainties can be then rewritten as

∆f(x(t), θ(t), t) + ∆B(x(t), θ(t), t) = B(x(t), t)w(x(t), θ(t), t), (2.58)

with w ∈ R
m being the vector of matched uncertainties, then, it is possible to

rewrite (2.57) as if the uncertainties act as a disturbance entering though the input

channel as

ẋ(t) = f(x(t), t) +B(x(t), t) (u(t) + w(x(t), θ(t), t)) . (2.59)

Moreover, the perturbation vector w(x(t), θ(t), t) satisfies the following assumption.

Assumption 2.1 (Bounded perturbation). There exists a known scalar func-

tion κ : X × R≥0 → R such that the norm of perturbation vector w(x(t), θ(t), t) is

bounded above as

‖w(x(t), θ(t), t)‖ ≤ κ(x(t), t), (2.60)

for all x ∈ X and t ∈ R≥0.

It has been proven that, when the states lie on the sliding manifold, the system

is robust to disturbances that enters the system in the same channel of the input

(see, for example, [30], for more details). In the following, a possible design for the

control law that ensures a sliding mode σ(x(t)) = 0m in finite time, making the

system robust to w(x(t), θ(t), t), is provided.

Let Assumption 2.1 holds. Then, it is possible to design an augmented controller

like the one presented in Section 2.3.2, i.e.,

u(t) = ueq(t) + ur(t), (2.61)
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with ueq ∈ R
m being the equivalent control law and ur ∈ R

m a relay type controller.

The objective of the discontinuous control law ur is to make the system robust to

w(x(t), θ(t), t), while ueq is designed to impose the behavior of the system once the

perturbations are rejected.

In particular, ueq can be designed solving σ̇(x(t)) in the case of w(x(t), θ(t), t) = 0m,

while ur is chosen to ensure that the system achieves a sliding mode σ(x(t)) = 0m.

To this end, one can chose the Lyapunov function as detailed in [31], as

v(x(t)) =
1

2
σ>(x(t))σ(x(t)),

with first time-derivative

v̇(x(t)) = σ>(x(t))σ̇(x(t))

= σ>(x(t))
∂σ(x(t))

∂x

[

f(x(t), t) +B(x(t), t)
(

u(t) + w(x(t), θ(t), t)
)]

.

Then, substituting u(t) as in (2.61), and having ueq(t) as in (2.55), one has that

v̇(x(t)) = σ>(x(t))
∂σ(x(t))

∂x
B(x(t), t)

(

ur(t) + w(x(t), θ(t), t)
)

. (2.62)

In order to ensure v(x(t)) < 0, one can exploit the knowledge about the perturbation

bound in Assumption 2.1 and design the discontinuous control as

ur(t) = −(κ(x(t), t) + α)
B>(x(t), t)∂v(x(t))

∂x
∥

∥

∥B>(x(t), t)∂v(x(t))
∂x

∥

∥

∥

, (2.63)

where α ∈ R>0 is a design constant which defines the reaching time, as previously

detailed.

2.3.6 The Chattering problem

The generation of an ideal sliding mode requires an infinite control frequency, which

is not obtainable when SMC is implemented in the practice. Since the implemen-

tation is done on digital controllers, the process signals are always sampled with a

certain (possibly small) sampling time. This introduces the so-called chattering, i.e.,

high frequency oscillation in the state trajectory, having a negative impact on the

performance of the control. As highlighted in Figure 2.4, if chattering is present, then

the system trajectories do not stay exactly on the sliding manifold σ(x(t)) = 0m,

but switches around it in a boundary layer ‖σ(x(t))‖ ≤ ε, with ε ∈ R>0. In such a

condition, the sliding mode is said to be practical. The amplitude of the chattering

effect is usually proportional to the gain of the discontinuous controller [10] and, in

order to alleviate its effect, chattering alleviation techniques have been proposed in

the literature (see, e.g., [32, 33], among others).
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Figure 2.4: Example of an ideal sliding mode (left) and a sliding mode with chat-

tering (right).

2.3.7 Approximability Property

As anticipated in Section 2.3.6, it is impossible to have an infinite frequency switch of

the control law, causing a sliding motion only around the sliding manifold σ(x(t)) =

0m and not exactly on that. The results of the studies related to the behavior of the

system near the sliding manifold are gathered under the so-called approximability

property [34, 35], which is recalled in the following. Consider the multi-input system

ẋ?(t) = f(x?(t), t) +B(x?(t), t)u(t), (2.64)

where u(t) is the ideal SMC law which ensures σ(x?(t)) = 0m. Let now ũ(t) be a

control input which includes non-idealities. The system becomes

ẋ(t) = f(x(t), t) +B(x(t), t)ũ(t), (2.65)

and the sliding mode is achieved in a ε-neighborhood of the manifold, i.e.,

Ωε := {x(t) ∈ X : ‖σ(x(t))‖ ≤ ε}, (2.66)

with ε ∈ R>0. Then, the following theorem holds.

Theorem 2.2 (Approximability Property [26]). If it is true that

1. there exists a solution x(t) to (2.65) in the interval t ∈ [t0, T ], and x(t) belongs

to the ε-neighborhood of the sliding manifold (2.66);
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2. there exists a Lipschitz constant L for the equivalent dynamics

ẋ?(t) = f(x?(t), t)−B(x?(t), t)

(

∂σ(x(t))

∂x
B(x?(t), t)

)−1 ∂σ(x(t))

∂x
f(x?(t), t);

3. there exist bounded partial derivatives of B(x(t), t)
(

∂σ(x(t))
∂x

B(x(t), t)
)−1

;

4. there exist two constants M,N ∈ R>0 such that

‖f(x(t), t) +B(x(t), t)ũ(t)‖ ≤M +N ‖x‖ ;

then, for any pair of solutions of solutions x(t) and x?(t) with initial conditions

‖x(t0)− x?(t0)‖ ≤ α1ε, with α1 ∈ R>0, there exists a constant α2 ∈ R>0 such that

‖x(t)− x?(t)‖ ≤ α2ε, for all t ∈ [t0, T ]. Moreover, if system (2.64) achieves a sliding

mode asymptotically, then the theorem holds for T →∞.

2.4 Integral Sliding Mode

The robustness to matched perturbations is guaranteed only when the system is in

sliding mode, i.e., for t ≥ tr, making the system sensitive to disturbances during

the reaching phase. To mitigate this problem, it would be possible to use high

gain switching controller to have a smaller tr. However, this approach could cause

damages to the plant actuators [36].

To cope with such a problem, Utkin and Shi introduced the concept of integral

sliding mode (ISM) in [36]. In such a work, they propose a novel SMC strategy

which, thanks to a modification of the sliding variable, eliminates the reaching

phase, achieving a robust motion on the whole state space. Since the complete

state space can be seen as the sliding manifold, the system in sliding mode is not

characterized by order reduction.

Consider the nonlinear multi-input system

ẋ(t) = f(x(t), t) +B(x(t), t)u(t) + h(x(t), t), (2.67)

where x ∈ X ⊂ R
n, with X being a compact set containing the origin, represent

the system states, u ∈ R
m is the control input vector, f : X × R≥0 → R

n is the

drift dynamics, B : X × R≥0 → R
n×m is the control effectiveness matrix, while

h : X × R≥0 → R
n is the vector of disturbances. Note that, even though ISM has

been extended to deal with unmatched disturbances (see, e.g., [37] and [38]), in the

following, the term h(x(t), t) satisfies the matching condition (Definition 2.3).

Moreover, the disturbance is bounded according to the following assumption.
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Assumption 2.2. There exists a known positive scalar function h̄ : X×R≥0 → R>0

that bounds the disturbance term as

h(x(t), t)) ∈ H, H := {v(x(t), t) ∈ R
n : ‖v(x(t), t)‖ ≤ h̄(x(t), t)},

for all x ∈ X and t ∈ R≥0.

In the ISM control framework, the control law has a structure similar to the one

of an augmented-type controller, being

u(t) = un(t) + ur(t), (2.68)

where ur(t) ∈ R
m is a switching controller whose objective is to make the system

robust against h(x(t), t), while un(t) ∈ R
m is the so-called nominal controller, which

is designed to stabilize the system (2.67) as if it was not affected by h.

As for the sliding variable σ : X → R
m, which is now referred to as integral

sliding variable, it is defined by the sum of two components

σ(x(t)) = σ0(x(t))− z(x(t)), (2.69)

where σ0 : X → R
m is the SMC conventional sliding variable chosen, for example, in

one of the ways described in Section 2.3.1 and satisfying the following assumption.

Assumption 2.3. The conventional sliding variable σ0 : X → R
m is chosen so that

the matrix
∂σ0(x(t))

∂x
B(x(t), t) ∈ R

m×m,

with ∂σ0
∂x
∈ R

m×n being the Jacobian of σ0 with respect to x, is positive definite for

all x ∈ X and t ∈ R≥0.

As for z : X → R
m, it is the so-called transient function and it is designed on

the system controlled by the nominal controller as

z(x(t)) = σ0(x0) +

∫ t

t0

∂σ0(x(τ))

∂x

(

f(x(τ), τ) +B(x(τ), τ)un(τ)
)

dτ. (2.70)

Such a choice of the transient variable ensures that, for t = t0, it holds that

σ(x(t0)) = σ0(x0) − z(x0) = σ0(x0) − σ0(x0) = 0m. Hence, the system is on the

sliding manifold from the initial time instant.

2.4.1 Existence and Robustness Property

The following theorem presents the existence conditions of an ISM for t ≥ t0.
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Theorem 2.3 (ISM Existence). Given the nonlinear perturbed multi-input sys-

tem (2.67) with matched uncertainty h(x(t), t) satisfying Assumption 2.2, integral

sliding variable σ(x(t)) defined as in (2.69), and controlled via an ISM controller

u(t) in (2.68), with discontinuous controller ur(t) chosen according to the unit vector

approach in (2.33), i.e,

ur(t) = −ρ(x(t), t)
σ(x(t), t)

‖σ(x(t), t)‖ . (2.71)

Then, if the control gain ρ(x(t), t) ∈ R>0 is chosen so that it satisfies

ρ(x(t), t) >

∥

∥

∥

∂σ0(x(t))
∂x

∥

∥

∥ h̄(x(t), t)

λ
(

∂σ0(x(t))
∂x

B(x(t), t)
) + η, (2.72)

where h̄(x(t), t) is the function introduced in Assumption 2.2, η ∈ R>0 is a design

constant, while λ(·) denotes the smallest in norm eigenvalue of its argument, then

a sliding mode σ(x(t)) = 0m is enforced for t ≥ t0.

Proof. Let v : X → R be the Lyapunov function chosen as

v(x(t)) =
1

2
σ>(x(t))σ(x(t)).

Then, its first time-derivative can be computed as

v̇(x(t)) = σ>(x(t))σ̇(x(t))

= σ>(x(t))
[

σ̇0(x(t))− ż(x(t))
]

= σ>(x(t))

[

∂σ0(x(t))

∂x
ẋ(t)− ż(x(t))

]

= σ>(x(t))

[

∂σ0(x(t))

∂x

(

f(x(t), t) +B(x(t), t)(un(t) + ur(t)) + h(x(t), t)
)

+

− ∂σ0(x(t))

∂x

(

f(x(t), t) +B(x(t), t)un(t)
)

]

= σ>(x(t))
∂σ0(x(t))

∂x

(

B(x(t), t)ur(t) + h(x(t), t)
)

Substituting ut(t) as in (2.71) and omitting the time dependence of the state for

sake of readability, it holds that

v̇(x) = σ>(x)
∂σ0(x)

∂x
B(x, t)h(x, t)− ρ(x, t)σ>(x)

∂σ0(x)

∂x
B(x, t)

σ(x)

‖σ(x)‖ .

If Assumption 2.3 hold, then v̇ can be upper bounded as

v̇(x) ≤ −ρ(x, t)
‖σ(x)‖

2
λ

(

∂σ0(x)

∂x
B(x, t) +B>(x, t)

(

∂σ0(x)

∂x

)>
)

+
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+ ‖σ(x)‖
∥

∥

∥

∥

∂σ0(x)

∂x

∥

∥

∥

∥

‖h(x, t)‖ .

Thanks to Assumption 2.2, the norm of the perturbation is bounded, leading to

v̇(x) ≤ −ρ(x, t)
‖σ(x)‖

2
λ

(

∂σ0(x)

∂x
B(x, t)

)

+ ‖σ(x)‖
∥

∥

∥

∥

∂σ0(x)

∂x

∥

∥

∥

∥

h̄(x, t).

Then, choosing ρ(x, t) as in (2.72), one has

v̇(x(t)) ≤ −η ‖σ(x(t))‖ < 0,

which ensures that a sliding mode σ(x(t)) = 0m is achieved in finite time. Moreover,

since the integral sliding variable components are selected so that σ(x(t0)) = 0m,

one can conclude that the sliding mode is enforced for t ≥ t0.

To highlight the robustness capabilities of the ISM controller, the equivalent

control law is computed. First, it is worth recalling that the equivalent controller is

the continuous control law that keeps the system states on the sliding manifold and

it is computed imposing

σ̇(x(t)) =
∂σ0(x(t))

∂x

(

B(x(t), t)ur(t) + h(x(t), t)
)

= 0m, (2.73)

and then solving for ur(t) obtaining

ueq(t) = −
(

∂σ0(x(t))

∂x
B(x(t), t)

)−1 ∂σ0(x(t))

∂x
h(x(t), t). (2.74)

Under the assumption of matched perturbations one can express

h(x(t), t) = B(x(t), t)w(t)

with w : R≥0 → R
m, and then rewrite (2.74) as

ueq(t) = −
(

∂σ0(x(t))

∂x
B(x(t), t)

)−1 ∂σ0(x(t))

∂x
B(x(t), t)w(t).

= −B−1(x(t), t)

(

∂σ0(x(t))

∂x

)−1 ∂σ0(x(t))

∂x
B(x(t), t)w(t)

= −B−1(x(t), t)B(x(t), t)w(t)

= −w(t)

Hence, it is possible to conclude that, applying the discontinuous control u(t) in

(2.68), with ur(t) in (2.71) has the same effect to apply an ideal control law equal

to the opposite of the disturbance.
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2.4.2 Physical Interpretation of the Equivalent Control

As recalled in Section 2.4.1, the equivalent controller is a continuous control that

maintains the system in sliding mode, having the same effect of the switching con-

troller. As detailed in [10] and [36], it is possible to demonstrate that, in the prac-

tice, this last one corresponds to the sum of the equivalent controller plus a high-

frequency term that cause the chattering. In particular, starting from the first-time

derivative of the sliding variable in (2.73), with h(x(t), t) = B(x(t), t)w(t), and

rearranging the terms, one obtains

ur(t) =

(

∂σ0(x(t))

∂x
B(x(t), t)

)−1 [

σ̇(x(t))− ∂σ0(x(t))

∂x
B(x(t), t)w(t)

]

= −w(t) +

(

∂σ0(x(t))

∂x
B(x(t), t)

)−1

σ̇(x(t))

= ueq(t) +

(

∂σ0(x(t))

∂x
B(x(t), t)

)−1

σ̇(x(t))

Since the equivalent controller corresponds to the low-frequency component of

the discontinuous controller, it is possible to approximate it using a first-older filter

characterized by the differential equation

µ ˙̂ueq(t) = ur(t)− ûeq(t), (2.75)

with initial condition ûeq(t0) = 0m and filtering constant µ ∈ (0, 1)), chosen as not

to distort the harmonic content of h(x(t), t). The solution of (2.75) is given by

ûeq(t) =
1

µ

∫ t

t0

e
−

(Ē−Ā)
ą ur(τ). (2.76)

2.4.3 ISM control example

Consider the Duffing oscillator dynamics in (2.3), with η = 1. Then, it is possible to

describe the system in the control-affine form (2.67), with drift dynamics f(x(t), t) ∈
R

2 and control effectiveness matrix B(x(t), t) ∈ R
2 defined as

f(x(t), t) =





x2(t)

x1(t)(1− x2
1(t))− x2(t) + u(t)



 B(x(t), t) =





0

1



 .

As for the disturbance h(x(t), t) , in this example it has been chosen as

h(x(t), t) = B(x(t), t)w(t) =





0

1



 0.15 sin(2t) cos(0.1t)

which satisfies Assumption 2.2, with h̄ = 0.2. Then, the integral sliding variable

σ(x(t)) ∈ R is as in (2.69), with σ0(x(t)) = (x1 − x1,d) + (x2 − x2,d) ∈ R, with x1,d
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and x2,d being a desired equilibrium point, and transient variable z(x(t)) ∈ R as in

(2.70). Choosing the nominal control law as un(t) = −4x1(t)+x3
1(t)−2x2(x(t)) ∈ R

and the switching controller as ur(t) = −0.25sign (σ(t)) ∈ R, whose gain is chosen

accordingly with Theorem 2.3, lead to the results in Figures 2.5 and 2.6. Moreover,

as shown in Figure 2.7, applying a first order filter to ur, with µ = 0.01, it is possible

to provide an approximation of the equivalent control.

Figure 2.5: Time evolution of the system states

Figure 2.6: Time evolution of the sliding variable

Figure 2.7: Time evolution of equivalent control

2.5 Higher Order Sliding Mode Control

As detailed in Section 2.3.6, due to its discontinuous nature, SMC can produce

the so-called chattering effect, which, in some cases, can be disruptive for the con-

trolled plant. To overcome such an effect, several techniques have been proposed.
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For example, on-line estimation of the equivalent control has been employed to re-

duce the discontinuous control component [39]. Another method which has been

widely adopted consists in moving the discontinuity (instrumental to ensure a slid-

ing mode in finite time) into some derivative of the control law, letting the control

signal fed to the system to be continuous. Such an approach, called Higher Or-

der Sliding Mode (HOSM) control, has been extensively studied in the literature

[40, 41, 42, 43, 44, 45] and it is characterized by the fact that it steers to zero not

only the sliding variable, but also on its time derivatives.

Consider the nonlinear multi-input control-affine in (2.15)

ẋ(t) = f(x(t), t) +B(x(t), t)u(t)

and let σ : X → R
n be the sliding variable as in (2.22). Then, the system is said

to be in r-sliding mode if, for t ≥ tr ≥ t0, its states reaches the so-called r-sliding

manifold, defined as

{

x(t) ∈ X , u(t) ∈ R
m : σ(x(t)) = Lfσ(x(t)) +

m
∑

i=1

LB(ć)σ(x(t))u

= . . .

= L
(r−1)
f σ(x(t)) +

m
∑

i=1

LB(ć)L
(r−2)
f σ(x(t))u(t) = 0

}

where L(r−1)
f σ(x(t)) is the (r−1)-th order Lie derivative of σ(x(t)) along the vector

field f(x(t)). Note that the order of the sliding mode controller that enforces an

r-sliding mode is r.

Consider, for sake of simplicity, the SISO system










ẋ(t) = f(x(t), t) + b(x(t), t)u(t)

y(t) = σ(x(t), t)
(2.77)

where x ∈ X ⊂ R
n, u ∈ R, and σ : X × R≥0 → R is a sufficiently smooth output

function. The dynamics components f : X × R≥0 → R
n and b : X × R≥0 → R

n are

assumed unknown, but the relative degree of the system is available and equal to

r ∈ N, meaning that the term u appears explicitly in the r-th time derivative of y,

having
∂y(r)

∂u
6= 0 =⇒ ∂σ(r)

∂u
6= 0.

Then, one has that

σ(r)(x(t)) = h(x(t), t) + g(x(t), t)u(t), (2.78)
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where h : X × R≥0 → R and g : X × R≥0 → R are suitable functions that satisfy

the following assumption.

Assumption 2.4. There exist some known constants H, g, ḡ ∈ R>0 such that

|h(x(t), t)| ≤ H,
0 < g ≥ g(x(t)) ≤ ḡ, or − ḡ ≥ g(x(t)) ≤ −g < 0,

meaning that function g(x(t), t) has constant known sign.

Then, the original dynamical system implies the differential inclusion [46]

σ(r)(x(t), t) = f1 + f2u(t), (2.79)

with f1 ∈ [−H,H] and f2 ∈ [g, ḡ]. It has been shown that, in order to make the

r-sliding manifold associated with (2.79) finite-time attractive, and hence generate

a r-sliding mode, any sliding mode controller of order r of the form

u(t) = k ψ
(

σ(x(t)), σ̇(x(t)), . . . , σ(r−1)(x(t))
)

, (2.80)

with ψ(·) being a discontinuous function and k ∈ R>0, can be used (see, e.g.,

[40, 42, 43, 44]). For example, in [40] two controllers have been proposed for r = 1, 2,

i.e.,

u(t) = −k sign (σ(x(t))) , (2.81a)

u(t) = −k sign
(

σ̇(x(t)) + |σ(x(t))| 12 sign (σ(x(t)))
)

. (2.81b)

It is worth noticing that, if a sliding controller of order r is applied to a system with

relative degree d < r, then the chattering phenomenon can be alleviated. In fact, if

one introduces time derivatives of the control input u̇, u(2), . . . , u(r−d−1) as auxiliary

variables and sets a new control variable w(t) = u(r−d)(t), then the relative degree

of the resulting system with respect to w is r. Then, the control actually fed to the

system u is a (r−d−1)-smooth function of time with d < r−1, a Lipschitz function

with d = r−1, and a bounded discontinuous switching function with d = r [26, 40].

As one can understand from (2.81), a sliding controller of order r requires the

knowledge of σ(x(t)) and its derivatives σ̇(x(t)), σ(2)(x(t)), . . . , σ(r−1)(x(t)). If such

a knowledge is not available, one could rely, for example, on the so-called Levant’s

differentiator [40]. In the case of r = 2, there are also methodologies that do not

require the derivatives of the sliding variable (see, e.g., [33, 47]).
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2.6 Adaptive Sliding Mode Control

The field of adaptive control theory studies controllers which include parameters

that are not kept constant, but they must be adapted according to the system

response [48]. In general, parameters are adapted so that the robustness of the

method is maintained. Hence, adaptation laws are derived relying on Lyapunov

analysis and making use of theoretical tools like parameter projection, which is

described in Appendix A.

The main difference between adaptive control and robust control is that the for-

mer usually does not require a priory knowledge about the time-varying parameters,

while the latter, which is the category to which SMC belongs, aims to guarantee

stability of a system relying on some knowledge (usually bounds) on the uncer-

tainties affecting the system. The two types of control have been often combined,

generating powerful control techniques, as in the case of Adaptive Sliding Mode

Control (ASMC). Fore some examples, one can refer to [49, 50, 51, 52, 53, 54],

among others.

Consider a MIMO control-affine (2.67) system with control input u(t) ∈ R
m

being defined according to the unit-vector approach

u(t) = −ρ(t)
σ

‖σ‖ ,

where ρ(t) ∈ R>0 is the discontinuous control gain, whose value must be sufficiently

large to compensate the perturbation h(x(t), t) and the effect of the rest of the

dynamics. Hence, as mentioned in the previous sections, a knowledge on the bound

of such a term is required. If, fore some reason, such a knowledge is not available,

then the discontinuous control gain can be made adaptive according to one of the

strategies cited above. For the reader’s convenience, in the following, two adaptation

strategies are presented.

Strategy 1 [52] The discontinuous control gain is described by a dynamics which

depends on the norm of the sliding variable, i.e.,

ρ̇(t) =
1

α
‖σ(x(t))‖ , (2.82)

with initial condition ρ(t0) = ρ0 ∈ R>0 chosen in the design phase. The parameter

α ∈ R>0 acts as an adaptation rate and it is chosen by the designer. The basic

idea behind the above adaptation scheme is that, if the sliding mode is not enforced

(‖σ(x(t))‖ > 0), then the gain is increased. As soon as the sliding mode is enforced
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(assume at time tr ≥ t0), the gain is no longer increased. The final value of the gain,

denoted as ρ∞ ∈ R>0, can be computed as

ρ∞ = ρ0 +

∫ ∞

t0

ρ̇(τ)dτ

= ρ0 +

∫ tĐ

t0

‖σ‖
α
dτ +

∫ ∞

tĐ

‖σ‖
α
dτ

= ρ0 +

∫ tĐ

t0

‖σ‖
α
dτ ≥ ρ0.

Strategy 2 [53] It is possible to lower the discontinuous control gain when the

value of of the sliding variable is below a certain threshold εσ ∈ R>0 by having

ρ̇(t)











‖σ(x(t))‖
α

sign (‖σ(x(t))‖ − εσ) if ρ(t) ≥ µ,

µ if ρ(t) < µ,
(2.83)

where µ ∈ R>0 is a small constant whose aim is to ensure that ρ(t) > 0, for all

t ≥ t0.
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Chapter 3

Preliminaries on Neural

Networks and Learning

This chapter introduces the main concepts about Artificial Neural Networks and

learning, instrumental for the development of the strategies presented in this disser-

tation. In particular, the mathematical formulation of multi-layer perceptron model

is presented, along with the universal approximation theorem. Then, different con-

ventional learning techniques are presented and discussed.

3.1 Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) is a type of Artificial Neural Network (ANN). ANNs

are mathematical models initially developed to understand the behavior and the

information process capabilities of the nervous system, which can be seen as a

dense network of neurons. A biological neuron, depicted in Figure 3.1, is a cell

comprised by three main elements: the soma (the cell body), the dendrites, and the

axon. In particular, the aim of dendrites is to receive signals from other neurons,

while the axon, which is connected to the dendrites of other neurons, transmits

the signal exiting the neuronal cell. The behavior of a neuron can be summarized

as follows. The dendrites modulate the incoming signals from other neurons via

transfer weighting coefficients and bring them into them into the cell body. This last

one combines the signals coming from the various dendrites generating a composite

signal which, as soon as it reaches a threshold, is transmitted through the axon. It

is important to notice that, due to cell nonlinearities, the composite signal inside

the soma is a nonlinear function of the combination of the signals entering the cell.
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Figure 3.1: Graphical representation of a biological neuron and its main compo-

nents.

3.1.1 The Perceptron model

Having in mind the behavior of biological neuron, the so-called perceptron model,

proposed in [3] and depicted in Figure 3.2, is now described. Consider an input vector

x =
[

x1 x2 · · · xn

]>
∈ R

n, a weight vector w =
[

w1 w2 · · · wn

]>
∈ R

n, a

scalar bias b ∈ R, and an activation function ς : R→ R. Then, the output y ∈ R of

the neuron is given by

y = ς(w>x+ b) = ς

(

b+
n
∑

i=1

xiwi

)

. (3.1)

If one augments the input vector and incorporates the weights and the bias in a

single vector vector, it is possible to obtain two vectors xh ∈ R
n+1 and v ∈ R

n+1,

defined as

xh =
[

x> 1
]>
, v =

[

w> b
]>
. (3.2)

Hence, the expression of the neuron output given by (3.1) can be reformulated in a

more compact form as

y = ς(v>x).

Even though a single neuron could be effective in very simple problems [3], an

higher number of neurons is required when the complexity of the problem increases.

In particular, more complex ANNs can be built by organizing neurons in layers,

i.e., groups of neurons which do not communicate with each other, but all receive

the same input vector and whose output will be the input to the subsequent layer.
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ς(·)

x1

x2

...
xn

1
w1

w2

wn

b

y = (b+
∑n
i=1 xiwi)

Figure 3.2: Mathematical model of the neuron.

Such an architecture is called MLP [4] and an example is provided in Figure 3.3. In

the research reported in this dissertation, MLP models have been extensively used.

Hence, their mathematical formulation it is now provided.

x1

x2

1

1 1

y1

y2

y3

Figure 3.3: Example of a network with one hidden layer.

Consider a MLP composed by an input layer, k ∈ N≥1 hidden layers, and one

output layer. The j-th layer is characterized by Lj − 1 activation functions and a

scalar identity map which is used to introduce bias in the subsequent layer. Specif-

ically, L0 − 1 and Lk+1 − 1 denote the size of inputs and outputs of the network.

Moreover, each layer is characterized by a weight matrix Wj ∈ R
(LĈ−1)×(LĈ+1−1) and

by a bias vector bj ∈ R
LĈ+1−1, defined such that

W>
j :=

















w>
j,1

w>
j,2
...

w>
j,LĈ+1−1

















, bj :=
[

bj,1 bj,2 · · · bj,LĈ+1−1,
]

where wj,i ∈ R
LĈ−1 and bj,i ∈ R are, respectively, the weight vector and bias of the

i-th neuron in the j-th layer, with i ∈ {1, 2, . . . Lj+1 − 1}. Hence, it is possible to
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define the output of the j-th layer with the quantity Φj ∈ R
LĈ+1−1, defined as

Φj :=











W>
j ςj(Φj) + bj for j ∈ {1, 2, . . . , k}

W>
0 x+ b0 for j = 0,

(3.3)

where ςj : RLĈ−1 → R
LĈ−1 is the vector of the activation functions of the j-th layer

and it is defined so that

ςj(Φj−1) =
[

ςj,1(Φj−1,1) ςj,2(Φj−1,2) . . . ςj,LĈ−1(Φj−1,LĈ−1)
]

,

with ςj,i : R→ R being the activation function of the i-th neuron of the j-th layer,

while Φj−1,i ∈ R is the i-th element of the vector Φj−1 ∈ R
LĈ−1.

Recalling the definition of the augmented state vector xh in (3.2), it is possible

to simplify the the notation of the expression of the ANN by introducing, for each

layer j, the function vector φj : RLĈ → R
LĈ and the the matrix Vj ∈ R

LĈ×LĈ+1 . In

particular, the former one is defined so that, given a vector α ∈ R
LĈ

φj(α) :=





ςj(α[1:LĈ−1])

id(αLĈ
)



 , (3.4)

where id : R → R is athe identity function id(a) = a, for any a ∈ R. As for the

matrix Vj , it is defined so that it incorporates both the weight matrix Wj and the

bias vector bj as

V >
j :=





W>
j bj

0>
LĈ−1 1



 ,

for the layers up to the second to last one, i.e., j ∈ {0, 1, . . . , k − 1}. Since the last

layer does not need to produce the output element for the bias, the columns of Vk

are not augmented. In fact, this last one is defined as

V >
k :=

[

W>
k bk

]

∈ R
(Lĉ+1−1)×Lĉ , (3.5)

with Lk+1 − 1 being the number of outputs of the ANN. Then, it is possible re-

formulate the output of the j-th layer, expressed originally as in (3.3) in a more

convenient way, i.e.,

Φj =











V >
j φj(Φj−1) for j ∈ {1, 2, . . . , k}
V >

0 xh for j = 0,
(3.6)

where φj(Φj−1) is computes as in (3.4) with α = Φj−1. Note that, now Φj ∈ R
LĈ+1 .

For sake of completeness, the forward-pass, i.e., the evaluation of the output of each
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layer of the ANN, is reported. In particular, one has that, given an input x ∈ R
n,

it holds that

Φ0 = V >
0 xh =





W>
0 b0

0>
n 1









x

1



 =





w>
0 x+ b0

1





Φ1 = V >
1 φ1(Φ0) =





W>
1 b1

0>
L1−1 1









ς1
(

Φ0,[1:L1−1]

)

Φ0,L1



 =





W>
1 ς1

(

Φ0,[1:L1−1]

)

+ b1

1





Φ2 = V >
2 φ2(Φ1) =





W>
2 b2

0>
L2−1 1









ς2
(

Φ1,[1:L2−1]

)

Φ1,L2



 =





W>
2 ς2

(

Φ1,[1:L2−1]

)

+ b2

1





...

Φk = V >
k φk(Φk−1) =

[

W>
k bk

]





ςk
(

Φk−1,[1:Lĉ−1]

)

Φk−1,Lĉ



 = W>
k ςk

(

Φk−1,[1:Lĉ−1]

)

+ bk.

3.1.2 Universal approximation capabilities of ANNs

One of the reasons for ANNs have been widely adopted in the years is their power

of approximating a wide class of functions. Such a capability, usually referred to as

universal approximation property, has been studied in works like [4, 55, 56, 6, 57]

and hereafter recalled.

Theorem 3.1 (Universal Approximation [55]). Let f : Ω→ R
p be a continuous

function defined over a compact set Ω ⊂ R
n and Φ : Ω→ R

p an ANN with k ∈ N≥1

hidden layers whose output is computed as in (3.6). Then, if the activation functions

in the vectors ςj, with j ∈ {0, 1, . . . , k} are not polynomial, it holds that

f(x) = Φ(x) + εΦ(x), (3.7)

where εΦ : Ω→ R
p being the approximation error. Moreover, there exists a constant

ε̄Φ ∈ R>0 such that

sup
x∈Ω
‖εΦ(x)‖ ≤ ε̄Φ. (3.8)

Note that, the value of Φ(x) in (3.7) corresponds to the output of the last layer

of the DNN, i.e., Φ(x) = Φk, computed as in (3.6) with j = k.

The above result can be easily extended also to the case where the function that

must be approximated is a matrix. Let B : Ω→ R
p×q be a continuous function, and

Φ : Ω→ R
pq. Then, it holds that

vec (B(x)) = Φ(x) + εΦ(x), (3.9)

with εΦ : Ω→ R
pq.
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Definition 3.1 (Vectorization). Given a matrix A ∈ R
p×q and having A(i) ∈ R

p,

with i ∈ {1, 2, . . . , q}, denoting its i-th column, then vec (A) ∈ R
pq is a column

vector defined as

vec (A) =

















A(1)

A(2)

...

A(q)

















. (3.10)

Moreover, if a ∈ R
n is a vector, then a ≡ vec (a).

For example, in the case p = 2 and q = 3, one has that

A =





a b c

d e f



 vec (A) =
[

a d b e c f
]>
.

The expression in (3.7) can be equivalently expressed as

B(x) = vec−1 (Φ(x) + εΦ(x)) , (3.11)

with vec−1 (·) being the inverse of the vectorization operator. Before introducing

this last one, the definition of the so-called Kronecker product must be recalled.

Definition 3.2 (Kronecker product). Given two matrices A ∈ R
n×m and B ∈

R
p×q, the Kronecker product, denoted with A⊗B, is a defined as

A⊗B =





















a1,1B a1,2B ... a1,m−1B a1,mB

a2,1B a2,2B ... a2,m−1B a2,mB

... ... ... ... ...

an−1,1B an−1,2B ... an−1,m−1B an−1,mB

an,1B an,2B ... an,m−1B an,mB





















∈ R
np×mq (3.12)

Definition 3.3 (Vectorization inverse). Given a vector a ∈ R
pq, then, vec−1 (a) ∈

R
p×q is the matrix obtained performing the inverse of the vectorization operation,

defined as

vec−1 (a) = (vec (Iq)
> ⊗ Ip)(Ip ⊗ a) ∈ R

p×q. (3.13)

Moreover, it holds that vec
(

vec−1 (a)
)

= a.

For example, if a =
[

a b c d e f
]>

, then result of vec−1 (a) choosing p = 3

and q = 2 is

vec−1 (a) =











a d

b e

c f











.
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Exploiting the formulation in (3.11) allows to express the estimate of a specific

column of B(x), denoted as B(i)(x) ∈ R
p, as

B(i)(x) = vec−1 (Φ(x))(i) + vec−1 (εΦ(x))(i) (3.14)

for i ∈ {1, 2, . . . , q}. Recalling the fact that Vk ∈ R
(Lĉ−1)×(Lĉ+1−1), with Lk+1− 1 =

pq being the output size of Φ, one can conveniently express Vk as the concatenation

of different sub-matrices V [i]
k ∈ R

(Lĉ−1)×p, i.e.,

Vk =
[

V
[1]
k V

[2]
k · · · V

[q]
k

]

. (3.15)

Then, the expression of vec−1 (Φ(x))(i) ∈ R
p is given by

vec−1 (Φ(x))(i) = vec−1 (Φk)
(i) = V

[i]
k φk(Φk−1). (3.16)

To better understand the expression (3.16), a graphical representation of a network

with k = 2 that estimates a 2× 2 is presented in Figure 3.4. From such a depiction,

it is possible to understand that one can isolate the estimate of the i-th column by

performing the standard forward-pass up to layer j = k− 1 and then consider only

the subset of weights V [i]
k for the last layer.

x1

x2

V0 ∈ R
2×3 V1 ∈ R

3×3

V
[1]

2 ∈ R
3×2

V
[2]

2 ∈ R
3×2

vec−1 (Φ2)(1) ∈ R
2

vec−1 (Φ2)(2) ∈ R
2

Figure 3.4: Example of a network with k = 2 hidden layers that approximates a

2× 2 matrix.

3.1.3 Depth vs Width

One of the most critical aspects in the design of an ANN is the choice of the

number of hidden layers k, namely the depth, and the number of neurons for each

layer j ∈ {0, 1, . . . , k}, i.e., the width.

In the last decades, it has been studied how, from an approximation capability

point of view, increasing the number of layers brings more benefits than increasing
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the width of the ANN. Indeed, Håstad laid out the foundation for a proof in [5]

considering logical circuits, which has been extended to ANNs by Montufar in [58].

From Theorem 3.1, the degree of approximation that a ANN can provide grows

together with the number of neurons. Considering a shallow network, i.e., a ANN

with k = 1, then the number of neurons tells how many times the approximator can

change its slope. What Håstad did was to prove that, while in shallow ANNs such

number grows polynomial with width, in DNNs, i.e., ANNs with k ∈ N≥2, it grows

exponentially with depth.

More formally, consider a generic ANN Φ : R
n → R with k ∈ N≥1 hidden

layers, input vector x ∈ R
n, Lj = L for i ∈ {0, 1, . . . , k}, activation functions

φ(·) = ReLU(·). Then, Φ has that the number of times N that the piece-wise affine

approximation of the target function given by the ANN can change its slope, is

given in terms of the following big-O and big-Ω notations based quantities

N = O
(

2k
)

, N = Ω

(

(

L

n

)(k−1)n

Ln
)

. (3.17)

This means that, in a shallow ANN, since k = 1, one has N = O(1) and N =

Ω (Ln), i.e. polynomial. On the other hand, a deeper architecture (k > 1) ensures

an exponential behavior of N , meaning that a DNN is more effective in terms of

approximation capabilities.

In the rest of the dissertation, neural networks with MLP structure with k ∈ N≥2

hidden layers, i.e., DNNs, are considered.

3.1.4 Learning the weights

Once the structure of the neural network Φ has been chosen, a crucial operation

is to find the optimal value of the weights Vj , for each layer j ∈ {0, 1, . . . , k}. This

correspond to find the value of Vj that maximizes a given performance index. Such

a procedure is often referred to as learning or training.

During the years, several learning algorithms have been proposed. Usually, they

exploits datasets, which are collection of input-output pairs in the form

D = {(x(i), y(i))}ND

i=1,

where ND ∈ N>1 is the size of the dataset, x(i) ∈ Ω ∈ R
n is the input, and y ∈ R

p

is the output. Then, an optimization over the dataset D with respect to a certain

loss function L : D → R is performed. Depending on the task, different functions

are selected. For example, in regression problems, the Mean Squared Error (MSE)
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function

L(D) =
1

ND

ND
∑

i=1

(

y(i) − Φ̂
(

x(i)
))2

, (3.18)

is selected, where Φ̂ : Ω → R
p is the network Φ characterized by non-optimal

weights.

Due to the presence of nonlinearities in the neural network, introduced by the

activation functions, the optimization problem is highly nonlinear, preventing the

development of closed form solutions. For this reason, iterative methods, like Gradi-

ent Descent (GD) and its variants [59], must be adopted. Such techniques iteratively

update the DNN parameters, i.e., weights and biases, relying on a low-order approx-

imation of the behavior of the loss function, i.e.,

L(D, θ) ≈ L
(

D, θ(t−1)
)

+∇θL
(

D, θ(t−1)
) (

θ − θ(t−1)
)

+

+
1

2

(

θ − θ(t−1)
)>
HL

(

D, θ(t−1)
) (

θ − θ(t−1)
)

,

where θ and θ(t−1) represent the current value and the value at the previous time

instant, respectively, while ∇θL(D, θ(t−1)) and HL
(

D, θ(t−1)
)

are the gradient and

the Hessian matrix of the loss, both computed in θ(t−1).

Depending on the chosen algorithm, a different grade of approximation is em-

ployed. For example the backpropagation algorithm [60] requires the computation of

the loss function gradient with respect to the parameters, while the Adam optimizer

[61] relies on an estimation of the Hessian matrix. Let θ(k) be the neural network

parameters at a specific iteration, then an classical GD step with backpropagation

is given by

θ(k) = θ(k−1) − η∇θL
(

D, θ(k−1)
)

,

where η ∈ R>0 is the so-called learning rate, which is an hyperparameter whose

tuning is fundamental for the convergence of the method. The size of η is dictated

by the Lipschitz constant κ of the loss function, given by

‖L(D, θ1)− L(D, θ2)‖ < κ ‖θ1 − θ2‖ .

However, the analytical expression of the loss function is unavailable because the

underlying model is unknown. Hence, κ is not computable and, as a consequence,

the learning rate η is chosen empirically small.

The optimization of the neural network weights is usually referred to as training

phase. Once it is concluded, it is possible to validate the neural network model with

respect to different figures of merit, e.g., MSE or objective criteria like the ones in
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[62] and [63], calculated over a dataset which is different from the one used for the

training. This allows to understand how well the network performs over unforeseen

data. Once it is validated, the neural network is used for the intended scope during

the so-called inference phase.

The learning methodology described above is usually referred to as Supervised

Learning [64] and it is employed in many domains. However, there are cases in which

data are not available a priori and hence it is not possible to build a structured

training dataset. In such scenarios, and always depending on the task that must

be performed, the learning procedure can be performed in several ways. For this

reason, learning-by-doing approaches are employed. One of these approach is the so

called Reinforcement Learning [65], whose preliminary concepts are recalled in the

next section.

3.2 Reinforcement Learning

As stated at the end of the previous section, Reinforcement Learning (RL) [66] is

a branch of machine learning that does not require dataset of pre-collected data.

In the RL framework, represented graphically in Figure 3.5, there are two main

entities, i.e., the agent and the environment. The former corresponds to the entity

which has to take decisions, while the latter represents everything with which the

agent interacts. At any given time t ∈ R≥0, the agent observes the environment,

represented by a state st ∈ S, with S being the so-called state space, and performs

a certain action at ∈ A, with A being the action space, according to a policy

π(at|st). The performed action changes the environment state. As soon as the state

is changed, the agent receives an instantaneous reward rt ∈ R, i.e., a scalar which

indicates how well the agent has performed at time t. Usually, the learning process

is divided into episodes, during which the agent interacts with the environment until

a complete attempt to perform the task is done or a fixed number of iterations is

performed.

What made RL popular is its flexibility, since the action space A and the state

space S are chosen entirely by the designer depending on the task. For example

they can have continuous or discrete nature, with different degrees of complexity.

As for the policy π, it can be continuous or discrete, deterministic or probabilistic.
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AGENT

ENVIRONMENT

Action aĒ

Reward rĒ

State sĒ

Figure 3.5: Graphical representation of the reinforcement learning framework.

3.2.1 Key concepts

In order to make the reader more confident with the key concepts related to RL,

these last one are recalled and discussed, relying on the theory and notation intro-

duced in [66].

Reward One of the main concepts in the RL framework is the so-called reward.

At each time step t, the agent receives an instantaneous reward rt which gives

information on “how well” it performed in that specific time instant. The main goal

of the agent is to maximize a quantity which is not the instantaneous reward, but

rather the so-called (expected) cumulative reward, defined as

Rt =
T
∑

k=0

γkrt+k+1, (3.19)

where γ ∈ [0, 1] is the discount rate, which prioritizes earlier rewards. In particular,

if γ is chosen close to zero, the agent will tend to perform actions that maximize

immediate rewards, while having γ close to one will lead to the maximization of

long term reward. Note that, (3.19) can be conveniently expressed in a recursive

way as

Rt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + · · ·+ γT rt+T+1

= rt+1 + γ
(

rt+2 + γrt+3 + γ2rt+4 + · · ·+ γT−1rt+T+1

)

= rt+1 + γRt+1. (3.20)

Markov Decision Process Each reinforcement learning problem is modeled as

a Markov Decision Process (MDP), meaning that it satisfies the so-called Markov

property given by

P (st+1, rt+1|st, at) = P (st+1, rt+1|st, at, st−1, at−1, . . . , s0, a0), (3.21)
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where P (·|·) denotes the conditional probability function. In other words, the envi-

ronment state at time t + 1 depends only on the state and action at time t. Such

a property is also referred to c memorylessness property. A MDP is defined by the

tuple

〈S,A, r, p, γ〉, (3.22)

where S and A are, respectively, the state and action spaces, γ is the discount rate

in (3.19), and r : S ×A× S → R, it is the expected reward given the current state

st, action at, and the next state st+1. As for the function p : S ×R×S×A → [0, 1],

it is the so-called dynamics of the MDP, defined as the probability distribution of

each possible successive state s′ ∈ S and reward r ∈ R, defined as

p(s′, r|s, a) = P (st = s′, rt = r|st−1 = s, at−1 = a), (3.23)

with
∑

s′∈S

∑

r∈R

p(s′, r|s, a) = 1, (3.24)

for all s ∈ S, a ∈ A. From the dynamics of the MDP, it is possible to retrieve

several information about the MDP. For example, the state-transition probabilities

p : S × S ×A → [0, 1] are given by

p(s′|s, a) = P (st = s′|st−1 = s, at−1 = a) =
∑

r∈R

p(s′, r|s, a). (3.25)

Moreover, it is possible to obtain the expected reward for a state action pair, defined

by the function r : S,A → R

r(s, a) = E[rt|st−1 = s, at−1 = a] =
∑

r∈R

r
∑

s′∈S

p(s′, r|s, a), (3.26)

and the expected reward appearing in (3.22) as the three-argument function

r(s, a, s′) = E[rt|st−1 = s, at−1 = a, st = s′] =
∑

r∈R

r
p(s′, r|s, a)

p(s′|s, a)
, (3.27)

where the numerator and denominator of the fraction are computed as in (3.23)

and (3.25), respectively.

Policy The policy π defines the behavior of the agent interacting with the envi-

ronment. In particular π(a, s) denotes the probability that the agent performs an

action a ∈ A when it is in a state s ∈ S. Depending on the nature of the task, the

policy can be represented in different ways, e.g., a look-up table, a function, or even

a neural network. Moreover, it can be either deterministic or probabilistic.
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Value functions The expected cumulative reward that the agent can gain start-

ing from a state s and following the policy π thereafter is the so-called state-value

function V π : S → R, computed as

V π(s) = Eπ[Rt|st = t] = Eπ

[

T
∑

k=0

γkrt+k+1|st = s

]

.

For any policy π and any state s, there is a relation between the value of s and the

value of its possible successor states. Such a condition is given by

V π(s) = Eπ[Rt|st = s]

= Eπ [rt+1 + γRt+1|st = s]

=
∑

a∈A

π(s, a)
∑

s′∈S

∑

r∈R

p(s′, r|s, a)
[

r + γEπ[Rt+1|st+1 = s′]
]

=
∑

a∈A

π(s, a)
∑

s′∈S

∑

r∈R

p(s′, r|s, a)
[

r + γV π(s′)
]

, (3.28)

where the last equation is the so-called Bellman equation for V π, which expresses

a relationship between the value of a state and the values of its successor states.

Another quantity which is fundamental in the RL settings is the so-called action-

value function Qπ : S×A → R, which denotes the expected cumulative reward when

the agent is in a state s, takes an action a and follows the policy π afterwards. Such

a function is given by

Qπ(s, a) = Eπ[Rt|st = s, at = a] = Eπ

[

T
∑

k=0

γkrt+k+1|st = s, at = a

]

. (3.29)

The idea behind reinforcement learning is to find a policy that maximizes the

reward on the long run. In general, given two policies π1 and π2, it is possible

to define that one is better than the other by comparing their value functions. In

particular, π1 is better than π2 if and only if V π1(s) ≥ V π2(s), for every state s ∈ S.

In general, for every RL problem there exists a policy π? which is better or equal to

all other policies. Such a policy is referred to as optimal policy and it is characterized

by the optimal value function

V ?(s) = max
π

V π(s), (3.30)

for all s ∈ S. Similarly, it is possible to define the optimal action-value function

defined as

Q?(s, a) = max
π

Qπ(s, a), (3.31)
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for all s ∈ S and a ∈ A. Moreover, the above equation can be rewritten so that

the optimal action-value function is expressed in terms of the optimal state-value

function, i.e.,

Q?(s, a) = E[rt+1 + γV ?(st+1)|st = s, at = a] (3.32)

Similarly to what done for a general policy π, it is possible to express, for all s ∈ S,

the Bellman equation for V ∗, also called Bellman optimality equation, defined as

V ?(s) = max
a∈A

Qπ⋆(s, a)

= max
a∈A

Eπ⋆ [Rt|st = s, at = a]

= max
a∈A

Eπ⋆ [rt+1 + γRt+1|st = s, at = a]

= max
a∈A

∑

s′∈S

∑

r∈R

p(s′, r|s, a)[r + γV ?(s′)], (3.33)

and representing the fact that the value of a state s under the optimal policy π?

is equal to the expected return of the best action from that state. The Bellman

optimality condition can be computed also for Q? as

Q?(s, a) = E

[

rt+1 + γmax
a′∈A

Q?(st+1, a
′)|st = s, at = a

]

=
∑

s′∈S

∑

r∈R

p(s′, r|s, a)
[

r + γmax
a′∈A

Q?(s′, a′)
]

, (3.34)

for all s ∈ S and a ∈ A.

Having access to Q? implies that finding optimal actions is very easy. In partic-

ular, if the agent is in a state s, it can simply find the action a? such that

a? = max
a∈A

Q?(s, a). (3.35)

3.2.2 Q-learning

In the majority of real-world scenarios, the complete transition probability p(s′, r|s, a)

is not available. As a result , it is not possible to have access to the optimal action-

value function Q?. To overcome the issue, Q-learning has been introduced [67]. The

aim behind the algorithm is to provide an estimate of Q? starting from a random

guess independently from the policy being applied and without requiring the knowl-

edge transition probability of the environment. For this last reason, it belongs to

the class of model-free algorithms. The Q-learning algorithm is presented in Algo-

rithm 1. The required inputs are the learning rate α and the discount factor γ. The

following theorem can be introduced.

50



Chapter 3. Preliminaries on Neural Networks and Learning

Theorem 3.2 (Ideal convergence of the action-value function [66]). Under

the assumption that each state is visited infinitely often and action is performed

infinitely often. Then, if α→ 0 it holds that

Q̂(s, a)→ Q?(s, a),

with probability 1, for all s ∈ S and a ∈ A.

In other words, it is guaranteed that the approximate of the action-value function

Q̂ converge to its optimal value Q? if an infinite number of steps is performed.

The Q-learning algorithm presented in Algorithm 1 is suitable when the struc-

ture and size of the state and action spaces allow to express the optimal action value

function as a table similar to the one presented in Table 3.1. However, in some ap-

plications, e.g., robotics, the dimension of the state and action spaces can be too

large or these last ones may be even continuous. In such situations, an alternative

way is necessary.

A1 A2 . . . Am

S1 Q?(S1, A1) Q?(S1, A2) . . . Q?(S1, Am)

S2 Q?(S2, A1) Q?(S2, A2) . . . Q?(S2, Am)
...

...
... . . .

...

Sn Q?(Sn, A1) Q?(Sn, A2) . . . Q?(Sn, Am)

Table 3.1: Tabular representation of the optimal action value function in the case

of discrete state and action spaces S = {S1, S2, . . . , Sn} and A = {A1, A2, . . . , Am}.

3.2.3 Deep Q-learning

As anticipated at the end of Section 3.2.2, in the cases in which it is not possible

to express the action-value function in a tabular form, e.g., the size of the state

and action spaces is very large, an alternative is required. Thanks to their universal

approximation properties, DNNs like the ones presented in Section 3.1 can be used as

parametric approximators for the optimal action-value function. In particular, given

a network Φ̂ characterized by estimated weight and biases V̂j , with j ∈ {0, 1, . . . , k},
collected in a term θ, then one has

Q̂(s, a, θ) = Φ̂(x), (3.36)

with x =
[

s> a>
]>

, for all s ∈ S and a ∈ A. The goal would be to learn the ma-

trices V̂j in θ so that the map Q̂ is close as close as possible its optimal counterpart.
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Algorithm 1 Q-learning algorithm [67]

Require: Learning rate α, discount factor γ

Randomly initialize the estimate Q̂(s, a), for all s ∈ S, a ∈ A
Set Q̂(s̄, a) = 0, for all, a ∈ A . s̄ is the terminal state

for each episode do

Initialize state st

for each step t of the episode do

at =











argmaxa∈A Q̂(st, a) with probability (1− ε)
random from A with probability ε

. ε-greedy policy

Take action at, observe rt and s′

Q̂(st, at) = Q̂(st, at) + α
[

rt + γmaxa∈A Q̂(s′, a)− Q̂(st, at)
]

. Q-update

st = s′ . state update

end for

end for

When DNNs are used while solving a Q-learning problem, this last one is re-

ferred to as a Deep Q-learning problem and the general framework is called Deep

Reinforcement Learning (DRL). One of the main algorithms is the one proposed in

[68], which aims to update the DNN parameters θ such that the loss function

L(θ) = E

[

(

Q̂(st, at|θ)− yt
)2
]

(3.37)

is minimized, where yt is the so-called target function given by

yt = r(st, at) + γQ̂(st+1, µ̂(st+1)|θ), (3.38)

with µ̂ being defined so that

µ̂(st) = argmax
a∈A

Q̂(st, a|θ). (3.39)

The update of the parameters can be done, for example, exploiting the techniques

described in Section 3.1.4. For the complete explanation of the algorithm, the reader

is invited to refer to [68].

When dealing with RL problems, one of the key aspect is the exploration-

exploitation dilemma, which refers to the two possible strategies that the agent

should balance during the learning. In fact, the agent could exploit past (incomplete

and possibly misleading) experience in order to chose the best option or explore the

environment choosing new options to improve knowledge about it. To balance ex-

ploration and exploitation in Algorithm 1, ε-greedy strategy is implemented: with
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a probability 1− ε the best action (according to the current knowledge) is selected,

while with probability ε the agent chooses a random action.

