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Abstract 

As countries become increasingly urbanized, understanding how urban areas are 

changing within the landscape becomes increasingly important. Urbanized areas are the often 
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the strongest indicators of human interaction with the environment, and understanding how 

urban areas develop through remotely sensed data allows for more sustainable practices.  The 

Google Earth Engine (GEE) leverages cloud computing services to provide analysis 

capabilities on over 40 years of Landsat data. As a remote sensing platform, its ability to 

analyze global data rapidly lends itself to being an invaluable tool for studying the growth of 

urban areas. Here we present (i) an approach for the automated extraction of urban areas 

from Landsat imagery using GEE, validated using higher resolution images, (ii) a novel 

method of validation of the extracted urban extents using changes in the statistical 

performance of a high resolution population mapping method. Temporally distinct urban 

extractions were classified from the GEE catalog of Landsat 5 and 7 data over the Indonesian 

island of Java by using a Normalized Difference Spectral Vector (NDSV) method. Statistical 

evaluation of all of the tests were performed, and the value of population mapping methods 

in validating these urban extents were also examined. Results showed that the automated 

classification from GEE produced accurate urban extent maps, and that the integration of 

GEE derived urban extents also improved the quality of the population mapping outputs. 

Keywords: Landsat, Multitemporal, Population Mapping, Google Earth Engine, Settlement 

Mapping, Urbanization, spatial demography 

1. Introduction 

Landsat imagery have proven to be useful in understanding global urbanization trends over 

different timescales. Satellite-derived data have been integral in understanding trends in urban 

sprawl and many other dynamics of urbanization (Guindon et al., 2004; Angel et al., 2005; 

Burchfield et al., 2006; Schneider & Woodcock, 2008; Potere et al., 2009; Schneider, 2012; 

Taubenböck et al., 2012; Sexton et al., 2013). 
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The Google Earth Engine (GEE) is an online environmental data monitoring platform that 

incorporates data from the National Aeronautics and Space Administration (NASA) as well as 

the Landsat Program. After the USGS opened access to its records of Landsat imagery in 2008, 

Google saw an opportunity to use its cloud computing resources to allow records of Landsat 

imagery to be accessed and processed over its online system. This has enabled users to reduce 

processing times in analyses of Landsat imagery and make global scale Landsat projects more 

feasible (e.g. Hansen et al., 2013). The 30m spatial and multi-spectral resolution is ideal for 

defining urban areas, and its revisit time is sufficient for monitoring applications (Woodcock et 

al., 2008). Moreover, because of Landsat’s temporal continuity from 1972 to the present day, it is 

a popular platform to use for urban change analysis (Alberti et al., 2004; Bagan & Yamagata, 

2012; Rawashdeh & Saleh, 2006; Yuan et al., 2005). 

In the past two decades, the Landsat platform has been paired with imagery from the 

Advanced Very High Resolution Radiometer (AVHRR) (Hansen et al., 1998), the Defense 

Meteorological Satellite Program’s Operational Linescan System’s nighttime imagery (Elvidge 

et al., 1996, 1997, 1999; Sutton, 2003), and NASA’s Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Schneider et al., 2003, 2009, 2010) to improve the accuracy of 

urban detection and mapping across large areas. The improvement of methods for detecting 

urban extents has also driven improvements in population mapping. Satellite imagery has formed 

the basis of many large area population mapping efforts, such as the Global Rural–Urban 

Mapping Project (Center for International Earth Science Information Network (CIESIN), 2004) 

LandScan (Bhaduri et al., 2007) and WorldPop (Linard et al. 2012, Gaughan et al. 2013, "The 

WorldPop Project," 2014). Satellite-derived urban extents and, more generally, land cover tend 

to form an important component of accurate population mapping (Linard & Tatem 2012, Linard 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 
 

et al., 2011), but detailed data can often be costly or time consuming to produce. The GEE 

presents the possibility for analyzing and classifying satellite data with great speed, so that more 

relevant and accurate outputs in terms of distributions of population can become a reality 

(Hansen et al., 2013).  

 Here we present an approach for the automated extraction of urban areas from Landsat 

imagery built into the GEE, and a novel method of validation of this mapping using changes in 

the statistical performance of a high resolution population mapping method (Stevens et al., 

2014). 

