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Abstract

The development of reliable, long-lasting, and safe energy storage systems is crucial for ef-
fectively supporting the transition from fossil fuels to renewable energy resources, thereby
driving a sustainable global electrification process. However, ethical concerns regarding
the materials used in the battery supply chain, as well as the safety and reliability of
large battery modules/packs must be properly addressed. One effective commercially
mature solution to mitigate the former challenge is the use of lithium iron phosphate
(LFP) batteries. Unlike traditional batteries that rely on cobalt, manganese, and nickel,
LFP batteries overcome the scarcity and ethical controversies associated with traditional
battery materials, offering a more ethical and sustainable alternative. Despite their ad-
vantages, LFP batteries present certain technical challenges. The plateaus in open circuit
voltage, hysteresis, and path-dependent dynamics exhibited by LFP batteries make them
challenging to model, estimate, and control. In this work, the development of control-
oriented reduced-order models based on physics-based electrochemical model for LFP bat-
teries is presented, providing a foundation for the development of advanced LFP-based
Battery Management System (BMS) strategies. Additionally, a properly designed BMS
can ensure the safe and optimal operation of battery modules and packs regardless the
cell chemistry, addressing the second challenge. In particular, it is crucial to recognize
and accurately quantify cell-to-cell (CtC) variations, as these can significantly impact the
overall performance, heterogeneity, and degradation of the battery system. The ultimate
goal is to enhance BMS algorithms to account for CtC variations, increasing, in turn,
their reliability and robustness. To address this, in this study the effects of CtC varia-
tions on parallel-connected battery modules are extensively analyzed using comprehensive
statistical methods. Based on full factorial design of experiments, the impact of different
sources of CtC variation, such as uneven interconnection resistance, operating tempera-
ture, cell chemistry, and aging conditions, are evaluated on the module performance. The
collected experimental data form the foundation for developing data-driven models, in-
cluding interpretable multilinear regression and black-box machine learning models, which
are then used to explain and quantify the contribution of each CtC source to the corre-
sponding module-level responses. Further, the analysis is enhanced using a high-fidelity,
experimentally validated electrochemical model that incorporates detailed module-level
features, considering both short- and long-term implications on module responses. Ad-
ditionally, leveraging the battery system digital twin, a straightforward cell arrangement
strategy to mitigate thermal gradients in parallel-connected battery modules is proposed.
This strategy aims to reduce aging disparities between cells, thereby extending the over-
all lifespan of the battery module. Finally, a state estimation algorithm for individual
cells within parallel-connected battery configurations is formulated and validated against
experimental data. Utilizing a Moving Horizon Estimation approach, this algorithm pro-
vides accurate state estimates, representing a key step toward enhancing battery pack cell
balancing and the development of novel fault detection and isolation strategies.
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Chapter 1

Introduction

The urgent need to reduce the environmental impact of energy and transportation sec-
tors has accelerated the shift toward electrification, driving the widespread adoption of
smart mobility solutions and electric vehicles. However, a key challenge in fully support-
ing the shift from fossil fuels to renewable energy sources is the development of reliable,
long-lasting, and safe energy storage systems to ensure a smooth and sustainable tran-
sition. Currently, Lithium-Ion Batteries (LIBs) dominate the market for applications in
portable electronics, automotive industry [11], and renewable energy [12], and their adop-
tion is expected to continue increasing alongside emerging alternative chemistries, pri-
marily sodium-ion and solid-state batteries [13]. The preference for LIBs is primarily due
to their high energy density, efficiency, longevity, and cost-effectiveness [14]. Additionlly,
to meet precise power and energy demands lithium-ion battery modules or packs, com-
prising interconnected individual cells arranged in series and/or parallel configurations,
are created. However, despite their advantageous properties, LIBs face several critical
challenges that hinder their sustainable and widespread adoption. One of the foremost
issues is the reliance on scarce and ethically contentious materials such as cobalt, nickel,
and manganese. These materials are key components in many LIB cathodes and are
not only expensive but also associated with significant ethical concerns, including human
rights violations and environmentally destructive mining practices [15]. The geopoliti-
cal concentration of cobalt sources exacerbates supply chain vulnerabilities, making the
industry susceptible to market fluctuations and ethical scrutiny [16]. In light of these
challenges, Lithium Iron Phosphate (LFP) batteries have emerged as a promising alter-
native. LFP batteries eliminate the need for cobalt and reduce dependence on nickel,
offering a pathway to a more resilient battery supply chain [17]. LFP batteries offer
several advantages, including superior thermal and chemical stability, enhanced safety
by mitigating the risk of thermal runaway, and a significantly longer cycle life exceeding
2,000 cycles, which lowers the total cost of ownership [18]. Major manufacturers, such
as Ford, Stellantis and Tesla, have invested in and adopted LFP technology, highlighting
its growing importance in the global electric vehicle market [19]. However, LFP batteries
are not without their drawbacks. Their lower energy density compared to high-nickel
LIBs can limit their applicability in sectors where weight and space are critical, such as
in long-range electric vehicles and portable electronics [20]. Additionally, LFP batteries
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experience plateaus in open circuit voltage, hysteresis, and path-dependent dynamics due
to phase transitions during intercalation and de-intercalation [21]. These phenomena are
challenging to model and even more difficult to estimate and control. Furthermore, a key
challenge in the battery industry is ensuring the safe operation of energy storage systems
to prevent harm to both people and property [22]. To address this, battery modules
or packs are equipped with Battery Management Systems (BMS) [23]. The BMS plays
a crucial role in estimating unmeasurable cell states such as State of Charge (SOC) and
State of Health (SOH), ensuring optimal cell performance through cell balancing and fault
detection strategies. In addition, the BMS manages thermal regulation, keeping the bat-
tery pack within safe temperature limits to prevent overheating and potential failures. A
critical aspect of improving BMS control and estimation algorithms lies in recognizing the
presence of cell-to-cell (CtC) heterogeneity and understanding its impact on pack/module
performance, degradation, and safety [24]. Variations in capacity, internal resistance, and
voltage, often induced during manufacturing, combined with suboptimal pack architecture
and cooling designs, can cause imbalances in the performance of parallel strings. These
heterogeneities lead to uneven current distribution, temperature fluctuations, and SOC
discrepancies among the parallel branches. It is important to note that CtC variations in a
real parallel-connected battery module are highly interdependent and practically unavoid-
able. Due to the absence of individual current, temperature, and voltage sensors for each
cell, parallel-connected modules are typically treated as a single lumped cell in a BMS, ne-
glecting internal heterogeneity. As a result, undetected current imbalances may cause cell
overcharging or overdischarging, leading to large thermal gradients and hotspots within
the module, which pose significant safety risks to the entire battery pack. Moreover, vary-
ing current rates and temperatures can trigger different degradation mechanisms, causing
parallel cells to age at different rates [25, 26].

Thesis overview

This dissertation presents two primary contributions to the advancement of BMS for
LFP-based and parallel-connected battery systems. Specifically, building upon the high-
fidelity core-shell enhanced electrolyte single particle model (CS-ESPM) developed in
[9, 10], two different reduced-order models are proposed. The CS-ESPM is formulated
to accurately capture the phase transition behavior of LFP molecules during operation.
Therefore, the ROMs represent a crucial first step toward developing control-oriented,
model-based strategies aimed at improving BMS algorithms for LFP-based battery sys-
tems. Furthermore, the impact of CtC variation in parallel-connected modules is analyzed
through statistical methods. A full factorial design of experiments is employed to eval-
uate how different sources of CtC variation, such as uneven interconnection resistance,
operating temperature, cell chemistry, and aging conditions, affect module heterogeneity.
Specifically, the study examines their influence on current distribution, thermal behavior,
SOC, and the time required for self-balancing within the module. Both traditional lin-
ear regression techniques and modern explainable machine learning methods are utilized
to rank the importance of these features and predict module-level heterogeneities. The
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analysis is further enhanced using a high-fidelity, experimentally validated model that in-
corporates detailed module-level features. Particularly, the effects of varying cell spacing,
cell location and manufacturing-inducted CtC variations within the module are added
in the analysis and their impact are investigated under both short-term and long-term
operations. Further, a straightforward cell arrangement strategy is proposed to mitigate
thermal gradients in parallel-connected battery modules. This strategy aims to reduce
aging gradients between cells, thereby extending the overall lifespan of the battery mod-
ule. Finally, a state estimation algorithm for individual cells within parallel-connected
battery configurations, is formulated and validated agianst experimental data. Utilizing
a Moving Horizon Estimation (MHE) approach, this algorithm provides accurate state
estimates representting, in turn, a key step towards enhancing battery pack cell balancing,
and the development of novel fault detection and isolation strategies.

Thesis structure

Chapter 2: Lithium-ion batteries

This chapter provides readers with a high-level overview of LIB components, their working
principles, and the degradation mechanisms that cells undergo during operations. Fur-
thermore, it presents an overview of the battery terminology that will be used throughout
the remainder of the text and summarizes the primary tasks of the BMS.

Chapter 3: Battery modelling

This chapter aims to equip readers with the necessary tools to better comprehend the
battery model utilized in the following chapters. It does not, however, intend to offer a
comprehensive and complete review of all existing battery modeling methods. Rather,
it focuses on detailing and illustrating commonly used techniques in battery modeling.
Although not all of these methods will be applied in the research presented, they are
crucial for a thorough understanding of the rest of the manuscript.

Chapter 4: Battery testing

This chapter provides an overview of the laboratory experimental campaigns conducted
to collect essential battery data, which form the foundation of the research presented in
this thesis. It includes detailed specifications of the cell batches used, a comprehensive
review of the laboratory equipment, and a clear outline of the data collection procedures.
Additionally, it explains how the experimental data are utilized in the subsequent chap-
ters, enhancing the reader’s understanding of their integration into the overall research
activities.

Chapter 4 contains results published in:
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1. [8] Piombo, G., Fasolato, S., Heymer, R., Hidalgo, M. F., Niri, M. F., Raimondo,
D. M., Marco, J., and Onori, S. (2024). Full factorial design of experiments dataset
for parallel-connected lithium-ion cells imbalanced performance investigation. Data
in Brief, 53, 110227.

Chapter 5: Model identification and validation

This chapter aims to provide a high-level overview of the methodologies for parameter-
izing electrochemical models. Further, an example of model identification is presented.
Specifically, an enhanced electrolyte single particle model (ESPM) is identified for the LG
Chem M50T cells, and validated at both cell- and module-level.

Chapter 5 contains results submitted in:

• [27] Fasolato, S., Allam, A., Onori, S., and Raimondo, D. M. (2024). Cell-to-Cell
Heterogeneities and Module Configurations analysis in Parallel-Connected Battery
Modules via physics-based modeling, Journal of Energy Storage, Submitted.

Chapter 6: CS-ESPM model order reduction

This chapter presents the mathematical formulation of two distinct reduced-order models
(ROMs) for the CS-ESPM proposed in [10, 9, 28]. Specifically, the Proper Orthogonal
Decomposition (POD)-Galerkin projection and the finite volume method are employed
to approximate the solid-phase electrochemical dynamics of the CS-ESPM. The result-
ing control-oriented ROMs provide a foundation for the development of advanced BMS
strategies, particularly in the context of LFP applications.

Chapter 6 contains results published in:

• [29] Fasolato, S., Allam, A., Li, X., Lee, D., Ko, J., and Onori, S. (2022). Reduced-
order model of lithium-iron phosphate battery dynamics: A POD-Galerkin approach.
IEEE Control Systems Letters, 7, 1117-1122.

• [30] Xu, L., Fasolato, S., and Onori, S. (2024). Finite-volume method and ob-
servability analysis for core-shell enhanced single particle model for lithium iron
phosphate batteries. IEEE 2024 Conference on Decision and Control (CDC), Ac-
cepted.

Chapter 7: Data-driven analysis of CtC variation impact on parallel-
connected module

Based on a full factorial design of experiments and module-level tests conducted on
parallel-connected battery modules, a comprehensive statistical analysis is carried out
to evaluate and predict the impact of CtC variants on module performance. In particu-
lar, both linear regression and machine learning models are utilized to analyze the effects
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of uneven interconnection resistance, operating temperature, cell chemistry, and aging
conditions on module performance and heterogeneities propagation.

Chapter 7 contains results published in:

• [31] Piombo, G., Fasolato, S., Heymer, R., Hidalgo, M., Niri, M. N., Onori, S.,
Marco, J. (2024). Unveiling the performance impact of module level features on
parallel-connected lithium-ion cells via explainable machine learning techniques on
a full factorial design of experiments, Journal of Energy Storage, 84, 110783.

Chapter 8: Model-based analysis of CtC variation impact on parallel-
connected module

In this chapter, a high-fidelity electrochemical-thermal-aging module-level model is em-
ployed to perform high-fidelity offline simulations across various system configurations.
The resulting simulated dataset is subsequently utilized to examine the influence of CtC
parameter uncertainties and module configurations on cell current and temperature dis-
tributions, as well as on the module energy and capacity in both fresh and aged condi-
tions, through a multi linear regression(MLR)-based statistical analysis. Finally, a simple
cell arrangement strategy is proposed to mitigate thermal gradients in parallel-connected
battery modules, thereby reducing the aging gradient between cells by the end of the
simulations.

Chapter 8 contains results submitted in:

• [27] Fasolato, S., Allam, A., Onori, S., and Raimondo, D. M. (2024). Cell-to-Cell
Heterogeneities and Module Configurations analysis in Parallel-Connected Battery
Modules via physics-based modeling, Journal of Energy Storage, Submitted.

Chapter 9: States estimation for parallel-connected modules

This chapter explores the estimation of unmeasurable states for individual cells within
parallel-connected battery configurations using a MHE approach. The chapter makes
three primary contributions. First, a nonlinear observability analysis is conducted to
evaluate the feasibility of reconstructing individual cell states from module voltage and
current measurements, taking into account interconnection resistance, SOC-dependent
parameters, and varying numbers of cells. Finally, the MHE-based estimation algorithms
are validated through simulations and experimental data from a four-cell battery. The
proposed method serves as a foundation for the development of novel fault detection
strategies.

Chapter 9 contains results submitted and published in:

• [32] Fasolato, S., Acquarone, M. and Raimondo, D. M. (2024). States estimation
for parallel-connected battery module: a moving horizon approach, IEEE Transaction
on Control System Technology, Submitted
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• [33] Fasolato, S., and Raimondo, D. M. (2022). Observability analysis of a li-ion
cell equivalent circuit model based on interval arithmetic, 2022 IEEE Vehicle Power
and Propulsion Conference (VPPC), 1-7.
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Chapter 2

Lithium-ion batteries
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2.1.3 Degradation mechanisms . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Battery Management system (BMS) . . . . . . . . . . . . . . . 35

Introduction

Lithium-ion batteries have become a cornerstone of the global energy infrastructure, dom-
inating the consumer electronics market thanks to their superior specific energy and power
density. In response to the escalating threat of climate change, efforts to reduce greenhouse
gas emissions and address environmental challenges through electrification have extended
lithium-ion technology into the transportation sector. Furthermore, as societies strive
to decrease dependence on fossil fuels, lithium-ion batteries are emerging as a promising
solution for grid energy storage, facilitating the widespread adoption of renewable energy
sources such as solar, tidal, and wind.
Despite their promising potential, lithium-ion batteries face significant challenges related
to safety, reliability, and performance. Incidents of battery fires caused by internal short
circuits, stemming from aging or manufacturing defects, highlight critical safety concerns.
Additionally, issues like reduced cycle life and premature degradation undermine the re-
liability and longevity of these batteries. Addressing these challenges is essential for
ensuring a sustainable future with safer and more durable lithium-ion technologies. To
achieve this, the materials science community is focused on developing innovative elec-
trodes and additives to enhance energy density and extend cycle life, while the battery
control sector is dedicated to advancing Battery Management Systems (BMSs). These
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systems aim to optimize safety, performance, and lifespan in real-time across the diverse
range of lithium-ion applications.

Chapter contribute

This chapter provides readers with a high-level overview of lithium-ion battery cell compo-
nents, their working principles, and the degradation mechanisms that cells undergo during
operations. Furthermore, it presents an overview of the battery terminology that will be
used throughout the remainder of the text and summarizes the primary tasks of the Battery
Management System.

Chapter Structure

1. Section 2.1 introduce the lithium ion batteries. Specifically, the working principle,
cell terminology and degradation mechanisms are presented in Sections 2.1.1, 2.1.2
and 2.1.3, respectively.

2. Section 2.2 revised the main BMS tasks.
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2.1 Li-ion Cells

A lithium-ion (Li-ion) cell consists of five primary components, as schematically depicted
in Figure 2.1:

• Negative electrode (Anode): Typically composed of graphitic carbon, the anode
serves as the storage site for lithium-ions during the charging process. When the
cell discharges, the lithium-ions are released from the anode, contributing to the
generation of electrical energy.

• Positive electrode (Cathode): The cathode is made from various compounds
such as lithium cobalt oxide (LiCoO2), lithium nickel oxide (LiNiO2), lithium man-
ganese oxide (LiMn2O4), or lithium nickel manganese cobalt oxide (LiNiMnCoO2,
commonly referred to as NMC). The specific material combination of the anode and
cathode defines the battery’s chemistry, influencing its capacity, discharge charac-
teristics, cutoff voltages, and specific energy. The cathode serves as the source of
lithium-ions during the charging phase.

• Separator: Positioned between the anode and cathode, the separator is a porous
membrane made from polymeric material. It permits the passage of lithium-ions
between electrodes while preventing the direct flow of electrons, which would cause a
short circuit. This function is essential for ensuring the cell’s safety during operation.

• Electrolyte: The electrolyte is a solution, typically non-aqueous, in which lithium
salts are dissolved in organic or inorganic solvents. It fills the space within the cell,
facilitating the movement of lithium-ions between the anode and cathode during
charging and discharging.

• Current collectors: Located at the outer edges of the cell, current collectors are
responsible for transferring the electrons between the cell and the external circuit,
enabling the flow of electricity to or from the cell during charging or discharging.

2.1.1 Working Principle

The operation of a rechargeable lithium-ion cell is based on the conversion of chemical en-
ergy into electrical energy during discharge, and the reverse during charging. This process
is driven by the intercalation (insertion) and deintercalation (extraction) of lithium-ions
into and out of the electrode materials. Both processes occur within the porous structures
of the electrodes and are fully reversible, allowing for multiple charge-discharge cycles.
These processes are governed by electrochemical reactions at the interface between the
electrode and the electrolyte. Specifically, oxidation reactions at one electrode release
electrons into the external circuit, while reduction reactions at the other electrode accept
electrons from the circuit. The movement of lithium-ions through the electrolyte, paired
with electron flow through the external circuit, enables the transfer of energy.
During charging, electrical energy from an external source is converted into chemical
energy stored in the cell. For a cell with a LiNiMnCoO2 cathode (NMC), the charging
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Figure 2.1: Schematic diagram of a LIB working principle.

process involves the deintercalation of lithium-ions from the cathode, facilitated by the
oxidation reaction as shown in Equation (2.1). The lithium-ions then migrate through
the electrolyte and separator to reach the anode, while the corresponding electrons travel
through the external circuit to the anode. Upon reaching the anode, the lithium-ions
are intercalated into the carbon structure of the anode through a reduction reaction, as
depicted in Equation (2.2).

LiNiMnCoO2 −→ NiMnCoO2 + Li+ + e− (2.1)

C6 + Li+ + e− −→ LiC6 (2.2)

Once the intercalation process is complete, the cell is fully charged and ready for use as
a power source.
When the cell is connected to an external load, it discharges, and the stored chemical
energy is converted back into electrical energy. During this phase, oxidation occurs at
the anode, as described by Equation (2.3), while the reduction reaction at the cathode is
represented by Equation (2.4).

LiC6 −→ C6 + Li+ + e− (2.3)

NiMnCoO2 + Li+ + e− −→ LiNiMnCoO2 (2.4)

The lithium-ions flow back to the cathode through the electrolyte, and the electrons move
through the external circuit to provide power. Once the process is complete, the cell is
fully discharged.
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2.1.2 Battery terminology

This section provides a glossary of commonly used terms in this thesis, based on the
definitions provided in [34].

• Battery Cell: A battery cell is a single unit of an electrochemical system, composed
of an anode, cathode, electrolyte, separator, and current collectors. Its function is
to store energy and release it in the form of electrical current.

• Battery Module/Pack: A battery module consists of several cells connected in
series or parallel to achieve desired voltage or capacity. A battery pack is then
formed by assembling multiple modules, again connected in series or parallel, to
further increase capacity or voltage, as needed for specific applications.

• C-rate: The C-rate is a measure of the rate at which a battery is charged or
discharged relative to its maximum capacity. For instance, a 1C rate indicates that
the battery will be fully charged or discharged in one hour. A 2C rate, conversely,
means the process will take half an hour.

• State of Charge (SOC): SOC is a dimensionless metric that represents the re-
maining usable charge in the battery as a percentage of its total capacity. An SOC
of 100% indicates a fully charged battery, while 0% indicates a fully discharged
battery.

• State of Health (SOH): SOH is a critical parameter that indicates the overall
condition of a battery in terms of aging and performance degradation. Since there
is no single universally accepted definition of SOH, it can be quantified in terms
of capacity loss, internal resistance increase, energy fade, or a combination of these
factors. SOH is essential for estimating the remaining useful life of the battery.

• Depth of Discharge (DOD): DOD is the percentage of the battery’s total ca-
pacity that has been used or discharged. For example, a DOD of 40% means that
40% of the battery’s total capacity has been utilized.

• Cut-off Voltage: The cut-off voltage is the minimum allowable voltage for a bat-
tery cell. Once this voltage is reached, the cell is considered fully discharged, typi-
cally corresponding to an SOC of 0%.

• Nominal Capacity: The nominal capacity refers to the total amount of charge
that can be extracted from a fully charged battery under specified conditions. It is
generally expressed in ampere-hours (Ah).

2.1.3 Degradation mechanisms

The degradation of lithium-ion battery (LIB) cells is a complex, multifaceted process
driven by the interaction of chemical side reactions and physical changes within the cell’s
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Figure 2.2: Degradation mechanisms in Li-ion cells. Figures from [1]
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active materials. This aging process is largely irreversible and eventually leads to the cell’s
failure, making it critical to understand these mechanisms for the purpose of improving
the longevity and performance of LIBs across various applications.
LIB aging is typically quantified using two key metrics: capacity fade and power fade.
Capacity fade refers to the gradual reduction in the battery’s ability to hold charge over
time, while power fade indicates a decline in the battery’s capacity to deliver power, often
due to increasing internal resistance or impedance. Both metrics are crucial for assessing
the health and remaining lifespan of the battery.
A wide array of degradation mechanisms contribute to LIB aging, as illustrated in Fig-
ure 2.2. These mechanisms can be exacerbated by operating conditions such as C-rate
(charge/discharge rate), current direction (charging or discharging), temperature, state
of charge (SOC), and state of health (SOH). The key degradation mechanisms include:

• Solid Electrolyte Interphase (SEI) Growth: The SEI forms on the anode
surface during early charging cycles due to electrolyte decomposition. A stable
SEI layer is essential for protecting the anode, but its continuous growth consumes
lithium ions, leading to a gradual loss of capacity.

• Lithium Plating: This occurs when lithium ions deposit as metallic lithium on
the anode rather than intercalating into it. Lithium plating is more likely to hap-
pen at high charging rates or low temperatures, and it results in reduced capacity
and increased internal resistance, which can ultimately lead to safety risks such as
dendrite formation.

• Particle Cracking: The repeated expansion and contraction of electrode particles
during lithiation and delithiation cycles generate mechanical stress. Over time,
this can cause the particles to crack, which leads to a loss of electrical contact and
reduces the amount of active material available for electrochemical reactions, further
contributing to capacity fade.

According to [35], degradation mechanisms are commonly grouped into four primary
degradation modes. Firstly, Loss of Lithium Inventory (LLI) occurs when lithium
ions are irreversibly consumed in parasitic reactions. Key contributors to LLI include
Solid Electrolyte Interphase (SEI) growth and lithium plating. Secondly, Loss of Active
Material (LAM) affects both the positive and negative electrodes. In the anode, LAM
is often caused by particle cracking and the subsequent loss of electrical contact. Thirdly,
Stoichiometric Drift is typically associated with LLI and occurs when the balance
between the electrodes becomes disrupted. This imbalance alters the stoichiometry of the
electrodes relative to one another, degrading the battery’s ability to function optimally.
Finally, Impedance Change groups together the mechanisms that affect the kinetic
behavior of the cell. These include the formation of resistive layers, increased electrolyte
degradation, and other factors that hinder ion transport and reaction kinetics, leading to
a noticeable decline in the battery’s power performance.
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2.2 Battery Management system (BMS)

Lithium-ion batteries must operate within the safe and reliable operating area, which is
restricted by temperature and voltage windows. Exceeding the voltage and temperature
bounds could lead to rapid decrease of battery performance and even result in safety
problems. Therefore, the BMS is needed in order to protect the cells and battery packs
from being damaged, fulfilling the load requirements. The BMS is composed by any kind
of electronic systems, mechanical systems or any other possible technologies that manages
the battery, as widely discussed in [36]. The BMS’s tasks include:

1. Battery parameters detection: Cell monitoring is one of the most important func-
tions of a BMS. It is important to notice that the only accessible measurements
related to a lithium-ion cell are the current, the surface temperature, and the ter-
minal voltage, while all the other variables need to be estimated.

2. Estimation of battery states : This includes the estimation of cells’ State of Charge
(SOC), Depth of Discharge (DOD), and State of Health (SOH). These estimations
are usually carried out using a battery cell model that interprets the measured
parameters.

3. On-board diagnosis : This function involves using various sensors to detect any pos-
sible faults that could occur within the battery module, such as short circuits,
overvoltage, or thermal anomalies.

4. Battery safety control and alarm: The BMS includes thermal system control and
high voltage safety control. It informs the control unit when a fault is detected to
prevent damage to the batteries or injuries to individuals due to high/low temper-
atures, overcharging, overdischarging, or excessive currents.

5. Charge control : The BMS can control the charging process by regulating the charger
to ensure that batteries are charged optimally, extending their lifespan and main-
taining performance.

6. Battery equalization: Based on the information provided by each cell, the BMS
adopts equalization methods to ensure that the SOC across all cells remains as
consistent as possible, preventing imbalances that can degrade battery performance.

7. Thermal management : Depending on the temperature distribution within the bat-
tery pack, the BMS decides when to activate the cooling or heating systems to
maintain optimal operating temperatures, ensuring safety and efficiency.

8. Communication interface: The BMS provides communication interfaces (e.g., CAN
bus, LIN) to interact with other vehicle systems or external devices. This allows for
data exchange and integration with the vehicle’s overall management system.

9. Energy management : It manages the energy flow between the battery and the load
or charger, optimizing performance and efficiency. This includes directing power
where it’s needed most and ensuring balanced energy distribution.
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10. Balancing of cells : Ensures that all cells in the battery pack are balanced in terms
of charge. Balancing prolongs battery life, maintains performance, and prevents
situations where some cells are overcharged or overdischarged.
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Introduction

Dynamic models provide an abstract mathematical representation of concrete systems.
In the context of batteries, they play a crucial role in predicting and analyzing cell behav-
ior, refining cell design, and developing Battery Management System (BMS) algorithms
for diagnostics, estimation, and control. Figure 3.1 provides a visual summary of differ-
ent battery models found in the literature [2, 3, 4], ranging from detailed microscopic
to broader macroscopic approaches. These models fall into three categories: atomistic,
electrochemical, and empirical. Typically, as the scale of the model increases, its accuracy
and computational complexity tend to decrease. Empirical models rely on historical
experimental data to forecast the behavior of lithium-ion batteries, without incorporating
electrochemical principles [23]. While their computational simplicity allows for rapid cal-
culations, their predictions are often unreliable under conditions different from those used
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for model fitting. Notably, the most well-known empirical battery models is the equiva-
lent circuit model (ECM) [23]. Next, the electrochemical models (EMs) describe the
transport of lithium in the electrode and electrolyte phase via averaged mass and charge
transport equations. Unlike empirical models, it offers insight into the inner workings of
the battery while alleviating the computational burden compared to the atomistic models.
The family of electrochemical models consists of the high-fidelity Doyle-Fuller-Newman
(DFN) model [37], the Enhanced Single Particle Model (ESPM) [38], the Single Particle
Model (SPM), and core-shell ESPM (CS-ESPM) [39]. It is important to highlight that in
recent years, hybrid approaches combining EMs with machine learning (ML) techniques
have gained significance [4, 28]. The data-driven methods enhance the accuracy of EMs
across a broad range of applications while preserving their interpretability and physical
meaning. Finally, in atomic scale models fundamental interactions among atoms and
electrons are analyzed to understand a material physical and chemical properties [40].
Computational techniques such as Molecular Dynamics [41], Kinetic Monte Carlo [42],
and Density Functional Theory [43] are employed to calculate charge distribution and
transfer, determine electronic ground states, track atomic movements, and gather crucial
information from both kinetic and thermodynamic perspectives. Due to their high com-
putational demands, these models are typically used in off-line simulations to enhance our
understanding, characterization, and improvement of cell design.
In this dissertation, the main focus is over ECMs and EMs. Due to their mathematical
simplicity, ease of implementation, and low-cost computation requirements, ECMs are the
most commonly used tools in the development of BMS algorithms [23]. They are a great
platform for developing estimation and control strategies with may be implemented online
on a real system. Similarly, based on EMs, various reduced-order models (ROMs) have
been developed to decrease computational burden while preserving insights into the cell
internal electrochemical states [6], with the goal of facilitating their implementation on
hardware-constrained onboard microcontrollers. Additionally, EMs can be used for high-
fidelity offline simulations to improve cell and module design, performance, and safety
[44, 45]. It is important to note that both modeling frameworks can be enhanced with
thermal and/or aging models [46]. Thermal models enable the updating of temperature-
dependent parameters, increasing models robustness across a wider range of applications.
They also allow the design of algorithms for battery thermal management systems to
prevent thermal runaway [47], improving the safety of the overall system. On the other
hand, aging models are crucial for predicting capacity and power degradation, optimizing
battery usage and extending battery life [48, 49].

Chapter contribute

This chapter aims to equip readers with the necessary tools to better comprehend the con-
tent of the following chapters. It does not, however, intend to offer a comprehensive and
complete review of all existing battery modeling methods. Rather, it focuses on detail-
ing and illustrating commonly used techniques in battery modeling. Although not all of
these methods will be applied in the research presented, they are crucial for a thorough
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Figure 3.1: Overview of Battery Models, inspired by [2, 3, 4, 5].

understanding of the rest of the manuscript.
In particular, the ECM model forms the foundation for the model-based algorithms for
state estimation, which are developed in Chapter 9. Additionally, the review of EMs gov-
erning equations and the corresponding Model Order Reduction (MOR) methods provide
the necessary background for understanding the ROMs developed in Chapter 6 for the CS-
ESPM. Finally, the combination of a cell-level ESPM with a physics-based aging model,
based on solid electrolyte interface (SEI) growth, along with the subsequent development
of a model for parallel-connected modules that considers thermal interconnections among
cells, forms the basis for the high-fidelity offline simulations presented in Chapter 8. These
simulations aim to investigate the effects of cell-to-cell variation on module performance.

Chapter structure

• Section 3.1 provides an overview of electrochemical, thermal, and aging models
for a single battery cell. Specifically, the governing equations for ECMs and EMs
are presented in Sections 3.1.1 and 3.1.2, respectively. Section 3.1.3 reviews the
most popular MOR techniques for EMs. Finally, Sections 3.1.4 and 3.1.5 offer an
overview of thermal and aging models.

• Section 3.2 shows how to extend the cell-level models, described in the previous
section, to the module level. Specifically, module-level electrical and thermal models
are introduced in Sections 3.2.1 and 3.2.2, respectively.
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• Section 3.3 summarizes the conclusions drawn and outlines the battery models
used in the subsequent chapters.
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3.1 Cell-level models

3.1.1 Equivalent Circuit model (ECM)

An equivalent-circuit model relies on electrical components in order to describe electro-
chemical dynamics of the cell. Figure 3.2 provides a schematic representation of a general
ECM. The model consists of the Open Circuit Voltage (VOCV), an internal resistance (R0)
and a variable number (n) of capacitor-resistor parallel-blocks (RiCi with i = 1, · · · .n).
These latter represent the battery relaxation phenomena and, in the case in which only
two RC pairs are considered, they usually model the ion diffusion and the double-layer
charging/discharging effects. The voltages (Vi with i = 1, · · · , n) across the two parallels
and the cell state of charge (SOC) are the states of the system, i.e. x = [V1 · · · Vn SOC]′.
The cell current (Icell) and voltage (Vcell) represent respectively the system input u and
output y. The state-space model of the cell, with nominal capacity equal to Cbat, is written
as:

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = h(x(t), u(t))
=




V̇1(t)

...

V̇n(t)

˙SOC(t)

 =


−1

R1C1
· · · 0 0

...
. . .

...
...

0 · · · −1
RnCn

0

0 0 0 0




V1(t)

...

Vn(t)

SOC(t)

+


1
C1

...
1
Cn

1
Cbat

 Icell(t)

Vcell(t) = VOCV (SOC(t)) +
∑n

i=1 Vi(t) +R0Icell(t)

(3.1)

Note that, the model is linear in the states but non-linear in the output due to the VOCV .
In practice, this latter is modeled by fitting the experimental SOC-OCV curve with a
non-linear function of the SOC, VOCV (SOC) [50].

3.1.2 Electrochemical model (EM)

This section offers a concise overview of the governing equations employed in battery
electrochemical models, focusing specifically on the DFN model (Section 3.1.2.1), ESPM
(Section 3.1.2.2), CS-ESPM (Section 3.1.2.3), and SPM (Section 3.1.2.4). For detailed
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Table 3.1: Electrochemical models nomenclature

cs,j Conc. in solid phase [mol/m3], j ∈ [n, p] ce,j Conc. in electrolyte phase [mol/m3], j ∈ [n, s, p]

Φs,j solid phase potential [V], j ∈ [n, p] Φe,j Liquid phase potential [V], j ∈ [n, s, p]

Ds,j Solid phase diffusion [m2/s], j ∈ [n, p] D,j Electrolyte phase diffusion [m2/s]

as,j Specific interfacial surface area [m−1], j ∈ [n, p] Rs,j Particle radius [m], j ∈ [n, p]

iint,j Pore wall flux [mol/m2s], j ∈ [n, p] io,j Exchange current density [A/m2], j ∈ [n, p]

ϵs,j Active volume fraction of solid phase, j ∈ [n, p] ϵe,j Electrolyte Porosity, j ∈ [n, p]

Lj Domain thickness [m], j ∈ [n, s, p] σj Solid phase conductivity [S/m], j ∈ [n, p]

kj Intercalation rate constant [m2.5/s
√
mol] ϵf,j Active volume fraction of filler/binder

A Cell cross sectional area [m2] κe,j Electrolyte conductivity [S/m]

Vcell Cell voltage [V] Icell Cell current [A]

Uj Electrode open circuit potential [V] ηj Electrode overpotential [V]

R Universal gas constant [J/mol-K] F Faraday’s constant [C/mol]

t+0 Transference number [-] brugg Bruggeman coefficient [-]

cbulks,j Electrode bulk conc. [mol/m3], j ∈ [n, p] csurfs,j Electrode surface conc. [mol/m3], j ∈ [n, p]

cmax
s,j Maximum electrode conc. [mol/m3], j ∈ [n, p] cavge,j Average electrolyte conc. [mol/m3], j ∈ [n, s, p]

θbulkj Electrode bulk stoichiometry [-], j ∈ [n, p] θsurfj Electrode surface stoichiometry [-], j ∈ [n, p]

cα,βs,p Cathode solid phase conc. for α and β phases [mol/m3] θα,βs,p Positive electrode stoichiometry in α and β phases

t̄ Time instant of the transition from one-phase to two-phase [s] t̄f Time instant of the transition from two-phase to one-phase [s]

rp Moving boundary [-] Tcell Cell temperature [◦C]

schematics and a comprehensive list of nomenclature used in these models, please refer
to Table 3.2 and Table 3.1, respectively.

3.1.2.1 Doyle-Fuller-Newman (DFN) model

The DFN model, also known as the Pseudo-2-Dimensional (P2D) model, was first intro-
duced in 1993 [37]. Based on the porous electrode and concentrated solution theories [51],
it models the diffusion and migration of lithium ions, as well as charge transfer within
the two porous electrodes, a separator, two current collectors, and the electrolyte. The
active material in the porous electrodes is modeled as spherical particles oriented along
the battery thickness direction. The DFN model is characterized by the radial coordinate
(r) for the solid spherical particles and the linear Cartesian coordinate (x) for the liquid
electrolyte phase along the battery thickness. It is described by a set of Partial Differen-
tial Equations (PDEs) and Algebraic Equations (AEs), forming a comprehensive PDAE
framework. The four primary PDEs that describe the battery dynamics are:

1. Mass conservation in the solid phase: The Fick’s law of diffusion in spherical
coordinates is used to describe the conservation of lithium ions in the solid phase:

∂cs,j
∂t

=
Ds,j

r2
∂

∂r

[
r2
∂cs,j
∂r

]
(3.2)

with boundary conditions:

∂cs,j
∂r

∣∣∣
r=0

= 0,
∂cs,j
∂r

∣∣∣
r=Rs,j

=
−iint,j
Ds,j

where cs,j is the lithium-ion concentration in the solid phase, Ds,j is diffusion co-
efficient, as,j = 3ϵs,j/Rs,j is the specific interfacial surface area, ϵs,j is the active
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Table 3.2: Electrochemical models overview
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material volume fraction, Rs,j is the particles radius, and iint,j is the pore wall flux.
The boundary conditions ensure that the ion flux at the particle center is zero, while
at the particle surface, it is proportional to the rate of the ion intercalation/dein-
tercalation reaction.

2. Charge conservation in the solid phase: The Ohm’s law in cartesian coordi-
nates (x ∈ [0, Ln + Ls + Lp]) is used to describe the conservation of charge in the
solid phase of each electrode:

∂

∂x

(
σeff,j

∂Φs,j

∂x

)
− as,jFiint,j = 0 (3.3)

with boundary conditions:

∂Φs,j

∂x

∣∣∣
x=Ln

=
∂Φs,j

∂x

∣∣∣
x=Ln+Ls

= 0,
∂Φs,j

∂x

∣∣∣
x=0

=
∂Φs,j

∂x

∣∣∣
x=Ln+Ls+Lp

=
Icell
σeff,j

where Φs,j is the solid phase potential and σeff,j is the effective electronic conduc-
tivity, obtained as σeff,j = σjϵ

brugg
s,j . The boundary conditions ensure that charge is

exchanged through electron movement between the current collectors and the active
materials, while preventing any charge movement across the separator.

3. Mass conservation in the liquid phase: The conservation of lithium ions in the
electrolyte phase, along the thickness of the cell in Cartesian coordinates, is modeled
using the following diffusion PDE:

ϵe,j
∂ce,j
∂t

=
∂

∂x

(
Deff
e,j

∂ce,j
∂x

)
+ as,j

(
1− t+0

)
iint,j = 0 (3.4)

with boundary conditions:

∂ce,n
∂x

∣∣∣
x=0

=
∂ce,p
∂x

∣∣∣
x=Ln+Ls+Lp

= 0

Deff
e,n

(∂ce,n
∂x

)∣∣∣∣
x=Ln

= Deff
e,s

(∂ce,s
∂x

)∣∣∣
x=Ln

Deff
e,s

(∂ce,s
∂x

)∣∣∣
x=Ln+Ls

= Deff
e,p

(∂ce,p
∂x

)∣∣∣
x=Ln+Ls

where ce,j is the lithium-ion concentration in the liquid phase, Deff
e,j is the effective

diffusion coefficient in the electrolyte, obtained as Deff
e,j = De,jϵ

brugg
e,j , ϵe,j is the poros-

ity or the electrolyte volume fraction, and brugg is the Bruggeman’s number that
accounts for electrolyte tortuosity. The boundary conditions ensure concentration
continuity across each cell domain and null flux at both current collectors.

4. Charge conservation in the liquid phase: The charge conservation in the elec-
trolyte is modeled using the following PDE:

κeff
e,j

∂2Φe,j

∂x2
− κeff

D,j

∂2 ln ce,j
∂x2

+ as,jFiint,j = 0 (3.5)

45



with boundary conditions:

∂Φe,j

∂x

∣∣∣
x=0

=
∂Φe,j

∂x

∣∣∣
x=Ln+Ls+Lp

= 0

where Φe,j is the liquid phase potential, κeff
e,j = κe,jϵ

brugg
e,j is the liquid phase effective

ionic conductivity, and κeffD,j is the electrolyte ionic diffusional conductivity, calcu-

lated as κeffD,j =
2RTkeffe,j

F
(1− t+0 ).