3.2.4 Actor-Critic

The Q-learning algorithm and the other methodologies that aim to estimate a value

function are also referred to as critic-only methods. Once a sufficiently accurate

estimate for the value function Q̂ is provided, actions are chosen according to a

deterministic policy π, defined as

π(s) = argmax
a∈A

Q̂(s, a). (3.40)

Since the convergence results in Theorem 3.2 are valid under the strict assumption

that each state is visited infinitely often, they are not applicable in general (consider,

for example, the case in which the state space S is continuous [69]).

Another class of algorithms for solving RL problems is the one represented by the

so-called actor-only methods (also known as policy gradient methods), whose aim is

to provide a direct estimate of the policy, without relying on any form of stored value

function. Examples of algorithms belonging to such a class are the one proposed in

[70] and REINFORCE, introduced in [71]. In policy gradient methods, the aim is to

find a parameterized policy πθ : S → A, where θ is the set of parameters. In the case

in which the policy is represented by a DNN like the one in Section 3.1, then the

parameters are the weights and the biases of the network. Starting from an initial

guess, the value of these parameters is adapted in the direction of the gradient of

a cost function which can be, for example the average return [72]. An advantage of

actor-only methods is that convergence is guaranteed under some condition of the

estimated gradients and on the learning rates [73]. The main drawback is that, as

studied in [73], the estimated gradients may have large variance. Moreover, gradients

are computed without using any knowledge of the past estimates.

In order to combine the benefits of the two classes, Actor-Critic methods [74]

have been developed. Such methods can be schematized as in Figure 3.6 and their

behavior summarized as follows. The actor, characterized by a set of parameters θπ,

prescribes a policy, which is evaluated by the critic, characterized by parameters θQ,

using policy evaluation methods (e.g., TD(λ) [75] or LSTD [76]). Collecting samples

from the environment, the critic parameters θQ, and hence the value function, are

updated as in critic-only methods. Note that, in contrast to critic-only method,

actions are not selected solving a problem like (3.40). Instead, the actor parameters

θπ, and hence the policy, are updated along the policy gradient direction using a
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small step size. The main benefit of actor-critic methods is that they can approx-

imate policies that deal with continuous action spaces, while having low variance

in the policy gradient thanks to the introduction of the critic. In the following, two

actor-critics methods are briefly described.

CRITIC REWARD
rĒ

ACTOR
aĒ

ENVIRONMENT
sĒ

Figure 3.6: Block diagram of a generic actor-critic algorithm.

Deep Deterministic Policy Gradient

The Deep Deterministic Policy Gradient (DDPG) is an actor-critic algorithm capa-

ble of handling continuous state and action spaces, being applicable to domains such

as dynamical systems control. The algorithm, described in Algorithm 2, composed

by the following elements:

• an actor neural network µθ, characterized parameters θ;

• a critic neural network Qφ, characterized by parameters φ;

• a couple of target networks µθ′ and Qφ′ , characterized by parameters θ′ and

φ′, respectively;

• a replay buffer Drb which stores past experience.

The target networks are copies of their original counterpart, but their parameters are

updated with a soft update. In particular, given a DNN characterized by parameters

θ and its target counterpart with parameters θ′, then the soft update of the target

network is given by

θ′ = τθ′ + (1− τ)θ, (3.41)

with τ ∈ [0, 1] being an hyper-parameter. The use of target networks with the above

updating has been shown to provide a more stable learning (the reader is invited to

refer to [77] for mote details).

As for the replay buffer Drb, it is introduced to exploit the concept of Experience

Replay [78]. In particular, each tuple 〈st, at, rt, st+1, d〉, with d ∈ {0, 1} indicating
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if the state st+1 is a terminal state, is stored in Drb. Then, learning is applied on

a batch of experience tuples randomly sampled from Drb. This allows to improve

data efficiency and the quality of the learning process [77].

As visible from Algorithm 2, in order to enforce an exploratory behavior, a

noise ε sampled from the normal distribution N is added to the action chosen by

the policy. Then, to make sure that the overall action is between the bounds of the

action space A, a saturation operation is performed. Specifically,

at = clip(µθ + ε, ā, a),

where ā and a represent the upper and lower bound of the action space A, respec-

tively.

Algorithm 2 Deep Deterministic Policy Gradient [77]

Require: Soft-update rate τ , discount factor γ

Randomly initialize the parameters θ and φ

Initialize the target networks θ′ ← θ and φ′ ← φ

for each training episode do

Initialize state st

for each step t of the episode do

Take action at = clip(µθ + ε, ā, a) . Add noise ε ∼ N for exploration

Observe s′, rt and d . d ∈ {0, 1}, d = 1 if s′ is terminal

Store (st, at, rt, s
′, d) in Drb . Populate replay buffer

Randomly sample batch of N transitions B from Drb

yt(rt, s
′, d) = r + γ(1− d)Qφ′(s′, µθ′(s′)) . Compute the targets

Update critic with gradient descent

∇φ 1
N

∑

(s,a,r,s′,d)∈B(Qφ(s, a)− y(r, s′, d))2

Update actor with gradient ascent

∇θ 1
N

∑

(s,a,r,s′,d)∈B Qφ(s, µθ(s))

Target actor soft update θ′ ← τθ′ + (1− τ)θ

Target critic soft update φ′ ← τφ′ + (1− τ)φ

st = s′ . State update

end for

end for
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Twin-Delayed DDPG

Despite the good results provided by DDPG algorithm, this last one is very likely

to fail due to its sensitiveness to hyperparameters tuning. A common failure mode

is that the learned Q function overestimates the optimal value function, leading

to a a sub-optimal policy. For this reason, Twin-Delayed DDPG (TD3) has been

developed [79]. differently from the original DDPG proposed in [77], three different

modifications are introduced:

1. two critic networks, namely, Qφ1 and Qφ2 , approximate two different Q func-

tions (this is the reason behind the “twin”);

2. the policy and the target networks are updated less frequently than the critic

networks (this is the reason behind the “delayed”);

3. noise is added to the target action, making it harder for the policy to exploit

Q function errors (this is referred to as target policy smoothing).

The TD3 algorithm is presented in Algorithm 3 and its most important components

are described hereafter, starting from the target policy smoothing. Differently from

DDPG, the actions used to build the Q-learning target are not based on the policy

µθ, but on its target counterpart µθ′ . Moreover, a clipped noise is added one each

dimension of the action, resulting in

a′(s′) = clip
(

µθ′(s′) + clip(ε,−c, c), ā, a) , (3.42)

with ε being sampled from the normal distribution N and c being an hyperparam-

eter. Smoothing the estimate of the Q function over similar actions, target policy

smoothing serves as a regularizer for the learning algorithm, avoiding that the policy

exploits incorrect value peaks estimated by the Q function approximator.

Then, the two critics use a single target, computed using the Q function which

gives the smaller target value, i.e.,

y(r, s′, d) = r + γ(1− d) min
i∈{1,2}

Qφ′

ć
(s′, a′(s′)),

with a′(s′) as in (3.42). Such a target is then used to compute the loss functions that

will be used for the optimization of the critic networks parameters. Such functions

are defined as

L(φi,Drb) = E(s,a,r,s′,d)∼Drb

[

(

Qφć
(s, a)− y(r, s′, d)

)2
]

,
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with i ∈ {1, 2}. Employing the smaller value for the target (3.42) and regressing

toward that counteracts the overestimation of the value function.

Finally, the actor is updated by maximizing Qφ1 , similarly to what is done in

the DDPG. However, in TD3 the policy is updated less frequently. In general the

policy and the target networks are updated once every two updates of the critic

networks.

Algorithm 3 Twin Delayed DDPG [79]

Require: Soft-update rate τ , discount factor γ

Randomly initialize the parameters θ, φ1, and φ2

Initialize the target networks θ′ ← θ, φ′
1 ← φ1, and φ′

2 ← φ2

for each training episode do

Initialize state st

for each step t of the episode do

Take action at = clip(µθ + ε, ā, a) . Add noise ε ∼ N for exploration

Observe s′, rt and d . d ∈ {0, 1}, d = 1 if s′ is terminal

Store (st, at, rt, s
′, d) in Drb . Populate replay buffer

Randomly sample batch of N transitions B from Drb

a′(s′) = clip (µθ′(s′) + clip(ε,−c, c), ā, a) with ε ∼ N . Target actions

y(r, s′, d) = r + γ(1− d) mini∈{1,2}Qφ′

ć
(s′, a′(s′)) . Compute the targets

Update the critics with gradient descent

∇φ 1
N

∑

(s,a,r,s′,d)∈B(Qφć
(s, a)− y(r, s′, d))2 for i ∈ {1, 2}

if time for delayed update then

Update the actor with gradient ascent

∇θ 1
N

∑

(s,a,r,s′,d)∈B Qφ1(s, µθ(s))

Target actor soft update θ′ ← τθ′ + (1− τ)θ

Target critics soft update φ′
i ← τφ′

i + (1− τ)φi with i ∈ {1, 2}
end if

st = s′ . State update

end for

end for
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Chapter 4

Preliminaries on Robotics

The controllers and observers presented in this dissertation are employed in appli-

cations that involves open chain robotic manipulators. In this chapter, the basic

concepts in the field of robotics, instrumental to the development of the techniques

in this dissertation are introduced.

4.1 Basic Definitions

The term robot is used to refer to servo-mechanical system which is able to perform

repetitive operations with different degree of complexity. A first classification dis-

tinguishes between fixed robots and mobile ones [80]. In particular, the former class

contains all the robots that are somehow anchored to a surface, without the possi-

bility of moving, while to the latter belongs all the robot that can freely move in

the space (e.g., underwater vehicles, legged robots, humanoid robots, quadrotors).

The robots considered in this dissertation are the so-called manipulators, which

belong to the class of fixed robot. In general, a manipulator is built as the combi-

nation of joints, links, and the end-effector. In particular:

• Joints are actuated components that gives mobility to the robot. Depending on

the application, a joint can be revolute, prismatic, or spherical [24]. The first

type allows a rotation around an axis, the second a translational movement

along a single direction, while the third allows rotation around three non-

coaxial axes intersecting a common point. Depending on the joint used, the

robot is characterized by different Degrees of Freedom (DoF). For example, a

robot with three revolute joints is characterized by three DoF.

• Links are the rigid elements that compose the robot structure, interconnected
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through joints.

• The end-effector is the utensil used to interact with the surrounding envi-

ronment. Depending on the task the robot must perform, several types of

end-effectors can be mounted (e.g., gripper, torch, wielder, etc.), and these

last ones can be made of soft or hard materials.

In this dissertation, the class of open-chain manipulators like the one in Figure

4.1, is considered.

Figure 4.1: Example of open-chain manipulator with seven revolute joints, eight

links, and a gripper as end-effector.

4.2 Pose of a rigid body

Before presenting fundamental notions about robot modeling, it is important to

introduce the concept of pose of a rigid body. Let O1 − x1y1z1 be an orthonormal

reference frame attached to a fixed point in space. Then, consider a generic rigid

body to which is attached a reference frame O2 − x2y2z2. Then, it is possible to

define the pose of the rigid body as the combination of position and orientation of

O2 − x2y2z2 with respect to O1 − x1y1z1.

The position can be simply described by the three dimensional vector p1
2 ∈ R

3
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defined as

p1
2 =

[

p1
2,x p1

2,y p1
2,z

]>
,

where p1
2,x ∈ R, p1

2,y ∈ R, and p1
2,z ∈ R denote the position of O2 with respect to x1,

y1, and z1, respectively.

Differently form the position, the orientation of a reference frame with respect

to another can be expressed in different ways, such as Euler angles, quaternions,

rotation matrices, and axis-angle. In the following, the last two of the above list are

briefly introduced.

Rotation matrix A matrix R is said to be a rotation matrix if R ∈ SO(3) ⊂
R

3×3, where SO(3), known as the special orthogonal group, contains all the matrices

R ∈ R
3×3 such that R>R = I3 and det(R) = 1 [81].

Using a rotation matrix, the orientation of frame O2 − x2y2z2 with respect to

frame O1 − x1y1z1 is given by

R1
2 =

[

x1
2 y1

2 z1
2

]

,

where x1
2 ∈ R

3, y1
2 ∈ R

3, and z1
2 ∈ R

3 are the projection of the axes of O2 over the

axes of the base reference frame O1. Moreover, the following properties hold:

1. Given a rotation matrix R1
2, it is possible to express the orientation of O1 −

x1y1z1 with respect to O2 − x2y2z2 as R2
1 = (R1

2)−1 = (R1
2)>

2. Assume that there exists a rotation matrix R0
1 that expresses the orientation of

O1−x1y1z1 with respect to frame O0−x0y0z0. Then, it holds that R0
2 = R0

1R
1
2.

More in general, it holds that

R0
n = R0

1R
1
2 · · ·Rn−2

n−1R
n−1
n .

3. Given a vector v2 ∈ R
3, expressed with respect to reference frame O2. Then,

it is possible to find its representation with respect to O1 as v1 = R1
2v2.

Axis-angle It is possible to represent a rotation between O2 and O1 by means

of four parameters. In particular, it is possible to find a rotation axis ω̂ ∈ R
3, with

‖ω̂‖ = 1, and an angle α ∈ [0, π]. Then, rotating O1 of a quantity α around ω̂ would

result in an overlapping of the two frames.
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4.2.1 Change of orientation representation

It is possible, and often convenient, to change the way of representing a rotation,

e.g., from rotation matrix to axis-angle and vice versa. For example, one can obtain

a rotation matrix R ∈ SO(3) associated with a rotation α around axis ω̂ according

to the Rodrigues’ formula [81]

R = ω̂ω̂>(1− cos(α)) + I3 skew(ω̂) sin(α), (4.1)

where the operator skew(·) is defined as follows.

Definition 4.1 (Skew operator). Given a vector v ∈
[

v1 v2 v3

]>
∈ R

3, then

skew(v) ∈ R
3×3 is a matrix defined as

skew(v) =











0 −v3 v2

v3 0 −v1

−v2 v1 0











which satisfies the skew-symmetric property skew(v)> = −skew(v).

Vice versa, it is possible to translate a rotation matrix

R =











r11 r12 r13

r21 r22 r23

r31 r32 r33











∈ SO(3)

into an axis ŵ and an angle α, exploiting the algorithm in [81, Chapter 3], recalled

for convenience in Algorithm 4.

4.3 Kinematics modeling

Consider an open-chain manipulator characterized by n ∈ N>0 DoF. Then, it is

possible to define the vector of the joint variables q ∈ R
n as

q(t) =
[

q1(t) q2(t) · · · qn(t)
]>
,

which contains the value of each joint composing the the robot. In particular, if the

i-th joint is of a revolute type, then qi ∈ R is an angle expressed in radians, while if

it is prismatic, it is a distance expressed in meters. The space in which the vector q

is defined is the typically referred to as joint space.

Then, defining a base reference frame Ob− xbybzb fixed in space and a reference

frame Oe−xeyeze attached to the end-effector of the robot, it is possible to express

62



Chapter 4. Preliminaries on Robotics

Algorithm 4 Rotation matrix to Axis-Angle [81]

Require: A rotation matrix R ∈ SO(3)

if R = I3 then

Set α = 0 and ω̂ = 03, since it is undefined

end if

if tr(R) = −1 then

Set α = π and ω̂ equal to any of

ω̂ = 1

2
√

2(1+r33)









r13

r23

1 + r33









, ω̂ = 1

2
√

2(1+r22)









r12

1 + r22

r32









, ω̂ = 1

2
√

2(1+r11)









1 + r11

r21

r31









that is a feasible solution.

else

Set α = cos−1
(

1
2 (tr(R)− 1)

)

∈ [0, π)

Compute skew(ŵ) = 1
2 sin(α) (R−R>) and, from that, extract ŵ

end if

the pose of this last one by means of the homogeneous transformation matrix T be ∈
R

4×4. This last one, which depends on the vector q, is defined as

T be (q) =





Rbe(q) pbe(q)

0>
3 1



 , (4.2)

where pbe ∈ R
3 and Rbe ∈ SO(3) represent the position and orientation of Oe with

respect to Ob, respectively. The space in which the pose of the end-effector is define

is the so-called operational space.

When performing the kinematics modeling of a manipulator, it is possible to

distinguish between forward kinematics, differential kinematics, and inverse kine-

matics, described in the following.

4.3.1 Forward Kinematics

The aim of forward kinematics is to compute the pose of the end-effector of the

robot, given the vector q. In particular, if the pose is expressed as an homogeneous

transformation matrix, the objective is to compute the mapping T be : Rn → R
4×4.

Considering an open chain manipulator with n joints and n + 1 links, if one

attaches a reference frame to each link, then the pose of the end-effector with respect

to the base frame can be computed as

T be (q) = T b0A
0
1(q1)A1

2(q2) · · ·An−1
n (qn)Tne . (4.3)
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Since, in general, the homogeneous transformation matrices T b0 and Tne are constant,

forward kinematics aims to provide an expression of the transformation matrices

Ai−1
i (qi), with i ∈ {1, 2, . . . n}, each of which is a function of a single joint variable.

To accomplish such an objective, it is possible to adopt the so-called DH conven-

tion [24], which gives a systematic method to assign the reference frames to the robot

components, and then, after having identified some parameters, computes the value

of the transformation matrices Ai−1
i (qi). For convenience, the DH methodology is

briefly recalled in the following.

  

Figure 4.2: Graphical representation of the Denavit-Hartenberg convention, with

the parameters highlighted in red.

Consider Figure 4.2, with joint i connecting link i− 1 to link i. Then, according

to the DH convention, the right-handed frame Oi − xiyizi is defined following the

following steps:

1. Chose axis zi along the axis of joint i+ 1.

2. Place the origin Oi at the intersection of zi with the common normal between

zi−1 and zi. Moreover, locate Oi′ at the intersection of the common normal

with zi−1.

3. Chose axis xi along the common normal between zi−1 and zi with positive

direction from joint i to joint i+ 1.

4. Select axis yi so that the right-handed frame is completed.
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There are some cases in which the definition of Oi − xiyizi is not unique. For a

complete analysis of such conditions, one should refer to [24, Chapter 2].

Once the frames are defined, the pose of Oi − xiyizi with respect to Oi−1 −
xi−1yi−1zi−1 is specified by the four parameters ai, di, αi, θi ∈ R. In particular, ai

is the distance between Oi and Oi′ , di is the coordinate of Oi′ along axis zi−1,

αi is the angle between zi−1 and zi about axis xi, negative when the rotation is

clockwise, while θi is the angle between xi−1 and xi about axis zi−1, negative when

the rotation is clockwise. The value of ai and αi is always constant, while the

remaining two depends on the type of joint i. In particular, if it is a revolute joint,

then di is constant and θi = qi(t). On the other hand, if it is prismatic, then θi is

constant and di = qi(t).

Finally, the transformation matrix Ai−1
i (qi) is computed as

Ai−1
i

(qi) =













cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) ai cos(θi)

sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi) ai sin(θi)

0 sin(αi) cos(αi) di

0 0 0 1













. (4.4)

Before going further with the kinematics modeling, it is worth recalling that
there exists also a modified DH convention, introduced in [82]. Differently from
standard DH convention, the coordinates of the frame Oi − xiyizi is put on axis of
joint i and not i+ 1. Moreover, the transformation matrix Ai−1

i (qi) is computed as

Ai−1
i

(qi) =













cos(θi) − sin(θi) 0 ai−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) −di sin(αi−1)

sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) di cos(αi−1)

0 0 0 1













. (4.5)

4.3.2 Differential Kinematics

Similarly to forward kinematics, the aim of differential kinematics is to provide a

mapping from the joint space toward the operational space. However, the differential

kinematics studies the relationship between velocities. In particular, given the vector

of joint velocities q̇ ∈ R
n, the objective is to discover how this last one influences the

velocity of the end-effector frame Oe−xeyeze. Such a velocity is denoted as ve ∈ R
6

and given by

ve =





ṗe

we



 , (4.6)
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where ṗe ∈ R
3 and w ∈ R

3 represent the linear and angular velocities, respectively.

It is possible to put in relation ve with q̇ by means of

ve = J(q)q̇, (4.7)

where J(q) ∈ R
6×n is the so-called geometric Jacobian of the manipulator. This last

one can be seen as the composition of two sub-matrices, i.e.,

J(q) =





Jp(q)

Jo(q)



 , (4.8)

where Jp(q) ∈ R
3×n represents the contribution of the joints velocity to the linear

velocity of the end-effector, while Jo(q) ∈ R
3×n the contribution to the angular one.

It is clear that, to compute the differential kinematics, it is fundamental to pro-

vide an expression of the matrix J(q). Noticing that each column of the Jacobian is

associated with a joint, it is possible to compute each column of J(q) independently.

In particular, if the i-th joint is prismatic, one has that

J (i)(q) =





J
(i)
p (q)

J
(i)
o (q)



 =





zi−1

03



 , (4.9)

while, if the i-th joint is a revolute joint, the associated column is given by

J (i)(q) =





J
(i)
p (q)

J
(i)
o (q)



 =





zi−1 × (pbe − pi−1)

zi−1



 . (4.10)

The dependency on the joint variable vector q comes from the fact that zi−1, pi−1,

and pe are depends on the joint configuration. In particular, zi−1 is composed by

the first three elements of the third column of the transformation matrix T bi−1(q) =

T b0A
0
i (qi) · · ·Ai−2

i−1(qi−1), while pi−1 corresponds to the first three elements of the

fourth column of the same matrix. As for pbe, it is the position of the end-effector

frame with respect to the base frame and it is equal to the first three elements of

the fourth column of T be (q).

In the case in which the modified DH convention is used, (4.9) and (4.10) are

substituted, respectively, by the equations

J (i)(q) =





J
(i)
p (q)

J
(i)
o (q)



 =





zi

03





and

J (i)(q) =





J
(i)
p (q)

J
(i)
o (q)



 =





zi × (pbe − pi)
zi



 .
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Note that, in some cases, it is required to solve the so-called inverse differential

kinematics problem, which finds the set of joints velocities q̇, starting from a velocity

of the end-effector ve. Such a relation is given by

q̇ = J−1(q)ve. (4.11)

Obviously, there are some cases in which it is not possible to compute the inverse of

J(q), e.g., n 6= 6, or the matrix J(q) is singular. In such a condition, one could rely

on sub-optimal approaches such as the Moore-Penrose pseudoinverse [83], defined

as follows.

Definition 4.2 (Moore-Penrose pseudoinverse). Let A ∈ R
n×m be a matrix

with real entries. Then, if A has full column rank, i.e., it has linearly independent

columns, it has a left pseudoinverse computed as

A+ = (A>A)−1A>

and it holds that A+A = Im. Otherwise, if A has full row rank, it has a right

pseudoinverse given by

A+ = A>(AA>)−1,

with condition AA+ = Im being verified.

4.3.3 Inverse Kinematics

Computing the joint variables vector that corresponds to a certain pose of the end-

effector is the objective of the so so-called inverse kinematics problem.

Let T ?e be the transformation matrix that describes the pose of the end-effector

for which is required to find the joint variable vector. Differently from forward

kinematics, for open chain manipulators the computation of inverse kinematics may

not be trivial, for three main reasons:

1. If the manipulator is redundant, i.e., n > 6, then it is possible that the pose

T ?e can be reached with multiple (potentially infinite) joint configurations.

2. In the case in which T ?e does not belong to the operational space, the solution

of the inverse kinematics problem does not exist.

3. In general, it is not guaranteed that a closed form solution is available.

For this reason, it is often convenient to treat the inverse kinematics problem as

an optimization problem of the form

q? = argmin
q

∥

∥

∥T be (q)− T ?e
∥

∥

∥ , (4.12)
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to which, depending on the requirements, are added constraints.

In the literature, several solutions to solve the the inverse kinematic problem

have been proposed through the years (see, e.g., [83, 84, 85]).

4.4 Dynamic Modeling

A common way to formulate the dynamical model of a manipulator is the one

which relies on Euler-Lagrange (EL) equations. One of the main advantages of

EL formulation is that it provides a closed form of the dynamical model which

explicitly contains the input, hence being suitable for control design. Other modeling

techniques which do not have this advantage, but are widely used for implementation

and simulation are the ones that rely on Newton-Euler formulation, which is a

recursive numerical model, like [86] and [87].

Consider an open chain manipulator composed of rigid links, like the one de-

scribed in the previous sections, and let q ∈ R
n be joint variables. These last ones,

which describe the motion of the links of the manipulator, are also referred to as

the generalized coordinates.

Another fundamental component in the EL formulation is the so-called La-

grangian of the system. In the case of a robotic manipulator with n DoF, the

Lagrangian is a function L : Rn × R
n → R defined as

L(q, q̇) = T (q, q̇)− U(q), (4.13)

where T : Rn×R
n → R is the total kinematic energy, while U : Rn → R is the total

potential energy.

The former is expressed as the quadratic form

T (q, q̇) =
1

2
q̇>M(q)q̇, (4.14)

where M : Rn → R
n×n is the so-called inertia matrix of the manipulator, which is

a Symmetric Positive Definite (SPD) matrix that collects the fixed masses and the

pose-dependent rotational inertia terms required for the computation of the kinetic

energy [24].

As for the latter, it is expressed as

U(q) = −
n
∑

i=1

(mlćg
>
0 plć +mmć

g>
0 pmć

), (4.15)

where g0 ∈ R
3 is the gravity acceleration vector expressed in the base frame, mlē

and mmć
are the link and rotor masses, respectively, while plć ∈ R

3 and pmć
∈ R

3
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are the the positions of the link and rotor center of mass, respectively. Note that,

these last two are dependent only on the generalized coordinate vector, making the

potential energy dependent only on q.

The overall dynamical model of the robotic manipulator can be retrieved using

the Lagrange equations, which relate the Lagrangian functions L and the vector of

the generalized forces ξ ∈ R
n by applying D’Alembert’s principle

d

dt

∂L
∂q̇i
− ∂L
∂qi

= ξi, (4.16)

for all i ∈ {1, 2, . . . ,m}.
Consider the Lagrangian (4.13) with kinetic and potential energy (4.14) and

(4.15). Then, substituting in (4.16), the robotic manipulator dynamics are given by

M(q)q̈ + C(q, q̇)q̇ + Fv q̇ + Fssign (q̇) + g(q) = τ, (4.17)

where M(q) ∈ R
n×n is the inertia matrix, C(q, q̇)q̇ ∈ R

n models the Coriolis and cen-

trifugal forces, Fv q̇ ∈ R
n represents viscous friction, Fssign (q̇) ∈ R

n is the Coulomb

friction, g(q) ∈ R
n is the vector of gravitational torques, while τ ∈ R

n is the input

torque given by the actuators. For the full computation of (4.17), the reader should

refer to [24, Chapter 7].

For an open-chain manipulator, it is possible to bounds the terms of (4.17) as

k0 < ‖M(q)‖ < k1 + k2 ‖q‖+ k3 ‖q‖2 (4.18a)

‖C(q, q̇)‖ < (k4 + k5 ‖q‖) ‖q̇‖ (4.18b)

‖g(q)‖ < k6 + k7 ‖q‖ , (4.18c)

with k0, k1, . . . k7 ∈ R>0. In the case in which all the n joints are of a revolute type,

it holds that qi ∈ [0, 2π). Hence, the bounds in (4.18) can be simplified as

k0 < ‖M(q)‖ < k1 (4.19a)

‖C(q, q̇)‖ < k2 ‖q̇‖ (4.19b)

‖g(q)‖ < k3, (4.19c)

with k0, k1, k2, k3 ∈ R>0.
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Chapter 5

The DNN-ISM Framework

As detailed in Chapter 2, one of the main advantages of ISM control is that it rejects

the matched perturbation acting on the system from the initial time instant thanks

to an integral sliding variable. In particular, the sliding manifold is extended to

the whole state space thanks to the introduction of the so-called transient function.

However, the computation of such a component requires the complete knowledge of

the system dynamics which, in many applications, may not be available.

The problem of designing a control law able to deal with uncertain dynamics

has been addressed in different ways. In the literature, the two main frameworks

that aim to solve the aforementioned problem are robust control [88, 1] and adaptive

control [89, 48, 90]. Thanks to the universal approximation property of ANNs, in the

last twenty years the literature has been enriched with methodologies that exploit

them to compensate the lack of knowledge of plant dynamics (see, e.g., [91, 92] and

the references therein).

In general, ANNs require a large amount of data to adjust their weights, i.e.,

their internal parameters. If this training phase is done offline, then when the trained

networks are actually used in the control strategy they behave like static maps.

Moreover, since ANNs are intrinsically affected by approximation errors, hence it

is required to adopt robust control strategies. Moreover, as in general measurement

are affected by noise, it often is difficult possible to have access to a large quantity

of good-quality data, affecting the quality of the approximation.

To overcome such an issue, adaptive control principles may be exploited. Indeed,

the training of the network weights can be performed via suitable adaptation laws,

adjusting their value online while the plant is operating. Since such adaptation

laws are obtained performing Lyapunov’s analysis, it is possible to provide some

theoretical guarantees on the controlled system. Example of controllers that employ
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such a methodology can be found in [93, 94, 95, 96, 97].

This chapter presents the DNN-ISM control strategy for perturbed nonlinear

system which, differently from the works present in the literature, is characterized

by fully unknown dynamics. The proposed methodology exploits two DNNs with

an arbitrary number of hidden layers to estimate the unknown drift dynamics and

control effectiveness matrix, instrumental for the design of the ISM controller. The

weights of the DNNs are adjusted online according to adaptation laws derived from

stability analysis. The validity of the control scheme is assessed in simulation and

experimentally on a real Franka Emika Panda robot, present at the University of

Pavia.

5.1 Problem Formulation

Consider a control-affine system expressed in the canonical reduced form (see, Sec-

tion 2.2.1) and affected by matched disturbance

ẋ(t) =





ẋ1(t)

ẋ2(t)



 =





f1(x(t), t)

f2(x(t), t) + B̄(x(t), t)u(t) + h(x(t), t)



 , (5.1)

where x ∈ X ⊂ R
n, with X being a compact set containing the origin, is the full

state vector, x1 ∈ X1 ⊂ R
n−m and x2 ∈ X2 ⊂ R

m are its components, u ∈ R
m is the

control vector, f1 : X × R≥0 → R
n−m and f2 : X × R≥0 → R

m are the components

of the drift dynamics, B̄ : X × R≥0 → R
m×m is the control effectiveness matrix,

while h : X × R≥0 → R
m is the matched perturbation vector.

The terms f1, f2, and B̄ in (5.1) satisfy the following assumptions.

Assumption 5.1. The terms f1, f2 are unknown functions of class C0(X ). More-

over, there exist some known constants f̄1, f̄2 ∈ R>0 such that, for all x(t) ∈ X , it

holds that

sup
x(t)∈X

‖f1(x(t))‖ ≤ f̄1, sup
x(t)∈X

‖f2(x(t))‖ ≤ f̄2.

Assumption 5.2. The term B̄ is an unknown function of class C0(X ). Moreover,

for all x ∈ X and t ∈ R≥0, the matrix B̄(x(t), t) is symmetric and positive definite,

and there exist some known constants γ, γ̄ ∈ R>0 so that

γ < λ(B̄(x(t), t)) ≤ λ̄(B̄(x(t), t)) < γ̄,

with λ(B̄(x(t), t)) and λ̄(B̄(x(t), t)) being the smallest and largest eigenvalue of

B̄(x(t), t), respectively.
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As for the perturbation h, the following assumption holds.

Assumption 5.3. There exists a known constant h̄ ∈ R>0 such that the matched

perturbation is bounded in norm as

h(x(t), t)) ∈ H, H :=
{

v(x(t), t) ∈ R
m : ‖v(x(t), t)‖ ≤ h̄

}

,

for all x ∈ X and t ∈ R≥0.

Then, if one defines some desired trajectory for the system state

x?(t) =





x?1(t)

x?2(t)



 ∈ X , (5.2)

for all t ∈ R≥0, where x?1(t) ∈ X1 and x?2(t) ∈ X2 are functions of class C1 with

bounded derivatives ẋ?1(t) ∈ R
n−m and ẋ?2(t) ∈ R

m, it is possible to express the

dynamics of the tracking error e(t) = x(t)− x?(t) ∈ R
n as

ė(t) =





ẋ1(t)− ẋ?1(t)

ẋ2(t)− ẋ?2(t)



 =





f1(x(t), t)− ẋ?1(t)

f2(x(t), t) + B̄(x(t), t)u(t) + h(x(t), t)− ẋ?2(t)



 , (5.3)

characterized by initial condition e(t0) = x(t0)− x?(t0), with t0 ∈ R≥0.

With the objective of stabilizing the error system in (5.3) around the origin while

rejecting the matched disturbance from the initial time instant, one could design an

ISM controller, detailed in Section 2.4 and recalled hereafter for convenience.

In particular, the integral sliding variable σ : X → R
m is defined as

σ(x(t)) = σ0(x(t))− z(x(t)), (5.4)

where, thanks to the fact that system (5.3) is of reduced form, the conventional

sliding variable σ0 : X → R
m can be conveniently defined as

σ0(x(t)) = C1(x1(t)− x?1(t)) + C2(x2(t)− x?2(t)), (5.5)

with C1 ∈ R
m×(n−m) and C2 ∈ R

m×m being design matrices, with the latter satis-

fying the following assumption.

Assumption 5.4. The design matrix C2 ∈ R
m×m is chosen so that C2B̄(x(t), t) is

symmetric and positive definite, for all x ∈ X and t ≥ t0.

Note that, since B̄(x(t), t) is assumed to be symmetric and positive definite (see

Assumption 5.2), it is sufficient to design, for example, C2 = kIm, with k ∈ R>0,

for having Assumption 5.4 satisfied.
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As for the transient variable z : X → R
m it is defined as

z(x(t)) = σ0(x(t0)) +

∫ t

t0

{

C1

[

f1(x(τ), τ)− ẋ?1(τ)
]

+

+ C2

[

f2(x(τ), τ) + B̄(x(τ), τ)un(τ)− ẋ?2(τ)
]}

dτ, (5.6)

implying that

ż(x(t)) = C1

[

f1(x(t), t)− ẋ?1(t)
]

+ C2

[

f2(x(t), t) + B̄(x(t), t)un(t)− ẋ?2(t)
]

, (5.7)

with initial condition z(x(t0)) = σ0(x(t0)). The term un(t) ∈ R
m, as detailed in

Section 2.4, is the nominal control law that dictates the dynamics of the system

while in sliding mode. The complete control law is defined as

u(t) = un(t) + ur(t), (5.8)

where ur(t) ∈ R
m is the discontinuous component, defined according to the unit

vector approach

ur(t) = −ρ σ(x(t))

‖σ(x(t))‖ , (5.9)

with ρ ∈ R>0 being the discontinuous control gain. If this last one is chosen accord-

ing to Theorem 2.3, then a sliding mode on the manifold σ(x(t)) = 0m is enforced

for t ≥ t0. Then, if un(t) is properly designed, the tracking error e(t) is steered to

zero.

However, as specified in Assumptions 5.1 and 5.2, the dynamics of the system

is fully unknown, implying that it is not possible to compute the transient variable

in (5.6), and, as a consequence, enforce a sliding mode condition.

5.2 Approximating the Dynamics using DNNs

As detailed in Section 3.1.2, DNNs can be employed as powerful function approxi-

mators. In this case, it is possible to approximate the dynamics of the system (5.1)

using two ideal DNNs Φ : X → R
n and Ψ : X → R

m2

as

f(x(t), t) =





f1(x(t), t)

f2(x(t), t)



 = Φ(x(t)) + εΦ(x(t)), (5.10a)

B̄(x(t), t) = vec−1 (Ψ(x(t))) + εΨ(x(t)), (5.10b)

where εΦ : X → R
n and εΨ : X → R

m×m are the approximation errors. Note that,

differently from what done in Chapter 3, in this case εΨ is defined as a matrix for

convenience. The DNN Φ is characterized by kΦ ∈ N≥2 hidden layers and each layer
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j, with j ∈ {0, 1, . . . , kΦ}, contains LΦĈ
neurons and activated using a nonlinear

function φj : R
LΦĈ → R

LΦĈ . Similarly, Ψ is characterized by kΨ ∈ N≥2 hidden

layers and each layer j, with j ∈ {0, 1, . . . , kΨ}, contains LΨĈ
neurons and activated

using a nonlinear function ψj : R
LΨĈ → R

LΨĈ . The following assumption about the

activation functions hold.

Assumption 5.5. The activation functions φj : R
LΦĈ → R

LΦĈ and ψp : RLΨĎ →
R
LΨĎ , with j ∈ {0, 1, . . . , kΦ} and p ∈ {0, 1, . . . , kΨ}, are of class C1 and Lipschitz

continuous.

Example of functions satisfying such an assumption are the sigmoid and the

hyperbolic tangent.

It is possible to express the output of each layer of Φ and Ψ in the form proposed

in (3.6). In particular, for the former DNN, one has

Φj =











V >
j φj(Φj−1) for j ∈ {1, 2, . . . , kΦ}

V >
0 xh for j = 0,

(5.11)

where Vj ∈ R
LΦĈ

×LΦĈ+1 is the matrix containing ideal weights and biases associated

with the j-th layer and xh =
[

x> 1
]>
∈ R

n+1. As for the DNN Ψ, a similar

expression can be derived, i.e.,

Ψj =











U>
j ψj(Ψj−1) for j ∈ {1, 2, . . . , kΨ}

U>
0 xh for j = 0,

(5.12)

where, similarly to the previous case, Uj ∈ R
LΨĈ

×LΨĈ+1 is the matrix containing

ideal weights and bias associated with the j-th layer of the DNN. Moreover, since

the overall output of a DNN coincides with the output of the last layer, it holds that

Φ(x(t)) ≡ ΦkΦ
and Ψ(x(t)) ≡ ΨkΨ

, and, as a consequence, the expression (5.10) can

be rewritten as

f(x(t), t) =





f1(x(t), t)

f2(x(t), t)



 = ΦkΦ
+ εΦ(x(t)), (5.13a)

B̄(x(t), t) = vec−1 (ΨkΨ
) + εΨ(x(t)). (5.13b)

Then, it is convenient to provide an expression for f1, f2 and of each i-th column

of B̄, with i ∈ {1, 2, . . . ,m}. In particular, following the reasoning in Section 3.1.2,

the matrices VkΦ
∈ R

LĉΦ
×n and UkΨ

∈ R
LĉΨ

×m2

, with LkΦ
= LΦĉΦ

and LkΨ
= LΨĉΨ

for sake of readability, can be seen as the composition of different sub-matrices, i.e.,

VkΦ
=
[

V
[1]
kΦ

V
[2]
kΦ

]

,
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UkΨ
=
[

U
[1]
kΨ

U
[2]
kΨ
· · · U

[m]
kΨ

]

,

where V [1]
kΦ
∈ R

LĉΦ
×(n−m), V [2]

kΦ
∈ R

LĉΦ
×m, and U [i]

kΨ
∈ R

LĉΨ
×m. Then, one has that

f1(x(t), t) = (V
[1]
kΦ

)>φkΦ
(ΦkΦ−1) + ε

[1]
Φ (x(t)) = Φ

[1]
kΦ

+ ε
[1]
Φ (x(t)), (5.14a)

f2(x(t), t) = (V
[2]
kΦ

)>φkΦ
(ΦkΦ−1) + ε

[2]
Φ (x(t)) = Φ

[2]
kΦ

+ ε
[2]
Φ (x(t)), (5.14b)

B̄(i)(x(t), t) = (U
[i]
kΨ

)>ψkΨ
(ΨkΨ−1) + ε

(i)
Ψ (x(t)) = Ψ

[i]
kΨ

+ ε
(i)
Ψ (x(t)). (5.14c)

The terms ε[1]
Φ : X → R

n−m and ε
[2]
Φ : X → R

m are the components of εΦ, while

ε
(i)
Ψ : X → R

m is the i-th column of εΨ.

By virtue of the universal approximation property of Φ and Ψ and the bound-

edness of f1, f2, and B̄ (see Assumptions 5.1 and 5.2), the following assumption

about the ideal DNNs can be introduced.

Assumption 5.6. There exist some known constants V̄, Ū, ε̄Φ1
, ε̄Φ2

, ε̄Ψ ∈ R>0 such

that the ideal weights and the approximation errors are bounded as

sup
j∈{0,1,...,kΦ}

‖Vj‖ ≤ V̄, sup
j∈{0,1,...,kΨ}

‖Uj‖ ≤ Ū,

sup
x(t)∈X

∥

∥

∥ε
[1]
Φ (x(t))

∥

∥

∥ ≤ ε̄Φ1
, sup

x(t)∈X

∥

∥

∥ε
[2]
Φ (x(t))

∥

∥

∥ ≤ ε̄Φ2
, sup

x(t)∈X
‖εΨ(x(t))‖ ≤ ε̄Ψ.

Note that the knowledge of the matrices Vj and Uj , is not available. Hence, the

ideal estimates in (5.10) cannot be computed. For this reason, it is possible to define

another couple of DNNs, namely Φ̂ : X → R
n and Ψ̂ : X → R

m2

, that have the

same structure and activation functions of the ideal ones, but they are characterized

by an approximation of the ideal weights and biases.

Similarly to the ideal case, an expression the output of each layer of the DNNs

can be provided. In particular, for Φ̂ on has

Φ̂j =











V̂ >
j φj(Φ̂j−1) for j ∈ {1, 2, . . . , kΦ}

V̂ >
0 xh for j = 0,

(5.15)

where V̂j ∈ R
LΦĈ

×LΦĈ+1 is the estimate of Vj . As for Ψ̂, one has that

Ψ̂j =











Û>
j ψj(Ψ̂j−1) for j ∈ {1, 2, . . . , kΨ}

Û>
0 xh for j = 0,

(5.16)
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with Ûj ∈ R
LΨĈ

×LΨĈ+1 being the estimate of Uj . Then, similarly for what done for

the ideal case, the matrices associated with the last layers can be written as the

composition of sub-matrices, i.e.

V̂kΦ
=
[

V̂
[1]
kΦ

V̂
[2]
kΦ

]

,

ÛkΨ
=
[

Û
[1]
kΨ

Û
[2]
kΨ
· · · Û

[m]
kΨ

]

,

where V̂ [1]
kΦ
∈ R

LĉΦ
×(n−m), V̂ [2]

kΦ
∈ R

LĉΦ
×m, and Û [i]

kΨ
∈ R

LĉΨ
×m. Hence, it is possible

to compute f̂1, f̂2, and the columns of ˆ̄B as

f̂1(x(t), t) = (V̂
[1]
kΦ

)>φkΦ
(Φ̂kΦ−1) = Φ̂

[1]
kΦ
, (5.17a)

f̂2(x(t), t) = (V̂
[2]
kΦ

)>φkΦ
(Φ̂kΦ−1) = Φ̂

[2]
kΦ
, (5.17b)

ˆ̄B(i)(x(t), t) = (Û
[i]
kΨ

)>ψkΨ
(Ψ̂kΨ−1) = Ψ̂

[i]
kΨ
, (5.17c)

with i ∈ {1, 2, . . . ,m}. Before introducing the DNN-ISM control strategy, it is re-

quired to introduce the expression of the approximation error of the DNNs, which is

instrumental for the design of the adaptation laws and the stability analysis. In the

following, the formulation of the error between the optimal DNNs and the estimated

ones will be provided, first considering Φ, and then Ψ.

5.2.1 Approximation error of the Drift Dynamics DNN

Consider the error of Φ̂ with respect to Φ, given by

Φ̃(x(t)) = Φ(x(t))− Φ̂(x(t)). (5.18)

Such an error can be expressed for each layer j ∈ {1, 2, . . . , kΦ} as

Φ̃j = Φj − Φ̂j ∈ R
LΦĈ+1

= V >
j φj(Φj−1)− V̂ >

j φj(Φ̂j−1)

= V >
j φj(Φj−1)− V̂ >

j φj(Φ̂j−1) + V >
j φj(Φ̂j−1)− V >

j φj(Φ̂j−1)

= Ṽ >
j φj(Φ̂j−1) + V >

j

(

φj(Φj−1)− φj(Φ̂j−1)
)

, (5.19)

where Ṽj = Vj − V̂j . For j = 0, one has that

Φ̃0 = Φ0 − Φ̂0

= V >
0 xh − V̂ >

0 xh

= Ṽ >
0 xh. (5.20)
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Expression (5.19) cannot be computed directly since the ideal activations φj(Φj−1)

are unknown. However, these last ones can be approximated using Taylor expansion

centered around the estimated vector Φ̂j−1, obtaining

φj(Φj−1) = φj(Φ̂j−1) +
∂φj
∂Φ

∣

∣

∣

∣

∣

Φ=Φ̂Ĉ−1

(Φj−1 − Φ̂j−1) + O2(Φ̃j−1), (5.21)

where ∂φĈ

∂Φ

∣

∣

∣

Φ=Φ̂Ĉ−1

∈ R
LΦĈ

×LΦĈ is the Jacobian matrix of the activation function

vector φj(·) with respect to its argument, computed in the estimated output of the

previous layer Φ̂j−1. As for O2(Φ̃j−1) ∈ R
LΦĈ , it denotes the lumped terms of order

higher than one.

Substituting (5.21) in (5.19), and having φj = φj(Φj−1), φ̂j = φj(Φ̂j−1), and

φ̂′
j =

∂φĈ

∂Φ

∣

∣

∣

Φ=Φ̂Ĉ−1

for sake of readability, one has

Φ̃j = Ṽ >
j φ̂j + V >

j (φj − φ̂j)
= Ṽ >

j φ̂j + V >
j

(

φ̂j + φ̂′
jΦ̃j−1 + O2(Φ̃j−1)− φ̂j

)

= Ṽ >
j φ̂j + V >

j

(

φ̂′
jΦ̃j−1 + O2(Φ̃j−1)

)

= Ṽ >
j φ̂j + V >

j φ̂
′
jΦ̃j−1 + V >

j O2(Φ̃j−1). (5.22)

Since, Vj = Ṽj + V̂j , it is possible to write

Φ̃j = Ṽ >
j φ̂j + V >

j φ̂
′
jΦ̃j−1 + V >

j O2(Φ̃j−1)

= Ṽ >
j φ̂j + (Ṽ >

j + V̂ >
j )φ̂′

jΦ̃j−1 + V >
j O2(Φ̃j−1)

= Ṽ >
j φ̂j + Ṽ >

j φ̂
′
jΦ̃j−1 + V̂ >

j φ̂
′
jΦ̃j−1 + V >

j O2(Φ̃j−1)

= Ṽ >
j φ̂j + V̂ >

j φ̂
′
jΦ̃j−1 + ∆ΦĈ

, (5.23)

where ∆ΦĈ
:= Ṽ >

j φ̂
′
jΦ̃j−1 + V >

j O2(Φ̃j−1) ∈ R
LΦĈ+1 .

Before going further with the analysis, the following property of the Kronecker

product, defined as in Definition 3.2, is introduced.

Lemma 5.1 (Kronecker product and vectors [98, Proposition 7.1.9]).

Given three matrices A ∈ R
n×m, B ∈ R

m×q, and C ∈ R
q×p, and letting vec (·)

be the vectorization operation in Definition 3.1, it holds that

vec (ABC) =
(

C> ⊗A
)

vec (B) ∈ R
np

Since Ṽ >
j φ̂j ∈ R

LΦĈ+1 , it holds that

Ṽ >
j φ̂j = vec

(

Ṽ >φ̂j
)

= vec
(

φ̂>
j Ṽj

)

= vec
(

φ̂>
j ṼjILΦĈ+1

)

,
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and, applying Lemma 5.1 with A ≡ φ̂>
j , B ≡ Ṽj , and C ≡ ILΦĈ+1

one can write

Ṽ >
j φ̂j =

(

I>
LΦĈ+1

⊗ φ̂>
j

)

vec
(

Ṽj
)

=
(

ILΦĈ+1
⊗ φ̂>

j

)

vec
(

Ṽj
)

.

Then, substituting Ṽ >
j φ̂j one has

Φ̃j = Ṽ >
j φ̂j + V̂ >

j φ̂
′
jΦ̃j−1 + ∆ΦĈ

=
(

ILΦĈ+1
⊗ φ̂>

j

)

vec
(

Ṽj
)

+ V̂ >
j φ̂

′
jΦ̃j−1 + ∆ΦĈ

, (5.24)

for j ∈ {1, 2, . . . , kΦ}. As for the input layer j = 0, one has φ0 = φ̂0 = xh, meaning

that the Taylor expansion is not needed and hence

Φ̃0 = Ṽ >
0 xh

= vec
(

Ṽ >
0 xh

)

=
(

ILΦ1
⊗ x>

h

)

vec
(

Ṽ0

)

, (5.25)

Before going any further, it is convenient to introduce the oriented product

operator, instrumental for the following analysis.

Definition 5.1. Given some matrices Ai, with i ∈ {1, 2, . . . , N}, characterized by

compatible dimensions, then

x

N
∏

1=1

Ai = ANAN−1 · · ·A1,

represents the oriented product. Moreover, it holds that

x

p−1
∏

1=p

Ai := 1.

The overall estimation error of the DNN coincides with (5.24) with j = kΦ,

having

Φ̃kΦ
=
(

In ⊗ φ̂>
kΦ

)

vec
(

ṼkΦ

)

+ V̂ >
kΦ
φ̂′
kΦ

Φ̃kΦ−1 + ∆ΦĉΦ
.

In general, the expression of Φ̃j depends on Φ̃j−1. Hence, also the above equation

has a recursive nature. In fact, substituting Φ̃kΦ−1, one has

Φ̃kΦ
=
(

In ⊗ φ̂>
kΦ

)

vec
(

ṼkΦ

)

+ V̂ >
kΦ
φ̂′
kΦ

Φ̃kΦ−1 + ∆ΦĉΦ

=
(

In ⊗ φ̂>
kΦ

)

vec
(

ṼkΦ

)

+ V̂ >
kΦ
φ̂′
kΦ

(

ILĉΦ
⊗ φ̂>

kΦ−1

)

vec
(

ṼkΦ−1

)

+

+ ∆ΦĉΦ
+ V̂ >

kΦ
φ̂′
kΦ

∆ΦĉΦ−1
+ V̂ >

kΦ
φ̂′
kΦ
V̂ >
kΦ−1φ̂

′
kΦ−1Φ̃kΦ−2
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Then, substituting Φ̃kΦ−2 leads to

Φ̃kΦ
=
(

In ⊗ φ̂>
kΦ

)

vec
(

ṼkΦ

)

+ V̂ >
kΦ
φ̂′
kΦ

(

ILĉΦ
⊗ φ̂>

kΦ−1

)

vec
(

ṼkΦ−1

)

+

+ ∆ΦĉΦ
+ V̂ >

kΦ
φ̂′
kΦ

∆ΦĉΦ−1
+ V̂ >

kΦ
φ̂′
kΦ
V̂ >
kΦ−1φ̂

′
kΦ−1∆ΦĉΦ−2

+

+ V̂ >
kΦ
φ̂′
kΦ
V̂ >
kΦ−1φ̂

′
kΦ−1

(

ILĉΦ−1
⊗ φ̂>

kΦ−2

)

vec
(

ṼkΦ−2

)

+

+ V̂ >
kΦ
φ̂′
kΦ
V̂ >
kΦ−1φ̂

′
kΦ−1V̂

>
kΦ−2φ̂

′
kΦ−2Φ̃kΦ−3

If one keeps substituting until Φ̃0 grouping the similar terms, the overall approxi-

mation error can be conveniently expressed as

Φ̃kΦ
=

kΦ
∑

j=0









x

kΦ
∏

l=j+1

V̂ >
l φ̂

′
l









(

ILΦĈ+1
⊗ φ̂>

j

)

vec
(

Ṽj
)

+
kΦ
∑

j=1









x

kΦ
∏

l=j+1

V̂ >
l φ̂

′
l









∆ΦĈ
,

recalling that, applying Definition 5.1,

x

kΦ
∏

l=j+1

V̂ >
l φ̂

′
l

∣

∣

∣

∣

∣

j=kΦ

=

x

kΦ
∏

l=kΦ+1

V̂ >
l φ̂

′
l := 1.

Note that, since the Taylor’s expansion is not required for j = 0, it holds that

∆Φ0
= 0LΦ1

and, as a consequence, the second summation starts at j = 1.

The above expression of Φ̃kΦ
can be simplified introducing the matrices ΞΦĈ

∈
R
n×LΦĈ+1 and ΛΦĈ

∈ R
n×LΦĈ

LΦĈ+1 , defined as

ΞΦĈ
:=

x

kΦ
∏

l=j+1

V̂ >
l φ̂

′
l, (5.26a)

ΛΦĈ
:= ΞΦĈ

(

ILΦĈ+1
⊗ φ̂>

j

)

, (5.26b)

with ΛΦ0
= ΞΦ0

(ILΦ1
⊗ xh) and ΞΦĉΦ

:= 1. In particular

Φ̃kΦ
=

kΦ
∑

j=0

ΛΦĈ
vec

(

Ṽj
)

+
kΦ
∑

j=1

ΞΦĈ
∆ΦĈ

. (5.27)

Since Φ is the DNN that approximates the drift term components f1 ∈ R
n−m

and f2 ∈ R
m, one can conveniently define the approximation error of the complete

network associated with specific outputs, i.e.

Φ̃
[p]
kΦ

= Φ
[p]
kΦ
− Φ̂

[p]
kΦ

= (V
[p]
kΦ

)>φkΦ
− (V̂

[p]
kΦ

)>φ̂kΦ

= (V
[p]
kΦ

)>φkΦ
− (V̂

[p]
kΦ

)>φ̂kΦ
+ (V

[p]
kΦ

)>φ̂kΦ
− (V

[p]
kΦ

)>φ̂j
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=
(

(V
[p]
kΦ

)> − (V̂
[p]
kΦ

)>
)

φ̂kΦ
+ (V

[p]
kΦ

)>
(

φkΦ
− φ̂kΦ

)

= (Ṽ
[p]
kΦ

)>φ̂kΦ
+ (V

[p]
kΦ

)>
(

φkΦ
− φ̂kΦ

)

= (Ṽ
[p]
kΦ

)>φ̂kΦ
+ (V̂

[p]
kΦ

)>φ̂′
kΦ

Φ̃kΦ−1 + ∆
[p]
ΦĉΦ

,

with p ∈ {1, 2}. Then, using the properties of the Kronecker product, one has

Φ̃
[1]
kΦ

=

(

I(n−m) ⊗ φ̂kΦ

>
)

vec
(

Ṽ
[1]
kΦ

)

+ (V̂
[1]
kΦ

)>φ̂′
kΦ

Φ̃kΦ−1 + ∆
[1]
ΦĉΦ

∈ R
n−m,

Φ̃
[2]
kΦ

=

(

Im ⊗ φ̂kΦ

>
)

vec
(

Ṽ
[2]
kΦ

)

+ (V̂
[2]
kΦ

)>φ̂′
kΦ

Φ̃kΦ−1 + ∆
[2]
ΦĉΦ

∈ R
m,

where the last elements of the above equations are ∆
[1]
ΦĉΦ

:= (Ṽ
[1]
kΦ

)>φ̂′
kΦ

Φ̃kΦ−1 +

(V
[1]
kΦ

)>O2(Φ̃kΦ−1) ∈ R
n−m and ∆

[2]
ΦĉΦ

:= (Ṽ
[2]
kΦ

)>φ̂′
kΦ

Φ̃kΦ−1 + (V
[2]
kΦ

)>O2(Φ̃kΦ−1) ∈
R
m.