2. Methods 

2.1 Study Area 

  The study area is the Indonesian island of Java, which, along with being the world’s most 

populous island, is also only the fourth largest island in Indonesia but contains more than half of 

the island nation’s population. Jakarta, the capital city is also located on the island and is 

Indonesia’s largest city. The island is 661 miles long from east to west, it ranges in width from 

about 60 miles in the center to more than 100 miles near each end (Fig. 1). 

2.2 Urban Extent Extraction Procedure 

The urban extraction methodology proposed here is based on supervised classification of 

multispectral data. In this work we consider “urban areas” all the portion of a scene with 

spectrum similar to selected training areas. These training areas include buildings, roads and 

other artificial surfaces. Therefore, in the following “urban extents” do not correspond to “built-

up extents”. Our definition of urban areas is instead more similar to “impervious surfaces”. 
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Accordingly, the implemented processing chain is a spectral-based analysis followed by a 

spatial regularization that is undertaken using the Google Earth Engine cloud computing 

environment. Processing and implementation in a cloud environment allows for a consistent 

scaling of the computational efforts when dealing with wide geographical areas. The extraction 

procedure includes three steps, briefly detailed below: (i) preprocessing and selection of a set of 

Landsat scenes covering the geographical area and time span of interest, (ii) computation of the 

Normalized Difference Spectral Vector index (NDSV), a collection of spectral indices that have 

already been proven (Angiuli & Trianni, 2014) to be an efficient input to urban extent 

classification algorithms classification and, (iii) spatial-based post-processing.  

2.2.1 Preprocessing and scene selection 

Pre-processing include orthorectification and coregistration of all the scenes, so that data 

acquired at multiple dates overlap. This is done internally and seamlessly by the GEE platform at 

the ingestion of the data from the USGS repository. No radiometric intercalibration or 

atmospheric correction is performed however. Therefore, although all scenes are calibrated 

according to the sensor parameters, some differences in radiance values due to the illumination 

and atmospheric conditions still affect overlapping regions among scenes. 

Scene selection is instead performed by our algorithm. Specifically, in order to reduce the 

Landsat data set to the most suitable scenes, a filter on scene parameters is first applied, to 

consider only those with less than 10% of cloud coverage and the highest radiometric quality. 

2.2.2 Implementation of the Normalized Difference Spectral Vector Index Stack into the Google 

Earth Engine 
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 Unlike threshold-based recognition of human settlement (one index) approaches 

developed by Pesaresi et al. (2008) and Xu, (2008), the main input to the urban extent extraction 

outlined here is the Normalized Difference Spectral Vector (NDSV), proposed in the technical 

literature (Angiuli & Trianni, 2014) as a means to group existing normalized difference indices 

(such as the Normalized Difference Vegetation Index - NDVI, the Normalized Difference Water 

Index - NDWI, and the Normalized Difference Built-up Index - NDBI). NDSV includes in one 

single vector all the possible normalized indexes that can be computed starting from a Landsat 5 

or 7 image, considering therefore 6 bands and 15 possible combinations (the dual ones are not 

considered as their result is the same but with just the opposite sign). 

NDSV includes in one single vector all the possible normalized indexes that can be 

computed starting from the 30 m spatial resolution bands a Landsat 5 or 7 image. For each band 

pair this is computed: 

(1) !"#$%& '
()*(+
(),(+

 

 Hence, using 6 bands and applying Eq. (1) to any possible pair of different bands, a total 

of 30 indexes are obtained. Due to the symmetry of the definition, 15 of them are only the 

negative of the other ones, and can be discarded. Each pixel is thus characterized by a set of 

values, some of which correspond to known indexes (e.g., !"#$-. ' !"$/,	!"#$-1 ' !"2/, 

!"#$-3	 ' !"4/), while other ones have not been explored so far. 

 Each pixel is thus characterized by a set of values that have been at this point “labeled” 

only partially. Considering a radiometrically and geometrically corrected Landsat scene, the 

NDSV features characterizing urban areas, compared to other classes, are shown for a few 

sample pixels in Fig. 2. It can be noted that urban areas exhibit a distinct NDSV spectral 
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signature which can be discriminated from other classes by their distinct behavior in this new 

“multispectral” 15-dimensional space. Fig. 2 demonstrates NDSV profiles that can be obtained 

from an image. 

In summary, instead of relying on threshold-based recognition of human settlements 

according to a single index ((Pesaresi et al., 2008) and (Xu, 2008)), the procedure implemented 

in this work considers more information as input to a suitable classification chain, aimed at 

providing a consistent methodology that works in many different environments, and is 

reasonably robust with respect to the date of acquisition of the image and unaffected by 

differences in spatial patterns. 