The Butler-Volmer equation is used to model the charge transfer reaction occurring at
the surface of the spherical particle at the interface with the electrolyte. Specifically, the
rate of the lithium intercalation/de-intercalation reaction is modeled as:

iint,j = i0,j

[
exp
(αaFηj

RT

)
− exp

(αcFηj
RT

)]
(3.6)

where αa and αc are the anodic and cathodic transfer coefficients, respectively. (3.6)
relates the electrode intercalation current density iint,j to its overpotential ηj, defined as:

ηj = Φs,j − Φe,j − Uj(c
surf
s,j ) (3.7)

where Uj is the electrode open circuit potential, calculated as a function of the electrode
surface stoichiometry θsurfs,j = csurfs,j /cmaxs,j . csurfs,j and cmaxs,j are athe surface and maximum
electrode concentration, respectively, and i0,j is the the exchange current density, obtained
as:

i0,j = kj

√
cavge,j c

surf
s,j (cmaxs,j − csurfs,j ) (3.8)

where cavge,j is the average electrolyte concentration and kj is the kinetic reaction rate
constant. Finally, the cell overall volage is calculated as:

Vcell = Φs,p|x=Ln+Ls+Lp − Φs,n|x=0 −RcellIcell (3.9)

where Rcell is the ohmic cell resistanca and Icell is the cell current. Finally, the SOC of
each electrode is calculated based on the bulk stoichiometries (θbulks,j ) as:

SOCn =
θbulks,n − θ0%n
θ100%n − θ0%s,n

, SOCp =
θ0%p − θbulks,p

θ0%p − θ100%p

(3.10)

where θbulks,j = cbulks,j /c
max
s,j in which:

cbulks,j =
1

4
3
πR3

s,j

∫ Rs,j

r=0

4πr2cs,j(r)dr (3.11)

3.1.2.2 ESPM

The ESPM is a simplified version of the DFN model. It relies on the assumptions of
infinite solid-phase conductivity and uniform current distribution within individual elec-
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trodes [52]. The former assumption results in a uniform solid-phase potential, making
the governing PDE (3.3) negligible. Additionally, the latter assumption allows all active
material particles to be considered in parallel, enabling each electrode to be represented
by a single spherical particle with radius Rs,j. Additionally, a uniform current distribution
allows the intercalation/deintercalation current density (3.6) to be rewritten as [53, 54]:

iint,j =
Icell

as,jALj
(3.12)

Subsequently, assuming αa = αc = 0.5 the approximated Butler-Volmer equation (3.6)
allows the calculation of the electrode overpotential:

ηj =
RT

0.5F
sinh−1

( Icell
2as,jALji0,j

)
(3.13)

According to [55], the electrolyte overpotential is obtained by integrating the charge con-
servation in electrolyte phase PDE (3.5):

∆Φe = Φe,p − Φe,n =
2RTν

F
ln
(ce,j|x=Ln+Ls+Lp

ce,j|x=0

)
− Icell

2A

( Ln

keffn

+
2Ls

keffs

+
Lp

keffp

)
(3.14)

Finally, considering the equation (3.7) and the electrolyte and electrode overpotential
introduced in this section, the cell voltage is obtained as:

Vcell = Φs,p − Φs,n −RcellIcell = Up + ηs,p − Un − ηs,n +∆Φe −RcellIcell (3.15)

It is worth noting that the electode SOC is calculated as in (3.10).

3.1.2.3 CS-ESPM

The key aspect of this physics-based electrochemical model is the description of the phase
transition undergone by the electrodes during the charge and discharge. Typically, the
core-shell ESPM (CS-ESPM) is adopted to described the phase transition exibith by the
positive electrode in LiFePO4/graphite batteries [39]. Although, as noted by [56], certain
aspects of the lithiation/delithiation description in LFP electrodes using the core-shell
model are inconsistent with experimental observations, it is a suitable solution for LFP-
based battery model. According to [21], the LFP material experiences three main phases
during a charging/discharging cycle: 1) Li-rich phase denoted as β-phase (LiFePO4), 2)
two phases transition where the LiFePO4/FePo4 coexist, and 3) Li-poor phase denoted
as α-phase (FePo4). Fig. 3.3 provides a schematic representation of these three phases
within the model for a constant discharge cycle from 100% to 0% of SOC. Based on the
ESPM framework, both electrodes are modeled as spherical particles, where the negative
electrode is always in single phase whereas the positive electrode can be in one-phase (1P)
or two-phase (2P). Further, t̄ and t̄f highlighted in the Fig. 3.3, refer to the initial and
final time of the 2P condition. When the battery is fully charged, the positive electrode is
in the α-phase (Li-poor), and it stays in that phase (1P) from when the discharge starts
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Figure 3.3: C/4 discharge. The moving boundary (rp) is plotted to illustate the positive
electrode one-phase (rp/Rs,p = 0) and two-phase (rp/Rs,p > 0) regions.

(Li-ions starts intercalate into the positive electrode) until the positive electrode reaches
the normalized concentration θα at time instant t = t̄. At this point, the β-phase starts
forming on the outer shell of the positive particle and the two phases (α and β) coexist.
The core-region in α-phase is subjected to a shrinking process, while the thickness of the
shell-region, in β-phase, increases as the battery is being discharged. When the transition
from the α-phase to β-phase is over at time t = t̄f , the entire positive particle remains
in β-phase until the end of the discharge. The inverse process takes place during the
charging cycle (from β-phase to α-phase). The Li-ion concentration in the negative, as
well as in the 1P and in the 2P positive electrode shell-region, is described by the Fick’s
diffusion law, as shown in eq. (3.2). The core-region of the positive electrode remains at
a constant and uniform concentration equal to cαs,p (cβs,p) during discharging (charging).
Further, for t ∈ [t̄, t̄f ] the dynamics of the moving boundary rp, describing the distance
between the center of the positive particle and the interface between the two phases, is
given as:

sign(Icell)(cαs,p − cβs,p)
drp
dt

= Ds,p
∂cs,p
∂r

∣∣∣
r=rp

(3.16)

The motion of rp depends on the concentration gradient (∂cs,p/∂r) across the α-phase and
β-phase interface. In dicharge conditions, equation (3.16) is completed with boundary
conditions:

rp|t=t̄ = Rs,p, cs,p|r=rp∧t∈[t̄,t̄f ] =

{
cβs,p Dis.

cαs,p Ch.
, cs,p|t=t̄∧r∈[0,Rs,p] =

{
cαs,p Dis.

cβs,p Ch.
(3.17)

The mass and the charge conservation within the electrolyte, are modeled as in the ESPM
adopting the (3.4) and (3.5), respectively. Finally, the overall cell voltage is obtained as
in (3.15), while the electode SOC is calculated as in (3.10).
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Figure 3.4: Schematic overview of the key concentration values needed for the voltage
calculation in the ESPM.

3.1.2.4 SPM

The SPM is a further approximation of the ESPM. While both models assume uniform cur-
rent density and infinite conductivity in the electrodes, the SPM further assumes uniform
lithium concentration in the electrolyte phase, thereby neglecting electrolyte dynamics
(3.4)(3.5). As a result, the conservation of mass in the solid phase is the sole physical law
governing the battery dynamics. Considering ∆Φe = 0, the overall cell voltage can be
written as:

Vcell = Φs,p − Φs,n −RcellIcell = Up + ηs,p − Un − ηs,n −RcellIcell (3.18)

It is worth noting that the electode SOC is calculated as in (3.10).

3.1.3 Model order reduction

In the previous section, the governing PDEAs for EMs, describing the intercalation and
deintercalation of lithium ions in both the solid and liquid phases, as well as charge
conservation within the cell were detailed. It was shown that the overall cell voltage and
electrode SOC are calculated based on specific concentration values obtained from the
PDE solutions. This process is schematically illustrated in Figure 3.4 considering as an
example the ESPM. The electrode OCPs (Un and Up) depend on the particle lithium-ion
surface concentration (csurfs,j ), while the electrode overpotential (ηj), is calculated based
both the csurfs,j and the average concentration of the electrolyte (cavge,j ). Meanwhile, the
electrode SOC is determined by the bulk concentration (cbulks,j ) within the electrode.
Various numerical methods for approximating the governing PDAEs were extensively
studied in the literature [6]. These techniques focus on calculating the concentration
necessary for output model computations values (i.e. csurfs,j , cbulks,j , and cavge,j ) rather than
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providing a complete and detailed description of the spatial concentration distribution
within the cell. Further, the considered MOR techniques aim to approximate the PDAEs
with highest accuracy while ensuring computational efficiency and preserving the model
physical meaning. Figure 3.5 provides a schematic overview of the most commonly used
MOR techniques in the context of battery modeling. These methods can be broadly
categorized into four types:

• Spatial discretization techniques (Section 3.1.3.1) convert PDAEs/PDEs into
DAEs/ODEs systems. A commonly used approach is the method of lines, which
discretizes only the spatial domain while treating time as a continuous variable
[57]. Among spatial discretization techniques, finite-difference methods (FDMs)
and finite-volume methods (FVMs) are particularly effective for simplifying the
governing equations of EMs [58]. These methods maintain most of the model key
properties across various operational conditions. However, the complexity and ac-
curacy of these ROMs depend on the density and distribution of the mesh points
or control volumes used, potentially leading to large-scale models that may require
further reduction to enhance computational efficiency.

• Functional approximation methods (Section 3.1.3.2) approximate the govern-
ing equations of electrochemical models as systems of ODEs. One prominent ap-
proach is spectral methods [59, 60], which represent spatiotemporal variables as a
finite weighted sum of basis functions, typically chosen from orthogonal function
spaces such as Fourier series or Chebyshev polynomials [61]. Another approach is
parabolic approximation, where the solid-phase concentration is modeled as a poly-
nomial function [62]. This method is particularly effective for applications involving
constant, long-duration, low to medium current rates.

• Frequency domain approximation (Section 3.1.3.3) is another widely used ap-
proach in battery modeling. This method involves applying the Laplace transform to
convert the governing PDEs into transcendental transfer functions that describe the
system behavior with respect to quantities of interest, such as surface concentration
[63]. Once the transfer functions are obtained, MOR techniques are employed to
simplify these functions. Methods such as Padé approximation (PA) [63] or Residue
Grouping (RG) [64] are commonly used to reduce the complexity of the transfer
functions while retaining the essential dynamics of the system. Subsequently, re-
alization algorithms are applied to derive simplified state-space models from the
reduced transfer functions. Additionally, direct discretization approaches like Dis-
crete Realization Algorithms (DRA) can be used to obtain discrete-time models
from the transcendental transfer functions [23].

• MOR for high-dimensional ODE systems (Section 3.1.3.4) addresses the chal-
lenge of reducing the complexity of large systems resulting from the spatial dis-
cretization of governing PDEs. This approach focuses on identifying and retaining
the most significant modes of the system to reduce computational burden while
preserving essential dynamic characteristics [65].
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Figure 3.5: Schematic overview of the most commonly used MOR techniques in the
context of battery modeling. Figure inspired by [6].

3.1.3.1 Spatial discretization techniques

Finite Differende Method (FDM)
Given a function f(x) : R → R, the derivative of f at a point x (f ′(x)) is defined as the
limit of the difference quotient:

df(x)

dx
= lim

h→0

f(x+ h)− f(x)

h
. (3.19)

In practical applications, f(x+h)−f(x)
h

serves as an approximation of f ′(x) when h is suffi-
ciently small. To assess the accuracy of this approximation, we analyze the Taylor series
expansions of f(x+ h) and f(x− h):

f(x+ h) = f(x) +
df

dx
h+

h2

2!

d2f

dx2
+
h3

3!

d3f

dx3
+ · · ·+O(h4)

f(x− h) = f(x)− df

dx
h+

h2

2!

d2f

dx2
− h3

3!

d3f

dx3
+ · · ·+O(h4)

From these expansions, we can derive the error associated with the forward and backward
difference schemes for approximating the first derivative:

Forward:
df(x)

dx
≈ f(x+ h)− f(x)

h
=
df(x)

dx
+
h

2!

d2f(x)

dx2
+ · · ·+O(h2)︸ ︷︷ ︸

Error Term O(h)

Backward:
df(x)

dx
≈ f(x)− f(x− h)

h
=
df(x)

dx
− h

2!

d2f(x)

dx2
+ · · ·+O(h2)︸ ︷︷ ︸

Error Term O(h)
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Figure 3.6: Derivative approximation using first-order Forward, Backward and Central
FDM scheme

In both schemes, the term h
2!
d2f(x)
dx2

represents the leading error term, which is proportional
to h. This implies that the error decreases linearly with h. To achieve higher accuracy,
the central difference scheme is often preferred, as it reduces the error term to O(h2),
providing a more precise approximation of the first derivative:

Central:
df(x)

dx
≈ f(x+ h)− f(x− h)

2h
=
df(x)

dx
+
h2

3!

d3f(x)

dx3
+ · · ·+O(h3)︸ ︷︷ ︸

Error Term O(h2)

The central difference scheme significantly reduces the error for small values of h com-
pared to the forward and backward schemes, making it a preferred choice for numerical
differentiation. It is important to note that higher approximation accuracy can also be
achieved with forward and backward difference schemes by utilizing higher-order approx-
imations, as detailed in Table 3.3. Additionally, Table 3.3 presents the formulations for
approximating the second derivative f ′′(x) using the three different schemes with the
corresponding error characteristics.

Example 3.1.1: FDM for solid phase spatial discretization [46]

In the context of battery modeling, the FDM is frequently employed to discretize
the mass conservation PDE in the solid phase, primarily due to its straightforward
implementation. This section provides an overview of the approximation of (3.2)
using the FDM, as outlined in [46]. Figure 3.7(a) illustrates the discretization grid
employed to partition the particle radius into Nr discrete nodes equally spaced.
Firstly, eq. (3.2) is rewritten as follows:

∂cs,j
∂t

=
2Ds,j

r

∂cs,j
∂r

+Ds,j
∂2cs,j
∂r2

. (3.20)
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FDM scheme Derivative Order Formula Error

Forward
f ′(x)

First Order f(x+h)−f(x)
h O(h)

Second Order −3f(x)+4f(x+h)−f(x+2h)
2h O(h2)

f ′′(x)
First Order f(x+2h)−2f(x+h)+f(x)

h2 O(h)

Second Order −f(x+3h)+4f(x+2h)−5f(x+h)+2f(x)
h2 O(h2)

Backward
f ′(x)

First Order f(x)−f(x−h)
h O(h)

Second Order 3f(x)−4f(x−h)+f(x−2h)
2h O(h2)

f ′′(x)
First Order f(x)−2f(x−h)+f(x−2h)

h2 O(h)

Second Order 2f(x)−5f(x−h)+4f(x−2h)−f(x−3h)
h2 O(h2)

Central
f ′(x)

Second Order f(x+h)−f(x−h)
2h O(h2)

Fourth Order −f(x+2h)+8f(x+h)−8f(x−h)+f(x−2h)
12h O(h4)

f ′′(x)
Second Order f(x+h)−2f(x)+f(x−h)

h2 O(h2)

Fourth Order −f(x+2h)+16f(x+h)−30f(x)+16f(x−h)−f(x−2h)
12h2 O(h4)

Table 3.3: Summary of Finite Difference Method (FDM) Schemes for First and Second
Derivative Approximations

Next, the central difference scheme is applied to approximate both the first and
second derivatives of cs,j with respect to the particle radius for the internal nodes
(i = 2, · · · , Nr − 1). This yields:

∂cs,j,i
∂t

=
2Ds,j

i∆r

cs,j,i+1 − cs,j,i−1

2∆r
+Ds,j

cs,j,i+1 − 2cs,j,i + cs,j,i−1

∆r2
,

∂cs,j,i
∂t

=
Ds,j

∆r2

[(
1− 1

i

)
cs,j,i−1 − 2cs,j,i +

(
1 +

1

i

)
cs,j,i+1

]
,

(3.21)

where cs,j,i denotes the lithium ion concentration at the i-th node of the j-th elec-
trode, and ∆r = Rs,j/(Nr−1). For the external nodes, we derive the formulation by
considering the boundary conditions of (3.2). Specifically, for the boundary condi-
tion at r = 0, the spatial derivative ∂cs,j

∂r

∣∣∣
r=0

can be approximated using the forward
FDM scheme. However, as noted in Table 3.3, the accuracy of the forward scheme
is generally lower compared to the central difference scheme. To ensure consistency
in accuracy between internal and external nodes, we have two options: either use
a second-order forward scheme or employ the ghost node approach [58]. The ghost
node method involves adding a fictitious node to the left of the boundary condi-
tion (BC), as illustrated in Figure 3.7(a). This approach allows us to approximate
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Figure 3.7: (a) FDM and (b) FVM scheme used to discretized the particle radius of the
electrode solid phase.

∂cs,j
∂r

∣∣∣
r=0

using the central difference scheme, expressed as:

∂cs,j
∂r

∣∣∣
r=0

≈ cs,j,2 − cs,j,0
2∆r

= 0 =⇒ cs,j,2 = cs,j,0. (3.22)

Applying this approximation to the simplified form of (3.20) at r = 0 results in:

∂cs,j,1
∂t

=
Ds,j

∆r2
[2cs,j,2 − 2cs,j,1] . (3.23)

Similarly, when applying this approximation to the right boundary condition, the
overall discretized mass conservation equation can be compactly expressed as:

ċs,j = αs,jAs,jcs,j + βs,jBs,jcs,j. (3.24)

where cs,j = [cs,j,1, · · · , cs,j,Nr ] ∈ RNr , αs,j = Ds,j/∆r
2, βs,j = ±1/(ALjFas,j∆r),

amd the he matrices As,j ∈ R(Nr)×(Nr) and Bs,j ∈ R(Nr)×(1) are written as:

As,j =


−2 2 0 0 · · · 0 0

1/2 −2 3/2 0 · · · 0 0

0 2/3 −2 4/3 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 2 −2

 , Bs,j =


0

0

0
...

2Nr

Nr−1


It is worth mentioning that csurfs,j = cs,j,Nr and cbulks,j = 3

R3
s,j

∫ Rs,j
0

r2cs,jdr refer to the
electrode surface and bulk concentration, respectively.
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Finite Volume Method (FVM)
The FVM is a numerical technique designed for solving PDEs, particularly suited for
conservation laws where ensuring mass conservation is essential. The application of FVM
consists of three main steps. First, the domain of interest is divided into small control
volumes (CVs), with each volume associated with a node that stores the variable of interest
(Φ). considering the i-th CV, the volume-averaged value of Φi is considered as:

Φ̄i =
1

Vi

∫
CVi

ΦidV

where Vi is the volume of the i-th CV. Next, the PDEs are integrated over each control
volume to enforce conservation laws locally. Finally, the divergence theorem is applied
to transform the volume integrals into surface integrals, simplifying the equations and
enabling the accurate calculation of fluxes across the surfaces of each control volume.

Theorem 1 (Gauss Theorem). Given a vector field f and a closed volume V bounded
by a closed surface S, the integral of the divergence of f over V is equal to the flux of f
across S. Mathematically, this is expressed as:∫

V

∇ · f dV =

∮
S

f · n dS, (3.25)

where ∇· denotes the divergence operator, and n represents the outward-pointing unit
normal vector to the surface S.

In the context of battery modeling, the FVM is employed to discretize the mass conser-
vation PDEs in both the liquid phase and solid phase. Specifically, [66] firstly introduced
FVM to the liquid phase, while [67] and [68] use it for the solid phase.

Example 3.1.2: FVM for solid phase spatial discretization [68]

This section provides an overview of approximating (3.2) using the FVM; in spherical
coordinates, as detailed in [68]. First, the PDE (3.2) is rewritten as:

∂cs,j
∂t

= ∇ · (Ds,j∇cs,j) (3.26)

where ∇cs,j represents the gradient of the concentration in spherical coordinates a,
and ∇· denotes the divergence operator b. The rewritten PDE is then integrated
over the i-th control volume (CVi) as follows:∫

CVi

∂cs,j
∂t

dV =

∫
CVi

∇ · (Ds,j∇cs,j) dV (3.27)

Applying the Gauss theorem to convert the volume integral on the right-hand side
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to a surface integral, we obtain:∫
CVi

∂cs,j
∂t

dV =

∮
Ai

(Ds,j∇cs,j · n) dA

=

∫
A

i+1
2

Ds,j
∂cs,j
∂r

dA−
∫
A

i− 1
2

Ds,j
∂cs,j
∂r

dA.

Thus, the integral form becomes:

∂c̄s,j,i
∂t

Vi = Ds,j
∂cs,j
∂r

∣∣∣
i+ 1

2

Ai+ 1
2
−Ds,j

∂cs,j
∂r

∣∣∣
i− 1

2

Ai− 1
2
. (3.28)

where Ai+ 1
2
= 4πr2

i+ 1
2

and Ai− 1
2
= 4πr2

i− 1
2

are the the surface areas of the left (i−1/2)
and right (i+1/2) boundaries of CVi, respectively, and Vi = 4/3π(r3

i+ 1
2

−r3
i− 1

2

). The
central difference scheme is used to approximate the spatial derivative of cs,j for the
internal control volumes:

∂c̄s,j,i
∂t

Vi = Ds,j
c̄s,j,i+1 − c̄s,j,i

∆r
Ai+ 1

2
−Ds,j

c̄s,j,i − c̄s,j,i−1

∆r
Ai− 1

2
. (3.29)

According to [68], the ghost cell approach can be employed to approximate boundary
conditions using a central scheme, similar to the FDM discretization scenario. The
final FVM-based discretized mass conservation equation can be expressed in state-
space form as:

˙̄cs,j = AFVMs,j c̄s,j +BFVM
s,j Icell. (3.30)

where c̄s,j = [c̄s,j,1, · · · , c̄s,j,Nr ] ∈ RNr , and the matrices AFVMs,j ∈ RNr×Nr and
BFVM
s,j ∈ RNr×1 are given by:

AFVMs,j =
4Ds,j

∆r


−3

4
3
4

0 0 · · · 0 0
3
28

−15
28

12
28

0 · · · 0 0

0 12
76

−39
76

27
76

· · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 3(Nr−1)2

12N2
r−12Nr+4

−3(Nr−1)2

12N2
r−12Nr+4

 , B
FVM
s,j =


0

0

0
...
β3


where β3 = 3Nrg(Icell)

∆r(3N2
r−3Nr+1)(Fas,jLjA)

, and g(Icell) is -1 if j = p and +1 if j = n

Unlike the FDM approach, where the surface concentration is directly taken from
the last nodal point, in the FVM approach, the surface concentration csurfs,j cannot
be calculated directly. Instead, it is typically estimated using linear extrapolation
[69]:

csurfs,j =
3c̄s,j,Nr − c̄s,j,Nr−1

2
. (3.31)

It is worth noting that the accuracy of this extrapolation can be improved using
third-order Hermite extrapolation, as demonstrated in [68].
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a∇cs,j =
∂cs,j
∂r r̂ + 0θ̂ + 0ϕ̂

b∇ · (Ds,j∇cs,j) =
Ds,j

r2
∂
∂r

(
r2

∂cs,j
∂r

)
r̂ + 0θ̂ + 0ϕ̂

3.1.3.2 Function approximation

Function approximation represents the second major class of techniques used for approx-
imating PDEs within the context of battery modeling. These techniques involve using
numerical methods to solve PDEs by assuming a predefined form for the solution and
then determining the coefficients of this solution to satisfy the original equation. In this
section, we will provide a concise review of the fundamental principles underlying two key
methodologies: spectral methods [59, 60] and polynomial approximation [62].

Spectral methods
Spectral methods are advanced numerical techniques designed to approximate solutions
of PDEs by leveraging high-order polynomials to represent their solution across the entire
computational domain [59, 70]. Unlike FDM, which rely on local approximations where
derivatives are estimated based on neighboring grid points, spectral methods utilize global
approximations where the value of a derivative at any given point is influenced by the solu-
tion across the entire domain. This global approach grants spectral methods a significant
advantage in terms of convergence rate, achieving high accuracy with fewer computational
points compared to FDM. However, these methods are generally less flexible when dealing
with complex geometries or boundary conditions, and can be challenging to implement.
The domain of spectral methods is vast and diverse, encompassing a various range of tech-
niques. Key subclasses include Galerkin spectral method, spectral collocation methods
(often referred to as pseudospectral methods), and Tau spectral methods. In the context
of battery modeling, the Galerkin spectral method and spectral collocation methods are
primarily employed to governing PDEs as shown in [71, 72, 73, 61] and [74, 75, 76, 77],
respectively. According to [78], let’s consider the PDE:

PDE[u(x, t)] = 0 (3.32)

defined on a domain D with boundary conditions B(u) = 0. In spectral methods, the
solution to a PDE is typically approximated as a finite sum of known functions:

uN(x, t) = uB(x, t) +
N∑
k=0

ak(t) · ϕk(x) (3.33)

where ϕk(x) are the basis functions (or trial functions), and ak(t) are the time-dependent
coefficients. The term uB(x, t) is included to handle inhomogeneous boundary conditions.
It is important to note that in the approximation uN(x, t), the spatial and temporal
dependencies are separated, which simplifies the computation of spatial derivatives. If we
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assume uB = 0, then:
∂uN(x, t)

∂x
=

N∑
k=0

ak(t) ·
dϕk(x)

dx

The coefficients ak(t) are determined using the method of weighted residuals:∫
D
wj(x) · R(x, t) dx = 0, for j = 0, . . . , N (3.34)

where wj(x) represents the weight functions corresponding to the j-th residuals R(x, t),
which is derived by substituting (3.33) into the PDE (3.32). Specifically:

R(x, t) = PDE(uN(x, t)) (3.35)

Eq. (3.34) involves ensuring that the residual is orthogonal to the set of weight functions.
It is crucial to recognize that the choice of weight functions distinguishes between the
Galerkin and collocation spectral methods. In the Galerkin method, the weight functions
are chosen to be equal to the basis functions. In contrast, the collocation method involves
selecting N + 1 collocation points within the domain D where the residual R(x, t) is re-
quired to vanish, i.e., R(x, t) = 0. In the context of battery modeling, common choices of
basis functions include Legendre polynomials, first- and second-order Chebyshev polyno-
mials, and cosine functions [61].

Polynomial approximation
Polynomial approximation is a method used to simplify the microscale diffusion PDE by
reducing it to a set of differential algebraic equations (DAEs). This technique assumes that
the solid phase concentration within a spherical particle is represented as a polynomial
function, enabling the derivation of formulations for both the surface and average particle
concentrations [62, 66]. The following example aims to clarity the mass conservation PDE
approaximation.

Example 3.1.3: Polynomial approximation for solid phase

Considering for instance the two-parameter model [62], the concentration profile
within the particle is assumed to take the form of a second-order polynomial, ex-
pressed as:

cs,j(r, t) = a(t) + b(t)
( r2

R2
s,j

)
Based on this expression, the surface concentration is calculated by evaluating cs,j
at r = Rs,j:

csurfs,j (t) = cs,j(r, t)
∣∣
r=Rs,j

= a(t) + b(t) (3.36)
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The bulk concentration is obtained by volume-averaging the particle concentration:

cbulks,j (t) =
1

4
3
πR3

s,j

∫ Rs,j

r=0

4πr2
[
a(t) + b(t)

(
r2

R2
s,j

)]
dr = a(t) +

3

5
b(t) (3.37)

Combining equations (3.36) and (3.37), we can express a(t) and b(t) in terms of
csurfs,j and cbulks,j :{

csurfs,j = a(t) + b(t)

cbulks,j = a(t) + 3
5
b(t)

−→

{
a(t) = −3

2
csurfs,j + 5

2
cbulks,j

b(t) = −5
2
cbulks,j + 5

2
csurfs,j

(3.38)

Then, the volume-averaged concentration is derived by integrating the governing
PDE over the particle volume:

1

R3
s,j

∫ Rs,j

r=0

3r2
(
∂cs,j
∂t

− Ds,j

r2
∂

∂r

(
r2
∂cs,j
∂r

))
dr = 0

1

R3
s,j

∫ Rs,j

r=0

3r2
(
da(t)

dt
+
db(t)

dt

r2

R2
s,j

)
dr =

1

R3
s,j

∫ Rs,j

r=0

18Ds,j
r2

R2
s,j

b(t)dr(
da(t)

dt
+

3

5

db(t)

dt

)
︸ ︷︷ ︸

ċbulks,j

=
6Ds,j

R2
s,j

b(t)

(3.39)

The term b(t) can be calculated using the boundary condition of (3.2) at r = Rs,j:ċ
bulk
s,j =

6Ds,j

R2
s,j
b(t)

b(t) =
iint,j

2Ds,jas,jF

→ ċbulks,j =
iint,j
as,jF

(3.40)

Finally, csurfs,j is calculated using b(t) from (3.38):b(t) = 5
(
csurfs,j − cbulks,j

)
b(t) =

iint,j

2Ds,jas,jF

→ csurfs,j =
iint,j

5Ds,jas,jF
− cbulks,j (3.41)

In summary, the governing PDE (3.2) is approximated into one ODE and one alge-
braic equation, describing the bulk and surface particle concentrations, respectively.
According to [62], higher-order polynomial profile can be used to improve the model
approximation for high operating current rates. The polynomial profile concept has
also been applied to the approximation of the electrolyte concentration and potential
[38].
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3.1.3.3 Frequency Domain Approximation

Frequency Domain approximation represents the third major class of techniques used
for approximating PDEs in the context of battery modeling. The key idea behind this
approach is to apply the Laplace transform to convert PDEs into transcendental transfer
functions 1, ultimately enabling their effective conversion into a system of ODEs, which
are generally simpler to solve.
Given a function f(x, t) defined for all t > 0, the Laplace transform of f(x, t), denoted
L
[
f(x, t)

]
= F (x, s), is given by:

L
[
f(x, t)

]
=

∫ ∞

0

e−stf(x, t) dt = F (x, s) (3.42)

where s is the Laplace variable. In the context of PDEs, the differentiation property of
the Laplace transform is particularly useful. Specifically, the Laplace transform of the
time derivative of f(x, t) is:

L
[
∂f(x, t)

∂t

]
=

∫ ∞

0

e−st
∂f(x, t)

∂t
dt = sF (x, s)− f(x, 0). (3.43)

To enhance reader understanding, the following example shows how to solve the solid
phase mass conservation equation using the Laplace transform.

Example 3.1.4: Laplace trasnform for solid phase PDE [63]

This section offers an overview of the derivation of the transcendental transfer func-
tion for the mass conservation in the solid-phase PDE (3.2), as detailed in [63].
First, we compute the Laplace transform of (3.2). The transformed equation is:

SCs,j = Ds,j
∂2Cs,j
∂r2

+
2Ds,j

r

∂Cs,j
∂r

. (3.44)

By substituting W = Cs,jr, the PDE is transformed into a second-order homoge-
neous ODE:

Ds,j

r

∂2W

∂r2
− S

r
W = 0 (3.45)

The general solution to this ODE is:

W = Cs,jr = Ae
r
√

S
Ds,j +Be

−r
√

S
Ds,j −→ Cs,j(S, r) =

Ae
r
√

S
Ds,j +Be

−r
√

S
Ds,j

r
(3.46)

The coefficients A and B are determined by applying the Laplace transform to the

1Transfer functions with infinite number of poles
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PDE boundary conditions:
∂Cs,j

∂r

∣∣∣
r=0

= 0,

Ds,j
∂Cs,j

∂r

∣∣∣
r=Rs,j

=
Js,j
F

→


A = −B,
A =

Js,jRs,j

2F

[
sinh

(
Rs,j

√
S

Ds,j

)
−Rs,j

√
S

Ds,j
cosh

(
Rs,j

√
S

Ds,j

)]

With the coefficients A and B determined, the transfer function can be calculated
for any point of interest within the particle. For example, the transfer function for
surface concentration is obtained by evaluating at r = Rs,j:

Csurf
s,j (S)

Js,j
=

Rs,j

Ds,jF

sinh
(
Rs,j

√
S
Ds,j

)
sinh

(
Rs,j

√
S
Ds,j

)
−Rs,j

√
S
Ds,j

cosh
(
Rs,j

√
S
Ds,j

) (3.47)

It is worth mentioning that the Laplace transform can be applied to both solid and liquid
phase governing PDEs, as demonstrated in [79]. In the context of battery modeling, MOR
methods are employed to simplify transfer functions. Specifically, the Pade approximation
can linearize the transfer function into a rational form, allowing for direct reduction of
the system order through moment matching [63]. Alternatively, residue grouping tech-
nique that simplifies complex battery models by grouping transfer function residues into
clusters to create a lower-order approximation [64]. Finally, the dynamic realization algo-
rithm generates an reduced-order discrete-time state-space model directly from the orginal
transfer fucntion by first determining the discrete-time pulse response and then using the
Ho-Kalman algorithm [80, 81].
In the following the besis of pade approximation and residue groupng are briefly explained.

Padé approximation
According to [63], (3.47) can be modeled as a low-pass filter and approximated as:

Csurf
s,j (S)

Js,j
=
a0 + a1S + a2S

2 + · · ·+ aQ−1S
Q−1

b0 + b2S + b3S2 + · · ·+ bQSQ−1

(
1

S

)
(3.48)

where the coefficients can be analytically obtained through the moment matching method
[79]. Finally, a linear state-space model can be derived in the form of controllable canonical
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form, as: 

ẋ =



0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 1 0

0 0 0 0 · · · 0 1

0 1
bQ

b2
bQ

b3
bQ

· · · bQ−2

bQ

bQ−1

bQ


x+



0

0
...

0

0
1
bQ


u

csurf
s,j =

[
a0 a1 a2 a3 · · · aQ−1

]
x

(3.49)

Residue grouping
According to [64], the transcendental transfer function given in (3.47) can be reformulated
as:

Csurf
s,j (s)

Js,j
= Z +

∞∑
k=1

Resk s
s− pk

(3.50)

where pk denotes the k-th pole, Resk is the corresponding residue, and Z represents the
steady-state solution. As detailed in [64], the pole pk, residue Resk, and steady-state
solution Z are given by:

pk = −Ds,j

(
ξk
Rs,j

)2

, Resk =
−2

as,jFRs,jpk
, Z =

−Rs,j

5as,jFDs,j

where ξk satisfies the equation tan(ξk) = ξk. The residue grouping method involves
dividing the frequency range of interest into D bins and calculating the grouped residues
within each bin, denoted as R̄esk =

∑kf
z=kf−1+1 Resz. Thus, the transfer function (3.50)

can be simplified to a D-th order transfer function:

Csurf
s,j (s)

Js,j
= Z +

D∑
k=1

R̄esk s
s− pk

(3.51)

Finally, the linear model associated with the simplified transfer function is computed as
described in [64]. It is important to note that increasing the number of grouped points
enhances the accuracy of the reduced-order model but also increases its computational
complexity.

3.1.3.4 MOR for high-dimensional ODE systems

In this section, the Balanced Truncation method [65] and the POD-Galerkin method
[82] are briefly reviewed. Both methodologies are MOR techniques commonly used to
approximate high-dimensional systems of ODEAs that result from the semi-discretization
of PDAEs. These methods allow for the reduction of the state space vector of the spatially
discretized model while preserving its essential features and accuracy.
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Balanced truncation
In this section, we provide a brief overview of the theoretical formulation of balanced
truncation, as presented in [65]. Consider a linear system represented in state-space form
as: {

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(3.52)

where x(t) ∈ Rn is the state vector, u(t) ∈ R is the input vector, and y(t) ∈ R is the
output vector. It is important to note that the system of ODEs resulting from the FDM
discretization of the mass conservation equation in the solid phase (as provided in (3.24))
can be expressed in the same state-space form as the one considered here. According to
[65], the controllability (Wc) and observability (Wo) Gramians of the system are defined
as:

Wc =

∫ +∞

0

eAtBBT eA
T t dt,

Wo =

∫ +∞

0

eA
T tCCT eAt dt,

(3.53)

As discussed in [83], a balanced realization of the system is achieved when there exists an
invertible transformation matrix T ∈ Rn×n such that the Gramians Wc and Wo become
equal and diagonal [84]. Specifically, if the system is both controllable and observable,
the Gramians can be diagonalized as:

Wc = Wo =


σ1 0 · · · 0

0 σ2 · · · 0
...

... . . . ...
0 0 · · · σn

 , (3.54)

where σ1 ≥ σ2 ≥ · · · ≥ σn are the singular values of the system. By performing a coor-
dinate transformation z = Tx, the system can be converted into a balanced realization,
yielding: {

ż(t) = Âz(t) + B̂u(t)

y(t) = Ĉz(t) +Du(t)
(3.55)

where Â = TAT−1, B̂ = TB, and Ĉ = CT−1. In this balanced form, the states in z are
ordered from the highest to the lowest levels of controllability and observability. To obtain
a ROM, one can focus on the first d≪ n dominant controllable and observable states by
selecting the first d columns of T . The matrices Â, B̂, and Ĉ can then be partitioned as:

Â =

[
Â11 Â12

Â21 Â22

]
, B̂ =

[
B̂1

B̂2

]
, Ĉ =

[
Ĉ1 Ĉ2

]
, (3.56)
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where Â11 ∈ Rd×d, Â12, Â21 ∈ R(n−d)×d, Â22 ∈ R(n−d)×(n−d), B̂1, Ĉ1 ∈ Rd×1, and B̂2, Ĉ2 ∈
R(n−d)×1. Finally, the ROM can be derived as:{

˙̃z(t) = Â11z̃(t) + B̂1u(t)

y(t) = Ĉ1z̃(t) +Du(t)
(3.57)

It is noteworthy that the new ROM system, characterized by d ≪ n ODEs, retains the
most controllable and observable states of the original model.

Proper orthogonal decomposition(POD)-Galerkin projection
In this section, the theoretical formulation of the POD-Galerkin MOR is briefly described,
according to [85]. The POD-Galerkin method is particularly suited for a nonlinear dy-
namical system written as: {

ẋ(t) = Ax(t) + f(x(t))

x(t0) = x0
(3.58)

where x ∈ Rn, A ∈ Rn×n, f : Rn → Rn is a vector field, and x0 ∈ Rn is the initial
condition. Note that the considered system consists of a linear part, Ax(t), and a nonlinear
part, f(x(t)). The solution xk ∈ Rn of (3.58) for a given time instant tk ∈ [0,+∞] is
called a Snapshot. Given a sequence of Snapshots xk, obtained for a given time mesh
tk = t0 + k · dt where dt is the sampling time and k = 0, 1, · · · , nt, the Snapshot matrix
S ∈ Rn×nt is constructed as

S =
[
x0 x1 · · · xnt

]
The key aspect of POD is that it allows the extraction of an orthonormal basis

[
ψ1, · · · , ψz

]
of a subspace Ψ ⊂ Rn with dimension z < n such that the distance between the Snapshot
matrix and its projection onto the new basis functions is minimized:

min
ψ1···ψz

nt∑
i=0

∣∣∣∣∣
∣∣∣∣∣xi −

z∑
j=1

⟨xi, ψj⟩ψj

∣∣∣∣∣
∣∣∣∣∣
2

, (3.59)

where ⟨·, ·⟩ is an inner product on Ψ such that ⟨·, ·⟩ = ∥ · ∥2, ⟨ψi, ψj⟩ = 0 if i ̸= j, and
⟨ψi, ψj⟩ = 1 if i = j. The optimal basis that solves the optimization problem (3.59) can
be obtained through the Singular Value Decomposition (SVD) of the Snapshot matrix.
Specifically, the SVD allows us to rewrite the Snapshot matrix as

S = V ΣW T ,

where Σ ∈ Rn×nt , V ∈ Rn×n, and W ∈ Rnt×nt . The columns of V are called POD modes
and provide the optimal basis functions

[
ψ1, · · · , ψn

]
, while the matrix Σ contains a non-

null diagonal sub-matrix of dimension n× n, in which the singular values (σi) are stored
in decreasing order, namely σ1 > σ2 > · · · > σn > 0. Finally, the truncation of model
dynamics is computed by retaining the first r dominant modes Vr =

[
ψ1, · · · , ψr

]
of the
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optimal basis functions, in order to preserve the main features of the system. A common
approach to select the truncation order r is by defining the truncation degree Θr,
calculated as

Θr =

∑r
i=1 σ

2
i∑n

i=1 σ
2
i

. (3.60)

Note that Θr needs to be close to 1 to accurately approximate the solution of the model.
Finally, the Galerkin projection of the system (3.58) onto the new subspace Vr is used to
reduce the dimension of the state-space model. The ROM is written as:{

˙̃x(t) = V T
r AVrx̃(t) + f(Vrx̃(t))

x̃(t0) = V T
r x0,

(3.61)

where x̃ ∈ Rr is the state vector of the ROM. It worth mentioning that an approximation
(x̄(t) ∈ Rn) of the original state vector x(t) is reconstructed as x(t) ≈ x̄(t) = V T

r x̃(t).

3.1.4 Thermal models

Thermal models offer valuable insights into the thermal processes occurring within lithium-
ion batteries, such as heat generation, accumulation, and dissipation [47]. For a single
battery cell, the heat distribution is governed by the heat conduction PDE, which de-
scribes how temperature varies over time and space within the cell. The specific form of
the PDE depends on the geometry of the battery cell:

• Cylindrical Cells [89]: In spherical coordinates (r, θ), the governing PDE is ex-
pressed as:

ρCp
∂T

∂t
=

1

r

∂

∂r

(
Krr

∂T

∂r

)
+

1

r2
∂

∂ϕ

(
Kϕ

∂T

∂ϕ

)
+ Q̇ (3.65)

where Kr and Kϕ are the thermal conductivity in r- and ϕ-direction, respectively, ρ
is the density, Cp is the cell heat capacity, and Q̇ is heat generated. At the boundary,
both convection and radiation are considered:

Kr
∂T

∂r

∣∣∣∣
r=Rcell

= (hconvection + hrad) (Ts − Tamb)

where Rcell is the cell radius, and hconv and hrad = ϵσ(T 2
s +T 2

amb)(Ts+Tamb) are the
convective and radiative heat transfer coefficients, respectively.

• Pouch/Prismatic Cells [90]:

ρCp
∂T

∂t
=

∂

∂x

(
Kx

∂T

∂x

)
+

∂

∂y

(
Ky

∂T

∂y

)
+

∂

∂z

(
Kz

∂T

∂z

)
+ Q̇ (3.66)

Heat exchange at the battery boundaries includes conduction, convection, and ra-
diation [91].