Recursively substituting Φ̃j−1 as done previously, the explicit expression of Φ̃
[1]
kΦ

and Φ̃
[2]
kΦ

is given by

Φ̃[1](x) =
kΦ−1
∑

j=0

(

(V̂
[1]
kΦ

)>φ̂′
kΦ

)









x

kΦ−1
∏

l=j+1

V̂ >
l φ̂

′
l









(

ILΦĈ+1
⊗ φ̂>

j

)

vec
(

Ṽj
)

+ ∆
[1]
ΦĉΦ

+

+
(

I(n−m) ⊗ φ̂>
kΦ

)

vec
(

Ṽ
[1]
kΦ

)

+
kΦ−1
∑

j=1

(

(V̂
[1]
kΦ

)>φ̂′
kΦ

)









x

kΦ−1
∏

l=j+1

V̂l
>
φ̂′
l









∆ΦĈ
,

and

Φ̃[2](x) =
kΦ−1
∑

j=0

(

(V̂
[2]
kΦ

)>φ̂′
kΦ

)









x

kΦ−1
∏

l=j+1

V̂ >
l φ̂

′
l









(

ILΦĈ+1
⊗ φ̂>

j

)

vec
(

Ṽj
)

+ ∆
[2]
ΦĉΦ

+

+
(

Im ⊗ φ̂>
kΦ

)

vec
(

Ṽ
[2]
kΦ

)

+
kΦ−1
∑

j=1

(

(V̂
[2]
kΦ

)>φ̂′
kΦ

)









x

kΦ−1
∏

l=j+1

V̂l
>
φ̂′
l









∆ΦĈ
.

Then, if one defines the matrices Ξ
[1]
ΦĈ
∈ R

(n−m)×LΦĈ+1 , Ξ
[2]
ΦĈ
∈ R

m×LΦĈ+1 , Λ
[1]
ΦĈ
∈

R
(n−m)×LΦĈ

LΦĈ+1 , and Λ
[2]
ΦĈ
∈ R

m×LΦĈ
LΦĈ+1 as

Ξ
[p]
ΦĈ

:= (V̂
[p]
kΦ

)>φ̂′
kΦ

x

kΦ−1
∏

l=j+1

V̂ >
l φ̂

′
l, (5.28a)

Λ
[p]
ΦĈ

:= Ξ
[p]
ΦĈ

(

ILΦĈ+1
⊗ φ̂>

j

)

, (5.28b)
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for p ∈ {1, 2}, with Ξ
[p]
ΦĉΦ

:= 1, Λ
[1]
Φ0

:= Ξ
[1]
Φ0

(

ILΦ1
⊗ x>

h

)

, Λ
[2]
Φ0

:= Ξ
[2]
Φ0

(

ILΦ1
⊗ x>

h

)

,

Λ
[1]
ΦĉΦ

:=
(

I(n−m) ⊗ φ̂>
kΦ

)

∈ R
(n−m)×(n−m)LĉΦ , and Λ

[2]
ΦĉΦ

:=
(

Im ⊗ φ̂>
kΦ

)

∈ R
m×mLĉΦ ,

the expression of the approximation errors can be simplified as

Φ̃
[1]
kΦ

= Λ
[1]
ΦĉΦ

vec
(

Ṽ
[1]
kΦ

)

+ ∆
[1]
ΦĉΦ

+
kΦ−1
∑

j=0

Λ
[1]
ΦĈ

vec
(

Ṽj
)

+
kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
(5.29a)

Φ̃
[2]
kΦ

= Λ
[2]
ΦĉΦ

vec
(

Ṽ
[2]
kΦ

)

+ ∆
[2]
ΦĉΦ

+
kΦ−1
∑

j=0

Λ
[2]
ΦĈ

vec
(

Ṽj
)

+
kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
. (5.29b)

5.2.2 Approximation error of the Control Effectiveness DNN

As detailed in Section 3.1.2, when a network is used for approximating a matrix,

it can be treated as a multi-head DNN, with each head sharing the input, all the

hidden layers, and being the approximation of a column (see Figure 3.4).

Similarly to what has been done in the previous section, the approximation error

between Ψ and Ψ̂, can be computed for each layer j ∈ {0, 1, . . . , kΨ}. To take into

account the fact that the last layer (j = kΨ) approximates multiple columns, the

error associated to this last one is expressed for each column i ∈ {1, 2, . . . ,m}.
For j = {1, 2, . . . , kΨ − 1}, one can express the approximation error as

Ψ̃j = Ψj − Ψ̂j

= U>
j ψj(Ψj−1)− Û>

j ψj(Ψ̂j−1)

= U>
j ψj(Ψj−1)− Û>

j ψj(Ψ̂j−1) + U>
j ψj(Ψ̂j−1)− U>

j ψj(Ψ̂j−1)

=
(

U>
j − Û>

j

)

ψj(Ψ̂j−1) + U>
j

(

ψj(Ψj−1)− ψj(Ψ̂j−1)
)

= Ũ>
j ψj(Ψ̂j−1) + U>

j

(

ψj(Ψj−1)− ψj(Ψ̂j−1)
)

. (5.30)

where Ũj = Uj − Ûj . For j = 0, it holds that

Ψ̃0 = Ψ0 − Ψ̂0

= U>
0 xh − Û>

0 xh

= Ũ>
0 xh. (5.31)

Since ψj(Ψj−1) is unknown, it is approximated using Taylor expansion centered

around the estimated vector Ψ̂j−1, obtaining

ψj(Ψj−1) = ψj(Ψ̂j−1) +
∂ψj
∂Ψ

∣

∣

∣

∣

∣

Ψ=Ψ̂Ĉ−1

(Ψj−1 − Ψ̂j−1) + O2(Ψ̃j−1), (5.32)

84



Chapter 5. The DNN-ISM Framework

with ∂ψĈ

∂Ψ

∣

∣

∣

Ψ=Ψ̂Ĉ−1

∈ R
LΨĈ

×LΨĈ being the Jacobian matrix of the activation function

vector ψj(·) with respect to its argument, computed in the estimated output of the

precious layer Ψ̂j−1. As for O2(Ψ̃j−1) ∈ R
LΨĈ , it contains the lumped terms of order

higher than one.

If one substitutes (5.32) in (5.30), and defines ψj = ψj(Ψj−1), ψ̂j = ψj(Ψ̂j−1),

and ψ̂′
j =

∂ψĈ

∂Ψ

∣

∣

∣

Ψ=Ψ̂Ĉ−1

for sake of readability, it holds that

Ψ̃j = Ũ>
j ψ̂j + U>

j (ψj − ψ̂j)
= Ũ>

j ψ̂j + U>
j

(

ψ̂j + ψ̂′
jΨ̃j−1 + O2(Ψ̃j−1)− ψ̂j

)

= Ũ>
j ψ̂j + U>

j

(

ψ̂′
jΨ̃j−1 + O2(Ψ̃j−1)

)

= Ũ>
j ψ̂j + U>

j ψ̂
′
jΨ̃j−1 + U>

j O2(Ψ̃j−1)

= Ũ>
j ψ̂j + (Ũ>

j + Û>
j )ψ̂′

jΨ̃j−1 + U>
j O2(Ψ̃j−1)

= Ũ>
j ψ̂j + Ũ>

j ψ̂
′
jΨ̃j−1 + Û>

j ψ̂
′
jΨ̃j−1 + U>

j O2(Ψ̃j−1)

= Ũ>
j ψ̂j + Û>

j ψ̂
′
jΨ̃j−1 + ∆ΨĈ

, (5.33)

with ∆ΨĈ
:= Ũ>

j ψ̂
′
jΨ̃j−1 + U>

j O2(Ψ̃j−1) ∈ R
LΨĈ+1 .

Since Ũ>
j ψ̂j ∈ R

LΨĈ
LΨĈ+1 , one can write

Ũ>
j ψ̂j = vec

(

Ũ>ψ̂j
)

= vec
(

ψ̂>
j Ũj

)

= vec
(

ψ̂>
j ŨjILΨĈ+1

)

,

and, applying Lemma 5.1 with A ≡ ψ̂>
j , B ≡ Ũj , and C ≡ ILΨĈ+1

it holds that

Ũ>
j ψ̂j =

(

I>
LΨĈ+1

⊗ ψ̂>
j

)

vec
(

Ũj
)

=
(

ILΨĈ+1
⊗ ψ̂>

j

)

vec
(

Ũj
)

.

Hence, expression (5.33) can be rewritten as

Ψ̃j = Ũ>
j ψ̂j + Û>

j ψ̂
′
jΨ̃j−1 + ∆ΨĈ

=
(

ILΨĈ+1
⊗ ψ̂>

j

)

vec
(

Ũj
)

+ Û>
j ψ̂

′
jΨ̃j−1 + ∆ΨĈ

. (5.34)

In the case j = 0, one has ψ0 = ψ̂0 = xh. Hence, the Taylor expansion is not

employed and it holds that

Ψ̃0 = Ũ>
0 xh

= vec
(

Ũ>
0 xh

)

=
(

ILΨ1
⊗ x>

h

)

vec
(

Ũ0

)

. (5.35)

As anticipated, for the last layer (j = kΨ), the error is expressed for each column

i ∈ {1, 2, . . . ,m}. In particular, having Ψ
[i]
kΨ

and Ψ̂
[i]
kΨ

defined as in (5.14c) and

(5.17c), respectively, the error associated with the i-th column is given by

Ψ̃
[i]
kΨ

= Ψ
[i]
kΨ
− Ψ̂

[i]
kΨ
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= (U
[i]
kΨ

)>ψkΨ
− (Û

[i]
kΨ

)>ψ̂kΨ

= (U
[i]
kΨ

)>ψj − (Û
[i]
kΨ

)>ψ̂j + (U
[i]
kΨ

)>ψ̂j − (U
[i]
kΨ

)>ψ̂j

=
(

(U
[i]
kΨ

)> − (Û
[i]
kΨ

)>
)

ψ̂kΨ
+ (U

[i]
kΨ

)>
(

ψkΨ
− ψ̂kΨ

)

= Ũ
[i]>

kΨ
ψ̂kΨ

+ (U
[i]
kΨ

)>
(

ψkΨ
− ψ̂kΨ

)

= Ũ
[i]>

kΨ
ψ̂kΨ

+ (Û
[i]
kΨ

)>ψ̂′
kΨ

Ψ̃kΨ−1 + ∆
[i]
ΨĉΨ

=

(

Im ⊗ ψ̂kΨ

>
)

vec
(

Ũ
[i]
kΦ

)

+ (Û
[i]
kΨ

)>ψ̂′
kΨ

Ψ̃kΨ−1 + ∆
[i]
ΨĉΨ

, (5.36)

with ∆
[i]
ΨĉΨ

:= (Ũ
[i]
kΨ

)>ψ̂′
kΨ

Ψ̃kΨ−1 + (U
[i]
kΨ

)>O2
(

Ψ̃kΨ−1

)

∈ R
m.

Then, analogously as done for Φ̃j , recursively substituting (5.34) in (5.36) until

Ψ̃0 and collecting the common terms, one obtains

Ψ̃
[i]
kΨ

=
kΨ−1
∑

j=0

(

(Û
[i]
kΨ

)>ψ̂′
kΨ

)









x

kΨ−1
∏

l=j+1

Û>
l ψ̂

′
l









(

ILΨĈ+1
⊗ ψ̂>

j

)

vec
(

Ũj
)

+ ∆
[i]
kΨ

+

+
(

Im ⊗ ψ̂>
kΨ

)

vec
(

Ũ
[i]
kΦ

)

+
kΨ−1
∑

j=1

(

(Û
[i]
kΨ

)>ψ̂′
kΨ

)









x

kΨ−1
∏

l=j+1

Ûl
>
ψ̂′
l









∆ΨĈ
,

for i ∈ {1, 2, . . . ,m}. Moreover, defining the matrices Ξ
[i]
ΨĈ
∈ R

m×LΨĈ+1 and Λ
[i]
ΨĈ
∈

R
m×LΨĈ

LΨĈ+1 as

Ξ
[i]
ΨĈ

:= (Û
[i]
kΨ

)>ψ̂′
kΨ

x

kΨ−1
∏

l=j+1

Û>
l ψ̂

′
l, (5.37a)

Λ
[i]
ΨĈ

:= Ξ
[i]
ΨĈ

(

ILΨĈ+1
⊗ ψ̂>

j

)

, (5.37b)

with Ξ
[i]
ΨĉΨ

:= 1, Ξ
[i]
ΨĉΨ−1

:= (Û
[i]
kΨ

)>ψ̂′
kΨ

(see Definition 5.1), Λ
[i]
Ψ0

:= Ξ
[i]
Ψ0

(

ILΨ1
⊗ x>

h

)

,

and Λ
[i]
ΨĉΨ

:=
(

Im ⊗ ψ̂>
kΨ

)

∈ R
m×mLĉΨ , equation (5.37b) can be rewritten as

Ψ̃
[i]
kΨ

= Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

+ ∆
[i]
ΨĉΨ

+
kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj
)

+
kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ
(5.38)

5.3 The DNN-ISM Control Strategy

In the following, the DNN-ISM control scheme, developed in [99, 100, 101] and

depicted in Figure 5.1, is presented and analyzed.

Considering the system in (5.3), and inspired by the ISM control framework,

the integral sliding variable is defined as in

σ(x(t)) = σ0(x(t))− ẑ(x(t)), (5.39)
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ur in (5.44)
+

+

System in (5.1)
∫

un

DNN Φ̂

DNN Ψ̂

˙̂z in (5.43)

σ0 in (5.5)

∫

Update laws (5.45)-(5.49)

−

+

x

ẑ

u ẋ

σ

Figure 5.1: Block diagram of the DNN-ISM control scheme. The blocks associated

with the DNNs, the sliding variable, and the control law are highlighted in green,

blue, and yellow, respectively.

where σ0 : X → R
m is the conventional sliding mode defined as in (5.5), while

ẑ : X → R
m is the estimate of the transient variable in (5.6). In particular, this last

one is computed relying on the estimate of the dynamics of f1, f2, and B̄, having

ẑ(x(t)) = σ0(x(t0)) +

∫ t

t0

{

C1

[

f̂1(x(τ), τ)− ẋ?1(τ)
]

+

+ C2

[

f̂2(x(τ), τ) + ˆ̄B(x(τ), τ)un(τ)− ẋ?2(τ)
]}

dτ. (5.40)

Proposition 5.1. Given a matrix A ∈ R
n×m and a vector b ∈ R

m, then the product

Ab ∈ R
n can be computed as

Ab =
m
∑

i=1

A(i)bi,

where A(i) ∈ R
n denotes the i-th column of A and bi ∈ R the i-th element of b.

Exploiting Proposition 5.1, the above expression of ẑ(x(t)) can be rewritten as

ẑ(x(t)) = σ0(x(t0)) +

∫ t

t0

{

C1

[

f̂1(x(τ), τ)− ẋ?1(τ)
]

+

+ C2

[

f̂2(x(τ), τ) +
m
∑

i=1

ˆ̄B(i)(x(τ), τ)un,i(τ)− ẋ?2(τ)
]}

dτ. (5.41)

Then, substituting (5.17), one has that

ẑ(x(t)) = σ0(x(t0)) +

∫ t

t0

{

C1

[

Φ̂
[1]
kΦ
− ẋ?1(τ)

]

+

+ C2

[

Φ̂
[2]
kΦ

+
m
∑

i=1

Ψ̂
[i]
kΨ
un,i(τ)− ẋ?2(τ)

]}

dτ (5.42)
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where Φ̂
[1]
kΦ
≡ Φ̂[1](x(τ)) ∈ R

n−m, Φ̂
[2]
kΦ
≡ Φ̂[2](x(τ)) ∈ R

m, and Ψ̂
[i]
kΨ
≡ Ψ̂[i](x(τ)) ∈

R
m. The dynamics of the estimate of the transient variable can be then expressed

as implying that

˙̂z(x(t)) = C1

[

Φ̂
[1]
kΦ
− ẋ?1(t)

]

+ C2

[

Φ̂
[2]
kΦ

+
m
∑

i=1

Ψ̂
[i]
kΨ
un,i(t)− ẋ?2(t)

]

, (5.43)

with initial conditions z(x(t0)) = σ0(x(t0)). The matrices C1 ∈ R
m×(n−m) and

C2 ∈ R
m×m are chosen as described in Section 5.1. In particular, the latter satisfies

Assumption 5.4.

Similarly to the ideal case, the overall control law u(t) ∈ R
m is the one in (5.8),

where the switching law ur(t) is chosen according to the unit vector approach

ur(t) = −ρ σ(x(t))

‖σ(x(t))‖ , (5.44)

with ρ ∈ R>0 being the discontinuous control gain. The choice of the nominal control

law un(t) ∈ R
m depends on the performance that one wants to obtain. Some hints

on the selection of this last one will be provided later in this chapter.

One fundamental aspect in the design of the DNN-ISM control scheme is the

choice of the adaptation laws for the layers of the DNNs Φ̂ and Ψ̂. Such laws,

proposed in the following, depend on the integral sliding variable σ and are derived

according to the analysis in Section 5.3.2.

For what concerns the DNN Φ̂, the layers up to the penultimate one, i.e., for

j ∈ {0, 1, . . . , kΦ − 1}, the adaptation is done through

vec
(

˙̂
Vj
)

= proj
BΦĈ

(

ΓΦĈ
Λ>

ΦĈ
C>σ

)

∈ R
LΦĈ

LΦĈ+1 , (5.45)

where C =
[

C1 C2

]

∈ R
m×n, ΛΦĈ

∈ R
n×LΦĈ

LΦĈ+1 is the one defined in (5.26b) and

it corresponds to

ΛΦĈ
=





Λ
[1]
ΦĈ

Λ
[2]
ΦĈ



 , (5.46)

with Λ
[1]
ΦĈ
∈ R

(n−m)×LΦĈ
LΦĈ+1 and Λ

[2]
ΦĈ
∈ R

m×LΦĈ
LΦĈ+1 being the ones defined in

(5.28). As for ΓΦĈ
∈ R

LΦĈ
LΦĈ+1

×LΦĈ
LΦĈ+1 , it is the adaptation rate matrix, defined

as diagonal with positive entries, while proj(·) is the projection operator defined as

in Appendix A, with set BΦĈ
defined later in Section 5.3.1. The weights sub-matrices

associated with the last layer (j = kΦ) are adjusted according to

vec
(

˙̂
V

[1]
kΦ

)

= proj
BΦĉΦ

(

Γ
[1]
ΦĉΦ

(Λ
[1]
ΦĉΦ

)>C>
1 σ
)

∈ R
LĉΦ

(n−m), (5.47a)
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vec
(

˙̂
V

[2]
kΦ

)

= proj
BΦĉΦ

(

Γ
[2]
ΦĉΦ

(Λ
[2]
ΦĉΦ

)>C>
2 σ
)

∈ R
LĉΦ

m, (5.47b)

where Γ
[1]
ΦĉΦ

∈ R
(n−m)LĉΦ

×(n−m)LĉΦ and Γ
[2]
ΦĉΦ

∈ R
mLĉΦ

×mLĉΦ are diagonal matrices

with positive entries, while Λ
[1]
ΦĉΦ

∈ R
(n−m)×(n−m)LĉΦ and Λ

[2]
ΦĉΦ

∈ R
m×mLĉΦ are the

ones defined below equation (5.28).

As for the DNN Ψ̂, for j ∈ {0, 1, . . . , kΨ − 1}, one has that

vec
(

˙̂
Uj
)

= proj
BΨĈ

(

ΓΨĈ

(

m
∑

i=1

un,i(Λ
[i]
ΨĈ

)>

)

C>
2 σ

)

∈ R
LΨĈ

LΨĈ+1 , (5.48)

where Λ
[i]
ΨĈ
∈ R

m×LΨĈ
LΨĈ+1 is defined as in (5.37b), un,i ∈ R is the i-th component

of the nominal control law, while ΓΨĈ
∈ R

LΨĈ
LΨĈ+1

×LΨĈ
LΨĈ+1 is the adaptation rate

matrix, chosen as diagonal with positive entries. The weight sub-matrices of last

layer of Ψ̂ are adapted according to

vec
(

˙̂
U

[i]
kΨ

)

= proj
BΨĉΨ

(

ΓΨĉΨ
un,i(Λ

[i]
ΨĉΨ

)>C>
2 σ
)

∈ R
LĉΨ

m, (5.49)

with i ∈ {1, 2, . . . ,m}, where ΓΨĉΨ
∈ R

mLĉΨ
×mLĉΨ is the diagonal matrix of the

adaptation rates, while Λ
[i]
ΨĉΨ

∈ R
m×mLĉΨ is the one defined below equation (5.37).

For sake of completeness, it is possible to express the time evolution of the
weight matrices of the DNNs employed for the approximation of the dynamics. In
particular, for Φ̂ one has

Vj(t) = Vj(t0) +

∫ t

t0

vec−1

(

proj
BΦj

(

ΓΦj

(

ΛΦj
(x(τ))

)>
C>σ(x(τ))

)

)

dτ,

V
[1]

kΦ
(t) = V

[1]
kΦ

(t0) +

∫ t

t0

vec−1

(

proj
BΦkΦ

(

Γ
[1]
ΦkΦ

(

Λ
[1]
ΦkΦ

(x(τ))
)>

C>
1 σ(x(τ))

)

)

dτ,

V
[2]

kΦ
(t) = V

[2]
kΦ

(t0) +

∫ t

t0

vec−1

(

proj
BΦkΦ

(

Γ
[2]
ΦkΦ

(

Λ
[2]
ΦkΦ

(x(τ))
)>

C>
2 σ(x(τ))

)

)

dτ.

As for Ψ̂, the evolution of the weights is given by

Uj(t) = Uj(t0) +

∫ t

t0

vec−1

(

proj
BΨj

(

ΓΨj

(

m
∑

i=1

un,i

(

Λ
[i]
Ψj

(x(τ))
)>

)

C>
2 σ(x(τ))

))

dτ,

U
[i]
kΨ

(t) = U
[i]
kΨ

(t0) +

∫ t

t0

vec−1

(

proj
BΨkΨ

(

ΓΨkΨ
un,i

(

Λ
[i]
ΨkΨ

(x(τ))
)>

C>
2 σ(x(τ))

)

)

dτ.

The aim of the projection operator, defined as in Appendix A, in the weight adap-

tation laws is to maintain the weights in the admissible sets BΦĈ
⊂ R

LΦĈ
LΦĈ+1 , with

j ∈ {0, 1, . . . , kΦ}, and BΨĈ
⊂ R

LΨĈ
LΨĈ+1 , with j ∈ {0, 1, . . . , kΨ}, which are defined

in the following.
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5.3.1 Use of Parameter Projection and its effects

The ideal weights of the DNNs are assumed to be bounded in norm by some known

constants V̄, Ū ∈ R>0 that depends on some superficial knowledge of the system,

such as the bounds of f1, f2, and B̄. In particular, recalling Assumption 5.6, it holds

that

sup
j∈{0,1,...,kΦ}

‖Vj‖ ≤ V̄, sup
j∈{0,1,...,kΨ}

‖Uj‖ ≤ Ū.

Such a knowledge about the DNNs can be exploited to limit the evolution of

the estimated weights during their adaptation in two sets BΦĈ
⊂ R

LΦĈ
LΦĈ+1 and

BΨĈ
⊂ R

LΨĈ
LΨĈ+1 . Such sets can be conveniently defines as

BΦĈ
:=
{

vec
(

V̂j
)

∈ R
LΦĈ

LΦĈ+1 :
∥

∥

∥vec
(

V̂j
)∥

∥

∥− V̄ ≤ 0
}

, (5.50a)

BΨĈ
:=
{

vec
(

Ûj
)

∈ R
LΨĈ

LΨĈ+1 :
∥

∥

∥vec
(

Ûj
)∥

∥

∥− Ū ≤ 0
}

. (5.50b)

Following the notation in Appendix A, and specifically equation (A.1), one can

define the underlying functions PΦĈ
: R

LΦĈ
LΦĈ+1 → R and PΨĈ

: R
LΨĈ

LΨĈ+1 → R as

PΦĈ

(

vec
(

V̂j
))

:=
∥

∥

∥vec
(

V̂j
)∥

∥

∥− V̄, (5.51a)

PΨĈ

(

vec
(

Ûj
))

:=
∥

∥

∥vec
(

Ûj
)∥

∥

∥− Ū. (5.51b)

Such functions are characterized by gradients
∂PΦĈ

∂V̂Ĉ
∈ R

LΦĈ
LΦĈ+1 and

∂PΨĈ

∂ÛĈ
∈

R
LΨĈ

LΨĈ+1 , which can be computed as follows.

Denoting with V̂j,(l,h) the element of V̂j in the l-th row and h-th column, one

has that

PΦĈ

(

V̂j
)

:=
∥

∥

∥vec
(

V̂j
)∥

∥

∥− V̄ =

√

√

√

√

√

LΦĈ
∑

l=1

LΦĈ+1
∑

h=1

V̂ 2
j,(l,h) − V̄,

which, differentiating element by element yields the partial derivatives

∂PΦĈ

(

V̂j
)

∂V̂j,(c,r)
=

1

2

√

∑LΦĈ

l=1

∑LΦĈ+1

h=1 V̂ 2
j,(l,h)

(

2V̂j,(c,r)
)

=
V̂j,(c,r)

√

∑LΦĈ

l=1

∑LΦĈ+1

h=1 V̂ 2
j,(l,h)

=
V̂j,(c,r)

∥

∥

∥vec
(

V̂j
)∥

∥

∥

.

Finally, gathering all the partial derivatives, the gradient vector results in

∂PΦĈ

∂V̂j
= ∇

V̂Ĉ
PΦĈ

=
vec

(

V̂j
)

∥

∥

∥vec
(

V̂j
)∥

∥

∥

. (5.52)

90



Chapter 5. The DNN-ISM Framework

Performing the same steps, the gradient vector
∂PΨĈ

∂ÛĈ
can be computed as

∂PΨĈ

∂Ûj
= ∇

ÛĈ
PΨĈ

=
vec

(

Ûj
)

∥

∥

∥vec
(

Ûj
)∥

∥

∥

. (5.53)

According to the definition (A.4) of the smooth projection operator, one has

proj
BΦj

(τ) =











τ, if V̂j ∈ Bo
Φj

or ∇
V̂j
PΦj
· τ ≤ 0

(

I − c(V̂j)Θ
∇

V̂j
PΦj

(∇
V̂j

PΦj
)>

(∇
V̂j

PΦj
)>Θ∇

V̂j
PΦj

)

τ if V̂j ∈ Bα
Φj
\ Bo

Φj
and ∇

V̂j
PΦj
· τ > 0,

where, according to the definitions in Appendix A, Bo
ΦĈ

and BαΦĈ
denote, respectively,

the interior of BΦĈ
and the α-boundary layer around BΦĈ

. As for the matrix Θ ∈
R
LΦĈ

LΦĈ+1
×LΦĈ

LΦĈ+1 here is the counterpart of Γ used in equation (A.4) to avoid

confusion with the learning rate matrices. By setting Θ = γILΦĈ
LΦĈ+1

, with γ ∈ R>0,

and substituting (5.52) it holds that

proj
BΦĈ

(τ) =















τ,
(

I − c(V̂j)
γ∇

Ē̂Ĉ
PΦĈ

(∇
Ē̂Ĉ

PΦĈ
)>

γ(∇
Ē̂Ĉ

PΦĈ
)>∇

Ē̂Ĉ
PΦĈ

)

τ,

=























τ,





I − c(V̂j)

∇
Ē̂Ĉ

PΦĈ
(∇

Ē̂Ĉ
PΦĈ

)>

∥

∥

∥
∇

Ē̂Ĉ
PΦĈ

∥

∥

∥

2






τ,

Then, substituting (5.52), the above equation becomes

proj
BΦj

(τ) =











τ, if V̂j ∈ Bo
Φj

or vec
(

V̂j

)

· τ ≤ 0
(

I − c(V̂j)
vec(V̂j)vec(V̂j)

>

‖vec(V̂j)‖2

)

τ if V̂j ∈ Bα
Φj
\ Bo

Φj
and vec

(

V̂j

)

· τ > 0.

(5.54)

Following the same steps and substituting (5.53), the smooth projection operator
for the weight matrices Ûj analogously as

proj
BΨj

(τ) =











τ if Ûj ∈ Bo
Ψj

or vec
(

Ûj

)

· τ ≤ 0
(

I − c(Ûj)
vec(Ûj)vec(Ûj)

>

‖vec(Ûj)‖2

)

τ if Ûj ∈ Bα
Ψj
\ Bo

Ψj
and vec

(

Ûj

)

· τ > 0.

(5.55)

Lemma 5.2 (Boundedness of the DNN weights and biases). Let BΦĈ
and

BΨĈ
be the admissible sets defined as in (5.50), while projBΦĈ

and projBΨĈ
are the

smooth projection operators defined as in (5.54) and (5.55), respectively. Moreover,
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consider the weight adaptation laws in (5.45), (5.47), (5.48), and (5.49). Then, one

has that

1. Vj(t) ∈ BαΦĈ
, for all t ≥ t0 and j ∈ {0, 1, . . . , kΦ};

2. Uj(t) ∈ BαΨĈ
, for all t ≥ t0 and j ∈ {0, 1, . . . , kΨ};

3. −vec
(

Vj − V̂j
)>

Γ−1
ΦĈ

proj
BΦĈ

(τ) ≤ −vec
(

Vj − V̂j
)>

Γ−1
ΦĈ
τ , for all the layers j ∈

{0, 1, . . . , kΦ};

4. −vec
(

Uj − Ûj
)>

Γ−1
ΨĈ

proj
BΨĈ

(τ) ≤ −vec
(

Uj − Ûj
)>

Γ−1
ΨĈ
τ , for all the layers j ∈

{0, 1, . . . , kΨ};

Proof. The proof can be easily developed by exploiting the proof of points 3 and 4

of Lemma A.1.

Before introducing the stability analysis associated with the DNN-ISM control

scheme, the following considerations must be made.

The fact that the activation functions of the networks Φ, Φ̂, Ψ, and Ψ̂, i.e.,

φj(·) and ψj(·), are chosen differentiable and Lipschitz continuous ensures that their

Jacobian matrices are bounded in norm. In particular, there exists some constants

d̄ΦĈ
, d̄ΨĎ

∈ R>0 such that

∥

∥

∥φ′
j

∥

∥

∥ ≤ d̄φĈ
,
∥

∥

∥φ̂′
j

∥

∥

∥ ≤ d̄φĈ
,
∥

∥

∥ψ′
p

∥

∥

∥ ≤ d̄ψĎ
,
∥

∥

∥ψ̂′
p

∥

∥

∥ ≤ d̄ψĎ
, (5.56)

for all j ∈ {0, 1, . . . , kΦ} and p ∈ {0, 1, . . . , kΨ}. Such a fact, along with Lemma 5.2

and with the fact that for classical activation functions (e.g., sigmoid, hyperbolic

tangent, etc.) the higher order of the Taylor’s expansion are bounded [93], implies

that the terms ∆ΦĈ
and ∆ΨĈ

, defined in Section 5.2.1 and Section 5.2.2, respectively,

are bounded.

Proposition 5.2. There exist some constants c̄Φ1
, c̄Φ2

, c̄Ψ ∈ R>0 such that the

residual terms appearing in (5.29) and (5.38) as

∥

∥

∥

∥

∥

∥

∆
[1]
ΦĉΦ

+
kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ

∥

∥

∥

∥

∥

∥

≤ c̄Φ1
,

∥

∥

∥

∥

∥

∥

∆
[2]
ΦĉΦ

+
kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ

∥

∥

∥

∥

∥

∥

≤ c̄Φ2
,

∥

∥

∥

∥

∥

∥

∆
[i]
ΨĉΨ

+
kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

∥

∥

∥

∥

∥

∥

≤ c̄Ψ.
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5.3.2 Sliding mode Existence

The main theoretical results related to the DNN-ISM control strategy are presented

in the following.

Theorem 5.1. Consider the nonlinear system in (5.3), controlled via ISM control

law u in (5.8), with switching law ur in (5.44) with integral sliding variable σ defined

as in (5.39). Moreover, the DNNs weights are adapted according to the adaptation

laws (5.45) - (5.49). If Assumptions 5.1 - 5.6 and Proposition 5.2 hold, and

ρ >
‖C1‖ {c̄Φ1

+ ε̄Φ1
}+ ‖C2‖ {c̄Φ2

+ ε̄Φ2
+m(c̄Ψ + ε̄Ψ) ‖un‖+ h̄}+ η̄

λ(C2)γ
,

with η̄ ∈ R>0, then, σ(x(t))→ 0m for t→∞.

Proof. See Appendix B.1.

The use of the DNNs Φ̂ and Ψ̂, which are characterized by estimated weights,

introduces unavoidable approximation errors with respect to the real functions. In

particular, the error associated with the drift dynamics components is given by

f1 − Φ̂
[1]
kΦ

= Φ̃
[1]
kΦ

+ ε
[1]
Φ

= Λ
[1]
ΦĉΦ

vec
(

Ṽ
[1]
kΦ

)

+ ∆
[1]
ΦĉΦ

+
kΦ−1
∑

j=0

Λ
[1]
ΦĈ

vec
(

Ṽj
)

+
kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ ,

f2 − Φ̂
[2]
kΦ

= Φ̃
[2]
kΦ

+ ε
[2]
Φ

= Λ
[2]
ΦĉΦ

vec
(

Ṽ
[2]
kΦ

)

+ ∆
[2]
ΦĉΦ

+
kΦ−1
∑

j=0

Λ
[2]
ΦĈ

vec
(

Ṽj
)

+
kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ .

As for the approximation error related to the control effectiveness term, it can be

computed as

B̄(i) − Ψ̂
[i]
kΨ

= Ψ̃
[i]
kΨ

+ ε
(i)
Ψ

= Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

+
kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj
)

+ ∆
[i]
ΨĉΨ

+
kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ
+ ε

(i)
Ψ ,

with i ∈ {0, 1, . . . ,m}. Such errors are not quantifiable, since they depend on the

quantities ε[1]
Φ , ε[2]

Φ , ∆ΦĈ
, with j ∈ {0, 1, . . . , kΦ}, εΨ, ∆ΨĈ

, with j ∈ {0, 1, . . . , kΦ},
which are, by nature, unknown. Nevertheless, exploiting the analysis performed

earlier in this chapter, it is possible to see how all the above approximation errors are

bounded. For sake of simplicity, and without loss of generality, only the boundedness

of the errors associated with the drift dynamics components is shown.

93



5.3. The DNN-ISM Control Strategy

As it is highlighted in the proof of Theorem 5.1, the effect of terms Λ
[p]
ΦĉΦ

vec
(

Ṽ
[p]
kΦ

)

and
∑kΦ−1
j=0 Λ

[p]
ΦĈ

vec
(

Ṽj
)

, with p ∈ {1, 2}, is compensated by the weight adaptation

laws (5.45) and (5.47). Hence, it is sufficient to assess that the other terms of the

equation are bounded to confirm that the whole error is limited. In particular, the

term ε
[p]
Φ is bounded by virtue of the universal approximation property [55]. As for

∑kΦ−1
j=1 Ξ

[p]
ΦĈ

∆ΦĈ
, its boundedness can be deduced from the following reasoning. First,

the use of the proj operator, described in Appendix A, ensures that the estimated

weights V̂j are always bounded in the set BαΦĈ
. This means that, since the ideal

weights Vj are bounded by definition, then also the weight estimation errors Ṽj are

bounded. Since the activation functions φ̂j are of class C1 and Lipschitz contin-

uous, then, it follows that Ξ
[p]
ΦĈ

is bounded as well. Considering the expression of

∆
[p]
ΦĉΦ

and ∆ΦĈ
with the aforementioned considerations, then one can conclude that

Ṽ >
j φ̂

′
jΦ̃j−1 is bounded. Finally, for a wide range of activation functions, including

the hyperbolic tangent and the sigmoid function, the term of order two of the Taylor

approximation, i.e., O2(Φ̃j−1), is bounded, as detailed in [93].

Following the same reasoning for the approximation error associated with the

control effectiveness, the following result can be introduced

Proposition 5.3. At each time instant tk ≥ t0, the norm of the approximation

errors introduced by the DNNs Φ̂ and Ψ̂ is bounded. In particular, the quantities

sup
x∈X

∥

∥

∥f1 − Φ̂
[1]
kΦ,tĉ

∥

∥

∥ , sup
x∈X

∥

∥

∥f2 − Φ̂
[2]
kΦ,tĉ

∥

∥

∥ , sup
x∈X

∥

∥

∥

∥

∥

m
∑

i=1

B̄(i) − Ψ̂
[i]
kΨ,tĉ

∥

∥

∥

∥

∥

,

where Φ̂
[p]
kΦ,tĉ

and Ψ̂
[i]
kΨ,tĉ

denote the output of the Φ̂ and Ψ̂ when they are parame-

terized by weight matrices Vj(tk) and Uj(tk), are bounded.

From Theorem 5.1 follows that, there exists a time instant in which a practical

sliding mode is enforced. Hence, the following holds.

Proposition 5.4. There exists a time instant t1 <∞ such that the sliding mode is

achieved in a ς-neighborhood of the sliding manifold. i.e.,

{x(t) ∈ X : ‖σ(x(t))‖ ≤ ς}

for t ≥ t1, with ς ∈ R>0.

By virtue of Proposition 5.4, it is possible to design a control strategy that,

combining DNN-ISM with ASMC, ensures that sliding mode σ(x(t)) = 0m in finite

time. Such a strategy can be summarized as follows:
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1. for t ∈ [t0, t1], the discontinuous control gain ρ is chosen according to Theorem

5.1 and kept constant, while the DNNs are updated according to (5.45), (5.47),

(5.48), and (5.49);

2. for t ∈ (t1,∞], the weights of the DNNs are no longer adapted, i.e., vec
(

V̇j
)

=

0 for j ∈ {0, 1, . . . , kΦ} and vec
(

U̇j
)

= 0 for j ∈ {0, 1, . . . , kΨ}, while the

discontinuous control gain is adapted.

Before introducing the theoretical results of the aforementioned strategy, an obser-

vation, related to the existence needs to be made.

Proposition 5.5. Following the same steps reported in the proof of Theorem 5.1,

and relying on the bounds of the system and the ideal weights for bounding the

approximation error, it holds that if

ρ̄ =
‖C1‖

(

V̄ kΦ + f̄1

)

+ ‖C2‖
(

V̄ kΦ + f̄2 + h̄
)

+ η̄

λ(C2)γ
+
‖C2‖

(

ŪkΨ + γ̄
)

‖un‖
λ(C2)γ

, (5.57)

with η̄ ∈ R>0, then σ(x(t)) = 0m for t ≥ t0.

In other words, Proposition 5.5 says that, if one selects a discontinuous control

gain that compensates all the disturbances of the system and the worst possible

approximation error of the DNNs, then a sliding mode is enforced from the initial

time instant, without the need of adapting the networks.

For convenience, defining

ρ̄1 =
‖C1‖

(

V̄ kΦ + f̄1

)

+ ‖C2‖
(

V̄ kΦ + f̄2 + h̄
)

λ(C2)γ
, (5.58)

ρ̄2 =
‖C2‖

(

ŪkΨ + γ̄
)

λ(C2)γ
, (5.59)

one can rewrite (5.57) in a more compact way as

ρ̄ = ρ̄1 + ρ̄2 ‖un‖+
η̄

λ(C2)γ
.

Theorem 5.2. Consider the nonlinear system in (5.3) and integral sliding variable

σ in (5.39). For t > t1, with t1 being the one defined in Proposition 5.4 , let (5.3)

be controlled via ISM control law u in (5.8), where the switching law is designed as

ur(t) = −(ρ̂1(t) + ρ̂2(t) ‖un‖)
σ(x(t))

‖σ(x(t))‖ ,

with ρ̂1(t1) and ρ̂2(t1) chosen so that ρ̂1(t1) + ρ̂2(t1) ‖un‖ satisfies Theorem 5.1.

Moreover, let vec
(

V̇j
)

= 0 for j ∈ {0, 1, . . . , kΦ} and vec
(

U̇j
)

= 0 for j ∈

95



5.4. Practical Aspects

{0, 1, . . . , kΨ}. If Assumptions 5.1 - 5.6 hold and the discontinuous control gain

components are adapted according to

˙̂ρ1(t) = proj
%1

((‖C2‖ γ̄ + α1) ‖σ‖) , (5.60a)

˙̂ρ2(t) = proj
%2

((‖C2‖ γ̄ ‖un‖+ α2) ‖σ‖) , (5.60b)

with α1, α2 ∈ R>0 being constants acting as learning rates, γ̄ being the one appearing

in Assumption 5.2, %1 := {r ∈ R>0 : r ≤ ρ̄1}, and %2 := {r ∈ R>0 : r ≤ ρ̄2}, then a

sliding mode σ(x(t)) = 0m is enforced for t ≥ t2, with t1 < t2 <∞.

Proof. See Appendix B.2.

5.4 Practical Aspects

Before presenting the simulations and experiments used for assessing the efficacy of

the DNN-ISM control strategy, it is worth to analyze a couple of aspects associated

with practical implementation.

5.4.1 Computational Complexity Analysis

In the following, the computational complexity analysis associated with the compu-

tation of the adaptation laws of the DNNs weights is carried out. Since the analysis

is analogous for both networks, it is carried out only for the DNN Φ̂.

The weights of the j-th are updated according to

vec
(

˙̂
Vj
)

= proj
BΦĈ

(

ΓΦĈ
Λ>

ΦĈ
C>σ

)

= proj
BΦĈ

(

ΓΦĈ

[

ΞΦĈ
(ILΦĈ+1

⊗ φ̂>
j )
]>
C>σ

)

.

In the practice, in most iterations, the projection operator behaves like the identity

function, i.e., proj (τ) ≡ τ . For this reason, it is reasonable to perform the following

analysis considering

vec
(

˙̂
Vj
)

= ΓΦĈ

[

ΞΦĈ
(ILΦĈ+1

⊗ φ̂>
j )
]>
C>σ.

From that, it is clear that the most recurrent operation in the computation of

the weight update is the matrix multiplication.

In general, given two compatible matrices A ∈ R
h×l, and B ∈ R

l×m, the com-

putational complexity of a standard matrix multiplication algorithm that finds the
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matrix C = AB has computational complexity O(hlm). This because each element

Cij of the resulting matrix C ∈ R
h×m is the result of a scalar product between the i-

th row of A and the j-th column of B. Since the scalar product of two l-dimensional

vectors has computational complexity O(l), and the number of elements in C is hm,

it is clear how the complexity of C = AB is O(hlm). Then, if A and B are square

matrices in R
h×h, the complexity becomes O(h3). Over the years some algorithms to

lower the complexity have been proposed, but even the more efficient Strassen’s Al-

gorithm introduced in [102] reached a lower bound of O(hlog 7) ≈ O(h2.807), so in the

following analysis the standard algorithm with cubic complexity will be considered.

Since modern libraries (e.g., Eigen, NumPy, TensorFlow) handle the transposi-

tion operation very efficiently, such an operation can be neglected in the following

analysis, without compromising the validity of this last one.

The first term which is analyzed is ΞΦĈ
, computed as in (5.26a). As it is clear

from its definition, it is just a series of matrix multiplication alternating between

estimated weight matrices and Jacobian matrices, i.e.,

ΞΦĈ
=

x

kΦ
∏

l=j+1

V̂ >
l φ̂

′
l =

(

V̂ >
kΦ
φ̂′
kΦ

) (

V̂ >
kΦ−1φ̂

′
kΦ−1

)

· · ·
(

V̂ >
j+1φ̂

′
j+1

)

, (5.61)

with each term inside the parenthesis being a matrix multiplication between V̂ >
l ∈

R
LΦĊ+1

×LΦĊ and φ̂′
l ∈ R

LΦĊ
×LΦĊ , meaning that the total complexity for the compu-

tation of each term in ΞΦĈ
is O

(

∑kΦ

l=j+1 L
2
ΦĈ
LΦĈ+1

)

.

Then, since each term
(

V̂ >
l φ̂

′
l

)

∈ R
LΦĊ+1

×LΦĊ must be multiplied together, the

complexity for ΞΦĈ
is

O




kΦ
∑

l=j+1

L2
ΦĊ
LΦĊ+1

+ LΦĈ+1

kΦ
∑

l=j+2

LΦĊ
LΦĊ+1



, (5.62)

where the first term is associated with the computation of each single product, and

the latter one is the one accounting for the final product.

Then, the complexity analysis of the Kronecker product (ILΦĈ+1
⊗ φ̂>

j ) is carried

out. In general, since the Kronecker product of A ∈ R
h×l with B ∈ R

d×m is defined

as in Definition 3.2, its computational cost is O(hldm). However, since in this case

of, A = ILΦĈ+1
, the elements of B = φ̂>

j just get multiply by 1, and thus one can

consider the Kronecker product as a copy of φ̂>
j on a block diagonal matrix with
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Lj+1 blocks, i.e.,

ILΦĈ+1
⊗ φ̂>

j =























φ̂>
j

φ̂>
j

. . .

φ̂>
j

φ̂>
j























∈ R
LΦĈ+1

×LΦĈ
LΦĈ+1 , (5.63)

with a complexity lowered to O(LΦĈ+1
).

Then, since ΞΦĈ
∈ R

n×LΦĈ+1 , the complexity of the matrix multiplication term

ΛΦĈ
= ΞΦĈ

(ILΦĈ+1
⊗ φ̂>

j ) ∈ R
n×LΦĈ

LΦĈ+1 is O(nL2
ΦĈ+1

LΦĈ
), which, summed up to

the complexity necessary to obtain the two components of the product, results in

O




kΦ
∑

l=j+1

L2
ΦĊ
LΦĊ+1

+ LΦĈ+1

kΦ
∑

l=j+2

LΦĊ
LΦĊ+1

+ LΦĈ+1
+ nL2

ΦĈ+1
LΦĈ



 .

Recalling that C ∈ R
m×n and σ ∈ R

m, then the multiplication Λ>
ΦĈ
C>σ ∈

R
LΦĈ

LΦĈ+1 has complexity is O(nLΦĈ
LΦĈ+1

+ nm), which, added to the complexity

of ΛΦĈ
leads to

O
(

kΦ
∑

l=j+1

L2
ΦĊ
LΦĊ+1

+ LΦĈ+1

kΦ
∑

l=j+2

LΦĊ
LΦĊ+1

+ LΦĈ+1
+

nL2
ΦĈ+1

LΦĈ
+ nLΦĈ

LΦĈ+1
+ nm

)

.

Finally, premultiplying by the gain matrix ΓΦĈ
∈ R

LΦĈ
LΦĈ+1

×LΦĈ
LΦĈ+1 results in a

total complexity for the computation of vec
(

V̇j
)

which is

O
(

kΦ
∑

l=j+1

L2
ΦĊ
LΦĊ+1

+ LΦĈ+1

kΦ
∑

l=j+2

LΦĊ
LΦĊ+1

+ LΦĈ+1
+

+ nL2
ΦĈ+1

LΦĈ
+ nLΦĈ

LΦĈ+1
+ nm+ L2

ΦĈ
L2

ΦĈ+1

)

. (5.64)

Finally, since there are kΦ layers in the DNN, the overall complexity for com-

puting the update laws of all the layers is given by

O
(

kΦ
∑

j=0

kΦ
∑

l=j+1

L2
ΦĊ
LΦĊ+1

+
kΦ
∑

j=0

LΦĈ+1

kΦ
∑

l=j+2

LΦĊ
LΦĊ+1

+
kΦ
∑

j=0

LΦĈ+1
+

+ n
kΦ
∑

j=0

L2
ΦĈ+1

LΦĈ
+ n

kΦ
∑

j=0

LΦĈ
LΦĈ+1

+ kΦnm+
kΦ
∑

j=0

L2
ΦĈ
L2

ΦĈ+1

)

. (5.65)

98



Chapter 5. The DNN-ISM Framework

Assuming that LΦĈ
= L for j ∈ {0, 1, . . . , kΦ}, the total complexity can be

reformulated as

O
(

kΦ−1
∑

j=0

(kΦ − j)L3 +
kΦ−2
∑

j=0

(kΦ − j − 1)L3 + kΦL+ nkΦL
3+

+ nkΦL
2 + kΦnm+ kΦL

4

)

.

Since in general it holds that kΦ � L, the dominant term in the above complexity

is O(kL4), which is polynomial of order four with respect to the number of neurons

and linear in the number of layers, meaning that, from the computational cost point

of view, it is more convenient to exploit the depth of the DNN, than its width.

The above result, accompanied with the ones provided in Section 3.1.3, confirm

that, it is more convenient to adopt ANNs with deep architecture (k ≥ 2), than

shallow ones (k = 1) when the adaptation of the weights is done according to (5.45),

(5.47), (5.48), and (5.49), both from the computational and to the approximation

capability point of views.

Recalling that, according to the big-Ω notation in (3.17), the number of the

hidden layer neurons of a shallow ANN, denoted as Ls, that guarantees the same

degree of approximation of a DNN with k ≥ 2 hidden layers, each with Ld neurons,

is given by the following relation

(

Ld
n

)(k−1)n

Lnd = Lns , (5.66)

it has been possible to design a test to verify that using larger kΦ and kΨ instead

of higher number of neurons in each layer leads to reduced computation time.

In the test, the ANNs Φ̂ and Ψ̂ are used to estimate a vector v ∈ R
7, and a

matrix A ∈ R
7×7, respectively, starting from an input x ∈ R

15. In the case in which

Φ̂ and Ψ̂ are DNNs, they are designed so that kΦ = kΨ = 8, with Ld,Φ = Ld,Ψ = 18.

Exploiting (5.66), a shallow version of the Φ̂ and Ψ̂, with Ls,Φ = Ls,Ψ = 64 has

been designed.

The test has been performed using C++, recording the execution time using

the class std::chrono::high_resolution_clock, which returns the approx-

imate CPU time spent in the update procedures [103]. The results of the test are

reported in Figure 5.2, which clearly shows how the update procedure is faster in

the case of the DNN. In particular, the sample median computed for the DNNs is

almost always half the one of the shallow counterparts.
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(a) Box plot of the update procedure for Φ̂.

(b) Box plot of the update procedure for Ψ̂.

Figure 5.2: Outlier box plot of the recorded times of the full updates of the neural

networks. The box indicates the data samples between the 25-th and the 75-th

percentile, with the vertical red line indicating the median of the sample distribution.

The whiskers of the box plot go from the 5-th to the 25-th and from the 75-th to

the 95-th percentile, while the red markers indicate the outliers.

5.4.2 Chattering Reduction

The considered class of systems (5.1) includes the class of electromechanical systems.

In real-world implementation, systems that belong to such a class are characterized

by actuators that have a finite maximum frequency of operation, or an intrinsic

propensity to wearing. Hence, the use of a discontinuous control component, like

the one in (5.44), may not be advisable due to the possible presence of chattering.

To cope with such a problem, several techniques have been proposed (see, e.g.,

[41, 40, 44], among others). However, such techniques rely on the concept of HOSM,

hence they are not directly applicable to the DNN-ISM control strategy. In the

following, two different easy-to-implement chattering reduction schemes, frequently

adopted in the practice, are presented.

The first one, introduced in [36, Section 5], exploits the use of the so-called

average-control, whose aim is to approximate the ideal equivalent control relying on

a low pass filter, similarly to what is reported in Section 2.4.2. In particular, the

full control laws becomes

u(t) = un(t) + ur,av(t), (5.67)
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where ur,av is obtained by filtering ur in (5.44) via a low-pass filter as

µu̇r,av(t) = ur(t)− ur,av(t), (5.68)

where µ ∈ (0, 1) is the bandwidth of the filter and ur,av(t0) = 0m. To obtain optimal

performances, µ should be chosen as small as possible, but large enough not to alter

the slow components of ur.

As for the second technique, it is the boundary layer control [27, Section 3.7].

With this approach, the control law is

u(t) = un(t) + ur,bl(t), (5.69)

where ur,bl is obtained modifying (5.44) as

µu̇r,bl(t) = −ρ σ(x(t))

‖σ(x(t))‖+ εσ
, (5.70)

with εσ ∈ R>0 being an arbitrarily small constant.

5.4.3 Weights initialization

As described earlier in this chapter, the proposed strategy can be divided in two

phases. In the first, a constant discontinuous control gain is employed and the

weights of the DNNs are adapted until, at time t1 ≥ t0, a practical sliding mode

‖σ(x(t))‖ ≤ ς is achieved, while in the second the weights are kept constant and the

control gain is adapted until σ(x(t)) = 0m.

Intuitively, the enforcement of a practical sliding mode ‖σ(x(t))‖ ≤ ς strictly

depends on the quality of approximation of Φ̂ and Ψ̂. Moreover, the time instant

t1 is strictly related to the initialization of the DNNs. In particular, having good

initial estimates allows to enforce a practical sliding mode in a smaller time with

respect to the case in which the initial estimates present a large error. Hence, one

could exploit previous data about the system to perform an off-line training of Φ̂

and Ψ̂ so that a better initialization can be exploited by the DNN-ISM strategy.

Such a philosophy has been implemented in [104], where a simplified case in

which only the drift dynamics f ∈ R
6 of a 3-DoF industrial manipulator was con-

sidered unknown. In particular, the weights are initially trained according to the

DRL framework using the TD3 learning algorithm, and then the last layer of the

actor network is trained according to the DNN-ISM algorithm.

Since the objective was to provide a sufficiently accurate estimate of the drift

term, dented as f̂ ∈ R
6, the DRL agent has been trained selecting the state space
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S, the action space A, and the instantaneous reward rt as

S = {x}, S = {f̂(x)} rt = −∆σ(x(t)),

where x ∈ R
6 is the state vector containing joint positions and velocities, while

∆σ(x(t)) = ‖σ(x(t))‖− ‖σ(x(t−))‖, with σ(x(t−)) denoting the value of the sliding

variable at the previous time instant. Once the DRL training was completed, the

weights of the actor network, which corresponds to the DNN estimating the drift

dynamics, have been extracted and used as initialization for the DNN-ISM strategy.

In [104], this last one has been used to tune only the outer layer of the network,

providing benefits from the execution time point of view.

With the same reasoning, a similar technique can be implemented for systems

with totally uncertain nominal dynamic model, designing a multi-agent reinforce-

ment learning (MARL) system [105] composed by two agents: one for the drift

dynamics and one for the control effectiveness matrix

5.5 Simulations

The efficacy of the DNN-ISM control algorithm has been assessed in simulation on

two different systems, whose dynamics is considered fully unknown. The first one is

the Duffing oscillator depicted in Figure 2.2 and modeled as in equation (2.3), while

the second is the virtualized version of the Franka Emika Panda robot, described

in Appendix C.

5.5.1 Duffing Oscillator

The duffing oscillator (2.3) is a mechanical systems. Using Euler-Lagrange modeling,

the physical interpretation of the generalized coordinates is position and momentum

or velocity, for which the relation is known. For this reason, the DNN Φ̂ is used only

for estimating f2 ∈ R, having Φ̂ : X → R. As for the estimation of the control input,

the DNN Ψ̂ : X → R is employed. For the simulation, it has been chosen to have

kΦ = kΨ = 2 hidden layers for both the DNNs, each characterized by 16 neurons.

The adaptation of the weights of the networks is modulated through learning rate

matrices ΓΦĈ
= 10 I, ΓΨĈ

= 5 I, with I denoting an identity matrix with suitable

dimensions.

The objective of the simulation, which duration is 40 seconds, is to steer the

system state vector towards a time-varying desired equilibrium chosen as x? =
[

1.25 0
]>

for t ∈ [0, 20) s and x? =
[

−0.25 0
]>

for t ≥ 20 s, while being subject
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to a disturbance h = 0.1 sin(t). The stabilizing control law is defined as

un(t) = − 1

Ψ̂kΨ
+ ε(t)

{

Φ̂kΨ
+
[

1 2
]

(x(t)− x?(t))
}

, (5.71)

where ε ∈ R is a small design parameter introduced to avoid singularity of the

denominator. The integral sliding variable si chosen as σ = σ0 + ẑ, with σ0 =

(x1−x?1)+(x2−x?2). The discontinuous control gain is selected as ρ = 0.11+0.01|un|,
while the threshold for the sliding variable that stops the updates of the DNNs and

starts the adaptation of the discontinuous gain is ς = 0.001. The simulation time-

step is set to 10−4 seconds.

The results of the simulation are presented in Figure 5.3. From that, it is possible

to see how, even applying a relatively small discontinuous control gain, the sliding

variable is successfully steered to a very small value (and eventually to zero), after

a first transient in which the weights of the DNNs are adapted and during which

the transient variable ẑ is not properly compensating σ0. Moreover, the state of the

system is successfully controlled to the desired time-varying equilibrium point.
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Figure 5.3: Time evolution of the system states, sliding variable components, and

discontinuous control gain during the simulation.

Finally, the proposal has been compared with standard SMC. In particular, the
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system is controlled to reach the first equilibrium state, defining the sliding variable

σ = (x1 − x?1) + (x2 − x?2) and employing the control law u(t) = −ρ sign (σ), with

different constant discontinuous control gains, i.e., ρ = 0.15, ρ = 0.25, ρ = 0.5, and

ρ = 0.75. The results of the comparison are presented in Figure 5.4, from which it

is possible to conclude that, even in the case in which the standard SMC employs a

discontinuous control gain more or less 5 time higher than the largest value of the one

employed by the DNN-ISM (in Figure 5.3), it is not able to ensure robustness against

the disturbance. Since neither DNN-ISM or SMC require the knowledge of the

system dynamics, the former perform better than the latter, especially in the cases

in which the use of a high discontinuous gain is discouraged, like electromechanical

systems.
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Figure 5.4: Time behavior of the sliding variable when the DNN-ISM is employed

with the discontinuous control gain depicted in Figure 5.3, and when SMC is applied

with constant gains ρ = 0.15, ρ = 0.25, ρ = 0.5, and ρ = 0.75.

5.5.2 Robotic Manipulator

In this simulation, a virtualized model of the Franka Emika Panda is controlled via

the DNN-ISM in Figure 5.1, relying on the PyBullet simulator. In particular, the

model of the manipulator is the one in described in (C.1), which, defining the state

vector x =
[

q> q̇>
]>
∈ X ⊂ R

14, can be written in the state-space canonical form

ẋ(t) =





f1(x(t), t)

f2(x(t), t) + B̄(x(t), t)u



 =





q̇

−M(q)−1C(q, q̇)q̇ +M−1(q)τ



 , (5.72)

having f1 = q̇ ∈ R
7, f2 = M−1(q)C(q, q̇)q̇ ∈ R

7, B̄ = M−1(q) ∈ R
7×7, and u = τ ∈

R
7. Since f1 can be obtained directly from robot sensors measurements, only f2 and

B̄ are estimated. In particular, the former is estimated by a DNN Φ̂ : X → R
7 while

the latter by Ψ̂ : X → R
49. The two networks have been designed with kΦ = kΨ = 3

hidden layers, each characterized by 16 neurons. The weights are adapted with

adaptation rate matrices ΓΦĈ
= 50I and ΓΨĈ

= 250I.
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The objective of the simulation, whose duration is 15 seconds, is to track the

desired joint space trajectory

q?(t) =
[

π
5 + sin(t) −π

5 + 0.1 cos(t) 0.1 sin(2t) − 7
10π 0 π

4 + cos(2t) −π
4

]>

q̇?(t) =
[

cos(t) −0.1 sin(t) 0.2 cos(2t) 0 0 −2 sin(2t) 0
]>

q̈?(t) =
[

− sin(t) −0.1 cos(t) −0.4 sin(2t) 0 0 −4 cos(2t) 0
]>
,

while being subject to a matched disturbance

h(t) =
[

0.1 sin(5t) 0.05 + 0.05 cos(8t) 0.2 0 0.075 sin(2t) 0 0.01 cos(10t)
]>
.

The sliding variable is defined as σ = σ0 + ẑ. The stabilizing control law has been
chosen as the feedback linearizing law

un(t) = −
(

vec−1
(

Ψ̂kΨ

))+ {

Φ̂kΦ
+Kp

(

q(t)− q?(t)
)

+Kd

(

q̇(t)− q̇?(t)
)

− q̈?(t)}, (5.73)

where the gain matrices are chosen as Kp = Kd = 5I7, while (·)+ denotes the pseudoinverse

operation in Definition 4.2. The matrices C1 ∈ R
7 and C2 ∈ R

7 appearing in (5.5) are chosen

as C1 = C2 = I7. The discontinuous control gain has been selected as ρ = 0.5 + 1.5 ‖un‖,
while the threshold for the sliding variable that stops the updates of the DNNs and starts

the adaptation of the discontinuous gain is ς = 0.001. The simulation time-step is 10−4

seconds. The results of the simulation are presented in Figure 5.5, from which it is possible

to see how, except for a first time transient in which the DNNs are updating, the sliding

variable is steered toward zero and the desired trajectory is successfully tracked. Moreover,

the control input vector and the discontinuous control gain are depicted in Figure 5.6 and

Figure 5.7, respectively. Note that, in Figure 5.6, the values on the vertical axis of each

figure has been limited for sake of visibility of the rest of the signal. In fact, due to some

poor initial condition of the weights, there are some spikes in the control signal, with a value

around 40 Nm. Finally, from Figure 5.7 it is possible to see that, except from an initial time

transient in which the discontinuous gain reaches relatively high values, once the DNNs are

updated the value of ρ settles around 5.

5.6 Real Robot Experiment

Finally, the DNN-ISM control architecture depicted in Figure 5.1 has been assessed experi-

mentally on a real Franka Emika Panda, whose characteristics are detailed in Appendix C.

Since gravity and frictions are automatically compensated from an internal controller (see

Appendix C.4), then the model is the one used for the simulations, and the same consid-

erations about the state-space modeling that have been made in the previous section are

valid.

The DNN Φ̂ is characterized by kΦ = 2 hidden layers, each with 16 neurons, and it is

adapted with learning rate matrices defined as ΓΦj
= 50I. As for the Ψ̂, it has bin designed

105



5.6. Real Robot Experiment

Figure 5.5: Evolution of the joint positions (left column), joint velocities (middle

column), and sliding mode components (right column) during the simulation.
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Figure 5.6: Evolution of the nominal control un (left column), robustifying control

law ur (middle column), and full control law u (right column) during the simulation.

107



5.6. Real Robot Experiment

0 5 10 15

Time, t [s]

10

20

30

40

50

C
on

tr
ol

ga
in

,
;

Figure 5.7: Evolution of the discontinuous control gain ρ during the simulation.

with kΨ = 5 hidden layers with 16 neurons, and it updated with learning rate matrices

ΓΨj
= 250I.

The objective of the experiment, whose duration is 60 seconds, is to control the robot

so that it tracks the reference trajectory obtained deriving

q?(t) =
[

π
4 −π

4 0 − 3
4π + 0.3 sin(0.2πt) 0.2 sin( 2

3πt)
π
2 + 0.2 sin(0.4πt) 0.2 sin(πt)

]>

,

while being subject to a disturbance

h(t) =
[

0.1 sin(5t) 0.05 + 0.05 cos(8t) 0.2 0 0.075 sin(2t) 0 0.01 cos(10t)
]>

.

The nominal control law is the DNN based feedback linearizing law in (5.73), with Kp =

Kd = I7. The matrices C1 ∈ R
7 and C2 ∈ R

7 appearing in (5.5) are chosen as C1 = C2 = I7.

The discontinuous control gain has been selected as ρ = 1.5+0.75 ‖un‖, while the threshold

for the sliding variable that stops the updates of the DNNs and starts the adaptation of the

discontinuous gain is ς = 0.001. The control signal is computed with a frequency more or less

equal to 800 Hz. The results of the experiment are presented in Figure 5.8, from which it is

possible to see that, after a first transient in which the DNN are adapting, a practical sliding

mode is enforced. As one can notice, the sliding variable components are ultimately bounded

by values that are higher than the one in the simulation case comes from the fact that the

control frequency is more than ten times smaller the one used in the previous section.

Nevertheless, the tracking results can be considered more than satisfactorily. Moreover, the

control vector components are depicted in Figure 5.9. In order to do not cause damages to

the robot motor, the discontinuous component is filtered by a first order filter like the one

in (2.75), characterized by filtering constant µ = 0.01.
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Figure 5.8: Evolution of the joint positions (left column), joint velocities (middle

column), and sliding mode components (right column) during the experiment.
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Figure 5.9: Evolution of the nominal control un (left column), robustifying control

law ur (middle column), and full control law u (right column) during the experiment.

110



Chapter 6

DNN-ISM with State and Input

Constraints

In this chapter, three different variants of the DNN-ISM framework that allow to take

into considerations state and input constraints are presented for some class of systems.

In particular, the first scheme modifies the design of the integral sliding manifold and the

nominal control law to perform the avoidance of a non admissible portion of the state space,

the second one integrates Model Predictive Control (MPC) into the DNN-ISM framework to

guarantee the satisfaction of soft state and input constraints, while the last one modifies the

original DNN-ISM control integrating Barrier Lyapunov Functions in the DNNs adaptation

and generates the nominal control law solving a quadratic programming problem designed

using a Control Lyapunov Function (CLF) and a Control Barrier Function (CBF). All the

approaches are theoretical analyzed and assessed in simulation on different systems.

6.1 DNN-ISM with State Constraints Avoidance

In this section, the DNN-ISM with a modified integral sliding variable and nominal control

law for the avoidance of a non admissible part of the state space is presented. Such a variant

has been introduced first in [106] in the case of systems with partially unknown dynamics,

and extended to the case of fully unknown model in [101].

6.1.1 Problem Formulation

The considered class of system is the same as in Chapter 5.3. For the reader’s convenience,

it is briefly recalled in the following.

Consider the nonlinear affected by matched disturbance

ẋ(t) =

[

ẋ1(t)

ẋ2(t)

]

=

[

f1(x(t), t)

f2(x(t), t) + B̄(x(t), t)u(t) + h(x(t), t)

]

, (6.1)
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where x ∈ X ⊂ R
n and u ∈ R

m, f1 : X × R≥0 → R
n−m and f2 : X × R≥0 → R

m are

the components of the drift dynamics, B̄ : X × R≥0 → R
m×m is the control effectiveness

matrix, while h : X × R≥0 → R
m is the matched perturbation vector. The terms f1, f2

and B̄ satisfy Assumptions 5.1 and 5.2, while the disturbance h is bounded according to

Assumption 5.3.

If one defines a desired trajectory x?(t) ∈ X , it is possible to define the tracking error

e(t) = x(t) − x?(t), characterized by dynamics

ė(t) =

[

ẋ1(t) − ẋ?
1(t)

ẋ2(t) − ẋ?
2(t)

]

=

[

f1(x(t), t) − ẋ?
1(t)

f2(x(t), t) + B̄(x(t), t)u(t) + h(x(t), t) − ẋ?
2(t)

]

. (6.2)

Then, let Xc(t) ⊂ X be a time-dependent set that contains some states that, for some

reasons, the nonlinear system (6.1) cannot assume. In the case of mechanical systems, such

reasons can be related to the mechanical structure of the system ot the presence of external

obstacles. It is convenient to define the nearest non-admissible state xc ∈ Xc and its relative

distance dc ∈ R≥0 from the actual state as

xc(t) = argmin
s∈Xc

d(x(t), s) (6.3a)

dc(t) = min
s∈Xc

d(x(t), s), (6.3b)

with d : X × Xc → R≥0 being a distance function chosen, for example, as the squared

Euclidean norm, i.e., d(x(t), s) = ‖x(t) − s‖2.

The objective is to design an ISM controller which stabilizes the system in (6.1) on the

desired trajectory x?, while rejecting the disturbance h and ensuring x(t) /∈ Xc(t), for all

t ≥ t0.

Recalling that the integral sliding variable is in general defined as

σ(x(t)) = σ0(x(t)) − z(x(t)), (6.4)

to accomplish the above objective is possible to define the conventional sliding variable

σ0(x(t)) depending on the the distance dc(t), i.e.,

σ0(x(t)) =







C1,a

(

x1(t) − x1,s(t)
)

+ C2,a

(

x2(t) − x2,s(t)
)

, if dc(t) ≤ d?,

C1,r

(

x1(t) − x?
1(t)

)

+ C2,r

(

x2(t) − x?
2(t)

)

, if dc(t) > d?,
(6.5)

where C1,a ∈ R
m×(n−m), C2,a ∈ R

m×m, C1,r ∈ R
m×(n−m), and C2,r ∈ R

m×m are design

parameters, d? ∈ R>0 is a safety threshold chosen during the design phase , while xs(t) =
[

x>
1,s(t) x>

2,s(t)
]>

∈ X \Xc is a trajectory with bounded derivative chosen by the designer to

avoid the set of non admissible states. The following assumption about the design matrices

C2,a and C2,r is introduced.

Assumption 6.1. The design matrices C2,a and C2,r are chosen so that C2,aB̄(x(t), t) and

C2,rB̄(x(t), t) are symmetric and positive definite, for all x ∈ X and t ≥ t0.
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Recalling that B̄(x(t), t) satisfies Assumption 5.2, i.e., it is SPD, one can design C2,a =

kaIm and C2,r = krIm, with ka, kr ∈ R>0, for having Assumption 6.1 to hold.

Note that, the expression (6.5) can be written in a more compact manner as

σ0(x(t)) = δa(t)
[

C1,a C2,a

]

[

x1(t) − x1,s(t)

x2(t) − x2,s(t)

]

+ (1 − δa(t))
[

C1,r C2,r

]

[

x1(t) − x?
1(t)

x2(t) − x?
2(t)

]

,

where δa : R≥0 → {0, 1} is a constraint avoidance flag defined as

δa(t) =







1 if dc(t) ≤ d∗,

0 if dc(t) > d∗.
(6.6)

As for the transient function z, it is defined so that

ż(x(t)) = δa(t)
[

C1,a C2,a

]

[

f1(x(t), t) − ẋ1,s(t)

f2(x(t), t) + B̄(x(t), t)un,a(t) − ẋ2,s(t)

]

+

+ (1 − δa(t))
[

C1,r C2,r

]

[

f1(x(t), t) − ẋ?
1(t)

f2(x(t), t) + B̄un,r(t) − ẋ?
2(t)

]

, (6.7)

with z(x(t0)) = σ0(x(t0)) and z(x(tk)) = σ0(x(tk)), where tk > t0 are the time instants

in which δa(tk) changes its value. The control laws un,r ∈ R
m and un,a ∈ R

m are the

continuous control laws which stabilize the system when it is in tracking (δa = 0) and

avoidance (δa = 1) conditions, respectively. In particular, they are designed depending on

the task and on the choice of the trajectory xs(t).

Finally, the complete control law is designed on the ISM control framework, i.e.,

u(t) = un(t) + ur(t), (6.8)

where the nominal law un ∈ R
m and the switching law ur ∈ R

m are defined as

un(t) = (1 − δa(t))un,r(t) + δa(t)un,a(t), (6.9a)

ur(t) = −ρ σ(x(t))

‖σ(x(t))‖ , (6.9b)

with ρ ∈ R>0 being the discontinuous control gain and σ chosen as in (6.4).

6.1.2 The DNN-ISM scheme with avoidance capabilities

In the following, a modified version of the DNN-ISM control architecture, depicted in Figure

6.1, allows avoidance of non-admissible states.

Recalling that f1, f2, and B̄ are not available (see Assumptions 5.1 and 5.2), it is not

possible to directly compute the transient variable dynamics in (6.7). Analogously to what

done for the DNN-ISM control scheme, it is possible to approximate such terms relying on

DNNs Φ̂ and Ψ̂. This allows to compute an estimate of z, denoted as ẑ, and define the

integral sliding variable

σ(x(t)) = σ0(x(t)) − ẑ(x(t)), (6.10)
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Figure 6.1: Block diagram of the modified DNN-ISM control scheme for the avoid-

ance of non-admissible states. The blocks related to the DNNs are colored in green,

the blue ones are associated with the sliding variable, the yellow blocks are the

components of the control law, while in red are denoted the blocks responsible for

the change of control mode.

where σ0 is defined as in (6.5) and, as a consequence, ˙̂z is computed as

˙̂z(x(t)) = δa(t)
[

C1,a C2,a

]

[

Φ̂
[1]
kΦ

− ẋ1,s(t)

Φ̂
[2]
kΦ

+
∑m

i=1 Ψ̂
[i]
kΨ
un,a,i(t) − ẋ2,s(t)

]

+

+ (1 − δa(t))
[

C1,r C2,r

]

[

Φ̂
[1]
kΦ

− ẋ?
1(t)

Φ̂
[2]
kΦ

+
∑m

i=1 Ψ̂
[i]
kΨ
un,r,i(t) − ẋ?

2(t)

]

, (6.11)

where un,a,i ∈ R and un,r,i ∈ R denote, respectively, the i-th components of un,a and un,r.

Similarly to what happens for z, it holds that ẑ(x(t0)) = σ0(x(t0)) and ẑ(x(tk)) = σ0(x(tk)).

Since the integral sliding variable is defined differently from the standard DNN-ISM

control scheme, the weight adaptation laws change.

For what concerns the DNN Φ̂, the layers up to the second to last one, i.e., for j ∈
{0, 1, . . . , kΦ − 1}, the adaptation is done through

vec
(

˙̂
Vj

)

= proj
BΦj

(

ΓΦj
Λ>

Φj
C>

δ σ
)

∈ R
LΦj

LΦj+1 , (6.12)

where ΛΦj
∈ R

n×LΦj
LΦj+1 is defined as in in (5.46), while Cδ ∈ R

m×n is given by

Cδ =
[

C1,δ C2,δ

]

=
[

δaC1,a + (1 − δa)C1,r δaC2,a + (1 − δa)C2,r

]

. (6.13)

Analogously to standard DNN-ISM, the matrix ΓΦj
∈ R

LΦj
LΦj+1

×LΦj
LΦj+1 represents the

adaptation rate, and it is defined as diagonal with positive entries, while proj(·) is the
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projection operator defined as in Appendix A, with set BΦj
defined in (5.50a). The weights

sub-matrices associated with the last layer (j = kΦ) are characterized by dynamics

vec
(

˙̂
V

[1]
kΦ

)

= proj
BΦkΦ

(

Γ
[1]
ΦkΦ

(Λ
[1]
ΦkΦ

)>C>
1,δσ

)

∈ R
LkΦ

(n−m), (6.14a)

vec
(

˙̂
V

[2]
kΦ

)

= proj
BΦkΦ

(

Γ
[2]
ΦkΦ

(Λ
[2]
ΦkΦ

)>C>
2,δσ

)

∈ R
LkΦ

m, (6.14b)

where C1,δ ∈ R
m×(n−m) and C2,δ ∈ R

m×m are the matrices appearing in (6.13), Γ
[1]
ΦkΦ

∈
R

(n−m)LkΦ
×(n−m)LkΦ and Γ

[2]
ΦkΦ

∈ R
mLkΦ

×mLkΦ are diagonal matrices with positive entries,

while Λ
[1]
ΦkΦ

∈ R
(n−m)×(n−m)LkΦ and Λ

[2]
ΦkΦ

∈ R
m×mLkΦ are the ones defined below equation

(5.28).

As for Ψ̂, for layers j ∈ {0, 1, . . . , kΨ − 1}, one has that

vec
(

˙̂
Uj

)

= proj
BΨj

(

ΓΨj

(

m
∑

i=1

un,i(Λ
[i]
Ψj

)>

)

C>
2,δσ

)

∈ R
LΨj

LΨj+1 , (6.15)

where Λ
[i]
Ψj

∈ R
m×LΨj

LΨj+1 is defined as in (5.37b), un,i ∈ R is the i-th component of the

nominal control law in (6.9a) while ΓΨj
∈ R

LΨj
LΨj+1

×LΨj
LΨj+1 is diagonal with positive

entries. The weight sub-matrices of the last layer are adjusted according to

vec
(

˙̂
U

[i]
kΨ

)

= proj
BΨkΨ

(

ΓΨkΨ
un,i(Λ

[i]
ΨkΨ

)>(C2,δ)>σ
)

∈ R
LkΨ

m, (6.16)

with i ∈ {1, 2, . . . ,m}, where ΓΨkΨ
∈ R

mLkΨ
×mLkΨ is diagonal with positive entries, while

Λ
[i]
ΨkΨ

∈ R
m×mLkΨ is the one defined after (5.37).

6.1.3 Sliding mode existence

In the following, the main theoretical results about the modified version of DNN-ISM are

presented.

Theorem 6.1. Consider the nonlinear system in (5.3), controlled via ISM control law u in

(6.8), with switching law ur in (6.9b) with integral sliding variable σ defined as in (6.10).

Moreover, the DNNs weights are adapted according to the adaptation laws (6.12) - (6.16). If

Assumptions 5.1 - 5.6 and Proposition 5.2 hold, and the discontinuous control gain is chose

as

ρ >
‖C1,δ‖ r̄Φ1

+ ‖C2,δ‖ (r̄Φ2
+ h̄) + δa ‖C2,a‖ r̄Ψ ‖un,a‖ + (1 − δa) ‖C2,r‖ r̄Ψ ‖un,r‖ + η̄

λ(C2,δ)γ
,

where r̄Φ1
:= c̄Φ1 +ε̄Φ1 , r̄Φ2

:= c̄Φ2 +ε̄Φ2 , r̄Ψ := m(c̄Ψ+ε̄Φ), and η̄ ∈ R>0, then, σ(x(t)) → 0m

for t → ∞.

Proof. See Appendix B.3.

Similarly to the case of the standard DNN-ISM, the above theorem implies two result.

The former one is the achievement of a sliding mode in an ς-vicinity of the sliding manifold
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6.1. DNN-ISM with State Constraints Avoidance

σ(x(t)) = 0m in a finite time, as in Proposition 5.4. The latter is the existence of a discon-

tinuous gain ρ̄ that ensures an ideal sliding mode even if the weights of the DNNs have not

been tuned.

Proposition 6.1. If one follows the same steps reported in the proof of Theorem 6.1, and

relies on the bounds of the system and the ideal weights for bounding the approximation

error, it holds that if

ρ̄ = ρ̄1 + ρ̄2

(

δa ‖un,a‖ + (1 − δa) ‖un,r‖
)

+
η̄

λ(C2,δ)γ
, (6.17)

where

ρ̄1 =
‖C1,δ‖

(

V̄ kΦ + f̄1

)

+ ‖C2,δ‖
(

V̄ kΦ + f̄2 + h̄
)

λ(C2,δ)γ
, (6.18a)

ρ̄2 =
‖C2,δ‖

(

ŪkΨ + γ̄
)

λ(C2,δ)γ
, (6.18b)

with η̄ ∈ R>0, then σ(x(t)) = 0m for t ≥ t0.

By virtue of the above results, it is possible to enforce an ideal sliding mode σ(x(t)) = 0m

for t ≥ t2 by applying the adaptive strategy described below Proposition 5.4. In particular,

as soon as a practical sliding mode ‖σ(x(t))‖ ≤ ς is enforced, the weight adaptation of the

DNNs is stopped and the discontinuous control gain is adapted according to the following

theorem.

Theorem 6.2. Consider the nonlinear system in (6.2) and integral sliding variable σ in

(6.10). For t > t1, with t1 being the one defined in Proposition 5.4 , let (6.2) be controlled

via ISM control law u in (6.8), where the switching law is designed as

ur(t) = −
(

ρ̂1(t) + ρ̂2(t)
(

δa ‖un,a‖ + (1 − δa) ‖un,r‖
)

)

σ(x(t))

‖σ(x(t))‖ ,

where ρ̂1(t1) and ρ̂2(t1) are so that ρ̂1(t1) + ρ̂2(t1)
(

δa ‖un,a‖ + (1 − δa) ‖un,r‖
)

satisfies

Theorem 6.1. Moreover, let vec
(

V̇j

)

= 0 for j ∈ {0, 1, . . . , kΦ} and vec
(

U̇j

)

= 0 for j ∈
{0, 1, . . . , kΨ}. If Assumptions 5.1 - 5.6 hold and the discontinuous control gain components

are adapted according to

˙̂ρ1(t) = proj
%1

((‖C2,δ‖ γ̄ + α1) ‖σ‖) , (6.19a)

˙̂ρ2(t) = proj
%2

((

‖C2,δ‖ γ̄
(

δa ‖un,a + (1 − δa) ‖un,r‖‖
)

+ α2

)

‖σ‖
)

, (6.19b)

with α1, α2 ∈ R>0 being constants acting as learning rates, γ̄ being the one appearing in

Assumption 5.2, %1 := {r ∈ R>0 : r ≤ ρ̄1} and %2 := {r ∈ R>0 : r ≤ ρ̄2}, then a sliding

mode σ(x(t)) = 0m is enforced for t ≥ t2, with t1 < t2 < ∞.

Proof. See Appendix B.4.
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6.1.4 Simulations

In this simulation, the control scheme in Figure 6.1 is assessed on a planar version of the

Franka Emika Panda panda robot, whose state space model is given in (5.72). In particular,

only the joints 2, 4, and 6 are controlled, while the others are kept locked, making the robot

planar. Hence, it holds that q, q̇, q̈ ∈ R
3, x =

[

q> q̇>
]>

∈ X ⊂ R
6, f1 : X → R

3,

f2 : X → R
3, B̄ : X → R

3×3. Since f1 ≡ q̇ is measurable, only the mappings f2 and B̄ are

estimated via the DNNs Φ̂ : X → R
3 and Ψ̂ : X → R

9, respectively. The two networks are

characterized by kΦ = kΨ = 2 hidden layers with 16 neurons, and they are updated with

adaptation rate matrices ΓΦj
= 10 I and ΓΨj

= I, with I denoting an identity matrix with

suitable dimensions.

The objective of the simulation, which has a duration of 20 seconds and it is charac-

terized by a time-step of 10−4 seconds, is to control the robot so that it tracks a desired

trajectory given by

q?(t) =
[

0.25 sin(2t) − π
2 + 0.75 cos(t) π

2 + 0.9 cos(t)
]>

q̇?(t) =
[

0.5 cos(2t) −0.75 sin(t) −0.9 sin(t)
]>

q̈?(t) =
[

−1 sin(2t) −0.75 cos(t) −0.9 cos(t)
]>

,

while satisfying time-varying constraints on the joint variable vector q, denoted as
¯
q ∈ R

3

and q̄ ∈ R
3 and defined as

¯
q>(t) =























[

−1.76 −3.07 −0.0175
]

if t < 11 s
[

−1.32 −2.3 −0.013
]

if 11 ≤ t < 16 s
[

−1.58 −2.76 −0.0157
]

if t ≥ 16 s

q̄>(t) =























[

1.76 −0.06 3.75
]

if t < 11 s
[

1.32 −0.045 2.812
]

if 11 ≤ t < 16 s
[

1.58 −0.054 3.375
]

if t ≥ 16 s.

Moreover, the robot is affected by a matched disturbance

h(t) =
[

0.05 + 0.05 cos(8t) 0.075 sin(2t) 0.01 cos(10t)
]>

.

To accomplish that, the matrices appearing in the conventional sliding variable (6.5)

are chosen as C1,a = C1,r = C2,a = C2,r = I3, while the stabilizing control laws in (6.9a)

are designed as

un,r(t) = −
(

vec−1
(

Ψ̂kΨ

))+ {

Φ̂kΦ
+K1,r

(

q(t) − q?(t)
)

+K2,r

(

q̇(t) − q̇?(t)
)

− q̈?(t)
}

,

un,a(t) = −
(

vec−1
(

Ψ̂kΨ

))+ {

Φ̂kΦ
+Ka

(

x(t) − xs(t)
)}

,

where K1,r = K2,r = 5 I3, Ka = 10 I6. The safe state xs has been selected as

xs(t) = x(t) + 0.2
x(t) − xc(t)

‖x(t) − xc(t)‖ ,
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while the safety threshold in (6.6) has been chosen as d? =
√

0.05. The discontinuous control

gain is designed as ρ = 0.5 + 1.5 ‖un‖, while the threshold that stops the adaptation of the

DNNs and triggers the adaptation of the discontinuous gain is ς = 0.002.

The results of the simulation are reported in Figure 6.2. From them, it is possible

to observe how the robot is successfully controlled toward the reference trajectory, while

avoiding the time-varying non-admissible states. As for the sliding variable, it tends to zero

after a first time interval in which the transient variable is not correctly updated due to the

non accurate approximations produced by the DNNs. It is important to notice that, in the

initial phase, it may be possible possible that the non admissible states are not avoided, due

to an incorrect values of the weights. In case the avoidance of the non-admissible states is

safety-critical, one could mitigate such a problem by relying on an available initial estimate

of the DNNs weights.

Figure 6.2: Time evolution of the joint positions, sliding variable components and

control input when the planar version of the robot is controlled using the control

scheme in Figure 6.1.

6.2 DNN based MPC/ISM

The idea of combining MPC and ISM has been introduced and expanded in the last decade

in works like [107, 108, 109, 110, 111]. In particular, the idea in those works is to design

a MPC/ISM control architecture like the one in Figure 6.3, in which an ISM controller is
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Chapter 6. DNN-ISM with State and Input Constraints

employed to counteract the effect of the matched disturbances, while the unmatched ones

are dealt via robust MPC with tightened constraints.

The complete knowledge of the nominal dynamics of the system is required for the

design both MPC and ISM. Inspired by the DNN-ISM framework, a modified version of

the MPC/ISM controller in which the model of the system is estimated online has been

proposed in [112] to deal with soft state and input constraints. In this section, such a

control architecture is presented and analyzed.

MPC
uMPC

System
x

ISM

uISM

Figure 6.3: Block diagram of the MPC/ISM control architecture.

6.2.1 Problem Formulation

Consider the nonlinear perturbed system in (5.1), with f1(x(t)) = x2(t), i.e.,

ẋ(t) =

[

ẋ1(t)

ẋ2(t)

]

=

[

x2(t)

f2(x(t), t) + B̄(x(t), t)u(t) + h(x(t), t)

]

, (6.20)

where x ∈ X ⊂ R
n, with n = 2m, is the state vector, while u ∈ R

m is the input vector.

The drift dynamics f2 and the control effectiveness B̄ satisfy Assumption 5.1 and 5.2,

respectively. As for the matched disturbance h, it is bounded as in Assumption 5.3.

When controlling the system in (6.20), it can be desirable to define some state and input

constraint

x ∈ Xc ⊂ X , (6.21a)

u ∈ U ⊂ R
m, (6.21b)

with Xc and U being compact sets containing the origin. In this case, the set U is defined

by putting constraints on each element of the input vector, i.e.,

U := {u ∈ R
m : ui ≤ ui ≤ ūi,∀i}, (6.22)

where ui, ūi ∈ R, with ui < ūi represent the lower and upper bound for the i-th component

of the control vector, with i ∈ {1, 2, . . . ,m}.

Inspired by [108, 109, 107], one can control system in (6.20), rejecting the matched

disturbance while satisfying the constraints in (6.21b), implementing an MPC controller

with ISM generations.
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6.2. DNN based MPC/ISM

Let x? =
[

(x?
1)> (x?

2)>
]>

∈ R
n be a desired state, and define the conventional sliding

variable σ0 in (2.69) as

σ0(x(t)) = C1

(

x1(t) − x?
1(t)

)

+ C2

(

x2(t) − x?
2(t)

)

,

with C1 ∈ R
m×m and C2 ∈ R

m×m being design matrices. Moreover, C2 satisfies Assumption

5.4. As for the transient variable in z(x(t)) in (2.69), it is characterized by dynamics

ż(x(t)) = C1x2(t) + C2

(

f2(x(t), t) + B̄(x(t), t)uMPC(t)
)

, (6.23)

with z(x(t0)) = σ0(x(t0)) and where uMP C ∈ R
m is an MPC law, defined later. As for the

complete control law, it is given by

u(t) = un(t) + ur(t)

= uMPC(t) − ρ
σ(x(t))

‖σ(x(t))‖ . (6.24)

Since part of the control law must be employed for compensating the matched distur-

bance and, at the same time, it is required that u(t) ∈ U , for all t ≥ t0, then it is convenient

to define a reduced constraint set for the input

Ū(t) :=

{

u ∈ R
m : ui + ρ

σi(x(t))

|σi(x(t))| ≤ ui ≤ ūi − ρ
σi(x(t))

|σi(x(t))| ,∀i
}

(6.25)

with σi ∈ R being the i-th component of the integral sliding variable, and design the MPC

such that uMPC(t) ∈ Ū(t).

Since the ISM controller is able to provide robustness against the matched disturbance

from the initial time instant, the MPC controller can be designed considering h(x(t), t) =

0m. To this end, one can solve a Finite-Horizon Optimal Control Problem (FHOCP).

In particular, let tk ≥ t0 be the time instant in which the signal uMPC must be computed,

then a suitably designed cost function has to be minimized with respect to the control

sequence u[tk,tk+N−1], with N ∈ N>0 being the prediction horizon. Such a cost function can

be defined as

J(x(tk), u[tk,tk+N−1], N) =

∫ tk+N−1

tk

l(x(τ), u(τ))dτ + Vf (x(tk+N )), (6.26)

where l : Xc × Ū → R≥0 is the stage cost, chosen as

l(x(τ), u(τ)) = ‖x(τ) − x?‖2
Q + ‖u(τ)‖2

R

with Q ∈ R
n×n and R ∈ R

m×m being positive definite matrices. As for Vf : Xc → R≥0,

it is the so-called terminal cost, instrumental for ensuring the stability of the closed loop

system, chosen, for example, as

Vf (x(tk+N )) = ‖x(tk+N )‖2
Π , (6.27)

where Π ∈ R
n×n is a positive definite matrix. Moreover, the so-called terminal constraint

x(tk+N ) ∈ Xf must be introduced, where the terminal set Xf ⊆ Xc is defined as

Xf = {x : ‖x‖2
Π < ξ}, (6.28)
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with ξ ∈ R>0. A possible choice for the terminal cost and the terminal constraint is the one

proposed in [107].

Therefore, MPC problem can be formulated as

min
u[tk,tk+N−1]

J(x(tk), u[tk,tk+N−1], N)

s.t. dynamics (6.20) with h(x(t), t) = 0m

x(tk) ∈ Xc, ∀tk ∈ [tk, tk+N−1]

u(tk) ∈ Ū , ∀tk ∈ [tk, tk+N−1]

x(tk+N ) ∈ Xf , (6.29)

and its result is the optimal control sequence uo
[tk,tk+N−1]. Finally, according to the Receding

Horizon principle, the control input applied to the system is the first element of the optimal

control sequence, denoted by uMPC(t) = uo(tk), ∀t ∈ [tk, tk+1), with uo(tk) resulting from

(6.29).

6.2.2 The DNN-ISM based MPC scheme

ur in (6.24)
+

+

u
System in (6.20)

∫ xẋ

+

+

AUX in (6.38)
uaux

MPC in (6.34)

uMPC

Control

Selector

δ

DNN Φ̂

DNN Ψ̂

˙̂z in (6.32)

σ0 in (6.31)

Adaptation laws

in (5.45), (5.48) and (5.49)

∫

−

+

σ

Figure 6.4: Block diagram of the DNN based MPC/ISM control architecture. The

blocks associated with the control law are colored in yellow, the ones related to the

sliding variable in blue, and the ones corresponding to the DNNs and their update

in green.

Since the dynamics of the system (6.20) is assumed unknown, two DNNs are employed
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6.2. DNN based MPC/ISM

to estimate it, as in (5.14) and (5.17). Hence, the integral sliding variable is defined as

σ(x(t)) = σ0(x(t)) + ẑ(x(t)), (6.30)

where σ0 is defined as

σ0(x(t)) = x2(t), (6.31)

while the dynamics of the transient variable depends on the DNNs as

˙̂z(x(t)) = Φ̂
[2]
kΦ

+
m
∑

i=1

Ψ̂
[i]
kΨ
uMPC,i(t), (6.32)

with initial conditions ẑ(x(t0)) = σ0(x(t0)).

As for the control law, it is the one in (6.24), with integral sliding variable σ being defined

as in (6.30). Recalling that f1(x(t)) = x2(t) and, from (6.31), C2 = Im, one can choose the

discontinuous control gain ρ as in Theorem 5.1. In particular, under the assumptions of the

same theorem, selecting ρ as

ρ >
‖Im‖ {c̄Φ2

+ ε̄Φ2
+m(c̄Ψ + ε̄Ψ) ‖uMPC‖ + h̄} + η̄

λ(C2)γ
, (6.33)

with η̄ ∈ R>0, implies that σ(x(t)) → 0m for t → ∞. As a consequence, as introduced in

Proposition 5.4, there exists t1 ≥ t0 such that a practical sliding mode ‖σ(x(t))‖ ≤ ς, with

ς ∈ R>0.

Due to the particular choice of (6.20), the enforcement of a practical sliding mode

‖σ(x(t))‖ ≤ ς implies that, in the worst case, the error on x2 provided by the DNNs is equal

ς. Such a fact is clear if one expands σ in the above practical sliding mode condition as

‖σ(x(t))‖ =

∥

∥

∥

∥

∫ t

t0

σ̇0(x(τ)) − ˙̂z(x(τ))dτ

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∫ t

t0

ẋ2(τ) − Φ̂
[2]
kΦ

+

m
∑

i=1

Ψ̂
[i]
kΨ
uMPC,i(τ)dτ

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∫ t

t0

Φ̃
[2]
kΦ

+ ε
[2]
Φ +

m
∑

i=1

(

Ψ
[i]
kΨ

+ ε
(i)
Φ

)

ui(τ) +

m
∑

i=1

Ψ̂
[i]
kΨ
uMPC,i(τ)dτ

∥

∥

∥

∥

∥

≤ ς.

This allows to formulate a reduced constraints set X̄c ⊂ Xc, obtained from the set Xc

with a tightened boundary of (tk+N−1 − tk)ς in the x1 direction and ς in the x2 direction.

Then, the DNN-ISM based MPC problem can be formulated as

min
u[tk,tk+N−1]

J(x(tk), u[tk,tk+N−1], N)

s.t. ẋ =

[

x2

Φ̂
[2]
kΦ

+
∑m

i=1 Ψ̂
[i]
kΨ
ui

]

x(tk) ∈ X̄c, ∀tk ∈ [tk, tk+N−1]

u(tk) ∈ Ū , ∀tk ∈ [tk, tk+N−1]

x(tk+N ) ∈ Xf , (6.34)
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where the cost J and the terminal set Xf are chosen as in (6.26) and (6.28), respectively.

Then, similarly as in the ideal case, the control input is chosen as the first element of the

optimal control sequence uo
[tk,tk+N−1], denoted as uo(tk), resulting from (6.34), i.e.,

uMPC(t) = uo(tk),∀t ∈ [tk, tk+1]. (6.35)

If, on the one hand, one can formulate the MPC problem in (6.34) from time instant t1
in which the practical sliding mode ‖σ(x(t))‖ ≤ ς is enforced, on the other it is difficult to

formulate the tightened set X̄c for t ∈ [t0, t1).

In [112], a solution that relies on the use of an auxiliary control law, depicted in Figure

6.4, has been proposed. In particular, the control law in (6.24) is modified as

u(t) = un(t) + ur(t)

= δ(t)uMPC(t) + (1 − δ(t))uaux(t) − ρ
σ(x(t))

‖σ(x(t))‖ , (6.36)

where uaux ∈ R
m is an auxiliary control law that stabilizes the system while the weights of

the DNNs are adapting. As for δ ∈ {0, 1}, it is defined as

δ(t) =







0 if ‖σ(x(t))‖ > ς,

1 if ‖σ(x(t))‖ ≤ ς,
(6.37)

having ς determining the trading-off utilization time and the conservativeness if the MPC

controller. In particular, an higher value of ς implies a lower value of t1, but a tighter set

X̄c.

The choice of the auxiliary control law uaux depends on the behavior that one wants

to impose while the weights of the DNNs are adapting. A choice could be the feedback

linearizing control law

uaux(t) = −
(

vec−1
(

Ψ̂kΨ

))+ (

Φ̂
[2]
kΦ

+K(x(t) − x?)
)

, (6.38)

where K ∈ R
m×n is a suitably chosen design matrix, while the operator (·)+ represents the

Moore-Penrose pseudoinverse operator defined in Definition 4.2. Clearly, the law (6.38) does

not provide guarantees on the satisfaction on the state and input constraints are provided

in the case of ‖σ‖ > ς. Hence, the use of an auxiliary control law is not suitable for safety-

critical constraints. Nevertheless, the DNN based MPC/ISM presented in this section is very

useful when one wants to apply soft constraints on a system with fully unknown dynamics

and it represents a first step forward toward formulating robust DNN based MPC/ISM

control schemes for uncertain systems.

6.2.3 Simulations

The DNN-ISM based MPC control architecture in Figure 6.4 has been assessed in simulation

on the Duffing oscillator, described by the dynamics in (2.3) and subject to soft state and

input constraints defined as

Xc := {(x1, x2) ∈ [−1.8, 1.8] × [−1.57, 1.57]}
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6.3. DNN-ISM with Barrier Functions

U := {u ∈ R : |u| ≤ 10},

respectively. The model is assumed fully unknown and it is estimated by means of the two

networks in Section 5.5.1.

The objective of the simulation, whose duration is 30 seconds, is to control the system

such that it reaches a time-varying equilibrium state defined as x? =
[

0.5 0
]>

∈ Xc for

t ∈ [0, 10) seconds, x? =
[

1.95 0
]>

/∈ Xc for t ∈ [10, 20) seconds, and x? =
[

0.35 0
]>

∈
Xc for t ≥ 20 seconds, while being subject to a matched disturbance h(t) = 0.1 sin(t). To

accomplish that, the control law is defined as in (6.36), where the MPC has a cost which

is quadratic and characterized by weights Q = 100I2 and R = 5, the prediction horizon is

chosen as N = 20, with a discretization step tk+1 − tk = 0.05 seconds. The auxiliary control

law uaux is chosen as in (5.71), while the flag δ is chosen as in (6.37), with ς = 0.005. As for

the discontinuous control gain, it has been chosen as ρ = 0.15 + 0.05 ‖un‖. The simulation

time-step is set to 10−4 seconds.

The results of the simulation are presented in Figure 6.5, in which the time evolution

of the components of the sliding variable, the state trajectory, and the constrained control

input are presented. Moreover, in Figure 6.6 is depicted a zoom of the norm of the sliding

variable the first instants in which DNNs are being adapted. From that it is possible to see

that after 0.04 seconds the MPC controller is always employed since ‖σ‖ ≤ ε. These results

highlight the capability of the control algorithm in Figure 6.4 of satisfactorily solving the

constrained optimization problem although the system model is completely unavailable.

6.3 DNN-ISM with Barrier Functions

The last DNN-ISM based architecture that takes into account constraints, presented in this

section, relies on the use of a Barrier Lyapunov Function (BLF) for limiting the raise of the

sliding variable during the learning transients, while the nominal control law of the ISM is

generated solving a Quadratic Programming (QP) problem whose constraints are defined a

CLF and a CBF.

6.3.1 Problem Formulation

Consider the nonlinear control-affine system

ẋ(t) = f(x(t), t) + B̄(x(t), t)u(t) + h(x(t), t), (6.39)

where x ∈ X ⊂ R
m is the state vector, u ∈ R

m is the control input vector, while f : X ×
R≥0 → R

m and B̄ : X × R≥0 → R
m×m are, respectively, the drift and control effectiveness

term, satisfying Assumption 5.1 and Assumption 5.2. As for h : X ×R≥0 → R
m, it represents

the matched disturbance acting on the system and it satisfies Assumption 5.3.

The objective is to control the system in (6.39) toward the origin, while maintaining

the system states in an admissible set Xa ⊂ X , having x(t) ∈ Xa, for all t ≥ t0 or, in other
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Chapter 6. DNN-ISM with State and Input Constraints

Figure 6.5: Time evolution of the system states, control input, and sliding variable

components during the simulation. The state and input constraints X and Ū are

depicted with green solid lines.
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jj<
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Figure 6.6: Zoom of the norm of the sliding variable during the adaptation tran-

sient, along the MPC activation threshold ς

words, to make the set Xa forward invariant. To accomplish that, it is possible to design an

ISM control law

u(t) = un(t) + ur(t) = uqp(t) − ρ
σ(x(t))

‖σ(x(t))‖ , (6.40)

where the integral sliding variable σ(x(t)) is defined as the difference between the conven-
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6.3. DNN-ISM with Barrier Functions

tional sliding variable σ0, and the transient variable z. In this case

σ0(x(t)) = x(t), (6.41)

leading to

σ(x(t)) = σ0(x(t)) − z(x(t))

= x(t) − x(t0) −
∫ t

t0

f(x(τ), τ) + B̄(x(τ), τ)uqp(τ)dτ. (6.42)

The signal uqp is a nominal control law that, in the case h(x(t), t) = 0m, stabilizes the state

in the origin, while ensuring x(t) ∈ Xa, for all t ≥ t0. Such a signal is obtained is used by

solving an QP problem which includes a CLF and a CBF [113].

Since the components of the dynamics (6.39) are not available, the DNN-ISM method

described in Chapter 5 could be employed. However, this last one should be modified so that

it is possible to ensure that x(t) ∈ Xa. Such a modification involves the use of a so-called

BLF [114].

6.3.2 Preliminaries on BLFs, CLFs, and CBFs

Before introducing the complete control methodology, some preliminary concepts about

CLFs, CBFs, and BLFs, are presented in the following.

Barrier Lyapunov Functions

Let Ω ⊂ R
m be an an open set containing the origin as an interior point. A BLF is a smooth

scalar positive definite function β : Ω → R such that

lim
y→∂Ω

β(y) = +∞. (6.43)

where ∂Ω denotes the boundary of Ω. In particular, a BLF satisfies that β(y(t)) ≤ β̄, for

t ≥ t0 along the trajectories of y(t), with β̄ ∈ R+ if y(0) ∈ Ω. A BLF can be used to

certify stability of a desired equilibrium point, together with the invariance property of Ω

[114, 115].

Control Lyapunov and Control Barrier Functions

In many cases it is possible to describe the admissible region Xa ⊂ R
m via the superlevel

set of a suitably smooth function ϑ : Rm → R, i.e.,

Xa := {x ∈ R
m : ϑ(x) ≥ 0}.

Definition 6.1 (CBF [113]). Consider the admissible set Xa ⊂ R
m. Then, the function

ϑ : Rm → R is a CBF if there exists a control law u(t) such that ϑ̇(x, u) ≥ −α(ϑ(x)) or, in

terms of Lie derivatives

sup
u∈U

Lfϑ(x) +

m
∑

i=1

LB̄(i)ϑ(x)ui ≥ −α(ϑ(x)), (6.44)
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where α : R → R is an extended class K∞ function, i.e., strictly increasing function on R

with α(0) = 0.

From Definition 6.1, it is possible to identify the set of control vectors that makes the

set Xa invariant for every point in the state space as

I(x) =

{

u ∈ U : Lfϑ(x) +

n
∑

i=1

LB̄(i)ϑ(x)ui ≥ −α(ϑ(x))

}

, (6.45)

where U is the set of input constraints. In the following, this last one is defined as a ball

centered in the origin

U :=
{

u ∈ R
m : ‖u‖ ≤ Ū

}

. (6.46)

Similarly, one can define the set of controllers that stabilize system (6.39). Such a set

is defined with respect to a Lyapunov function V : X → R>0, which certifies stability when

u(t) satisfies V̇(x, u) < 0. Hence, the set of stabilizing controllers with respect to v can be

expressed in function of its Lie derivatives as

S(x) =

{

u ∈ U : Lf V(x) +

m
∑

i=1

LB̄(i)V(x)ui ≤ −ξ(V(x))

}

, (6.47)

where ξ : R≥0 → R≥0 is a class K∞ function.

The following lemma shows how it is possible to find a controller which, at the same

time, stabilizes the system (6.39) and makes Xa forward invariant.

Lemma 6.1 (CBF/CLF QP [116]). It is possible to generate controller u? ∈ I(x)∩ S(x),

with I(x) and S(x) defined as in (6.45) and (6.47), respectively, by solving the QP problem

u? = argmin
u,δ

J(u, δ) =
1

2
‖u‖2

R +
l

2
δ2 (6.48a)

s.t. Lf V(x) +

m
∑

i=1

LB̄(i)V(x)ui ≤ δ − ξ(V(x)) (6.48b)

Lfϑ(x) +

m
∑

i=1

LB̄(i)ϑ(x)ui ≥ −α(ϑ(x)) (6.48c)

(u, δ) ∈ U × R≥0 (6.48d)

where R ∈ R
m×m is the symmetric positive definite input weight matrix, while l ∈ R>0 is

the weight associated with the optimization variable δ, which is the so-called slack variable,

i.e., a relaxation variable that can assume positive values.

Note that, the solution of (6.48) has δ > 0 when the forward invariance of Xa is favored

over the convergence rate of V(x) imposed by −ξ(V(x)). Moreover, if for some x ∈ R
m it

holds that I(x) ∩ S(x) = ∅, meaning that constraints (6.48b) and (6.48c) are conflicting

when δ = 0, then δ > 0 allows to find a feasible solution which is makes Xa forward invariant,

but V(x) non-decreasing.
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6.3. DNN-ISM with Barrier Functions

The QP problem (6.48) can be employed as a filter for a stabilizing control control law

ua ∈ S(x) and possibly ua /∈ I(x), referred to as auxiliary controller, such that ua ∈ I(x),

as described in the following lemma.

Lemma 6.2 (CBF/CLF QP as filter [113]). Assume that there exists a known stabiliz-

ing controller ua ∈ S(x) which may not make Xa forward invariant. Then, if I(x)∩ S(x) 6=
∅, one can generate a control signal u? ∈ I(x) ∩ S(x) applying the minimum perturbation

to ua obtained solving the QP problem (6.48) with the modified cost function

J(u, δ) =
1

2
‖u− ua‖2

R +
l

2
δ2. (6.49)

6.3.3 The DNN-ISM scheme with CBFs, CLFs, and BLFs

In the following, the DNN-ISM control scheme that relies on CBFs, CLFs, and BLFs,

depicted in Figure 6.7, is presented. Such a scheme is composed by a BLF-based DNN-ISM

controller that, relying on estimates DNNs, reject the disturbance. The stabilizing law of

the DNN-ISM is instead generated by solving a CBF/CLF QP problem which takes into

account the approximation uncertainties.

ur in (6.40)
+

+

u
System in (6.39)

∫ xẋ

CBF/CLF QP in (6.58d)
uqp

DNN Φ̂

DNN Ψ̂

˙̂z in (6.50)

σ0 in (6.41)

BLF in (6.52)
Adaptation laws

in (6.53), (6.54) and (6.55)

∫ẑ
−

+

σ

Figure 6.7: Block diagram of the BLF based DNN-ISM control architecture with

CBF/CLF based QP. The yellow blocks are related to the control law, the green

ones to the DNNs and their adaptation, while the blue ones are associated with the

sliding variable.

The BLF-based DNN-ISM scheme

Since the dynamics terms f and B̄ in (6.39) are unknown, they are estimated using two

DNNs Φ̂ and Ψ̂, as in (5.14) and (5.17). Note that, due to the structure of the considered
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system, it is not required to divide the components of the last layer of Φ̂ as did in Chapter

5, hence Φ̂
[1]
kΦ

≡ Φ̂
[2]
kΦ

≡ Φ̂kΦ
.