It is important to note that the formulation for heat generation within the cell (Q̇) was first
introduced in [92]. Q̇ depends on several factors, particularly electrochemical reactions,
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(a) Two-state lumped thermal model for cylindrical cells [86]

𝑅𝑐

𝑇𝑐 𝑇𝑠

𝑅𝑢

𝑇𝑎𝑚𝑏

Cc
dTc

dt
=

Ts − Tc

Rc
+ Q̇

Cs
dTs

dt
=

Tamb − Ts

Ru
− Ts − Tc

Rc

(3.62)

(b) Four-state lumped thermal model for prismatic/pouch cells [87]

𝑅1𝑇𝑐

𝑇𝑡

𝑇𝑏

𝑇𝑠

𝑅2
𝑅3

𝑅4 𝑅5

𝑅6

𝑅8

𝑇𝑓,3

𝑇𝑓,1

𝑇𝑓,2
𝑅7

Ct
dTt

dt
=

Tc − Tt

R4
+

Ts − Tt

R5
+

Tf,3 − Tt

R8

Cc
dTc

dt
=

Tb − Tc

R3
+

Tt − Tc

R4
+

Ts − Tc

R1
+ Q̇

Cs
dTs

dt
=

Tb − Ts

R2
+

Tc − Ts

R1
+

Tt − Ts

R5
+

Tf,2 − Ts

R7

Cb
dTb

dt
=

Tf,1 − Tb

R6
+

Tc − Tb

R3
+

Ts − Tb

R2

(3.63)

(c) Five-state lumped thermal model for prismatic/pouch cells [88]

𝑅1
𝑇𝑐

𝑇𝑡

𝑇𝑏

𝑇𝑠

𝑅3

𝑅4

𝑅6

𝑅8

𝑇𝑓,4

𝑇𝑓,2

𝑇𝑓,3
𝑅7

𝑅2𝑇𝑓,1
𝑅5

𝑇ℎ

Ct
dTt

dt
=

Tc − Tt

R4
+

Tf,4 − Tt

R8

Cc
dTc

dt
=

Ts − Tc

R1
+

Th − Tc

R2
+

Tb − Tc

R3
+

Tt − Tc

R4
+ Q̇

Cs
dTs

dt
=

Tc − Ts

R1
+

Tf,3 − Ts

R7

Cb
dTb

dt
=

Tf,2 − Tb

R6
+

Tc − Tb

R3

Ch
dTh

dt
=

Tf,1 − Th

R5
+

Tc − Th

R2

(3.64)

Table 3.4: Examples of lumped thermal models for cylindrial and prismatic/pouch cells.
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phase changes, mixing effects, and Joule heating within the cell. However, calculating
Q̇ can be complex and often requires calibration of numerous microscopic parameters.
Therefore, a simplified equation is typically used, which neglects the enthalpy of mixing
and phase change:

Q̇ = Icell(VOCV − Vcell)︸ ︷︷ ︸
Q̇irr

+ IcellT
∂VOCV
∂T︸ ︷︷ ︸

Q̇rev

(3.67)

where Q̇irr represents the irreversible heat generation rate, which always leads to heat
production and an increase in cell temperature. Whiel, the second term (Q̇rev) represents
reversible heat generation and can be either positive or negative for the same reaction
direction, depending on the sign of the entropy change (∆S = F∂VOCV /∂T ) in the elec-
trochemical reactions. It is worth noting that ∂VOCV /∂T depends on the electrode mate-
rials. More details on the experimental procedure and examples for deriving the electrode
entropic contribution can be found in [93, 94].
It is important to note that the thermal models introduced so far are based on PDEs.
These models are typically solved using numerical methods such as the FVM or the Finite
Element Method (FEM), which involve complex three-dimensional discretization meshes.
Due to the computational complexity of these models, they are often implemented using
Computational Fluid Dynamics (CFD) software, such as COMSOL Multiphysics. This
approach allows for accurate visualization of the thermal distribution within the battery
cell casing.
However, such detailed and complex model formulations are computationally intensive
and are not suitable for real-time applications, such as online temperature estimation of
battery cells. The high computational burden of these models makes them impractical
for use in dynamic scenarios where quick responses are needed.
To address this limitation, simplified thermal models have been developed. One of the
most relevant reduced-order models in the context of battery thermal management is
the lumped thermal model. In the lumped thermal model approach, the battery cell is
discretized into several nodes, with each node representing an isothermal volume. Heat
exchange between these nodes is modeled through thermal resistances, while the heat
absorbed or released by each node is represented by its thermal capacitance. The energy
balance for each node is governed by a set of ODEs. Table 3.4 presents three examples
of lumped thermal models for cylindrical and prismatic/pouch cells. For instance, in the
two-state thermal model for cylindrical cells, nodes are placed at the core and on the
surface of the cell. In this model, the two key states are the core temperature (Tc) and
the surface temperature (Ts). Tc is assumed to be uniformly distributed within the cell
core, while Ts is assumed to be uniform across the cell surface. The dynamic behavior
of the core and surface temperatures are governed by the equations (3.62). Rc represents
the conductive thermal resistance, which models the heat transfer between the cell core
and surface. While, Ru represents the convective thermal resistance, which accounts for
the heat exchanged between the cell surface and the ambient environment. Despite the
simplification of the cell thermal dynamics, this modeling framework offers the signifi-
cant advantage of flexibility. In particular, for large-format pouch and prismatic cells, as
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illustrated in examples (b) and (c) in Table 3.4, the lumped nodes can be strategically
positioned both inside and on the surface of the cell. By carefully selecting these node
locations, the model can effectively capture key aspects of the thermal distribution, en-
suring that the simplified model still provides a reliable representation of the cell thermal
behavior.
Compared to the more detailed PDE-based thermal models, the lumped thermal model
loses some information regarding the spatial distribution of temperature within the cell.
However, this simplification significantly reduces computational complexity, making the
model easier and faster to simulate. Despite the loss of detailed thermal distribution
information, careful selection of node locations can still provide valuable insights into the
thermal behavior of the cell.

3.1.4.1 Thermal-dependent parameters

To ensure the robustness of the model, it is crucial to update the transport and kinetic
parameters of both the solid particles and the electrolyte based on the cell temperature.
Specifically, the Arrhenius equation is commonly employed to update the solid-phase
diffusion coefficient (Ds,j) and the intercalation rate constant (kj) in the solid phase. The
Arrhenius equation is given by:

Φ(Tc) = Φref exp

(
−Ea,Φ

R

(
1

Tc
− 1

Tref

))
, width: Φ = Ds,j, kj (3.68)

where Dref
s,j and krefj are their values at a reference temperature Tref , Ea,Ds,j

and Ea,kj
are the activation energies for Ds,j and kj. Conversely, the electrolyte diffusion coefficient
(De,j) and conductivity (ke,j) are often expressed as functions of both the core temperature
and the average electrolyte concentration. These parameters are typically described by
empirical relationships, such as those provided in [95, 96].

3.1.5 Aging models

Aging modeling aims to mathematically represent the mechanisms that characterize the
degradation of a battery cell over time. According to the literature, there are three primary
approaches: empirical, data-driven, and physics-based models. Empirical modeling uses
formulas derived from observed data to describe capacity fade and/or resistance increase in
a battery cell. These models are developed to address both calendar aging [97, 98, 99] and
cycling aging [100, 99, 101, 102], incorporating various stress factors such as C-rate, depth
of discharge (DOD), SOC, and temperature. Different empirical models focus on specific
conditions and stress factors to estimate degradation. In contrast, data-driven modeling
has gained popularity for its flexibility, which is essential for handling the complexity
and variability of aging mechanisms. Data-driven approaches predict cell degradation
through empirical relationships derived from observed data. These methods use statistical
or machine learning techniques to establish correlations between various features and
degradation outcomes, as reviewed in [103]. Finally, physics-based models simulate the
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electrochemical phenomena responsible for battery degradation. Although these models
are more complex to identify and calibrate, they offer a deeper understanding of the
underlying mechanisms that influence battery life and performance.
In this chapter, we review four key physics-based modeling approaches for battery aging
in accordance with [49].

3.1.5.1 SEI layer growth

This section provides a brief review of the SEI growth model introduced by [55], which
represents a simplified version of the model presented by [104]. Particularly, the growth of
the SEI layer is identified as the primary source of cell capacity and power degradation. In
this model, the SEI layer is assumed to consist of a single layer (i.e. the outer) that grows
uniformly around the negative electrode particle due to solvent diffusion within the SEI
layer and reduction processes occurring at the particle surface. Specifically, the porous
structure of the SEI facilitates the permeation of solvent molecules from the electrolyte
to the active particle surface through diffusion and convection mechanisms, as described
by the PDE:

∂csolv

∂t
= Dsolv

∂2csolv

∂r2
− dLSEI

dt

∂csolv

∂r
(3.69)

where csolv and Dsolv denote the solvent concentration and diffusivity within the SEI
layer, respectively. The solvent subsequently reacts with electrons and lithium ions at the
negative electrode surface. The current density of the side reaction is described by:

is = −2Fkf (c
surf
s,n )

2csolv,0 exp

[
−βF
RgTc

(Φs,n −RSEIIcell − Us)

]
(3.70)

where csolv,0 is the solvent concentration at the anode surface, and Φs,n and Us represent
the electrode potential and the equilibrium potential of the solvent reduction, respectively.
Note that, eq. (3.70) is influenced by temperature, applied current, and cell SOC through
the term csurf

s,n . The side reaction results in SEI growth, which reduces the availability
of lithium ions for cycling and is the main cause of cell capacity degradation. This is
expressed as:

dLSEI

dt
= − isMSEI

2FρSEI
(3.71)

dQ

dt
= isALnas,n (3.72)

where MSEI and ρSEI are the SEI molar mass and denisity, respectively. The growth of
the SEI layer increases the SEI film resistance (RSEI) and affects the variation in anode
porosity, as given by:

RSEI =
LSEI

as,nALnκSEI
(3.73)

ϵe,n = 1− ϵf,n − ϵs,n

(
1 +

3LSEI

Rs,n

)
(3.74)
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It is important to note that the solvent diffusion coefficient (Dsolv) is temperature-dependent
and described by the Arrhenius equation:

Dsolv = Dref
solv exp

[(
1

Tref
− 1

Tc

)
Ea,Dsolv

R

]
(3.75)

where Dref
solv is the reference solvent diffusion coefficient, and it is assumed to depend on

Icell, as illustrated in Figure 4 of [55].

3.1.5.2 Lithium plating

The first electrochemical model of lithium (Li) plating and stripping on graphite elec-
trodes was introduced by [105]. This model was later refined and simplified in subsequent
works, such as [106] and [107]. However, the process of Li plating is intrinsically connected
to lithium stripping and the growth of the SEI. Given the interdependence of these mech-
anisms, this section provides an overview of a more comprehensive model where the aging
mechanisms of Li plating, stripping, and SEI growth are explicitly coupled, as provide in
[49].
The concentrations of plated lithium (cLi) and dead lithium (cdl) evolve according to the
following ODEs:

∂cLi
∂t

= −as,njLi −
∂cdl
∂t

,

∂cdl
∂t

= γcLi,

(3.76)

where γ represents the decay rate of plated lithium into dead lithium, a process that is
dependent on the SEI thickness, as defined by:

γ(LSEI) = γ0

(
LSEI,0
LSEI

)
, (3.77)

where LSEI,0 is the initial SEI thickness at time t = 0, and γ0 is a fitting parameter that
characterizes the rate of transformation of plated lithium into dead lithium under initial
SEI conditions. The rate of lithium deposition onto the particle, jLi, is governed by the
Butler-Volmer equation:

jLi = kLi

[
cLi exp

(
Fαa,LiηLi
RT

)
− ce exp

(
Fαc,LiηLi
RT

)]
, (3.78)

where kLi is the rate constant for the lithium deposition reaction, and the term ηLi is the
overpotential for lithium deposition, defined as:

ηLi = ϕs,n − ϕe − ηSEI , (3.79)

where ϕs,n and ϕe are the solid and electrolyte potentials, respectively, and ηSEI represents
the additional overpotential due to the SEI layer. Finally, according to [107], the effect
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of plating/stripping on the negative electrode porosity is given by:

dϵe,n
dt

= as,n
MLi

ρLi
jLi (3.80)

where MLi and ρLi are the molar mass and denisity of lithium metal.

3.1.5.3 Particle cracking

According to [108], the radial stress (σr) and tangetial stress (σt) for a speherical electrode
are expressed as:

σr(r) =
2ΩE

3(1− ν)

[ 1

R3
s,n

∫ Rs,n

0

cs,j(r)r
2dr − 1

r3

∫ r

0

cs,j(ζ)ζ
2dζ
]

σt(t) =
ΩE

3(1− ν)

[ 2

R3
s,n

∫ Rs,n

0

cs,j(r)r
2dr − 1

r3

∫ r

0

cs,j(ζ)ζ
2dζ − c

] (3.81)

where Ω is the partial molar volume, E is the Young modulus, ν is the Poisson ration,
and cbulks,j |r is the bulk concentration within the electode particle between 0 and r: Then,
according to [109], the particle crack length (lcr) growing with each charge-discharge cycle
N can be modeled as:

dlcr
dN

= kcr(σtbcr
√
πlcr)

mcr (3.82)

where bcr is the stress intensity factor correction, kcr and mcr are constants that are
determined from experimental data. Finally, the instantaneous rate of change of the
crack area (acr) can be approximated:

dacr
dt

= as,jρcrwcr
dlcr
dN

(3.83)

Note that, given the new crack area at each cycles, the loss of lithium-ions are due to
growth of SEI thickness in the cracked area, as widley described in [109].

3.1.5.4 Loss of active material

According to [48], similar physical phenomena that cause particle cracks also lead to loss
of electrical contact and a reduction of the active material. In particular, combining the
radial and tangential stresses defined in (3.81), the hydrostatic stress (σh) is defined as:

σh =
2σt(r) + σr(r)

3
(3.84)

Finally, the LAM can be approximated as the reduction of the active material volume
fraction:

dϵs,j
dt

= β

(
σmax
h − σmin

h

σyield

) 1
m2

(3.85)

71



3.2 Module-level models

In the previous section, we reviewed the electrochemical, thermal, and aging dynamics
of single lithium-ion cells. However, when multiple cells are connected to form a battery
module or pack, the influence of electrical and thermal cell-to-cell interconnections must
be considered. Electrical interconnections refer to the physical busbars or wires that
connect cells in series and/or parallel configurations. Thermal interconnections, on the
other hand, pertain to the heat exchanged between cells based on their positions within
the module. It is important to distinguish between electrical and thermal interconnections
when developing models at the module level, as they are critical for understanding the
impact of cell-to-cell variations on the performance and safety of the battery pack.

3.2.1 Electrical submodel

In this section, we review the formulation of the electrical model at the module level
for both series-connected and parallel-connected configurations, consisting of Ns and Np

cells, respectively. Additionally, the cell-level dynamics previously described are updated
to account for the connection topology. For simplicity, the cell-level dynamics are modeled
using a single RC ECM. However, the same conpect is also applicable to electrochemical
models, as discussed in the subsequent chapters.

Series-connected module-level model
The electrical dynamics of a series-connected module are straightforward to derive, as the
same current (Itot) flows through all interconnected cells. Considering an ideal module
with null interconnected resistance among the cells, the overall voltage across the module
terminals is given by:

Vmod =
Ns∑
i=1

V
[i]
cell (3.86)

where V [i]
cell denotes the voltage across the i-th cell in the module. The formulation of

V
[i]
cell can be adjusted based on the cell-level model used. For example, Equation (3.1) and

(3.15) should be employed for an ECM and an ESPM model, respectively.

Example 3.2.1: ECM-based Series-connected module-level model

Figure 3.8(a) illustrates a schematic representation of the series-connected battery
module, emphasizing the interconnection electrical resistance (Rint). In the follow-
ing, the superscript [k] is used to denote a quantity associated with the k-th cell in
the module, as shown in Fig. 3.8(a), with SOC [1] and SOC [Ns] denoting the SOC
of the closest and farthest cell from the load terminals, respectively. The module’s

72



𝑉𝑂𝐶𝑉
[2]

𝑉1
[2]

𝐼𝑐𝑒𝑙𝑙
[2]

𝑉𝑚𝑜𝑑

𝑅𝐼𝑛𝑡

𝑉𝑂𝐶𝑉
[1]

𝑉1
[1]

𝐼𝑐𝑒𝑙𝑙
[1]

𝑉𝑂𝐶𝑉
[𝑁𝑝]

𝐼𝑐𝑒𝑙𝑙
[𝑁𝑝]

𝑅𝐼𝑛𝑡𝐼𝑡𝑜𝑡 𝐼𝑡𝑜𝑡 − 𝐼𝑐𝑒𝑙𝑙
[1] 𝐼𝑡𝑜𝑡 −

𝑧=1

𝑁𝑝−1

𝐼𝑐𝑒𝑙𝑙
[𝑧]

EC
M

 fo
r th

e cell 𝑁
𝑝

𝑉𝑚𝑜𝑑 21 𝑁𝑝

𝐼𝑡𝑜𝑡𝑅𝐼𝑛𝑡

𝑉1
[𝑁𝑝]

𝑉𝑚𝑜𝑑 21 𝑁𝑠

𝐼𝑡𝑜𝑡𝑅𝐼𝑛𝑡

𝑉𝑂𝐶𝑉
[2]

𝑉1
[2]

𝐼𝑡𝑜𝑡

𝑉𝑚𝑜𝑑

𝑅𝐼𝑛𝑡

𝑉𝑂𝐶𝑉
[1]

𝑉1
[1]

𝐼𝑡𝑜𝑡

𝑉𝑂𝐶𝑉
[𝑁𝑠]

𝐼𝑡𝑜𝑡

𝑅𝐼𝑛𝑡𝐼𝑡𝑜𝑡

EC
M

 fo
r th

e cell 𝑁
𝑠

𝑉1
[𝑁𝑠]

(a) Series-connected 
battery module

(b) Parallel-connected 
battery module

Figure 3.8: Schematic representation of the module-level ECM-based model for (a) series-
connected and (b) parallel-connected scenarios.

dynamics, derived by integrating Ns ECMs (Section 3.1.1), is expressed as:

ẋmod = Aseriesmod xmod +Bseries
mod Itot (3.87)

where xmod = [V
[1]
1 , SOC [1], · · · , V [Ns]

1 , SOC [Ns]] ∈ R2Ns×1 represents the module
state vector, which collects the states of each individual ECM, while, Itot is the
overall module input current. The matrices Aseriesmod ∈ R2Ns×2Ns and Bseries

mod ∈ R2Ns×1

are written as:

Aseriesmod =

A
[1] 0

. . .
0 A[Ns]

 Bseries
mod =

 B
[1]

...
B[Ns]


where A[j] ∈ R2×2 and B[j] ∈ R2×1 are the cell-level ECM matrices of the j-th cell,
defined as in (3.1).

Parallel-connected module-level model
In a parallel-connected module, the voltage across the module terminals is equal to the
voltage across each cell, while the total input current is distributed among theNp branches.
The currents flowing through each cell are determined by solving a system of Np Kirch-
hoff’s circuit laws. For an ideal module (i.e., Rint = 0), these laws are expressed as:{

V
[k+1]
cell = V

[k]
cell with k = 1, · · · , (Np − 1)

Itot =
∑Np

k=1 I
[k]
cell

(3.88)

where I
[i]
cell denotes the current flowing through the i-th cell in the module. Finally,

Vmod = V
[i]
cell is equal to the voltage across the Np cell in parallel. It is important to

note that if the interconnection resistance is not null, as depicted in the scheme of Figure
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3.8(b), the Kirchhoff’s circuit laws are reformulated as:{
V

[k+1]
cell = V

[k]
cell − 2Rint(

∑Np

z=k+1 I
[z]
cell)

Itot =
∑Np

k=1 I
[k]
cell

(3.89)

where k ∈ {1, · · · , Np − 1}, and the model output Vmod = V
[1]
cell + 2RintItot.

Example 3.2.2: ECM-based Parallel-connected module-level model

Figure 3.8(b) illustrates a schematic representation of the parallel-connected battery
module, emphasizing the interconnection electrical resistance (Rint). The module’s
dynamics, derived by integrating Np ECMs (Section 3.1.1), is expressed as:

ẋmod = Aparallelmod xmod +Bparallel
mod Imod (3.90)

where xmod = [V
[1]
1 , SOC [1], · · · , V [Np]

1 , SOC [Np]] ∈ R2Np×1 represents the module
state vector, which collects the states of each individual ECM, while, Imod =

[I
[1]
cell, · · · , I

[Np]
cell ] ∈ RNp×1 contains the cell currents flowing through each parallel

branch of the module. The matrices Aparallelmod ∈ R2Np×2Np and Bparallel
mod ∈ R2Np×2Np

are written as:

Aparallelmod =

A
[1] 0

. . .
0 A[Np]

 Bparallel
mod =

B
[1] 0

. . .
0 B[Ns]


where A[j] ∈ R2×2 and B[j] ∈ R2×1 are the cell-level ECM matrices of the j-th cell,
defined as in (3.1). It is important to note that I [k]cell, with k ∈ [1, · · · , Np] , is
obtained by solving Np Kirchhoff’s circuit laws given in (5.26). Finally, the model
output Vmod = V

[1]
cell + 2RintItot is the voltage across the module terminals. The

resulting dynamics at the module level are represented by a system of DAEs (eqs.
(3.90) and (3.89)). In [110], the authors proposed a method to integrate the Np

algebraic equations describing the branch currents, with null Rint, into the model
dynamics, effectively converting the DAEs into a ODEs. Note that, more details
are provided in Chapter 9.

3.2.2 Thermal submodel

In this section, the module-level thermal model that will be used in Chapter 5 is intro-
duced. The reader can refer to [47] for a more comprehensive review of module-level
thermal models. In particular, a one-state thermal model is considered for cylindrical
cells. In Figure 5.6, a schematic representation of the one-dimensional module is de-
picted, emphasizing the thermal interconnection terms. The single cell model, described
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in Section 3.1.4, is modified to incorporate the CtC thermal interconnection. The thermal
dynamics of the k-th cell in the module (T [k]

cell with k = 1, 2, · · · , Np) are formulated to
account for the influence of the upstream and downstream cells, as given by:

Cs
dT

[k]
cell

dt
= I

[k]
cell(V

s
OCP [k]−V

[k]
cell)+T

[k]
cellI

[k]
cell

dVOCP
dTcell

+
Tamb − T

[k]
cell

Ru

−T
[k]
cell − T

[k+1]
cell

R
[k,k+1]
m

−T
[k]
cell − T

[k−1]
cell

R
[k,k−1]
m

(3.91)
where T [k−1]

cell and T [k+1]
cell denote the cell temperature of the preceding cell (k − 1) and the

following cell (k + 1) in the module, respectively. The equation considers the convective
thermal resistance between the surface and the ambient (Ru), and the thermal resistances
between adjacent cell surfaces (R[k,k+1]

m and R
[k,k−1]
m ). The thermal resistance Rm models

heat transfer via conduction through the interconnection tabs (Rtabs
m ) and the heat transfer

via conduction through the air (Rair
m ), while neglecting the radiative heat transfer. The

overall formulation of Rm is derived considering the two thermal resistances in parallel:

Rm = (
1

Rair
m

+
1

Rtabs
m

)−1 (3.92)

where Rtabs
m and Rair

m are calculated as:

Rair
m =

1

Scellkair
(3.93)

Rtabs
m =

w

Acellktabs
(3.94)

where ktab and kair are the tab thermal and air conductivity, respectively, Acell is the cell
cross-sectional area, and w = d+ Sp is the tab length obtained as the summation of the
cell diameter (d) and cell spacing (Sp). Further, according to [111], S = 2πh

cosh−1
(

4w2−2d2

2d2

)
where h is the cell height. Both Rtabs

m and Rair
m are inversely proportional to the spacing

between the cells; thus, increasing Sp decreases the CtC heat transfer. It is worth noting
that Ru is considered constant in this work, as an active cooling system is not taken into
account. However, when considering an air-cooled module, Ru is calculated as a function
of the air coolant velocity (vf ) [112, 46, 113].

3.3 Conclusion

In this chapter, we have explored the diverse range of battery modeling approaches,
spanning from the simple ECMs to the more accurate EMs. Additionally, various flavors
of EMs can be developed by applying different model order reduction techniques. Both
ECMs and EMs can be further enhanced by incorporating thermal dynamics and aging
mechanisms, allowing for more comprehensive representations of battery behavior.
This extensive variety of modeling options can lead to confusion when selecting the ap-
propriate model for a specific application. It is important to remember, as George E.P.
Box famously stated, “All models are wrong, but some are useful.” A model is a mathe-
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Figure 3.9: Schematic representation of the module-level ECM-based model for (a) series-
connected and (b) parallel-connected scenarios.

matical representation of a system that, being an approximation, inevitably comes with
limitations and inaccuracies, thus its development should depends on:

1. Phenomena to be Described: The specific physical and chemical processes that
need to be captured by the model.

2. Desired Accuracy: The level of precision required for the model to be effective in
its intended application.

3. Effort Required for Solution and Calibration: The computational resources
and time needed to solve the model equations and calibrate the model parameters
against experimental data.

Understanding these factors is paramount to finding the suitable trade-off between ac-
curacy and complexity. A highly detailed model may offer greater accuracy but at the
cost of increased computational demand and complexity, which may not be practical for
real-time applications or large-scale simulations. Conversely, simpler models may lack the
necessary detail but provide sufficient accuracy with lower computational overhead.
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Chapter 4

Battery testing
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The desciption of the experimental campaigns carried out at the Stanford Energy Lab is
inspired by the work:

[8] Piombo, G., Fasolato, S., Heymer, R., Hidalgo, M. F., Niri, M. F., Raimondo, D.
M., Marco, J., and Onori, S. (2024). Full factorial design of experiments dataset for
parallel-connected lithium-ion cells imbalanced performance investigation. Data in Brief,
53, 110227.

Introduction

Battery testing is a critical component in the development, optimization, and deployment
of energy storage systems. As the demand for reliable and efficient energy solutions contin-
ues to grow, especially with the rise of electric vehicles, renewable energy integration, and
portable electronics, understanding the performance and limitations of batteries is more
crucial than ever. The primary reasons for conducting battery testing include assessing
performance metrics such as capacity, energy density, and power output. These tests help
in determining if a battery can meet the requirements of specific applications. Addition-
ally, testing is essential for understanding the battery’s lifespan and degradation patterns,
ensuring that the battery remains reliable over time [114, 115]. Moreover, battery testing
provides crutial data needed for several advanced applications. This data is used to cal-
ibrate and validate battery models [116, 117], which are the foundation for model-based
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and data-driven estimation and control algorithms [118]. Additionally, experimental cam-
paigns are essential for accurately assessing battery health through diagnostic tests and
predicting the battery remaining useful life [103, 119].

Chapter contribute

This chapter offers an overview of the laboratory experimental campaigns conducted to
gather essential battery data, which forms the foundation of the research activities pre-
sented in this thesis. It includes detailed information on the specifications of the cell
batches used, a comprehensive review of the laboratory equipment, and an outline of the
data collection procedures. The experimental activities are primarily divided into three
main campaigns:

1. ELISA Campaign: Conducted from March 2024 to June 2024 at the Energy Lab-
oratory for Interdisciplinary Storage Applications (ELISA) within the Department
of Engineering and Architecture at the University of Trieste.

2. SECL Campaign: Conducted from October 2022 to March 2023 at the Stanford
Energy Control Laboratory (SECL) in the Department of Energy Science and Engi-
neering at Stanford University.

3. LGES Campaign: These experimental activities were carried out by the industrial
partner of the project, LG Energy Solution, between March 2022 and September
2022.

Additionally, this chapter significantly contributes by clarifying how experimental data are
utilized in subsequent chapters, enhancing reader comprehension of their integration into
the research activities.

Chapter structure

• Section 4.1 summarizes the specifications of the tested cells and the data collected
during each experimental campaign.

• Section 4.2 details the laboratory facilities used and the data collection procedures
for the experimental campaigns conducted at the SECL and ELISA labs.

• Section 4.3 provides a summary of the chapter conclusions.
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Figure 4.1: A visual flowchart illustrating the data usage in the following chapters

4.1 Battery cell batches

This section provides a detailed overview of the cell batches utilized in this research,
specifically outlining the cell specifications and explaining how the collected data are
employed in the subsequent chapters of this thesis, as schematically depctide in Figure
4.1. The experimental activities are primarily divided into three campaigns:

1. ELISA Campaign:

• Tested Cells: CALB L1248N58, 58 Ah prismatic cells. Technical specifica-
tions are provided in Table 4.1.

• Number of Cells Tested: A total of 11 cells were tested.

• Brief Data Description: Single-cell characterization was performed using
galvanostatic discharge, Hybrid Pulse Power Characterization (HPPC) tests,
and driving cycles on all 11 cells at 10, 25, and 40 ◦C. Further details are
provided in Section 4.2.1.

• Data Usage: The experimental campaign was carried out for the Ecomobility
European projects [120]. The collected data will be employed in future research
activities and are not utilize in this thesis.

• Data Availability: [121] https://data.mendeley.com/datasets/ycx459r5c3/1

2. SECL Campaign:

• Tested Cells: LG INR21700-M50T and Samsung INR21700-50E, cylindrical
cells with nominal capacities of 4.85 Ah and 4.90 Ah, respectively. Technical
specifications are provided in Table 4.1.

• Number of Cells Tested: A total of 39 cells were tested, including 19 new
LG INR21700-M50T cells, 18 new Samsung INR21700-50E cells, and 2 pre-
aged cells of the same chemistries.

• Brief Data Description: Single-cell characterization was performed using
galvanostatic discharge, HPPC tests, and MultiSine profiles on all 39 cells
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at 23 ◦C. Further details are provided in Section 4.2.2.1. Additionally, 54
experiments were conducted on a 4-cells parallel-connected battery module,
based on a full factorial design of experiments. More details can be found in
Section 4.2.2.2.

• Data Usage: The collected data are used for identifying module-level ECM-
and ESPM-based models, which are employed for the state estimation algo-
rithm in Chapter 9 and for the model-based statistical analysis in Chapter 8,
respectively. Furthermore, both module-level and cell-level experiments are
used in Chapter 7, where the data-driven statistical analysis is performed to
analyze the effects of cell-to-cell variation on module performance.

• Data Availability: [8] https://data.mendeley.com/datasets/zh58byr53c/1

3. LGES Campaign:

• Tested Cells: Two LFP-graphite pouch cells with capacities of 49 Ah and 56
Ah are considered in this campaign. Technical specifications, provided by the
industrial partner, are provided in Table 4.1.

• Number of Cells Tested: A total of 2 cells were tested, one for each type.

• Brief Data Description: Discharge tests at different C-rates and driving
cycles were conducted at 25 ◦C.

• Data Usage: The provided data are used in Chapter 6 for the identification
and validation of reduced-order models for the CS-ESPM.

• Note: The data were directly collected and provided by the industrial part-
ner. Details on laboratory equipment and cell specifications are confidential.
Information reported in this thesis is based on publicly available literature.

• Data Availability: The collected data for the 49 Ah cell are available at: [28]
https://data.mendeley.com/datasets/68rs3d99zc/2

4.2 Experimental activities

Section 4.2.1.1 describes the test protocols conducted during the ELISA lab campaign
and provides a brief visualization of the results. Similarly, Section 4.2.2 outlines the
procedures for both cell-level and module-level experiments carried out at the SECL.

4.2.1 ELISA campaign

This experimental campaign is part of experimental battery tests for the Ecomobility
projects [120] and are available at [121].
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Table 4.1: Technical specifications of the tested cell

Manufacturer LG Chem LG Chem CALB
Model - - L148N58
Type Pouch Pouch Prismatic
Positive electrode LiFePO4 LiFePO4 Li(NiCoMn)O2

Negative electrode Graphite Graphite Graphite

Size (W × L × H) 99.7×301.5× - 148.2×26.6×
×14.8mm - ×105.9mm

Weight 850g - 926g
Nominal capacity 49Ah 56Ah 58Ah
Nominal voltage 3.2V - 3.6V
Charge cutoff voltage 3.6V - 4.35V
Discharge cutoff voltage 2.5V - 2.2-2.75V
Cutoff current - - 50mA
Reference [28] - [122]

Manufacturer LG Chem Samsung
Model INR21700-M50T INR21700-50E
Type Cylindrical Cylindrical
Positive electrode Li(NiCoMn)O2 Li(NiCoAl)O2

Negative electrode Graphite and Silicon Graphite and Silicon
Size (diameter × length) 21.44×70.80mm 21.25×70.80mm
Weight 69.25g 69.00g
Nominal capacity 4.85Ah 4.90Ah
Nominal voltage 3.63V 3.63V
Charge cutoff voltage 4.2V 4.2V
Discharge cutoff voltage 2.5V 2.5V
Cutoff current 50mA 50mA
Reference [123] [124]
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Table 4.2: ELISA campaign: cell-level characterization procedure

Step Action Exit condition

C
/2

0
cy

cl
es

1 CC charge at 0.33 C-rate 4.2V reached
2 CV charge Supplied current below 50mA
3 Rest 60 minutes limit reached
4 CC discharge at 1/20 C-rate 2.5V reached
5 Rest 30 minutes limit reached
6 CC charge at 1/20 C-rate 4.2V reached
7 CV charge Supplied current below 50mA

H
P

P
C

te
st

s

8 Rest 60 minutes limit reached
9 HPPC 10s charge and 10s discharge pulses
10 Repeat Steps 10-11 2.5V reached
11 CC charge at 0.33 C-rate 4.2V reached
12 CV charge Supplied current below 50mA
13 Rest 60 minutes limit reached
14 HPPC 10s charge and 10s discharge pulses
15 Repeat Steps 15-16 2.5V reached

D
ri

vi
n
g

cy
cl

es

16 CC charge at 0.33 C-rate 4.2V reached
17 CV charge Supplied current below 50mA
18 DV1 DV1 minutes limit reached or 2.5V reached
19 Rest 60 minutes limit reached
20 CC charge at 0.33 C-rate 4.2V reached
21 CV charge Supplied current below 50mA
22 DV2 DV2 minutes limit reached or 2.5V reached
23 Rest 60 minutes limit reached
24 CC charge at 0.33 C-rate 4.2V reached
25 CV charge Supplied current below 50mA
26 DV3 DV3 minutes limit reached or 2.5V reached
27 Rest 60 minutes limit reached

4.2.1.1 Testing procedure

The cell characterization process for the 11 CALB L148N58 is divided into three main
steps, as outlined in Table 4.2. It is important to note that these steps are repeated at
three different ambient temperatures: 10, 25, and 40 ◦C. The steps are:

1. C/20 Constant Current (CC) Discharge and Charge Cycles (Steps 1-7 in
Table 4.2): This procedure involves both discharging and charging the battery at
a C/20 rate using a constant current. Initially, each cell undergoes a conditioning
phase where it is charged using a constant current-constant voltage (CCCV) protocol
at a rate of C/3. The charging continues until the voltage reaches 4.2 V during the
CC phase, and the charging current decreases to 50 mA during the CV phase.
During the C/20 CC discharge phase, the cell is discharged from a fully charged
state (4.2 V, corresponding to 100% SOC) down to a cutoff voltage of 2.5 V, which
is considered 0% SOC. The total capacity extracted during this discharge (Qdis) is
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Figure 4.2: (a) Pseudo OCV curves of the fresh 11 cells under C/20 discharge test proce-
dure (Steps 4 in Table 4.2). (b) Boxplot of cell capacities under different temperatures.

calculated using the formula [125]:

Qdis =
1

3600

∫ tfin

tin

Icell dt =
Icell(tfin − tin)

3600
(4.1)

where tin and tfin are the start and end times of the discharge period, and Icell is
the discharge current. It is important to note that the discharged capacity (Qdis)
varies with temperature. Figure 4.2(b) shows a box plot depicting the capacity
distribution of the 11 tested cells at three different temperatures. The average
discharged capacity increases with temperature, recording 50.23 Ah, 52.99 Ah, and
54.03 Ah at 10◦C, 25◦C, and 40◦C, respectively. Additionally, the standard deviation
of the capacity is 0.914 Ah, 0.471 Ah, and 0.474 Ah at 10◦C, 25◦C, and 40◦C,
respectively.

2. Hybrid Pulse Power Characterization (HPPC) test at various C-rates
(Steps 8-15 in Table 4.2): The HPPC test was designed to assess the impact of
the SOC on the internal properties of the cells. This test involves applying a series
of discharge and charge current pulses at evenly spaced SOC intervals while the
battery is discharging, as illustrated in Figure 4.3(a). To establish the desired SOC,
the battery is discharged at a 1C rate for 6 minutes. Following this, a 1-hour rest
period is allowed to stabilize the cell voltage. Then, at each SOC level, a sequence
of 10-second discharge and charge pulses is applied, with a 10-minute rest period
between each pulse [114]. This sequence continues until the cutoff voltage is reached.
Note that the test are repeated considering two different C-rates for the discharge
pulses: C/3 and 1C.

According [126], the HPPC test is used to extract the high-frequency cell resistance,
commonly referred to as the cell’s ohmic resistance. As shown in Figure 4.3(b), the
discharge ohmic resistance (R0,dis) is determined by the ratio of the instantaneous
voltage drop (∆Vpulse) to the instantaneous current drop (∆Ipulse) that occurs at
the moment of the current pulse. The R0,dis can be calculated using the formula:

R0,dis =
∆Vpulse
∆Ipulse

(4.2)
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Figure 4.3: (a) HPPC test procedure showing the voltage and current profiles during the
test. (b) Detailed view of a discharge pulse highlighting the voltage drop (∆Vpulse) and
current drop (∆Ipulse) used to calculate the ohmic resistance (R0,dis). (c) Boxplot illus-
trating the distribution of R0,dis, calculated using (4.2), at various SOC and temperatures.

Finally, Figure 4.3(c) presents a boxplot of R0,dis across different SOC levels at three
ambient temperatures (i.e. 10◦C, 25◦C, and 40◦C). The data reveal two notable
trends: 1) As expected, the ohmic resistance increases with decreasing temperature;
2) The standard deviation of R0,dis also increases at lower temperatures, indicating
greater cell-to-cell resistance heterogenities under cooler conditions.

3. Driving Cycles In this study, three different driving cycles are analyzed: the
Worldwide Harmonized Light Vehicles Test Procedure (WLTP), the Urban Dy-
namometer Driving Schedule (UDDS), and the US06 cycle. Each cycle represents
a standardized speed profile over time and is typically used to compare fuel con-
sumption and performance in conventional combustion vehicles. In the context of
EVs, time-varying current profiles are generated from an electric vehicle simulator
to simulate the battery pack input current in real driving conditions. These profiles
are then scaled for a single cell based on battery pack topology, providing a realistic
representation of actual current patterns. The WLTP and UDDS are global driving
cycle standards, each lasting 30 minutes, while the US06 duration is 12 minutes. In
this campaign, to extend the experimental duration and cover a broader SOC range,
multiple WLTP, UDDS, and US06 cycles are concatenated, as shown in Figure 4.4.
Additionally, the current profiles are scaled to achieve a maximum peak current of
1C-rate, and different initial conditions are considered. Specifically, the initial SOC
is fixed at approximately 100% for the WLTP, 80% for the UDDS, and 60% for the
US06 cycle.
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Figure 4.4: Voltage and current profiles for the (a) WLTP, (b) UDDS, and (c) US06
driving cycles at 25 ◦C.
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Figure 4.5: Equipment available at the Energy Laboratory for Interdisciplinary Storage
Applications (ELISA)

4.2.1.2 Laboratory facilities

The equipment available at the Energy Laboratory for Interdisciplinary Storage Appli-
cations and employed in the experimental campaign is shown in Figure 4.5. Cell-level
tests are configured using MITS Pro software 1○, which defines the testing protocols and
sequences. To supply the battery cell with the desired current profile and to collect sen-
sor data (e.g., cell voltage, and cell surface temperatures), the Arbin LBT21084HC 3○
is used in conjunction with the Dat Acquisition System (DAQ) 2○. During testing, each
cell 5○ is placed inside the ESPEC LU-114 thermal chamber 4○ and is equipped T-type
thermocouples to measure the surface temperatures at the surface of each cell as well as
the ambient temperature.

4.2.2 SECL campaign

The experimental campaign is composed of two complementary phases. The first phase
involves the characterization of 39 individual cells to assess their sample properties and
distribution post-manufacture, as detailed in Section 4.2.2.1. The second phase focuses on
conducting 0.75C constant current (CC) discharge tests on four cells connected in parallel
within a ladder configuration, as described in Section 4.2.2.2.
To aid the reader’s understanding of the experimental procedures, a high-level flowchart
depicting the steps for both campaigns is provided in Figure 4.6. This flowchart highlights
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Figure 4.6: A visual flowchart of the implemented experimental procedures, selected steps,
and design of experiments. Single-cell characterization (top) is performed before module-
level testing (bottom).

the primary steps involved in both the cell-level and module-level testing, which are
described in detail in the subsequent sections.

4.2.2.1 Cell-level testing

To characterize the 39 cells, the testing protocol was conducted in two phases: a Pseudo-
OCV test and an HPPC test augmented by a Multi-Sine (MS) procedure [127]. Details of
the testing procedures are outlined in Table 4.3. The initial conditioning for all tests in-
volved a constant CCCV charge at a rate of C/3, continuing until the charging current fell
to 50 mA and the voltage reached 4.2 V. The Pseudo-OCV test consisted of discharging
the cells at a constant current of C/20 until the voltage dropped to 2.5 V. The combined
HPPC and MS tests aimed to explore the effects of SOC on the cells internal properties.
Dynamic current profiles were applied at SOC intervals of 10%, each preceded by a dis-
charge at a 1C rate and a 60-minute rest period. At each SOC level, an HPPC pulse with
a charge/discharge ratio of 0.75 and a duration of 10 seconds was applied [114]. This was
followed by MS dynamic current profiles designed as per the methodology in [127], using
an alpha (α) value of 0.6 and a pulse duration of 10 seconds.

87



Table 4.3: SECL campaign: cell-level characterization procedure

Step Action Exit condition
1 CC charge at 0.33 C-rate 4.2V reached
2 CV charge Supplied current below 50mA
3 Rest 60 minutes limit reached
4 CC discharge at 1/20 C-rate 2.5V reached
5 Rest 30 minutes limit reached
6 CC charge at 0.33 C-rate 4.2V reached
7 CV charge Supplied current below 50mA
10 Rest 60 minutes limit reached
11 HPPC 10s charge and 10s discharge pulses
12 MS Time-dependent current profile
13 Rest 2.5V reached or go to Step 10
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Figure 4.7: (a) Pseudo OCV curves of the fresh 37 cells under C/20 discharge test proce-
dure. (b) Boxplot of cells internal resistances at 10% SOC intervals.

The experimental campaign aimed to assess the distribution of internal features of the
cells post-manufacturing. As illustrated in Figure 4.7(a), a C/20 CC discharge test was
used to measure variations in cell capacities, calculated in accordance with eq. (4.1). For
the two batches, consisting of 19 LG M50T cells and 18 Samsung 50E cells, the mean
cell capacity was 4.86 Ah and 4.96 Ah, respectively. The standard deviations were 0.033
Ah for the LG M50T cells and 0.013 Ah for the Samsung 50E cells. Additionally, the
distribution of cell ohmic resistance at different SOC levels was evaluated using the HPPC
cycle, as shown in Figure 4.7(b). The cell ohmic resistance was determined from the ratio
of the voltage drop to the current drop immediately following the current pulse, according
to eq. (4.2).

4.2.2.2 Module-level testing

The module-level campaign aimed to enhance our understanding of how various factors
affect the inconsistent performance of parallel-connected cells. This study builds on in-
sights from the single-cell characterization campaign, which provides valuable data on the
distribution of electrical properties. The module-level tests further explore characteristics
related to design choices and operating conditions. The tests involved a four-cell parallel
string configured in a ladder setup, with terminals connected on the same side as depicted
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Table 4.4: SECL campaign: module-level testing steps

Step Action Exit condition
1○ Rest 90 minutes limit reached
2○ CC charge at 0.33 C-rate 4.2V reached
3○ CV charge Supplied current below 200mA
4○ Rest 30 minutes limit reached
5○ CC discharge at 0.75 C-rate 2.5V reached
6○ Rest 60 minutes limit reached
7○ CC charge at 0.33 C-rate 4.2V reached
8○ CV charge Supplied current below 200mA

in Figure 4.8. Based on the DOE cube shown in Figure 4.6, different battery module are
built and tested under different operating temperature (10, 25, and 40 ◦C), cell-to-cell
interconnection resistance (0, 1, and 3 mΩ), cell chemistry (NCA, NMC, and Mixed), and
aging status (Aged vs. Unaged). It is important to note, a “Mixed” chemistry configura-
tion refers to a parallel string of two NMC cells and two NCA cells. The NCA cells are
positioned closest to the terminals to represent a worst-case load imbalance scenario, given
their lower ohmic resistance compared to NMC cells. The “NMC” and “NCA” configu-
rations consist of modules with cells of uniform chemistry. The “Unaged” configuration
includes four new cells, while the “Aged” configuration involves one aged cell among four
new cells. The aged cell is placed in position 4 to maximize load imbalance, due to its
higher ohmic resistance and reduced discharge capacity compared to unaged cells. Addi-
tionally, the mixed and aged case includes both mixed chemistries and two aged cells. To
manage variability in cell characteristics over the experimental campaign, a randomized
sampling methodology was developed. At each instance, a random combination of four
cells from the batch of twenty is selected and assigned a position (1-4) in the module,
minimizing repetitive testing of the same cells. Stat-Ease Design Expert software version
22.0.2 is used to design a full-factorial DOE, resulting in 54 testing points as detailed in
Table 5 of [8]. The module-level test protocol consists of eight consecutive steps, as listed
in Table 4.4 . Each cycle begins with a 90-minute resting period (Step 1○) to allow the
cells to self-balance and reach thermal and electrochemical equilibrium, eliminating initial
state variations. Steps 2○ and 3○ involve charging the module with a CC at a C/3 rate
up to 4.2V, followed by a CV phase until the module current drops below 200 mA. The
module then rests for 30 minutes (Step 4○). A 0.75C constant current discharge profile
is applied until the terminal voltage reaches 2.5V (Step 5○). The module undergoes a
one-hour rest phase for self-balancing (Step 6○). The protocol concludes with Steps 7○
and 8○, which repeat Steps 2○ and 3○. This procedure is repeated for each of the 54
testing points as highlighted in [8].
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4.2.2.3 Laboratory facilities

The equipment available at the Stanford Energy Control Lab [7] and employed in the
experimental campaign for module cycling is shown in Figure 4.8 1 Module-level tests are
configured using MITS Pro software 1○, which defines the testing protocols and sequences.
To supply the battery module with the desired current profile and to collect sensor data
(e.g., module voltage, Hall sensor voltages, and cell surface temperatures), the Arbin
LBT22013 3○ is used in conjunction with the Data Acquisition System (DAQ) 2○. During
testing, each battery module 5○ is placed inside the Amerex IC500R thermal chamber 4○
and is equipped with five T-type thermocouples to measure the surface temperatures at
the center of each cell as well as the ambient temperature. Additionally, four Honeywell
SS495A Hall sensors are installed in each module to measure parallel path currents. Hall-
effect sensors were preferred over standard shunt resistors due to their superior accuracy
and lack of influence on the module’s current distribution. Hall sensors operate with
an external 5V circuit, and they are mechanically secured and glued into ferrite rings
to improve the signal-to-noise ratio and enhance the reading accuracy. These rings are
fixed around the current-carrying connector at the negative terminal of each cell, ensuring
that sensor placement remains consistent throughout testing. Shielded cables are used
for signal enclosure, and terminal legs are soldered and insulated to stabilize them and
prevent shorts during operation. A 1 mF capacitor is soldered across the 5V power supply
to stabilize the input signal and minimize its impact on readings. Raw data from each
test are exported in Excel spreadsheets (.xlsx) format. For more details on the setup,
please refer to [128].

1A description of the equipment used for single-cell testing can be found in [128].
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4.3 Conclusion

In this chapter, a comprehensive description of the experimental campaigns conducted
is presented. Specifically, the specifications of the tested cells, the laboratory facilities
employed, and the data collection procedures implemented are detailed.
Additionally, the usage of the collected data throughout the remainder of the manuscript
is presented in alignment with the schematic flowchart shown in Figure 4.1.
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Introduction

According to Chapter 3, electrochemical models for lithium-ion batteries involve numerous
physical parameters that span across each cell domain and the electrolyte. These models
estimate the internal variables of battery cells based on physical principles, but accurate
predictions are contingent upon proper parameter identification.
Currently, the most advanced method for identifying electrochemical parameters involves
cell teardown analyses, which allows to directly measure the physical, chemical, and elec-
trochemical properties of the cell [129, 96]. However, this method is complex, costly,
time-consuming, and requires sophisticated equipment. Consequently, it is not always
feasible for use in model parametrization.
Alternatively, non-destructive optimization-based techniques that use cell input-output
data have gained popularity in battery modeling to address these limitations [130]. These
methods involve aligning experimentally measurable cell quantities, such as voltage and/or
temperature, with those predicted by the model [131]. However, several key challenges
remain to be addressed. Firstly, certain parameters in EMs are interdependent, as they are
either multiplied or summed within the model. Consequently, these parameters cannot
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be individually identified using input-output data, instead, only their combined effects
can be assessed. A common solution to this issue is to reformulate the model to utilize
uncorrelated lumped parameters, thereby simplifying the identification process [132]. The
second key challenge is that attempting to identify all parameters simultaneously may lead
to overfitting, negatively affecting the model predictive accuracy and generalizability. A
commonly adopted solution is to group parameters based on their sensitivity to the model
output. Each parameter subset is then identified using the corresponding model input,
ensuring proper identifiability of the parameters[117, 116]. This strategy is based on the
principle that parameter sensitivity depends not only on the model structure but is also
significantly influenced by the model inputs [133, 134, 135]. Consequently, parameters
that exhibit low sensitivity are less likely to be uniquely determined from the output
measurements. For instance, in [117], the identification of a DFN model is presented.
The authors clustered the 21 model parameters into three groups: the first group was
sensitive to low-rate CC cycles, the second to high-rate CC cycles, and the third to
time-varying current profiles. Dividing the identification process into multiple steps is a
valuable alternative to destructive methodologies.
However, hybrid approaches that combine both teardown and optimization-based tech-
niques are generally preferred over using either method in isolation. In particular, ac-
cording to [130], a practical solution involves directly extracting electrode open-circuit
potential (OCP) curves from half-cell experiments and measuring electrode geometrical
dimensions, as these tasks require minimal effort after cell teardown and provide high ac-
curacy. This approach simplifies the optimization problem for determining the remaining
parameters, making it more manageable and straightforward by adopting the parameter
grouping mentioned above.

Chapter contribute

This chapter aims to provide a high-level overview of the cell teardown methodology for
parameterizing electrochemical models, referencing the process described in [96] for the
LG Chem M50. Additionally, the chapter briefly reviews parameter sensitivity analysis
methods, which are crucial in optimization-based parameter identification. Readers can
refer to [130] for detailed numerical optimization methods used in solving the nonlinear
minimization problem.
Finally, an example of model identification is presented. Specifically, an ESPM is identi-
fied for the LG M50T cells tested at the SECL laboratory, as described in Section 4.2.2.1.
A hybrid approach, combining cell teardown methods and optimization-based techniques, is
utilized. Parameters measured in [96] for the LG M50 model are used as a starting point
for model development for the LG M50T, an updated version of the M50. Then, a sub-
set of high-sensitivity parameters, selected based on ESPM parameter sensitivity analysis
from the literature, is refined using optimization methods to fit the cell voltage response.
Subsequently, based on the identified ESPMs and in accordance with the module-level ex-
perimantes conducted at the SECL (Section 4.2.2.2), the validation of a model consisting
of four parallel-connected ESPM cells is reported. This model is central to the high-fidelity
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offline simulation described in Chapter 8.

Chapter structure

• Section 5.1 provides a high-level overview of electrochemical model identification,
focusing on the cell teardown method for assessing the physical, chemical, and elec-
trochemical properties of the cell, and on parameter sensitivity analysis methods to
evaluate the identifiability of electrochemical model parameters.

• Section 5.2 details the identification and validation procedure for the ESPM-based
cell-level model of the LG Chem M50T. It also illustrates the formulation and vali-
dation of a module-level model consisting of four cells connected in parallel.

• Section 5.3 summarizes the conclusions.
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5.1 EMs parameters identification

5.1.1 Cell teardown method

In this section, we present a high-level overview of parameter identification through cell
teardown. For a more detailed understanding, readers are encouraged to refer to [129, 136]
and to Figure 4(a) of [116] which provided a complete overview of the process. The
parameter identification procedure is revisited based on the methodology described in [96].
The authors disassembled the LG Chem M50 cell and measured its physical, chemical,
and electrochemical properties to parameterize a DFN model.
This review is conducted here for two primary reasons. First, it provides a comprehensive
overview of model identification for a commercially available cell. Second, and equally
important, our experimental campaign focuses on the LG M50T, an updated version of
the M50. Consequently, the parameters measured for the M50 in [96] will serve as a
baseline for the ESPM parameterization discussed in the following sections.

Physical cell properties
The physical properties of the cell involve measuring dimensions such as the electrode
thickness (Lj), surface area (A), and overall cell dimensions. Material properties include
the electrode porosity (ϵe,j), which determines the active material volume fraction (ϵs,j),
particle radius (Rs,j), and the Bruggeman constant (brugg) which refers to the material
tortuosity. To obtain these properties, the cell is disassembled after being fully discharged.
The layer thicknesses of the electrode foils and separator, and the electrode area are typ-
ically measured using precision instruments such as micrometers or other high-accuracy
devices. For example, [96] used an incremental length gauge to measure the thickness and
electrode areas of the LG M50, as reported in Table 5.1. On the other hand, electrode
microstructure and morphology properties as the porosity, particle shape, density, and
tortuosity can be investigated using various techniques, including mercury porosimetry,
X-ray tomography, and scanning electron microscopy (SEM). In [96], the electrode mor-
phology was analyzed using SEM. Specifically, the Rs,j was obtained from the average
particle size measured in 2D SEM images, while the ϵe,j and tortuosity were assessed
using focused ion beam SEM (FIB-SEM). Finally, the active material volume fraction is
derived using the relationship ϵs,j = 1− ϵe,j.

Chemical cell properties
In terms of chemical properties, the elemental composition of the active materials is con-
sidered. This can be analyzed using techniques such as inductively coupled plasma optical
emission spectroscopy (ICP-OES), energy-dispersive X-ray spectroscopy (EDS), and X-
ray diffraction for determining the material’s crystal structure and theoretical density.
In particular, in [96], EDS was employed to determine the percentage of nickel, cobalt,
manganese, and aluminum in the positive electrode, as well as the percentage of silicon in
the graphite of the negative electrode. In the context of electrochemical battery model-
ing, such information is not directly utilized; however, it provides important insights into
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Table 5.1: ESPM parameters for the LG 21700 M50T

Param. Unit Cathode (j = p) Sep. (j = s) Anode(j = n) Ref.

P
hy

si
ca

l
p
ar

am
.

Lj m 75.6 · 10−6 12 · 10−6 85.2 · 10−6 [96]

Rs,j m 5.22 · 10−6 − 5.86 · 10−6 [96]

ϵs,j − 1− ϵe,n 1− ϵe,p

ϵe,j − 0.335 0.47 0.25 [96]

brug − 2.43 2.57 2.91 [96]

A m2 (0.1027 + 0.10465)/2 [96]

E
le

ct
ro

ch
em

ic
al

p
ar

am
.

Ds,j m2/s 1.48 · 10−15 − 1.74 · 10−15 [96]

ks,j m2.5/(mol0.5s) 3.42 · 10−6 − 6.48 · 10−7 [96]

cmaxs,j mol/m3 51765 − 29583 [96]

θ0j − 0.9084 − 0.0279 [96]

θ100j − 0.2661 − 0.9014 [96]

E
le

ct
ro

ly
te

De,j m2/s 8.794 · 10−11c2e,j − 3.972 · 10−10ce,j + 4.862 · 10−10 [96]

κe,j S/m 0.1297c3e,j − 2.51c1.5e,j + 3.329ce,j [96]

t+ − 0.2594 [96]

ce,0 mol/m3 1000 [96]

electrode composition and for the calculation of the maximum ion concentration in the
active material.

Electrochemical cell properties
Electrochemical parameterization involves identifying the thermodynamic and kinetic
properties of the materials and electrodes. This can be accomplished using various config-
urations, such as two-electrode full cells, half cells, and three-electrode setups, in combina-
tion with experimental techniques such as Galvanostatic Intermittent Titration Technique
(GITT) and Electrochemical Impedance Spectroscopy (EIS) [137, 138].
Specifically, in [96], the electrode open-circuit potentials (OCPs) were measured using
both three-electrode and half-cell configurations, applying GITT and a pseudo-OCP test
with a CC discharge at a C/20 rate. The fitted electrode potentials are given by:
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Up =4.4875− 0.8090θsurf
p − 0.0428tanh(18.5138(θsurf

p − 0.5542))+

− 17.7326tanh(15.7890(θsurf
p − 0.3117))+

+ 17.5842tanh(15.9308(θsurf
p − 0.3120))

Un =0.2482 + 1.9793e−39.3631θsurf
p − 0.0909tanh(29.8538(θsurf

p − 0.1234))+

− 0.04478tanh(14.9159(θsurf
p − 0.2769))+

− 0.0205tanh(30.4444(θsurf
p − 0.6103))

(5.1)

It is worth noting that combining half-cell and full-cell three-electrode tests, along with
information regarding the elemental composition of the active materials obtained from
chemical analysis, enables the analysis of cell stoichiometry (θ100%j and θ0%j ) and maxi-
mum lithium content within each electrode (cmaxs,j ), as reported in Table 5.1. Similarly,
GITT was used to calculate the diffusion coefficients for both electrodes as a function of
stoichiometry, with the average values for Ds,j provided in Table 5.1. Finally, EIS was
employed to determine the intercalation rate constants (kj) for both electrodes.

5.1.2 Parameter sensitivity analysis

The parameter sensitivity analysis (PSA) is a mathematical tool used to assess how
changes in parameters affect the model output. It provides essential insights into pa-
rameter identifiability, since parameters with low sensitivity are less likely to be uniquely
determined from the output measurements. PSA can be performed locally (LPSA) by
perturbing the parameters around their nominal values (p∗), or globally (GPSA) by con-
sidering the entire range of physical parameter variations.
Consider a general non-linear system of ODEs denoted by Σ, expressed as:

Σ :

{
ẋ(t) = f(x(t), u(t), p)

y(t) = g(x(t), u(t), p)
(5.2)

where x(t) ∈ Rw represents the state vector, p ∈ Rm denotes the parameter vector,
u(t) ∈ R is the input, y(t) ∈ R represents the model output, and f : Rw × R −→ Rw

and g : Rw × R −→ R are a vector field and a scalar function, respectively. For the
system described in (5.2), the LPSA of Σ with respect to the v-th parameter pv, where
v = 1, 2, · · · ,m, is calculated as (∂y/∂pj)|p=p∗ , where p∗ represents the nominal values of
the parameters.
Determining the LPSA around p∗ is relatively easy and computationally efficient. How-
ever, this approach provides limited information as it focuses only on the neighborhood
of the nominal parameter values.
On the other hand, the GPSA is more computationally demanding. It requires a large
number of simulations to explore the entire range of parameter space, but it yields more
robust and comprehensive results. Among the most adopted GPSA methods in the battery
modelling context variance-based Sobol coefficients [139] and elementary effect method
(EEM) can be distinguished [140, 141] The latter, also known as the Morris method, offers
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a feasible computational approach for conducting GPSA. To implement EEM, the first
step involves selecting the physical variation interval for each parameter pv, where v =

1, 2, · · · ,m, thus defining a m-dimensional variation space Ω ⊂ Rm. Next, the parameter
variation ranges are normalized to the dimensionless range of [0, 1] and uniformly divided
into l levels, thereby partitioning Ω. Starting from an initial parameter combination
P = [p1, p2, · · · , pm] randomly selected from Ω, a trajectory of m+1 points is constructed.
At each point, one parameter of P is incrementally increased by a predefined value ∆ =

l/(2(l − 1)), while keeping the other parameters constant. This incremental parameter
variation is performed sequentially, one parameter at a time (AOT). For each point along
the trajectory, the model output is computed, and an elementary effect (EEv) is calculated
for each parameter pv using the following equation:

EEv =
y(p1, p2, · · · , pv +∆, · · · , pm)− y(p1, p2, · · · , pv, · · · , pm)

∆
(5.3)

This process is repeated for a total of r different trajectories. The mean value (µv) and
standard deviation (σv) of EEv are then computed for each parameter using the following
equations:

µ∗
v =

1

r

r∑
z=1

|EEz
v |, σv =

√√√√ 1

r − 1

r∑
z=1

(EEz
v − µv)2 (5.4)

The parameter µ∗
v represents the overall impact of the parameter on the model output,

while a high value of σv suggests that the parameter is involved in interactions with other
parameters. To ensure thorough coverage of Ω, the starting point for each trajectory is
selected using the Latin Hypercube Sampling (LHS) method [142]. It is important to
note that the GPSA evaluation of the model requires a total of r(m+1) simulations when
employing the EEM with the LHS method. Finally, the model parameter importance is
evaluated in terms of µ∗

v, as shown in [143].
Parameter sensitivity analysis of the ESPM at the cell level has been widely analyzed
in the literature under both local [144] and global [134] approaches, considering various
input current profiles, such as Constant Current (CC) [133], CC Constant Voltage (CCCV)
[134], and driving cycles (DV) [135].

Example 5.1.1: Morris method for module-level models

The application of the Morris method is demonstrated for the module-level
electrochemical-aging-thermal model, which will be presented in Section 5.2.2 a.
The main goal is to examine the influence of variations in 18 electrochemical cell
parameters on the module voltage. To streamline the computational process, we
assume that the parameters are identical for each cell within the module.
Note that, our analysis goes beyond previous works that focused on individual cells
only. We take into account the coupling terms arising from the module’s thermal
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and electrical models. This allows us to capture the interactions and dependencies
between cells within the module, providing a more comprehensive understanding of
the system’s behavior. It is important to note that the GPSA in this study is con-
ducted using the EEM using 20 trajectories for each cycle, following the approach
outlined in [134]. To ensure comprehensive coverage of the parameter variation
range, we employ the Latin Hypercube Sampling (LHS) method to randomly select
the starting parameter set for each trajectory [142]. This approach enables us to
capture the overall behavior and sensitivity of the system under different parameter
configurations. In the analysis, the parallel-connected modules, composed of 6 cells,
are subjected to a charging cycle at a constant current of 1C-rate, from 0% to 100%
SOC, followed by a resting period. Additionally, a dynamic driving cycle discharge
is performed from 100% to 20% SOC. The physical variation bounds for the param-
eters are obtained from the literature and are provided in Table 3.1. Figure 5.1 (a-b)
depicts the module voltage responses obtained from the simulations conducted us-
ing the GPSA method. These simulations encompass various parameter variations,
and the corresponding module voltage profiles are shown. To assess the sensitiv-
ity of the parameters, statistical measures such as the mean of the absolute value
of EEv (µ∗

EEv
) and the standard deviation of EEv (σEEv) are calculated at each

time instant using Equation (5.4). These measures provide valuable information re-
garding the magnitude and variability of the module voltage due to the parameter
change. Figures 5.1 (c-d) and (e-f) present these statistical measures for each time
instant, allowing for a comprehensive analysis of parameter sensitivity. Finally, the
average value of µ∗

EEv
over time, shown in Figure 5.1 (g), is used to determine the

highly influential parameters. Parameters with an average µ∗
EEv

value exceeding
the threshold of 0.05 are considered to have a significant influence on the module
voltage. Based on the obtained results, it can be noticed that the capacity-related
cathode parameters, the active material volume fraction (ϵs,p) and thickness (Ln),
exhibit the highest sensitivity under both the constant current and driving cycle
scenarios. This indicates that variations in these parameters have a substantial im-
pact on the module voltage. Additionally, the parameters ϵs,n and Ln show a high
influence, particularly at the end of the discharge and charge phases. On the other
hand, the particle radius (Rs,j) and the reaction rate constant (kj) appear to have
a significant influence only in the dynamic scenario, suggesting that they play an
important role during dynamic discharging processes. Note that the GPSA results
obtained at the module level in our study are consistent with the sensitivity analysis
conducted at the cell-level in existing literature [145].

aReaders are encouraged to consult Sections 5.2.1 and 5.2.2 for a detailed description of the
model
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Figure 5.1: GPSA results: (a-b) show the module voltage responses resulting from the
GPSA for a CC+rest and DV scenarios, respectively. (c-d) and (e-f) reports the mean
value (µEEj

) and standard deviation (σEEj
) of the Elementary Effect (EE) at each time

instant for each parameter in both scenarios. (g) shows the average mean value (µavgEEj
)

calculated over the entire operating cycles (CC+rest and DV cycles) for each parameter.
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5.2 ESPM identification and validation for LG M50T

This section presents two distinct contributions and is divided into the following two main
parts as schematically depicted in Figure 5.2: In particular:

1. Section 5.2.1 demonstrates the development of an electrochemical model using a
commercially available cell as an example, as schematically highlighted in Figure
5.2(a).

Based on the SECL experimental campaign described in Section 4.2.2 of Chapter 4,
the ESPM framework is calibrated for the LG Chem M50T. Starting from the
parameter sets provided by [96] for the LG M50, detailed in Table 5.1, the ESPM
for the LG M50T cell model is adjusted using single-cell characterization data from
19 tested LG M50T cells. Specifically, a subset of highly influential parameters,
identified through parameter sensitivity analysis from the literature, is fine-tuned
using an optimization-based approach during C/20 CC cycles. This procedure is
repeated for all 19 cells to further analyze parameter distribution. The resulting
models are then validated for each cell using the HPPC+MS cycle.

2. Section 5.2.2 focuses on the validation of a module-level model consisting of cells
connected in parallel as illustrated in Figure 5.2(b), which is central to the model-
based analysis presented in Chapter 8.

Specifically, the identified ESPMs are combined to construct modules comprising
four cells connected in parallel, in accordance with the module-level experiments
described in Section 4.2.2.2 of Chapter 4. The goal is to demonstrate that module-
level performance and heterogeneities, such as current and thermal distribution
within the module, can be predicted by appropriately scaling up the single-cell
model to the module level. To this end, both thermal and cell current distributions
within the module are validated against experimental data.

5.2.1 Single cell ESPM identifiction and validation

Table 5.2 provide a summari of the ESPM-based electrochemical-thermal-aging model
adopted for the LG M50T governing equation, derived in accordance with Chapter 3.
The governing PDEs of the ESPM are solved numerically using different methods. Specif-
ically, the FDM is employed to solve the solid phase mass conservation, as detailed in
Section 3.1.3.1. In contrast, following the approach of [66], the FVM is used to solve
the mass conservation in the liquid phase. The resulting ODE systems are listed in (5.5)
and (5.6) for the solid and liquid phases, respectively. Meanwhile, the overall cell voltage
(Vcell), electrode overpotential (ηj), electrode exchanged current density (i0,j), electrolyte
potential (∆Φe), and electrode SOC (SOCj) are formulated as described in Section 3.1.2.2
and reported in eqs. (5.7) to (5.13). The thermal dynamics of the cell are modeled using
a lumped one-state model specifically tailored for cylindrical cells, as reviewed in Sec-
tion 3.1.4. The cell temperature, governed by the ODE (5.14), is assumed to be uniform
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(a) Cell-level model identification and validation (b) Module-level model formulation and validation

Module-level validation

Figure 5.2: Schematic overview of the identification and validation procedure described
in this section. (a) 19 different ESPMs are identified and validated using single-cell
characterization data from a batch of LG M50T cells. (b) The single-cell model dynamics
are scaled up to the module level, and the resulting current and thermal distributions are
validated against experimental data.

within the cell casing and across its surface. Additionally, a physics-based aging model,
described in Section 3.1.5.1 and based on SEI layer growth, is utilized. This model is
detailed in equations eqs. (5.15) to (5.20). Following the approach in [46], the governing
PDE (5.15) is numerically solved using the FDM, with the SEI thickness discretized into
NSEI points, as shown in equation (5.16). It is important to note that as the SEI layer
grows, maintaining NSEI constant results in a time-varying grid size.

Once the model equations and initial parameter guesses (i.e., Table 5.1) are defined, a
prior verification must be performed before proceeding to the optimization-based model
adjustment for the LG M50T. Specifically, it needs to be confirmed whether the electrode
OCPs and stoichiometry limits provided for the M50 in [96] are suitable for the M50T.
Thus, the remaing of the section is divided in two steps: 1) Verification of electrode OCPs
and stoichiometry limits, and 2) Identification and validation of ESPM parameters.

Step 1: Electrode OCPs and stoichiometry limits check

This verication is inspire by the works presented in [146, 147, 148] where procedures to
identify the electrode stoichietry limit is provided.
Generally, the open-circuit voltage (OCV) of a full cell is determined by combining the
open-circuit potentials (OCP) of each electrode, as given by:

VOCV = Up(θ
surf
s,p )− Un(θ

surf
s,n ) (5.21)

where θsurfs,p ∈ [θ0%p , θ100%p ] and θsurfs,n ∈ [θ0%n , θ100%n ]. The stoichiometric limits define the
maximum and minimum levels to which the active materials in the electrodes can be
charged or discharged while preserving their integrity and performance. Therefore, battery
manufacturers specify voltage limits to prevent overcharging and over-discharging. To that
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Table 5.2: Cell-level electrochemical-thermal-aging dynamics for the LG M50T.

Electrochemical dynamics [Spatially discretized ] (As,j, Bs,n, Ae, Be, αs,j, βs,j, αes,j and βe defined in [46])
Solid phase mass conservation, j ∈ [n, p] Liquid phase mass conservation, j ∈ [n, s, p]

ċs,j = αs,jAs,jcs,j + βs,jBs,j [Icell − gs,j ] (5.5) ċe = αeAece + βeBeIcell (5.6)

Cell Voltage Vcell = Up + ηp − Un − ηn +∆Φe − Icell(Rcell +RSEI) (5.7)

Anode OCP [96]
Un = 0.1493 + 0.8493e−61.79θsurf

n + 0.3824e−665.8θsurf
n − e39.42θ

surf
n −41.92

− 0.03131 arctan(25.59θsurfn − 4.099)− 0.009434 arctan(32.49θsurfn − 15.74)
(5.8)

Cathode OCP [96]
Up = 10188.54(θsurfp )9 − 66535.82(θsurfp )8 + 189316.65(θsurfp )7 − 307780.79(θsurfp )6 + 314825.52(θsurfp )5+

− 209988.26(θsurfp )4 + 91295.30(θsurfp )3 − 24944.01(θsurfp )2 + 3884.75(θsurfp )1 − 258.27
(5.9)

Electrode overpotential, j ∈ [n, p] Exchanged current density, j ∈ [n, p]

ηj =
RgTc

0.5F
sinh−1

( Icell

2Aas,jLjio,j

)
(5.10) io,j = kjF

√
cavge,j c

surf
s,j (cmax

s,j − csurfs,j ) (5.11)

Electrolyte overpotential Electrode SOC

∆Φe =
2RgTcv(c, Tc)

F
ln

(
ce(Ln + Ls + Lp)

ce(0)

)
(5.12) SOCn =

θbulkn − θn,0%

θn,100% − θn,0%

, SOCp =
θp,0% − θbulkp

θp,0% − θp,100%
(5.13)

Thermal dynamics

Cell heat balance

Cs
dTcell

dt
= Icell(VOCP − Vcell) + TcellIcell

dVOCP

dTcell
+
Tamb − Tcell

Ru
(5.14)

Aging dynamics Boundary conditions

Solvent conservation in the SEI layer [governing PDE ]

∂csolv

∂t
= Dsolv

∂2csolv

∂r2
−
dLSEI

dt

∂csolv

∂r

−Dsolv
∂csolv

∂r

∣∣∣
r=Rs,n

+
dLSEI

dt
csurf
solv =

is

F

csolv
∣∣
r=Rn+LSEI

= ϵSEIC
bulk
solv

(5.15)

Solvent conservation in the SEI layer [Spatially discretized ]

ċsolv =


2αsolv(csolv,2 − csolv,1) + βsolv

(
is
F

− dLSEI
dt

csolv

)
if i = 1

αsolv(csolv,i+1 − 2csolv,i + csolv,i−1) + γsolv(csolv,i+1 − csolv,i−1) if 1 < i < NSEI

0 if i = NSEI


αsolv = Dsolv

(LSEI∆ξ)2

βsolv =
(

ξ−1
2LSEI∆ξ

dLSEI
dt

)
γsolv =

(
2

LSEI∆ξ
+ 1

Dsolv

dLSEI
dt

)
(5.16)

Side reaction current density Electrolyte porosity

is = −2Fkf (c
surf
s,n )2csurfsolv exp

[−βF
RgTc

(Φs,n−RSEIIcell−Us)
]

(5.17) ϵe,n = 1− ϵf,n − ϵs,n
(
1 +

3LSEI

Rs,n

)
(5.18)

SEI layer growth SEI resistance
dLSEI

dt
= −

isMSEI

2FρSEI
(5.19) Rsei =

LSEI

as,nALnκSEI
(5.20)
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Figure 5.3: Comparison between the modeled cell OCV (i.e., Up − Un) for the LG M50,
obtained using equations (5.8) and (5.9), and the measured OCV obtained through a
pseudo-OCV test for the LG M50T (Section 4.2.2.1).

end, it is essential to verify that:

V max
OCV = Up(θ

100%
p )− Un(θ

100%
n )

V min
OCV = Up(θ

0%
p )− Un(θ

0%
n )

(5.22)

By ensuring that the stoichiometric limits fall within these voltage constraints, one can
verify the proper operation of the cell and maintain its safety and efficiency.
Here, the condition given in equation (5.22) is checked by comparing the values of Uj,
θ0%j , and θ100%j provided by [96] for the M50 electrode with the full cell OCV of the M50T,
as obtained from the experimental campaign1. The verification results are presented
in Figure 5.3. Specifically, Figures 5.3(a) and (c) show the Un and Up, as described
in equations (5.8) and (5.9), respectively, with the corresponding stoichiometric limits
highlighted. The measured full cell OCV, obtained through the C/20 discharge pseudo-
OCV test, is compared to the modeled OCV (i.e., Up−Un) as illustrated in FIugre 5.3(e).
Two main trends are observed: 1) The minimum and maximum voltages are within the
expected limits. 2) Despite some discrepancies at low SOC, the modeled OCV is in good
agreement with the measured one.
Additionally, to further evaluate the accuracy of the modeled OCV, the derivative dVOCV

dθ

is calculated for both the measured and modeled OCV, as shown in Figures 5.3(b), (d),
and (f). This comparison further confirms the suitability of the OCP profiles provided by
[96] for the LG M50T.

1The full cell OCV is determined using a pseudo-OCV test at C/20 constant current discharge, as
described in Section 4.2.2.1
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Step 2: ESPM parameters identifiction and validation

All parameters for the ESPM are sourced from [96] (see Table 5.1), with the exception of
the active material volume fractions for both electrodes (ϵs,j). These parameters are in-
dividually determined for each of the 19 tested M50T cells using a C/20 constant current
discharge cycle. It is important to highlight that ϵs,n and ϵs,p are particularly influential
due to their high sensitivity in battery electrochemical models under constant current con-
ditions, as documented in the literature [145, 117]. Additionally, variations in ϵs,j directly
affect electrode porosity, which is calculated using the formula ϵe,j = 1 − ϵs,j. Following
the approach outlined in [144], the subset of parameters Θ = [ϵs,n, ϵs,p] is identified by
solving the following optimization problem:

min
Θ

J1(Θ) + J2(Θ) + J3(Θ)

subject to ESPM governing equations
(5.23)

Here, J1(Θ) =
√

1
N

∑N
i=1(V

data
cell − V model

cell )2 represents the root mean squared error (RMSE)
between the measured and simulated cell voltages, as given by equation (5.7). J2(Θ) =√

1
N

∑N
i=1(SOC

ref − SOCn)2 and J3(Θ) =
√

1
N

∑N
i=1(SOC

ref − SOCp)2 denote the RMSE
between the Coulomb counting SOC and the bulk SOC for the anode and cathode, re-
spectively. It is important to note that the optimization problem given in equation (5.23)
is solved for each of the 19 tested cells under the corresponding C/20 discharging cycle.
The identification results are summarized in Figure 5.4. Overall, the performance of the 19
identified ESPMs are satisfactory, as demonstrated by the voltage RMSEs (Figure 5.4(b)),
which remains between 15 and 21 mV. Additionally, Figure 5.4(a) compares the simulated
and measured voltage profiles for cells P12 and P13. This comparison highlights that the
only re-identification of [ϵs,n, ϵs,p] effectively capture CtC variations in capacity among
fresh cells. Figure 5.4(c) shows that the ESPM accurately reflects the cell SOC. Moreover,
Figure 5.4(d) presents the identified values for ϵs,n and ϵs,p against the corresponding cell
capacities (Qcell), calculated as described in Section 4.2.2.1. The identified ϵs,n and ϵs,p
exhibit a mean value and standard deviation [µϵs,j , σϵs,j ] equal to [0.801, 0.006] and [0.702,
0.005], respectively. Furthermore, a significant linear correlation is evident between both
ϵs,j and Qcell is evident:

ϵs,n = 0.0091055 + 0.16312 ·Qcell

ϵs,p = 0.011719 + 0.14208 ·Qcell

(5.24)

showing a R2 values of 0.993 and 0.967, respectively. This trend, expected due to the
linear dependence of electrode capacity (Qj) on the active material volume fraction (Qj =

FALjϵs,jc
max
s,j (θ100%j −θ0%j )/3600, as pointed out in eq. (7) of [149]), confirms the physical-

meaning of the identified parameter values.
Lastly, the identified ESPMs are validated against the corresponding HPPC+MS cycle.
Figure 5.5 summarizes the model validation results. Specifically, Figures 5.5(a) and (c)
offer a visual comparison between the measured and simulated voltages, and between the
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Single-cell model identi-cation: C/20 CC discharge
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Figure 5.4: Single-cell parameter identification results at C/20 for the 19 LG M50T cells.
(a) Voltage profile comparison between experimental CC discharge and model simulations
for cells P12 and P13. (b) RMES between experimental data and model predictions
during CC C/20 discharge for all cells. (c) SOC comparison between model predictions
and experimental measurements for cell P12. (d) identified parameters (i.e. ϵs,n and ϵs,p)
for the 19 tested cells against cell capacity.

Coulomb counting SOC and the electrode SOC for cell P12, respectively. Overall, the
ESPMs demonstrate a good fit for both cell voltage and SOC. This accuracy is underscored
by the voltage RMSE for all tested cells (shown in Figure 5.5(b)), which ranges between
0.012 and 0.018 V. Additionally, the bar chart in Figure 5.5(c) displays the SOC RMSE for
both electrodes across all cells, with a maximum RMSE of 0.9% for the negative electrode
and 0.51% for the positive electrode.

5.2.2 ESPM-based module-level model validation

Based on the inegrated ESPM identified and validated in the previous section, whose for-
mualtion id reported in Tabele 5.2, the aging model described in Section 3.1.5.1, and the
module thermal and electrical models discussed in Sections 3.2.2 and 3.2.1 and schemat-
ically depicted in Figure 5.6, respectively, the state-space model for the parallel module
can be expressed as follows:

ċmods,j = Amods,j c
mod
s,j +Bmod

s,j I
mod
cell −Gmod

s,j

ċmode = Amode cmode +Bmod
e Imodcell

Ṫmodstate = AmodthermT
mod
state +Bmod

thermI
mod
cell −Gmod

therm

ċmodsolv = Fmod
solv

L̇modsei = Gmod
sei

(5.25)
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Single-cell model validation: HPPC+MS discharge
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Figure 5.5: Single-cell parameter validation for the 19 LG M50T cells under HPPC+MS
testing protocol. (a) and (c) Voltage profile and SOC comparison between experiments
and model simulations for cell P12, respectively. (b) RMES between experimental voltage
and model predictions for all cells. (d) RMES between reference SOC and electrode SOC
for all the cells.
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Figure 5.6: Schematic representation of the physics-based electrochemical-aging-thermal
model for the battery module, where the module thermal model and the ESPM coupled
with the SEI-based aging model are highlighted.
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In this model, the state variables cmods,j ∈ RNp·(Nr−1), cmode ∈ RNp·3Nx , cmodsolv ∈ RNp·Nsei ,
Tmodstate ∈ R3Np , and Lmodsei ∈ RNp represent the combined solid, liquid, and solvent concentra-
tions, cell temperatures, and SEI thickness of each cell within the module, as shown in eq.
(5.31). The matrices and non-linear input terms of the state-space model, namely Amods,j ,
Bmod
s,j , Amode , Bmod

e , Amodtherm, Bmod
therm, Gmod

s,j , Gmod
therm, and Gmod

sei , are provided in Table 5.3.

It should be noted that the model input is Imod, while Imodcell =
[
I
[1]
cell · · · I

[Np]
cell

]T
∈ RNp

represents the currents delivered by each cell, which are obtained by solving the system
of Np equations: {

V
[k+1]
cell = V

[k]
cell − 2Rint(

∑Np

z=k+1 I
[z]
cell)

Itot =
∑Np

k=1 I
[k]
cell

(5.26)

where k ∈ {1, · · · , Np − 1}, and the model output Vmod = V
[1]
cell + 2RintItot.

Module-level model identification and validation

In this section, the validation of the module-level electrical model, as well as the iden-
tification and validation of the thermal model, is discussed. Notably, we consider nine
different configurations of four cells connected in parallel, under various combinations of
interconnection resistance (Rint = 0, 1, and 3 mΩ) and ambient temperature (Tamb =

10, 25, and 40 ◦C). It is important to clarify that the thermal model of the individual
cell was not identified in the previous section. This omission is due to the characteristics
of the testing methods used: the Pseudo-OCV involves a very low discharging rate, and
the HPPC tests include long rest periods. Both factors limit the ability to evaluate the
thermal dynamics of the single cell effectively since the cell temperature does not rise.
Therefore, the thermal dynamics of the cell are identified at the module level consider-
ing a CC discharge at 0.75C-rate, considering the scenario with Rint = 1 mΩ at 25◦C,
while reserving the other eight case studies as validation cycles. Specifically, the param-
eters Θth = [Ru, Rm, Cs], introduced in Section 3.2.2 for the module thermal model, are
identified by solving the following optimization problem:

min
Θth

Np∑
k=1

(√√√√ 1

N

N∑
i=1

(
T

[k],data
cell − T

[k],model
cell

)2)
subject to Model governing equations (5.25)

(5.27)

where the cost function is defined as the sum of the RMSE between the measured and
simulated temperatures for each cell in the module. Following the identification of the
set of parameters, the model’s ability to accurately represent the thermal distribution
within the module is assessed. This evaluation involves comparing the mean tempera-
ture standard deviation (σTcell) and the average cell temperature (µTcell) across different
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experimental scenarios:

σTcell =
1

N

N∑
z=1

(√√√√ 1

Np − 1

Np∑
k=1

(
T

[k]
cell|t=z −

Np∑
q=1

T̄
[q]
cell|t=z)2

)
(5.28)

µTcell =
1

N

N∑
z=1

(√√√√ 1

Np

Np∑
k=1

T
[k]
cell|t=z

)
(5.29)

Further, the model ability to predict the cell current imbalance is analyse throught the
mean cell current standard deviation (σIcell), calculated as:

σIcell =
1

N

N∑
z=1

(√√√√ 1

Np − 1

Np∑
k=1

(
I
[k]
cell|t=z −

Np∑
q=1

Ī
[q]
cell|t=z)2

)
(5.30)

Note that, the mean value for the current distribution is not considered since the simulated
and experimental currents are identical (Imod/Np) due to the constraints imposed by
Kirchhoff’s circuit laws (5.26).
Figure 5.7 (a-d) presents a comparison between the simulated temperatures and those
experimentally measured during the identification cycle. Two main observations emerge:
firstly, the thermal measurements exhibit significant noise, and secondly, the thermal
model successfully captures the dynamics of each cell. Furthermore, the comparison be-
tween σTcell and muTcell calculated for the experimental and simulated data are presented
in Figures 5.7(e-g) and 5.7(h-l) respectively. It is evident that the model satisfactorily
predicts the average temperature within the module, as shown in Figures 5.7(h-l), though
it tends to slightly overestimate it. On the other hand, the model performance declines
in predicting the module thermal distribution, particularly when the interconnection re-
sistance is low. This trend can be attributed to the low accuracy of the thermal sensors,
which leads to imprecise thermal readings especially when thermal gradients are minimal,
and to parasitic resistance introduced during module assembly that is not fully accounted
for in the model formulation. Future work will explore the possibility of enhancing model
accuracy with a more complex model. However, for this study, the overall performance of
the model is considered satisfactory, particularly in light of the additional results that are
presented for the current distribution in the following. In particular, Figure 5.8 presents
the module-level model validation in terms of predictive accuracy for both overall module
voltage and cell current distribution. It is important to note that the electrochemical
parameters for each cell within the model remain consistent with those identified at the
cell level in the previous Section. This validation approach not only tests the model’s
capability to predict overall module performance and heterogeneities but also evaluates
whether the model can predict module imbalances by scaling up cell CtC variations to the
module level. Figure 5.8 (a-b) presents a comparison between the measured and simulated
voltages for Rint = 0, 1, and 3 mΩ at 25◦C. along with the voltage RMSE for all module
experiment scenarios considered. While the overall model performance slightly deterio-
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Figure 5.7: Module-Level thermal model results for four parallel-connected cells under
Rint = 0, 1, and 3 mΩ and Tamb = 10, 25, and 40◦C. (a-d) Comparison of cell temperatures
between experimental data and model simulations for the battery module subjected to
a 1 mΩ of Rint at 25°C. (e-g) Comparisons between σTcell calculated using the simulated
and measured cell theraml distribution. (h-l) Comparisons between µTcell calculated using
the simulated and measured cell theraml distribution.

rates compared to the single-cell results, it remains acceptable with the voltage RMSE
still within the same order of magnitude as observed in the single-cell campaign. The
performance degradation could be attributed to the fact that parameters were identified
under a very low discharging rate (i.e. C/20) at a constant temperature (25◦C), whereas
the module-level validation was conducted at higher discharging rates and varying ambi-
ent temperatures. Nevertheless, the model accurately predicts cell current imbalances, as
demonstrated by Figure 5.8 (g-i). It is evident that the σIcell calculated using the cell cur-
rents measured by the Hall sensor closely aligns with those calculated from the simulated
current distribution.
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Module-level model validation: 0.75C CC discharge
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Figure 5.8: Module-Level model validation for four parallel-connected cells under Rint =
0, 1, and 3 mΩ and Tamb = 10, 25, and 40◦C. (a) Comparison of voltage profiles between
experimental data and model simulations for Rint = 0, 1, and 3 mΩ at 25◦C. (b) Voltage
RMSE across all module experiment scenarios considered. (c-f) Comparison of cell cur-
rents between experimental data and model simulations for the battery module subjected
to a 3 mΩ of Rint at 25°C. (g-i) Comparisons between σIcell calculated using the simulated
and measured cell currents.
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Table 5.3: Parallel-module state-space model matrices and coefficients of state-space
model (5.25)

State-space model, State vectors

cmod
s,j =


c
[1]
s,j

c
[2]
s,j
...

c
[Np]
s,j

 cmod
e =


c
[1]
e

c
[2]
e

...
c
[Np]
e

 cmod
solv =


c
[1]
solv

c
[2]
solv
...

c
[Np]
solv

 Tmod
cell =


T

[1]
cell

T
[2]
cell
...