The estimates are then employed for the computation of the integral sliding variable,

choosing

˙̂z(x(t)) = Φ̂kΦ
+

m
∑

i=1

Ψ̂
[i]
kΨ
uqp,i(t), (6.50)

with ẑ(x(t0)) = σ0(x(t0)). Recalling that σ0(x(t)) is defined as in (6.41), it holds that

σ(x(t)) = σ0(x(t)) − z(x(t))

= x(t) − x(t0) −
∫ t

t0

Φ̂kΦ
+

m
∑

i=1

Ψ̂
[i]
kΨ
uqp,i(τ)dτ. (6.51)

In order to successfully define the CBF/CLF QP, described in the next subsection,

which is required to generate uqp so that the controlled system is stable and the set Xa is

forward invariant, it required that, at every time instant, the approximation error of the

DNNs is bounded by a known constant.

By virtue of the integral sliding variable definition in (6.51), this can be achieved by

designing a BLF β : Rm → R which limits σ into the set

Ωσ := {σ ∈ R
m : ‖σ‖ ≤ εσ},

with εσ ∈ R>0. In particular, β must be chosen so that

lim
‖σ‖→εσ

β(σ(x(t))) = +∞. (6.52)

The BLF is directly employed in the design of the weights adaptation law. In particular,

the of the DNN Φ̂ are updated according to

vec
(

˙̂
Vj

)

= proj
BΦj

(

ΓΦj
(ΛΦj

)> dβ

d ‖σ‖2σ

)

, (6.53)

for j ∈ {0, 1, . . . , kΦ}, where ΓΦj
∈ R

LΦj
LΦj+1

×LΦj
LΦj+1 is the adaptation rate matrix, while

ΛΦj
∈ R

m×LΦj
LΦj+1 is the one defined in (5.26b).

As for the Ψ̂, for j ∈ {0, 1, . . . , kΨ − 1}, the weights are adapted according to

vec
(

˙̂
Uj

)

= proj
BΨj

(

ΓΨj

(

m
∑

i=1

uqp,i(Λ
[i]
Ψj

)>

)

dβ

d ‖σ‖2σ

)

, (6.54)

with ΓΨj
∈ R

LΨj
LΨj+1

×LΨj
LΨj+1 is the adaptation rate matrix, ΛΨj

∈ R
m×LΨj

LΨj+1 is the

one in (5.37b). For j = kΨ, the weight sub-matrices are characterized by dynamics

vec
(

˙̂
U

[i]
j

)

= proj
BΨj

(

ΓΨkΨ
uqp,i(Λ

[i]
Ψj

)> dβ

d ‖σ‖2σ

)

, (6.55)

with i ∈ {1, 2, . . . ,m}, where ΓΨkΨ
∈ R

mLkΨ
×mLkΨ is the diagonal matrix of the adaptation

rates, while Λ
[i]
ΨkΨ

∈ R
m×mLkΨ is the one defined below equation (5.37).
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6.3. DNN-ISM with Barrier Functions

Theorem 6.3. Consider the nonlinear system in (6.39), controlled via ISM control law u

in (6.40), with integral sliding variable σ defined as in (6.51). Moreover, the DNNs weights

are adapted according to the adaptation laws (6.53), (6.54), and (6.55). If Assumptions 5.1

- 5.6 and Proposition 5.2 hold, β is chosen so that it satisfies (6.52), and

ρ =
c̄Φ + ε̄Φ +m(c̄Ψ + ε̄Ψ) ‖uqp‖ + h̄+ η̄

γ
,

with η̄ ∈ R>0 being a design parameter, then, σ(x(t)) → 0m for t → ∞, and it is guaranteed

that ‖σ(x(t))‖ ≤ εσ.

Proof. See appendix B.5

Before introducing the QP problem that is solved to generate the control law uqp, the

following assumption needs to be introduced.

Assumption 6.2. The set Xa can be made forward invariant by the control uqp ∈ Ū ⊂ U ,

with U being the one in (6.46) and Ū defined as

Ū :=

{

u ∈ R
m : ‖u‖ ≤ Ū − ρ1

1 + ρ2

}

, (6.56)

where ρ1 = c̄Φ+ε̄Φ+h̄+η̄
γ

∈ R>0 and ρ2 = m(c̄Ψ+ε̄Ψ)
γ

∈ R>0 are derived from the discontinuous

control gain ρ in Theorem 6.3.

The modified CBF/CLF QP problem

Since the dynamics of (6.39) is unknown, one has to rely on the estimates obtained from

the neural networks to solve the QP in (6.48). Recalling that the integral sliding variable in

(6.51) represents the approximation error of the network and that Theorem 6.3 ensures that

‖σ(x(t))‖ ≤ εσ, the original barrier function ϑ(x) has to be modified in order to prevent

the system trajectory to leave the set Xa.

Theorem 6.4. Consider system in in (6.39), controlled with BLF-based DNN-ISM con-

troller with gain chosen as in Theorem 6.3. Moreover, consider the reduced input constraints

set Ū defined in Assumption 6.2 and let ϑ̂ : Rm → R be a CBF such that a tightened ad-

missible set X̂a ⊂ Xa can be defined as

X̂a :=
{

ϑ̂(x) ≥ 0
}

= Xa \ {x ∈ Xa : dist(x, ∂Xa) ≤ εσ} . (6.57)

If the the signal uqp is generated solving the QP problem

uqp = argmin
u,δ

1

2
‖u‖2

R +
l

2
δ2 (6.58a)

s.t. LΦ̂kΦ
V(x) +

m
∑

i=1

L
Ψ̂

[i]

kΨ

V(x)ui ≤ δ − ξ(V(x)) (6.58b)

LΦ̂kΦ
ϑ̂(x) +

m
∑

i=1

L
Ψ̂

[i]

kΨ

ϑ̂(x) ≥ −α(ϑ̂(x)) (6.58c)
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X2

S2u2

x2

a2

S1

X1x1

u1

a1

Figure 6.8: Graphical representation of the double tank system employed in the

simulation.

(u, δ) ∈ Ū × R≥0 (6.58d)

where ξ : R → R and α : R → R are, respectively, class K∞ and extended class K∞ func-

tions, and V : X → R>0 is a Lyapunov function that ensures the stability of the controlled

system, then the forward invariance of the original admissible set Xa is guaranteed.

Proof. See Appendix B.6.

6.3.4 Simulations

The control scheme in Figure 6.7 has been tested on the double tank system (inspired by

[117]), depicted in Figure 6.8 and described by

ẋ(t) =

[

ẋ1(t)

ẋ2(t)

]

=

[

− a1

S1

√

2gx1(t) + a2

S2

√

2gx2(t) + 1
S1
u1(t) + h1(t)

− a2

S2

√

2gx2(t) + 1
S2
u2(t) + h2(t)

]

(6.59)

where x1, x2 [m] are the water levels of the two tanks, S1 = 0.017 [m2], S2 = 0.031 [m2] are

the tanks cross-sections, a1 = a2 = 0.007[m2] are the sections of the output valves, and

g = 9.81[m/s2] is the gravitational acceleration. The input variables u1, u2 [m3/s] represent

the input flows, and the disturbance is chosen as h1 = 0.025 sin(6πt), h2 = 0.015 cos(8πt).

The system in (6.59) can be expressed in the form (6.39), with

f(x) =

[

− a1

S1

√
2gx1 + a2

S2

√
2gx2

− a2

S2

√
2gx2

]

, B̄(x) =

[

1
S1

0

0 1
S2

]

, u =

[

u1

u2

]

, h =

[

h1

h2

]

.

The drift dynamics and the control effectiveness matrix are assumed unknown and they

are estimated using two DNNs Φ̂ and Ψ̂, characterized by kΦ = kΨ = 2 hidden layers with

8 neurons each. The weights of such DNNs are updated relying on adaptation matrices

ΓΦj
= ΓΨj

= 10 I, while the and BLF is chosen as

β(σ) = − log

(

ε2
σ

ε2
σ − ‖σ‖2

)

,

with εσ = 0.05.
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The objective of the simulation, whose duration is 1.5 seconds with a time-step of 5·10−4

seconds, is to follow a piece-wise constant reference signal x? ∈ R
2, defined as

x?(t) =























[

0.8 0.4
]>

/∈ Xa if t ∈ [0, 0.25)
[

0.4 0
]>

/∈ Xa if t ∈ [0.25, 0.6)
[

0.5 0.185
]>

∈ Xa if t ≥ 0.6

while satisfying state and input constraints, defined as Xa :=
{

x ∈ X : x ∈ [0.05, 0.7]2
}

and

U := {‖u‖ ≤ 0.5}, respectively. For the smooth set in (6.45), the CBF has been chosen

as ϑ(x) = 0.3254 − (x1 − 0.375)4 − (x2 − 0.375)4. The robust CBF used for defining the

tightened state constraints set (6.57), is ϑ̂(x) = 0.2754 − (x1 − 0.375)
4 − (x2 − 0.375)

4 with

α(ϑ̂) = ϑ̂, while the CLF in (6.58b) is V = ‖x− x?‖2 with ξ(V) = 0.01V. The weights of

the cost (6.58a) have been chosen as R = 100 I2 and l = 100. The discontinuous control

gain has been chosen setting ρ1 = ρ2 = 0.05, having the tightened input set being defined

as Ū := {u ∈ R
2 : ‖u‖ ≤ 0.4285}.

The results of the simulation are reported in Figure 6.9 and Figure 6.10. In particular,

the former shows how the states are successfully steered toward the desired equilibrium

when this last one belongs to the admissible set Xa, while in the other case the states stops

at ∂X̂a, defined by the CBF ϑ̂. Moreover, the third and fourth plot of Figure 6.9 show how

both the complete control signal u and the nominal control law qqp resulting from (6.58)

satisfy the constraint sets U and Ū , respectively. Finally, from Figure 6.10 it is possible to

see how, even during the first transient in which the DNNs are adapting, the BLF maintains

the norm of the sliding variable bounded.
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Figure 6.9: Time evolution of the system states (first and second plots), norm of

the full control input (third plot), and norm of the nominal control input resulting

from the QP problem (6.58)(fourth plot).

133



6.3. DNN-ISM with Barrier Functions

0 0.2 0.4 0.6 0.8 1 1.2

-0.4

-0.2

0

0.2

0.4

<
0;

1
,
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Figure 6.10: Time evolution of the sliding variable components (first and second

plots) and norm of the sliding variable vector, along with the bound imposed by

the BLF (third plot).
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Chapter 7

Fault Diagnosis via DNN-ISM

based UIO

Fault Diagnosis (FD) in an essential operation that aims to reduce the risk of damages

of systems affected by faults. In particular, FD determines the causes of deviation of the

control status from the desired behavior, and interprets such status given the measurements

from sensors, or on the basis of the process model [118]. The FD is divided in three different

procedures. Specifically, the detection procedure allows to understand when a fault occurs

in the system, without any knowledge on the specific faulty component, the isolation allows

to understand which one is the faulty component of the system, while the identification

task reconstructs the fault signals. In general, FD methodologies can be divided in passive

and active. To the former category, in which, independently of any fault information, an

input signal is fed into the actual process and also into its nominal model, and then the

corresponding output signals are analyzed, belong the techniques presented in works like

[119] and [120]. While, to the latter, which exploit the injection of specific signals in order

to improve the detectability of faults, belong approaches like [121, 122, 123], among many

others. Other methodologies rely on robust control approaches, like H∞ [124], multi-model

approaches [125], LQR [126], and MPC [127], to cite a few.

During the years, SMC based techniques have been developed and adopted in several

works (see, e.g., [128] , [129], and [130]) in different fault scenarios. With the objective of

increasing the robustness of SMC, having also the possibility to define a specific dynamics

of the observation error, one could rely on an ISM based Unknown Input Observer (UIO).

However, as detailed in Section 2.4, ISM requires the knowledge of the system dynamics.

In this chapter, the FD scheme proposed in [131] which relies on a DNN-ISM based

UIO, is presented. In particular, such a scheme is able to perform diagnosis on the control

input even when the nominal model of the system is partially unavailable, estimating online

the unknown part of the dynamics.
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7.1 The considered faulted system

Considered a nonlinear control affine system affected by actuator fault, expressed in the

canonical reduced form

ẋ(t) =

[

ẋ1(t)

ẋ2(t)

]

=





f1(x(t), t)

f2(x(t), t) + B̄(x(t), t)
(

u(t) + ∆u(x(t), t)
)



 , (7.1)

where x ∈ X is the system state vector, f1 : X × R≥0 → R
n−m and f2 : X × R≥0 → R

m

are the components of the drift term, B̄ : X × R≥0 → R
m×m is the control effectiveness

matrix. The last three elements are bounded as in Assumption 5.1 and 5.2. As for u ∈ R
m

and ∆u : X × R≥0 → R
m, they represent, respectively, the control input, and the actuator

fault.

Note that, the actuator fault is modeled as an additive disturbance entering the system

through the input channel and it satisfies the following assumption.

Assumption 7.1. There exists a known constant δ̄ ∈ R>0 such that

sup
x∈X ,t∈R≥0

‖∆u(x(t), t)‖ ≤ δ̄.

Before introducing the concept of ISM UIO, it is worth noticing that, in the rest of the

chapter u(t) = κ(x(t)), with κ : X → R
m being any suitable control law for the system

without faults, i.e., ∆u(t) = 0m.

7.2 ISM Unknown Input Observer

Assume that the dynamics components of system (7.1), i.e., f1, f2, and B̄ are available.

Then, since the objective is to perform fault diagnosis in presence of actuator fault, one can

design a UIO of the form

˙̂x(t) =

[

˙̂x1(t)

˙̂x2(t)

]

=





f1(x̂(t), t)

f2(x̂(t), t) + B̄(x̂(t), t)
(

u(t) + v(t)
)



 , (7.2)

with x̂(t0) = x(t0) and where v ∈ R
m is the input of the observer, designed according the

ISM strategy as

v(t) = vn(t) + vr(t), (7.3)

where vn ∈ R
m is chosen to stabilize the observer error e(t) = x(t) − x̂(t) ∈ R

n in the case

∆u(x(t), t) = 0m. As for vr ∈ R
m, it is chosen as

vr = ρ
σ(x(t))

‖σ(x(t))‖ , (7.4)

where σ : X → R
m is the integral sliding variable, defined as in (2.69), i.e., σ(x(t)) =

σ0(x(t)) − z(x(t)). The conventional sliding variable is defined as the linear combination of

the observation error, having

σ0(x(t)) = C1

(

x1(t) − x̂1(t)
)

+ C2

(

x2(t) − x̂2(t)
)

, (7.5)
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with C1 ∈ R
m×(n−m) and C2 ∈ R

m×m being design matrices. In particular, C2 must be

chosen so that it satisfies Assumption 5.4.

As for the transient variable, it is chosen so that z(x(t0)) = σ0(x(t0)), ensuring σ(x(t0)) =

0m. Specifically, it is characterized by dynamics

ż = C1

{

f1(x) − f1(x̂)
}

+ C2

{

f2(x) − f2(x̂) +
(

B̄(x) − B̄(x̂)
)

u− B̄(x̂)vn

}

, (7.6)

where dependence on time is omitted for sake of readability.

As detailed in the following, properly selecting the discontinuous control gain ρ in (7.4),

one can enforce a sliding mode σ(x(t)) = 0m for t ≥ t0 and exploit the concept of equivalent

control to provide an estimate ∆u(x(t), t).

Theorem 7.1. Consider the faulty system (7.1) and the UIO in (7.2), characterized by

input v in (7.3). If Assumption 7.1 holds, and ρ in (7.4) is chosen so such that

ρ >
‖C2‖ γ̄
λ(C2)γ

δ̄,

then a sliding mode σ(x(t)) = 0m is enforced for t ≥ t0. Moreover, letting veq be the

equivalent control signal, it holds that

veq(t) = (B(x̂))+B(x)∆u(t).

Proof. See Appendix B.7.

As detailed in [36], veq is often obtained using a first-older filter with in input the

discontinuous signal vr. In particular, veq(t) ≈ v̂eq(t), with this last one coming from

µ ˙̂veq(t) = vr(t) − v̂eq(t), (7.7)

with v̂eq(t0) = 0m and where µ ∈ (0, 1) is a filtering constant.

Note that, the results presented in this section are valid only in the case in which the

model of the system (7.1) is completely available. In the following, the dynamics of (7.1) is

considered partially unknown.

7.3 DNN-ISM Unknown Input Observer

Inspired by the DNN-ISM control strategy presented in Chapter 5, it is possible to design an

UIO when part of the dynamics of (7.1) is not available and design. In particular, the drift

dynamics components f1 and f2 are considered unknown, while the control effectiveness

matrix B̄ is available. Hence, coherently with the DNN-ISM framework, f1 and f2 are

estimated by a DNN Φ as in (5.14).

With these premises, consider the UIO defined as

˙̂x(t) =





0n−m

B̄(x̂(t), t)
(

u(t) + v(t)
)



 , (7.8)
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κ(x)
u

u

+
+

∆u

System in 7.1
∫ x

+
+ v

UIO in (7.1)
∫ x̂ +−

vn

++

σ0 in (7.5)

DNN Φ̂˙̂z in (7.10)
∫

+
−σ

vr in (7.4)

Filter in

(7.7)

v̂eq

Adaptation laws

in (7.11) and (7.12)

Figure 7.1: Block diagram of the DNN-ISM based UIO. The blocks associated

with the sliding variable are colored in blue, the ones related to the DNNs in green,

while the ones in yellow are related to the UIO and its input.

where v is the one in (7.3), with modified integral sliding variable

σ(x(t)) = σ0(x(t)) − ẑ(x(t)). (7.9)

In this case, the transient variable ẑ is characterized by dynamics dependent on the estimate

provided by the DNN, having

˙̂z = C1Φ̂
[1]
kΦ

+ C2

{

Φ̂
[2]
kΦ

+
(

B̄(x) − B̄(x̂)
)

u− B̄(x̂)vn

}

(7.10)

Before going on with the analysis, it is worth noticing that the input of the DNN is state

of (7.1), and not the one of the observer, i.e., Φ̂kΦ
= Φ̂(x).

Analogously to what was previously done for the DNN-ISM control strategy, in this case

the weights of the DNN Φ̂ are adapted according to law derived from Lyapunov stability

analysis. In particular, for layers j ∈ {0, 1, . . . , kΦ − 1}, the weights are adjusted according

to

vec
(

˙̂
Vj

)

= proj
BΦj

(

ΓΦj
Λ>

Φj
C>σ

)

∈ R
LΦj

LΦj+1 , (7.11)

where ΛΦj
∈ R

n×LΦj
LΦj+1 is the one defined in (5.46). ΓΦj

∈ R
LΦj

LΦj+1
×LΦj

LΦj+1 is the

adaptation rate matrix, defined as diagonal with positive entries. The weights sub-matrices

associated with the last layer j = kΦ are adjusted according to

vec
(

˙̂
V

[1]
kΦ

)

= proj
BΦkΦ

(

Γ
[1]
ΦkΦ

(Λ
[1]
ΦkΦ

)>C>
1 σ

)

∈ R
LkΦ

(n−m), (7.12a)
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vec
(

˙̂
V

[2]
kΦ

)

= proj
BΦkΦ

(

Γ
[2]
ΦkΦ

(Λ
[2]
ΦkΦ

)>C>
2 σ

)

∈ R
LkΦ

m, (7.12b)

where Γ
[1]
ΦkΦ

∈ R
(n−m)LkΦ

×(n−m)LkΦ and Γ
[2]
ΦkΦ

∈ R
mLkΦ

×mLkΦ are diagonal matrices with

positive entries, while Λ
[1]
ΦkΦ

∈ R
(n−m)×(n−m)LkΦ and Λ

[2]
ΦkΦ

∈ R
m×mLkΦ are the ones defined

below equation (5.28).

Theorem 7.2. Consider the system (7.1), the UIO (7.8), with input (7.3) and integral

sliding variable (7.9). Then, let the weights of the DNN be updated according to (7.11),

(7.12a), and (7.12b). If Assumptions 5.1, 5.2, 5.6, and 7.1 hold, and the discontinuous

control gain is chosen as

ρ >
‖C1‖ {c̄Φ1

+ ε̄Φ1
} + ‖C2‖ {c̄Φ2

+ ε̄Φ2
+ δ̄} + η̄

λ(C2)γ
,

with η̄ ∈ R>0, then σ(x(t)) → 0m for t → ∞.

Proof. See Appendix B.8

The above theorem only guarantees that a sliding mode σ(x(t)) = 0m is achieved

asymptotically. However, such a condition is required to exploit the equivalent control and

provide an estimate of the fault acting on the system. However, similar considerations done

for the DNN-ISM in Chapter 5 can be made. In particular, from Theorem 7.2 follows that

a practical sliding mode condition ‖σ(x(t))‖ ≤ ς is satisfied for t ≥ t1 > t0. Moreover, from

the same theorem it is possible to compute the discontinuous control gain which would

enforce an ideal sliding mode σ(x(t)) = 0m, independently from the initialization of the

weights.

Proposition 7.1. Following the same reasoning reported in the proof of Theorem 7.2, and

relying on the bounds of the system and the ideal weights for bounding the approximation

error, it holds that if

ρ̄ =
‖C1‖

(

V̄ kΦ + f̄1

)

+ ‖C2‖
(

V̄ kΦ + f̄2 + δ̄
)

λ(C2)γ
+

η̄

λ(C2)γ
, (7.13)

with η̄ ∈ R>0, then σ(x(t)) = 0m for t ≥ t0.

The above results legitimate the use of the strategy presented below Proposition 5.4 to

enforce an ideal sliding mode σ(x(t)) = 0m in finite time. In particular, let t1 > t0 be the

time instant in which the practical sliding mode condition ‖σ(x(t))‖ ≤ ς is satisfied, then,

the adaptation of the weights of the DNN is interrupted and the discontinuous control gain

is adjusted according to the law presented in the following theorem.

Theorem 7.3. Consider the system (7.1), the UIO (7.8), with input (7.3) and integral

sliding variable (7.9). For t ≥ t1, with t1 being the one defined in Proposition 5.4, let the

input of UIO (7.8) be the one in (7.3), where vris designed as

vr(t) = ρ̂(t)
σ(x(t))

‖σ(x(t))‖ ,
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with ρ̂(t1) and ρ̂2(t1) chosen so that it satisfies Theorem 7.2. Moreover, let vec
(

V̇j

)

= 0

for j ∈ {0, 1, . . . , kΦ}. If Assumptions 5.1, 5.2, - 5.6, and 7.1 hold and the discontinuous

control gain is adapted according to

˙̂ρ(t) = proj
%

((

λ̄(C2)γ̄ + α
)

‖σ‖
)

, (7.14a)

with α ∈ R>0 being a constant acting as a learning rate, γ̄ being the one appearing in

Assumption 5.2 and % := {r ∈ R>0 : r ≤ ρ̄}, then a sliding mode σ(x(t)) = 0m is enforced

for t ≥ t2, with t1 < t2 < ∞.

Moreover, the equivalent control signal is

veq(t) =
(

C2B̄(x̂(t), t)
)−1{

C1

[

Φ̃
[1]
kΦ,t1

+ ε
[1]
Φ (x(t))

]

+ C2

[

Φ̃
[2]
kΦ,t1

+ ε
[2]
Φ (x(t))

]}

+

+
(

C2B̄(x̂(t), t)
)−1

C2B̄∆u(t), (7.15)

where Φ̃
[1]
kΦ,t1

and Φ̃
[2]
kΦ,t1

denote the approximation error between the ideal DNN and the one

characterized by weights V̂j(t1), for j ∈ {0, 1, . . . , kΦ}.

Proof. See Appendix B.9.

From (7.15) it is possible to conclude that, when using the DNN to approximate the

unknown drift term of the system, the quality of the estimation of the fault is reduced. In

particular, the better is the approximation of the weights at time t1, the more the equivalent

control signals follows the fault.

Recall that, once again, a continuous approximation for veq is possible via the filter

defined in (7.7).

7.4 Simulations

The fault diagnosis scheme depicted in Figure 7.1 is assessed in simulation relying on the

Duffing Oscillator model in (2.3), assumed partially unknown. In particular, the control

effectiveness B̄ is assumed available, while the drift term f2 is assumed unknown and esti-

mated with the DNN described in Section 5.5.1.

The objective of the simulation, whose duration is 20 seconds, is to provide an estimate of

un unknown fault ∆u acting on the system, which is controlled to reach a desired state x? =
[

1.5 0
]>

, defining u as simple PI controller. The fault is defined as ∆u(t) = 0.1 sin(2πt) +

0.05 cos(πt) for t ∈ [0, 15) seconds, and ∆u(t) = 0.1 sin(2πt) for t ≥ 15 seconds. The

conventional sliding variable has been chosen as the linear combination of the observation

error, with coefficients equal to one. As for the UIO input, it is defined by a nominal law

defined as

vn(t) =
[

2 2
]

(x(t) − x̂(t)) +
[

0.5 0.5
]

∫ t

0

(x(τ) − x̂(τ))dτ,

while the discontinuous control gain is chosen as ρ = 0.175. The equivalent control is

approximated by filtering the discontinuous part of the observer input vr by means of the

low pass filter ˙̂veq(t) = 100(vr(t) − v̂eq(t)), with v̂eq(0) = 0.
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The results of the simulation are depicted in Figure 7.2, which illustrates the time

evolution of the system and observer states, the components of the sliding variable, and

the approximated equivalent control compared with the actuator fault ∆u acting on the

system. In particular, it is possible to see how, once the practical sliding mode is enforced,

v̂eq satisfactorily estimates the fault ∆u, and the UIO states x̂ practically converge to the

real states of the system.
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Figure 7.2: Time evolution of the system and UIO states, the sliding variable

components, the actual fault injected into the system, and its estimate.
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Chapter 8

SM based Fault Diagnosis with

DRL add-ons for Redundant

Manipulators

In general, robots may be susceptible to different types of faults which can occur simulta-

neously on both sensors and actuators, perturbing the robot operations [132]. the model

of a robot manipulator is nonlinear and presents strong coupling of the states, making the

effect of the different faults coupled, hence the application of standards FD techniques (e.g.,

[133, 134, 135]), which neglect coupling effects, is not suitable in many cases.

In order to decouple the effects of fault signals acting on sensors and actuators, it is

possible to add external vision sensors, like proposed in [136]. In particular, such a paper

introduced a vision sensor to enhance the FD capability of the proposed scheme SMC based

observers. Such a work has been extended in [137], in which a nonlinear coupled planar

manipulator is transformed into a set of decoupled linear systems using the so-called inverse

dynamics approach. Then, sensors fault diagnosis is done relying on a low-cost IP camera,

which extrapolates the correct position of the end-effector, while actuator fault diagnosis is

done via a battery of Suboptimal Second Order Sliding Mode (SSOSM) [33] UIOs.

The aim of this chapter is to present the FD scheme introduced in [138], in which a

DRL agent and a battery of Second Order Sliding Mode (SOSM) [44] UIOs are employed

to perform sensor and actuator FD, respectively. Differently from previous works, the ma-

nipulator considered in [138] is not planar and it is characterized by kinematic redundancy.

In particular, the output of the model-free DRL agent is employed to correct the corrupted

sensor measurements before they are used by the UIOs.
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8.1 Problem Formulation

Consider a redundant robot manipulator, i.e., one that is characterized by n > p revolute

joints, with p ∈ N>0 being the dimension of the operational space. The kinematic and

dynamic model of the manipulator are derived according to the methodology presented in

Chapter 4. For convenience, the main elements of the modeling are reported in the following.

8.1.1 Robot Model

Coherently with the notation introduced in Chapter 4, the vector of the joint variables is

denoted as q ∈ R
n. Then, defining a base reference frame Ob − xbybzb fixed in space and a

reference frame Oe −xeyeze attached to the end-effector, it is possible to express the forward

kinematics of the manipulator by means of the homogeneous transformation matrix

T b
e (q) =

[

Rb
e(q) pb

e(q)

0>
3 1

]

, (8.1)

with pb
e ∈ R

3 and Rb
e ∈ SO(3) being the position and orientation of Oe with respect to Ob,

respectively.

As for the dynamics of the manipulator, it is described by

M(q)q̈ + C(q, q̇)q̇ + Fv q̇ + Fssign (q̇) + g(q) = τ, (8.2)

where M(q) ∈ R
n×n is the inertia matrix, C(q, q̇)q̇ ∈ R

n is the vector modeling the Coriolis

and centrifugal forces, Fv q̇ ∈ R
n and Fssign (q̇) ∈ R

n represent viscous and Coulomb

friction, respectively, g(q) ∈ R
n is the vector of gravitational torques, while τ ∈ R

n is the

input torque. Moreover, if one defines the quantity

ν(q, q̇) = C(q, q̇)q̇ + Fv q̇ + Fssign (q̇) + g(q), (8.3)

the model in (8.2) can be expressed in a more compact form as

M(q)q̈ + ν(q, q̇) = τ. (8.4)

The following assumption about the robot model holds.

Assumption 8.1. The inertia matrix M ∈ R
n×n and the vector ν ∈ R

n are known.

8.1.2 Faults Modeling

Let δq : R≥0 → R
n and δτ : R≥0 → R

n be the time-varying vectors containing sensor and

actuator faults, respectively. Then, it is possible to define the quantities

q̃(t) := q(t) + δq(t), (8.5a)

τ̃(t) := τ(t) + δτ (t), (8.5b)

that describe, respectively, the joint positions measured by the faulted sensors, and the

faulted input that will be applied to the robot.

Moreover, the following assumption about the fault vectors holds.
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Assumption 8.2. There exist some known constants d̄q, d̄τ ∈ R>0 such that

sup
t∈R≥0

‖δq(t)‖ ≤ d̄q, sup
t∈R≥0

‖δτ (t)‖ ≤ d̄τ .

8.1.3 Problem Statement

Consider any task in the operational space that can be described by p < n variables. Assume

that all the joint variables are measurable from the encoders embedded in the robot joints,

and these are susceptible to faults, while external sensors (e.g., a vision sensors) are capable

to directly retrieve only the end-effector position pb
e without being affected by any possible

fault. Furthermore, assume that, during the task execution, any Fault Event (FE) from the

ones in Table 8.1 can occur.

FE # Description

1 Single fault on an actuator

2 Single fault on a sensor

3 Multiple faults on actuators

4 Multiple faults on sensors

5 Multiple mixed faults

Table 8.1: Possible fault events (FEs) during the task execution.

The goal is to design a FD scheme capable of providing, at each time instant t, the

estimates δ̂q(t) ∈ R
n and δ̂τ (t) ∈ R

n of the sensor and actuator faults with the objective of

minimizing the performance index

I(t) := Is(t) + Ia(t), (8.6)

with the terms Is ∈ R≥0 and Ia ∈ R≥0 being defined as

Is(t) :=
∥

∥

∥
δ̂q(t) − δq(t)

∥

∥

∥
, (8.7)

Ia(t) :=
∥

∥

∥
δ̂τ (t) − δτ (t)

∥

∥

∥
. (8.8)

8.2 Inverse Dynamics control

In order to design the fault diagnosis scheme, the dynamics of the controlled robots must

be decoupled so that it is in the form of a perturbed double integrator. To accomplish that,

the so-called inverse dynamics control [24], whose architecture is depicted in Figure 8.1,

can be applied.

Assume, for now, that no fault is affecting neither the sensors or the actuators of the

robot, i.e., δq(t) = 0n and δτ (t) = 0n. Then, the inverse dynamics of a robot manipulator
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Robot
q

ν(q, q̇)

+

+

τ
M(q)Control

y

+

−

q⋆

Figure 8.1: Inverse dynamic control architecture.

with dynamics in (8.4), can be expressed as a nonlinear relationship between inputs and

outputs. In particular, let y ∈ R
n be an auxiliary control vector that describes some desired

behavior to the robot in terms of joint accelerations. Then, designing the control torque as

τ = M(q)y + ν(q, q̇) (8.9)

and substituting it into (8.4), the dynamics of the controlled robot becomes

q̈(t) = y(t), (8.10)

that is a chain of n decoupled double integrators, one for each joint of the robot.

Consider now δq(t) 6= 0n and δq(t) 6= 0n. Then, the control law (8.9) becomes

τ = M(q̃)y + ν(q̃, ˙̃q) + δτ . (8.11)

Substituting it into (8.4), one has that

q̈ = M−1(q)
(

τ − ν(q, q̇)
)

= M−1(q)M(q̃)y +M−1(q)ν(q̃, ˙̃q) +M−1(q)δτ −M−1(q)ν(q, q̇).

= G(q, q̃)y + ν̃(q, q̇, q̃, ˙̃q) + δy (8.12)

where G(q, q̃) = M−1(q)M(q̃) ∈ R
n×n, ν̃(q, q̇, q̃, ˙̃q) = M−1(q)

(

ν(q̃, ˙̃q) − ν(q, q̇)
)

∈ R
n, while

δy ∈ R
n denotes the acceleration fault induced by the actuator fault δτ and it is defined as

δy(q, t) = M−1(q)δτ (t). (8.13)

The following assumption about G(q, q̃) = M−1(q)M(q̃), ν̃(q, q̇, q̃, ˙̃q), and δy needs to

be introduced.

Assumption 8.3. There exist some known constants g̃, ¯̃ν ∈ R≥0 such that the quantities

G(q, q̃) and ν̃(q, q̇, q̃, ˙̃q) are bounded as

sup
q,q̃∈Rn

‖G(q, q̃)‖ ≤ g̃, sup
q,q̇,q̃, ˙̃q∈Rn

∥

∥ν̃(q, q̇, q̃, ˙̃q)
∥

∥ ≤ ¯̃ν.
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Assumption 8.4. There exists a known constant d̄y ∈ R>0 such that the acceleration fault

δy is bounded as

sup
q∈Rn,t∈R≥0

‖δy(q, t)‖ ≤ d̄y.

Note that, even though the control of the faulted robot is beyond the scope of this

chapter, Assumptions 8.3 and 8.4 are instrumental for designing a controller capable of

guaranteeing the closed-loop stability in presence of model mismatches.

8.3 The Fault Diagnosis Scheme

In order to solve the problem introduced in Section 8.1.3, a fault diagnosis scheme which

relies on SOSM UIOs and a DRL agent, depicted in Figure 8.2, has been introduced in

[138].

Control
y

+

+

δė

M−1(q)

δĀ

M(qc)
+

+

Robot
τ̃ q

ν(qc, q̇c)

+

+
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δ̂Ā
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q⋆

Figure 8.2: Block diagram of the FD scheme. The blocks in yellow are related

to the inverse dynamics, the ones in blue are associated with the estimation and

compensation of the sensor faults, while the blocks responsible for the actuator

faults estimation are colored in red.

8.3.1 Sensor fault diagnosis with DRL

To perform diagnosis of sensor faults concurrently occurring on multiple joints, a model-free

DRL agent, trained with the TD3 algorithm described in Algorithm 3, has been designed.

Although the application of the proposed architecture to an intrinsically redundant robot

might increase the computational complexity for the DRL, it has the advantage to overcome

possible issues due to the kinematic inversion which could lead to multiple (possibly infinite)

solutions.

Before describing the DRL agent, the following assumption must be introduced.

Assumption 8.5. The vector of the end-effector position pb
e ∈ R

3 is available for measure-

ment for all t ∈ R≥0.
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Note that, such an assumption is reasonable since, in the practice, pb
e can be retrieved

using, vision sensors, e.g., multiple stereo cameras or an Red Green Blue Depth (RGBD)

camera.

Making reference to the notation introduced in Section 3.2, the environment is repre-

sented by the state space S which depends on the end-effector position vector pb
e ∈ R

3,

assumed known in Assumption 8.5, and the joint variable vector affected by faults q̃ ∈ R
n,

defined as in (8.5a). In particular, S is given by

S := {pe
b, q̃} ⊂ R

n+3. (8.14)

Since the the agent is to provide an estimate of the sensor fault, the bounded action

space A is defined as

A :=
{

δ̂q,1, δ̂q,2, . . . , δ̂q,n

}

⊂ R
n, (8.15)

with δ̂q,i ∈ R being the estimate of the fault on the i-th sensor. Moreover, each component

of the action is bounded as

¯
ai ≤ δ̂q,i ≤ āi, (8.16)

for i ∈ {1, 2, . . . , n}, with
¯
ai, āi ∈ R>0 being design parameters depending on d̄q introduced

in Assumption 8.2.

Since the action space in (8.15) is defined so that the output is limited as in (8.16), and

the sensor fault vector δq is bounded as in Assumption 8.2, the following holds.

Proposition 8.1. There exists a constant E ∈ R≥0 such that the sensor fault estimation

error δ̂q − δq is bounded as

sup
t∈R≥0

∥

∥

∥
δ̂q(t) − δq(t)

∥

∥

∥
≤ E.

The DRL agent has been trained with the TD3 algorithm, relying on a realistic virtu-

alization of the robot (see Appendix C.3). In particular, during the training phase different

sensor fault signals δq are injected into the system, and the reward function, used to assign

a value to each action, is designed as

rt = −Is(t), (8.17)

where Is is defined as in (8.7).

During the training phase, the robot is controlled to follow predefined trajectories in the

joint space and at each time step, data from the simulated sensors is retrieved and constant

faults δq,i, with, i = {1, 2, . . . n}, each characterized by random amplitude, are added. The

result, along with the end-effector position, is given as input to the DRL agent, which is

trained as described in Algorithm 3, using (8.17) as an instantaneous reward.

Once the training phase is completed, the weights of the DNNs of the DRL are kept

constant for the online test phase, in which the robot is controlled to follow a specific

trajectory, while being subject to faults. Note that, since the control y does not belong to

the state space S, it does not affect the sensor fault estimate δ̂q.
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Such an estimate is then employed to perform both detection and isolation by building

a vector of flags fs ∈ {0, 1}n, whose elements are defined as

fs,i =







0, if
¯
∆s,i ≤ δ̂q,i ≤ ∆̄s,i

1, otherwise
(8.18)

where
¯
∆s,i ∈ R and ∆̄s,i ∈ R, with

¯
∆s,i < ∆̄s,i, are design constants indicating the i-th

lower and upper thresholds, respectively. Note that, in an ideal scenario,
¯
∆s,i = ∆̄s,i = 0,

but possible estimation errors, caused also by imprecisions coming from the DRL agent,

may occur.

Moreover, by analyzing the time evolution of δ̂q, it is possible to compensate the fault

and use a “corrected” version of the signals coming from the faulted sensors to build the

control loop. Specifically, let qc ∈ R
n be defined as

qc,i =







q̃i − δ̂q,i, if fs,i = 1,

q̃i, otherwise
(8.19)

for i ∈ {1, 2, . . . , n}, meaning that the signal coming from the sensor is corrected only if the

a fault is detected on the same sensor.

Then, qc is used to perform the Inverse dynamic control

τ = M(qc)y + ν(qv, q̇c) + δτ , (8.20)

as shown in Figure 8.2.

8.3.2 Actuator FD with SOSM UIOs

Exploiting the nominal integrator chain model of the robot in (8.10) and employing the

corrected joint variables measures qc for the inverse dynamics control, it holds that

q̈c(t) = y(t) + δy(q, t) (8.21)

with δy in (8.13). Hence, it is possible to design an battery of UIOs, one for each joint, to

provide an estimate of actuators faults.

In particular, define the UIO model as

¨̂qc(t) = y(t) + v(t), (8.22)

where q̂c ∈ R
n are the states of the observer and v ∈ R

n is the observer input.

Let e1(t) = qc(t) − q̂c(t) be the observation error and e2(t) = ė1(t) its first time-

derivative. The objective is to design a sliding mode based observer that ensures convergence

to zero of the estimation error within an optimal reaching time or, in the case in which the

worst realization of the uncertain terms occurs, within a minimum time. Making reference

to [44], a SOSM law to accomplish such an objective can be designed.
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Define the sliding variable σ1 ∈ R
n as the combination of the estimation error and its

derivative, with each component defined as

σ1,i(t) = βe1,i(t) + e2,i(t), (8.23)

for i ∈ {1, 2, . . . , n}, where β ∈ R>0 is a design constant. If one computes the first time-

derivative of (8.23) relying on (8.22) its relative degree is equal to 1, so that a first order

sliding mode law would apply.

Having as a goal the design of the SOSM law in [44], an auxiliary system, with relative

degree 2, can be defined as


















σ̇1,i(t) = σ2,i(t)

σ̇2,i(t) = f(e2,i, qc,i, ẏi) − wi(t)

wi(t) = v̇i(t)

(8.24)

where wi ∈ R is the new observer input, while the drift term f : R × R × R → R is defined

as

f(e2,i, qc,i, ẏi) = βiė2,i(t) +
d(3)qc,i(t)

dt3
− ẏi.

By virtue of the mechanical nature of the robotic system, the following assumption holds.

Assumption 8.6. There exists a known constant Fi ∈ R>0 such that the drift term

f(e2,i, qc,i, ẏi) is bounded as

sup
e2,i,qc,i,ẏi∈R

|f(e2,i, qc,i, ẏi)| ≤ Fi

for i ∈ {1, 2, . . . , n}.

Then, the auxiliary observer input wi is designed as

wi(t) = αisign
(

σ1,i(t) +
σ2,i(t)|σ2,i(t)|

2αr,i

)

, (8.25)

with αi > Fi being the control gain, and αr,i ∈ R>0 the so-called reduced control amplitude

defined as

αr,i := αi − Fi, (8.26)

which represents the minimum control amplitude to cope with the worst realization of the

drift uncertain term.

The following result can be introduced convergence of the sliding variables to zero.

Theorem 8.1. Consider the robotic system described by (8.4), controlled by the inverse

dynamics law in (8.20), which relies on the estimates provided by the DRL agent. If As-

sumption 8.6 holds and f(e2,i, qc,i, ẏi) = −Fisign (wi), then all the components σ1,i(t) of the

auxiliary system (8.24), controlled by (8.25), are steered to zero in minimum time.

Proof. See Appendix B.10
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Theorem 8.1 ensures the finite-time convergence to zero of the sliding variable and its

first time-derivative, implying that the error signals e1,i(t) and e2,i(t) exponentially decay

to zero constrained to σ1,i(t) = 0 for t ≥ tr, with tr ≥ t0 being the convergence time.

Once in sliding mode, it is possible to exploit equivalent control to provide an estimate

of the acceleration fault δy in (8.13).

Let veq ∈ R
n be the equivalent control vector. Then, its i-th component is derived

solving σ̇1,i = 0 for vi. In particular

σ̇1,i(t) = βe2,i(t) + ė2,i(t)

= βe2,i(t) + q̈c,i(t) − ¨̂qc,i(t)

= βe2,i(t) + yi(t) + δy,i(q, t) − yi(t) − vi(t)

= βe2,i(t) + δy,i(q, t) − veq,i(t) = 0.

Then, since the condition σ1,i = σ2,i = 0 implies that e2,i goes exponentially to zero, it

holds that

lim
t→∞

veq,i(t) = δy,i(q, t). (8.27)

Since the observer input is continuous, one can write the estimate of the i-th component

acceleration fault vector as

δ̂y,i(t) = vi(t) =

∫ t

0

wi(z) dz, (8.28)

meaning that the filtering operation is performed by the integrator in (8.28), and it is

possible to conclude that the signal vi(t) can be used as an estimate of the acceleration

fault δy induced by the actuator fault δτ .

Analogously to what is done for sensor FD, it is possible to define a vector fa ∈ {0, 1}n,

whose elements are given by

fa,i =







0, if
¯
∆a,i ≤ δ̂y,i ≤ ∆̄a,i

1, otherwise
(8.29)

where
¯
∆a,i ∈ R and ∆̄a,i ∈ R, with

¯
∆a,i < ∆̄a,i being the lower and upper thresholds.

Note that, since δτ is related to δy via (8.13), one has that

δ̂τ (t) = M(qc)δ̂y(t), (8.30)

which means that, even though the the above strategy is perfectly able to detect and isolate

the acceleration fault induced by the actuator fault, the estimate of this last one is indeed

related to the quality of the sensor fault estimate, which must be sufficiently accurate,

having the error q − qc sufficiently small.

8.4 Simulations

The performances of the FD scheme depicted in Figure 8.2 have been assessed in simulation

relying on the virtualized model of the Franka Emika Panda, a robot characterized by n = 7
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joints, described in Appendix C. In particular, the robot is controlled to reach a desired

configuration q? ∈ R
7 using a PD controller characterized by gain matrices Kp = 3 I7 and

Kd = 2 I7, while being subject to one of the FE listed in Table 8.1. In all the simulations,

the parameters of the SOSM UIOs are selected as αi = 100, for i ∈ {1, 2, . . . , n}, and β = 1.

Moreover, in order to emulate a more realistic scenario, a white noise with amplitude equal

to 0.2 degrees has been added to the sensor measures. The thresholds in (8.29) are selected

as
¯
∆a,i = −0.5 and ∆̄a,i = 0.5, while those in (8.18) are selected as

¯
∆s,i = −0.026 and

∆̄s,i = 0.026.

The DRL agent employed to perform sensor fault diagnosis relies on the TD3 algorithm

described in in Algorithm 3, with state space S ⊂ R
10, action space A ⊂ R

7 and reward rt

being defined as in (8.14), (8.15), and 8.17, respectively. The training procedure is divided

into episodes, and each episode has a fixed duration of 5 seconds such that at each time-

step the simulation advances of 4.2 milliseconds. During each episode, a vector of random

constant bounded sensor faults δq is injected into the system. In particular, it holds that

|δq,i| ≤ 0.35, for i ∈ {1, 2, . . . , n}. Both the actor and critic are approximated by using

DNNs with an input layer with 10 neurons, 2 hidden layers with 64 neurons each, and an

output layer with 7 neurons. In Figure 8.3 it is illustrated the average cumulative reward

Rt during the training procedure. One can notice that, as expected, the reward tends to

increase during the learning phase, meaning that the agent learns how to perform the fault

diagnosis whenever a sensor failure occurs.
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Figure 8.3: Evolution of the average cumulative reward during the training pro-

cedure.

Scenario FE3: Faults on multiple actuators In this scenario, joints 1, 3, 4, and

6 are affected by actuator fault, having

δy(t) =
[

4 sin(6πt) 0 7 sin(10πt) 3 sin(2πt) 0 8 sin(4πt) 0
]>

. (8.31)

The result of the simulation, depicted in Figure 8.4, show that the battery of SOSM UIOs is

capable of identifying in finite time the fault on the corrupted joints. Then, the Root Mean

Square (RMS) of the estimation error has been computed for all the considered actuators,

and the results are presented in Table 8.2.
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Figure 8.4: Time evolution of the actual and estimated actuator faults for joints

1, 3, 4 and 6 in the case of scenario FE3.

Joint # RMS (δ̂y − δy) [rad s−2]

1 0.2107

3 0.2698

4 0.5392

6 0.2234

Table 8.2: RMS estimation errors for scenario FE3.

Scenario FE4: Faults on multiple sensors In this scenario, the effectiveness of

the proposed DRL algorithm, is assessed. In particular, constant fault signals are injected

into joints 2 and 6, having δq,2 = −0.0309 and δq,6 = 0.1149, with the two quantities

expressed in radians.

The results are satisfactory and illustrated in Figure 8.5, while in Table 8.3 the RMS

estimation errors are reported to confirm the effectiveness of the proposed approach.

Scenario FE5: Faults on multiple sensors and actuators In this scenario,

actuator and sensor faults contemporaneously occurs on the same joint. In particular, joint

1 is affected by a constant sensor fault δq,1 = −0.247 radiance for t ≥ 1.5 and by a sinusoidal

acceleration fault δy,1 = 3 sin(8πt) rad s−2 starting for t ≥ 1, while on joint 7 only an

acceleration fault δy,7 = 5 sin(12πt) rad s−2 occurs from t = 3. The time evolution of the
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Figure 8.5: Time evolution of the actual and estimated sensor faults for joints 2

and 6 in the case of scenario FE4.

Joint # RMS (δ̂q − δq) [rad]

2 0.021

6 0.032

Table 8.3: RMS estimation errors for scenario FE4.

actual and estimated faults is depicted in Figure 8.6, while the RMS od the estimation

errors is presented in Table 8.4.

Joint # RMS (δ̂q − δq) [rad] RMS (δ̂y − δy) [rad s−2]

1 0.031 0.3226

7 - 0.194

Table 8.4: RMS estimation errors for scenario FE5.
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Figure 8.6: Time evolution of the actual and estimated sensor and actuator faults

for joints 1 and 7 in the case of scenario FE5.
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Part IV

Applications to Human-Robot

Interaction
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Chapter 9

Human-Robot Ergonomic

Handover via Adaptive

DNN-ISM

The number of situations in which humans and robots share their workspace has greatly

increased. When there is physical Human Robot Interaction (pHRI) [139], it is fundamental

that such an interaction causes the minimum psycho-physical stress to the human opera-

tor. Indeed, it has been studied how Muscoloskeletal Disorders (MSDs), which are mainly

caused by repetitive work and poor posture, constitute more or less the thirty percent of

all occupational diseases in the United states, Nordic countries, and Japan [140, 141].

Hence, it is fundamental to design comfortable workspaces putting particular attention

into ergonomics [142]. When there is pHRI, this can be done by controlling the robot so

that it adapts its motion to the human operator movements, while still performing the

task proficiently. One of the most common operations that involves collaboration between

humans and robots is the so-called handover, which consists into an exchange of objects

directly from the human to the machine, or vice versa. Usually, the handover operation is

performed by specifying a fixed location and orientation in space. However, such a combi-

nation may not be the most comfortable for the operator and could lead to bad posture

and, if performed for long periods of time, to an increased psycho-physical stress and cause

MSDs.

Such a problem has been addressed in several works, with the objective of developing

strategies for ensuring ergonomic handover. For example, [143] proposes a methodology

that learns the most ergonomic way of passing objects to a person relying on data gathered

during the interaction, while in [144] a whole-body dynamic model of the human operator

is employed with the aim of optimizing the location of the co-manipulation task inside the

workspace.

In general, when an object is grasped by a robotic manipulator, it exerts a torque on
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the joints of this last one, acting as a disturbance that, if not taken into consideration in the

controller design, could interfere with the completion of the task. In such situations, SMC

has been proved to be an effective technique, as detailed in Chapter 2. In order compensate

a disturbance acting on the robotic system, one could rely on ISM control, which, described

in Section 2.4, relies on the complete knowledge of the system dynamics.

In robotic applications, such a knowledge may be not fully available, due to the dif-

ficulty in modeling the Coriolis term and the friction vectors. For this reason, one could

rely on the DNN-ISM framework presented in Chapter 5, using a DNN to estimate the

combination of the aforementioned term. However, as detailed in Chapter 5, this would

require the knowledge of the bounds of the DNN approximation error and on the worst

possible realization of the disturbance induced by the grasped object, which, in the case of

the handover operation, has an unknown mass and shape.

With these premises, the aim of this chapter is to present the work contained in [145],

in which a version of the DNN-ISM with adaptive discontinuous gain is proposed to develop

a strategy for performing human-robot handover operation in an ergonomic way, relying on

an Inertial Measurement Unit (IMU) placed on the back of the operator’s hand.

9.1 Problem Formulation

Consider an open-chain robotic manipulator characterized by n ∈ N>0 joints. As detailed

in Section 4.4, its dynamics are described by

M(q)q̈ + C(q, q̇)q̇ + F (q, q̇) + g(q) = τ + τh, (9.1)

where q, q̇, q̈ ∈ R
n are the vectors of the joint positions, velocities, and accelerations,

respectively, M : Rn → R
n×n is the inertia matrix, which is symmetric, positive definite,

and bounded as in (4.18a), C : Rn ×R
n → R

n×n is the matrix of the Coriolis and centripetal

effects, F : Rn × R
n → R

n is the vector of the friction terms, g : Rn → R
n represents the

gravity components, τ ∈ R
n is the vector of input torques, while τh ∈ R

n represents the

torques induced by external forces acting on the robot during the handover operation.

If one defines the state vector x =
[

q> q̇>
]>

∈ X , with X ⊂ R
2n being a compact

set containing that depends on the mechanical limits of the robot joints, it is possible to

express (9.1) in the canonical reduced form (2.17), having

ẋ(t) =

[

q̇(t)

q̈(t)

]

=





q̇(t)

M(q(t))−1
(

τh(t) − ν(q(t), q̇(t))
)

+M(q(t))−1τ(t)



 , (9.2)

where ν(q, q̇) = C(q, q̇)q̇ + F (q, q̇) + g(q).

Since the dynamical parameters of the object manipulated by the robot during the

handover are not available, the term M(q)−1τh act as a disturbance. Due to the nature of

the object, and from the fact that M(q) is bounded as in (4.18a), the following assumption

holds
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Assumption 9.1. There exists a constant δ̄ ∈ R>0 such that

sup
x∈X

∥

∥M(q)−1τh

∥

∥ ≤ δ̄. (9.3)

Let the model in (9.1) be fully available, with exception of τh. Then, with the objective of

tracking a desired trajectory x? =
[

(q?)> (q̇?)>
]>

∈ X , while compensating the uncertain

term M−1(q)τh, one could design an ISM controller as presented in Section 2.4.

Considering the robot model in (9.2), the ISM controller would be

τ(t) = τn(t) + τr(t), (9.4)

where τn ∈ R
n is a control law that stabilizes the system on the desired trajectory in the

case of τh = 0n, while τr ∈ R
n is the discontinuous robustifying term defined as

τr(t) = −ρ
σ(x(t))

‖σ(x(t))‖ , (9.5)

with ρ ∈ R>0 being the discontinuous control gain, and σ : X → R
n being the so-called

integral sliding variable. This last one is defined as

σ(x(t)) = σ0(x(t)) − z(x(t)). (9.6)

In this case, the conventional sliding variable σ0 : X → R
n is defined as

σ0(x(t)) = C1

[

q(t) − q?(t)
]

+ C2

[

q̇(t) − q̇?(t)
]

, (9.7)

with C1, C2 ∈ R
n×n being symmetric and positive-definite design matrices. As for the

transient variable z : X → R
n, it is characterized by the dynamics

ż(x(t)) = C1

[

q̇(t) − q̇?(t)
]

+ C2

[

M(q(t))−1ν(q(t), q̇(t)) +M(q)−1τn(t) − q̈?(t)
]

, (9.8)

with z(x(t0)) = σ0(x(t0)).

As detailed in [36], if the discontinuous control gain in (9.5) is designed so that it

dominates the worst realization of the external disturbance M(q)−1τh, which is δ̄, then a

sliding mode σ(x(t)) = 0n is established for each t ≥ t0.

The objective is to design a control strategy that allows to perform ergonomic handover

in condition of partially unknown dynamics, in the case in which bounds on the disturbance

or on the DNN approximation error are not available.

9.2 Adaptive DNN-ISM for ergonomic handover

The strategy can be divided into two parts, i.e., the reference generation, whose aim is

to provide a reference trajectory for the robot that enables ergonomic handover, and the

control via adaptive DNN-ISM, whose aim is to track the aforementioned reference, without

relying on conservative bounds.
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9.2.1 Reference generation

In the following, it is assumed, that the objective is to control the robot so that it reaches a

pose comfortable for the human operator, grasps an object with unknown shape and mass

from the operator’s hand, and places it at a predefined location.

Hence, it is possible to divide the handover task into two different phases, i.e., the hand

reaching phase and the object placement phase. The former one, summarized in in the block

diagram in Figure 9.1, is the described in the following.

IMU

Sensor

OĆ

Ď⋆

Ć

RĀ
Ć in (9.10)

ĎĀ

Ć
(Ē0)

eor as in

(9.12)

ĎĀ
ă

−

+

ăpos

q⋆ = q + νJ(q)+e
Forward

Kinematics

ĎĀ
ă

Robot

ď

DNN-AISM
Ā

Figure 9.1: Block diagram of the hand reaching strategy. The blocks responsible

for the computation of the joints reference are colored in yellow.

Let Ob −xbybzb be a fixed reference frame and Oe −xeyeze a reference frame attached to

the end-effector. Then, it is possible to express the forward kinematics of the manipulator

by means of the homogeneous transformation matrix

T b
e (q) =

[

Rb
e(q) pb

e(q)

0>
3 1

]

, (9.9)

with pb
e ∈ R

3 and Rb
e ∈ SO(3) being the position and orientation of Oe with respect to Ob,

respectively. Moreover, let Oh − xhyhzh be a reference frame attached to the IMU sensor

placed on the back of the human operator’s hand. Then, the orientation of Oh with respect

to Ob is denoted by the matrix Rb
h(t) ∈ SO(3).

The following assumption about the desired interaction position is introduced.

Assumption 9.2. The position p?
h ∈ R

3, expressed with respect to the base frame Ob, in

which the contact between the human operator hand and the robot end-effector happen, is

defined a before the execution of the handover task.

The above assumption is reasonable, since p?
h could be defined before the start of the

task by hand guiding the robot end-effector into a position which is considered comfortable

for the operator.
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The same cannot be said for the orientation with which the robot should approach

for the handover operation. In fact, it depends on different aspect, including the shape of

the object exchanged during the interaction. For this reason, such an orientation is defined

relying on measurements of an IMU sensor placed on the back of the operator’s hand, which,

at each time instant, provides the set of orientation angles

Oh(t) = {φ(t), θ(t), ψ(t)},

expressed with respect to its own frame, with this last one being defined at the instant in

which the sensor calibration occurred, i.e., t = t0. The orientation of the operator’s hand

with respect to the fixed base frame Ob is given by

Rb
h(t) = Rb

h(t0)RzĆ
(ψ(t))RyĆ

(θ(t))RxĆ
(φ(t)), (9.10)

where RxĆ
, RyĆ

, RzĆ
∈ SO(3) represent the basic rotations around the sensor axes, while

Rb
h(t0) ∈ SO(3) is the orientation of the IMU with respect to the base frame at the initial

time instant.

In order to compute the reference for the robot joints, the position error and the orien-

tation error should be computed. The former one can be computed easily as

epos(t) = pb
e(t) − p?

h. (9.11)

As for the orientation error, it is computed according to the following procedure. First, the

matrix that describes the orientation of Oh with respect to Oe is defined as

Re
h(t) = (Rb

e(t))−1Rb
h(t)

= (Rb
e(t))>Rb

h(t).

Then, an axis-angle representation of of Re
h is computed according to Algorithm 4, obtaining

an angle α ∈ R and a rotation axis ŵ ∈ R
3. Finally, the rotation error eor ∈ R

3, expressed

in the frame Ob is obtained as

eor(t) = −α(t)Rb
e(t)ŵ(t). (9.12)

The vector of the pose error can be then defined as e =
[

e>
pos e>

or

]>

∈ R
6, and the reference

q? ∈ R
n for the joint positions is computed according to

q?(t) = q(t) + κJ(q(t))+e(t), (9.13)

where κ ∈ R>0 is a design parameter, J ∈ R
n×6 is the geometric Jacobian of the robot,

computed as in (4.8).

The joint reference (9.13) is passed to the adaptive DNN-ISM controller, described

in the next section. As soon as the condition ‖e‖ ≤ εr, with εr ∈ R>0 being a small

design constant, the end-effector is commanded so that it grasps the object. If the grasping

procedure is successfully carried out, the robot is controlled reach a configuration qplace ∈ R
n

and place the object. Hence, in this phase, a reference q? = qplace is provided to the adaptive
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DNN-ISM controller. As soon as ‖q − q?‖ ≤ εp, with εp ∈ R>0 being a small design constant,

the end-effector is commanded to release the object. As soon this last one is released, the

robot reference is generated again according to the block diagram depicted in Figure 9.1,

until the task is completed.

9.2.2 Adaptive DNN-ISM control

The adaptive DNN-ISM controller, depicted in Figure 9.2, and employed to drive the robot

towards the desired configuration in the case of fully unknown dynamics of the object and

partially unknown dynamics of the robot, is presented in the following.

τĐ in (9.5)

Gain adaptation

in (9.22)

+

+

Robot
ď, ď̇ +

−

ď⋆, ď̇⋆, ď̈⋆

τČ in (9.18)

Φ̂ in (9.15)˙̂z in (9.17)
∫

−

+

ÿ

σ0 in (9.7)

Weights adaptation in (9.19)

Figure 9.2: Block diagram of the adaptive DNN-ISM control scheme. The yellow

blocks are associated with the control law, the blue and the green ones are related

to the sliding variable and the DNN, respectively.

Assume the components ν(q, q̇) and τh appearing in (9.2) to be unknown in structure

and unmeasurable. Differently from what done in Section 9.1, in which τh is treated as a

disturbance, in the following it is considered as a part of the dynamics that must be learned.

Thus, as described in Chapter 5, there exists a DNN Φ : X → R
n characterized by ideal

weights such that

τh − ν(q, q̇) = ΦkΦ
+ εΦ. (9.14)

Note that the weights and the approximation error εΦ satisfies Assumption 5.6. Similarly,

a version of the same network, but with estimated weights, denoted as Φ̂, allows to write

τh − ν(q, q̇) = Φ̂kΦ
. (9.15)

Then, it is possible to define the integral sliding variable as

σ(x(t)) = σ0(x(t)) − ẑ(x(t)), (9.16)
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where σ0 is defined as in (9.7), while the dynamics of the transient variable ẑ depends on

the estimate (9.15), having

˙̂z(x(t)) = C1

[

q̇(t) − q̇?(t)
]

+ C2

[

M(q(t))−1Φ̂kΦ
+M(q)−1τn(t) − q̈?(t)

]

, (9.17)

with ẑ(x(t0)) = σ0(x(t0)).

The nominal part τn of the control law in (9.17) and (9.4) is chosen so that it stabilizes

the robot around the trajectory coming defined in Section 9.2.1. In particular, τn is designed

as

τn(t) = −M(q(t))

(

Kp

(

q(t) − q?(t)
)

+Kd

(

q̇(t) − q̇?(t)
)

− q̈?(t)

)

+ Φ̂kΦ
, (9.18)

with Kp, Kd ∈ R
n×n being design matrices with positive entries.

The weights of Φ̂ are updated according to the dynamics given by

vec
(

˙̂
Vj

)

= proj
BΦĈ

(

ΓΦĈ
Λ>

ΦĈ
M−>C>

2 σ
)

, (9.19)

where ΓΦĈ
∈ R

LΦĈ
LΦĈ+1

×LΦĈ
LΦĈ+1 is the diagonal matrix with positive entries which rep-

resent the learning rate, ΛΦĈ
∈ R

n×LΦĈ
LΦĈ+1 is the one defined in (5.26b), while M−> ≡

(M−1)>.

If one applies the reasoning behind Theorem 5.1, it would be possible to conclude that,

if the discontinuous control gain in (9.5) is chosen as ρ = ρ?, with

ρ? >

∥

∥C2M
−1
∥

∥ (c̄Φ + ε̄Φ) + η?

¯
λ(C2M−1)

, (9.20)

where c̄Φ comes from Proposition 5.2, ε̄Φ is the one in Assumption 5.6, and η? ∈ R>0, then

a sliding mode σ(x(t)) = 0n is enforced for t → ∞.

However, c̄Φ and ε̄Φ may be derived by over conservative bounds, resulting in a large

control gain that could cause damage to the robot joints. For this reason, in the following

such quantities are assumed to be unknown and the robustifying control law τr is modified

as

τr(t) = −ρ̂(t)
σ(x(t))

‖σ(x(t))‖ , (9.21)

with ρ̂ ∈ R>0 being now an adaptive parameter.

Theorem 9.1. Consider the robotic manipulator (9.2), the control law τ = τn +τr, with τn

and τr defined as in (9.18) and (9.21), respectively, the integral sliding variable in (9.16),

the weight adaptation laws (9.19). If the discontinuous control gain in (9.21) is adapted as

˙̂ρ = µ ‖σ‖
∥

∥C2M
−1
∥

∥ sign (‖σ‖ − εσ) , (9.22)

with ρ̂(t0) = 0, µ ∈ R>0 being the adaptation rate, and εσ ∈ R>0 being a leaking factor

which allows ρ̂ to decrease when ‖σ‖ < εσ, then σ is ultimately bounded into the set

Ωσ := {σ ∈ R
n : ‖σ‖ ≤ εσ} . (9.23)

Proof. See Appendix B.11
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9.3 Experiment

The ergonomic handover strategy presented in Figure 9.1 and Figure 9.2 has been validated

experimentally on the Franka Emika Panda, a collaborative robot with n = 7 DoF described

in Appendix C. The orientation of the hand are retrieved via the MTw Awinda IMU, worn

by the human operator by means of a glove.

Specifically, such a DNN is characterized by kΦ = 2 hidden layers with 16 neurons,

all activated using the hyperbolic tangent function. The weights are adjusted according to

(9.19), setting each matrix ΓΦĈ
equal to an identity matrix with suitable dimensions. The

gain matrices of the nominal control law in (9.18) are chosen as Kp = Kd = 5 I7. The

parameters of the conventional sliding variable in (9.7) are chosen as C1 = C2 = I7, while

the discontinuous control gain ρ̂ is updated according to (9.22), with µ = 0.85 and εσ = 0.3.

Finally, the reference q? in (9.13) has been generated considering p?
h =

[

0.47 0.18 0.47
]>

[m], and choosing κ = 0.6.

During the experiment, whose duration is 90 seconds, the human operator is required

to perform the handover of four different objects, depicted in Figure 9.3, characterized by

different shape and mass. In particular, the masses of the objects vary from few grams up

to 1.5 kilograms. The results of the experiment are depicted in Figure 9.4. In particular

from the first plot is is possible to see how the the robot pose is successfully driven to the

desired one, dictated by the IMU measurements, thanks to the reference generation scheme

in Figure 9.1. The yellow areas indicate the time instants in which the the flag δg ∈ {0, 1},

defined as δg = 1 if an object has been grasped and δg = 0 otherwise, is equal to one. The

second plot depicts the norm of the integral sliding variable σ. From it, it is possible to

conclude that, except for the times in which objects are grasped or released, resulting in a

change of dynamics and requiring an adaptation of the DNN, a practical sliding mode on

the set Ωσ is achieved successfully. Finally, the third plot depicts the time behavior of the

adaptive discontinuous control gain, showing that, even with reasonably a small value, it is

able to ensure a practical sliding mode.
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Figure 9.3: Instants in which the handover operation is performed. The robot

adapts the pose of its end-effector so that it follows the orientation of the IMU

sensor.
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Figure 9.4: Time evolution of the pose error (first plot), norm of the sliding variable

(second plot), and adaptive control gain (third plot).
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Chapter 10

Vision-based Collision

Avoidance with ISM control for

Collaborative Robots

The task of obstacle detection, i.e., estimation of pose and size of volumes present in the

robot workspace that are different from the target manipulation volume and the collabora-

tive robot (cobot) itself, is fundamental to implement a collision avoidance scheme. One of

the most convenient ways to perform obstacle detection involves the use of RGBD cameras,

which provide information under the form of point clouds. For example, one could process

the point cloud coming from the vision sensor and give them in input to a Convolutional

Neural Network (CNN), whose output gives information about the obstacle, like is made in

[146]. However, one of the main difficulties is that the large quantity of 3D data captured by

sensors could result in computationally expensive algorithms that are ill-suited for real-time

collision avoidance.

The aim of this chapter is to introduce a collision avoidance strategy which, relying

on data provided by a single RGBD sensor, generates a reference for the robot joints that

ensure safety for the human operator. Then, such a reference is followed controlling the

robot with an ISM controller in order to deal with possible uncertainties. In this case, the

neural network component is not embedded directly in the controller but, as detailed later

in the chapter, in the initialization of the obstacle detection scheme.

10.1 Problem Formulation

Consider an open chain robotic manipulator with n ∈ N>0 joints, whose dynamics and

kinematics are expressed as described in Chapter 4, and let Ob − xbybzb be a reference

frame attached to its base.

Then, let Kc(t) ⊂ R
3 denotes the three dimensional point cloud generated by a RGBD
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10.2. The HE calibration scheme

camera at a certain instant t, whose elements are expressed in the camera frame Oc −xcyczc.

Such a point cloud is composed by the union of three different subsets as

Kc(t) = Rc(t) ∪ Mc(t) ∪ Oc(t), (10.1)

where Rc includes the elements of the point cloud belonging to the robot, Mc contains the

elements that are associated with the target manipulation volume, while Oc collects the

points that correspond to obstacles that must be avoided.

To ensure collision avoidance, it is important to control the robot so that the value of

the distance

d(t) = min
a∈Rā,b∈Oā

‖a(t) − b(t)‖ (10.2)

is guaranteed to be maintained above a certain design threshold d? ∈ R > 0, for all t ≥ t0.

Moreover, it is possible to define the points pc
r ∈ Rc and pc

o ∈ Oc, both expressed in the

camera frame, such that

pc
r, p

c
o = argmin

a∈Rā,b∈Oā

‖a(t) − b(t)‖ . (10.3)

The collision avoidance strategy described in this chapter can be summarized as follows.

At each instant, the point cloud coming from the RGBD camera is analyzed so that to

identify the set Oc. Then, a reference for the manipulator that moves pc
r away from pc

o

is generated and followed via an ISM controller. However, in order to identify the points

belonging to the obstacle, is fundamental to first identify the set Rc. To this end, the so-

called Hand-Eye (HE) calibration, which identifies the static relation between the reference

frames Ob − xbybzb and Oc − xcyczc, must be performed. In the next section, the employed

HE calibration scheme is described.

10.2 The HE calibration scheme

The HE calibration scheme adopted in the collision avoidance strategy is inspired by the

one proposed in [147] and depicted in Figure 10.1. The objective of such a scheme is to

provide an accurate estimate of the constant homogeneous transformation matrix

T c
b =

[

Rc
b pc

b

0>
3 1

]

, (10.4)

which expresses the pose of Ob − xbybzb with respect to Oc − xcyczc.

10.2.1 Position estimation

In order to provide a first estimate of the position vector pc
b ∈ R

3 in (10.4), denoted as

p̂c
b =

[

x̂c
b ŷc

b ẑc
b

]>

(10.5)

a YOLOv3 detector [148], which relies on a CNN, has been employed. In general, the aim

of an object detector such as YOLOv3, is to identify the pixels of an image that contains
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Robot
Rb

ICP T c

b

Figure 10.1: Block diagram of the HE calibration scheme. The green blocks are

associated with the elements that rely on CNNs, blocks responsible for the compu-

tation of the first guess are highlighted in yellow.

an object of interest. In this case, the RGB image captured by the RGBD sensor is given

as input to the detector, which returns a copy of the image on which is added a box around

the robot.

The UV coordinates of such a box are then used to access a previously defined lookup

table, referred as LTpos in the block diagram, which maps them to a value for ẑc
b ∈ R.

The other elements of the vector p̂c
b, i.e., x̂c

b and ŷc
b , are obtained by transforming the UV

coordinates using camera parameters.

To make the proposed scheme capable of working with satisfactorily results without

having the manipulator placed in a specific environment, the YOLOv3 detector has been

trained on synthetic data subjected to domain randomization [149]. To reduce the gap

between the virtual training environment and the real-world workspace, synthetic data has

been generated with rendering fidelity, albeit at the cost of computation time during the

data generation procedure [150].

To generate the training data, a digital twin of the robot have been created employing

physically-based materials and textures extracted directly from photographs of the real

manipulator. Then, three light sources, i.e., sun, sphere, and area, have been placed around

the simulated environment and activated intermittently in order to gather images with

different, realistic diffused lighting. The gathering of the images has been done with a

simulated camera set up so that it had the same parameters as the real one. Finally, each

image of the digital twin has been overlaid on a random background image selected randomly

from a pool of available pictures. Then, each synthetic image is labeled drawing a bounding

box around the manipulator, which represent the ground truth for the training. Examples

of synthetic images generated with this procedure are shown in Figure 10.2.
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Figure 10.2: Examples of the generated synthetic images with the bounding boxes

for training the YOLOv3 detector.

10.2.2 Orientation estimation

The estimation of the robot base frame orientation with respect to the camera frame is

carried out by means of a Convolutional Denoising Autoencoder (CDA) [151], depicted in

Figure 10.3.

  

Figure 10.3: Architecture of the CDA employed for orientation estimation.

The CDA is built using two main operations: convolution and deconvolution. In partic-

ular, the square input image with size nin ×nin × 3 is convolved until a vector, called latent

space vector and denoted as z ∈ R
L, with L ∈ N>1, is obtained. Then, the deconvolution

operation is performed recursively until an output with the same structure of the original

input is obtained. In the considered case, the CDA is trained in a supervised way with the

aim of obtaining an output image in which everything except from the manipulator is re-

moved, as showed in Fig. 10.3. To do so, a dataset of realistic synthetic images is generated

with the methodology presented in the previous section. In this case, the ground truth is

the image of the robot without the random background. Examples of two synthetic images
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with the corresponding ground truths are presented in Figure 10.4.

Figure 10.4: Examples of two synthetic images, along with their ground truths,

for the training of the CDA.

Once the training procedure is complete, the CDA can be used to provide an estimate

of the orientation, expressed by means of Euler angles φ, θ, and ψ, of the frame Ob with

respect to the camera frame Oc. To do so, only the the first part of the autoencoder is

considered, having the latent space vector z as an output. Then, as it is shown in Figure

10.1, such a vector is used to access a lookup table, referred as LTor in the block diagram,

similar to the one presented in Table 10.1, which associates a set of Euler angles to a specific

value of the latent space vector z. In particular, the correct set of Euler angles is selected

solving

ι = argmin
j

‖z − zj‖ . (10.6)

Then, the candidate Euler angles are employed to obtain a first estimate of Rc
b, denoted as

R̂c
b = Rxā

(φι)Ryā
(θι)Rzā

(ψι), (10.7)

with Rxā
(·), Ryā

(·), and Rzā
(·) denoting the elementary rotations around the axes of the

camera frame Oc [24].

The size of the lookup table, denoted by k ∈ N>0, depends on the granularity ζ ∈ (0, π]

of the angle discretization, chosen by the designer, while the values zj , with j ∈ {1, 2, . . . , k},

are chosen by providing images of the manipulator placed in a known orientation, given by

the Euler angles φj , θj , and ψj , as input to the trained CDA.

j z ∈ R
L φ [rad] θ [rad] ψ [rad]

1 z0 0 0 0

2 z1 0.1745 0 0

· · · · · · · · · · · · · · ·
k − 1 zk−1 π π 3.054

k zk π π π

Table 10.1: Example of the lookup table which associates the latent space vector

z to a set of Euler angles.
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It is worth to notice that, if during the HE calibration the robot joints are in a configu-

ration qhe such that the image of the robot given in input to the CDA exhibits complete or

partial symmetry, as in the case depicted in Figure 10.5a, the result of the prediction may

be incorrect. To overcome such a problem, the orientation estimation is done nhe ∈ N>2

times, using different configurations qhe,i, with i ∈ {1, 2, . . . , nhe} that break axial symmetry

in the resulting image, while maintaining the base fixed in space. For each configuration, an

image of the robot is captured by the vision sensor and is provided as input to the CDA.

The outcome of the operations are nhe set of Euler angles. The best candidate is chosen

according a voting-based strategy, i.e., at least two predictions have similar outcome. In the

case of a tie, the average of the predictions is selected.

(a) Ambiguous orientation (b) Non-ambiguous orientation

Figure 10.5: Examples of images in which (a) the robot presents axial symmetry

(b) the robot configuration breaks axial symmetry.

10.2.3 Pose estimation adjustment

The previous sections described how a first estimate of the position and orientation, denoted

as p̂c
b and R̂c

b, respectively, are computed. From the developed results, it is possible to obtain

a first estimate of the transformation matrix in (10.4), i.e.,

T̂ c
b =

[

R̂c
b p̂c

b

0>
3 1

]

.

However, such an estimate may not be sufficiently accurate due to several aspects, such

as the granularity of the lookup tables. For this reason, T̂ c
b is used as initialization of the

Iterative Closest Point (ICP) algorithm [152]. In general, the objective of ICP is to find the

transformation that allows to align two point clouds.

In this case, the objective is to align the point cloud Kc, retrieved from the RGBD

camera and expressed with respect to frame Oc, and the point cloud Rb, obtained from a

realistic virtualization of the robotic manipulator, whose points are expressed with respect

to frame Ob. The result of the ICP algorithm is the matrix T c
b in (10.4).
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10.3 The collision avoidance scheme

Once the static transformation matrix is computed, the collision avoidance scheme, depicted

in Figure 10.6, and presented in the following, can be employed.
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T c
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Minimum
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Reference

Calculator

qavISM

Controller

Real

Robot

q

Figure 10.6: Block diagram of the obstacle detection and avoidance scheme. The

blocks responsible for the change of reference frame are highlighted in red, the ones

that compute the joint position reference in yellow, and the low-level ISM controller

in blue.

The objective of the avoidance scheme is to control the robot so that it avoids all the

objects captured by the RGBD cameras, with the exception of the manipulation volume. In

this case, the manipulation volume is represented by the point cloud Mb ⊂ R
3, expressed

in the Ob frame, defined by the designer. In order to work properly, the avoidance scheme

relies on two main sources of data. The first is the RGBD camera, which generates the

point cloud Kc, expressed in the camera frame Oc, that contains all the points belonging

to the surface of the objects framed by the camera. The second is the virtualized model of

the manipulator, which serves as a digital twin of the physical one. From the model, it is

possible to compute the point cloud Rb, expressed in the frame Ob, whose points reconstruct

the robot.

Relying on the matrix T c
b obtained as result of the HE calibration, it is possible to

express all the points of Rb and Mb into the camera frame, obtaining as result the point

clouds Rc and Mc. Then, the obstacle point cloud can be defined in the camera frame as

Oc = Kc \ (Rc ∪ Mc). (10.8)

Such a point cloud can be expressed in frame Ob by means of T c
b , obtaining a new set
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Ob ⊂ R
3 and it is possible to define the vectors pb

r ∈ Mb and pb
o ∈ Ob as

pb
r, p

b
o = argmin

a∈MĀ,b∈OĀ

‖a− b‖ . (10.9)

Then, to ensure that the robot avoids the points in space belonging to Ob, one could

select a non-negative, differentiable function VO : Rb × Ob → R≥0 which tends to large

values as the distance between pb
r and pb

o approaches zero, to create an Artificial Potential

Field (APF) [153] around the set Ob, such as

VO =







1
2η
(

1
λ−λ0

)2

, ifλ ≤ λ0

0, ifλ > λ0

(10.10)

where λ ∈ R is the euclidean distance between pb
r and pb

o, i.e., λ =
√

(pb
r − pb

o)2, while

λ0 ∈ R>0 and η ∈ R>0 are design parameters which define how conservative is the avoidance

action. Once λ ≤ λ0, the point pb
r is subject to a force which moves it away from the pb

o

with an induced velocity v(O,r) ∈ R
3, expressed with respect to the frame Ob, whose entity

is obtained by computing the gradient of VO, i.e.,

v(O,r) =







η
(

1
λ−λ0

)

1
(λ−λ0)2

∂λ
∂pĀ

Đ
, ifλ ≤ λ0

0, ifλ > λ0

(10.11)

where ∂λ
∂pĀ

Đ
∈ R

3 is the partial derivative vector of the distance between pb
r and pb

o and, for

sake of simplicity, it can be approximated as the unit vector ∂λ
∂pĀ

Đ
=

pĀ
Đ−pĀ

č

‖pĀ
Đ−pĀ

č‖
. In order to

compute the set of joint velocities q̇(O,r) which induce on pr the velocity v(O,r), we use of

Jacobian matrices.

In particular, assume that pb
r is located on a certain link l, mounted on the k-th joint,

the Jacobian associated to such a joint, computed in the point pb
r is denoted as Jk ∈ R

6×n

and given by

Jk(q, pr) =
[

J
(1)
k , J

(2)
k · · · J

(k)
k 06 · · · 06

]

, (10.12)

whose columns are computed as described in Chapter 4. In particular, assuming that mod-

ified DH is used, each column of (10.12) is computed as

J
(i)
k =

[

zi × (pb
r − pi)

zi

]

, (10.13)

where zi and pi are retrieved from the forward kinematics as in Section 4.3.2.

With the objective of generating a position reference for the ISM controller, one could

then design the avoidance reference as

qav = q + νJ+
k

[

v(O,r)

03

]

, (10.14)

where ν ∈ R>0 is a small design constant.

As depicted in Figure 10.6, the reference is provided by a standard ISM controller, like

the one described in Section 2.4, to dominate possible small model mismatches and external

disturbances acting on the manipulator.
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10.4 Experiment and results

The obstacle avoidance scheme has been tested on the Franka Emika Panda robot, described

in Appendix C. Computations were performed on an x86-64 system with an Intel Core i7

10400F CPU an NVidia RTX 3060 Ti GPU and 16 GB of RAM. As for the RGBD sensor, a

Microsoft Xbox 360 Kinect, shown in Figure 10.7, has been employed. The sensor provides

RGB data with a resolution of 640 × 480 pixels at a rate of 30 frames per second. It is also

equipped with an infrared (IR) emitter and an IR depth sensor for depth measurements.

The depth sensor has resolution and frame rate equal to those of the RGB camera. The

depth sampling distance is ∼ 1.5 mm at 50 cm from the sensor, while it is ∼ 5 cm at 5 m.

Figure 10.7: Vision sensor employed for the experiment.

In order to train the YOLOv3 detector, a dataset of 2400 synthetic RGB images with

a resolution of 640 × 480 pixels has been generated using 50 background images. Aiming to

reduce the frequency of false positives, the background images are included in the training

set. As for the training of the orientation estimator, the orientation space has been dis-

cretized in k = 144 parts and, for each part, 10 synthetic RGB images with a resolution

of nin × nin pixels were generated, with nin = 128. This operation resulted in a dataset of

1440 images, accompanied with their ground truth like depicted in Figure 10.4. Moreover,

the size of the latent space vector z has been chosen as L = 128. Both the YOLOv3 and

the CDA datasets have been divided in 70% training set and 30% validation set.

The efficacy of the HE calibration scheme, instrumental for the correct functioning of

the obstacle avoidance scheme, has been evaluated. In particular, an RGB image and and

a depth image are given as input to the scheme presented in Figure 10.1. The result of the

estimation procedure are provided in Fig. 10.8. Such a figure contains three elements. The

first one is the point cloud reconstructed using the depth data retrieved from the depth

image, with the points belonging to the robot surface highlighted in green, while the rest

have been colored in blue. The second element is the 3D model of the robot, in orange,

positioned and oriented according to the value of the first guess T̂ c
b . Finally, the red points

represent the vertexes of the 3D model placed using the result of the ICP algorithm, i.e.,

T c
b . The fact that the red points overlaps almost perfectly the point cloud associated to

the real robot, allows us to conclude that the results proposed HE calibration scheme are

satisfactory.

In order to assess the validity of the obstacle avoidance scheme, the robot is operated

in presence of moving obstacles which perform unplanned movements. In particular, the

robot is required to reach and maintain a desired configuration in the joint space, i.e.,
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Figure 10.8: Result of the HE calibration process. Depth points from the camera

are in blue and green. The orange 3D model represents the first pose estimate, while

the red points the result of the ICP algorithm.

qd =
[

0 − π
4 0 − 3

4π 0 π
2

π
4

]>

[rad], while a human operator moves freely in its

workspace. The avoidance parameters are chosen as η = 0.025 and λ0 = 0.3. Some time

instants of the experiments have been captured and presented in Figure 10.9. The manip-

ulation volume is Mb = ∅.

Moreover, the time evolution of the distance between the end effector, whose position is

denoted as pb
e, and its desired position pb

e,d ∈ R
3 (obtained from qd), is presented in Figure

10.10. The same figure also depicts the time evolution of the minimum distance between the

robot and the nearest obstacle point and the evolution of the value of a flag which represent

the current state of the robot, i.e., reaching (flag equal to 0) or avoidance (flag equal to 1).

From Figure 10.10, it is possible to see how the minimum distance between the end effector

and the human operator never reaches a value smaller than 0.12 m, meaning the safety is

ensured for all the duration of the experiment.
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Figure 10.9: Instants of the experiment. In each frame, the point cloud Oc are

colored in red and presented in the bottom left corner.

Figure 10.10: Time evolution of the distance between end-effector and target

(blue), robot an human operator (red), and the state flag.
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Chapter 11

Conclusions and Future

Research

In this dissertation, novel control and observer design techniques that exploit the joint use

of deep neural networks and sliding modes have been presented, theoretical analyzed and

assessed both on simulation and experimentally. The dissertation, divided into four parts,

is focused on different aspects of the research done in the last three years. What follows is

a brief summary of what has been discussed.

In the first part, the main theoretical concepts about sliding modes, neural networks, and

robotics, instrumental to understand of the strategies proposed in the rest of the dissertation,

have been introduced.

The focus of the second part was on the design of a novel deep neural network based

integral sliding mode control framework, referred to as DNN-ISM, whose aim is to stabilize

on a desired trajectory the state of certain classes of perturbed nonlinear systems with fully

unknown dynamics. Then, depending on the class of system, different types of constraints

have been enforced, extending the DNN-ISM by integration of model predictive control or

barrier function components. The control framework has been assessed in simulation on the

Duffing Oscillator, the Double Tank and on the model of a complex robotic manipulator

with 7 DoF. Moreover, more than satisfactorily experimental results have been obtained

controlling a real Franka Emika Panda robot with the DNN-ISM control strategy.

The objective of the third part was to explore how neural networks and sliding modes

could be exploited in the domain of fault detection. To this end, two different schemes have

been proposed. The former relies on the DNN-ISM framework to design an unknown input

observer whose aim is to provide an estimate of a fault acting on the input channel. The

second propose a deep reinforcement learning agent that detects, isolates and compensates

faults acting on the sensors of a 7 DoF manipulator. Then, a battery of second order sliding

mode unknown input observers, which exploit the results of sensor faults compensation,

are designed to estimate the fault acting on the actuators of the robot. Both the detection

schemes have been assessed in simulation with good results.
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In the fourth and final part of the dissertation, the problem of safe and ergonomic phys-

ical human-robot interaction has been addressed, proposing two different control strategies.

The former relies on te DNN-ISM framework to solve the problem of ergonomic handover

in the case in which the model of the robot is partially unknown and the dynamics of the

object exchanged during the interaction is unavailable. The latter aims to avoid collisions

between the robot and everything is in its surroundings. This has been done by imple-

menting a vision system, whose initialization depends on the output of convolutional neural

networks, which generates a reference that allows collision avoidance. Then, such a reference

is followed relying on a sliding mode controller which also takes into account possible model

mismatches or disturbances. Both architectures have been assessed experimentally on the

Franka Emika Panda robot.

To conclude, all the proposed methodologies have been theoretically analyzed. Moreover,

the theoretical results are validated by means of simulations and experiments, demonstrating

the implementability of the proposed architectures in real-world applications.

11.1 Future Research

Despite the validity of the approaches described in this dissertation, there are some aspects

that needs to be addressed in the future.

Enlargement of the class of systems Especially in the constrained case, the

DNN-ISM control framework is applied to a very specific class of systems, restricting its

range of application. One of the main goals of future research is to extend the class of

system, and hence the efficacy of the proposed methodology.

Extension of the class of disturbances At the moment, only matched disturbances

are affecting the system. Future directions include the study of the behavior of the system

in presence of unmatched disturbances, especially in the constrained scenario.

Enhancement of the DNN based MPC/ISM In its current form, the DNN based

MPC/ISM control architecture presents a criticality: the MPC component is not utilized

during the adaptation transient. To cope with this aspect, in the future the architecture is

going to be extended with robust MPC methodologies.

Introduction of stochasticity At the moment, the behavior of the system does not

include stochastic components. In the future, the robustness properties of the DNN-ISM

against stochastic processes such as sensor noise or environmental variability will be con-

sidered.

Design of DNN based sensor fault diagnosis schemes with guarantees

The sensor fault diagnosis scheme presented in this dissertation relies on the use of DRL.

184



Chapter 11. Conclusions and Future Research

Despite the goodness of the results, the quality of the diagnosis is strictly related to the

quality of the training, without any theoretical guarantees. An objective for the future

research is to provide some guarantees on the fault approximation error.

Application of DNN based MPC/ISM to collision avoidance An important

achievement would be to apply the MPC/ISM architecture with DNN on a real robotic

manipulator to perform real-time collision avoidance with theoretical guarantees.
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Appendix A

Parameter Projection

The parameter projection operator is a widely adopted tool in classic adaptive control theory

[89]. Specifically, it is particularly useful when some knowledge of the optimal parameters

(e.g., the bound of their norm or their sign) is available.

Assume that the optimal parameters of an adaptive controller are collected in a vector

θ ∈ R
p. Then, one could exploit some available information about θ to describe a suitable

domain Bθ ⊂ R
p in the parameter space, with the objective to keep the estimates of θ,

denoted by the vector θ̂ ∈ R
p, in such a set.

Let P : Rp → R be a smooth function of the parameter vector. Then, the domain Bθ

can be defined as the sub-level set of P as

Bθ :=
{

θ̂ ∈ R
p : P(θ̂) ≤ 0

}

, (A.1)

with Bo
θ ⊂ Bθ and ∂Bθ ⊂ Bθ denoting its interior and boundary, respectively. Since ∂Bθ is

the level hyper-surface P(θ̂) = 0, the gradient ∇θ̂P = ∂P
∂θ̂

∈ R
p represents the outward-

pointing normal vector to ∂Bθ. Then, it is possible to define the standard projection operator

[89, Apendix E] as

proj
Bā

(τ) =







τ if θ̂ ∈ Bθ
o or ∇θ̂P · τ ≤ 0,

(

Ip − Γ
∇

ā̂
P∇

ā̂
P>

∇
ā̂

P>Γ∇
ā̂

P

)

τ if θ̂ ∈ ∂Bθ and ∇θ̂P · τ > 0,
(A.2)

where τ ∈ R
p, while Γ ∈ R

p×p is a positive symmetric matrix. Note that, even though the

operator is a function of the arguments (τ, θ̂,Γ), for sake of readability it is more convenient

to explicit just τ .

The meaning of (A.2) is straightforward if one considers θ̂ as the current estimate of

the parameters, and τ as its “speed”. The proj
Bā

(τ) acts on the vector τ , leaving it unchanged

if it θ̂ is inside Bθ (i.e., θ̂ ∈ Bθ
o) or if τ is pointing outside the set (i.e., ∇θ̂P · τ ≤ 0). In

fact, in such cases, an ideally continuous-time update τ would not cause θ̂ to go out of Bθ.

On the contrary, if θ̂ ∈ ∂Bθ and τ points outside the set (i.e., ∇θ̂P · τ > 0), the operator

proj
Bā

(τ) returns the projection of vector τ on the hyperplane that is tangent to ∂Bθ in θ̂.
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The projection operator defined as in (A.2) usually lead to a discontinuous evolution of τ ,

violating the the Lipschitz continuity condition and preventing the application of standard

existence theorems [89]. For this reason, (A.2) can be modified to make it smoother. In

particular, defining a O(α)-boundary layer around Bθ, it is possible to enlarge this last

creating a set, denoted as Bα
θ , which is the result of the union of the boundary layer and

Bθ, i.e.,

Bα
θ := {θ̂ ∈ R

p : P(θ̂) ≤ α}. (A.3)

Then, a smooth version of the projection operator can be defined [89, Apendix E] as

proj
Bā

(τ) =







τ if θ̂ ∈ Bθ
o or ∇θ̂P · τ ≤ 0,

(

Ip − c(θ̂)Γ
∇

ā̂
P∇

ā̂
P>

∇
ā̂

P>Γ∇
ā̂

P

)

τ if θ̂ ∈ Bα
θ \ Bθ

o and ∇θ̂P · τ > 0,
(A.4)

where c : Rp → [0, 1] is any smooth function such that c(∂Bθ) = 0 and c(∂Bα
θ ) = 1. Meaning

that the trajectory of θ̂ is diverted progressively on the α-layer, achieving the full projection

on the tangent hyperplane on ∂Bα
θ . As a consequence, the boundedness is guaranteed on Bα

θ

instead of Bθ, as it happens when the operator in (A.2) is used. For the reader’s convenience,

a visualization of the standard and smooth projection operators is provided in Figure A.1.

τ ≡ proj
Bθ

(τ)

τ

Bo
θ

∇
θ̂
P

proj
Bθ

(τ)
θ̂

θ̂

(a) Standard projection operator (A.2).

Bαθ \ Bo
θ

Bo
θ α

τ

proj
Bθ

(τ)

τ

∇
θ̂
P

proj
Bθ

(τ)

θ̂
θ̂

(b) Smooth projection operator (A.4).

Figure A.1: Graphical representation of the projection operators defined in (A.2)

and (A.4) in the case θ ∈ R
2.

Lemma A.1 (Smooth Projection Properties). Consider the smooth projection operator

in (A.4), with Bθ and Bα
θ defined as in (A.1) and (A.3), respectively. Then, the following

properties are true.

1. the mapping proj
Bā

(

τ, θ̂,Γ
)

: Rp×Bα
θ ×R

p×p → R
p is locally Lipschitz in its arguments;

2. proj
Bā

(τ)
>

Γ−1proj
Bā

(τ) ≤ τ>Γ−1τ , for all θ̂ ∈ Bθ;

3. if Γ(t) and τ(t) are continuously differentiable, and
˙̂
θ = proj

Bā

(τ), with θ̂(t0) ∈ Bα
θ ,

then θ̂(t) ∈ Bα
θ , for t ≥ t0;

4. −(θ − θ̂)>Γ−1proj
Bā

(τ) ≤ −(θ − θ̂)>Γ−1τ , for all θ ∈ Bθ and θ̂ ∈ Bα
θ .
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Proof. The proof of each property is developed separately.

1. Even though the proof its straightforward, it is long to develop and thus the reader

should refer to [89, Appendix E].

2. By definition of the operator in (A.4), one has that, if it holds θ̂ ∈ Bθ
o or ∇θ̂P ·τ ≤ 0,

the equality trivially holds because the operator corresponds to the identity function.

In the second case, i.e., the case in which θ̂ ∈ Bα
θ \ Bθ

o and ∇θ̂P · τ > 0, it holds that

proj
Bā

(τ)
>

Γ−1proj
Bā

(τ) = τ>Γ−1τ − 2c(θ̂)

(

∇θ̂P>τ
)2

∇θ̂P>Γ∇θ̂P + c(θ̂)

∥

∥∇θ̂P∇θ̂P>τ
∥

∥

2

(∇θ̂P>Γ∇θ̂P)2

= τ>Γ−1τ − c(θ̂)
(

2 − c(θ̂)
)

(

∇θ̂P>τ
)2

∇θ̂P>Γ∇θ̂P

Since Γ is a symmetric positive definite matrix and c(θ̂) ∈ [0, 1], then the second

therm is negative. Hence, the following is true

proj
Bā

(τ)
>

Γ−1proj
Bā

(τ) ≤ τ>Γ−1τ.

3. Relying on the definition of (A.4), one has that

∇θ̂P>proj
Bā

(τ) =







∇θ̂P>τ

∇θ̂P>
(

Ip − c(θ̂)Γ
∇

ā̂
P∇

ā̂
P>

∇
ā̂

P>Γ∇
ā̂

P

)

τ

=







∇θ̂P>τ
(

∇θ̂P> − c(θ̂)∇θ̂P>Γ
∇

ā̂
P∇

ā̂
P>

∇
ā̂

P>Γ∇
ā̂

P

)

τ

=







∇θ̂P>τ
(

∇θ̂P> − c(θ̂)
∇

ā̂
P>Γ∇

ā̂
P

∇
ā̂

P>Γ∇
ā̂

P
∇θ̂P>

)

τ

=







∇θ̂P>τ
(

∇θ̂P> − c(θ̂)∇θ̂P>
)

τ

Rearranging the terms, one can rewrite the last equation as

∇θ̂P>proj
Bā

(τ) =







∇θ̂P>τ if θ̂ ∈ Bθ
o or ∇θ̂P · τ ≤ 0,

(

1 − c(θ̂)
)

∇θ̂P>τ if θ̂ ∈ Bα
θ \ Bθ

o and ∇θ̂P · τ > 0

Let ˙̂
θ(t) = proj

Bā

(τ), with θ̂(t0) ∈ Bα
θ . Then, the projection operator dictates the

direction of the movement θ̂(t). To study the boundedness in Bα
θ of θ̂(t), it is sufficient

to analyze the second case of the above equation, which is the one in which there is

the risk for θ̂(t) of going outside Bα
θ . In the worst case, θ̂(t) ∈ ∂Bα

θ and c(θ̂) = 1,

meaning that the vector ˙̂
θ(t) is orthogonal to the outgoing normal ∇θ̂P, implying the

boundedness of θ̂(t) in Bα
θ , for t ≥ t0.
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4. Define the quantity θ̃ = θ− θ̂, representing an estimation error. Then, exploiting the

definition (A.4), one has that

−θ̃>Γ−1proj
Bā

(τ) =







−θ̃>Γ−1τ

−θ̃>Γ−1
(

Ip − c(θ̂)Γ
∇

ā̂
P∇

ā̂
P>

∇
ā̂

P>Γ∇
ā̂

P

)

τ

=







−θ̃>Γ−1τ

−
(

θ̃>Γ−1 − c(θ̂)θ̃>Γ−1Γ
∇

ā̂
P∇

ā̂
P>

∇
ā̂

P>Γ∇
ā̂

P

)

τ

Then, rearranging the terms one has that

−θ̃>Γ−1proj
Bā

(τ) = −θ̃Γ−1τ +







0

c(θ̂)
(θ̃>∇

ā̂
P)∇

ā̂
P>

∇
ā̂

P>Γ∇
ā̂

P
τ

In the first case, the inequality trivially holds. As for the second case, i.e., the one in

which it holds θ̂ ∈ Bα
θ \ Bθ

o and ∇θ̂P · τ > 0, then it is possible to make the following

considerations. First, by virtue of the hypothesis on θ and θ̂, and from the fact that

Bα
θ \ Bθ

o is a α-contour of Bθ, it means that the vector θ̃ points toward the interior

of Bα
θ , implying

θ̃>∇θ̂P ≤ 0.

Hence, it holds that

−θ̃>Γ−1proj
Bā

(τ) ≤ −θ̃>Γ−1τ.
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Appendix B

Proofs

B.1 Proof of Theorem 5.1

Consider the Lyapunov-like candidate function v : X → R defined as

v =
1

2
σ>σ +

1

2

kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

Ṽj

)

+
1

2

kΨ
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

Ũj

)

, (B.1)

where σ is the integral sliding variable defined as in (5.39). The above function is charac-

terized by a first time-derivative equal to

v̇ = σ>σ̇ +

kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̃Vj

)

+

kΨ
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

˙̃Uj

)

. (B.2)

The expression of σ̇ can be obtained by computing the first time derivative of σ0 in (5.5)

and substituting the value of ˙̂z in (5.43) as

σ̇ = σ̇0 − ˙̂z

= C1(ẋ1 − ẋ?
1) + C2(ẋ2 − ẋ?

2) − C1

(

Φ̂
[1]
kΦ

− ẋ?
1

)

− C2

(

Φ̂
[2]
kΦ

+

m
∑

i=1

Ψ̂
[i]
kΨ
un,i − ẋ?

2

)

= C1

(

ẋ1 − Φ̂
[1]
kΦ

)

+ C2

(

ẋ2 − Φ̂
[2]
kΦ

−
m
∑

i=1

Ψ̂
[i]
kΨ
un,i

)

= C1

(

f1 − Φ̂
[1]
kΦ

)

+ C2

(

f2 + B̄u+ h− Φ̂
[2]
kΦ

−
m
∑

i=1

Ψ̂
[i]
kΨ
un,i

)

.

Then, substituting the control law (5.8) and the ideal approximation of the dynamics in

(5.14), it holds that

σ̇ = C1

(

f1 − Φ̂
[1]
kΦ

)

+ C2

(

f2 + B̄u+ h− Φ̂
[2]
kΦ

−
m
∑

i=1

Ψ̂
[i]
kΨ
un,i

)

= C1

(

Φ
[1]
kΦ

+ ε
[1]
Φ − Φ̂

[1]
kΦ

)

+ C2

(

Φ
[2]
kΦ

+ ε
[2]
Φ +

m
∑

i=1

Ψ
[i]
kΨ
un,i + εΨun+
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+ B̄ur + h− Φ̂
[2]
kΦ

−
m
∑

i=1

Ψ̂
[i]
kΨ
un,i

)

.

Recalling that Φ̃
[p]
kΦ

= Φ
[p]
kΦ

− Φ̂
[p]
kΦ

and that Ψ̃
[i]
kΨ

= Φ
[i]
kΨ

− Ψ̂
[i]
kΨ

, if one rearranges the terms

the first time-derivative of the sliding variable is

σ̇ = C1

(

Φ̃
[1]
kΦ

+ ε
[1]
Φ

)

+ C2

(

Φ̃
[2]
kΦ

+

m
∑

i=1

Ψ̃
[i]
kΨ
un,i + B̄ur + ε

[2]
Φ + εΨun + h

)

. (B.3)

Since Ṽj = Vj − V̂j and Ũj = Uj − Ûj , with Vj and Uj constant, it holds that ˙̃Vj = − ˙̂
Vj and

˙̃Uj = − ˙̂
Uj . Hence, substituting (B.3) in (B.2) leads to

v̇ = σ>

[

C1

(

Φ̃
[1]
kΦ

+ ε
[1]
Φ

)

+ C2

(

Φ̃
[2]
kΦ

+
m
∑

i=1

Ψ̃
[i]
kΨ
un,i + B̄ur + ε

[2]
Φ + εΨun + h

)]

+

−
kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

−
kΨ
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

˙̂
Uj

)

.

Expanding the last two terms to separate the last layer from the inner ones, one has that

v̇ = σ>

[

C1

(

Φ̃
[1]
kΦ

+ ε
[1]
Φ

)

+ C2

(

Φ̃
[2]
kΦ

+
m
∑

i=1

Ψ̃
[i]
kΨ
un,i + B̄ur + ε

[2]
Φ + εΨun + h

)]

+

−
kΦ−1
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

−
2
∑

p=1

vec
(

Ṽ
[p]

kΦ

)> (

Γ
[p]
ΦĉΦ

)−1

vec
(

˙̂
V

[p]
kΦ

)

+

−
kΨ−1
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

˙̂
Uj

)

−
m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

Γ−1
ΨĉΨ

vec
(

˙̂
U

[i]
kΨ

)

. (B.4)

Then, substituting Φ̃
[1]
kΦ

, Φ̃
[2]
kΦ

and Ψ̃
[i]
kΨ

with (5.29a), (5.29b), and (5.38), respectively, it holds

that

v̇(x) = σ>C1

{

Λ
[1]
ΦĉΦ

vec
(

Ṽ
[1]

kΦ

)

+ ∆
[1]
ΦĉΦ

+

kΦ−1
∑

j=0

Λ
[1]
ΦĈ

vec
(

Ṽj

)

+

kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ

}

+

+ σ>C2

{

Λ
[2]
ΦĉΦ

vec
(

Ṽ
[2]

kΦ

)

+ ∆
[2]
ΦĉΦ

+

kΦ−1
∑

j=0

Λ
[2]
ΦĈ

vec
(

Ṽj

)

+

kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ +

+

m
∑

i=1

(

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

+ ∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,i+

+ B̄ur + εΨun + h

}

−
kΦ−1
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

+

− vec
(

Ṽ
[1]

kΦ

)> (

Γ
[1]
ΦĉΦ

)−1

vec
(

˙̂
V

[1]
kΦ

)

− vec
(

Ṽ
[2]

kΦ

)> (

Γ
[2]
ΦĉΦ

)−1

vec
(

˙̂
V

[2]
kΦ

)

+

−
kΨ−1
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

˙̂
Uj

)

−
m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

Γ−1
ΨĉΨ

vec
(

˙̂
U

[i]
kΨ

)

. (B.5)

For convenience, it is possible separate the terms so that it is easier to identify the ones

that must be compensated, obtaining

v̇ = σ>C1

{

∆
[1]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ

}

+ σ>C2

{

∆
[2]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ +
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+

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,i + B̄ur + εΨun + h

}

+ σ>C1Λ
[1]
ΦĉΦ

vec
(

Ṽ
[1]

kΦ

)

+

+ σ>C1

kΦ−1
∑

j=0

Λ
[1]
ΦĈ

vec
(

Ṽj

)

+ σ>C2Λ
[2]
ΦĉΦ

vec
(

Ṽ
[2]

kΦ

)

+ σ>C2

kΦ−1
∑

j=0

Λ
[2]
ΦĈ

vec
(

Ṽj

)

+

+ σ>C2

m
∑

i=1

(

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

)

un,i + σ>C2

m
∑

i=1

(

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

)

un,i+

−
kΦ−1
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

− vec
(

Ṽ
[1]

kΦ

)> (

Γ
[1]
ΦĉΦ

)−1

vec
(

˙̂
V

[1]
kΦ

)

+

− vec
(

Ṽ
[2]

kΦ

)> (

Γ
[2]
ΦĉΦ

)−1

vec
(

˙̂
V

[2]
kΦ

)

−
kΨ−1
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

˙̂
Uj

)

+

−
m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

Γ−1
ΨĉΨ

vec
(

˙̂
U

[i]
kΨ

)

. (B.6)

With the aim of compensating the terms that depend on the weight estimation errors Ṽj ,

Ṽ
[1]

kΦ
, Ṽ [2]

kΦ
, Ũj , and Ũ

[i]
kΨ

, one can select the weight adaptation laws ˙̂
Vj , ˙̂

V
[1]

kΦ
, ˙̂
V

[2]
kΦ

, ˙̂
Uj , and

˙̂
U

[i]
kΨ

as in (5.45), (5.47a), (5.47b), (5.48), and (5.49), respectively, obtaining

v̇ = σ>C1

{

∆
[1]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ

}

+ σ>C2

{

∆
[2]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ +

+

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,i + B̄ur + εΨun + h

}

+ σ>C1Λ
[1]
ΦĉΦ

vec
(

Ṽ
[1]

kΦ

)

+

+ σ>C1

kΦ−1
∑

j=0

Λ
[1]
ΦĈ

vec
(

Ṽj

)

+ σ>C2Λ
[2]
ΦĉΦ

vec
(

Ṽ
[2]

kΦ

)

+ σ>C2

kΦ−1
∑

j=0

Λ
[2]
ΦĈ

vec
(

Ṽj

)

+

+ σ>C2

m
∑

i=1

(

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

)

un,i + σ>C2

m
∑

i=1

(

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

)

un,i+

−
kΦ−1
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
proj
BΦĈ

(

ΓΦĈ
Λ>

ΦĈ
C>σ

)

+

− vec
(

Ṽ
[1]

kΦ

)> (

Γ
[1]
ΦĉΦ

)−1

proj
BΦĉΦ

(

Γ
[1]
ΦĉΦ

(Λ
[1]
ΦĉΦ

)>C>
1 σ
)

+

− vec
(

Ṽ
[2]

kΦ

)> (

Γ
[2]
ΦĉΦ

)−1

proj
BΦĉΦ

(

Γ
[2]
ΦĉΦ

(Λ
[2]
ΦĉΦ

)>C>
2 σ
)

+

−
kΨ−1
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
proj
BΨĈ

(

ΓΨĈ

(

m
∑

i=1

un,i(Λ
[i]
ΨĈ

)>

)

C>
2 σ

)

+

−
m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

Γ−1
ΨĉΨ

proj
BΨĉΨ

(

ΓΨĉΨ
un,i(Λ

[i]
ΨĉΨ

)>C>
2 σ
)

. (B.7)

Then, exploiting points 3 and 4 of Lemma 5.2, the above equality is transformed into
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B.1. Proof of Theorem 5.1

v̇ ≤ σ>C1

{

∆
[1]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ

}

+ σ>C2

{

∆
[2]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ +

+

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,i + B̄ur + εΨun + h

}

+ σ>C1Λ
[1]
ΦĉΦ

vec
(

Ṽ
[1]

kΦ

)

+

+ σ>C1

kΦ−1
∑

j=0

Λ
[1]
ΦĈ

vec
(

Ṽj

)

+ σ>C2Λ
[2]
ΦĉΦ

vec
(

Ṽ
[2]

kΦ

)

+ σ>C2

kΦ−1
∑

j=0

Λ
[2]
ΦĈ

vec
(

Ṽj

)

+

+ σ>C2

m
∑

i=1

(

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

)

un,i + σ>C2

m
∑

i=1

(

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

)

un,i+

−
kΦ−1
∑

j=0

vec
(

Ṽj

)>
Λ>

ΦĈ
C>σ − vec

(

Ṽ
[1]

kΦ

)>

(Λ
[1]
ΦĉΦ

)>C>
1 σ − vec

(

Ṽ
[2]

kΦ

)>

(Λ
[2]
ΦĉΦ

)>C>
2 σ+

−
kΨ−1
∑

j=0

vec
(

Ũj

)>

(

m
∑

i=1

un,i(Λ
[i]
ΨĈ

)>

)

C>
2 σ −

m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

un,i(Λ
[i]
ΨĉΨ

)>C>
2 σ. (B.8)

Recalling that v̇ ∈ R, and exploiting (5.46), it holds that

kΦ−1
∑

j=0

vec
(

Ṽj

)>
Λ>

ΦĈ
C>σ =





kΦ−1
∑

j=0

vec
(

Ṽj

)>
Λ>

ΦĈ
C>σ





>

= σ>C

kΦ−1
∑

j=0

ΛΦĈ
vec
(

Ṽj

)

= σ>
[

C1 C2

]

kΦ−1
∑

j=0

[

Λ
[1]
ΦĈ

Λ
[2]
ΦĈ

]

vec
(

Ṽj

)

= σ>C1

kΦ−1
∑

j=0

Λ
[1]
ΦĈ

vec
(

Ṽj

)

+ σ>C2

kΦ−1
∑

j=0

Λ
[2]
ΦĈ

vec
(

Ṽj

)

. (B.9)

Hence, (B.8) simplifies into

v̇ ≤ σ>C1

{

∆
[1]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ

}

+ σ>C2

{

∆
[2]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ +

+
m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,i + B̄ur + εΨun + h

}

+ σ>C1Λ
[1]
ΦĉΦ

vec
(

Ṽ
[1]

kΦ

)

+

+ σ>C2Λ
[2]
ΦĉΦ

vec
(

Ṽ
[2]

kΦ

)

+ σ>C2

m
∑

i=1

(

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

)

un,i+

+ σ>C2

m
∑

i=1

(

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

)

un,i − vec
(

Ṽ
[1]

kΦ

)>

(Λ
[1]
ΦĉΦ

)>C>
1 σ+

− vec
(

Ṽ
[2]

kΦ

)>

(Λ
[2]
ΦĉΦ

)>C>
2 σ −

kΨ−1
∑

j=0

vec
(

Ũj

)>

(

m
∑

i=1

un,i(Λ
[i]
ΨĈ

)>

)

C>
2 σ+

−
m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

un,i(Λ
[i]
ΨĉΨ

)>C>
2 σ. (B.10)
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Moreover, the fact that v̇ ∈ R, allows to write the following identities

vec
(

Ṽ
[1]

kΦ

)>

(Λ
[1]
ΦĉΦ

)>C>
1 σ =

(

vec
(

Ṽ
[1]

kΦ

)>

(Λ
[1]
ΦĉΦ

)>C>
1 σ

)>

= σ>C1Λ
[1]
ΦĉΦ

vec
(

Ṽ
[1]

kΦ

)

, (B.11)

vec
(

Ṽ
[2]

kΦ

)>

(Λ
[2]
ΦĉΦ

)>C>
2 σ =

(

vec
(

Ṽ
[2]

kΦ

)>

(Λ
[2]
ΦĉΦ

)>C>
2 σ

)>

= σ>C2Λ
[2]
ΦĉΦ

vec
(

Ṽ
[2]

kΦ

)

, (B.12)

kΨ−1
∑

j=0

vec
(

Ũj

)>

(

m
∑

i=1

un,i(Λ
[i]
ΨĈ

)>

)

C>
2 σ =





kΨ−1
∑

j=0

vec
(

Ũj

)>

(

m
∑

i=1

un,i(Λ
[i]
ΨĈ

)>

)

C>
2 σ





>

= σ>C2

kΨ−1
∑

j=0

m
∑

i=1

un,iΛ
[i]
ΨĈ

vec
(

Ũj

)

= σ>C2

m
∑

i=1





kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)



un,i, (B.13)

m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

un,i(Λ
[i]
ΨĉΨ

)>C>
2 σ =

(

m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

un,i(Λ
[i]
ΨĉΨ

)>C>
2 σ

)>

= σ>C2

m
∑

i=1

(

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

))

un,i, (B.14)

which, if substituted in (B.10), this last one further simplifies into

v̇(x) ≤ σ>C1

{

∆
[1]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ

}

+ σ>C2

{

∆
[2]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ +

+

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,i + B̄ur + εΨun + h

}

(B.15)

Then, substituting the expression of the switching control law ur in (5.44), one has that

v̇(x) ≤ σ>C1

{

∆
[1]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ

}

+ σ>C2

{

∆
[2]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ +

+

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,i + εΨun + h

}

− ρσ>C2B̄
σ

‖σ‖ . (B.16)

By means of Assumption 5.1, 5.3 ,and 5.6, and Proposition 5.2, it holds that

v̇ ≤ ‖σ‖ ‖C1‖ {c̄Φ1
+ ε̄Φ1

} + ‖σ‖ ‖C2‖
{

c̄Φ2
+ ε̄Φ2

+m(c̄Ψ + ε̄Ψ) ‖un‖ + h̄
}

− ρσ>C2B̄
σ

‖σ‖ .