T
[Np]
cell

 (5.31)

Mass Conservation in the solid phase (j ∈ [n, p]), Matrices and Coefficients

Amod
s,j =

(αs,jAs,j)
[1] 0

. . .
0 (αs,jAs,j)

[Np]


NrNp×NrNp

Bmod
s,j =

(βs,jBs,j)
[1] 0

. . .
0 (βs,jBs,j)

[Np]


NrNp×NrNp

Mass Conservation in the electrolyte (j ∈ [n, s, p]), Matrices and Coefficients

Amod
e =

(αeAe)
[1] 0

. . .
0 (αeAe)

[Np]


3NxNp×3NxNp

Bmod
e =

(βeBe)
[1] 0

. . .
0 (βeBe)

[Np]


3NxNp×3NxNp

Module Thermal Model: Matrices and Coefficients

Air conductive heat thermal resistance Tabs conductive heat thermal resistance

Rair
m =

1

Scellkair
(5.32) Rtabs

m =
w

Acellktabs
(5.33)

Amod
therm =



−1
Cs

(
1
Ru

+ 1
Rm

)
1

RmCs
0 0 . . . 0 0

1
RmCs

−1
Cs

(
1
Ru

+ 2
Rm

)
1

RmCs
0 . . . 0 0

0 1
RmCs

−1
Cs

(
1
Ru

+ 2
Rm

)
1

RmCs
. . . 0 0

...
...

...
...

. . .
...

...
0 0 0 0 . . . 1

RmCs

−1
Cs

(
1
Ru

+ 1
Rm

)


Np

×
Np

Bmod
therm =


1
Cc

(
V

[1]
OCP − V

[1]
Cell

)
+ T

[1]
cell

dVOCP

dTcell
· · · 0

...
. . .

...
0 · · · 1

Cc

(
V

[Np]
OCP − V

[Np]
Cell

)
+ T

[Np]
cell

dVOCP

dTcell


Np×Np

Aging matrices and Nonlinear input vectors

Gmod
SEI =

 (βSEIgs,n)
[1]

...
(βSEIgs,n)

[Np]


Np×1

Gmod
s,j =

 (βs,jBs,jgs,j)
[1]

...
(βs,jBs,jgs,j)

[Np]


NpNr×1

gs,j =

{
as,nLnAis, if j=n
0, otherwise
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5.3 Conclusion

This chapter has presented a comprehensive methodology for cell teardown and its appli-
cation in the parameterization of electrochemical models. Additionally, it reviewed param-
eter sensitivity analysis techniques, which, when combined with optimization methods,
form the foundation of an effective strategy for parameter identification.
A practical application of this methodology was demonstrated through the model identi-
fication of the LG M50T cell, tested at the SECL laboratory. Starting with parameters
derived from the LG M50 model, as described in [96], the identification process focused
on refining high-sensitivity parameters, determined through a sensitivity analysis of the
ESPM. The adjusted parameters were optimized to ensure a closer alignment with the
experimental cell voltage response, thereby improving model accuracy.
The chapter concluded with the validation of a module-level model comprising four
parallel-connected ESPM cells. This model, pivotal to the high-fidelity offline simula-
tions described in Chapter 8, provides a robust framework for simulating the behavior of
parallel-connected cells and serves as a foundation for further simulation studies.
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CS-ESPM model order reduction
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This contribution is based on the following works:

• [29] Fasolato, S., Allam, A., Li, X., Lee, D., Ko, J., and Onori, S. (2022). Reduced-
order model of lithium-iron phosphate battery dynamics: A POD-Galerkin approach.
IEEE Control Systems Letters, 7, 1117-1122.

• [30] Xu, L., Fasolato, S., and Onori, S. (2024). Finite-volume method and ob-
servability analysis for core-shell enhanced single particle model for lithium iron
phosphate batteries. IEEE 2024 Conference on Decision and Control (CDC), Ac-
cepted.

Introduction

Cobalt- and nickel-free positive electrode materials for LIBs in the form of Lithium Iron
Phosphate (LFP) are currently being considered for mass production in electric vehicle
batteries. Despite their lower energy density, LFP batteries offer good electrochemical
stability, thermal performance, and cycle life making them a suitable candidate for cobalt-
and nickel-free batteries [16]. Olivine structured LFP batteries are characterized by a flat
open circuit voltage due to the phase transition [21] and are accompanied by a significant
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hysteresis between the open circuit voltage during charge and discharge and strong path
dependence dynamics [150], making it challenging to model and predict their internal
behavior accurately. In particular, the dreaded flat voltage plateau is a major challenge
to designing algorithms for real-time BMS. Owing to that, an electrochemical model that
can accurately capture the battery dynamics, especially the phase transition behavior,
would prove to be a good basis for designing advanced BMS algorithms.
Among the electrochemical models addressing the phase transition behavior of LFP bat-
teries, the core-shell approach stands out as a key method. This model, initially developed
by [39], is revisited in Chapter 3. As detailed in Section 3.1.2.3, the dynamics of the core-
shell model are governed by PDEs coupled with an ODE that describes the movement of
the phase transition boundary. This problem falls under the category of one-phase Stefan
problem [151]. Such problems are common in various scientific and engineering applica-
tions, such as melting of a solid (i.e. ice into water). Numerous numerical methods have
been proposed in the literature to address the Stefan problem [152, 153]. In core-shell
models, Variable Space Grid (VSG) methods are frequently employed to numerically ap-
proximate the phase transition [154]. These methods involve dividing the shell region of
the particle into a fixed number of points, with the spacing between grid points adjusted
dynamically to reflect the movement of the phase transition interface, while maintaining
a constant number of grid points. Coordinate transformations can further simplify the
problem by converting the moving boundary into fixed coordinates. For example, the
Landau transformation [155] is commonly used to address such issues, as demonstrated in
[10, 156, 18]. Additionally, [157] utilized the Arbitrary Lagrangian-Eulerian (ALE) formu-
lation, implemented in COMSOL, to solve the problem. In contrast, [158] approached the
phase transition problem by maintaining a constant grid size over time, while introducing
new points into the discretization grid based on the dynamics of the moving boundary.

Chapter contribute

This chapter summarizes two different ROMs developed for the Core-Shell Models devel-
oped in [10, 9, 28]. In [10], the CS-ESPM was discretized into an ODE system using
the Landau transformation and FDM, resulting in a high-dimensional model with 169
state variables. Subsequently, [9] introduced the average CS-ESPM (CSa-ESPM), an ad-
vanced version of the CS-ESPM. This model eliminates discontinuities in the positive OCP
and overpotential during the phase transition. Notably, while the concentration dynamics
in both electrodes are identical, the models differ in their cell voltage calculations only.
Finally, in [28], the CSa-ESPM was combined with a machine learning-based hysteresis
model to form a hybrid model. This hybrid approach accurately captures hysteresis-induced
voltage behavior and path dependence dynamics under real-world drive cycles. However,
the discretized CSa-ESPM model, with its 169 state variables, remains complex and chal-
lenging to implement on hardware-constrained microcontrollers. Consequently, there is
a need for a low-dimensional model that captures the system’s dominant behavior while
being accurate and computationally efficient.
The main contributions of this chapter are divided into two categories as follows:
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1. Based on the models presented in [10, 9, 28], a ROM is developed for the 49 Ah
LFP/graphite cell based on the Proper Orthogonal Decomposition (POD)-Galerkin
method.

2. A FVM-based ROM is formulated and identified for the 56 Ah LFP/graphite cell.

Chapter structure

• Section 6.1 provides an overview of the numerical techniques used to approximate
the CSa-ESPM in the previous works [10, 9]. Specifically, Section 6.1.1 revisits the
FDM-based discretization for the Stefan problem in the CSa-ESPM. Section 6.1.2
summarizes the overall cell state-space representation of the CSa-ESPM for the LG
Chem LFP cell with a nominal capacity of 49 Ah 1.

• Section 6.2 presents the ROMs for the CSa-ESPM. It covers the formulation,
validation results, and limitations of the POD-Galerkin ROM designed for the 49
Ah cell in Sections 6.2.1, 6.2.1.1, and 6.2.1.2, respectively. Further the formulation,
parameter identification and validation results of the FVM-based CSa-ESPM are
provided in Sections 6.2.2 and 6.2.2.1, respectively.

• Section 6.3 summarizes the conclusions drawn and outlines future research oppor-
tunities.

1Cell specifications given in Chapter 4
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6.1 CSa-ESPM numerical solution

In previous studies [10, 9], the CSa-ESPM was numerically solved and identified for a
49 Ah LFP pouch cell. This section provides an overview of the techniques originally
used to approximate the CSa-ESPM. Specifically, Section 6.1.1 reviews the numerical ap-
proximation of the cell’s solid-phase dynamics during two-phase (2P) operating scenarios,
as described in [10]. Following that, Section 6.1.2 presents the overall cell model. It
is important to note that this model serves as a benchmark for the development of the
ROMs.

6.1.1 FDM-based CSa-ESPM: 2P-Region Approximation

In [10, 9], the Landau transformation was utilized to numerically solve the Stefan problem
outlined in Section 3.1.2.3. This transformation involved remapping the shell region from
[rp, Rp] to [0, 1], thus rendering the shell calculation domain stationary while accommo-
dating boundary movement, as shown in Figure 6.1(a). The coordinate transformation is
given by:

χ =
r − rp
Rp − rp

∈ [0, 1] (6.1)

where r denotes the radial position within the particle, and rp is the moving boundary.
Applying this transformation, the governing equation for solid-phase diffusion in the two-
phase region (3.2) is reformulated as:

∂cs,p
∂t

=
∂2cs,p
∂χ2

[
Ds,p

(Rp − rp)2

]
+
∂cs,p
∂χ

[
2Ds,p

r(Rp − rp)

]
− ∂cs,p

∂χ

∂rp
∂t

[
χ− 1

Rp − rp

]
(6.2)

The corresponding boundary conditions (3.17) in the χ coordinate are expressed as:

∂cs,p
∂χ

∣∣∣∣
χ=1

=
Icell(Rp − rp)

Ds,papAcellFLp

cs,p
∣∣
χ=0

= g(Icell) =

{
cβs,p Discharge

cαs,p Charge
cs,p
∣∣
t=t̄

= ick

where χ = 0 corresponds to the moving boundary rp, and χ = 1 corresponds to the
surface Rp. Furthermore, the dynamics of the moving boundary (3.16) are rewritten as:

sign(Icell)(c
α
s,p − cβs,p)(Rp − rp)

drp
dt

= Ds,p
∂cs,p
∂χ

∣∣∣∣
χ=0

(6.3)

According to Section 3.1.3, various numerical methods can be employed to solve the
governing PDEs of electrochemical models. In [10], the FDM was utilized to approximate
lithium-ion diffusion dynamics within the electrodes under both 1P and 2P operating
conditions. Specifically, during two-phase operation, the shell region is discretized into
Nr points, as illustrated in Figure 6.1(a). The first and second spatial derivatives of the
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Figure 6.1: Overview of discretization grids used to numerically solve the diffusion PDE in
the CSa-ESPM: (a) FDM grid for the solid particles, (b) FVM grid for the solid particles,
and (c) FVM mesh for the liquid phase of the CSa-SPM.

equations (6.2) and (6.3) are approximated using forward and central difference schemes,
respectively. As outlined in Section 3.1.3.1, these approximations are given by:

∂cs,p,l
∂χ

≈ cs,p,l+1 − cs,p,l
∆χ

(6.4)

∂2cs,p,l
∂χ2

≈ cs,p,l+1 − 2cs,p,l + cs,p,l−1

∆2
χ

(6.5)

where l denotes the index of the discretization point χl, defined as:

χl =
rl − rp
Rp − rp

, ∆χ = χl − χl−1 (6.6)

Applying these derivative approximations to (6.3), the dynamics of the moving boundary
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are approximated as:
drp
dt

=
M1

∆χ

(cs,p1 − g(Icell))

M1 =
sign(Icell)Ds,p

(cαs,p − cβs,p)(Rp − rp)

(6.7)

Similarly, the approximation is applied to eq. (6.2), and the discretized lithium-ion con-
centration at the internal nodes l ∈ [1, Nr,p − 2] of the shell region is formulated as:

∂cs,p,l
∂t

=
M3

∆2
χ

(
cs,pl+1

− 2cs,pl + cs,pl−1

)
+
M4

∆χ

(
cs,pl+1

− cs,pl
)

(6.8)

where M3 and M4 are defined as:

M3 =
Ds,p

(Rp − rp)2

M4 =
2Ds,p

[χl(Rp − rp) + rp](Rp − rp)
− χl − 1

Rp − rp

M1

∆χ

(cs,p1 − g(Icell))

(6.9)

According to [10], the discretized solid-phase mass transport equation at the shell surface
(l = Nr,p − 1) is written as:

∂cs,p
∂t

∣∣∣∣
Nr,p−1

=
M3

∆2
χ

(
M2Icell − cs,pNr,p−1

+ cs,pNr,p−2

)
+
M2M4

∆χ

I (6.10)

where M2 is defined as:

M2 =
(Rp − rp)∆χ

Ds,papAcellFLp
(6.11)

It is worth noting that, as indicated by Equation (3.17), at l = 0, the time derivative
∂cs,p0
∂t

is zero, since cs,p0 remains constant.
Finally, let the state vector cs,p = [cs,p,1, . . . , cs,p,Nr−1]

T ∈ RNr−1 represent the concentra-
tion at each point within the particle shell region, and considering the coefficients:

η1 =
M3

∆2
χ

, η2 =
M4

∆χ

, η3 =
M2

∆χ

(
M4 +

M3

∆χ

)
, η4 =

M1

∆χ

(6.12)

the overall discretized mass conservation equation in 2P condition can be compactly ex-
pressed as:

ċs,p = η1A1cs,p + η2A2cs,p + η3BIcell + η1G (6.13)
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where the matrices A1 ∈ R(Nr−1)×(Nr−1) and A2 ∈ R(Nr−1)×(Nr−1) are given by:

A1 =



−2 1 0 0 . . . 0

1 −2 1 0 . . . 0

0 1 −2 1 . . . 0

0 0 1 −2 . . . 0
...

...
...

... . . . ...
0 0 0 0 . . . −1


, A2 =



−1 1 0 0 . . . 0

0 −1 1 0 . . . 0

0 0 −1 1 . . . 0

0 0 0 −1 . . . 0
...

...
...

... . . . ...
0 0 0 0 . . . 0


Similarly, the vectors B ∈ R(Nr−1)×1 and G ∈ R(Nr−1)×1 are defined as:

B =


0

0
...
0

1

 , G =


g(Icell)

0
...
0

0



6.1.2 CSa-ESPM: State-space formulation

This section summarizes the final state-space model for the CSa-ESPM as outlined in
[10]. The mass conservation in the solid phase is numerically solved using the FDM in
both 1P and 2P regions [46]. The discretization meshes used to approximate the Li-ion
diffusion dynamics within the electrodes are depicted in Figure 6.1. The radius of the
negative electrode particle, and the radius of the positive electrode particle for the 1P
and the shell-region, are divided into Nr discretization points. Following [46], the mass
conservation in the solid phase is approximated by a system of Nr − 1 ODEs, as shown
in (6.14) and (6.16) for the negative electrode and 1P positive electrode, respectively. In
contrast, (6.17) and (6.18) approximate the diffusion dynamics in the 2P positive elec-
trode shell region and the moving boundary motion, as detailed in the previous section.
On the other hand, FVM is employed for the liquid phase. Each cell domain is dis-
cretized into Nx volumes for approximating the electrolyte dynamics, as illustrated in
Figure 6.1(c), resulting into a system of 3Nx ODEs (6.15), following the approach dis-
cussed in [66]. The model state vectors include the Li-ion concentration in the electrodes,
represented as cs,j = [cs,j,1, . . . , cs,j,Nr−1]

T ∈ RNr−1, and in the electrolyte, denoted as
ce = [ce,n, ce,s, ce,p]

T ∈ R3Nx , where ce,j = [ce,j,1, . . . , ce,j,Nx ]
T ∈ RNx . Here, cs,j,i refers to

the Li-ion concentration at the i-th discretization point within the j-th electrode (where
j ∈ {n, p} for the solid phase), while ce,j,i represents the Li-ion concentration in the i-th
volume of the j-th cell domain (where j ∈ {n, s, p} for the electrolyte phase). Addition-
ally, csurf

s,j = cs,j,Nr−1 and cbulk
s,j = 3

R3
s,j

∫ Rs,j

0
r2cs,j dr denote the electrode surface and bulk

concentrations, respectively.
The overall cell voltage (V CC

cell for constant current and V DV
cell for dynamic voltage) is

computed as described in (6.19). Notably, V DV
cell includes an additional term Vh to model

hysteresis and path dependence dynamics during real driving cycles. This term Vh is
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Table 6.1: Core-shell ESPM discretized electrochemical governing dynamics [9][10]

Model state-space formulation (The model matrices and coefficients are reported in [10])

Negative electrode mass conservation Electrolyte mass conservation
ċs,n = αs,nAs,ncs,n + βs,nBs,nIcell (6.14) ċe = αeAece + βeBeIcell (6.15)

1P positive electrode mass conservation 2P positive electrode mass cons. and rp dynamics

ċs,p = αs,pAs,pcs,p + βs,pBs,pIcell (6.16) ċs,p = η1A1cs,p + η2A2cs,p + η3BIcell + η1G (6.17)

ṙp = η4(cs,p,1 − g(I)) (6.18)

Model output: Cell voltage and SOC

Cell voltage {
V CC
cell = Up + ηp − Un − ηn +∆ΦE −RlIcell

V DV
cell = (U ch

p + Udis
p )/2 + ηp − Un − ηn +∆ΦE −RlIcell + Vh

(6.19)

Negative
electrode OCP

Un = 0.1459 + 0.8442 exp(−48.68θsurfn ) + 87.49 exp(−665.8θsurfn )− exp(39.42θsurfn − 41.92)+

− 0.02975 arctan(25.59θsurfn − 4.099)− 0.012 arctan(32.49θsurfn − 15.74)
(6.20)

Positive
electrode OCP

D
is

ca
rg

e

Udis
p = 3.382− 0.2955 exp

[
−44.99(1− z)0.8707

]
+

+ 10−20.71 exp
[
14.17(1− z)8.128

]
+ 10−40.82 exp

[
100(1− z)1.213

]

C
h
ar

ge

U ch
p = 3.442− 0.1774 exp

[
−127.7(1− z)0.7921

]
+

+ 10−2.123 exp
[
16.56(1− z)24.08

]
+ 10−10.29 exp

[
99.91(1− z)22.17

]
with:



One-phase (1P):

z = θsurfp =
csurf
s,p

cmax
s,p

Two-phase (2P):

z = θbulkp =
cbulk
s,p

cmax
s,p

(6.21)
Elelctrode overpotential Electrolyte overpotential

ηj =
RgTc

0.5F
sinh−1

( Icell
2Aas,jLjio,j

)
(6.22)

∆Φe =
2RTv(c, T )

F
ln

(
ce(L)

ce(0)

)
, with L = Ln + Ls + Lp

→ v(c, T ) = 0.601− 0.24(cavge /1000)1/2+

+ 0.982[1− 0.0052(T − 273)](cavge /1000)3/2

(6.23)

Exchange current density State of charge

n
eg

at
iv

e
el

ec
tr

od
e

io,n = knF
√
cavge,n c

surf
s,n (cmax

s,n − csurfs,n )

p
os

it
iv

e
el

ec
tr

od
e

io,p = kpF
√
cavge,p k(cmax

s,p − k) with:

{
1P: k = csurfs,p

2P: k = cbulks,p

(6.24)



n
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iv

e
el
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tr

od
e

SOCn =
θbulk
n −θn,0%

θn,100%−θn,0%

p
os

it
iv

e
el

ec
tr

od
e

SOCp =
θp,0%−θbulk

p

θp,0%−θp,100%

(6.25)
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provided by a physics-informed feedforward neural network (FNN), which was trained
and validated in [28]. The FNN consists of 9 hidden layers with 17 neurons each and uses
Icell, θbulk

p = cbulk
s,p /c

max
s,p , and cavg

e from the CSa-ESPM solution as input features [28]. Uj

and ηj are the electrode OCP and overpotential, respectively, Icell is the input cell current,
∆Φe is the electrolyte overpotential and Rl is the lumped cell resistance. Un and ηn
reported in (6.20) and (6.22) depend only on the particle surface concentration, while the
positive electrode quantities (Up and ηp) are calculated as a function of cbulks,p during the
2P condition and csurfs,p during the 1P one, as shown in (6.21) and (6.22). According to
[9], the cbulks,p is utilized during the 2P postive electrode to address the discontinuity in the
output due to the surface concentration during the phase transition. Finally, the average
positive OCP ((U ch

p + Udis
p )/2) is used in V DV

cell as opposed to Up used in V CC
cell . The SOC

of each electrode is calculated based on the normalized bulk concentration (θbulkj ), as in
(6.25).
It is important to note that the transition from one to two-phase region (t = t̄) occurs
when θbulkp reaches θαp = cαs,p/c

max
s,p (θβp = cβs,p/c

max
s,p ) for discharging (charging). At the

following time instant, the moving boundary switches from 0 to Rs,p − ϵ since the two-
phase interface is on the particle surface, where ϵ is a small constant utilized to prevent
singularities in the model formulation. The rp then begins to decrease as a result of the
core-region shrinking process.

6.2 CSa-ESPM moder order reduction

According to Sectin 3.1.3 of Chapter 3, various MOR techniques have been proposed in
the literature for battery electrochemical model. It is to be noted that a core-shell ESPM
for LFP is governed by nonlinear coupled dynamics due to the inclusion of one ODE in the
positive electrode that models the moving boundary indicating the phase transition. Such
an additional moving boundary ODE makes the model unsuitable for popular reduction
methods. In [18], the solid state diffusion dynamics of a core-shell model is approximated
by a polynomial to obtain a ROM. Another alternative approach is to utilize coarse-
grained spatial grid points, instead of fine-grained, while discretizing battery governing
PDAEs into ODAEs. However, fewer grid points result in a low-dimensional feeble system
that is not only inaccurate but also susceptible to lack of numerical convergence while
solving the moving boundary ODE that indicates the phase transition [10].
Here the CSa-ESPM is reduced using two different approaches: a POD-Galerkin method
and the Finite Volume Method. It is important to note that the POD-based ROM is
derived from the full model identified in [10, 9, 28] for the 49 Ah LFP cell. On the other
hand, the FVM-based model is designed for the 56 Ah LFP cell, and therefore, the cell
parameters are adjusted in accordance with the industrial partner’s specifications based
on provided experimental data.
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6.2.1 POD-Galerkin ROM

In this section, the POD-Galerkin based ROM is formulated for the discretized CSa-ESPM
(Table 6.1), according to Section 3.1.3.4. Fig. 6.2 provides a schematic representation of
the steps required to develop the ROM and Table 6.2 reports the mathematical formula-
tion of the model. According to eqs. (6.27) to (6.30), four different Snapshot matrices are
generated solving eqs. (6.14) to (6.17) for a given constant input current. The columns
of Sn and Se contain the solution vectors cs,n and ce of (3.2) and (3.4), for each time
instant from the beginning (t0) to the end (tend) of the charge/discharge. Meanwhile,
Sp,1P and Sp,2P are constructed considering the positive electrode concentration (cs,p)
during 1P (t ∈ [t0, t̄ − 1] ∨ [t̄f + 1, tend]) and 2P (t ∈ [t̄, t̄f ]), respectively. Then, the
truncated POD basis functions (V r

n , V
r
p,1P , V

r
p,2P and V r

e ) are obtained by keeping the first
dominant columns of the basis functions (Vn, Vp,1P , Vp,2P and Ve) that were previously gen-
erated by computing the SVD of the snapshot matrices, as reported in (6.31). Different
truncation orders [re, rn, rp,1P , rp,2P ] are selected for the electrolyte, negative and postive
electrode in both 1P and 2P, respectively, such that the truncation degrees result close
to 1, re < Nx and rn, rp,1P , rp,2P < Nr. Finally, the original state-space model eqs. (6.14)
to (6.17) is projected onto new subspaces as shown in (6.32) in accordance with (3.61).
The new state vectors, indicated with c̃s,n ∈ Rrn , c̃s,p ∈ Rrp,P−2P and c̃e ∈ Rre , correspond
to the projection of the Li-ion concentration in both electrodes and in the electrolyte
onto the new subspaces. Note that the reduced-order state-space model is composed by
(rn + rp,1P−2P + re + 1) ODEs, instead of (2(Nr − 1) + 3Nx + 1) ones as the original
CSa-ESPM. Further, considering the POD truncated basis function and the solution of
the (6.32), an approximation of the original state vectors (c̄s,j ∈ RNr and c̄e ∈ R3Nx) of
the same dimension is reconstructed as:

c̄s,n = V r
n c̃s,n c̄s,p = V r

p,(1P−2P )c̃s,p c̄e = V r
e c̃e. (6.26)

The c̄s,j =
[
c̄s,j,1 · · · c̄s,j,Nr−1

]T
are then used to obtain an approximation of the par-

ticle surface (c̄surfs,j = c̄s,j,Nr−1) and bulk concentration (c̄bulks,j = 3
R3

s,j

∫ Rs,j
0

r2c̄s,jdr) of each

electrode. The c̄surfs,j , c̄bulks,j and c̄avge are employed, in turn, for the calculation of the approx-
imated cell voltage (V̄cell), SOC ( ¯SOC j) and as input features for the FNN, in accordance
with eqs. (6.19) to (6.25) in Table 6.1.

6.2.1.1 Simulation results

In this section, the POD-Galerkin ROM is compared against both the high-dimensional
CSa-ESPM and experimental data. The experiments are carried out on a 49.9 Ah LFP
pouch cell and consist of CC discharging cycles at C/3, C/6, C/10 and C/12 rate. The high
dimensional CSa-ESPM is simulated considering the electrochemical parameters identified
in [10] for a C/6-rate cycle and using Nr = 70 and Nx = 10 for the PDAE discretization. It
should be noted that in [9], it was demonstrated that the configuration [Nr,Nx] = [70, 10]

provides the best trade-off in terms of simulation accuracy. The high dimensional CSa-
ESPM is employed for the snapshot matrix generation for each input value, in accordance
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Figure 6.2: Model reduction flowchart applied to the CSa-ESPM

Table 6.2: POD-Galerkin average core-shell ESPM: Snapshot matrices and ROM state-
space formulation

Snapshot matrices

Electrolyte dynamics 1P positive electrode solid phase dynamics

Se =
[
ct0e · · · ctend

e

]
(6.27) Sp,1P =

[
ct0s,p · · · ct̄−1

s,p c
t̄f+1
s,p · · · ctend

s,p

]
(6.28)

Negative electrode solid phase dynamics 2P positive electrode solid phase dynamics
Sn =

[
ct0s,n · · · ctend

s,n

]
(6.29) Sp,2P =

[
ct̄s,p · · · c

t̄f
s,p

]
(6.30)

Snapshot matrices SVD an d POD basis functions truncation

S□ = V□Σ□W
T
□ −→ V□ =

[
V□,1 · · · V□,Nr

]
−→ V r

□ =
[
V□,1 · · · V□,r□

]
(6.31)

with: □ = [e, n, (p, 1P ), (p, 2P )]

POD-Galerkin ROM state-space formulation
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r
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p,2P (η2A2)V
r
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˙̄rp = η4(c̄s,p,1 − g(I))
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ec

tr
ol

yt
e

ċe = V r,T
e (αeAe)V

r
e ce + V r,T

e (βeBe)Icell

(6.32)

POD-Galerkin ROM truncation orders and degrees

rn = 2, rp,1P = 3, rp,2P = 3, re = 3 (6.33)
θn = 0.999999 θp,1P = 0.999997

θe = 0.999996 θp,2P = 0.999994
(6.34)
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Table 6.3: %RMSEs between the ROM and the CSa-ESPM

Discharging cycle

C-rate: V %RMS
cell SOC%RMS

n SOC%RMS
p r%RMS

p

C/3 0.5149 0.0066 1.1373 2.0572
C/6 0.5542 0.0194 1.3857 1.4735
C/10 0.5728 0.0959 1.2745 1.9672
C/12 0.5561 0.0066 1.4434 1.2145

Real driving cycle

- 0.1209 0.0023 0.0053 0.0030

with Section 6.1.2. The POD truncation orders used in the ROM simulation, illustrated in
(6.33), are selected to obtain truncation degrees close to unity, as shown in (6.34). Finally,
the comparison between both models and the experimental data, in terms of cell voltage,
SOC, and moving boundary is presented in Fig. 6.3 and 6.4 for both CC discharging
profiles and real driving cycles. The discrepancies between the two models are evaluated
through the percentage root mean squared error (%RMSE) between ΨPOD (quantity from
ROM) and Ψ (quantity from the high-dimensional CSa-ESPM):

Ψ%RMS =

√
1

tend

∫ tend

0

(ΨPOD −Ψ)2dt
100tend∫ tend

0
Ψdt

(6.35)

where ΨPOD ∈ [V̄cell, ¯SOCj, r̄p] and Ψ ∈ [Vcell, SOCj, rp]. It is observed that the ROM
matches the dynamics of the original model well, as depicted in Fig. 6.3 and 6.4. In
particular, it provides an accurate approximation of the cell voltage (%RMSE consistently
below 0.6%) and negative SOC, as indicated by V %RMS

cell and SOC%RMS
n in Table 6.3. In

contrast, the %RMSE of positive SOC and moving boundary rp are slightly higher, but
still within 2.1%, showing that the ROM conserves the phase transition information. It
needs to be stressed that the ROM results shown in Fig. 6.3 and 6.4 are obtained by
solving a system of 9 ODEs (i.e. 2: negative electrode, 3+1: positive electrode + moving
boundary, 3: electrolyte), instead of the 169 ODEs used for the CSa-ESPM. This stunning
reduction in model-order results in low usage of memory during simulation, wherein the
ROM requires only one-third of the peak memory needed by CSa-ESPM to simulate the
cell dynamics for the CC profiles listed in Table 6.3. The simulation time of the ROM,
though, is in the same order of magnitude as that of CSa-ESPM, which is expected when
the POD-Galerkin method is applied to reduce the order of a non-linear model [159].
Overall, the primary advantage of the POD-Galerkin ROM is the considerable reduction
of the number of ODEs (from 169 to 9) describing the cell electrochemical dynamics
while accounting for the phase transition, easing the computational burden, and still
maintaining accuracy.
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Figure 6.3: Constant current discharge cycles at C/3, C/6, C/10 and C/12: Cell volt-
age(a), SOC (b) and moving boundary (c).

6.2.1.2 POD-Galerkin ROM limitations

In this section, a ROM is proposed to approximate the electrochemical dynamics of LFP
batteries. The POD-Galerkin technique is employed to reduce the dimensionality of the
state-space model derived from the spatial discretization of the CSa-EPSM governing
equations. This ROM achieves a significant reduction in dimensionality, from 169 to just
9 state variables. Validation results for CC and real DV scenarios, compared against
both experimental data and CSa-ESPM simulations, demonstrate that the POD-based
ROM accurately captures cell voltage and electrode SOC. Nevertheless, two significant
limitations might affect the model’s performance and accuracy:

• Sensitivity to Snapshot Generation
A significant limitation of the POD-Galerkin method is its sensitivity to the cur-
rent values used for generating the snapshots, since the performance of the ROM is
influenced by these snapshot values. To address this issue, our ongoing research is
focused on eliminating the need for ad-hoc snapshot matrices in the ROM formula-
tion.
One promising strategy involves constructing a combined set of snapshot matrices
that integrate snapshots generated at multiple current levels. For instance, snapshot
matrices for current values of ±C/3, ±C/6, ±C/10, and ±C/12 are combined as
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Figure 6.4: Real driving cyle results comparison: Cell current profile (a), voltage (b) and
SOC (c).

follows:

Scombe =
[
S
C/3
e S
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e S

C/6
e S

−C/6
e S
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(6.36)

The truncated basis functions V r,comb
e , V r,comb

n , V r,comb
p,1P , and V r,comb

p,2P are then ex-
tracted from these combined snapshot matrices. This approach aims to provide a
more robust and generalizable set of basis functions. Figure 6.5 illustrates the com-
parison of cell voltage, SOC, and moving boundary dynamics using these combined
truncated basis functions considering input currents not present in the combined
snapshot matrices.

• Conservation of Mass and Numerical Stability
Another limitation of the proposed ROM relates to the conservation of mass within
the reduced-order framework, as well as of the original FDM-based model. The ROM
may not fully ensure mass conservation, potentially leading to numerical errors,
especially in long-term simulations.
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Figure 6.5: Constant current discharge results comparison using the combined trucated
basis function: Cell voltage(a-b), SOC (c-f) and moving boundary (g-h).
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Keeping these factors in mind, the following section introduces an alternative approach for
reducing the dimensionality of the original model: the FVM-based ROM. Unlike the POD-
Galerkin ROM, which focuses on reducing the FDM-based discretized ODE model, the
FVM-based ROM approximates the original cell dynamics as described by the PDEs. We
will demonstrate that the FVM effectively discretizes the Stefan problem characteristic of
the CSa-ESPM, providing accurate solutions with fewer than four control volumes while
ensuring mass conservation across multiple operational cycles. The resulting control-
oriented, reduced-order FVM-based CSa-ESPM is validated experimentally using various
C-rate load profiles.

6.2.2 FVM-based CSa-ESPM

In Section 6.1.1, the Stefan problem was discretized using the FDM following the ap-
plication of a Landau transformation to modify the coordinates. Unlike FDM, which
directly discretizes the governing equations, the FVM approaches the problem by solving
the equations in their integral form, ensuring mass conservation. However, the complexity
introduced by coordinate transformation renders FVM less effective for this approach.
Consequently, this section is dedicated to the numerical solution of the CSa-ESPM using
FVM, where the original coordinate system remains unchanged.
As discussed in Section 3.1.3.1, the FVM divides the computational domain into control
volumes (CVs). The volume-averaged value of the solid-phase concentration within each
CV, denoted by c̄s,p,j, is calculated as:

c̄s,p,j =
1

Vi

∫
CVi

cs,p,jdV (6.37)

Here, Vi represents the volume of the ith CV. By integrating Eq. 3.26 over a control volume
CVi and applying the Gauss theorem in a spherical coordinate system, we obtain:

∂c̄s,p
∂t

Vi

∣∣∣
i
= Ds,p

(
∂cs,p
∂r

)∣∣∣∣
i+ 1

2

Ai+ 1
2
−Ds,p

(
∂cs,p
∂r

)∣∣∣∣
i− 1

2

Ai− 1
2

(6.38)

Where Vi = 4
3
π
(
r3
i+ 1

2

− r3
i− 1

2

)
is the volume of CVi, and Ai+ 1

2
= 4πr2

i+ 1
2

and Ai− 1
2
= 4πr2

i− 1
2

are the surface areas of the left and right boundaries of CVi, respectively. The indices
i+ 1

2
and i− 1

2
refer to the interfaces between CVi/CVi+1 and CVi−1/CVi, respectively.

The central difference scheme is then employed to approximate the diffusive terms in
Eq. 6.38:

∂cs,p
∂r

∣∣∣∣
i+ 1

2

≈ c̄s,p,i+1 − c̄s,p,i
∆r

∂cs,p
∂r

∣∣∣∣
i− 1

2

≈ c̄s,p,i − c̄s,p,i−1

∆r

(6.39)

Substituting Eq. 6.39 into Eq. 6.38, the discrete form of the solid-phase diffusion equation
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for CVi becomes:

∂c̄s,p,i
∂t

Vi = Ds,p
c̄s,p,i+1 − c̄s,p,i

∆r
Ai+ 1

2
−Ds,p

c̄s,p,i − c̄s,p,i−1

∆r
Ai− 1

2
(6.40)

where ∆r = Rp−rp
Nr,p

represents the length of each CV. For i = 1, using the boundary con-
dition cs,p,0 = g (Icell), Eq. 6.41 can be expressed as:

∂c̄s,p,1
∂t

V1 = Ds,p
c̄s,p,2 − c̄s,p,1

∆r
A1+ 1

2
−Ds,p

c̄s,p,1 − c̄s,p,0
∆r/2

A1− 1
2

(6.41)

For the internal control volumes CVi, the equation is:

∂c̄s,p,i
∂t

Vi = Ds,p
c̄s,p,i+1 − c̄s,p,i

∆r
Ai+ 1

2
−Ds,p
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∆r
Ai− 1

2
(6.42)

For the last control volume CVi, the equation becomes:

∂c̄s,p
∂t

Vi = Ds,p

(
∂c̄s,p
∂r

)∣∣∣∣
surface

Asurface −Ds,p
c̄s,p,i − c̄s,p,i−1

∆r
Ai− 1

2
(6.43)

Applying the boundary condition Ds,p
∂cs,p
∂r

∣∣∣
r=Rp

= −Icell/(AFLpas.p) to Eq. 6.43, we get:

∂cs,p,Nr

∂t
Vi = −jAsurface −Ds,p

cs,p,i − cs,p,i−1

∆r
Ai− 1

2
(6.44)

Finally, the state-space representation of Eq. 6.44 is given as:

˙̄cs,p = Asc̄s,p +BsIcell +Gs (6.45)

where the matrices As, Bs and Gs are reported in Table 6.4.

6.2.2.1 Parameters identification and results

Following the identification strategy proposed in [10], CSa-ESPM model parameters are
identified. These parameters are shown in Table 6.2. First, C/4 charge and discharge
data are employed to identify the parameter vector, denoted as λC/4, which comprises:

λC/4 =

[
θchp,α, θ

ch
p,β, θ

ch
p,α, θ

ch
p,β, ϵs,p, ϵs,n,

Rs,n, Rs,p, Ds,n, Ds,p, A, kn, kp
] (6.54)

Then, the following parameter vector is identified using C/2 and 1C charge data.

λC/2 = λ1C =
[
Ds,p, Ds,n, kp, kn

]
(6.55)

The identified values are shown in Table 6.5, and the identification results are shown
in Fig. 6.6(a)-(c). Here, only 4 CVs are used to discretize the CSa-ESPM (FVM with
Nr = 4). Model validation is conducted using C/2 discharge and 1C discharge data. As
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Table 6.4: CSa-ESPM discretized electrochemical governing dynamics

FVM-based state-space formulation (The matrices and coefficients are reported in [10] and [68])

Negative electrode and 1P positive electrode concentration [68] Electrolyte concentration [10]

cs,j = Ajcs,j +BjIcell, with: j = n, p (6.46) ce = Aece +BeIcell (6.47)

Positive electrode in two-phase

cs,p = Asc̄s,p +BsIcell +Gs (6.48) cs,p = [c̄s1,p, c̄s2,p · · · c̄sNr,p]
T ∈ RNr×1 (6.49)

ṙp =
2 sign (I)Ds,p

∆r2P

(
cαs,p − cβs,p

) (c̄s1,p − g (Icell)) (6.50) g (I) =


cβs,p = θp,β · cmax

s,p , if Icell > 0
cαs,p = θp,α · cmax

s,p , if Icell < 0
0, otherwise

(6.51)

As =
3Ds,p

∆r2P


− (∆r2P+rp)

2+2r2p

(∆r2P+rp)
3−r3p

· · · 0

... . . . ...
0 · · · ((Nr−1)∆r2P+rp)

2

((Nr−1)∆r2P+rp)
3−R3

s,p


(Nr×Nr)

(6.52)

Bs =
3

AFLpap


0
...

R2
s,p

((Nr−1)∆r2P+rp)
3−R3

s,p


(Nr×1)

, Gs =


− 6Ds,pg(I)r2p

∆r2P((∆r2P+rp)3−r3p)
...
0


(Nr×1)

(6.53)

Model output shown in Table 6.1

Table 6.5: Identified parameters at different C-rates.

Current profiles Charge Discharge
C-rates C/4 C/2 1C C/4
θn,100% [-] 0.832 - - 0.831
θn,0% [-] 0.011 - - 0.009
θp,100% [-] 0.065 - - 0.066
θp,0% [-] 0.910 - - 0.925
θp,α [-] 0.220 - - 0.196
θp,β [-] 0.817 - - 0.804
Rs,n [m] 8.10e-07 - - 8.10e-07
Rs,p [m] 1.67e-08 - - 1.67e-08
εn [-] 0.655 - - 0.655
εp [-] 0.681 - - 0.681
Acell [m2] 2.125 - - 2.125
Rl [Ω] 1.54e-03 - - 1.54e-03
Ds,n [m2/s] 1.28e-15 1.00e-10 1.42e-15 -
Ds,p [m2/s] 4.05e-18 5.45e-18 2.74e-18 -
kn [m2.5/(mol0.5s)] 2.02e-12 2.56e-12 4.71e-12 -
kp [m2.5/(mol0.5s)] 9.50e-13 6.00e-13 1.45e-12 -
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Figure 6.6: Comparison results at C/4, C/2, and 1C for (a) voltage, (b) moving boundary,
(c) volume-average concentraion, (d) moving boundary during cycling.

can be seen from Fig. 6.6(a), the simulated voltage matches well with the measured data.
The root-mean-square-error (RMSE) of voltage under C/2 and 1C discharge are 14.96
mV and 23.89 mV, respectively. Above results show that FVM-based CSa-ESPM has
high accuracy with only 4 CVs. To the best of our knowledge, it is the first time that
CSa-ESPM solved by FVM is validated using experimental data. Besides accuracy, the
mass conservation property is also checked. Following the approach presented in [68], we
used a C/4 charge – C/4 discharge profile for multiple cycles simulation, which ensures the
total ampere-hour throughput are the same for charge and discharge. Fig. 6.6(d) shows
that the peak values for positive and negative electrodes volume-average concentration
remain constant, which proves the mass is conserved when using FVM for solving CSa-
ESPM. Also, Fig. 6.6(e) shows that the moving boundary changes continuously between
one-phase and two-phase regions.
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6.3 Conclusion

In this chapter, we explore two distinct reduction techniques applied to the physics-based
CSa-ESPM formulated by [10] for modeling the electrochemical dynamics of graphite/LFP
batteries.
First, the POD-Galerkin method is employed to reduce the dimensionality of the state-
space model derived from the spatial discretization of the CSa-ESPM electrochemical gov-
erning equations. This approach achieves a significant reduction in the number of state
variables, from 169 to just 9. Validation results from comparison with both experimental
data and CSa-ESPM simulations demonstrate that the POD-based ROM accurately pre-
dicts cell voltage and electrode SOC. Additionally, the ROM successfully captures phase
transition dynamics, voltage hysteresis, and path dependence effects.
Second, the FVM is utilized to spatially discretize the CSa-ESPM model for LFP batteries.
This technique substantially reduces the number of solid-phase state variables to fewer
than 6, while ensuring mass conservation. Experimental validation confirms that the
FVM-based reduced-order CSa-ESPM provides a good match for both cell voltage and
electrode SOC.
It is worth noting that the observability of the FVM-based CSa-ESPM model is analyzed
and quantified through rank tests and condition numbers as discussed in [30]. The results
indicate that model observability is influenced by different current inputs and the number
of discrete equations, providing crucial insights for the further development of electrode-
based observers in BMS applications.
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Chapter 7

Data-driven analysis of CtC variation
impact on parallel-connected module
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This contribution is based on the following work:

• [31] Piombo, G., Fasolato, S., Heymer, R., Hidalgo, M., Niri, M. N., Onori, S.,
Marco, J. (2024). Unveiling the performance impact of module level features on
parallel-connected lithium-ion cells via explainable machine learning techniques on
a full factorial design of experiments, Journal of Energy Storage, 84, 110783.

Introduction

Depending on the application, individual cells are combined using various series and/or
parallel architectures to form modules and packs that meet specific power and energy
requirements [160]. Series connections are employed to achieve higher voltages, which
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helps to mitigate voltage-related losses [46]. In contrast, parallel connections enable the
pack to store a larger amount of energy by increasing the overall capacity [161]. However,
a critical challenge in enhancing the performance, safety, and longevity of battery modules
is understanding the causes and effects of cell-to-cell (CtC) heterogeneity [24].

CtC variations causes
Prior research has effectively identified and synthesized the key factors that significantly
impact the efficacy of bettery modules [162].
Heterogeneities in batch of fresh cells are typically attributed to manufacturing tol-
erances during production processes and/or differences in material composition [163].
Manufacturing-related CtC variations can manifest as variations in internal resistance
[164, 165, 166], capacity [167, 168], or a combination of both [169, 170, 171]. Examples of
distributions of cell characteristics outside of manufacturer specifications can be found in
[163] and [172, 173] for LFP/graphite and NCA/graphite fresh cell batches, respectively.
Not only single-cell level features but also module-level characteristics strongly contribute
to introduced CtC variation. According to [162], uneven electrical resistance among the
cell interconnections [174, 175, 176] stands as the second leading factor contributing to
heterogeneity in a battery module. This type of CtC heterogeneity can be attributed to
several factors, including weld cracks or faulty connections between cells and the module
busbar [177, 178]. Similarly, contact imperfections among electrodes, current collectors,
and the busbar [179] also play a role. These defects might arise from surface irregularities
of materials and uneven contact pressure within battery systems. Furthermore, improper
dimensioning of electrical connections between cells might result in increased local re-
sistance [180]. Additionally, the number of cells in parallel [181, 182], topology selection
[183, 184], and chemistry combination [185, 186] have a non-negligible impact on pack per-
formance. Finally, operating temperature [187, 188, 189] and poor cooling design-induced
thermal gradients [190, 191] can also affect the uniformity of pack performance.

CtC variations effects
The effect of CtC heterogeneity on the operation of a battery module or pack varies based
on the interconnection configuration, whether connected in series or parallel.
In the series-connected cells scenario, the overall capacity of the module is constrained
by the weakest cell [192], which is the one with the lowest capacity. Additionally, the
module’s degradation is accelerated by thermal gradients among the cells [26], resulting
from uneven heat generation due to heterogeneous cell internal and/or interconnection
resistances, as well as a suboptimal cooling system. On the other hand, in a parallel-
connected module, dissimilar cell capacities, resistances, and temperatures result in
heterogeneous current distribution [193], which in turn leads to thermal and SOC im-
balances [194]. This results in cell-to-cell fluctuations in internal resistance, capacity
[172, 195, 190], and aging rate [196, 162, 197] over time. In particular, the phenomenon of
performance imbalance leading to non-uniform aging of individual cells has been reported
in the literature. Specifically, it has been noted that the prolongation of imbalances is a
contributing factor to this phenomenon. The existing literature presents divergent views
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on this matter. While some researchers [170, 169, 198, 199] affirm that there exists a
convergence and self-balancing tendency among parallel-connected cells over time, oth-
ers’ [24, 200, 171, 201] findings oppose this theory. So far, most research has focused
on individual cells’ behavior, with some experimental assessments of module connections
reported in [162, 174]. Consequently, the issue of parallel cell connections leaves gaps in
the knowledge and necessitates further investigation.

Considering these factors, it is important to highlight that CtC variations in real parallel-
connected battery modules are closely interdependent and, in practical terms, challenging
to eliminate.
One approach to gain insights into these issues is to systematically conduct multiple tests
at the module and pack levels across a wide range of scenarios. However, in systems that
exhibit complexity and involve multiple variables, it is imperative to establish a struc-
tured and controlled experimental design to guarantee the precision and dependability
of outcomes. The recent interest in implementing Design of Experiment (DOE) in the
battery community [202] is attributed to its capability to identify the most significant
factors in a system, resulting in cost savings through reduced experimentation time and
resources [203]. DOE can be defined as the branch of statistics involved in the planning,
collection, and analysis of experimental data to ensure valid and objective engineering
conclusions. DOE involves a series of methodical steps, beginning with the definition of
the problem and the objectives of the experimental study. This is followed by performing
the experiments as dictated by the experimental design. Once the data has been col-
lected, it is processed using statistical methods. In this step, an empirical model can be
used to interpret the results and to represent the relationship between the factors and the
response. Finally, the evidence provided by the statistical analysis serves as a basis for
arriving at objective conclusions. This structured approach ensures that the experimen-
tal outcomes are both precise and dependable, facilitating informed decision-making in
complex battery systems.
Note that, an effective alternative is the use of digital twins, as discussed in next Chapter.

Chapter contribute

This chapter aims to analyze the effect of CtC variations on the performance of a paralle–
connected battery moduel based on DOE approach. The ability to anticipate anomalous
behaviors of parallel cells is crucial for ensuring the longevity and safety of battery packs.
Understanding the predominant factors contributing to the inconsistent performance of a
module is essential for developing predictive models that optimize system performance. To
the best of the authors’ knowledge, there have been no previous attempts to apply DOE at
the module level for purposes beyond thermal design optimization [204, 205].
The main contributions of this chapter can be mainly divided in two as follows:

1. Based on the DOE-based experimental campaign on parallel-connected modules, de-
scribed in Section 4.2.2.2, a comprehensive statistical analysis is conducted. This
analysis methodically isolated and ranked the impact of key factors such as intercon-

140



Statistical analysisModellingExperimentsDOE definition

Mix

NMC

NCA

C
h

e
m

istry

Temperature [°C]

Interconnection 
Resistance [mΩ]

25 40
10

3
1

0

Unaged

Aged

Aging

DOE factors

Data-driven 
models

Module-level 
heterogeneity

Data-driven 
models

Feature importance analysis

⋯𝑅
𝑖𝑛
𝑡

Figure 7.1: Visual overview of the DOE-based CtC variations analysis described in this
chapter.

nection resistance, operating temperature, cell chemistry combinations, and aging
on heterogeneities propagation in parallel strings current, temperature, SOC distri-
bution, and time-to-self balance.

2. The combination of novel interpretable machine learning techniques with established
linear regression strategies. Specifically, the statistical analysis is based on multilin-
ear regression (MLR) models and machine learning (ML) models. Neural Networks
(NNs) and Random Forest (RF) models are trained and optimized to provide com-
plementary insights to MLR, outlining their benefits and drawbacks in identifying
the key contributors to heterogeneous performance in parallel-connected cells. It is
important to note that while MLR models offers interpretability, ML models are of-
ten considered black boxes. Therefore, novel explainable machine learning (XML)
techniques are applied to enhance ML model predictability by capturing non-linear
relationships and improving interpretability.

Chapter structure

• Section 7.1 provides a comprehensive description of the methodology employed
in this study. Specifically, Section 7.1.1 illustrates the full factorial DOE approach
used, highlighting the control and response variables involved. Section 7.1.2 reviews
both MLR and ML models considered in the analysis. Additionally, Section 7.1.3
details the XML techniques utilized to analyze feature importance within the ML
models.

• Section 7.2 presents the results of the statistical analysis. Specifically, Sections
7.2.1 and 7.2.2 present the results for the MLR and ML models, respectively. Fur-
thermore, the two approaches are compared in Section 7.2.3.

• Section 7.3 summarizes the conclusions and outlines future research opportunities.
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Figure 7.2: Graphical representation resulting from the four factors and respective levels
of the full-factorial DoE.

7.1 Methodology

7.1.1 Design of Experiments

This study employs a full factorial DOE [202] to identify and rank key module-level fea-
tures affecting module performance responses. Figure 7.2 visually represents the DOE
cube utilized in this study, detailing the four control parameters and their respective
ranges as outlined in Table 7.1. These ranges were selected based on the literature and
practical considerations. Specifically, the interconnection resistance ranges from 0.1 to 3
mΩ, chosen to maintain a 2.5% ratio relative to the energy cell’s internal resistance [206].
Testing temperatures vary between 10◦C, 25◦C, and 40◦C. The cell chemistry is catego-
rized into three levels: “NMC,” “NCA,” and “Mix.” The “NMC” and “NCA” configurations
consist of modules with cells of uniform chemistry, while the “Mix” configuration involves
a parallel string of two NMC cells and two NCA cells. Although combining chemistries is
unconventional, this approach is selected due to the comparable characteristics of NMC
and NCA cells and their potential for repurposing in second-life applications [185, 207].
Finally, including a cell with low SOH helps to better understand cell behavior under
conditions of failed contact, high resistance, and capacity gradients.
Subsequently, based on the described full factorial DOE, the module-level experiments
are conducted as detailed in Section 4.2.1.1 of Chapter 4. It is important to note that the
module responses, defined in the following of section, are calculated considering the 0.75
C-rate CC discharge cycle from 100% to 0% of the module SOC.
Finally, a set of eight response variables, categorized into four distinct groups based on
the analyzed phenomena, is reported in Table 7.1 and visualized in Figure 7.3. These
categories are:
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Table 7.1: Overview of the control and response variables included in the study. Np refers
to the number of cells connected in parallel (in this study, Np = 4). ICellk denotes the
current delivered by the k-th cell, IMod is the module input current. TAmb is the ambient
temperature, SoCCellk and T SurfCellk are the SoC and surface temperature of the k-th cell,
respectively. t1, t2, and tend are the time instants used to split the cell current distribution,
as depicted in Figure 7.3.

Control vari-
ables Levels Response variables

Interconnection
resistance [mΩ] [0, 1, 3] σIStart = 1

t1

∫ t1
0

(√
1

Np−1

∑Np

k=1(ICellk − IMod/Np)2

)
dt

(7.1)

Temperature
[◦C] [10, 25, 40] σIMid = 1

t2−t1

∫ t2
t1

(√
1

Np−1

∑Np

k=1(ICellk − IMod/Np)2

)
dt

(7.2)

Chemistry [−] [NMC, NCA, Mix] σIEnd = 1
tEnd−t2

∫ tEnd
t2

(√
1

Np−1

∑Np

k=1(ICellk − IMod/Np)2

)
dt

(7.3)

Ageing [−] [Aged, Unaged] ∆SoCMax= max(SoCCellk)−min(SoCCellk)

(7.4)

∆SoCEnd = max(SoCCellk|t=tEnd )−min(SoCCellk|t=tEnd )

(7.5)

∆TMax
Net = max(TSurf

Cellk − TAmb)−min(TSurf
Cellk − TAmb)

(7.6)

σTMean = 1
tEnd−t1

∫ tEnd
t1

(√
1

Np−1

∑Np

k=1(T
Surf
Cellk − TAmb)2

)
dt

(7.7)
TTSB

• Current Heterogeneities: Figure 7.3(a) illustrates the three stages of current dis-
tribution among the four cells during discharge considered in this study. To quantify
deviations in current relative to the reference, the average standard deviation at the
beginning, middle, and end of the cycle (σIStart, σIMid, σIEnd) is calculated using
(7.1), (7.2), and (7.3), respectively.

• Thermal Heterogeneities: Figure 7.3(b) displays the matrices used to assess
thermal distribution heterogeneities within the module. Specifically, ∆TMax and
σTMean denote the maximum temperature increase and the mean standard deviation
of the temperature gradient across cells during discharge, respectively. These metrics
are calculated using (7.6) and (7.7).

• SOC Heterogeneities: Figure 7.3(c) shows the maximum absolute SOC differ-
ence and the SOC difference at the end of the cycle between cells (∆SoCMax and
∆SoCEnd), computed as described in (7.4) and (7.5).

• Time to Self-Balance (TTSB): This measures the time required for the cumu-
lative balancing currents to stabilize at 200 mA during the post-discharge period,
as illustrated in Figure 7.3(d).
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Figure 7.3: Visual representation of the eight response variables considered in this study
for one of the 54 experiments. The variables are illustrated based on (a) current distribu-
tion, (b) thermal distribution, (c) SOC distribution, and (d) TTSB.

7.1.2 Data-driven model

The aim of conducting a systematic DOE is to develop a comprehensive empirical model
that identifies and elucidates the relationship between control variables (x) and response
variables (y). This section reviews the formulation of the models used in this analysis,
including multi-linear regression models and machine learning approaches such as Neural
Networks (NN) and Random Forests (RF). Before identifying the model, input feature
scaling is conducted to ensure a reliable comparison of coefficients in multi-linear regres-
sion models and to minimize input sensitivity in machine learning models. This step is
essential for accurately assessing the importance of each feature by normalizing the data,
which facilitates a clearer understanding of how each term influences the model and im-
proves the stability and performance of the analysis. In particular, the input features are
rescaled as:

z =
(x− µ)

σ
(7.8)

where µ represents the feature mean and σ represents its standard deviation.

7.1.2.1 Multilinear-regression (MLR) models

The statistical analysis is conducted using a technique called multi-linear regression
(MLR). MLR is a statistical method employed to determine the influence of a set of
independent variables (predictors) on a response variable, assuming a linear relation-
ship between the inputs and the output. Consider a set of N observations, denoted as
Θ = {(X1, y1), (X2, y2), · · · , (XN , yN)}, where Xk = [x1, · · · , xq] ∈ Rq and yk ∈ R (with
k = 1, · · · , N) represent the vector containing the q predictors (xj, j = 1, · · · , q) and the
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response variable for the k-th sample, respectively. According to [208], the MLR model
can be formulated as follows:

ŷ = f(x1, x2, · · · , xq) = β0 +

q∑
z=1

(βzxz + βzzx
2
z) +

q−1∑
z=1

q∑
y=i+1

(βz,yxzxy) (7.9)

where β0 represents the intercept, βz and βzz are constant coefficients associated with the
linear and quadratic terms, while βz,y corresponds to the interactions between variables.
It is worth noting that the MLR model can also include nonlinear terms, such as polyno-
mials or interactions between variables, as they can be considered equivalent to additional
predictors impacting the response variable linearly. The coefficients of the MLR model in
eq. (7.9) are estimated using a least square approach that minimizes the sum of squared
residuals:

min
β0,βz ,βzz ,βz,y

N∑
k=1

ϵk = min
β0,βz ,βzz ,βz,y

N∑
k=1

(yk−β0−
q∑
z=1

(βzxz+βzzx
2
z)−

q−1∑
z=1

q∑
y=i+1

(βz,yxzxy)) (7.10)

Since not all terms in the MLR model may be statistically significant, their relevance is
examined by testing the null hypothesis (NH) for each coefficient using p-value analysis
[209]. For example, considering the coefficient βz, the NH assumes that there is no re-
lationship between y and xz, meaning βz = 0. The p-value represents the probability of
observing the NH, and it is calculated based on the t-statistic of βz [208]. A high p-value
indicates that the NH is likely true, suggesting that the term associated with βz is not sta-
tistically significant and can be disregarded. In this study, a reduced-order model (ROM)
of Eq. (7.9) is derived by considering only the significant terms with a p-value greater
than 0.05 [209]. The ROM formulation is a crucial step in the statistical analysis as it
enables the identification of the most relevant predictors, thereby highlighting potential
significant nonlinear relationships between the inputs and outputs, as well as important
interactions among the predictors. One limitation of this methodology is its inflexibil-
ity, as it relies on a predefined structure for the regression model, which may introduce
potential inaccuracies.

7.1.2.2 Machine learning (ML) models

To unveil non-linear relationships, ML models such as RF and NN allow to approximate
more complex shapes, to the detriment of features importance understanding.

Random forest (RF)
The Random Forest model is an ensemble learning technique used for both classification
and regression tasks, consisting of multiple decision trees (DTs) [208]. In this context,
Random Forests with NDT decision trees are specifically employed for regression purposes.
Consider a dataset withN observations, denoted as Θ = {(X1, y1), (X2, y2), · · · , (XN , yN)}.
Here, Xk = [x1, · · · , xq] ∈ Rq represents the vector of q predictors (xj, j = 1, · · · , q), and
yk ∈ R is the response variable for the k-th sample. The development of the Random For-
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est model begins with dataset preparation. Specifically, NDT bootstrap samples, denoted
as Θ∗

j , are created by randomly sampling n instances from Θ with replacement. For each
bootstrap sample Θ∗

j , a decision tree Tj is trained by minimizing a splitting criterion, such
as the Root Mean Squared Error (RMSE). Once all NDT decision trees are trained, the
Random Forest model makes predictions by averaging the outputs of all NDT trees. For
a new observation Xnew, the final prediction is computed as follows:

ŷnew =
1

NDT

NDT∑
j=1

Tj(Xnew). (7.11)

This ensemble approach reduces variance and enhances the model’s ability to generalize
compared to individual decision trees, resulting in more accurate and robust predictions.
In summary, the Random Forest algorithm aggregates multiple decision trees to create a
robust model for regression tasks. By leveraging the diversity introduced through boot-
strap sampling and feature randomness, this method improves prediction accuracy and
mitigates overfitting issues commonly associated with individual decision trees.

Neural Network (NN)
Multilayer Perceptron (MLP) neural networks are a type of feedforward neural network,
consisting of multiple layers of neurons, where each neuron in a given layer is fully con-
nected to all neurons in the subsequent layer.
An MLP typically includes three types of layers: The Input Layer consists of neurons
that receive input features from the dataset. Each neuron in the input layer corresponds
to a feature in the input vector. There are one or more Hidden Layers situated between
the input and output layers. Each neuron in a hidden layer computes a weighted sum
of its inputs and then applies a non-linear activation function. The weighted sum for a
neuron j is given by:

zj =
∑
i

wjixi + bj (7.12)

where zj is the weighted sum for neuron j, wji is the weight connecting input i to neuron j,
xi is the input value, and bj is the bias term for neuron j. After computing this weighted
sum, the non-linear activation function σ is applied:

aj = σ(zj) (7.13)

where aj is the output of neuron j after applying the activation function σ. Finally, the
Output Layer produces the final prediction of the network. For regression tasks, this
layer typically contains a single neuron with a linear activation function, which directly
outputs the predicted value.

7.1.2.3 Performance matrices

To evaluate and compare the performance of the identified models, the coefficient of
determination (R2) and the Root Mean Squared Error (RMSE) are computed as using
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the follows:

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi −
1
N

∑N
j=1 yj)

2
(7.14)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (7.15)

where, yi represents the observed values, ŷi denotes the predicted values, and N is the
number of observations. The R2 value indicates the proportion of variance explained by
the model, while RMSE measures the average magnitude of the prediction errors. Note
that, R2 ranges between 0 and 1, indicating the proportion of variability in the response
variable captured by the MLR model. A value of 1 signifies that the model precisely
captures the variability, while lower values indicate a lesser degree of captured variability.
To reduce estimation bias and provide a more generalizable assessment of model accuracy,
a K-fold cross-validation approach is employed. Although K can vary between 2 and the
number of samples minus 1, a value of K = 5 is chosen here for simplicity. This choice
ensures that each fold contains a sufficient number of samples for both training and
validation phases. Specifically, the dataset is divided into 80% for training and 20% for
validation/testing, and the cross-validation process is performed across all five folds with
randomly selected samples.

7.1.3 Feature importance analysis

In this study the feature important is analyszed odobting traditional statistic method and
XML techniques.

• Akaike Information Criterion (AIC): In the context of MLR models, the AIC
is utilized to guide the selection of linear, interaction, and quadratic terms. Specif-
ically, the corrected Akaike Information Criterion (AICc) is minimized to optimize
the model formulation [210]. The AIC and AICc coefficients are defined as follows:

AIC(Mk) = −2 logL(Mk) + 2k (7.16)

AICc(Mk) = AIC(Mk) +
(2k2 + 2k)

(n− k − 1)
(7.17)

where logL(Mk) represents the logarithm of the likelihood function for the model
Mk, k denotes the number of features included in the model, and n is the sample size.
Among a set of candidate models, the model with the lowest AIC value is preferred.
The AIC balances goodness of fit, as measured by the likelihood function, with a
penalty for the number of estimated parameters. The AICc extends the AIC by
incorporating an additional penalty term for the number of parameters, making it
more suitable for smaller sample sizes. In this study, the feature importance analysis
for the MLR model is conducted through the examination of the resulting weights.

• SHapley Additive exPlanations (SHAP) values are a technique for inter-
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preting machine learning models by quantifying the contribution of each feature to
the model’s predictions. They are derived from Shapley values in cooperative game
theory, which provide a fair allocation of a total payout among players based on
their individual contributions. The SHAP value for the i-th feature in a model ŷ is
calculated as:

ϕi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[ŷ(S ∪ {i})− ŷ(S)] (7.18)

where N is the set of all features, and S is a subset of N that excludes the feature i.
The term ŷ(S ∪ {i})− ŷ(S) represents the marginal contribution of feature i when
added to a subset S of features. It measures how the prediction changes with the
inclusion of feature i in various subsets. Meanwhile, the weight |S|!(|N |−|S|−1)!

|N |! adjusts
the marginal contribution by considering the number of possible permutations of
features. This ensures that each feature’s contribution is fairly averaged over all
possible feature combinations. SHAP values ensure that each feature’s contribution
to a model prediction is fairly attributed by considering all possible combinations
of features. This method provides a robust and interpretable measure of feature
importance, making it a powerful tool for understanding model predictions and
ensuring transparency in machine learning models.

The SHAP method facilitates the identification of feature importance, however, it
exhibits limitations in terms of visualising of the results. To that end, Individual
Conditional Expectation (ICE) and Partial Dependence Plot (PDP) are computed
as detailed in the following.

• Individual Conditional Expectation (ICE) and Partial Dependence Plot
(PDP): ICE plots are used to illustrate how the prediction for a single instance
changes as a specific feature varies, while keeping other features fixed. In contrast,
PDPs show the relationship between a feature and the predicted outcome averaged
across all instances in the dataset. Unlike ICE plots, which focus on individual
instances, PDPs provide a global view by aggregating the feature’s effect across the
entire dataset.

To PDP function for a given feature i, is calcualated as:

PDPi(xi) =
1

N

N∑
j=1

ŷ(xi, x
(j)
−i ) (7.19)

In this formula, xi represents the value of the feature i for which the partial de-
pendence is being computed, while x

(j)
−i denotes the values of all other features

(excluding feature i) for the j-th instance in the dataset. The total number of in-
stances in the dataset is denoted by N , and ŷ is the model’s prediction function.
This formula computes the average prediction of the model when feature i is set to
xi, while averaging out the effects of all other features. According to [211], the use
of PDPs enables the visualization of the feature of interest and response variable are
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Table 7.2: Multivariate linear regression model equations with 3 most influencing β coef-
ficients underlined (1st, 2nd, . . .3rd) and resulting R2 values.

Multivariate linear regression models

ŷ =β0 + β1ChemNCA + β2ChemMIX + β3Ageing + β4RInt + β5Tamb + β6R
2
Int+

+ β7T
2
amb + β8ChemNCA · Ageing + β9ChemMIX · Ageing + β10ChemNCA · Tamb+

+ β11ChemMIX · Tamb + β12Ageing ·RInt + β13Ageing · Tamb + β14RInt · Tamb

(7.20)

Response
variable β0 β1 β2 β3 β4 β5 β6 β7

%σIStart [−] 0.153 -0.002 0.044 0.014 0.098 . . . . . .0.020 - -
%σIMid [−] 0.041 . . . . . . .-0.014 0.021 0.005 0.020 0.003 0.005 -
%σIEnd [−] 0.151 -0.003 0.032 0.009 0.098 . . . . . .0.025 - -
∆SoCMax [%] 9.430 -0.795 2.600 0.659 6.764 0.807 . . . . . .1.093 -
∆SoCEnd [%] 2.648 -0.939 . . . . . .0.981 0.287 1.402 -0.683 1.384 -
∆TMax

Net [◦C] 0.147 - - 0.313 . . . . . .0.477 -0.941 - 0.552
σTMean [−] 0.384 -0.052 0.089 0.030 0.171 -0.051 - -
TTSB [−] 318.575 58.834 -42.268 82.158 359.093 -210.082 . . . . . . . . .-135.242 86.642

Response
variable β8 β9 β10 β11 β12 β13 β14 R2

%σIStart [−] 0.018 -0.010 -0.005 0.020 - 0.005 - 0.93
%σIMid [−] - - - - - - 0.003 0.91
%σIEnd [−] 0.016 -0.008 -0.005 0.018 - - 0.015 0.90
∆SoCMax [%] 0.729 -0.439 - - - 0.498 - 0.97
∆SoCEnd [%] - - 0.328 -0.651 - 0.551 -0.478 0.78
∆TMax

Net [◦C] - - - - - - 0.247 - 0.61
σTMean [−] - - - - - - . . . . . . .-0.055 0.67
TTSB [−] - - -55.121 82.870 43.473 -46.775 -107.180 0.94

related, thereby facilitating the identification of whether the relationship is linear,
monotonic, or more intricate in nature. However, the principle of PDPs based on
averages does not necessarily eliminate the possibility of interference from interact-
ing variables. This limitation is circumvented by the complementary character of
PDPs and ICE plots, which perform optimally when combined as in the presented
research.

7.2 Results and discussion

Sections 7.2.1 and 7.2.2 present the results for the MLR and ML models, respectively.
Additionally, the two approaches are compared in Section 7.2.3, and the limitations are
summarized in Section 7.2.4.

7.2.1 MLR models analysis

Table 7.2 presents the MLR models for the eight response variables under consideration, as
detailed in Equation (7.9), in which the three most significant predictors are highlighted.
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Figure 7.4: Contour plots derived from the multivariate linear models simulated space
for (a) σIStart, (b) σTMean, (c) TTSB. The horizontal and vertical axes of individual
contour plots are the interconnection resitance and the test temperature, respectively.
The columns of each group of six contour plots have new and aged cells configurations,
respectively, while the rows differ upon chemistry (NMC, NCA, Mix).

Note that, the reported models have been refined by excluding statistically irrelevant
terms using the AIC method. Additionally, the chemistry features are categorized into
two groups: ChemNCA and ChemMix. This categorization is necessary because the three
levels in the DOE (i.e. NCA, NMC, and Mix) are treated as two binary pairs in the MLR
model.
Interconnection resistance emerges as the most influential factor for both the initial and
final current distributions, with the effects of chemistry and its combinations following
closely. For σImean, chemistry again plays a significant role. Further analysis will explore
how chemistry and aging contribute to the internal characteristics of the cells. In terms of
the maximum and final SOC differences, both interconnection resistance and its square, as
well as the inclusion of different chemistries, are crucial factors. The models generally per-
form well, with five out of eight response variables achieving an R2 of 0.9. The predictive
models for temperature yield less satisfactory results, primarily due to the measurement
uncertainty associated with temperature itself. Nevertheless, the MLR coefficients suggest
that interconnection resistance, operating temperature, and its square influence both the
net surface temperature increase and its gradient between the cells. Finally, the TTSB
variability can be predominantly attributed to interconnection resistance, its square, and
operating temperature.
The MLR model formulations, detailed in Table 7.2, are further illustrated using contour
plots, as shown in Figure 7.4. This figure includes three of the eight response variables from
the MLR model: σIStart, σTMean, and TTSB. The x and y axes represent interconnection
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resistance and test temperature, respectively. The columns indicate different aging levels,
while the rows display tests with NCA, NMC, and mixed chemistries.
A common trend observed across all three plots is that as interconnection resistance
increases, the performance of cells connected in parallel deteriorates. Figure 7.4(a) illus-
trates that higher interconnection resistance leads to increased initial current heterogene-
ity, potentially exceeding 300 mA. While temperature has a minimal effect on individual
NCA and NMC cells, it significantly influences combinations of different chemistries.
The bottom row of the figure shows that resistance and temperature have nearly equal
relevance. Higher temperatures exacerbate current distribution issues, with a 70 mA
difference observed between 10 ◦C and 40 ◦C at constant resistance. Additionally, the
presence of an aged cell adversely affects the current distribution in other cells. The
contour plot for σTMean is shown in Figure 7.4(b). It is visible that the ambient tempera-
ture significantly influences the temperature gradient, exhibiting a non-linear relationship
with interconnection resistance. The reduction in temperature gradient ranges from 0 ◦C

at 1 mΩ resistance to 0.2◦C at 3 mΩ, with similar trends observed for both NMC and
NCA cells. When combining different chemistries, the temperature difference between
cells can exceed 0.7◦C. An aged cell has minimal impact on temperature distribution in
single-chemistry scenarios but increases the gradient to 0.35-0.75◦C in mixed-chemistry
situations. Finally, Figure 7.4(c) illustrates a pronounced curvature in the TTSB with
respect to interconnection resistance and operating temperature, while aging level and
cell mixture have a less pronounced impact.
Despite the MLR analysis of the performance of the parallel-connected battery module,
this analysis provides additional insights. It confirms that combining NMC and NCA cells
in parallel is feasible. However, it also highlights a detrimental effect on both current and
temperature distribution. This issue is primarily due to the differing internal character-
istics of the two cell types. Although the discharge capacity difference is approximately
2%, the internal resistance of NCA cells is 30% lower than that of NMC cells, leading to
increased heterogeneity when cells are connected in parallel. Similarly, the inclusion of
an aged cell adversely affects the balance between the cells.

As briefly mentioned in the previous paragraph, linearizing categorical variables poses sig-
nificant challenges. To overcome this, the categorical variables representing chemistry
and aging are transformed into numerical variables. These numerical variables provide
detailed information on internal resistance and cell capacity distribution within the mod-
ule. Specifically, ∆R0 and ∆Cn are introduced to quantify the differences in resistance and
capacity between the stronger and weaker cells within the module. This approach is physi-
cally justified, as the primary distinctions between NMC, NCA, and Mix configurations lie
in their internal parameter values under both aged and fresh scenarios. Furthermore, by
replacing categorical variables with numerical counterparts, a higher level of granularity
is achieved in the variation of control variables. This transformation allows for a more
nuanced analysis, as the variables are no longer confined to two or three discrete levels
but can capture a continuous range of values. To ensure the robustness of the model and
to prevent potential multicollinearity among the predictors, a Variance Inflation Factor
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(VIF) analysis is conducted prior to modifying the predictors. This step is crucial in
identifying and mitigating any correlated predictors, thereby enhancing the reliability of
the regression results.

7.2.2 ML models analysis

Figures 7.5, 7.6, 7.7 present contour plots resulting from the MLR, NN and RF models
for TTSB, respectively. The x and y axes are replaced by the new control variables
∆R0 and ∆Cn. The columns indicate the interconnection resistance, while the rows
represent the ambient temperatures. Note that, each contour plots are constrained by
∆R0 and ∆Cn obtained in the tests. The key difference between conventional linear
models and ML models is their interpretability. As illustrated in Figures 7.6 and 7.7,
the ML models exhibit a higher sensitivity to the dataset used. This is evident from the
distinct island-like countrs in the NN plots and the square-shaped contours observed in
the RF plots. Consequently, this high sensitivity makes ML models more challenging to
interpret compared to traditional linear models.
The initial method applied is the SHAP technique [212], as shown in Figure 7.8 for the
eight response variables in the RF model. Similar findings are observed with the NN
model, though these results are omitted here for conciseness. As detailed in Section 7.1.3,
SHAP values facilitate the ranking of feature importance, highlighting key factors influenc-
ing model performance. Consistent with findings from linear models, the interconnection
resistance emerges as the most significant factor affecting parallel string performance,
with the exception of ∆TMAx

Net . Figure 7.8 (g) demonstrates that cell temperature in-
versely impacts the increase in temperature during operation. This inverse relationship
is attributed to the fact that lower operating temperatures lead to a greater temperature
rise during discharge due to heightened ohmic losses. Additionally, the internal resistance
of the cell is known to vary with operating temperature. The ranking of the remaining
three features fluctuates depending on the specific response variable considered. Among
the notable trends, Figure 7.8 (b) reveals a strong influence of ∆Cn on σIMid, suggesting
that discrepancies in nominal capacity between cells affect the current distribution during
the discharge’s central phase. Meanwhile, variations in internal resistance at both the
start and end of discharge exert a more pronounced effect, as shown in Figures 7.8 (a)
and (c). Operating temperature also significantly impacts the TTSB, as illustrated in
Figure 7.8 (h). Interpreting the differences in SOC, as depicted in Figures 7.8 (e) and
(f), is more complex. The model demonstrates greater stability in predicting ∆SoCMax

compared to ∆SoCEnd, suggesting a more substantial influence of ∆R0 on the maximum
SoC differences. Conversely, Figure 7.8 (f) does not reveal a distinct order of importance
among the features.
Although SHAP analysis is effective in ranking controllable variables, it does not address
how their effects are distributed spatially. To address this limitation and enhance model
interpretability, PDP and ICE plots are employed. Figure 7.8 presents these plots for both
the Neural Network (NN) and Random Forest (RF) models, covering five of the eight re-
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sponse variables. 1 The angular coefficient of the curves provides insights analogous
to those given by the normalized coefficients in linear models. It becomes evident that
interconnection resistance is the most significant factor, as it yields the highest angular
coefficient, consistent with previous analyses. Both ML models shows similar results. As
predicted by the SHAP analysis, ∆Cn plays a crucial role alongside interconnection resis-
tance when addressing σIMid, as illustrated in Figure 7.9 (b). For σIStart shown in Figure
7.9 (a), the interconnection resistance and ∆R0 are the most significant factors. In the
NN model, a strong linear relationship between ∆R0 and σIStart is observed. Conversely,
in the RF model, ∆R0 shows notable increases only near the median values, a pattern
that is also evident for ∆SoCMax in Figure 7.9 (c). On the other hand, the dependency of
σTMean on ∆R0 and ∆Cn in Figure 7.9 (d) is less clear, with oscillations suggesting a high
sensitivity to the dataset. Finally, Figure 7.9 (e) shows that TTSB is directly correlated
with interconnection resistance and inversely correlated with operating temperature.
Note that PDP and ICE plots offer insights into the impact of each individual feature in-
cluded in the analysis, but they do not capture interactions between features. To examine
the interactions between control variables, two-dimensional PDP plots can be used. For
those interested in a more detailed analysis of 2D PDPs, please refer to [31].
These graphs help determine whether the machine learning model employs linear, mono-
tonic, or non-linear relationships between the control and response variables. In the in-
vestigated scenario, the relationships appear to be only slightly non-linear. In such cases,
a linear model may be adequate for predicting both the responses and the importance of
the features, as will be further demonstrated in the next section.

7.2.3 Models comparison

The predictive performances of the three models, expressed in terms of R2 with the
corresponding standard deviation reported in parentheses, are detailed in Table 7.3. This
evaluation utilizes 5-fold cross-validation.
Overall, the performance of the modeling frameworks is comparable for σIStart, σIEnd, and
∆SOCmax, each exhibiting R2 values greater than 0.85. On the other hand, a performance
decrease is observed for the remaining response variables, with R2 values ranging from
0.43 to 0.89. However, no single modeling framework consistently outperforms the others
across these variables. RF models are particularly effective for predicting σIMid, while NN
demonstrate superior performance in modeling the variability of the maximum thermal
gradient. In contrast, MLR models offers the best predictions for the TTSB. Finally, the
standard deviation is a critical metric as it reflects the stability of the model outcomes
across different datasets. It is evident that for variables such as temperature and final
SoC variation, both the absolute predictive performance and repeatability are limited.

1The response variables, including initial and final current, maximum and final SoC variation, ∆TMax
Net ,

and σTMean, are pairwise correlated.

155



Random Forest Neural Network

−1 0 1

∆R0

0.0

0.1

0.2

0.3

P
a
rt

ia
l

d
e
p

e
n
d
e
n
c
e

−1 0 1 2

∆Cn

0.0

0.1

0.2

0.3

−1 0 1

RInt

0.0

0.1

0.2

0.3

−1 0 1

T

0.0

0.1

0.2

0.3

(a)σIStart

−1 0 1

∆R0

0.000

0.025

0.050

0.075

0.100

P
a
rt

ia
l

d
e
p

e
n
d
e
n
c
e

−1 0 1 2

∆Cn

0.000

0.025

0.050

0.075

0.100

−1 0 1

RInt

0.000

0.025

0.050

0.075

0.100

−1 0 1

T

0.000

0.025

0.050

0.075

0.100

(b)σIMid

−1 0 1

∆R0

0

5

10

15

20

P
a
rt

ia
l

d
e
p

e
n
d
e
n
c
e

−1 0 1 2

∆Cn

0

5

10

15

20

−1 0 1

RInt

0

5

10

15

20

−1 0 1

T

0

5

10

15

20

(c)∆SoCMax

−1 0 1

∆R0

0.2

0.4

0.6

P
a
rt

ia
l

d
e
p

e
n
d
e
n
c
e

−1 0 1 2

∆Cn

0.2

0.4

0.6

−1 0 1

RInt

0.2

0.4

0.6

−1 0 1

T

0.2

0.4

0.6

(d)σTMean

−1 0 1

∆R0

0

250

500

750

1000

1250

P
a
rt

ia
l

d
e
p

e
n
d
e
n
c
e

−1 0 1 2

∆Cn

0

250

500

750

1000

1250

−1 0 1

RInt

0

250

500

750

1000

1250

−1 0 1

T

0

250

500

750

1000

1250

(e)TTSB

Figure 7.9: Random Forest (red) and Neural Network (blue) models PDP and ICE plots
for five out of the eight response variables (a-e). Each column reports the PDP and ICE
plots resulting from one individual feature.156



Table 7.3: Evaluated 5-fold cross-validation models performance mean values and stan-
dard deviations.

Model Mean (Std) R2

Response Variable MLR NN RF
σIStart 0.91(0.03) 0.90(0.13) 0.90(0.04)
σIMid 0.73(0.19) 0.74(0.13) 0.89(0.05)
σIEnd 0.86(0.08) 0.90(0.04) 0.85(0.16)

∆SoCMax 0.91(0.04) 0.87(0.14) 0.93(0.02)
∆SoCEnd 0.47(0.24) 0.59(0.73) 0.53(0.11)
∆TMax

Net 0.43(0.25) 0.70(0.60) 0.46(0.27)
σTMean 0.49(0.23) 0.56(0.28) 0.55(0.43)
TTSB 0.73(0.19) 0.65(0.20) 0.66(0.13)

7.2.4 Limitations

This study presents certain limitations. Despite efforts to minimize and monitor the
influence of the experimental setup, parallel-connected cells remain particularly sensitive
to the quality of their connections. While industry-level busbars typically use soldered
connections rather than bolted ones, the results of this research remain applicable to such
contexts, though the impact of interconnection resistance is expected to be lower due to
its reduced magnitude. Although the proposed methodology is data-agnostic, the tuning
of machine learning model hyperparameters is not. Careful tuning will be necessary when
applying this approach to other scenarios. Further research is needed to explore a broader
range of input and output variables. Future studies could examine different architectures
(such as Z or mixed), chemistries (e.g., LFP, LMO), form factors (18650, 4650, pouch), and
real-world load cycles. Additionally, module configurations with optimized cell spacing
and arrangement should be considered. While this study focuses on performance-related
heterogeneities, the long-term effects of imbalances on cell aging remain an open question
in the literature. Their influence on SOH distribution and aging rates also requires further
investigation.
It is important to note that conducting full-factorial DOE with numerous input features
is both expensive and time-consuming. A more efficient alternative is the use of high-
fidelity, module-level digital twins. In the next chapter, an experimentally validated
electrochemical battery model is introduced for this purpose. By employing high-fidelity
mathematical models that account for Ctc interactions and replicate cell heterogeneity,
we can gain deeper insights into the propagation of heterogeneity within parallel battery
modules. This approach has the potential to enhance module performance, ensure safety,
and ultimately support battery recyclability.