Then, since B̄ is assumed to be symmetric and positive definite (Assumption 5.2) and C2

is chosen according to Assumption 5.4, it holds that

σ>C2B̄σ ≥ ‖σ‖2
λ(C2)λ(B̄) ≥ ‖σ‖2

λ(C2)γ. (B.17)
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B.2. Proof of Theorem 5.2

Hence, the above inequality can be bounded as

v̇ ≤ ‖σ‖ ‖C1‖ {c̄Φ1
+ ε̄Φ1

} + ‖σ‖ ‖C2‖
{

c̄Φ2
+ ε̄Φ2

+m(c̄Ψ + ε̄Ψ) ‖un‖ + h̄
}

− ρ ‖σ‖λ(C2)γ

≤ ‖σ‖
{

‖C1‖ (c̄Φ1
+ ε̄Φ1

) + ‖C2‖
[

c̄Φ2
+ ε̄Φ2

+m(c̄Ψ + ε̄Ψ) ‖un‖ + h̄
]

− ρλ(C2)γ
}

.

If the control gain ρ is chosen accordingly to Theorem 5.1, i.e.,

ρ >
‖C1‖ {c̄Φ1

+ ε̄Φ1
} + ‖C2‖ {c̄Φ2

+ ε̄Φ2
+m(c̄Ψ + ε̄Ψ) ‖un‖ + h̄} + η̄

λ(C2)γ
,

with η̄R>0, then the first time-derivative of the Lyapunov function is bounded as

v̇ ≤ −η̄ ‖σ‖ (B.18)

and, as a consequence it is, guarantee that σ(x(t)) → 0m for t → ∞, which concludes the

proof.

B.2 Proof of Theorem 5.2

The development of proof is analogous to the one in [53, Theorem 3]. Consider the Lyapunov

candidate function v : X → R defined as

v =
1

2
σ>σ +

1

2

2
∑

i=1

ρ̃2
i , (B.19)

where ρ̃i = ρ?
i − ρ̂i is the error between the components of the discontinuous control gain

and the ones of an unknown constant ideal gain

ρ? = ρ?
1 + ρ?

2 ‖un‖ +
η?

λ(C2)γ
,

with η? ∈ R>0, defined as the one capable of enforcing a sliding mode σ(x(t)) = 0m for

t ≥ t1. From such a definition, it is immediate that the components of ρ? are

ρ?
1 =

‖C1‖
(

supx∈X

∥

∥

∥f1 − Φ̂
[1]
kΦ,t1

∥

∥

∥

)

+ ‖C2‖
(

supx∈X

∥

∥

∥f2 − Φ̂
[2]
kΦ,t1

∥

∥

∥+ h̄
)

λ(C2)γ
, (B.20)

ρ2
? =

‖C2‖ supx∈X

∥

∥

∥

∑m
i=1 B̄

(i) − Ψ̂
[i]
kΨ,tĉ

∥

∥

∥

λ(C2)γ
, (B.21)

with Φ̂
[1]
kΦ,t1

, Φ̂
[2]
kΦ,t1

, and Ψ̂
[i]
kΨ,t1

denoting the output of the DNNs characterized by fixed

weights V̂j(t1), for j ∈ {0, 1, . . . , kΦ} and Ûj(t1), for j ∈ {0, 1, . . . , kΨ}.

The first time-derivative of (B.19) is computed as

v̇ = σ>σ̇ −
2
∑

i=1

ρ̃i
˙̂ρi,

= σ>

[

C1

(

Φ̃
[1]
kΦ,t1

+ ε
[1]
Φ

)

+ C2

(

Φ̃
[2]
kΦ,t1

+

m
∑

i=1

Ψ̃
[i]
kΨ,t1

un,i + ε
[2]
Φ + εΨun + h

)]

+
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− σ>C2B̄(ρ̂1 + ρ̂2 ‖un‖)
σ

‖σ‖ − ρ̃1
˙̂ρ1 − ρ̃2

˙̂ρ2,

where Φ̃
[1]
kΦ,t1

= Φ
[1]
kΦ

− Φ̂
[1]
kΦ,t1

, Φ̃
[2]
kΦ,t1

= Φ
[2]
kΦ

− Φ̂
[2]
kΦ,t1

, and Ψ̃
[i]
kΨ,t1

= Ψ
[i]
kΨ

− Ψ̂
[1]
kΨ,t1

. Recalling

that ρ̂ = ρ? − ρ̃ = ρ?
1 + ρ?

2 ‖un‖ + η⋆

λ(C2)γ − ρ̃1 − ρ̃2 ‖un‖, v̇(x) can be expanded as

v̇ = σ>

[

C1

(

Φ̃
[1]
kΦ,t1

+ ε
[1]
Φ

)

+ C2

(

Φ̃
[2]
kΦ,t1

+
m
∑

i=1

Ψ̃
[i]
kΨ,t1

un,i + ε
[2]
Φ + εΨun + h

)]

+

− σ>C2B̄

(

ρ?
1 + ρ?

2 ‖un‖ +
η?

λ(C2)γ

)

σ

‖σ‖ + σ>C2B̄(ρ̃1 + ρ̃2 ‖un‖)
σ

‖σ‖+

− ρ̃1
˙̂ρ1 − ρ̃2

˙̂ρ2.

Exploiting Proposition 5.3 to bound the approximation errors and bounding the other terms

relying on Assumptions 5.2 and 5.3, it holds that

v̇ ≤ ‖σ‖ ‖C1‖ sup
x∈X

∥

∥

∥f1 − Φ̂
[1]
kΦ,t1

∥

∥

∥+ ‖σ‖ ‖C2‖ sup
x∈X

∥

∥

∥f2 − Φ̂
[2]
kΦ,t1

∥

∥

∥+ ‖σ‖ ‖C2‖ h̄+

+ ‖σ‖ ‖C2‖ sup
x∈X

∥

∥

∥

∥

∥

m
∑

i=1

B̄(i) − Ψ̂
[i]
kΨ,tĉ

∥

∥

∥

∥

∥

‖un‖ − ‖σ‖λ(C2)γρ?
1+

− ‖σ‖λ(C2)γρ?
2 ‖un‖ − ‖σ‖ η? + ‖σ‖ ‖C2‖ γ̄ ‖ρ̃1‖ + ‖σ‖ ‖C2‖ γ̄ ‖ρ̃2‖ ‖un‖ +

− ρ̃1
˙̂ρ1 − ρ̃2

˙̂ρ2.

Substituting the values ρ?
1 and ρ?

2 as in (B.20) and (B.21), respectively, the above inequality

can be simplified as

v̇ ≤ ‖σ‖ ‖C2‖ γ̄ ‖ρ̃1‖ + ‖σ‖ ‖C2‖ γ̄ ‖ρ̃2‖ ‖un‖ − ρ̃1
˙̂ρ1 − ρ̃2

˙̂ρ2 − ‖σ‖ η?.

Substituting the adaptation laws (5.60), it holds that

v̇ ≤ ‖σ‖ ‖C2‖ γ̄ ‖ρ̃1‖ + ‖σ‖ ‖C2‖ γ̄ ‖ρ̃2‖ ‖un‖ − ρ̃1proj
%1

((

‖C2‖ γ̄ + α1

)

‖σ‖
)

+

− ρ̃2proj
%2

((

‖C2‖ γ̄ ‖un‖ + α2

)

‖σ‖
)

− ‖σ‖ η?.

Moreover, if one let ρ?
i > ρ̄i, since ρ̂i ≤ ρ̄i by virtue of the projection operator, then

‖ρ̃i‖ ≡ ρ̃i, for i ∈ {1, 2}. Hence, it holds that

v̇ ≤ ‖σ‖ ‖C2‖ γ̄ρ̃1 + ‖σ‖ ‖C2‖ γ̄ρ̃2 ‖un‖ − ρ̃1proj
%1

((

‖C2‖ γ̄ + α1

)

‖σ‖
)

+

− ρ̃2proj
%2

((

‖C2‖ γ̄ ‖un‖ + α2

)

‖σ‖
)

− ‖σ‖ η?.

Exploiting the property of the project operator in Lemma A.1, one has

v̇ ≤ ‖σ‖ ‖C2‖ γ̄ρ̃1 + ‖σ‖ ‖C2‖ γ̄ρ̃2 ‖un‖ − ρ̃1

(

‖C2‖ γ̄ + α1

)

‖σ‖ +

− ρ̃2

(

‖C2‖ γ̄ ‖un‖ + α2

)

‖σ‖ − ‖σ‖ η?

≤ ‖σ‖ ‖C2‖ γ̄ρ̃1 + ‖σ‖ ‖C2‖ γ̄ρ̃2 ‖un‖ − ‖σ‖ ‖C2‖ γ̄ρ̃1 − ‖σ‖ ‖C2‖α1ρ̃1+

− ‖σ‖ ‖C2‖ γ̄ρ̃2 ‖un‖ − ‖σ‖ ‖C2‖α2ρ̃2 − ‖σ‖ η?
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≤ − ‖σ‖ ‖C2‖α1ρ̃1 − ‖σ‖ ‖C2‖α2ρ̃2 − ‖σ‖ η?

≤ − ‖σ‖ ‖C2‖α1 ‖ρ̃1‖ − ‖σ‖ ‖C2‖α2 ‖ρ̃2‖ − ‖σ‖ η?

≤ −η1 ‖ρ̃1‖ − η2 ‖ρ̃2‖ − η? ‖σ‖

≤ −
√

2 min{η?, η1, η2}
(‖σ‖√

2
+

‖ρ̃1‖√
2

+
‖ρ̃2‖√

2

)

≤ −
√

2 min{η?, η1, η2}
√

v(x),

proving that there exist t2 ≥ t1 such that σ(x(t)) = 0m for t ≥ t2 [53], and concluding the

proof.

B.3 Proof of Theorem 6.1

The proof follows the exact same reasoning of the one of Theorem 5.1, but it is reported

for sake of completeness.

Consider the Lyapunov-like candidate function v : X → R given by

v =
1

2
σ>σ +

1

2

kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

Ṽj

)

+
1

2

kΨ
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

Ũj

)

, (B.22)

where σ is the integral sliding variable defined as in (6.10). The first time-derivative of v is

equal to

v̇ = σ>σ̇ +

kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̃Vj

)

+

kΨ
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

˙̃Uj

)

. (B.23)

The first time-derivative of σ is obtained computing the first time derivative of σ0 in (6.5)

and substituting the value of ˙̂z in (6.11). In particular

σ̇ = σ̇0 − ˙̂z

= δaC1,a(ẋ1 − ẋ1,s) + (1 − δa)C1,r(ẋ1 − ẋ?
1) + δaC2,a(ẋ2 − ẋ2,s)+

+ (1 − δa)C2,r(ẋ2 − ẋ?
2) − δaC1,a(Φ̂

[1]
kΦ

− ẋ1,s) − (1 − δa)C1,r(Φ̂
[1]
kΦ

− ẋ?
1)+

− δaC2,a

(

Φ̂
[2]
kΦ

+
m
∑

i=1

Ψ̂
[i]
kΨ
un,a,i − ẋ2,s

)

− (1 − δa)C2,r

(

Φ̂
[2]
kΦ

+
m
∑

i=1

Ψ̂
[i]
kΨ
un,r,i − ẋ?

2

)

= δaC1,a

(

ẋ1 − Φ̂
[1]
kΦ

)

+ δaC2,a

(

ẋ2 − Φ̂
[2]
kΦ

−
m
∑

i=1

Ψ̂
[i]
kΨ
un,a,i

)

+

+ (1 − δa)C1,r

(

ẋ1 − Φ̂
[1]
kΦ

)

+ (1 − δa)C2,r

(

ẋ2 − Φ̂
[2]
kΦ

−
m
∑

i=1

Ψ̂
[i]
kΨ
un,r,i

)

= C1,δ

(

f1 − Φ̂
[1]
kΦ

)

+ δaC2,a

(

f2 + B̄un + B̄ur + h− Φ̂
[2]
kΦ

−
m
∑

i=1

Ψ̂
[i]
kΨ
un,a,i

)

+

+ (1 − δa)C2,r

(

f2 + B̄un + B̄ur + h− Φ̂
[2]
kΦ

−
m
∑

i=1

Ψ̂
[i]
kΨ
un,r,i

)

.
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Recalling that un is defined as in (6.9a), and collecting common terms, the last equation

can be rewritten as

σ̇ = C1,δ

(

f1 − Φ̂
[1]
kΦ

)

+ C2,δ

(

f2 − Φ̂
[2]
kΦ

+ B̄ur + h
)

+

+ δaC2,a

(

m
∑

i=1

(

B̄(i) − Ψ̂
[i]
kΨ

)

un,a,i

)

+ (1 − δa)C2,r

(

m
∑

i=1

(

B̄(i) − Ψ̂
[i]
kΨ

)

un,r,i

)

.

Substituting the nominal dynamics with its estimation in (5.14), it holds that

σ̇ = C1,δ

(

Φ
[1]
kΦ

+ ε
[1]
Φ − Φ̂

[2]
kΦ

)

+ C2,δ

(

Φ
[2]
kΦ

+ ε
[1]
Φ − Φ̂

[2]
kΦ

+ B̄ur + h
)

+

+ δaC2,a

(

m
∑

i=1

(

Ψ
[i]
kΨ

− Ψ̂
[i]
kΨ

)

un,a,i + εΨun,a

)

+

+ (1 − δa)C2,r

(

m
∑

i=1

(

Ψ
[i]
kΨ

− Ψ̂
[i]
kΨ

)

un,r,i + εΨun,r

)

.

Finally, since Φ̃
[p]
kΦ

= Φ
[p]
kΦ

− Φ̂
[p]
kΦ

, and Ψ̃
[i]
kΨ

= Φ
[i]
kΨ

− Ψ̂
[i]
kΨ

, one can express σ̇ as

σ̇ = C1,δ

(

Φ̃
[1]
kΦ

+ ε
[1]
Φ

)

+ C2,δ

(

Φ̃
[2]
kΦ

+ ε
[2]
Φ + B̄ur + h

)

+

+ δaC2,a

(

m
∑

i=1

Ψ̃
[i]
kΨ
un,a,i + εΨun,a

)

+ (1 − δa)C2,r

(

m
∑

i=1

Ψ̃
[i]
kΨ
un,r,i + εΨun,r

)

. (B.24)

Substituting (B.24) into (B.23) leads to

v̇ = σ>C1,δ

(

Φ̃
[1]
kΦ

+ ε
[1]
Φ

)

+ σ>C2,δ

(

Φ̃
[2]
kΦ

+ ε
[2]
Φ + B̄ur + h

)

+

+ δaσ
>C2,a

(

m
∑

i=1

Ψ̃
[i]
kΨ
un,a,i + εΨun,a

)

+ (1 − δa)σ>C2,r

(

m
∑

i=1

Ψ̃
[i]
kΨ
un,r,i + εΨun,r

)

+

−
kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

+

kΨ
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

˙̂
Uj

)

,

which, expanding the last two terms can be written as

v̇ = σ>C1,δ

(

Φ̃
[1]
kΦ

+ ε
[1]
Φ

)

+ σ>C2,δ

(

Φ̃
[2]
kΦ

+ ε
[2]
Φ + B̄ur + h

)

+

+ δaσ
>C2,a

(

m
∑

i=1

Ψ̃
[i]
kΨ
un,a,i + εΨun,a

)

+ (1 − δa)σ>C2,r

(

m
∑

i=1

Ψ̃
[i]
kΨ
un,r,i + εΨun,r

)

+

−
kΦ−1
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

−
2
∑

p=1

vec
(

Ṽ
[p]

kΦ

)> (

Γ
[p]
ΦĉΦ

)−1

vec
(

˙̂
V

[p]
kΦ

)

+

−
kΨ−1
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

˙̂
Uj

)

−
m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

Γ−1
ΨĉΨ

vec
(

˙̂
U

[i]
kΨ

)

.

Then, substituting Φ̃
[1]
kΦ

, Φ̃
[2]
kΦ

, and Ψ̃
[i]
kΨ

with the expressions (5.29a), (5.29b), and (5.38),

respectively, one obtains

v̇ = σ>C1,δ

{

Λ
[1]
ΦĉΦ

vec
(

Ṽ
[1]

kΦ

)

+ ∆
[1]
ΦĉΦ

+

kΦ−1
∑

j=0

Λ
[1]
ΦĈ

vec
(

Ṽj

)

+

kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ

}

+
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+ σ>C2,δ

{

Λ
[2]
ΦĉΦ

vec
(

Ṽ
[2]

kΦ

)

+ ∆
[2]
ΦĉΦ

+

kΦ−1
∑

j=0

Λ
[2]
ΦĈ

vec
(

Ṽj

)

+

kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ +

+ B̄ur + h

}

+ δaσ
>C2,a

{

m
∑

i=1

(

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

+ ∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

+

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,a,i + εΨun,a

}

+ (1 − δa)σ>C2,r

{

m
∑

i=1

(

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

+

+ ∆
[i]
ΨĉΨ

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

+ +

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,r,i + εΨun,r

}

+

−
kΦ−1
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

−
2
∑

p=1

vec
(

Ṽ
[p]

kΦ

)> (

Γ
[p]
ΦĉΦ

)−1

vec
(

˙̂
V

[p]
kΦ

)

+

−
kΨ−1
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

˙̂
Uj

)

−
m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

Γ−1
ΨĉΨ

vec
(

˙̂
U

[i]
kΨ

)

.

Then, the terms can be rearranged to isolate the ones that must be compensated via the

adaptation laws

v̇ = σ>C1,δ

{

∆
[1]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ

}

+ σ>C2,δ

{

∆
[2]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ +

+ B̄ur + h

}

+ δaσ
>C2,a

{

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,a,i + εΨun,a

}

+

+ (1 − δa)σ>C2,r

{

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,r,i + εΨun,r

}

+

+ σ>C1,δΛ
[1]
ΦĉΦ

vec
(

Ṽ
[1]

kΦ

)

+ σ>C1,δ

kΦ−1
∑

j=0

Λ
[1]
ΦĈ

vec
(

Ṽj

)

+

+ σ>C2,δΛ
[2]
ΦĉΦ

vec
(

Ṽ
[2]

kΦ

)

+ σ>C2,δ

kΦ−1
∑

j=0

Λ
[2]
ΦĈ

vec
(

Ṽj

)

+

+ δaσ
>C2,a

m
∑

i=1

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

un,a,i + δaσ
>C2,a

m
∑

i=1

(

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

)

un,a,i+

+ (1 − δa)σ>C2,r

m
∑

i=1

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

un,r,i+

+ (1 − δa)σ>C2,r

m
∑

i=1

(

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

)

un,r,i+

−
kΦ−1
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

−
2
∑

p=1

vec
(

Ṽ
[p]

kΦ

)> (

Γ
[p]
ΦĉΦ

)−1

vec
(

˙̂
V

[p]
kΦ

)

+

−
kΨ−1
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

˙̂
Uj

)

−
m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

Γ−1
ΨĉΨ

vec
(

˙̂
U

[i]
kΨ

)

.

Then, substituting the weight adaptation laws (6.12), (6.14), (6.15), and (6.16), and ex-
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ploiting points 3 and 4 of Lemma 5.2, one has that

v̇ ≤ σ>C1,δ

{

∆
[1]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ

}

+ σ>C2,δ

{

∆
[2]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ +

+ B̄ur + h

}

+ δaσ
>C2,a

{

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,a,i + εΨun,a

}

+

+ (1 − δa)σ>C2,r

{

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,r,i + εΨun,r

}

+

+ σ>C1,δΛ
[1]
ΦĉΦ

vec
(

Ṽ
[1]

kΦ

)

+ σ>C1,δ

kΦ−1
∑

j=0

Λ
[1]
ΦĈ

vec
(

Ṽj

)

+

+ σ>C2,δΛ
[2]
ΦĉΦ

vec
(

Ṽ
[2]

kΦ

)

+ σ>C2,δ

kΦ−1
∑

j=0

Λ
[2]
ΦĈ

vec
(

Ṽj

)

+

+ δaσ
>C2,a

m
∑

i=1

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

un,a,i + δaσ
>C2,a

m
∑

i=1

(

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

)

un,a,i+

+ (1 − δa)σ>C2,r

m
∑

i=1

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

un,r,i+

+ (1 − δa)σ>C2,r

m
∑

i=1

(

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

)

un,r,i+

−
kΦ−1
∑

j=0

vec
(

Ṽj

)>
Λ>

ΦĈ
C>

δ σ − vec
(

Ṽ
[1]

kΦ

)>

(Λ
[1]
ΦĉΦ

)>(C1,δ)>σ+

− vec
(

Ṽ
[2]

kΦ

)>

(Λ
[2]
ΦĉΦ

)>(C2,δ)>σ −
kΨ−1
∑

j=0

vec
(

Ũj

)>

(

m
∑

i=1

un,i(Λ
[i]
ΨĈ

)>

)

(C2,δ)>σ+

−
m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

un,i(Λ
[i]
ΨĉΨ

)>(C2,δ)>σ. (B.25)

Since v̇ ∈ R, if one exploits (5.46), it holds that

kΦ−1
∑

j=0

vec
(

Ṽj

)>
Λ>

ΦĈ
C>

δ σ =





kΦ−1
∑

j=0

vec
(

Ṽj

)>
Λ>

ΦĈ
C>

δ σ





>

= σ>Cδ

kΦ−1
∑

j=0

ΛΦĈ
vec
(

Ṽj

)

= σ>
[

C1,δ C2,δ

]

kΦ−1
∑

j=0

[

Λ
[1]
ΦĈ

Λ
[2]
ΦĈ

]

vec
(

Ṽj

)

= σ>C1,δ

kΦ−1
∑

j=0

Λ
[1]
ΦĈ

vec
(

Ṽj

)

+ σ>C2,δ

kΦ−1
∑

j=0

Λ
[2]
ΦĈ

vec
(

Ṽj

)

, (B.26)

vec
(

Ṽ
[1]

kΦ

)>

(Λ
[1]
ΦĉΦ

)>C>
1,δσ =

(

vec
(

Ṽ
[1]

kΦ

)>

(Λ
[1]
ΦĉΦ

)>C>
1,δσ

)>

= σ>C1,δΛ
[1]
ΦĉΦ

vec
(

Ṽ
[1]

kΦ

)

, (B.27)
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vec
(

Ṽ
[2]

kΦ

)>

(Λ
[2]
ΦĉΦ

)>C>
2,δσ =

(

vec
(

Ṽ
[2]

kΦ

)>

(Λ
[2]
ΦĉΦ

)>C>
2,δσ

)>

= σ>C2,δΛ
[2]
ΦĉΦ

vec
(

Ṽ
[2]

kΦ

)

, (B.28)

and (B.25) can be simplified as

v̇ ≤ σ>C1,δ

{

∆
[1]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ

}

+ σ>C2,δ

{

∆
[2]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ +

+ B̄ur + h

}

+ δaσ
>C2,a

{

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,a,i + εΨun,a

}

+

+ (1 − δa)σ>C2,r

{

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,r,i + εΨun,r

}

+

+ δaσ
>C2,a

m
∑

i=1

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

un,a,i + δaσ
>C2,a

m
∑

i=1

(

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

)

un,a,i+

+ (1 − δa)σ>C2,r

m
∑

i=1

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

un,r,i+

+ (1 − δa)σ>C2,r

m
∑

i=1

(

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

)

un,r,i+

−
kΨ−1
∑

j=0

vec
(

Ũj

)>

(

m
∑

i=1

un,i(Λ
[i]
ΨĈ

)>

)

(C2,δ)>σ+

−
m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

un,i(Λ
[i]
ΨĉΨ

)>(C2,δ)>σ. (B.29)

Moreover, it holds that

kΨ−1
∑

j=0

vec
(

Ũj

)>

(

m
∑

i=1

un,i(Λ
[i]
ΨĈ

)>

)

C>
2,δσ =





kΨ−1
∑

j=0

vec
(

Ũj

)>

(

m
∑

i=1

un,i(Λ
[i]
ΨĈ

)>

)

C>
2,δσ





>

= σ>C2,δ

kΨ−1
∑

j=0

m
∑

i=1

un,iΛ
[i]
ΨĈ

vec
(

Ũj

)

= σ>C2,δ

m
∑

i=1





kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)



un,i,

= δaσ
>C2,a

m
∑

i=1





kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)



un,a,i+

+ (1 − δa)σ>C2,r

m
∑

i=1





kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)



un,r,i,

(B.30)

m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

un,i(Λ
[i]
ΨĉΨ

)>C>
2,δσ =

(

m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

un,i(Λ
[i]
ΨĉΨ

)>C>
2,δσ

)>
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= σ>C2,δ

m
∑

i=1

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

un,i

= δaσ
>C2,a

m
∑

i=1

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

un,a,i+

+ (1 − δa)σ>C2,r

m
∑

i=1

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

un,r,i.

(B.31)

Exploiting the above identities and substituting ur as in (6.9b), expression (B.29) can be

rewritten as

v̇ ≤ σ>C1,δ

{

∆
[1]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ

}

+ σ>C2,δ

{

∆
[2]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ + h

}

+

+ δaσ
>C2,a

{

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,a,i + εΨun,a

}

+

+ (1 − δa)σ>C2,r

{

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

un,r,i + εΨun,r

}

− ρσ>C2,δB̄
σ

‖σ‖ .

Then, by means of Assumption 5.1, 5.3, 5.6, and Proposition 5.2, it holds that

v̇ ≤ ‖σ‖ ‖C1,δ‖ {c̄Φ1
+ ε̄Φ1

} + ‖σ‖ ‖C2,δ‖ {c̄Φ2
+ ε̄Φ2

+ h̄}+

+ δa ‖σ‖ ‖C2,a‖ {m(c̄Ψ + ε̄Ψ) ‖un,a‖} + (1 − δa) ‖σ‖ ‖C2,r‖ {m(c̄Ψ + ε̄Ψ) ‖un,r‖}+

− ρσ>C2,δB̄
σ

‖σ‖ .

Since matrix B̄ is assumed to be symmetric and positive definite (Assumption 5.2) and the

components of C2,δ are chosen according to Assumption 6.1, it holds that

σ>C2,δB̄σ ≥ ‖σ‖2
λ(C2,δ)λ(B̄) ≥ ‖σ‖2

λ(C2,δ)γ,

where λ(C2,δ) := δaλ(C2,a) + (1 − δa)λ(C2,r). Hence, v̇ can be bounded as

v̇ ≤ ‖σ‖ ‖C1,δ‖ {c̄Φ1
+ ε̄Φ1

} + ‖σ‖ ‖C2,δ‖ {c̄Φ2
+ ε̄Φ2

+ h̄}+

+ δa ‖σ‖ ‖C2,a‖ {m(c̄Ψ + ε̄Ψ) ‖un,a‖} + (1 − δa) ‖σ‖ ‖C2,r‖ {m(c̄Ψ + ε̄Ψ) ‖un,r‖}+

− ρ ‖σ‖λ(C2,δ)γ.

If one defines the quantities r̄Φ1
:= c̄Φ1

+ ε̄Φ1
, r̄Φ2

:= c̄Φ2
+ ε̄Φ2

and r̄Ψ := m(c̄Ψ + ε̄Φ), the

above inequality can be written in a more compact way as

v̇ ≤ ‖σ‖ {‖C1,δ‖ r̄Φ1
+ ‖C2,δ‖ (r̄Φ2

+ h̄) + δa ‖C2,a‖ r̄Ψ ‖un,a‖ +

+ (1 − δ) ‖C2,r‖ r̄Ψ ‖un,r‖ − ρλ(C2,δ)γ}.

If the control gain ρ is chosen as in Theorem 6.1, i.e.,

ρ >
‖C1,δ‖ r̄Φ1

+ ‖C2,δ‖ (r̄Φ2
+ h̄) + δa ‖C2,a‖ r̄Ψ ‖un,a‖ + (1 − δa) ‖C2,r‖ r̄Ψ ‖un,r‖ + η̄

λ(C2,δ)γ
,
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with η̄ ∈ R>0, then it holds that

v̇ ≤ −η̄ ‖σ‖ ,

implying that σ(x(t)) → 0m for t → ∞. This concludes the proof.

B.4 Proof of Theorem 6.2

The development of proof is similar to the proof of Theorem 5.2 and follows the one in [53,

Theorem 3]. Consider the Lyapunov candidate function v : X → R given by

v =
1

2
σ>σ +

1

2

2
∑

i=1

ρ̃2
i , (B.32)

where ρ̃i = ρ?
i − ρ̂i represent the components the error between the estimate of the discon-

tinuous control gain and its ideal value

ρ? = ρ?
1 + ρ?

2

(

δa ‖un,a‖ + (1 − δa) ‖un,r‖
)

+
η?

λ(C2,δ)γ
,

with η? ∈ R>0. In particular, the elements ρ?
i are defined so that ρ? is able to enforce sliding

mode σ(x(t)) = 0m for t ≤ t1. Hence,

ρ?
1 =

‖C1,δ‖
(

supx∈X

∥

∥

∥f1 − Φ̂
[1]
kΦ,t1

∥

∥

∥

)

+ ‖C2,δ‖
(

supx∈X

∥

∥

∥f2 − Φ̂
[2]
kΦ,t1

∥

∥

∥+ h̄
)

λ(C2,δ)γ
, (B.33)

ρ2
? =

‖C2,δ‖ supx∈X

∥

∥

∥

∑m
i=1 B̄

(i) − Ψ̂
[i]
kΨ,t1

∥

∥

∥

λ(C2,δ)γ
, (B.34)

with Φ̂
[1]
kΦ,t1

, Φ̂
[2]
kΦ,t1

, and Ψ̂
[i]
kΨ,t1

denoting the output of the DNNs characterized by fixed

weights V̂j(t1), for j ∈ {0, 1, . . . , kΦ} and Ûj(t1), for j ∈ {0, 1, . . . , kΨ}.

Exploiting (B.24), the first time-derivative of (B.32) is computed as

v̇(x) = σ>σ̇ −
2
∑

i=1

ρ̃i
˙̂ρi

= σ>

[

C1,δ

(

Φ̃
[1]
kΦ,Ē1

+ ε
[1]
Φ

)

+ C2,δ

(

Φ̃
[2]
kΦ,Ē1

+ ε
[2]
Φ + h

)

+

+ δaC2,a

(

m
∑

i=1

Ψ̃
[i]
kΨ,Ē1

un,a,i + εΨun,a

)

+ (1 − δa)C2,r

(

m
∑

i=1

Ψ̃
[i]
kΨ,Ē1

un,r,i + εΨun,r

)]

+

− σ>C2,δB̄

(

ρ̂1 + ρ̂2

(

δa ‖un,a‖ + (1 − δa) ‖un,r‖
)

)

σ

‖σ‖ − ρ̃1
˙̂ρ1 − ρ̃2

˙̂ρ2,

where Φ̃
[1]
kΦ,t1

= Φ
[1]
kΦ

− Φ̂
[1]
kΦ,t1

, Φ̃
[2]
kΦ,t1

= Φ
[2]
kΦ

− Φ̂
[2]
kΦ,t1

, and Ψ̃
[i]
kΨ,t1

= Ψ
[i]
kΨ

− Ψ̂
[1]
kΨ,t1

. Recalling

that ρ̂ = ρ? − ρ̃, v̇(x) can be expanded as

v̇(x) = σ>

[

C1,δ

(

Φ̃
[1]
kΦ,Ē1

+ ε
[1]
Φ

)

+ C2,δ

(

Φ̃
[2]
kΦ,Ē1

+ ε
[2]
Φ + h

)

+
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+ δaC2,a

(

m
∑

i=1

Ψ̃
[i]
kΨ,Ē1

un,a,i + εΨun,a

)

+ (1 − δa)C2,r

(

m
∑

i=1

Ψ̃
[i]
kΨ,Ē1

un,r,i + εΨun,r

)]

+

− σ>C2,δB̄

(

ρ?
1 + ρ?

2

(

δa ‖un,a‖ + (1 − δa) ‖un,r‖ +
η?

λ(C2,δ)γ

)

)

σ

‖σ‖+

+ σ>C2,δB̄

(

ρ̃1 + ρ̃2

(

δa ‖un,a‖ + (1 − δa) ‖un,r‖
)

)

σ

‖σ‖+

− ρ̃1
˙̂ρ1 − ρ̃2

˙̂ρ2,

Exploiting Proposition 5.3 to bound the approximation errors and bounding the other

terms relying on Assumptions 5.2 and 5.3, it holds that

v̇(x) ≤ ‖σ‖ ‖C1,δ‖ sup
x∈X

∥

∥

∥f1 − Φ̂
[1]
kΦ,t1

∥

∥

∥+ ‖σ‖ ‖C2,δ‖ sup
x∈X

∥

∥

∥f2 − Φ̂
[2]
kΦ,t1

∥

∥

∥+ ‖σ‖ ‖C2,δ‖ h̄+

+ δa ‖σ‖ ‖C2,a‖ sup
x∈X

∥

∥

∥

∥

∥

m
∑

i=1

B̄(i) − Ψ̂
[i]
kΨ,t1

∥

∥

∥

∥

∥

‖un,a‖ +

+ (1 − δa) ‖σ‖ ‖C2,r‖ sup
x∈X

∥

∥

∥

∥

∥

m
∑

i=1

B̄(i) − Ψ̂
[i]
kΨ,t1

∥

∥

∥

∥

∥

‖un,r‖ +

− ‖σ‖λ(C2,δ)γρ?
1 − ‖σ‖λ(C2,δ)γρ?

2

(

δa ‖un,a‖ + (1 − δa) ‖un,r‖
)

− ‖σ‖ η?+

+ ‖σ‖ ‖C2,δ‖ γ̄ ‖ρ̃1‖ + ‖σ‖ ‖C2,δ‖ γ̄ ‖ρ̃2‖
(

δa ‖un,a‖ + (1 − δa) ‖un,r‖
)

+

− ρ̃1
˙̂ρ1 − ρ̃2

˙̂ρ2.

Substituting the values ρ?
1 and ρ?

2 as in (B.33) and (B.34), respectively, the above inequality

can be simplified as

v̇(x) ≤ ‖σ‖ ‖C2,δ‖ γ̄ ‖ρ̃1‖ + ‖σ‖ ‖C2,δ‖ γ̄ ‖ρ̃2‖
(

δa ‖un,a‖ + (1 − δa) ‖un,r‖
)

+

− ρ̃1
˙̂ρ1 − ρ̃2

˙̂ρ2 − ‖σ‖ η?.

Substituting the adaptation laws (6.19), it holds that

v̇(x) ≤ ‖σ‖ ‖C2,δ‖ γ̄ ‖ρ̃1‖ + ‖σ‖ ‖C2,δ‖ γ̄ ‖ρ̃2‖
(

δa ‖un,a‖ + (1 − δa) ‖un,r‖
)

+

− ρ̃1proj
%1

((

‖C2,δ‖ γ̄ + α1

)

‖σ‖
)

+

− ρ̃2proj
%2

((

‖C2,δ‖ γ̄
(

δa ‖un,a‖ + (1 − δa) ‖un,r‖
)

+ α2

)

‖σ‖
)

+

− ‖σ‖ η?.

Letting ρ?
i > ρ̄i, since ρ̂i ≤ ρ̄i by virtue of the projection operator, then ρ̃i ≡ ‖ρ̃i‖, for

i ∈ {1, 2}. Hence, if one exploits the property of the project operator in Lemma A.1, it is

possible to write

v̇(x) ≤ ‖σ‖ ‖C2,δ‖ γ̄ρ̃1 + ‖σ‖ ‖C2,δ‖ γ̄ρ̃2

(

δa ‖un,a‖ + (1 − δa) ‖un,r‖
)

+

− ρ̃1

(

‖C2,δ‖ γ̄ + α1

)

‖σ‖ +
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− ρ̃2

(

‖C2,δ‖ γ̄
(

δa ‖un,a‖ + (1 − δa) ‖un,r‖
)

+ α2

)

‖σ‖ − ‖σ‖ η?

≤ − ‖σ‖α1ρ̃1 − ‖σ‖α2ρ̃2 − ‖σ‖ η?

≤ −η1 ‖ρ̃1‖ − η2 ‖ρ̃2‖ − η? ‖σ‖

≤ −
√

2 min{η?, η1, η2}
(‖σ‖√

2
+

‖ρ̃1‖√
2

+
‖ρ̃2‖√

2

)

≤ −
√

2 min{η?, η1, η2}
√

v(x),

implying that there exist t2 ≥ t1 such that σ(x(t)) = 0m for t ≥ t2 [53]. This concludes the

proof.

B.5 Proof of Theorem 6.3

Consider the Lyapunov candidate function v : X → R defined as

v(x) =
1

2
β(σ) +

1

2

kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

Ṽj

)

+
1

2

kΨ
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

Ũj

)

. (B.35)

Then, its first time-derivative can be computed observing that, according to the chain rule,

it holds that

β̇ =
dβ

dt
=

dβ

d ‖σ‖2

d ‖σ‖2

dt
=

dβ

d ‖σ‖2

d(σ>σ)

dt
= 2

dβ

d ‖σ‖2σ
>σ̇.

Hence, v̇ is equal to

v̇ =
dβ

d ‖σ‖2σ
>σ̇ +

kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̃Vj

)

+

kΨ
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

˙̃Uj

)

. (B.36)

From now on, the proof articulates following a reasoning which is similar to the one of the

proof of Theorem 5.1 (Appendix B.1). Hence only the fundamental step are reported.

Since σ is defined as in (6.51), it holds that

σ̇ = ẋ− Φ̂kΦ
−

m
∑

i=1

Ψ̂
[i]
kΨ
uqp,i

= f + B̄uqp − ρB̄
σ

‖σ‖ + h− Φ̂kΦ
−

m
∑

i=1

Ψ̂
[i]
kΨ
uqp,i

= Φ̃kΦ
+

m
∑

i=1

Ψ̃
[i]
kΨ
uqp,i + εΦ + εΨuqp + h− ρB̄

σ

‖σ‖ . (B.37)

Substituting (B.37) in (B.36), it holds that

v̇ =
dβ

d ‖σ‖2σ
>

{

Φ̃kΦ
+

m
∑

i=1

Ψ̃
[i]
kΨ
uqp,i + εΦ + εΨuqp + h

}

− ρ
dβ

d ‖σ‖2σ
>B̄

σ

‖σ‖+

−
kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

−
kΨ
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

˙̂
Uj

)

.
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Writing the expression of the DNNs approximation errors, the above equation becomes

v̇ =
dβ

d ‖σ‖2σ
>

{

ΛΦĉΦ
vec
(

ṼkΦ

)

+ ∆ΦĉΦ
+

kΦ−1
∑

j=0

ΛΦĈ
vec
(

Ṽj

)

+

kΦ−1
∑

j=1

ΞΦĈ
∆ΦĈ

+

+

m
∑

i=1

(

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

+ ∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

uqp,i+

+ εΦ + εΨuqp + h

}

− ρ
dβ

d ‖σ‖2σ
>B̄

σ

‖σ‖ −
kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

+

−
kΨ
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

˙̂
Uj

)

.

Rearranging the terms, one obtains

v̇ =
dβ

d ‖σ‖2σ
>

{

∆ΦĉΦ
+

kΦ−1
∑

j=1

ΞΦĈ
∆ΦĈ

+

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

uqp,i+

+ εΦ + εΨuqp + h

}

− ρ
dβ

d ‖σ‖2σ
>B̄

σ

‖σ‖+

+
dβ

d ‖σ‖2σ
>ΛΦĉΦ

vec
(

ṼkΦ

)

+
dβ

d ‖σ‖2σ
>

kΦ−1
∑

j=0

ΛΦĈ
vec
(

Ṽj

)

+

+
dβ

d ‖σ‖2σ
>

m
∑

i=1

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

uqp,i +
dβ

d ‖σ‖2σ
>

m
∑

i=1

(

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

)

uqp,i+

−
kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

−
kΨ
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

˙̂
Uj

)

. (B.38)

Then, if one expands the last two term, the above equation becomes

v̇ =
dβ

d ‖σ‖2σ
>

{

∆ΦĉΦ
+

kΦ−1
∑

j=1

ΞΦĈ
∆ΦĈ

+

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

uqp,i+

+ εΦ + εΨuqp + h

}

− ρ
dβ

d ‖σ‖2σ
>B̄

σ

‖σ‖+

+
dβ

d ‖σ‖2σ
>ΛΦĉΦ

vec
(

ṼkΦ

)

+
dβ

d ‖σ‖2σ
>

kΦ−1
∑

j=0

ΛΦĈ
vec
(

Ṽj

)

+

+
dβ

d ‖σ‖2σ
>

m
∑

i=1

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

uqp,i +
dβ

d ‖σ‖2σ
>

m
∑

i=1

(

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

)

uqp,i+

−
kΦ−1
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

− vec
(

ṼkΦ

)>
(

ΓΦĉΦ

)−1

vec
(

˙̂
VkΦ

)

+

−
kΨ−1
∑

j=0

vec
(

Ũj

)>
Γ−1

ΨĈ
vec
(

˙̂
Uj

)

−
m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

Γ−1
ΨĉΨ

vec
(

˙̂
U

[i]
kΨ

)

. (B.39)

Substituting the adaptation laws (6.53), (6.54), and (6.55), and exploiting the property of
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B.6. Proof of Theorem 6.4

the projection operator Lemma 5.2, it holds that

v̇ ≤ dβ

d ‖σ‖2σ
>

{

∆ΦĉΦ
+

kΦ−1
∑

j=1

ΞΦĈ
∆ΦĈ

+

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

uqp,i+

+ εΦ + εΨuqp + h

}

− ρ
dβ

d ‖σ‖2σ
>B̄

σ

‖σ‖+

+
dβ

d ‖σ‖2σ
>ΛΦĉΦ

vec
(

ṼkΦ

)

+
dβ

d ‖σ‖2σ
>

kΦ−1
∑

j=0

ΛΦĈ
vec
(

Ṽj

)

+

+
dβ

d ‖σ‖2σ
>

m
∑

i=1

Λ
[i]
ΨĉΨ

vec
(

Ũ
[i]
kΨ

)

uqp,i +
dβ

d ‖σ‖2σ
>

m
∑

i=1

(

kΨ−1
∑

j=0

Λ
[i]
ΨĈ

vec
(

Ũj

)

)

uqp,i+

−
kΦ−1
∑

j=0

vec
(

Ṽj

)>
(ΛΦĈ

)> ∂β

∂ ‖σ‖2σ − vec
(

ṼkΦ

)>
(ΛΦĉΦ

)> ∂β

∂ ‖σ‖2σ+

−
kΨ−1
∑

j=0

vec
(

Ũj

)>

(

m
∑

i=1

uqp,i(Λ
[i]
ΨĈ

)>

)

∂β

∂ ‖σ‖2σ+

−
m
∑

i=1

vec
(

Ũ
[i]
kΨ

)>

uqp,i(Λ
[i]
ΨĈ

)> ∂β

∂ ‖σ‖2σ. (B.40)

Then, since v̇ ∈ R, it is possible to cancel out the terms that depend on the weight error,

having

v̇ ≤ dβ

d ‖σ‖2σ
>

{

∆ΦĉΦ
+

kΦ−1
∑

j=1

ΞΦĈ
∆ΦĈ

+

m
∑

i=1

(

∆
[i]
ΨĉΨ

+

kΨ−1
∑

j=1

Ξ
[i]
ΨĈ

∆ΨĈ

)

uqp,i+

+ εΦ + εΨuqp + h

}

− ρ
dβ

d ‖σ‖2σ
>B̄

σ

‖σ‖ . (B.41)

Since ∂β
∂‖σ‖2 ∈ R>0, exploiting Assumption 5.1, 5.3, and 5.6, and Proposition 5.2, the above

quantity can be bounded as

v̇ ≤
∣

∣

∣

∣

∣

dβ

d ‖σ‖2

∣

∣

∣

∣

∣

‖σ‖ {c̄Φ + ε̄Φ +m(c̄Ψ + ε̄Ψ) ‖uqp‖ + h̄} − ρ

∣

∣

∣

∣

∣

dβ

d ‖σ‖2

∣

∣

∣

∣

∣

γ ‖σ‖ . (B.42)

Hence, choosing

ρ =
c̄Φ + ε̄Φ +m(c̄Ψ + ε̄Ψ) ‖uqp‖ + h̄+ η̄

γ
, (B.43)

with η̄ ∈ R>0 being a design parameter, then it holds that

v̇ ≤ −η̄
∣

∣

∣

∣

∣

dβ

d ‖σ‖2

∣

∣

∣

∣

∣

‖σ‖ , (B.44)

implying that σ(x(t)) → 0m for t → ∞. Moreover, since σ(x(t0)) = 0m, it is guaranteed

that ‖σ(x(t))‖ ≤ εσ, for t ≥ t0 by virtue of the BLF. This concludes the proof.

B.6 Proof of Theorem 6.4

By Assumption 6.2 and from Nagumo’s theorem [154], it holds that the QP problem (6.58)

ensures that X̂a is forward invariant with respect to the state of the system whose dynamics
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Appendix B. Proofs

are defined by the DNNs, which is

˙̂x(t) = Φ̂kΦ
+ vec−1

(

Ψ̂kΨ

)

uqp.

Hence, it holds that x̂(t) ∈ X̂a, for t ≥ t0. From (6.57), the boundary ∂X̂a of X̂a is given

by ∂X̂a = {x ∈ Xa : dist(x, ∂Xa) = εσ}, and thus dist(∂X̂a, ∂Xa) = εσ. Then, the distance

between the state trajectory x and ∂Xa, can be lower bounded by exploiting the triangular

inequality as

dist(x(t), ∂C) ≥ dist(x̂(t), ∂Xa) − dist(x(t), x̂(t))

> dist(∂X̂a, ∂Xa) − εσ = 0

No further step is necessary, as x̂ can only approach ∂X̂a from the interior of X̂a, concluding

the proof.

B.7 Proof of Theorem 7.1

Let the Lyapunov candidate function v : X → R be defined as

v =
1

2
σ>σ. (B.45)

Considering the choice of σ0 in (7.5), and ż in (7.6), one has that

v̇ = σ>σ̇

= σ>{σ̇0 − ż}

= σ>

{

C1

[

f1(x) − f1(x̂)
]

+ C2

[

f2(x) − f2(x̂)
]

+ C2

[(

B̄(x) − B̄(x̂)
)

u+

+ B̄(x)∆u− B̄(x̂)vn − B̄(x̂)vr

]

− C1

[

f1(x) − f1(x̂)
]

− C2

[

f2(x) − f2(x̂)
]

+

C2

[(

B̄(x) − B̄(x̂)
)

u− B̄(x̂)vn

]

}

= σ>C2

[

B̄(x)∆u− B̄(x̂)vr

]

Substituting the control law vr in (7.4) and rearranging the terms, it holds that

v̇ = σ>C2B̄(x)∆u− ρσ>C2B̄(x̂)
σ

‖σ‖ .

Then, exploiting Assumptions 5.2 and 7.1, v̇ can be bounded as

v̇ = ‖σ‖ ‖C2‖ γ̄δ̄ − ρ ‖σ‖λ(C2)γ.

Hence, choosing the discontinuous control gain such that

ρ >
‖C2‖ γ̄
λ(C2)γ

δ̄, (B.46)

it holds that v̇ < 0, meaning that the condition σ(x(t)) = 0m is enforced in finite time.

Moreover, since σ(x(t0)) = 0m by design, a sliding mode σ(x(t)) = 0m is enforced for t ≥ t0.
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B.8. Proof of Theorem 7.2

When in sliding mode, it is possible to compute the equivalent controller veq by imposing

σ̇ = 0m and solving for vr. In this case,

σ̇ = C2

[

B̄(x)∆u− B̄(x̂)ṽr

]

= 0m,

which leads to

veq = (B̄(x̂))+B̄(x)∆u,

concluding the proof.

B.8 Proof of Theorem 7.2

Consider the Lyapunov-like candidate function v : X → R defined as

v =
1

2
σ>σ +

1

2

kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

Ṽj

)

, (B.47)

characterized by first time-derivative

v̇ = σ>σ̇ +

kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̃Vj

)

= σ>{σ̇0 − ˙̂z} −
kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

Considering the sliding variable σ in (7.9), σ0 in (7.5), and ˙̂z in (7.10), and defining f1(x) ≡
f1, f2(x) ≡ f2, B̄(x) ≡ B̄, and B̄(x̂) ≡ ˆ̄B for sake of readability, one has that

v̇ = σ>

{

C1f1 + C2

[

f2 −
(

B̄ − ˆ̄B
)

u+ B̄∆u− ˆ̄Bvn − ˆ̄Bvr

]

− C1Φ̂
[1]
kΦ

− C2

[

Φ̂
[2]
kΦ

+

+
(

B̄ − ˆ̄B
)

u− ˆ̄Bvn

]

}

−
kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

= σ>

{

C1

[

f1 − Φ̂
[1]
kΦ

]

+ C2

[

f2 − Φ̂
[2]
kΦ

+ B̄∆u− ˆ̄Bvr

]

}

−
kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

= σ>

{

C1

[

Φ̃
[1]
kΦ

+ ε
[1]
Φ

]

+ C2

[

Φ̃
[2]
kΦ

+ ε
[2]
Φ + B̄∆u− ˆ̄Bvr

]

}

−
kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

.