157



7.3 Conclusion

In this chapter, the influence of cell- and module-level properties on the performance of
parallel-connected strings was investigated through a combination of non-invasive exper-
iments and data-driven modeling techniques. A comprehensive 54-condition full-factorial
DOE was conducted on four ladder-parallel connected modules. This allowed for the
independent evaluation of various factors to quantify their impact on overall module per-
formance. The experiments provided insights into how variations in cell current, SOC,
temperature heterogeneity, and TTSB respond to different interconnection resistances,
operating temperatures, combinations of cell chemistries, and levels of aging. These
conditions were examined under a CC discharging scenario. Three different modeling
frameworks were employed to predict performance outcomes and assess the importance
of various predictors. Specifically, MLR was applied in combination with the AIC, while
RF and NN were used alongside SHAP values, PDP, and ICE plots.
The main findings are summarized as follows:

1. Interconnection Resistance: The interconnection resistance was identified as the
most significant factor contributing to performance heterogeneity within parallel-
connected strings. In the early and middle stages of discharge, internal resistance
and capacity distribution respectively influenced load imbalances across the cells.
An increase in operating temperature exacerbated the temperature gradient within
the string. To mitigate self-balancing currents post-discharge, optimized busbar
design and effective thermal management are crucial.

2. Mixed Chemistries: Statistical analysis from the DoE indicates that combining
NMC and NCA cells in parallel is feasible. However, this results in a twofold in-
crease in current deviation between the cells compared to using a single chemistry.
While temperature gradients increase, the TTSB remains largely unaffected by this
combination.

3. Aging Effects: The introduction of an aged cell into the string worsened the overall
homogeneity of the cells performance. Additionally, the impact of operating tem-
perature on performance imbalances increased, underscoring the need for improved
thermal management in such cases.

4. Modeling Performance: Both traditional linear regression and machine learn-
ing models demonstrated comparable predictive accuracy, with R2 values exceed-
ing 0.85 for most response variables, except for ∆SoCEnd and temperature-related
signals. While the machine learning models exhibited strong performance, their in-
terpretability remained limited, thus, XML techniques demonstrated their value in
addressing this limitation.
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Model-based analysis of CtC variation
impact on parallel-connected module
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This contribution is based on the following work:

• [27] Fasolato, S., Allam, A., Onori, S., and Raimondo, D. M. (2024). Cell-to-Cell
Heterogeneities and Module Configurations analysis in Parallel-Connected Battery
Modules via physics-based modeling, Journal of Energy Storage, Submitted.

Introduction

As outlined in the introduction of Chapter 7, CtC variations arise from multiple sources
and their effects are intricately interrelated within parallel battery modules. Furthermore,
it was emphasized that the effective implementation of a DOE is essential for establishing
a well-structured experimental campaign, to ensures the reliable results while optimizing
the utilization of available resources.
However, considering the multitude of factors involved in module and pack design, along
with the long-term effects of CtC variations on battery system aging, utilizing digital
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twins presents an effective alternative approach. Digital twins employ high-fidelity math-
ematical models that capture CtC interactions and replicate both cell heterogeneity and
module responses. This methodology provides valuable insights into how heterogeneity
propagates within parallel battery modules, especially under stringent economic, tempo-
ral, and facility constraints that hinder the execution of complex experimental campaigns.
In this chapter, this efficient approach by utilizing an experimentally validated electro-
chemical battery model, with the final aim to investigate the impact of CtC variation on
parallel-connected battery modules through a model-based statistical approach. Within
this framework, high-fidelity electrochemical models are preferred over ECMs due to their
ability to accurately capture the intricate electrochemical dynamics of each cell. Un-
like ECMs, which simplify the battery behavior using electrical components, high-fidelity
models provide a more detailed representation of the underlying electrochemical processes,
and, in turn, are better suited for offline high-fidelity simulations.

Chapter contribute

The physics-based modeling framework for parallel-connected cells, identified and validated
in Section 5.2 of Chapter 5, is adopted in this chapter. Specifically, the electrochemical
dynamics of each cell are modeled using ESPM, coupled with a thermal model. This
thermal model has been identified and validated using single-cell characterization data
from a batch of 19 cells and module-level experiments. The framework incorporates both
Cell-to-Cell (CtC) thermal and electrical interactions, along with a physics-based aging
model. Compared to several ECM-based parallel-connected modules proposed in the litera-
ture [200, 194, 169, 213, 191, 214, 164, 215, 171], the present model accurately monitors
the electrochemical states of each cell and is better suited for offline high-fidelity sim-
ulations. Additionally, the preference for the ESPM over the more complex DFn-based
parallel-connected module models [189, 186, 216, 176] is due to its demonstrated compara-
ble performance at C-rates below 3 [217]. Furthermore, the ESPM significantly reduces the
computational burden when dealing with a large number of cells and conducting long-term
simulations. Subsequently, a statistical analysis is performed using multi-linear regression
to examine the influence of CtC parameter uncertainties and module configuration on cell
current and temperature distributions, as well as on the module’s energy and capacity in
both fresh and aged conditions. Unlike the previous chapter, this analysis incorporates the
effects of varying cell spacing, cell location, and manufacturing-induced CtC variations
within the module, investigating their impacts under both short-term and long-term oper-
ations. Conversely, ambient temperature and the effects of mixed chemistry are excluded
from this analysis. Finally, a simple cell arrangement strategy is proposed to mitigate ther-
mal gradients in parallel-connected battery modules, thereby reducing the aging gradient
between cells by the end of the simulations.
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Figure 8.1: Visual overview of the model-based CtC variations analysis described in this
chapter.

Chapter structure

• Section 8.1 provides a comprehensive description of the model and methods em-
ployed in this study. Specifically, Section 8.1.1 directs readers to Chapter 5, where
the model is thoroughly described. Additionally, Section 8.1.2 details the MLR-
based statistical analysis conducted.

• Section 8.2 presents the results of the MLR-based analysis. Specifically, Sections
8.2.1 and 8.2.2 detail the outcomes for the short-term and long-term scenarios,
respectively. Furthermore, Section 8.2.3 outlines the cell arrangement strategy.

• Section 8.3 summarizes the conclusions drawn and outlines future research oppor-
tunities.
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Figure 8.2: Schematic representation of the physics-based electrochemical-aging-thermal
model for the battery module, where the module thermal model and the ESPM coupled
with the SEI-based aging model are highlighted.

8.1 Model and method

8.1.1 High-fidelity model

At the core of the analysis lies a mathematical model, schematically depicted in Figure 8.2,
capable of accurately capturing the electrochemical, thermal, and aging dynamics of each
cell within the module. Particularly, the ESPM-baed module-level model described in
Section 5.2 is employed in this Chapter. The cell-level dynamics, described by the ESPM
in conjunction with a physics-based degradation model, was identified and validated using
characterization data (i.e. Pesudo-OCV test and HPPC) from a batch of 19 LG Chem
INR 21700 M50T cells, as described in Section 5.2.1. Subsequently, the parallel-connected
module model was developed by integrating the cell-level dynamics with module-level
electrical and thermal models, as validated and presented in Section 5.2.2.

8.1.2 CtC variation effect: MLR analysis

In this study, MLR analysis is used to assess the impact of a set of independent variables
(predictors) on a response variable, assuming a linear relationship between predictors and
the response, as reviewed in Section 7.1.2.1. The predictors selected for the MLR model
represent common sources of CtC variations in battery modules at the beginning of their
lifecycle. Subsequently, a relative importance analysis evaluates their contributions to
cell current and thermal heterogeneities, as well as to the energy and capacity of parallel-
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connected modules under both fresh and aged conditions.
To achieve our objective, we simulate a population of battery modules by sampling val-
ues of highly influential parameters (i.e. [ϵn, ϵp]), electrical interconnection resistances
(Rint), cell spacing (Sp), and their respective locations. Variations in ϵn and ϵp stem from
tolerances in various electrode production steps—mixing, coating, calendaring, and slid-
ing [218]. The parameter set [ϵn, ϵp] is chosen based on sensitivity analysis results for the
ESPM present in the literature (Section X) and from the identification procedure outlined
in Section 5.2.1, where it was shown that the variation of [ϵn, ϵp] can effectively capturing
capacity variations across batches of fresh cells. Given the numerous physical parameters
in the ESPM, addressing this issue solely through simulations would be computationally
demanding. In contrast, differences in Rint and Sp are influenced by module design and
manufacturing precision.
Note that, ϵn and ϵp are simultaneously perturbed for each cell in the module, inducing
capacity gradients among interconnected branches. As mentioned earlier, auxiliary vari-
ables, specifically the mean value (µϵs,j) and standard deviation (σϵs,j) of both parameters,
are considered as predictors to account for the parameter distribution within the module.
These are calculated as follows:

µϵs,j =
1

Np

Np∑
i=1

ϵ
[i]
s,j, σϵs,j =

√√√√ 1

Np − 1

Np∑
i=1

(ϵ
[i]
s,j − µϵs,j)

2, with: j ∈ [n, p] (8.1)

It is important to note that assuming that cell capacity can deviate by up to 2.5% from the
nominal value (i.e. 4.85 Ah for the LG M50T battery), the lower and upper bounds for ϵn
and ϵp are determined based on the relationships identified in Section 5.2.1 considering the
batch of 19 tested cells. Specifically, the values of ϵn and ϵp are randomly sampled for each
cell assuming a uniform probability distribution for both parameters. Besides µϵs,j and
σϵs,j , the other predictors for the multi-linear regression models are Sp, assumed identical
between all cells and highlighted in Figure 8.2, Rint, and cell location (Loc) within a
module of Np parallel-connected cells, as detailed in Table 8.1. Specifically, Sp and Rint

are randomly sampled within the intervals [1, 10] mm and [0.1, 0.5] mΩ , respectively.
The introduction of the predictor Loc aims to consider the effect of cell arrangement on
the thermal gradient. Specifically, for each perturbed parameter, Loc is calculated as a
weighted mean value of min( ¯ϵs,n

[i], ¯ϵs,p
[i]), as shown in (8.5). Here, ¯ϵs,j

[i] is the normalized
value of ϵ[i]s,j within the interval [0,1], and wi is the weight depending on the position of
the cell (Pi = 1, 2, · · ·Np) within the module.
A total of 500 battery modules are generated, each of them undergoes 500 cycles at an
ambient temperature of Tamb = 25◦C. Each cycle consists of the following steps: 1) CCCV
charge at a C/3-rate, 2) 30 minutes of rest, 3) CC discharge at a 1C-rate, starting from
100% SOC down to 0% SOC, 4) another 30 minutes of rest to allow for the balancing
of any SOC heterogeneity within the module. The quantities of interest for the CtC
analysis (i.e. response variables) that are computed for all the conducted simulations are
presented in Table 8.1. In particular, %∆E and %∆Q, calculated as in (8.11) and (8.12),
indicate the percentage deviation of the module energy (Emod) and capacity (Qmod) from
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their reference values Eref
mod and Qref

mod, respectively. The reference module is composed by
4 unperturbed cells, cycled considering Rint = 0.25mΩ and Sp = 5mm, where Emod and
Qmod are calculated as:

Emod =

∫ tchend

tchin

VmodImoddt, Qmod =

∫ tchend

tchin

Imoddt (8.2)

and tchin and tchend are the initial and final time instant of the CC discharging cycle. Further,
σIcell is the mean of the cell current standard deviation, calculated as in (8.14). ∆Tmax is
maximum thermal gradient (8.13) and σTcell is the mean of the cell temperature standard
deviation. Elost measures the energy lost experienced from the first charging cycle (i.e.,
the Beginning Of Simulation - BOS) until the End of the Simulation (EOS), after a total
of 500 cycles. σREOS

SEI , reported in Eq. (8.16), represents the standard deviation of SEI
resistance of the cells within the module at the EOS. Finally, ∆µϵs,n and ∆σϵs,n are,
respectively, the difference between the µϵs,j and σϵs,j calculate at the BOS and EOS, as
in (8.18) and (8.17).

8.2 Results and discussion

In this section, the results of the MLR statistical analysis are discussed. Specifically, the
outcomes of the short-term and long-term analyses are presented in Sections 8.2.1 and
8.2.2, respectively.

8.2.1 MLR analysis: short term CtC heterogeneity effects

In this section, the short-term impacts of CtC heterogeneities on fresh battery cells are
investigated. We focus on the previously mentioned response variables, specifically %∆Q,
%∆E, σIcell , σTcell and ∆Tmax, while excluding those affected by aging, such as Elost,
σREOS

SEI , ∆µϵs,n and ∆σϵs,n . Before constructing the multilinear regression models, we
conduct both correlation and Variance Inflation Factor (VIF) analyses on the model pre-
dictors to mitigate multicollinearity. Multicollinearity occurs when independent variables
in a regression model are correlated, leading to unstable coefficient estimates and unreli-
able statistical tests on these coefficients [208]. A VIF value of 1 indicates no correlation
between a given predictor and the other predictors, whereas VIF values exceeding 5 or
10 suggest significant multicollinearity. It is important to note that the set of predictors
previously introduced (i.e. Γ1 = [µϵs,n , µϵs,p , σϵs,n , σϵs,p , Rint, Sp, Loc]) are uncorrelated, as
demonstrated in Figure 8.3(a-b), making them well-suited for MLR model construction.
The MLR models are then constructed using the structure defined in Equation (7.9),
focusing on terms that exhibit statistical significance (p-value < 0.05). To evaluate the
relative importance of each predictor, a comprehensive relative importance analysis was
performed, and the results are presented in Figure 8.3 for each considered response vari-
able. This analysis assesses the contribution of each predictor to the increase in the corre-
sponding model’s R2 value. The first column of Figure 8.3(c.1-g.1) visually represents the
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Table 8.1: Multi linear regression model predictor aand response variable

MLR models: Predictors

µϵj =
1

Np

Np∑
i=1

ϵ
[i]
s,j , with: j ∈ [n, p] (8.3) σϵj =

√√√√ 1

Np − 1

Np∑
z=1

(ϵ
[z]
s,j − µϵj )

2, j ∈ [n, p]

(8.4)

Loc =

Np∑
i=1

wi · min( ¯ϵs,n
[i], ¯ϵs,p

[i]), where wi =

{
(
Np

2 + 1)− Pi if: 1 ≤ Pi ≤ Np

2
Np

2 − P1 if: Np

2 < Pi ≤ Np

(8.5)

µcomb =
1

Np

Np∑
i=1

min( ¯ϵs,n
[i], ¯ϵs,p

[i]) (8.6) σcomb =

√√√√ 1

Np − 1

Np∑
z=1

(min( ¯ϵs,n[i], ¯ϵs,p[i])− µcomb)2

(8.7)

Locj =

Np∑
i=1

wi · min(ϵ[i]s,j), j ∈ [n, p] (8.8) Cell spacing (Sp)

σIcell =
1

tend − t0

∫ tend

t0

√√√√ 1

Np − 1

Np∑
z=1

(I
[z]
cell − Imod/Np)2dt (8.9)

σTcell =
1

tend − t0

∫ tend

t0

√√√√ 1

Np − 1

Np∑
z=1

(
T

[z]
cell −

1

Np

Np∑
i=1

T
[i]
cell

)
dt (8.10)

MLR models: Response variables

%∆E = 100
Emod − Eref

mod

Eref
mod

(8.11) %∆Q = 100
Qmod −Qref

mod

Eref
mod

(8.12)

∆Tmax = max(Tmod
s )−min(Tmod

s ) (8.13) %∆Imax = 100
max(Imod

cell )−min(Imod
cell )

Imod/Np
(8.14)

Elost = EEOS
mod − EBOL

mod (8.15) σREOS
SEI =

√√√√ 1

Np − 1

Np∑
z=1

(
R

[z],EOS
SEI − 1

Np

Np∑
i=1

R
[i]
SEI

)2
(8.16)

∆σϵs,n = σEOS
ϵs,n − σBOS

ϵs,n (8.17) ∆µϵs,n = µEOS
ϵs,n − µBOS

ϵs,n (8.18)
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(a) Predictor correlation analysis
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(b) Predictor variance in.ation factor (VIF) analysis
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Figure 8.3: Figure (a) and (b) report the correlation and VIF analyses for the model
predictors, respectively. Figures (c.1-g.1) depict the impact of each term in the multilinear
regression (MLR) model on the model’s R2. Figures (c.2-g.2) rank the terms of the MLR
model according to their influence on increasing R2. Finally, Figures (c.3-g.3) visually
demonstrate the contributions of the two most influential predictors to the corresponding
response variable.
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contribution of each term in the MLR model, highlighting their individual impact. The
second column (Figure 8.3(c.2-g.2)) ranks the five most significant predictors based on
their contribution to the increase in R2, providing a clear view of the key drivers of model
performance. The third column (Figure 8.3(c.3-g.3)) illustrates the response variation
over the most important predictor on the x-axis, with colors indicating the influence of
the second most important predictor.
In the following section, to enhance the explanation of the variability in the module re-
sponse and to capture the key factors influencing the module’s behavior, an additional
seven predictors are added to the MLR model depending on the response variable con-
sidered. These additional predictors are: µcomb, σcomb, Locn, Locp, σSOC, µSOC, and
∆Tmax. µcomb and σcomb represent the lumped mean and standard deviation of ϵs,j, ac-
counting for the fact that cell capacity is limited by the weakest electrode. The ϵs,j values
are normalized to the [0,1] range, and the average is calculated by taking the minimum
ϵs,j value for each cell, as detailed in equation (8.6). Locj =

∑Np

i=1wiϵ
[i]
s,j with j ∈ [n, p]

stands for the location index for each perturbed cell-level parameter. σSOC and µSOC

are the standard deviation and mean value of the SOC of the Np cells at the end of the
discharge cycle. The main trends resulting form the MLR analysis are the following:

1. Current distribution standard deviation (σIcell): Rint and σϵs,j (with j ∈ [n, p])
emerge as the primary drivers influencing the heterogeneous current distribution
among the parallel branches. Specifically, the current gradient increases at the be-
ginning of the operation as the Rint value rises. In contrast, a higher σϵs,j results in
larger current heterogeneities in the middle and final SOC range. The significance
of σϵs,j as a predictor is primarily due to a key reason. When cells with unmatched
ϵs,j are connected, the electrode particles experience different lithium-ion intercala-
tion and deintercalation fluxes during operation. This discrepancy leads to varying
surface concentrations across the cells, causing them to operate at different Uj and
ηj. With the same overall current injected into the module, this imbalance in Uj
and ηj results in an uneven distribution of current among the different branches,
exacerbating current heterogeneities. Although the R2 value of the model using the
Γ1 predictor set is satisfactory (i.e. 0.82), the model fitting can be further enhanced
by including the ∆Tmax and σSOC as additional predictors. A high thermal gra-
dient causes significant variations in the temperature-dependent parameters within
the cell-level ESPMs, particularly increasing heterogeneity in the particle diffusion
coefficient among the cells. This exacerbates the differences in surface concentration
(csurfs,j ), further impacting the current distribution. Similarly, large σSOC indicates
that the cells have operated at different SOC, resulting in dissimilar OCV values.

2. Percentage variation in the module capacity and energy (%∆Q and %∆E):
The µϵs,j with j ∈ [n, p] emerge as the primary drivers influencing the overall module
capacity and energy of the battery modules, as highlighted by both %∆Q and %∆E.
According to [146], the capacity of a single cell is directly proportional to the ϵs,j
values. Therefore, in parallel-connected modules, an higher µϵs,j values, indicating
larger magnitudes of ϵs,j, substantially influence the module’s total capacity, as it
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depends on the cumulative energy of its individual cells [200]. Furthermore, Rint

plays a significant role, particularly in affecting %∆E, as theRint increases, the Joule
losses within the module also rise, thereby reducing the overall energy efficiency.
To further improve the fitting performance of the MLR models for both response
variables, which currently show R2 values lower than 0.6 using the predictor set
Γ1, two variations are introduced in the predictor list. First, the µϵs,j and σϵs,j are
replaced with a lumped mean and standard deviation (µcomb and σcomb) to account
for the fact that cell capacity is limited by the weakest electrode. Specifically, the ϵs,j
values are normalized to the [0,1] range for comparability, and the average is then
calculated by taking the minimum ϵs,j value for each cell, as in eq. (8.6). Secondly,
the predictor list is enhanced by integrating the mean state of charge µSOC. A
high value of this index indicates that the energy extracted from the module during
the cycle is not entirely depleted, even when the cutoff voltage is reached, as the
cells remain slightly charged. As evident from Figure 8.4, the updated predictors
µcomb and µSOC significantly impact the variability of the module responses. This
improvement is also highlighted by the R2 values, which increased from 0.57 and
0.7 to 0.99 and 0.99, respectively.

3. Thermal distribution standard deviation (σTcell) and maximum thermal
gradient (∆Tmax): Rint and the σϵs,j with j ∈ [n, p] emerge as the primary fac-
tors influencing the heterogeneous thermal distribution among parallel cells. It is
important to note that σIcell and σTcell share the same most significant predictors.
This is because heterogeneous temperatures are primarily driven by uneven current
distribution, especially in the absence of a thermal management system. Although
this trend is confirmed by ∆Tmax, the R2 value of 0.42 highlights that we are not
fully able to describe the response variability using the predictor set Γ1. As will
become clear in Section 8.2.3, ∆Tmax occurs at low SOC values primarily due to
variations in the anode OCV, leading to significant current gradients. This effect
is exacerbated by the positions of cells with the highest and lowest capacity of the
negative electrodes. To better capture this behavior in the MLR analysis, the pre-
dictor set has been modified. The Loc index is now divided into Locn and Locp
to specifically account for the perturbation positions of the negative and positive
electrodes, respectively. This adjustment ensures that the model more accurately
reflects the influence of electrode location on thermal distribution and current gra-
dients, as shown in Figure 8.4(c.1-c.3). In particular, the R2 which increased from
0.82 and 0.41 to 0.98 and 0.90 for σTcell and σIcell, respectively.

8.2.2 MLR analysis: long term CtC heterogeneity effects

The long-term impact of CtC variation on the performance and health of a battery mod-
ule over 500 cycles is thoroughly investigated. This evaluation focuses on four critical
response: Elost, ∆µϵs,n , ∆σϵs,n and σREOS

SEI . It is important to note that Elost, ∆µϵs,n ,
and ∆σϵs,n are determined by calculating the difference between their initial values at
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Figure 8.4: Figures (a.1-e.1) illustrate the impact of each term in two MLR models.
The blue line represents the predictors set Γ1, while the orange solid line represents the
enhanced model. Figures (a.2-e.2) rank and compare the terms of both MLR models
based on their influence on increasing R2. Figures (a.3-e.3) visually demonstrate the
contributions of the two most influential predictors to the corresponding response variable.
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Figure 8.5: MLR analysis long-term simulation results. Figures (a.1-d.1) rank and com-
pare the terms of both MLR models based on their influence on increasing R2. Figures
(a.2-d.2) visually demonstrate the contributions of the two most influential predictors to
the corresponding response variable.

the BOL and their final values at the EOS. A positive value for ∆µϵs,n and ∆σϵs,n signi-
fies an increase in heterogeneity over time, indicating that the module is not benefiting
from the cell aging self-balancing effect. While Elost and σREOS

SEI underscore the loss of
energy and the increase in heterogeneity related to cell SEI film resistance throughout
the simulation. The Pareto analysis results, derived from the MLR models based on the
simulated data, are presented in Figure 8.5. Overall, the results suggest that electrode-
based manufacturing-induced heterogeneities (i.e. µϵs,n and σϵs,n) significantly influence
the aging behavior of the parallel-connected module. ∆µϵs,n and ∆σϵs,n are directly pro-
portional to the initial heterogeneity, showing a larger magnitude as µϵs,n and σϵs,n at
BOL rises. σREOS

SEI strongly depends on the initial σϵs,n , while Elost depends on µϵs,j . The
cell location emerges as the second most important factors, especially for the Elost and
σREOS

Sei . As emphasized in Section 8.2.1, the primary reason for this outcome is the strong
correlation of Locn and Locp with the thermal gradient within the parallel-connected
branches, which is responsible for triggering the aging mechanisms within the system.
Indeed, our findings are consistent with previous experiments conducted in this field. For
instance, [219] demonstrated that a 6 parallel-connected cells battery module subjected
to a thermal gradient of 20◦C experienced a 5.2% higher degradation rate compared to
the isothermal case. This trend was further validated through experimental evidence by
[190], who observed an accelerated aging rate in 2 parallel-connected cells exposed to
a thermal gradient of 25◦C. Furthermore, the authors highlighted that a high thermal
gradient within the module led to divergent capacity fade among the parallel-connected
cells. Another intriguing observation is that, both ∆µϵs,n and ∆σϵs,n show positive values,
underlying that the initial CtC heterogeneities diverge over time, confirming the results
of [24] [162].
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8.2.3 Cell arrangement strategy for thermal gradient reduction

According to the previous section, the degradation and propagation of heterogeneity in
parallel-connected battery modules are significantly influenced by the initial heterogene-
ity characteristics of the fresh cells (i.e µϵs,j and σϵs,j). The µϵs,j and σϵs,j of the initial
cell parameters are primarily determined by the manufacturing process and cannot be
optimized post-production. However, the arrangement of cells within the module, which
emerged as the second most critical predictors, provides an opportunity to enhance the
overall performance and longevity of the battery module. The necessity of an optimized
cell arrangement to mitigate thermal gradients within the module casing and improve
the uniformity of cell aging has been discussed in the literature over the past decade.
Among the most relevant studies, the authors in [220] proposed an innovative cell spac-
ing distribution optimization strategy, where cells are non-uniformly spaced within the
module. This optimization resulted in a substantial reduction of Tmax by 3◦C, and an
impressive 60% decrease in ∆Tmax when compared to the conventional uniform cell place-
ment. Further, [221] compares three module configurations: inline, offset, and staggered
cell arrangements, in terms of thermal gradient and power consumption of the battery
thermal management system (BTMS). It was demonstrated that adopting an offset cell
arrangement leads to a remarkable 43.1% reduction in power consumption for the BTMS
compared to using inline and staggered cell arrangements.
This study introduces a straightforward cell arrangement strategy for a parallel-connected
battery module. The primary approach to tackle thermal inconsistencies within the mod-
ule revolves around taking into account CtC variations resulting from the manufacturing
process and the dissimilar Rint. To mitigate these issues, the proposed strategy involves
positioning cells with larger capacities at the beginning of the module, where the inter-
connection resistance is lower due to the proximity to the module terminals. A lower Rint

results in higher delivered currents during the initial phase of operation. By locating the
cells with the highest capacity at the beginning of the module, it can effectively manage
higher currents and mitigate SOC differences during operation. This arrangement results
in a lower thermal gradient at low SOC levels, as the cells experience more uniform SOC.
Practically, the proposed cell arrangement strategy involves characterizing the individual
cells before building the module. Then, the cells with higher capacity should be placed
in locations where the interconnection resistance is expected to be lower. In situations
where budget and/or time constraints make the preliminary single-cell testing infeasible,
a sub-optimal alternative could be arranging the parallel cells according to their weight.
In [222], a linear correlation between cell capacity and weight was demonstrated for a
batch of 5300 5.3Ah cells.
A visual representation of the cell arrangement strategy is provided in Figure 8.6. To
demonstrate this approach, a 4-cell battery module (M1) is randomly selected from the
MLR analysis simulations conducted in the previous section. The thermal and current
distribution of M1 is compared with that of M2, which is achieved by rearranging the cells
in descending order based on their capacity, in Figure 8.6(d) and (e), respectively. The
cell with the highest capacity delivered the largest current at high SOC and effectively
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Figure 8.6: Cell arrangement strategy for parallel-connected module graphical overview.
(a) shows the battery module with randomly arranged cells (M1) and the optimized cell
arranged(M2). (b) compare the modules’ response variables. (c), (d), and (e) report the
module voltage, the cell current distribution, and the thermal distribution comparison
between M1 and M2, respectively.

managed higher currents, mitigating large SOC gradients, resulting in homogeneous cur-
rent and thermal distribution toward the end of the cycle. Specifically, σIcell and ∆Tmax
decrease from 0.0649 A and 0.471◦C to 0.0573 A and 0.227◦C, as highlighted in Fig-
ure 8.6(b). This results in a reduction of 5.2% (from -7.83% to -7.42%) and 60.9% (from
2.4643e-06 to 9.641e-07) in Elost and σREOS

SEI , respectively. On other hand a slight increase
of both µEOSϵs,n and σEOSϵs,n of 0.01% and 3.3%, respectively, is reported. Overall, the benefits
of the arrangement strategy, such as decreased energy loss and improved uniformity in SEI
resistance, substantially outweigh the minor increase in µEOSϵs,n and σEOSϵs,n , demonstrating
its effectiveness.
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8.3 Conclusion

This study assessed the impact of heterogeneity among parallel cells, resulting from man-
ufacturing tolerances and various module configurations, on the module’s performance.
To the best of our knowledge, this article is the first to consider this type of analysis
for parallel cells. Additionally, unlike other studies relying on empirical evaluations, our
approach employs a model-based method to carry out the analysis and interpret the result-
ing performance. Leveraging the high interpretability and low computational demands of
multi-linear regression models, the analysis was conducted focusing on the identified key
cell-level parameters, as well as various model configurations. The objective was to assess
their relative importance concerning overall capacity, energy, heterogeneity distribution,
and aging propagation in a parallel-connected module. In the short-term MLR analysis,
electrode active material volume fractions and the interconnection resistance significantly
impact module performance and the propagation of heterogeneities. Modules with high
overall capacity and energy tend to have a higher average value of single-cell capacities,
as highlighted by the effect of the predictors µcomb on the responses %∆E and %∆Q.
Conversely, the standard deviation in the capacities of interconnected cells strongly af-
fects both current distribution and thermal inconsistencies within the module. In the
long-term MLR analysis, it is demonstrated that a high thermal gradient accelerates the
module’s aging rate and increases the SEI resistance variation across interconnected cells.
It is worth noting that favoring more uniformly aged cells at the end of their first life
is desirable also for creating durable and secure second-life battery modules and packs.
To address this, a simple cell arrangement strategy is presented to reduce the CtC ther-
mal gradient, thereby decreasing aging heterogeneities in the long-term scenario. The
key idea is to leverage the cell current resulting from the manufacturing-induced CtC
variation to mitigate the module’s thermal gradient by placing cells with higher capac-
ity at the beginning of the module, where the interconnection resistance is lower. From
an implementation perspective, a cost-effective solution could involve arranging the cells
based on their weight. According to simulation results, this method allows for a thermal
gradient reduction of 51.8% and a consequent decrease of 5.2% of the module energy loss
after 500 aging cycles. In summary, our findings demonstrate the importance of con-
sidering electrode manufacturing-dependent parameters and the potential benefits of the
proposed cell arrangement strategy in enhancing the performance, safety, and longevity
of parallel-connected battery modules.
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Chapter 9

States estimation for parallel-connected
battery module
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This contribution is based on the following works:

• [32] Fasolato, S., Acquarone, M. and Raimondo, D. M. (2024). States estimation
for parallel-connected battery module: a moving horizon approach, IEEE Transaction
on Control System Technology, Submitted

• [33] Fasolato, S., and Raimondo, D. M. (2022). Observability analysis of a li-ion
cell equivalent circuit model based on interval arithmetic, 2022 IEEE Vehicle Power
and Propulsion Conference (VPPC), 1-7.

Introduction

One of the main tasks of a BMS is to estimate the internal states of the batteries [23].
Significant efforts have been dedicated to accurately estimating the battery SOC, which
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provides important information about the remaining driving range of the vehicle [223].
Although the battery pack is a complex system composed of series and/or parallel con-
nected cells, most works focus on estimating the SOC of individual cells through isolated
testing, rather than considering their interaction with other cells. Several SOC estima-
tion algorithms have been developed under both data-driven and model-based approaches.
The former approach is based on establishing empirical correlations between measurable
battery signals and SOC [118]. However, this kind of algorithm often requires substantial
amounts of training data to obtain accurate and generalizable estimation results. Con-
versely, model-based methods rely on physics-based battery models, e.g., electrochemical
models or ECMs, providing deeper insights into battery dynamics and delivering accu-
rate estimates across a wide range of conditions. Among the most notable model-based
approaches, we can distinguish different variants of Kalman filters [224], particle filters
[225], sliding mode techniques [149], Luenberger observers [226], set-based approaches
[227], and Moving horizon estimation (MHE) [228]. MHE is an optimization-based tech-
nique, suitable for non-linear system, which employs a moving horizon of measurements
instead of a single instantaneous measurement to reconstruct the model states. Com-
pared to traditional [224, 225, 149, 226, 227] estimation methods, MHE helps avoid the
"short-horizon syndrome", providing smoother estimations in the presence of disturbances
[228], while ensuring compliance with state bounds. Further, it proves to be more robust
against poor initial SOC guesses and achieves faster convergence [229], at the expense of
a higher computational time. To mitigate its high computational cost in the context of
SOC estimation, [230] implemented a sequential quadratic programming strategy, while
[231] utilized an event-triggered approach.
One of the main limitations of the mentioned works is that their estimation methods
have been applied to the case of single cells only. However, in BEVs, the individual
cells are combined in modules to satisfy the driver power requests, and, hence, the en-
ergetic efficiency of the pack is also dependent on their collective behavior. Cell-to-cell
variation in battery modules may originate from various factors, including manufacturing
tolerances, as well as inadequacies in pack architecture and cooling design [162]. Those
heterogeneities in parallel-connected modules lead to uneven current distribution among
the parallel branches, resulting in undesired SOC and thermal gradients, as widely dis-
cussed in Chapters 7 and 8. Although quantifying CtC variations would be beneficial for
enhancing the BMS, parallel-connected modules are often treated as single lumped cells
neglecting internal heterogeneity.
In recent years, only a handful of studies have delved into SOC estimation for parallel-
connected modules. In [232] and [233], the authors tackled the estimation challenge with a
module comprising two cells, employing an observer with linear output error injection and
an interval observer, respectively. Likewise, [234] and [235] investigated SOC estimation
for the same battery module setup, employing the Extended Kalman filter and functional
observer methods, respectively. [233] was extended in [236] to include battery modules
with both serial and parallel connections, incorporating thermal measurements. All of the
aforementioned approaches for parallel-connected battery modules are grounded in ECM
models. It is important to highlight that none of these SOC observer algorithms were
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validated using real experimental data in the referenced studies; instead, they relied on
the model output as the measurement. Although fictitious noise was introduced to the
voltage signal in [234] to simulate sensor inaccuracies, those simulations do not accurately
represent real-world scenarios [237] where the battery model may not precisely capture
actual battery system dynamics. Furthermore, these studies only accounted for cell-level
parameter heterogeneity, neglecting the impact of the interconnection resistances, which
is one of the most significant sources of heterogeneity in parallel-connected modules as
shown in the Chapters 7 and 8.

Chapter contribute

This chapter aims to estimation the unmeasurable states for each cell within parallel-
connected configurations under various scenarios using a MHE approach. It is worth
noting, that considering CtC variations in BMS algorithm is the key step towards en-
hancing battery pack optimal charging, cell balancing, and the development of novel fault
detection and isolation strategies [238, 239].
The main contributions of this chapter can be mainly divided in three as follows:

1. According to Section 3.2.1 the parallel-connected module is described as a system of
ODEs coupled with AEs. As noted in [110], these laws can be integrated into the
module-level state-space formulation, transforming the DAEs into ODEs. Building
on this foundation, we extend our approach to accommodate parallel-connected mod-
ules that include interconnection resistances (Rint) and SOC-dependent parameters.
Furthermore, we provide an analytical proof of the invertibility of the matrix Ψ2,
which results Kirchhoff’s laws embedding and is crucial for the simulation of the
embedded model.

2. Based on the formulated embedded model, we analyze the non-linear observability of
the module-level dynamics to evaluate the feasibility of reconstructing the state of
individual cells from the overall module voltage and current [33]. This study extends
the findings presented in the literature [232, 240], which previously focused on only
two cells in parallel and did not account for SOC dependency in the parameters and
interconnection resistance (Rint). Our analysis encompasses modules with varying
numbers of cells, different values of Rint, and SOC-dependent parameters.

3. In conventional estimation schemes [232, 233, 234, 235], embedding Kirchhoff’s laws
in the module-level state-space formulation is essential for the state observer design.
However, while this approach offers a compact representation and simplify the ob-
servability analysis, it also results in a highly nonlinear model. In contrast, this work
leverages the capabilities of the MHE method to manage equality constraints with-
out directly incorporating Kirchhoff’s circuit laws into the module dynamics. This
strategy simplifies the module-level model and enhances computational efficiency.
Consequently, a primary contribution of this research is the comparative analysis of
MHE-based algorithmic schemes with and without the embedding of Kirchhoff’s laws
in the model formulation. We validate our methodology through simulation and,
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Figure 9.1: Visual overview of the MHE-based state estimation procedure presented in
this chapter.

for the first time, against experimental data obtained from a battery module com-
prising four cells [8]. This validation is conducted under various interconnection
resistance scenarios, demonstrating the robustness and applicability of our approach
in real-world settings.

Chapter Structure

• Section 9.1 provides an overview of the cell-level and module-level ECM-based
models. Specifically, the governing equations and identification results of the cell-
level ECM for the LG M50T1 are presented in Section 9.1.1. The module-level
model formulation is discussed in Section 9.1.2.

• Section 9.2 presents both the theoretical basis for observability analysis of nonlin-
ear systems and the analysis results for the module-level model in Section 9.2.1.

• Section 9.3 provides both the theoretical foundation for MHE and the simulation
results for the module-level state estimation problem in Section 9.3.1. Specifically,
Sections 9.3.1.1 and 9.3.1.2 validate the MHE-based algorithms against simulated
and experimental data, respectively. Finally, the preliminary results on joint state
and interconnection resistance estimation are reported in Section 9.3.1.3.

• Section 9.4 summarizes the conclusions and outlines future research opportunities.

1Based on the SECL experimental campaign described in Chapter 4
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9.1 ECM-based Cell model

In this section the indeintifaction of the cell-level ECM model, described in Section 3.1.1.
Specifically, the cell-level characterization experiments described in Section 4.2.2.1 are
used to calibrate the single-cell ECM for the LG Chem M50T, in accordance with [23].
Then, the module-level dybanics are introduced in Section 9.1.2.

9.1.1 Single cell first order ECM identification

The mathematical formualtion of the ECM model was reviewed in Sectin 3.1.1. In par-
ticular, in this chapter a first-order RC ECMs is considered and the model state-space
model (3.1) is written as:

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = h(x(t), u(t))
=


[

V̇1(t)

˙SOC(t)

]
=

[
−1

R1C1
0

0 0

][
V1(t)

SOC(t)

]
+

[
1
C1

1
Cbat

]
Icell(t)

Vcell(t) = VOCV (SOC(t)) + V1 +R0Icell(t)

(9.1)

It is worth noting that VOCV is determined by fitting the cell voltage data collected during
a Pseudo-OCV testing protocol, described in Section 4.2.2.1, which involves a discharge
cycle at an extremely low C-rate from 100% to 0% of SOC (i.e. C/20 CC discharge).
Specifically, Fig. 9.2(a) shows the comparison between the C/20 Constant Current (CC)
discharge cycle at 23◦C and the VOCV , which is identified as a polynomial function of
SOC, with its expression provided in equation (9.3). Additionally, following the approach
in [127], the parameters of the dynamic components of the ECM (i.e. R1, C1, and R0) are
determined by minimizing the root mean square error between the model voltage and the
cell voltage observed during testing with time-varying HPPC and Multi Sine (MS) current
profiles. To enhance model accuracy, R1 and R0 are expressed as polynomial functions of
SOC. The corresponding expressions and estimated parameters are detailed in equation
(9.4). The final ECM identification results, with the corresponding RMSE, are shown in
Fig. 9.2(b).

9.1.2 Module-level model formulation

The ECM-based module-level model was introduced in the Example 3.2.1 in Section 3.2.1.
Here, we consider a parallel-connected battery module arranged in a ladder configuration,
consisting of Np cells. Fig. 9.3 provides a schematic representation of the battery module,
highlighting the interconnection electrical resistance (Rint) for each parallel string. In
the following, the superscript [k] denotes the quantity associated with the k-th cell in
the module, where [1] and [Np] refer to the cells closest to and farthest from the load
terminals, respectively. The final ODAEs governing equations, derived from considering
Np ECMs, are expressed as follows:
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Table 9.1: Cell-level and module-level models formulation

Cell-level Equivalent Circuit Model (ECM)

ΣCell :

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = h(x(t), u(t))
⇒


[
V̇1(t)
˙SOC(t)

]
=

[ −1
R1C1

0

0 0

][
V1(t)

SOC(t)

]
+

[
1
C1
1

Cbat

]
ICell(t)

VCell(t) = VOCV (SOC(t)) + V1(t) +R0(SOC(t))ICell(t)

(9.2)

VOCV (SOC) = 105.753SOC7 − 386.828SOC6 + 577.809SOC5 − 460.12SOC4 + 214.77SOC3 − 60.29SOC2 + 10.47SOC + 2.609
(9.3)

Ro(SOC) = −0.056SOC3 + 0.116SOC2 − 0.073SOC + 0.0393; R1(SOC) = −0.0225SOC2 + 0.0123SOC; C1 = 2913.1
(9.4)

Module-level Parallel-connected Model

Σmod :

{
ẋmod(t) = (Amod −BmodΨ

−1
2 Ψ1)xmod(t)−BmodΨ

−1
2 Ψ3 −BmodΨ

−1
2 Ψ4Itot(t)

Vmod(t) = V
[1]
OCV (SOC[1](t)) + V

[1]
1 (t) +R

[1]
0 (−Ψ−1

2 (Ψ1xmod(t) + Ψ3))1 + (R
[1]
0 (−Ψ−1

2 Ψ4)1 + 2Rint)Itot(t)
(9.5)

Amod =


A[1] 0

. . .
0 A[Np]

 Bmod =


B[1] 0

. . .
0 B[Np]

 Ψ1 =


−1 0 1 0 0 · · · 0
...

...
...

...
. . .

...
...

0 0 · · · −1 0 1 0
0 0 · · · 0 0 0 0

 Ψ4 =


2Rint

...
2Rint

−1



Ψ2 =



−R[1]
o − 2Rint R

[2]
o 0 · · · 0 0

−2Rint −R[2]
o − 2Rint R

[3]
o · · · 0 0

...
...

. . .
...

...
...