Substituting Φ̃
[1]
kΦ

and Φ̃
[2]
kΦ

as in (5.29), one has that

v̇ = σ>

{

C1

[

Λ
[1]
ΦĉΦ

vec
(

Ṽ
[1]

kΦ

)

+ ∆
[1]
ΦĉΦ

+

kΦ−1
∑

j=0

Λ
[1]
ΦĈ

vec
(

Ṽj

)

+

kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ

]

+ C2

[

Λ
[2]
ΦĉΦ

vec
(

Ṽ
[2]

kΦ

)

+ ∆
[2]
ΦĉΦ

+

kΦ−1
∑

j=0

Λ
[2]
ΦĈ

vec
(

Ṽj

)

+

kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ

+ B̄∆u− ˆ̄Bvr

]

}

−
kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

.
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Then, rearranging the terms and expanding the last summation, it is possible to obtain

v̇ = σ>

{

C1

[

∆
[1]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ

]

+ C2

[

∆
[2]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ + B̄∆u

]

}

+

− σ>C2
ˆ̄Bv2 + σ>C1Λ

[1]
ΦĉΦ

vec
(

Ṽ
[1]

kΦ

)

+ σ>C1

kΦ−1
∑

j=0

Λ
[1]
ΦĈ

vec
(

Ṽj

)

+

+ σ>C2Λ
[2]
ΦĉΦ

vec
(

Ṽ
[2]

kΦ

)

+ σ>C2

kΦ−1
∑

j=0

Λ
[2]
ΦĈ

vec
(

Ṽj

)

−
kΦ−1
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

+

− vec
(

Ṽ
[1]

kΦ

)> (

Γ
[1]
ΦĉΦ

)−1

vec
(

˙̂
V

[1]
kΦ

)

− vec
(

Ṽ
[2]

kΦ

)> (

Γ
[2]
ΦĉΦ

)−1

vec
(

˙̂
V

[2]
kΦ

)

.

Adjusting the the weights according to (7.11), (7.12a), and (7.12b), and exploiting property

3 of Lemma 5.2, the above equation becomes

v̇ ≤ σ>

{

C1

[

∆
[1]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ

]

+ C2

[

∆
[2]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ + B̄∆u

]

}

+

− σ>C2
ˆ̄Bvr + σ>C1Λ

[1]
ΦĉΦ

vec
(

Ṽ
[1]

kΦ

)

+ σ>C1

kΦ−1
∑

j=0

Λ
[1]
ΦĈ

vec
(

Ṽj

)

+

+ σ>C2Λ
[2]
ΦĉΦ

vec
(

Ṽ
[2]

kΦ

)

+ σ>C2

kΦ−1
∑

j=0

Λ
[2]
ΦĈ

vec
(

Ṽj

)

−
kΦ−1
∑

j=0

vec
(

Ṽj

)>
Λ>

ΦĈ
C>σ+

− vec
(

Ṽ
[1]

kΦ

)>

(Λ
[1]
ΦĉΦ

)>C>
1 σ − vec

(

Ṽ
[2]

kΦ

)>

(Λ
[2]
ΦĉΦ

)>C>
2 σ.

Exploiting the fact that v̇ ∈ R and since (B.9) holds, one can simplify all the terms that

depend on the weight approximation errors, obtaining

v̇ ≤ σ>

{

C1

[

∆
[1]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[1]
ΦĈ

∆ΦĈ
+ ε

[1]
Φ

]

+ C2

[

∆
[2]
ΦĉΦ

+

kΦ−1
∑

j=1

Ξ
[2]
ΦĈ

∆ΦĈ
+ ε

[2]
Φ +

+ B̄∆u
]

}

− σ>C2
ˆ̄Bvr.

Then, substituting vr as in (7.4), and by means of Assumptions 5.1, 5.2, 7.1, and 5.6, and

Proposition 5.2, it holds that

v̇ ≤ ‖σ‖ {‖C1‖ [c̄Φ1
+ ε̄Φ1

] + ‖C2‖ [c̄Φ2
+ ε̄Φ2

+ γ̄δ̄]} − ρλ(C2)γ ‖σ‖ .

Finally, if one selects the discontinuous control gain as

ρ >
‖C1‖ {c̄Φ1

+ ε̄Φ1
} + ‖C2‖ {c̄Φ2

+ ε̄Φ2
+ δ̄} + η̄

λ(C2)γ
,

it holds that v̇ ≤ −η ‖σ‖, implying σ(x(t)) → 0m for t → ∞ and concluding the proof.

B.9 Proof of Theorem 7.3

The proof is similar to the one of Theorem 5.2 and it follows the one in [53, Theorem

3]. Nevertheless, the main steps are reported for completeness. Consider the Lyapunov
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B.9. Proof of Theorem 7.3

candidate function v : X → R defined as

v(x) =
1

2
σ>σ +

1

2
ρ̃2, (B.48)

where ρ̃ = ρ? − ρ̂ is the error between the discontinuous control gain and the unknown ideal

gain, capable of of enforcing a sliding mode σ(x(t)) = 0m for t ≤ t1. In particular, such a

gain is defined as

ρ? =
‖C1‖

(

supx∈X

∥

∥

∥
f1 − Φ̂

[1]
kΦ,t1

∥

∥

∥

)

+ ‖C2‖
(

supx∈X

∥

∥

∥
f2 − Φ̂

[2]
kΦ,t1

∥

∥

∥
+ γ̄δ̄

)

λ(C2)γ
+

η?

λ(C2)γ
,

(B.49)

where η? ∈ R>0, while Φ̂
[1]
kΦ,t1

and Φ̂
[2]
kΦ,t1

represent the output of the DNN characterized by

fixed weights Vj(t1), for j ∈ {0, 1, . . . , kΦ}.

Recalling that the integral sliding variable σ is chosen as in (7.9), where σ0 is the one in

(7.5) and ẑ is characterized by the dynamics in (7.10), keeping the weights of the DNN fixed

to the value they had at time t1, then the first time-derivative of the Lyapunov candidate

function is computed as

v̇(x) = σ>σ̇ − ρ̃ ˙̂ρ,

= σ>

{

C1

[

Φ̃
[1]
kΦ,t1

+ ε
[1]
Φ

]

+ C2

[

Φ̃
[2]
kΦ,t1

+ ε
[2]
Φ + B̄∆u

]

}

− ρ̂σ>C2
ˆ̄B
σ

‖σ‖ − ρ̃ ˙̂ρ,

= σ>

{

C1

[

Φ̃
[1]
kΦ,t1

+ ε
[1]
Φ

]

+ C2

[

Φ̃
[2]
kΦ,t1

+ ε
[2]
Φ + B̄∆u

]

}

− ρ?σ>C2
ˆ̄B
σ

‖σ‖+

− σ>C2
ˆ̄B

η?

λ(C2)γ

σ

‖σ‖ + ρ̃σ>C2
ˆ̄B
σ

‖σ‖ − ρ̃ ˙̂ρ

where Φ̃
[1]
kΦ,t1

= Φ
[1]
kΦ

− Φ̂
[1]
kΦ,t1

and Φ̃
[2]
kΦ,t1

= Φ
[2]
kΦ

− Φ̂
[2]
kΦ,t1

.

Exploiting Proposition 5.3 to bound the approximation errors and bounding the other

terms relying on Assumptions 5.2 and 5.3, it holds that

v̇(x) ≤ ‖σ‖ ‖C1‖ sup
x∈X

∥

∥

∥f1 − Φ̂
[1]
kΦ,t1

∥

∥

∥+ ‖σ‖ ‖C2‖ sup
x∈X

∥

∥

∥f2 − Φ̂
[2]
kΦ,t1

∥

∥

∥+ ‖σ‖ ‖C2‖ γ̄δ̄+

− ‖σ‖λ(C2)γρ? − ‖σ‖ η? + ‖σ‖ λ̄(C2)γ̄ ‖ρ̃‖ − ρ̃ ˙̂ρ.

Substituting the values ρ? a (B.49) the above inequality can be simplified as

v̇(x) = − ‖σ‖ η? + ‖σ‖ λ̄(C2)γ̄ ‖ρ̃‖ − ρ̃ ˙̂ρ.

Substituting the adaptation law in (7.14) and exploiting property 3 of Lemma 5.2, one

has that

v̇(x) ≤ − ‖σ‖ η? + ‖σ‖ λ̄(C2)γ̄ ‖ρ̃‖ − ρ̃λ̄(C2)γ̄ ‖σ‖ − ρ̃α ‖σ‖ .

Moreover, letting ρ? > ρ̄, since ρ̂ ≤ ρ̄ by virtue of the projection operator, then it holds

‖ρ̃‖ ≡ ρ̃ and the following holds

v̇(x) ≤ − ‖σ‖ η? − ρ̃α ‖σ‖
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≤ −α ‖σ‖ ‖ρ̃‖ − η? ‖σ‖
≤ −η1 ‖ρ̃‖ − η? ‖σ‖

≤ −
√

2 min{η?, η1}
(‖σ‖√

2
+

‖ρ̃‖√
2

)

≤ −
√

2 min{η?, η1}
√

v(x)

proving that there exist t2 ≥ t1 such that σ(x(t)) = 0m for t ≥ t2 [53].

Moreover, imposing σ̇ = 0m and solving for vr allows to compute the equivalent control

veq. In particular

σ̇ = C1

[

Φ̃
[1]
kΦ,t1

+ ε
[1]
Φ

]

+ C2

[

Φ̃
[2]
kΦ,t1

+ ε
[2]
Φ

]

+ C2B̄∆u+ C2
ˆ̄Bvr = 0m

leads to

veq = (C2
ˆ̄B)−1

{

C1

[

Φ̃
[1]
kΦ,t1

+ ε
[1]
Φ

]

+ C2

[

Φ̃
[2]
kΦ,t1

+ ε
[2]
Φ

]}

+ (C2
ˆ̄B)−1C2B̄∆u.

The proof is concluded.

B.10 Proof of Theorem 8.1

The proof follows directly from [44, Theorem 2] and [155, Theorem 2]. Let σ1,i(t0) and

σ2,i(t0), with i ∈ {1, 2, . . . , n}, be the initial condition of the sliding variable components.

Then, for sake or simplicity, let such conditions be defined so that σ1,i(0) > − σ2,ć(t0)|σ2,ć(t0)|
2αĐ,ć

and σ2,i(t0) > 0 (all the other symmetric conditions are analogous). Since σ1,i = − σ2,ć|σ2,ć|
2αĐ,ć

corresponds to the minimum time curve in the nominal case, one has to prove that, in the

case of the worst realization of the uncertain terms, the auxiliary state trajectory under

(8.25) follows this curve, in an equivalent sense. In fact, computing the vector field, one

has [σ2,i,−Fi + αi] = [σ2,i,−αr,i], that is the trajectory moves towards the curve, while

pointing downward. When the curve σ1,i = − σ2,ć|σ2,ć|
2αĐ,ć

is reached, the control sign changes

and the vector field becomes [σ2,i,−Fi + αi] = [σ2,i, αr,i], with σ2,i < 0. This means that

the trajectory is always tangent to the curve, with the states of (8.24) moving towards the

origin in minimum time.

B.11 Proof of Theorem 9.1

The above theorem can be proven by performing Lyapunov analysis on the candidate func-

tion

v =
1

2
σ>σ +

1

2

kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

Ṽj

)

+
ρ̃2

2µ
, (B.50)

where ρ̃ = ρ? − ρ̂ ∈ R>0, characterized by first time-derivative of (B.50) is given by

v̇ = σ>σ̇ −
kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

− ρ̃ ˙̂ρ

µ
. (B.51)
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Then, it is possible to compute the time-derivative of the integral sliding variable in

9.16, i.e.,

σ̇ = σ̇0 − ˙̂z

= C1

{

q̇? − q̈?
}

+ C2

{

M−1(τh − ν) +M−1τn +M−1τr − q̈?
}

− C1

{

q̇? − q̈?
}

+

− C2

{

M−1Φ̂kΦ
+M−1τn +M−1τr − q̈?

}

= C2M
−1
{

τh − ν − Φ̂kΦ

}

+ C2M
−1τr

= C2M
−1
{

ΦkΦ
+ εΦ − Φ̂kΦ

}

− C2M
−1ρ̂

σ

‖σ‖
= C2M

−1
{

Φ̃kΦ
+ εΦ

}

− C2M
−1(ρ? − ρ̃)

σ

‖σ‖
If one exploits the form (5.29) to rewrite Φ̃kΦ

, it is possible to rewrite σ̇ as

σ̇ = C2M
−1

{

kΦ
∑

j=0

ΛΦĈ
vec
(

Ṽj

)

+

kΦ
∑

j=1

ΞΦĈ
∆ΦĈ

+ εΦ

}

− C2M
−1(ρ? − ρ̃)

σ

‖σ‖ .

Hence, substituting it into (B.51) yields

v̇ = σ>C2M
−1

{

kΦ
∑

j=1

ΞΦĈ
∆ΦĈ

+ εΦ

}

− σ>C2M
−1ρ? σ

‖σ‖+

+ σ>C2M
−1

kΦ
∑

j=0

ΛΦĈ
vec
(

Ṽj

)

−
kΦ
∑

j=0

vec
(

Ṽj

)>
Γ−1

ΦĈ
vec
(

˙̂
Vj

)

+

+ σ>C2M
−1ρ̃

σ

‖σ‖ − ρ̃ ˙̂ρ

µ

Then, applying the DNN adaptation law in (9.19) and exploiting point 3 of Lemma 5.2, the

above equation can be simplified as

v̇ ≤ σ>C2M
−1

{

kΦ
∑

j=1

ΞΦĈ
∆ΦĈ

+ εΦ

}

− σ>C2M
−1ρ? σ

‖σ‖ + σ>C2M
−1ρ̃

σ

‖σ‖ − ρ̃ ˙̂ρ

µ
.

Using the constants in Assumption 5.6 and Proposition 5.2 the above inequality can be

bounded above as

v̇ ≤ ‖σ‖
∥

∥C2M
−1
∥

∥ {c̄Φ + ε̄Φ} −
¯
λ(C2M

−1)ρ? ‖σ‖ + ρ̃
∥

∥C2M
−1
∥

∥ ‖σ‖ − ρ̃ ˙̂ρ

µ
.

Then, since the ideal gain ρ? is defined as in (9.20), the first term is dominated and it holds

that

v̇ ≤ −η? ‖σ‖ + ρ̃
∥

∥C2M
−1
∥

∥ ‖σ‖ − ρ̃ ˙̂ρ

µ
.

Substituting (9.22) in the above inequality yields

v̇ ≤ −η? ‖σ‖ + ρ̃
∥

∥C2M
−1
∥

∥ ‖σ‖ − ρ̃ ‖σ‖
∥

∥C2M
−1
∥

∥ sign (‖σ‖ − εσ) .

Two cases can be distinguished. First, if ‖σ‖ > εσ, it holds that sign (‖σ‖ − εσ) = 1, and,

as a consequence

v̇ ≤ −η? ‖σ‖ + ρ̃
∥

∥C2M
−1
∥

∥ ‖σ‖ − ρ̃ ‖σ‖
∥

∥C2M
−1
∥

∥
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≤ −η? ‖σ‖ .

While, if ‖σ‖ < εσ, then sign (‖σ‖ − εσ) = −1 and it is true that

v̇ ≤ −η? ‖σ‖ + 2ρ̃ ‖σ‖
∥

∥C2M
−1
∥

∥ ,

meaning that nothing can be said about the behavior of the integral sliding variable when

σ when ‖σ‖ < εσ. The two conditions lead to the conclusion that σ is ultimately bounded

into the set Ωσ := {σ ∈ R
n : ‖σ‖ ≤ εσ}, implying the enforcement of a practical sliding

mode.
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Franka Emika Panda Robot

The Franka Emika Panda robot is a collaborative robot characterized by 7 DoF, present

in the Intelligent Robotics Lab of the University of Pavia, and depicted in Figure C.1. In

this appendix, a description about the technical specifications, kinematics and dynamics

are provided. Moreover, it is described how the robot is simulated and controlled.

Figure C.1: Franka Emika Panda robot present in the University of Pavia.
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C.1. Technical Specifications

C.1 Technical Specifications

The robot is characterized by 7 DoF (one for each joint), all equipped with torque sensors,

which allow the manipulator to be controlled by setting torque references. The limits of the

joints, for what concerns position, velocity, acceleration, and torque, are presented in Table

C.1, while top and side views of the workspace of the manipulator are depicted in Figure

C.2.

Name q̄ [rad] q [rad] ¯̇q [rad/s] ¯̈q [rad/s2] τ̄ [Nm]

Joint 1 2.8973 -2.8973 2.175 15 87

Joint 2 1.7628 -1.7628 2.175 7.5 87

Joint 3 2.8973 -2.8973 2.175 10 87

Joint 4 -0.0698 -3.0718 2.175 12.5 87

Joint 5 2.8973 -2.8973 2.61 15 12

Joint 6 3.7525 -0.0175 2.61 20 12

Joint 7 2.8973 -2.8973 2.61 20 12

Table C.1: Limits of the robot joints.

(a) Top view of the robot workspace. (b) Side view of the robot workspace.

Figure C.2: Workspace of the Franka Emika Panda robot.

In order to compute the kinematics of the manipulator, instrumental for the develop-

ment of certain control strategies, the Panda robot makes use of modified (proximate) DH

parameters [82], presented in Figure C.3 and Table C.2.
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Figure C.3: Graphical representation of the modified DH parameters of the Franka

Emika Panda robot (picture taken from the documentation).

C.2 Dynamical Modeling

Since it is an open-chain manipulator, the dynamics of the Franka Emika Panda robot can

be described by

M(q)q̈ + C(q, q̇)q̇ + Fv q̇ + Fssign (q̇) + g(q) = τ

where q ∈ R
7 is the vector of the joint positions, M : R7 → R

7×7 is the inertia matrix,

C : R7 × R
7 → R

7×7 is the Coriolis matrix, Fv ∈ R
7×7 is the viscous friction coefficient

matrix, Fv ∈ R
7×7 is the static friction coefficient matrix, g : R7 → R

7 is the gravitational

torque, while τ ∈ R
7 is the input torque.

As detailed in the Panda robot documentation [156], the effects caused by gravity and

frictions are internally compensated, meaning that it is possible to consider g(q) = 07,

Fv q̇ = 07, and Fssign (q̇) = 07, for all q ∈ R
7 and q̇ ∈ R

7. As a consequence, it is possible

to write a the dynamics of the robot as

M(q)q̈ + C(q, q̇)q̇ = τ (C.1)

The values of the inertia and Coriolis matrices is strictly dependent on the dynamics

parameters of the robot. Some basic information about this last one is provided by Franka

Emika in the documentation [156]. For a complete identification of the robot dynamics, the

reader is invited to refer to the work of Gaz et al. [157].
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C.3. PyBullet Simulation

Name a [m] d [m] α [rad] θ [rad]

Joint 1 0 0.33 0 q1

Joint 2 0 0 -π

2
q2

Joint 3 0 0.316 π

2
q3

Joint 4 0.0825 0 π

2
q4

Joint 5 -0.0825 0.384 -π

2
q5

Joint 6 0 0 π

2
q6

Joint 7 0.08 0 π

2
q7

Flange 0 0.107 0 0

Table C.2: Modified DH parameters of the Franka Emika Panda robot.

Note that, even though the masses and inertia of the robot components are not directly

available, Franka Emika made the matrices M and C retrievable directly from the robot

via the proprietary programming library (more details will be provided in Section C.4).

C.3 PyBullet Simulation

In order to accurately simulate the behavior of the Franka Emika Panda robot, it has been

chosen to rely on PyBullet [158], a Python module for robotics simulation and machine

learning, with a focus on sim-to-real transfer. Such a module can be easily integrated with

any control strategy thanks to the easy-to-use API and provides robotic functionalities

such as forward dynamic simulation, inverse dynamic computation, forward and inverse

dynamics.

In a PyBullet simulation it is possible to load any robot described in the Unified Robot

Description Format (URDF) [159], which contains information about its kinematic structure

and dynamics. Then, the forward dynamics of the robot is simulated via the Articulated

Body Algorithm (ABA) [86], while the inverse dynamics, useful for the computation of the

mass matrix and Coriolis matrix, is performed using the Recursive Newton-Euler Algorithm

(RNEA), described in [87].

In the work reported in this dissertation, the Panda robot has been simulated using

the URDF description provided by Franka Emika [160]. A virtualized version of the Panda

robot in PyBullet is presented in Figure C.4. To have a simulation that is coherent to the

dynamics of the real robot (C.1), the effect of gravity is disabled in the simulation settings,

and frictions coefficients are removed from the URDF configuration file of the robot.
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Figure C.4: Virtualization of the Franka Emika Panda robot in PyBullet.

C.4 Controlling the Panda robot

In order to exchange information with the Panda robot, it is required to have a computer

on which is installed Libfranka [161], a C++ library provided by Franka Emika that allows

to retrieve data and send the references for the control signals to the manipulator. Such a

computer is connected to the low-level controller of the robot via Ethernet connection, as

depicted in Figure C.5. Moreover, to ensure low latency communication, Ubuntu operative

system with custom real-time kernel must be installed.

Even though Libfranka allows an easy interfacing with the robot, for the experiments re-

ported in this thesis, the software for controlling the robot and gathering data from sensors,

has been integrated in the Robot Operating System (ROS) framework. This integration al-

lows to have an easier communication infrastructure for the software components and gives

the possibility to exploit the benefits of different programming languages.
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C.4. Controlling the Panda robot

Figure C.5: Connection diagram of the Franka Emika Panda robot, the low-level

controller, and the computer with Libfranka library.

224



Bibliography

[1] K. Zhou and J. C. Doyle, Essentials of robust control, vol. 104. Prentice hall Upper

Saddle River, NJ, 1998.

[2] A. Weinmann, Uncertain models and robust control. Springer Science & Business

Media, 2012.

[3] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and

organization,” Psychological Review, vol. 65, no. 8, p. 386–408, 1958.

[4] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics

of control, signals and systems, vol. 2, no. 4, pp. 303–314, 1989.

[5] J. Hastad, “Almost optimal lower bounds for small depth circuits,” in Proceedings of

the eighteenth annual ACM symposium on Theory of computing, pp. 6–20, 1986.

[6] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, “The expressive power of neural networks:

A view from the width,” Advances in Neural Information Processing Systems, vol. 30,

2017.

[7] S. N. Kumpati, P. Kannan, et al., “Identification and control of dynamical systems

using neural networks,” IEEE Transactions on neural networks, vol. 1, no. 1, pp. 4–27,

1990.

[8] E. Terzi, F. Bonassi, M. Farina, and R. Scattolini, “Learning model predictive con-

trol with long short-term memory networks,” International Journal of Robust and

Nonlinear Control, vol. 31, no. 18, pp. 8877–8896, 2021.

[9] D. Psaltis, A. Sideris, and A. A. Yamamura, “A multilayered neural network con-

troller,” IEEE control systems magazine, vol. 8, no. 2, pp. 17–21, 1988.

[10] V. I. Utkin, Sliding Modes in Control and Optimization. Springer Berlin, Heidelberg,

1992.

[11] M. Zhihong, X. Yu, K. Eshraghian, and M. Palaniswami, “A robust adaptive sliding

mode tracking control using an rbf neural network for robotic manipulators,” in Pro-

ceedings of ICNN’95-International Conference on Neural Networks, vol. 5, pp. 2403–

2408, IEEE, 1995.

225



Bibliography

[12] J. Fei and H. Ding, “Adaptive sliding mode control of dynamic system using rbf neural

network,” Nonlinear Dynamics, vol. 70, pp. 1563–1573, 2012.

[13] X. Chen, W. Shen, M. Dai, Z. Cao, J. Jin, and A. Kapoor, “Robust adaptive sliding-

mode observer using rbf neural network for lithium-ion battery state of charge es-

timation in electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 65,

no. 4, pp. 1936–1947, 2015.

[14] F.-J. Lin and P.-H. Shen, “Robust fuzzy neural network sliding-mode control for two-

axis motion control system,” IEEE Transactions on Industrial Electronics, vol. 53,

no. 4, pp. 1209–1225, 2006.

[15] N. Al-Holou, T. Lahdhiri, D. S. Joo, J. Weaver, and F. Al-Abbas, “Sliding mode

neural network inference fuzzy logic control for active suspension systems,” IEEE

Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 234–246, 2002.

[16] R.-J. Wai and F.-J. Lin, “Fuzzy neural network sliding-mode position controller for

induction servo motor drive,” IEE Proceedings-Electric Power Applications, vol. 146,

no. 3, pp. 297–308, 1999.

[17] H. Morioka, K. Wada, A. Sabanovic, and K. Jezernik, “Neural network based chat-

tering free sliding mode control,” in SICE’95. Proceedings of the 34th SICE Annual

Conference. International Session Papers, pp. 1303–1308, IEEE, 1995.

[18] M. A. Hussain and P. Y. Ho, “Adaptive sliding mode control with neural network

based hybrid models,” Journal of Process Control, vol. 14, no. 2, pp. 157–176, 2004.

[19] X. Lu, X. Zhang, G. Zhang, J. Fan, and S. Jia, “Neural network adaptive sliding

mode control for omnidirectional vehicle with uncertainties,” ISA transactions, vol. 86,

pp. 201–214, 2019.

[20] Z. Han, S. Li, and H. Liu, “Composite learning sliding mode synchronization of chaotic

fractional-order neural networks,” Journal of Advanced Research, vol. 25, pp. 87–96,

2020.

[21] S. Emelyanov, Variable structure control systems. Nauka, Moscow, 1967.

[22] A. Isidori, Nonlinear control systems: an introduction. Springer, 1985.

[23] P. Wach, Dynamics and Control of Electrical Drives. Springer-Verlag Berlin Heidel-

berg, 2011.

[24] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning

and Control. Springer London, 2008.

[25] H. K. Khalil, Nonlinear Systems. Prentice Hall, 2002.

[26] A. Ferrara, G. P. Incremona, and M. Cucuzzella, Advanced and Optimization Based

Sliding Mode Control: Theory and Applications. Philadelphia, PA: Society for Indus-

trial and Applied Mathematics, 2019.

226



Bibliography

[27] C. Edwards and S. Spurgeon, Sliding Mode Control: Theory And Applications. CRC

Press, 1998.

[28] V. Utkin, J. Guldner, and X. Shi, Sliding Modes in Elctromechanical Systems. Taylor

& Francis, 1999.

[29] A. F. Filippov, “Differential equations with discontinuous righthand sides,” in Math-

ematics and Its Applications, 1988.

[30] B. Drazenovic, “The invariance conditions in variable structure systems,” Automatica,

vol. 5, no. 3, pp. 287–295, 1969.

[31] R. A. DeCarlo, S. H. Zak, and G. P. Matthews, “Variable structure control of nonlinear

multivariable systems: a tutorial,” Proceedings of the IEEE, vol. 76, no. 3, pp. 212–232,

1988.

[32] J. L. Chang, S. L. Lin, K. C. Chu, and M. S. Chen, “Lyapunov stability analysis of

second-order sliding-mode control and its application to chattering reduction design,”

International Journal of Control, Automation and Systems, vol. 14, no. 3, pp. 691–697,

2016.

[33] G. Bartolini, A. Ferrara, and E. Usai, “Chattering avoidance by second-order sliding

mode control,” IEEE Transactions on Automatic Control, vol. 43, no. 2, pp. 241–246,

1998.

[34] G. Bartolini and T. Zolezzi, “Behavior of variable-structure control systems near the

sliding manifold,” Systems & control letters, vol. 21, no. 1, pp. 43–48, 1993.

[35] G. Bartolini, E. Punta, and T. Zolezzi, “Approximability properties for second-order

sliding mode control systems,” IEEE Transactions on Automatic Control, vol. 52,

no. 10, pp. 1813–1825, 2007.

[36] V. Utkin and J. Shi, “Integral sliding mode in systems operating under uncertainty

conditions,” in 35th IEEE Conference on Decision and Control, vol. 4, (Kobe, Japan),

pp. 4591–4596, Dec. 1996.

[37] F. Castanos and L. Fridman, “Analysis and design of integral sliding manifolds for

systems with unmatched perturbations,” IEEE Transactions on Automatic Control,

vol. 51, no. 5, pp. 853–858, 2006.

[38] M. Rubagotti, A. Estrada, F. Castaños, A. Ferrara, and L. Fridman, “Integral sliding

mode control for nonlinear systems with matched and unmatched perturbations,”

IEEE Transactions on Automatic Control, vol. 56, no. 11, pp. 2699–2704, 2011.

[39] J.-J. E. Slotine, W. Li, et al., Applied nonlinear control, vol. 199. Prentice hall En-

glewood Cliffs, NJ, 1991.

[40] A. Levant, “Higher-order sliding modes, differentiation and output-feedback control,”

International journal of Control, vol. 76, no. 9-10, pp. 924–941, 2003.

227



Bibliography

[41] G. Bartolini, A. Ferrara, A. Levant, and E. Usai, “On second order sliding mode

controllers,” Variable structure systems, sliding mode and nonlinear control, pp. 329–

350, 1999.

[42] G. Bartolini, A. Ferrara, E. Usai, and V. I. Utkin, “On multi-input chattering-free

second-order sliding mode control,” IEEE transactions on automatic control, vol. 45,

no. 9, pp. 1711–1717, 2000.

[43] T. Floquet, J.-P. Barbot, and W. Perruquetti, “Higher-order sliding mode stabilization

for a class of nonholonomic perturbed systems,” Automatica, vol. 39, no. 6, pp. 1077–

1083, 2003.

[44] F. Dinuzzo and A. Ferrara, “Higher order sliding mode controllers with optimal reach-

ing,” IEEE Transactions on Automatic Control, vol. 54, no. 9, pp. 2126–2136, 2009.

[45] A. Levant, “Quasi-continuous high-order sliding-mode controllers,” in 42nd IEEE In-

ternational Conference on Decision and Control (IEEE Cat. No. 03CH37475), vol. 5,

pp. 4605–4610, IEEE, 2003.

[46] J. P. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability

Theory. Berlin, Heidelberg: Springer-Verlag, 1984.

[47] A. Ferrara and M. Rubagotti, “A sub-optimal second order sliding mode controller

for systems with saturating actuators,” IEEE Transactions on Automatic Control,

vol. 54, no. 5, pp. 1082–1087, 2009.

[48] H. Kaufman, I. Barkana, and K. Sobel, Direct adaptive control algorithms: theory and

applications. Springer Science & Business Media, 2012.

[49] G. Bartolini, A. Ferrara, and V. I. Utkin, “Adaptive sliding mode control in discrete-

time systems,” Automatica, vol. 31, no. 5, pp. 769–773, 1995.

[50] C. Edwards and Y. B. Shtessel, “Adaptive continuous higher order sliding mode con-

trol,” Automatica, vol. 65, pp. 183–190, 2016.

[51] S. Roy, S. Baldi, and L. M. Fridman, “On adaptive sliding mode control without a

priori bounded uncertainty,” Automatica, vol. 111, p. 108650, 2020.

[52] Y.-J. Huang, T.-C. Kuo, and S.-H. Chang, “Adaptive sliding-mode control for non-

linearsystems with uncertain parameters,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), vol. 38, no. 2, pp. 534–539, 2008.

[53] F. Plestan, Y. Shtessel, V. Bregeault, and A. Poznyak, “New methodologies for adap-

tive sliding mode control,” International Journal of Control, vol. 83, no. 9, pp. 1907–

1919, 2010.

[54] T. R. Oliveira, J. P. V. Cunha, and L. Hsu, “Adaptive sliding mode control for dis-

turbances with unknown bounds,” in 2016 14th International Workshop on Variable

Structure Systems (VSS), pp. 59–64, IEEE, 2016.

228



Bibliography

[55] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are

universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[56] A. Pinkus, “Approximation theory of the mlp model in neural networks,” Acta nu-

merica, vol. 8, pp. 143–195, 1999.

[57] P. Kidger and T. Lyons, “Universal approximation with deep narrow networks,” in

Conference on learning theory, pp. 2306–2327, PMLR, 2020.

[58] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of linear regions

of deep neural networks,” in Advances in Neural Information Processing Systems

(Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, eds.),

vol. 27, Curran Associates, Inc., 2014.

[59] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint

arXiv:1609.04747, 2016.

[60] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by

back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[61] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[62] H. Bozdogan, “Model selection and akaike’s information criterion (aic): The general

theory and its analytical extensions,” Psychometrika, vol. 52, pp. 345–370, 1987.

[63] P. Grünwald, “Model selection based on minimum description length,” Journal of

mathematical psychology, vol. 44, no. 1, pp. 133–152, 2000.

[64] P. Cunningham, M. Cord, and S. J. Delany, “Supervised learning,” in Machine learn-

ing techniques for multimedia: case studies on organization and retrieval, pp. 21–49,

Springer, 2008.

[65] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”

Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

[66] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,

2018.

[67] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp. 279–292,

1992.

[68] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control

through deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[69] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, “An analysis of reinforcement learning

with function approximation,” in Proceedings of the 25th international conference on

Machine learning, pp. 664–671, 2008.

229



Bibliography

[70] V. Gullapalli, “A stochastic reinforcement learning algorithm for learning real-valued

functions,” Neural networks, vol. 3, no. 6, pp. 671–692, 1990.

[71] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist re-

inforcement learning,” Machine learning, vol. 8, pp. 229–256, 1992.

[72] D. Bertsekas, Dynamic programming and optimal control: Volume I, vol. 4. Athena

scientific, 2012.

[73] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for

reinforcement learning with function approximation,” Advances in neural information

processing systems, vol. 12, 1999.

[74] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, “A survey of actor-critic

reinforcement learning: Standard and natural policy gradients,” IEEE Transactions

on Systems, Man, and Cybernetics, part C (applications and reviews), vol. 42, no. 6,

pp. 1291–1307, 2012.

[75] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine

learning, vol. 3, pp. 9–44, 1988.

[76] J. A. Boyan, “Technical update: Least-squares temporal difference learning,” Machine

learning, vol. 49, pp. 233–246, 2002.

[77] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint

arXiv:1509.02971, 2015.

[78] L.-J. Lin, Reinforcement learning for robots using neural networks. Carnegie Mellon

University, 1992.

[79] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in

actor-critic methods,” in International conference on machine learning, pp. 1587–

1596, PMLR, 2018.

[80] B. Siciliano, O. Khatib, and T. Kröger, Springer handbook of robotics, vol. 200.

Springer, 2008.

[81] K. M. Lynch and F. C. Park, Modern robotics. Cambridge University Press, 2017.

[82] J. Craig, Introduction To Robotics: Mechanics And Control, 3/E. Pearson Education,

2009.

[83] S. R. Buss, “Introduction to inverse kinematics with jacobian transpose, pseudoin-

verse and damped least squares methods,” IEEE Journal of Robotics and Automation,

vol. 17, no. 16, pp. 1–19, 2004.

[84] A. Goldenberg, B. Benhabib, and R. Fenton, “A complete generalized solution to

the inverse kinematics of robots,” IEEE Journal on Robotics and Automation, vol. 1,

no. 1, pp. 14–20, 1985.

230



Bibliography

[85] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kinematics,” in Pro-

ceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.

01CH37180), vol. 1, pp. 298–303, IEEE, 2001.

[86] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.

[87] J. Y. Luh, M. W. Walker, and R. P. Paul, “On-line computational scheme for me-

chanical manipulators,” 1980.

[88] R. Freeman and P. V. Kokotovic, Robust nonlinear control design: state-space and

Lyapunov techniques. Springer Science & Business Media, 2008.

[89] M. Krstic, P. V. Kokotovic, and I. Kanellakopoulos, Nonlinear and adaptive control

design. John Wiley & Sons, Inc., 1995.

[90] A. Astolfi and R. Ortega, “Immersion and invariance: A new tool for stabilization

and adaptive control of nonlinear systems,” IEEE Transactions on Automatic control,

vol. 48, no. 4, pp. 590–606, 2003.

[91] K. J. Hunt, D. Sbarbaro, R. Żbikowski, and P. J. Gawthrop, “Neural networks for

control systems—a survey,” Automatica, vol. 28, no. 6, pp. 1083–1112, 1992.

[92] M. T. Hagan, H. B. Demuth, and O. D. Jesús, “An introduction to the use of neural

networks in control systems,” International Journal of Robust and Nonlinear Control:

IFAC-Affiliated Journal, vol. 12, no. 11, pp. 959–985, 2002.

[93] F. L. Lewis, A. Yesildirek, and K. Liu, “Multilayer neural-net robot controller with

guaranteed tracking performance,” IEEE Transactions on Neural Networks, vol. 7,

no. 2, pp. 388–399, 1996.

[94] L. Chen and K. S. Narendra, “Nonlinear adaptive control using neural networks and

multiple models,” Automatica, vol. 37, no. 8, pp. 1245–1255, 2001.

[95] B. Yao and M. Tomizuka, “Adaptive robust control of siso nonlinear systems in a

semi-strict feedback form,” Automatica, vol. 33, no. 5, pp. 893–900, 1997.

[96] O. S. Patil, D. M. Le, M. L. Greene, and W. E. Dixon, “Lyapunov-derived control

and adaptive update laws for inner and outer layer weights of a deep neural network,”

IEEE Control Systems Letters, vol. 6, pp. 1855–1860, 2021.

[97] O. S. Patil, D. M. Le, E. J. Griffis, and W. E. Dixon, “Deep residual neural network

(resnet)-based adaptive control: A lyapunov-based approach,” in 2022 IEEE 61st

Conference on Decision and Control (CDC), pp. 3487–3492, IEEE, 2022.

[98] D. S. Bernstein, “Matrix mathematics,” in Matrix Mathematics, Princeton university

press, 2009.

[99] N. Sacchi, G. P. Incremona, and A. Ferrara, “Neural network-based practical/ideal

integral sliding mode control,” IEEE Control Systems Letters, vol. 6, pp. 3140–3145,

2022.

231



Bibliography

[100] E. Vacchini, N. Sacchi, G. P. Incremona, and A. Ferrara, “Design of a deep neural

network-based integral sliding mode control for nonlinear systems under fully un-

known dynamics,” IEEE Control Systems Letters, vol. 7, pp. 1789–1794, 2023.

[101] N. Sacchi, E. Vacchini, G. P. Incremona, and A. Ferrara, “On neural networks appli-

cation in integral sliding mode control,” Journal of the Franklin Institute, vol. 361,

no. 13, p. 106989, 2024.

[102] V. Strassen et al., “Gaussian elimination is not optimal,” Numerische mathematik,

vol. 13, no. 4, pp. 354–356, 1969.

[103] C++ Reference, “std::chrono::high_resolution_clock.” https://en.cpprefere

nce.com/w/cpp/chrono/high_resolution_clock.

[104] N. Sacchi, G. P. Incremona, and A. Ferrara, “Integral sliding modes generation via drl-

assisted lyapunov-based control for robot manipulators,” in 2023 European Control

Conference (ECC), pp. 1–6, IEEE, 2023.

[105] K. Zhang, Z. Yang, and T. Başar, Multi-Agent Reinforcement Learning: A Selective

Overview of Theories and Algorithms, pp. 321–384. Springer International Publishing,

2021.

[106] N. Sacchi, E. Vacchini, and A. Ferrara, “Neural network based integral sliding mode

control of systems with time-varying state constraints,” in 2023 31st Mediterranean

Conference on Control and Automation (MED), pp. 624–629, IEEE, 2023.

[107] M. Rubagotti, D. M. Raimondo, A. Ferrara, and L. Magni, “Robust model predictive

control with integral sliding mode in continuous-time sampled-data nonlinear sys-

tems,” IEEE Transactions on Automatic Control, vol. 56, no. 3, pp. 556–570, 2010.

[108] A. Ferrara, G. P. Incremona, and L. Magni, “Model-based event-triggered robust

mpc/ism,” in 2014 european control conference (ECC), pp. 2931–2936, IEEE, 2014.

[109] G. P. Incremona, A. Ferrara, and L. Magni, “Hierarchical model predictive/slid-

ing mode control of nonlinear constrained uncertain systems,” IFAC-PapersOnLine,

vol. 48, no. 23, pp. 102–109, 2015.

[110] A. Ferrara, G. P. Incremona, and L. Magni, “A robust MPC/ISM hierarchical multi-

loop control scheme for robot manipulators,” in 52nd IEEE Conference on decision

and control, pp. 3560–3565, IEEE, 2013.

[111] G. P. Incremona, A. Ferrara, and L. Magni, “Asynchronous networked mpc with ism

for uncertain nonlinear systems,” IEEE Transactions on Automatic Control, vol. 62,

no. 9, pp. 4305–4317, 2017.

[112] N. Sacchi, E. Vacchini, G. P. Incremona, and A. Ferrara, “Model predictive control

with deep neural network based integral sliding modes generation for a class of un-

certain nonlinear systems,” IFAC-PapersOnLine, vol. 58, no. 5, pp. 84–89, 2024.

232



Bibliography

[113] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based

quadratic programs for safety critical systems,” IEEE Trans. Autom. Control., vol. 62,

no. 8, pp. 3861–3876, 2016.

[114] K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier lyapunov functions for the control of

output-constrained nonlinear systems,” Automatica, vol. 45, no. 4, pp. 918–927, 2009.

[115] K. P. Tee and S. S. Ge, “Control of nonlinear systems with full state constraint using

a barrier lyapunov function,” in Proc. of the 48h IEEE Conf. Decis. Control (CDC),

pp. 8618–8623, 2009.

[116] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada,

“Control barrier functions: Theory and applications,” in 2019 18th European Control

Conference (ECC), pp. 3420–3431, 2019.

[117] K. H. Johansson, “The quadruple-tank process: A multivariable laboratory process

with an adjustable zero,” IEEE Trans. Control Syst., vol. 8, no. 3, pp. 456–465, 2000.

[118] R. Isermann, Fault-Diagnosis Systems, vol. 1. Berlin: Springer, 2006.

[119] L. H. Chiang, E. L. Russell, and R. D. Braatz, Fault Detection and Diagnosis in

Industrial Systems. Verlag, London: Springer, 2000.

[120] R. Isermann, Fault-Diagnosis Applications: Model-Based Condition Monitoring: Ac-

tuators, Drives, Machinery, Plants, Sensors, and Fault-Tolerant Systems. Verlag,

Berlin, Heidelberg: Springer, 2011.

[121] I. Andjelkovic, K. Sweetingham, and S. L. Campbell, “Active fault detection in non-

linear systems using auxiliary signals,” (Seattle, Washington, USA), pp. 2142–2147,

American Control Conference, Jun. 2008.

[122] M. Šimandl and I. Punčochář, “Active fault detection and control: Unified formulation

and optimal design,” Automatica, vol. 45, no. 9, pp. 2052–2059, 2009.

[123] J. K. Scott, R. Findeisen, R. D. Braatz, and D. M. Raimondo, “Input design for

guaranteed fault diagnosis using zonotopes,” Automatica, vol. 50, no. 6, pp. 1580–

1589, 2014.

[124] D. Henry, J. Cieslak, A. Zolghadri, and D. Efimov, “A non-conservative H/H∞ so-

lution for early and robust fault diagnosis in aircraft control surface servo-loops,”

Control Engineering Practice, vol. 31, pp. 183–199, 2014.

[125] A. Wolfram, D. Fussel, T. Brune, and R. Isermann, “Component-based multi-model

approach for fault detection and diagnosis of a centrifugal pump,” (Arlington, VA,

USA), pp. 4443–4448, American Control Conference, Jun. 2001.

[126] Y. Zhan and J. Jiang, “An interacting multiple-model based fault detection, diagnosis

and fault-tolerant control approach,” (Phoenix, AZ, USA), pp. 3593–3598, 38th IEEE

Conference on Decision and Control, Dec. 1999.

233



Bibliography

[127] A. Jarrou, D. Sauter, and K. Alami, “Fault diagnosis and fault tolerant control based

on model predictive control for nearly zero energy buildings,” (Casablanca Morocco),

pp. 219–225, 4th Conference on Control and Fault Tolerant Systems, Sep. 2019.

[128] J. Davila, L. Fridman, and A. Poznyak, “Observation and identification of mechanical

systems via second order sliding modes,” International Journal of Control, vol. 79,

no. 10, pp. 1251–1262, 2006.

[129] S. K. Spurgeon, “Sliding mode observers: A survey,” International Journal of Systems

Science, vol. 39, no. 8, pp. 751–764, 2008.

[130] L. M. Capisani, A. Ferrara, and L. Magnani, “Design and experimental validation of

a second-order sliding-mode motion controller for robot manipulators,” International

Journal of Control, vol. 82, no. 2, pp. 365–377, 2009.

[131] N. Sacchi, G. P. Incremona, and A. Ferrara, “Actuator fault diagnosis with neural

network-integral sliding mode based unknown input observers,” IFAC-PapersOnLine,

vol. 56, no. 2, pp. 773–778, 2023.

[132] B. Halder and N. Sarkar, “Robust fault detection of a robotic manipulator,” The

International Journal of Robotics Research, vol. 26, no. 3, pp. 273–285, 2007.

[133] A. De Luca and R. Mattone, “An adapt-and-detect actuator FDI scheme for robot ma-

nipulators,” (Barcelona, Spain), pp. 4975–4980, International Conference on Robotics

and Automation, apr 2004.

[134] A. De Luca and R. Mattone, “An identification scheme for robot actuator faults,”

(Alberta, Canada), pp. 1127–1131, IEEE/RSJ International Conference on Intelligent

Robots and Systems, Aug. 2005.

[135] L. M. Capisani, A. Ferrara, A. De Loza Ferreira, and L. Fridman, “Manipulator fault

diagnosis via higher order sliding-mode observers,” IEEE Transactions on Industrial

Electronics, vol. 59, no. 10, pp. 3979–3986, 2012.

[136] L. M. Capisani, A. Ferrara, and P. Pisu, “Sliding mode observers for vision-based fault

detection, isolation and identification in robot manipulators,” (Baltimore, Maryland,

USA), pp. 4540–4545, American Control Conference, Jun. 2010.

[137] G. P. Incremona and A. Ferrara, “Fault diagnosis for robot manipulators via vision

servoing based suboptimal second order sliding mode,” (Naples, Italy), pp. 3090–3095,

European Control Conference, Jul. 2019.

[138] N. Sacchi, G. P. Incremona, and A. Ferrara, “Sliding mode based fault diagnosis

with deep reinforcement learning add-ons for intrinsically redundant manipulators,”

International Journal of Robust and Nonlinear Control, vol. 33, no. 15, pp. 9109–9127,

2023.

[139] A. De Santis, B. Siciliano, A. De Luca, and A. Bicchi, “An atlas of physical human–

robot interaction,” Mechanism and Machine Theory, vol. 43, no. 3, pp. 253–270, 2008.

234



Bibliography

[140] L. Punnett and D. H. Wegman, “Work-related musculoskeletal disorders: the epidemi-

ologic evidence and the debate,” Journal of electromyography and kinesiology, vol. 14,

no. 1, pp. 13–23, 2004.

[141] Å. Kilbom and J. Persson, “Work technique and its consequences for musculoskeletal

disorders,” Ergonomics, vol. 30, no. 2, pp. 273–279, 1987.

[142] R. Bridger, Introduction to ergonomics. Crc Press, 2008.

[143] A. Bestick, R. Pandya, R. Bajcsy, and A. D. Dragan, “Learning human ergonomic

preferences for handovers,” in 2018 IEEE international conference on robotics and

automation (ICRA), pp. 3257–3264, 2018.

[144] L. Peternel, W. Kim, J. Babič, and A. Ajoudani, “Towards ergonomic control of

human-robot co-manipulation and handover,” in 2017 IEEE-RAS 17th International

Conference on Humanoid Robotics (Humanoids), pp. 55–60, 2017.

[145] N. Sacchi, E. Vacchini, and A. Ferrara, “Human-robot ergonomic handover via deep

neural network based adaptive integral sliding mode control,” in 2024 European Con-

trol Conference (ECC), pp. 585–590, IEEE, 2024.

[146] T.-J. Song, J. Jeong, and J.-H. Kim, “End-to-end real-time obstacle detection net-

work for safe self-driving via multi-task learning,” IEEE Transactions on Intelligent

Transportation Systems, pp. 1–12, 2022.

[147] J. C. Martínez-Franco, A. Rojas-Álvarez, A. Tabares, D. Álvarez-Martínez, and C. A.

Marín-Moreno, “Latent space representations for marker-less realtime hand–eye cali-

bration,” Sensors, vol. 24, no. 14, p. 4662, 2024.

[148] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” 2018.

[149] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain ran-

domization for transferring deep neural networks from simulation to the real world,” in

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pp. 23–30, 2017.

[150] T. Höfer, F. Shamsafar, N. Benbarka, and A. Zell, “Object detection and autoencoder-

based 6d pose estimation for highly cluttered bin picking,” in 2021 IEEE International

Conference on Image Processing (ICIP), pp. 704–708, 2021.

[151] J. Langlois, H. Mouchère, N. Normand, and C. Viard-Gaudin, “3d orientation esti-

mation of industrial parts from 2d images using neural networks,” pp. 409–416, 01

2018.

[152] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Sensor fusion

IV: control paradigms and data structures, vol. 1611, pp. 586–606, Spie, 1992.

[153] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in

Autonomous robot vehicles, pp. 396–404, Springer, 1986.

235



Bibliography

[154] F. Blanchini and S. Miani, Set-theoretic Methods in Control, vol. 78. Springer, 2008.

[155] G. P. Incremona, M. Rubagotti, and A. Ferrara, “Sliding mode control of constrained

nonlinear systems,” IEEE Transactions on Automatic Control, vol. 62, no. 6, pp. 2965–

2972, 2016.

[156] F. Emika, “Franka control interface documentation.” https://frankaemika.gi

thub.io/docs/.

[157] C. Gaz, M. Cognetti, A. Oliva, P. R. Giordano, and A. De Luca, “Dynamic identi-

fication of the franka emika panda robot with retrieval of feasible parameters using

penalty-based optimization,” IEEE Robotics and Automation Letters, vol. 4, no. 4,

pp. 4147–4154, 2019.

[158] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games,

robotics and machine learning.” http://pybullet.org, 2016–2021.

[159] ROS Wiki, “Unified robot description format.” http://wiki.ros.org/urdf.

[160] Franka Emika, “Franka emika robots urdf models.” https://github.com/frank

aemika/franka_description/.

[161] Franka Emika, “Libfranka documentation.” https://frankaemika.github.i

o/libfranka/.

236


	Contents
	List of Figures
	List of Tables
	I Introduction and Preliminaries
	Introduction
	Thesis Structure
	List of peer-reviewed scientific publications 

	Preliminaries on Sliding Mode Control
	Idea behind Sliding Mode Control
	An illustrative example

	Control-Affine Systems
	Canonical forms

	Elements of classical Sliding Mode Control
	The Sliding Manifold
	The Control Law
	Existence and Reaching conditions
	Solutions of the controlled system
	Robustness Property and SMC Design
	The Chattering problem
	Approximability Property

	Integral Sliding Mode
	Existence and Robustness Property
	Physical Interpretation of the Equivalent Control
	ISM control example

	Higher Order Sliding Mode Control
	Adaptive Sliding Mode Control

	Preliminaries on Neural Networks and Learning
	Multi-Layer Perceptron
	The Perceptron model
	Universal approximation capabilities of ANNs
	Depth vs Width
	Learning the weights

	Reinforcement Learning
	Key concepts
	Q-learning
	Deep Q-learning
	Actor-Critic


	Preliminaries on Robotics
	Basic Definitions
	Pose of a rigid body
	Change of orientation representation

	Kinematics modeling
	Forward Kinematics
	Differential Kinematics
	Inverse Kinematics

	Dynamic Modeling


	II Deep Neural Network based Integral Sliding Mode Control Framework
	The DNN-ISM Framework
	Problem Formulation
	Approximating the Dynamics using DNNs
	Approximation error of the Drift Dynamics DNN
	Approximation error of the Control Effectiveness DNN

	The DNN-ISM Control Strategy
	Use of Parameter Projection and its effects
	Sliding mode Existence

	Practical Aspects
	Computational Complexity Analysis
	Chattering Reduction
	Weights initialization

	Simulations
	Duffing Oscillator
	Robotic Manipulator

	Real Robot Experiment

	DNN-ISM with State and Input Constraints
	DNN-ISM with State Constraints Avoidance
	Problem Formulation
	The DNN-ISM scheme with avoidance capabilities
	Sliding mode existence
	Simulations

	DNN based MPC/ISM
	Problem Formulation
	The DNN-ISM based MPC scheme
	Simulations

	DNN-ISM with Barrier Functions
	Problem Formulation
	Preliminaries on BLFs, CLFs, and CBFs
	The DNN-ISM scheme with CBFs, CLFs, and BLFs
	Simulations



	III Fault Diagnosis via Neural Networks and Sliding Mode Observers
	Fault Diagnosis via DNN-ISM based UIO
	The considered faulted system
	ISM Unknown Input Observer
	DNN-ISM Unknown Input Observer
	Simulations

	SM based Fault Diagnosis with DRL add-ons for Redundant Manipulators
	Problem Formulation
	Robot Model
	Faults Modeling
	Problem Statement

	Inverse Dynamics control
	The Fault Diagnosis Scheme
	Sensor fault diagnosis with DRL
	Actuator FD with SOSM UIOs

	Simulations


	IV Applications to Human-Robot Interaction 
	Human-Robot Ergonomic Handover via Adaptive DNN-ISM
	Problem Formulation
	Adaptive DNN-ISM for ergonomic handover 
	Reference generation
	Adaptive DNN-ISM control

	Experiment

	Vision-based Collision Avoidance with ISM control for Collaborative Robots
	Problem Formulation
	The HE calibration scheme
	Position estimation
	Orientation estimation
	Pose estimation adjustment

	The collision avoidance scheme
	Experiment and results


	Conclusions and Future Research
	Future Research

	Parameter Projection
	Proofs
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Theorem 6.1
	Proof of Theorem 6.2
	Proof of Theorem 6.3
	Proof of Theorem 6.4
	Proof of Theorem 7.1
	Proof of Theorem 7.2
	Proof of Theorem 7.3
	Proof of Theorem 8.1
	Proof of Theorem 9.1

	Franka Emika Panda Robot
	Technical Specifications
	Dynamical Modeling
	PyBullet Simulation
	Controlling the Panda robot

	Bibliography