−2Rint −2Rint · · · −R[Np−2]
o − 2Rint R

[Np−1]
o 0

−2Rint −2Rint · · · −2Rint −R[Np−1]
o − 2Rint R

[Np]
o

1 1 · · · 1 1 1


Ψ3 =


V

[2]
OCP − V

[1]
OCP

...
V

[Np]

OCP − V
[Np−1]

OCP
0
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V̇

[1]
1

˙SOC
[1]

...
V̇

[Np]
1

˙SOC
[Np]

 =

A
[1] 0

. . .
0 A[Np]


︸ ︷︷ ︸

Amod


V

[1]
1

SOC [1]

...
V

[Np]
1

SOC [Np]


︸ ︷︷ ︸

xmod

+

B
[1] 0

. . .
0 B[Np]


︸ ︷︷ ︸

Bmod

 I
[1]
cell
...

I
[Np]
cell


︸ ︷︷ ︸
Imod

(9.6)

where the module state vector xmod ∈ R2Np×1 includes the states of each individual ECM,
while Imod ∈ RNp×1 denotes the vector of currents flowing through each parallel branch
within the module, and the matrices Amod ∈ R2Np×2Np and Bmod ∈ R2Np×2Np . Note that
I
[k]
cell, where k ∈ [1, · · · , Np] , are algebraic variables which depend on the module input Itot,

i.e. the total input current of the module, through the Kirchoff’s circuit laws. Denoting
with V [k]

cell the voltage of each cell [k], calculated according to (9.2), the corresponding Np

algebraic constraints are:{
V

[j+1]
cell = V

[j]
cell − 2Rint(Itot −

∑j
z=1 I

[z]
cell), j ∈ {1, · · · , Np − 1}

Itot =
∑Np

j=1 I
[j]
cell

(9.7)

Finally, the model output Vmod = V
[1]
cell + 2RintItot is the voltage across the module termi-

nals. The overall dynamics of the module, described by eqs. (9.6) to (9.7), constitute a
system of DAEs.
According to [110], it is possible to incorporate algebraic constraints directly into the
model dynamics, thereby converting the DAEs into ODEs. Building on this approach, we
extend it to parallel-connected modules with interconnection resistances Rint. In partic-
ular, the system of equations (5.26) can be rewritten as:

0 = Ψ1xmod +Ψ2(xmod)Imod +Ψ3(xmod) + Ψ4Itot (9.8)

where the matrices Ψ1 ∈ RNp×2Np and Ψ2(xmod) ∈ RNp×Np , and the vectors Ψ3(xmod) ∈
RNp×1 and Ψ4 ∈ RNp×1, are listed in Table 9.1. The dependencies of Ψ2 and Ψ3 on xmod
arise from the dependencies of R0 and the open circuit voltage potential on the State
of Charge2. From (9.8), given the invertibility of the matrix Ψ2 (see Section 9.1.2), the
vector Imod can be calculated as:

Imod = −Ψ−1
2 (xmod)[Ψ1xmod +Ψ3(xmod) + Ψ4Itot] (9.9)

Finally, combining (9.6) and (9.9) the module dynamics are written as reported in (9.10),
in the control-oriented system of ODEs in the form:

Σ :

{
ẋmod(t) = f(xmod(t))(t) + g(xmod(t))Itot(t)

Vmod = h(xmod(t)) + l(xmod(t))Itot(t)
(9.10)

2These dependencies may be occasionally omitted for the sake of brevity in the notation.
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Figure 9.3: Schematic representation of the module-level ECM-based model

where

f(xmod) = (Amod −BmodΨ
−1
2 (xmod)Ψ1)xmod −BmodΨ

−1
2 (xmod)Ψ3(xmod) (9.11)

g(xmod) = −BmodΨ
−1
2 (xmod)Ψ4

h(xmod) = V
[1]
OCV (SOC

[1]) + V
[1]
1 +R

[1]
0 (−Ψ−1

2 (xmod)(Ψ1xmod +Ψ3(xmod)))1

l(xmod) = R
[1]
0 (−Ψ−1

2 (xmod)Ψ4)1 + 2Rint.

where with the notation (·)1 we indicate the first component of the resulting vector.

On the invertibility of Ψ2

Preliminaries

• An n × n matrix B ∈ Rn×n is called a P-matrix if all its principal minors are
positive. Recall that a principal minor is simply the determinant of a submatrix
obtained from B when the same set of rows and columns are removed. The diagonal
entries, as well as the determinant of B, are thus among its principal minors.

• According to [241], the sign pattern matrix written as:

Sn =


+ − 0 0

+ + − 0

+ + + −
+ + + +

 (9.12)

is a qualitative P-matrix.

• If B ∈ Rn×n is an n× n matrix, and k ∈ R is a constant, then:

det(kB) = kndet(B) (9.13)
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Theorem 2. Consider a matrix An ∈ Rn×n with the structure given by

A =



−a1,1 a1,2 0 · · · 0 0

−a2,1 −a2,2 a2,3 · · · 0 0
...

... . . . . . . ...
...

−an−2,1 −an−2,2 · · · −an−2,n−2 an−2,n−1 0

−an−1,1 −an−1,2 · · · −an−1,n−2 −an−1,n−1 an−1,n

1 1 · · · 1 1 1


(9.14)

where ai,j > 0 ∀i, j = 1, · · · , n. The matrix An is invertible for any n ≥ 2.
Proof: First, consider the cases with n = 2, 3, 4. Denoting with Mij(An) the minor of
matrix An formed by eliminating row i and column j, the determinant of the matrix An,
calculated by expanding along its last column, is given by:

|A2| =
∣∣∣∣−a1,1 a1,2

1 1

∣∣∣∣ = −a1,2 − a1,1 < 0

|A3| =

∣∣∣∣∣∣
−a1,1 a1,2 0

−a2,1 −a2,2 a2,3
1 1 1

∣∣∣∣∣∣ = −a2,3

∣∣∣∣−a1,1 a1,2
1 1

∣∣∣∣︸ ︷︷ ︸
|A2|<0

+1

∣∣∣∣−a1,1 a1,2
−a2,1 −a2,2

∣∣∣∣ = −a2,3|A2|︸ ︷︷ ︸
>0

+a1,1a2,2 + a1,2a2,1 > 0

|A4| =

∣∣∣∣∣∣∣∣
−a1,1 a1,2 0 0

−a2,1 −a2,2 a2,3 0

−a3,1 −a3,2 −a3,3 a3,4
1 1 1 1

∣∣∣∣∣∣∣∣ = −a3,4

∣∣∣∣∣∣
−a1,1 a1,2 0

−a2,1 −a2,2 a2,3
1 1 1

∣∣∣∣∣∣︸ ︷︷ ︸
|A3|>0︸ ︷︷ ︸

<0

+1

∣∣∣∣∣∣
−a1,1 a1,2 0

−a2,1 −a2,2 a2,3
−a3,1 −a3,2 −a3,3

∣∣∣∣∣∣︸ ︷︷ ︸
|M44(A4)|

< 0

(9.15)

where the last inequality follows from the fact that −M44(A4) adheres to the sign pattern
in (9.12). Using property (9.13), one has that |M44(A4)| = (−1)3| − M44(A4)| < 0.
Building on the previous steps, it is possible to verify that, for n ≥ 4

|An| = −an−1,n|An−1|+ (−1)n−1 | −Mnn(An)|︸ ︷︷ ︸
>0

. (9.16)

Note that −Mnn(An) satisfies the sign pattern in (9.12) for any n ≥ 4, thus implying
that | −Mnn(An)| > 0. Moreover, since ai,j > 0 ∀i, j = 1, · · · , n, it is easy to verify that
the sign of −an−1,n|An−1| is (−1)n−1. As a consequence, the two terms in the summation
(9.16) have consistent sign. This, together with the positivity of ai,j for all i, j = 1, · · · , n
implies that |An| ≠ 0, for any n ≥ 2 thus proving the theorem.
It is worth noting that the matrix Ψ2 is always invertible, based on Theorem 2, since all
the coefficients in Ψ2 are always positive.

9.2 Non-linear observability analysis

Preliminaries

Definition 1 (Lie derivative). Given a smooth scalar function α : Rn × Rm → R and
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a smooth vector field β : Rn × Rm → Rn. Then the J-th order Lie derivative of β with
respect to α is defined as:

LJβα =
∂LJ−1

β α

∂x
· β (9.17)

where the zero-order Lie derivative of β with respect to α is L0
βα = α, while the second

order Lie derivative can be also expressed as L2
βα = LβLβα.

Definition 2 (Diffeomorphism [242]). Let U ⊂ Rn be an open subset in Rn. A function
f : Rn → Rn is a diffeomorphism, if f is a bijection and differentiable, and its inverse
f−1 is differentiable.

Theorem 3 (Inverse Function Theorem [242]). Let U ⊂ Rn be an open subset in Rn and
let f : Rn → Rn be a function. If for x0 ∈ U , df/dx|x0 is of full rank, then there exists an
open neighborhood V of x0 and an open neighborhood W around f(x0) (i.e. image of f)
such that f : V → W is a bijection, and its inverse f−1 is also continuously differentiable.
In this case the derivative of f−1 at y0 = f(x0) is d(f−1(y0))/dx = (df(x0)/dx)

−1

In dynamical systems theory, observability refers to a system’s ability to reconstruct its
initial state using input-output data. This study focuses on the analysis of nonlinear
observability as described in [243], using the observability rank condition for nonlinear
systems. Based on Lie Algebra, this condition provides a sufficient criterion for local
observability.
Let’s consider a non-linear system of the following form:

Σ :

{
ẋ(t) = f(x(t)) + g(x(t))u(t)

y = h(x(t)) + l(x(t))u(t)
(9.18)

where x ∈ Rn, u ∈ R, y ∈ R, f : Rn × R → Rn and g : Rn × R → Rn are smooth vector
fields, and h : Rn × R → R and l : Rn × R → R are a smooth scalar function. In the
following, x(t, x0, u) will indicate the solution of (9.18) for a given initial condition x0 and
input sequence u(·) defined over the time interval [0, t). The corresponding output will
be denoted as y(t, x0, u).

Definition 3 ([243]). Consider system (9.18). Two states x0, x1 ∈ Rn are distinguishable
if there exist an input sequence u(·) such that y(t, x0, u) ̸= y(t, x1, u).

Definition 4 ([243]). System Σ is locally observable at x0 ∈ X ⊆ Rn if there exists an
open neighborhood Ω of x0 such that every x ∈ Ω other than x0 is distinguishable from
x0. Finally, the system is said to be locally observable if it is locally observable at each
x0 ∈ X.

Given the nonlinear system (9.18), the first two time derivatives of the output can be
expressed as in equations (9.19) and (9.20), respectively. It is important to note that the
time derivatives of y (y(k)) are expressed as a linear combination of terms of the form
(LzsLzs−1 · · ·Lz1α)(x), where 1 ≤ s ≤ k. Each vector field z1, · · · , zs is selected from the
set {f, g} and α is chosen from the set {h, l}.
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ẏ =
d(h(x) + l(x)u)

dt
=
dh(x)

dx
ẋ+ u

dl(x)

dx
ẋ+ u̇l(x) =

=
∂h(x)

∂x
(f(x) + g(x)u) + u

∂l(x)

∂x
(f(x) + g(x)u) + u̇l(x) =

= Lfh(x) + Lgh(x)u+ Lf l(x)u+ Lgl(x)u
2 + l(x)u̇ =

= Lfh(x) + [Lgh(x) + Lf l(x)]u+ Lgl(x)u
2 + l(x)u̇

(9.19)

ÿ =
dẏ

dt
=
∂Lfh(x)

∂x
(f(x) + g(x)u) +

d[Lgh(x) + Lf l(x)]u

dt
+
dLgl(x)u

2

dt
+
dl(x)u̇

dt
=

= Lf (Lfh(x)) + Lg(Lfh(x))u+ [Lgh(x) + Lf l(x)]u̇+
d[Lgh(x) + Lf l(x)])

dt
u+

+ Lgl(x)2uu̇+
dLgl(x)

dt
u2 + l(x)ü+

dl(x)

dt
u̇

= Lf (Lfh(x)) + Lg(Lfh(x))u+ [Lgh(x) + Lf l(x)]u̇+

+
d[Lgh(x) + Lf l(x)]

dx
(f(x) + g(x)u)uLgl(x)2uu̇+

dLgl(x)

dx

(f(x) + g(x)u)u2 + l(x)ü+
dl(x)

dx
(f(x) + g(x)u)u̇

= L2
fh(x) + Lg(Lfh(x))u+ [Lgh(x) + Lf l(x)]u̇+ Lf (Lgh(x))u+

+ L2
f l(x)u+ (L2

gh(x))u
2 + Lg(Lf l(x))u

2 + Lgl(x)2uu̇+ Lf (Lgl(x))u
2+

+ L2
gl(x)u

3 + l(x)ü+ Lf l(x)u̇+ Lgl(x)uu̇
(9.20)
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Definition 5 (Observation space O). The observation space O of the system in the form
(9.18) is the linear space of functions over the field R spanned by all functions of the form:

LzsLzs−1 · · ·Lz1α(x), s ≥ 0, zj ∈ {f, g}, α ∈ {h, l} (9.21)

O comprises all linear combinations of functions in the form (9.21) with constant and real
coefficients (not functions of x). It is important to note that Definition 5 updates the
definition originally presented in [243] for nonlinear systems where the output function
explicitly depends on the input through a smooth scalar function l : Rn × R → R.
Similarly, Lemma 84 in Section 7.3 in [243] can be extended to the system described by
(9.18) as follows:

Lemma 1. For the system described by (9.18), let J denote the linear space of functions
over the field R spanned by all functions of the form:

LvsLvs−1 · · ·Lv1α(x), s ≥ 0

where [v1, · · · , vs] are vector fields in the form:

v = f(x) + g(x)u

with u being a real number in R. Then J is equal to O.

The proof of Lemma 1 in [243] remains applicable in this context when considering the
linear space of functions over the field R spanned by all functions of the form (LzsLzs−1 · · ·
· · ·Lz1α)(x). Finally, the Sufficient Condition for Local Observability proposed in [243]
can be extended for systems in the form (9.5) as shown in the following:

Theorem 4. Consider the system described by (9.18), and assume x0 ∈ X is given.
Consider the forms

dLzsLzs−1 · · ·Lz1α(x)
dx

∣∣∣
x=x0

, s ≥ 0, zj ∈ {f, g}, α ∈ {h, l} (9.22)

evaluated at x0. If there are n linearly independent row vectors in this set, then the
system is locally observable around x0.

Without loss of generality, the proof of the theorem in [243] is applicable to the current
case, as it relies on Definition 5 and Lemma 1, both of which have been established to
hold in this context. It is important to note that, due to Lemma 1, local observability
can be assessed without needing to explicitly consider the values of the input. According
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to [243], the condition (9.22) becomes:

rank(Θ|x=x0) = n, with: Θ =
∂

∂x



α(x)

Lfα(x)

Lgα(x)

LfLgα(x)

LgLfα(x)

L2
fα(x)

L2
gα(x)

...


with: α ∈ {h, l} (9.23)

where n denotes the number of states in the system. Condition (9.23) requires that the
matrix Θ|x=x0 includes at least n linearly independent row vectors. Finally, it is worth
noting that the rank test (9.23) assesses whether the system is weakly locally observable
but does not provide insights into estimation accuracy or reliability. To evaluate the
system’s observability more comprehensively, the condition number of the matrix Θ|x=x0

κ
(
Θ|x=x0

)
=
∥∥Θ|x=x0

−1
∥∥∥∥Θ|x=x0

∥∥ (9.24)

can be used as a metric, as discussed in [244].

9.2.1 Nonlinear observability analysis: results from the module-
level model

Previous studies have investigated the observability of parallel-connected battery models
using first-order ECMs through both linearized and nonlinear approaches, as demon-
strated in, e.g., [240] and [232], respectively. These analyses primarily focused on the
observability of two parallel cells without accounting for Rint and the SOC dependency of
model parameters. They consistently found that the model states are unobservable when
the cells have identical parameters. Additionally, observability is lost when the cells have
identical OCV values and the dVOCV /dSOC is zero.
In this study, we apply the rank condition from (9.23) to analyze the observability of the
parallel-connected model in (9.5) which consists of Np cells and accounts for both Rint and
SOC-dependent parameters (see eq. (9.4)). According to Theorem 4, the system is locally
observable around the considered state if there are n linearly independent row vectors in
the set defined in (9.22). In the parallel-connected model here considered, n = 2Np, the
state vector is xmod = [V

[1]
1 , SOC [1], · · · , V [Np]

1 , SOC [Np]] and functions f, g, h, l are defined
as in (9.11). Local observability is ensured if there are n = 2Np linearly independent row
vectors of the form given in (9.22). In the following, for simplicity and computational
aspects, instead of considering all possible functions of the form in (9.22), we construct
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the matrix Θ̂ ∈ R2Np × R2Np using only a specific subset of these functions

Θ̂ =
∂

∂x



h(xmod)

Lf(xmod)h(xmod)

Lg(xmod)h(xmod)

L2
f(xmod)

h(xmod)

L2
g(xmod)

h(xmod)
...

L
Np

f(xmod)
h(xmod)


(9.25)

As will be explained further, this choice is sufficient for drawing conclusions about local
observability. Note that the same choice was made in [232] (equation (27)), where non-
linear observability was analyzed for two parallel cells without considering Rint or the
SOC dependency of model parameters. Figure 9.4 illustrates the observability results for
the parallel-connected battery module. The analysis is performed under a 0.75C-rate CC
discharging cycle, considering Rint values of 0, 1, and 3 mΩ, and for Np values of 2, 3,
and 4. Additionally, concerning the initial conditions of the Np ECMs, the cells are as-
sumed to be fully charged (i.e. SOC [i] = 100% with i=1, · · · , Np), and the voltage across
each resistance-capacitor block is set to 0 V (i.e. V

[i]
1 = 0 V with i=1, · · · , Np). It is

important to highlight that the analytical calculation of Θ̂ becomes increasingly complex
as the number of cells increases. In general, it becomes computationally impractical for
models with more than ten states [245]. Additionally, the SOC-dependent parameters
add further complexity to the computation. To address these challenges efficiently, Θ̂ was
computed using symbolic expressions in Matlab with the CasADi toolbox. The rank and
condition number of Θ̂ were then evaluated numerically by substituting the model states,
derived from the model solution under the previously described conditions, at each time
step. Figure 9.4(d-f), clearly shows that Θ̂ loses its maximum rank, regardless of the Np

value when Rint is 0. Theoretically, to rule out local observability, one would need to
evaluate all possible functions of the form given in (9.22), not just the subset considered
here, and verify that n linearly independent row vectors cannot be found. However, it is
crucial to note that in this scenario, cells with identical parameter formulations, listed in
eq. (9.4) within Table 9.1, and initial conditions experience the same current, SOC, and
terminal voltage during operation. As a result, the parallel-connected module acts as a
single lumped cell with a total capacity equal to the sum of the individual cell capacities.
This lack of differentiation impedes the ability to observe the distinct states of each cell,
corroborating the findings in [240] and [232]. On the other hand, when Rint > 0, Θ̂ attains
maximum rank. This occurs even when the cells in parallel have identical parameters, as
they are required to deliver different currents to satisfy (5.26) at each time instant. This
leads to varying SOC levels, resulting in distinct values for VOCV , R0 and R1 across the
cells. Additionally, the voltage drop across Rint causes differences in cell voltages, as il-
lustrated in Figure 9.4(a-c). The voltage discrepancy between the cells increases with the
distance from the terminals, making the behavior of each cell distinguishable. Finally, the
condition number κ(Θ̂) is shown in Figure 9.4(g-i). As Np increases, κ(Θ̂) also rises, indi-
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Figure 9.4: Observability analysis results. Panels (a-c) show the voltage across each cell
(V [i]

cell with i = 1, · · · , Np) and at the module terminals during a 0.75C-rate constant
current cycle with Rint = 3 mΩ for Np = 2, 3, and 4, respectively. Panels (d-f) display the
rank of Θ̂ (from (9.25)) for Rint = 0, 1 and 3mΩ and panels (g-i) present the condition
number of Θ̂ for the same Rint values and Np = 2, 3 and 4.

cating a likely decrease in observer accuracy with larger battery modules. Moreover, for
a fixed number of cells, κ(Θ̂) increases as Rint decreases. This is because lower resistance
reduces the heterogeneity between the cells, making the model states less distinguishable.

9.3 Moving horizon estimation

Consider a non-linear discrete-time system given as:

Σ :

{
xk+1 = f(xk, uk) + wk

yk = h(xk, uk) + vk
(9.26)

where xk ∈ Rn, uk ∈ Rm, and yk ∈ Rp represent the state, input, and output vectors of
the model at the k-th time instant, respectively. The functions f : Rn × Rm → Rn , and
h : Rn × Rm → Rp are smooth mappings. The terms wk ∈ Rn and vk ∈ Rp denote the
state and measurement noise, respectively. In the following, x(k, x0, u, w) will indicate
the solution of (9.26) for a given initial condition x0 and input sequences u(·) and w(·)
defined over the time instants 0, · · · , k. The corresponding output will be denoted as
y(k, x0, u, w, v). According to [246], based on a sequence of N measurements, from the
time instants k−N up to k, the system states are estimated by minimizing the following
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cost function:

min
xk−N ,{wz}k−1

z=k−N

[
(δxTk−NP

−1
k−N |k−N−1δxk−N) +

k∑
z=k−N

vTz V
−1vz +

k−1∑
z=k−N

wTz Q
−1wz

]
subject to:

xj+1 = f(xj, uj) + wj, j ∈ {k −N, · · · , k − 1}
lbx ≤ xj ≤ ubx, j ∈ {k −N, · · · , k}

(9.27)

where the term δxk−N = (xk−N − xk−N |k−N−1) represents the discrepancy between the
initial state (xk−N), which is to be optimized, and the prior state estimate (xk−N |k−N−1)
while vz = ymeasz − h(xz, uz), with ymeasz being the plant measurement and xk being com-
puted as the solution of model (9.26) subject to the initial condition xk−N and disturbance
sequence {wz}k−1

z=k−N . The matrices V ∈ Rp×p, Q ∈ Rn×n and Pk−N |k−N−1 ∈ Rn×n are
symmetric and positive definite and represent the covariance matrices for measurement
noise, model uncertainty and initial condition uncertainty, respectively. Additionally, lbx
and ubx are the upper and lower bounds of the state variables, respectively. Note that,
Pk−N |k−N−1 is computed using the Riccati equation to approximate past information, as
detailed in equation (32) of [228]. The objective in (9.27) is to determine the state (xk−N)
and process noise sequence ({wz}k−1

z=k−N) that minimize the discrepancy between the pre-
dicted and measured data (vTz V −1vz), while ensuring that the estimated state aligns with
the expected system dynamics (wTz Q−1wz), and that the initial condition is consistent
with the uncertainty in the initial state estimate (δxTk−NP

−1
k−N |k−N−1δxk−N). It is worth

mentioning that when fewer than N measurements are available (k < N), Pk−N |k−N−1 is
set to P0. For further information on MHE, readers are encouraged to consult [246].

9.3.1 MHE for parallel-connected module

To evaluate the accuracy of the proposed SOC estimation method, we consider a battery
module consisting of 4 parallel-connected cells (i.e. Np = 4). Note that the MHE-based
algorithm for the module-level model is implemented in discrete time, with the module
dynamics discretized using the Forward Euler method, as in [227]. Sections 9.3.1.1 and
9.3.1.2 validate the method using simulated and experimental data, respectively, covering
various current profiles and Rint values. Finally, Section 9.3.1.3 presents preliminary
findings on the joint estimation of model states and Rint. In this study, we address
the state estimation of a parallel-connected battery module by comparing two distinct
MHE-based schemes.

• Approach 1: ODE model. In this approach, we utilize the module-level model
with Kirchhoff’s circuit laws directly incorporated into the ODEs, as described in
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(9.10). According to (9.27), the optimization problem is written as:

min
xmod,k−N ,{wz}k−1

z=k−N

[
(δxT

mod,k−NP−1
k−N |k−N−1δxmod,k−N ) +

k∑
z=k−N

vTz V
−1vz +

k−1∑
z=k−N

wT
z Q

−1wz

]
subject to:

xmod,j+1 = f(xmod,j) + g(xmod,j)Itot,j + wj , j ∈ {k −N, · · · , k − 1}
lbx ≤ xmod,j ≤ ubx, j ∈ {k −N, · · · , k}

(9.28)

Here, δxmod,k−N = xmod,k−N − xmod,k−N |k−N−1 represents the deviation between the
optimized state at time k − N and the prior estimate xmod,k−N |k−N−1 at the same
time. The state vector xmod = [V

[1]
1 , SOC [1], · · · , V [Np]

1 , SOC [Np]] encompasses the
voltages and state of charge (SOC) of each cell in the module. The measurement
noise vz is defined as the difference between the measured and simulated module
voltage, i.e. vz = V meas

mod − Vmod.

• Approach 2: DAE model. The second approach leverages the ability of MHE
to handle equality constraints by incorporating Kirchhoff’s circuit laws directly into
the optimization framework. The optimization problem, based on the DAE model
(eq. (9.6) and (9.7)), is formulated as:

min
xmod,k−N ,{Imod,z ,wz}k−1

z=k−N

[
(δxTmod,k−NP

−1
k−N|k−N−1

δxmod,k−N ) +

k∑
z=k−N

vTz V
−1vz +

k−1∑
z=k−N

wT
z Q

−1wz

]
subject to:

xmod,j+1 = Amodxmod,j +BmodImod,j + wj , j ∈ {k −N, · · · , k − 1}

V
[l+1]
cell,j = V

[l]
cell,j + 2Rint(Itot,j −

l∑
z=1

I
[z]
cell,j), l ∈ {1, · · · , Np − 1}

Itot,j =

Np∑
l=1

I
[l]
cell,j ,

lbx ≤ xmod,j ≤ ubx, j ∈ {k −N, · · · , k}
lbIcell ≤ Imod,j ≤ ubIcell , j ∈ {k −N, · · · , k}

(9.29)

where lbIcell and ubIcell denote the lower and upper bounds for the branch currents
respectively. Despite introducing Np ·N additional algebraic optimization variables
(i.e. {Imod,z}k−1

z=k−N), this approach reduces the nonlinearities within the module-
level dynamics compared to the previously described approach.

In Section 9.3.1.1, the two MHE-based schemes are compared in terms of both accuracy
and computational load. Accuracy is assessed using two key performance indicator (KPI):
ΣSOCRMS and ΣV RMS

1 , as defined in eq. (9.30) and (9.31) in Table 9.2. Note that
SOC

[k],ref
i and V

[k],ref
1,i in equations (9.30) and (9.31) represent the reference SOC and

V1 of the k-th cell at the i-th time instant. These reference values are obtained from
an open-loop simulation of the model when the MHE algorithms are validated against
simulated data, as detailed in Section 9.3.1.1. For the experimental validation phase,
however, SOC [k],ref

i is computed using Coulomb counting, based on the measured current
and capacity of each cell. It is important to note that V [k],ref

1,i cannot be derived from
experimental data, as it represents an internal model state that is not directly measurable.
As a result, ΣV RMS

1 is not included in the analysis presented in Section 9.3.1.2. Finally,
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Table 9.2: Summary of the MHE-based algorithm performance
indicators

MHE performance indicator Unit

ΣSOCRMS =
∑Np

k=1

√
1

tsim

∑tsim
i=1 (SOC

[k]
i − SOC

[k],ref
i )2 (9.30) [%]

ΣV RMS
1 =

∑Np

k=1

√
1

tsim

∑tsim
i=1 (V

[k]
1,i − V

[k],ref
1,i )2 (9.31) [V ]

MTPI = 1
tsim

∑tsim
i=1 TPIi (9.32) [s]
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Figure 9.5: Comparison of MHE schemes on simulated data:
ODE vs. DAE models. (a) shows ΣSOCRMS, (b) presents
ΣV RMS

1 and (c) displays MTPI under different horizon
lengths.

the computational load is quantified by calculating the Mena time per iteration (MTPI),
as described in (9.32) where tsim refers to the total simulation time, measured using
Matlab’s built-in timer. Moreover, it is important to note that the optimization problem
for both approaches is reformulated using the direct multiple shooting method [247].

9.3.1.1 Validation using simulated data

First, the estimation algorithm is validated through simulation. To account for cell-
to-cell (CtC) differences, we randomly selected four distinct cells from the dataset [8]
(cells labeled as P19, P4, P10, P16 ) and individually identified their ECM parameters
for use in the module-level model. While those parameters were used to simulate the
plant, the MHE-based algorithm uses the same parameters as specified in (9.4) for all
cells. This scenario reflects a practical case where identifying individual cells within
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the module is unfeasible due to the absence of dedicated sensors. For simulating noisy
output voltage measurements, we added white Gaussian noise with a covariance of V =

5× 10−4 V to the open-loop simulation output of the model (Vmod). In the following, the
estimation horizon is set to 20 seconds (i.e. N = 20) with a sampling time of 1 second,
Rint = 3mΩ. The matrices P0 = diag(P

[1]
0 , · · · , P [Np]

0 ), Q = diag(Q[1], · · · , Q[Np]) and
vector X0 = [X

[1]
0 , · · · , X

[Np]
0 ] assume the following values P [k]

0 = diag(1× 10−1, 5× 10−2),
Q[k] = diag(10−6, 10−7) and X

[k]
0 = [−0.02, 0.95], k ∈ {1, · · · , Np}). Additionally, the cell

SOC is constrained for each cell between 0% and 100%. For V1, the bounds are set to
±50 mV, while the bounds for Imod are established at ±10 A. These values are deemed
appropriate for the module model under consideration.
Figure 9.5 provides a comparative analysis of the two MHE-based schemes (ODE vs
DAE models), applied to a CC discharging cycle from 80% to 0% in the simulation
condition described in the following lines. The performance and computational efficiency
of both schemes across various horizon lengths, are evaluated using the metrics ΣSOCRMS,
ΣV RMS

1 and MTPI. Note that the total simulation time tsim, which is necessary for
calculating the MTPI as indicated in equation (9.32) , is shown on the x-axis of Fig. 9.6.
The results, as expected, show that both approaches achieve similar accuracy, evidenced
by the close matching values of ΣSOCRMS and ΣV RMS

1 . However, the DAE model offers
superior computational efficiency, leading to reduced processing times, as highlighted by
the MTPI. For this reason, the following sections will focus exclusively on the results
obtained using the DAE model. Fig. 9.6 illustrates the estimation performance of the
MHE based on the DAE model for two distinct current profiles: constant current (CC)
discharge and a regulatory driving cycle (DV), specifically the Worldwide Harmonized
Light Vehicles Test Procedure (WLTP). In both simulations, it is assumed that each cell
is at 80% of SOC (i.e. SOC [i] = 100% with i=1, · · · , 4), and the voltage across each
resistance-capacitor block is set to 0V (i.e. V [i]

1 = 0 V with i=1, · · · , 4). In both cases,
the MHE algorithm effectively tracks the terminal voltage measurements, as shown in Fig.
9.6(a) and (c), demonstrating notable robustness against voltage noise. Additionally, as
shown in Fig. 9.6(b-c) and (e-f), the SOC distribution among parallel-connected cells is
accurately estimated, with maximum SOC errors of 1.44% and 0.55% for the CC and
DV profiles, respectively. This trend is further highlighted by the metric ΣSOCRMS =∑Np

k=1

√
1

tsim

∑tsim
i=1 (SOC

[k]
i − SOC

[k],ref
i )2, which measures 1.8% and 0.89% for CC and DV

scenarios, respectively. for the CC and DV scenarios, respectively. This level of accuracy is
quite satisfactory for real-world applications, where the typical acceptable SOC accuracy
threshold is around [248]. It is worth highlighting the significant impact of the horizon
on algorithm accuracy: as the value of N increases, ΣSOCRMS decreases notably, as
illustrated in Figure 9.5(a). This improvement in accuracy underscores the advantage of
the MHE approach over traditional state estimation techniques [232, 233, 234, 235].
Note that the four interconnected cells exhibit different SOC trends throughout the dis-
charge, due to the non-zero Rint. Specifically, the cell closest to the module terminals
(Cell 1) delivers the highest current to compensate for the voltage drop across the lowest
resistance, as clearly shown in Fig. 9.7(f), resulting in a more significant SOC decline.
Toward the end of the discharge, a shift in the current distribution occurs, leading to a
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Figure 9.6: Validation of the MHE-based SOC estimation algorithm in constant current
(CC) (a-c) and driving cycle (d-f) scenarios. (a)(d) Comparison of measured and esti-
mated module voltage (Vmod). (b)(e) SOC distribution across cells. (c)(f) SOC estimation
error for each cell, along with voltage measurement noise.

convergence in SOC values, driven by the higher VOCP of the cells that still retain charge.

9.3.1.2 Validation with experimental data

To evaluate the effectiveness of the MHE algorithm in practice, the method is applied
to experimental data from two discharge tests characterized by identical 0.75C constant
current profiles but with different internal resistances, Rint, set at 1mΩ and 3mΩ [8]. The
reference SOC for each cell is calculated using Coulomb counting, based on the measured
current and cell capacity. The estimation horizon is set to 10 seconds, considering a
sampling time of 1 second, while tsim refers to the time needed to fully discharge the
module. The covariance matrices and initial conditions defined as follows: V = 10−5,
P

[k]
0 = diag(1 × 10−1, 5 × 10−2), Q[k] = diag(10−3, 10−4), and X

[k]
0 = [−0.02, 0.95], where

k ∈ 1, · · · , Np. Compared to the previous section, the Q matrix has been re-calibrated to
account for structural uncertainties present in the physical system. Fig.9.7(a-c) and (d-f)
display the results obtained with Rint=1mΩ and 3mΩ, respectively. The MHE algorithm
once again demonstrates precise SOC estimation, maintaining the SOC error below 1.8%
throughout the full discharge. The calculated ΣSOCRMS values are 2.7% for Rint = 1mΩ

and 3.2% for 3mΩ. The higher estimation error, compared to the results in Section 9.3.1.1,
can be attributed to inherent differences between the model and the real system dynamics.
Additionally, as shown by Fig.9.7(c) and (f), the estimated cell current in each branch
consistently follows the measured current, capturing both the converging and diverging
phases. It is important to note that cell currents in the experimental setup were measured
using Hall sensors, as detailed in [8].
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Figure 9.7: Validation of the MHE-based SOC estimation algorithm using experimental
data under two different Rint values: 1mΩ (a-c) and 3mΩ (d-f) scenarios. (a)(d) Compar-
ison of measured and estimated Vmod. (b)(e) SOC error for each cell. (c)(f) Comparison
of measured and estimated current distribution over the Depth of Discharge (DOD).

196



0

5

jS
O
C
er
ro
rj
[%
]

0

2

4

R
in

t
[m
+
]

Joint SOC and Rint estimation: Simulation validation(a)

Cell 4 Cell 3 Cell 2 Cell 1 Rref
int = 3 m+ Rint

0 0.2 0.4 0.6 0.8 1

DOD [-]

0

5

jS
O
C
er
ro
rj
[%
]

0

2

4

R
in

t
[m
+
]

Joint SOC and Rint estimation: : Experimental validation(b)

0

5

jS
O
C
er
ro
rj
[%
]

0

2

4

R
in

t
[m
+
]

Joint SOC and Rint estimation: Simulation validation(a)

Cell 4 Cell 3 Cell 2 Cell 1 Rref
int = 3 m+ Rint

0 0.2 0.4 0.6 0.8 1

DOD [-]

0

5

jS
O
C
er
ro
rj
[%
]

0

2

4

R
in

t
[m
+
]

Joint SOC and Rint estimation: : Experimental validation(b)

Figure 9.8: Joint SOC and Rint estimation results using the same data as Fig. 9.7(d-f).
(a) Maximum SOC error (b) Comparison of estimated and reference Rint values.

9.3.1.3 Joint SOC and interconncetion resistance estimation

In the simulations presented, the interconnection resistance is assumed to be known and
not estimated. In practical applications, measuring Rint typically requires extensive and
systematic testing at the module or pack level, which can be economically prohibitive.
Therefore, online estimation of Rint could be a practical solution for characterizing the
module-level model. This approach would enable the development of advanced fault
detection strategies to prevent connection issues among interconnected cells [238]. This
section tackles this challenge by incorporating an additional state, Rint, with null dynamics
(i.e. Ṙint = 0), into the modulel-level model (9.5). This modification transforms the
problem into a joint estimation task for both SOC and Rint.
Assuming a constant Rint across parallel branches, Fig. 9.8 (a) and (b) show preliminary
estimation results using both simulated and experimental data previously presented in
Fig. 9.6(a-c) and Fig. 9.7(d-f), respectively. For these estimates, Rint is initially set to
0mΩ due to the lack of prior knowledge. The values for Q,P0 and X0 are maintained as
in the previous sections, and the voltage covariance is consistently set at V = 10−5 for
both scenarios. As illustrated in Fig. 9.8(a), both SOC and Rint are accurately estimated
using simulated data. The maximum SOC error and ΣSOCRMS stay below 2.2% and
3.3%, respectively, throughout the discharge. Additionally, Rint is estimated with high
accuracy, closely approximating the actual value of 3mΩ, as shown in Fig.9.8(b). While
the addition of the Rint state results in a slight increase in the maximum SOC estimation
error compared to previous results, the error remains within acceptable limits. Future
research could focus on addressing the assumption of uniform Rint across parallel branches,
potentially through the incorporation of temperature or current sensors within the module.

197



9.4 Conclusion

In summary, this paper introduces an MHE-based approach for estimating the state of
charge (SOC) of individual cells within parallel-connected battery modules for battery
electric vehicles (BEVs). The MHE method is selected for its capability to handle directly
nonlinear dynamics and constraints. Unlike previous studies, our method accounts for cell-
to-cell (CtC) variations and their effects on battery pack performance and heterogeneity,
while also considering the interconnection resistance between parallel branches.
The estimation algorithm relies on a module-level ECM-based model that integrates Np

parallel cells, each of them identified at the cell-level via standard cell characterization
testing procedures. We perform a nonlinear observability analysis of the module-level
model under various configurations of Rint and Np. Compared to existing literature,
the analysis has been extended to account for the presence of interconnection resistance,
SOC-dependent parameters, and varying numbers of cells. The analysis reveals that sys-
tem states are observable when Rint > 0. However, estimation accuracy declines as the
number of parallel cells Np increases or Rint decreases. The performance of two differ-
ent MHE algorithms is compared using two distinct model structures: the ODE model,
which incorporates Kirchhoff’s equations into the state-space model, and the DAE model,
which treats Kirchhoff’s laws as equality constraints in the MHE optimization problem.
Results show that while both approaches offer comparable accuracy, the DAE model is
more computationally efficient, making it better suited for real-time applications with
limited computational resources. The proposed MHE-based method is validated using
both simulated and experimental data across various current profiles and interconnection
resistance scenarios. It demonstrates high accuracy, with SOC errors remaining below
1.8% in experimental data and negligible errors in simulations. Preliminary results sug-
gest the feasibility of joint SOC and resistance estimation, providing a promising avenue
for scenarios where Rint is unknown.
Future research will explore integrating additional measurements, such as current, voltage,
or temperature, to improve estimation accuracy and relax the assumption of uniform Rint

across parallel branches. It is important to highlight that addressing cell-to-cell (CtC)
variations and their effects on module performance, heterogeneity, and aging is a crucial
first step toward improving the reliability and effectiveness of charging optimization, cell
balancing, and fault detection strategies.
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Conclusions
This dissertation presents two primary contributions to the advancement of Battery Man-
agement Systems (BMS) for Lithium Iron Phosphate (LFP)-based and parallel-connected
battery systems.
Building upon the high-fidelity CSa-ESPM developed in [9, 10], two distinct reduced-
order models (ROMs) are proposed: Firstly, the POD-Galerkin method is employed to
reduce the dimensionality of the original CSa-ESPM. This reduction decreases the num-
ber of state variables from 169 to just 9. Validation results, obtained by comparing both
experimental data and CSa-ESPM simulations, demonstrate that the POD-based ROM
accurately predicts cell voltage and electrode SOC. Additionally, the ROM successfully
captures phase transition dynamics, voltage hysteresis, and path dependence effects. Sec-
ondly, the FVM is utilized to spatially discretize the CSa-ESPM model for LFP batteries.
This technique substantially reduces the number of solid-phase state variables to fewer
than 6, while ensuring mass conservation and avoiding the need for ad hoc snapshot ma-
trix generation typical of the POD-Galerkin method. Experimental validation confirms
that the FVM-based reduced-order CSa-ESPM provides an accurate match for both cell
voltage and electrode SOC. These ROMs represent a crucial first step toward developing
control-oriented, model-based strategies aimed at improving BMS algorithms for LFP-
based battery systems.
Furthermore, the impact of CtC variations in parallel-connected modules is thoroughly
analyzed using statistical methods. A comprehensive 54-condition full-factorial DOE was
conducted on four ladder-parallel connected modules. This approach enabled the inde-
pendent evaluation of how variations in module current, SOC, temperature heterogeneity,
and TTSB respond to different interconnection resistances, operating temperatures, com-
binations of cell chemistries, and levels of aging. The feature importance analysis, based
on the formulated MLR and ML models, reveals that interconnection resistance is consis-
tently the most significant source of CtC variation. Additionally, the integration of NMC
and NCA cells is feasible for future second-life applications. Simulation results demon-
strate that simple MLR models are sufficient to predict module heterogeneity in battery
modules. Moreover, it was demonstrated that using a high-fidelity digital twin for the
battery system provides deeper insights into the understanding of the CtC effects on mod-
ule responses under both short-term and long-term scenarios. Additionally, a simple cell
arrangement strategy is presented to reduce CtC thermal gradients, thereby decreasing
aging heterogeneities over the long term. According to simulation results, this method
allows for a thermal gradient reduction of 51.8% and a consequent decrease of 5.2% in
module energy loss after 500 aging cycles.
Finally, a state estimation algorithm for individual cells within parallel-connected bat-
tery configurations is formulated and validated against experimental data using the MHE
technique. The algorithm demonstrates high accuracy, with SOC errors remaining below
1.8% in experimental data and exhibiting negligible errors in simulations. Preliminary
results suggest the feasibility of joint SOC and resistance estimation, providing a promis-
ing avenue for scenarios where internal resistance (Rint) is unknown. Future research will
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explore integrating additional measurements, such as current, voltage, and temperature,
to improve estimation accuracy and relax the assumption of uniform Rint across parallel
branches. Addressing CtC variations and their effects on module performance, hetero-
geneity, and aging is a crucial first step toward improving the reliability and effectiveness
of charging optimization, cell balancing, and fault detection strategies. Future research
will focus on enhancing these models and algorithms to further advance BMS technologies,
ultimately contributing to more reliable and efficient battery systems.
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