2.2.3 Processing of multitemporal urban extents over Java  

Four tests were conducted in order to validate the creation of urban extents using the 

procedure discussed in the preceding subsections. A census-based population disaggregation 

method was used for validation, a method that rasterizes GIS data and distributes population 

counts based on the GIS data that is provided. This method was used because it provides the 

ability to analyze how the urban extents improve the statistical correlations in the disaggregation 

process. 

 In three of four tests, the urban extents were considered as one of the inputs to a census-

based population disaggregation method (Stevens et al., 2014). In the first test, instead, the same 

method was run using the original data sets detailed in Table 1 and the landcover map, including 

urban extents, was taken from the EarthSat Geocover land cover thematic mapper-based dataset 

(2007, 30m) by MDA Federal (MDA Federal Inc., 2007). Test 1 served as the baseline data for 
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validation because it does not use any Google Earth Engine urban extents and because its 

classification has been validated by MDA Federal, serving as a useful control test.  

The qualitative differences of these different landcover-based experiments:  

• Test 1: EarthSat GeoCover Landsat Thematic Mapper (TM) derived land cover data from 

MDA Federal (2007) 

• Test 2: GEE urban extents for Java derived using three collections: Imagery from 2006, 

2007 and 2008 merged with GeoCover 

• Test 3: GEE urban extents for Java derived using three collections: Imagery from 2009  

T1 (January through April), 2009 T2 (May through August), 2009 T3 (September 

through December) merged with GeoCover 

• Test 4: GEE urban extents for Java derived using three collections: Imagery from 2008, 

2009, 2010 merged with GeoCover 

The GEE urban extractions were obtained using Landsat 5 or Landsat 7 data sets, because 

both satellites were operative in the years of interest.  Specifically, multiple Landsat images in 

the same area and covering a finite period of time were combined in a so called GEE collection, 

and each pixel was assigned the median value for all images where it appears. Collections are a 

powerful way to get rid of many of the cloud contaminated pixels, because clouds do not appear 

in the same position in all images. A better approach would be to mask cloud pixels with a 

dedicated filter, a function which unavailable in GEE. Therefore, although we understand that 

cloud-contaminated pixels may still be present in areas with consistent cloud coverage along the 

year, this technique was assumed as the best available option. Additionally, it must be noted that 

collections change the radiometric properties of the data, reducing the effectiveness of the 
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proposed urban extent procedure. To reduce this effect, urban extents for one year were obtained 

by subdividing the year into thirds. Computing collections for each of these time periods 

involved extracting urban extents and then combining the resulting maps by majority voting. 

Similarly, three year collections were subdivided into thirds (one for each year) and then 

combined by majority voting. To prove the usefulness of the proposed approach for mapping 

urban extents (and derive population counts) along multiple years, the fourth test repeats the 

approach of the third one, but using Landsat data collected two years later (2009 versus 2007). 

2.2.4 Post-processing  

Human settlements can be characterized by peculiar spatial patterns, however, it is important 

to include a post-processing step aimed at reducing issues related to misclassifications at the 

pixel level. The simplest and most effective approach is to include morphological operators 

aimed at discarding isolated pixels and at improving the homogeneity of the extracted 

settlements with respect to their spatial distribution. Additionally, as the classification results 

may be affected by spectral patterns (and sub-pixel mixing problems) similar to urban ones in 

water bodies with high turbidity (Carpenter & Carpenter, 1983; Foody, 2000), such as inner 

reservoirs, coastal areas and river estuaries, these zones are automatically masked out from the 

classification in GEE using ancillary GIS data. Similar issues may be caused by clouds, and thus 

“cloud removal” approaches had to be considered.  

2.3 High Resolution Population Mapping Method 

As mentioned above, the population mapping algorithm in Stevens et al. (2014) is an 

essential portion of this study. Thus, its processing steps are briefly described in the following 

paragraphs. 
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2.3.1 Population data grid 

 The 130 census polygons for Java (Figure 1) contained population counts from the year 

2010. The population mapping algorithm outlined in Stevens et al (2014) was used, where census 

counts from the census year are redistributed according to weights, then adjusted up/down based 

on rural and urban growth rates to a particular year of interest (2007 in this case). This is usually 

based on the classified urban/rural land cover (built pixels are classified as urban vs. rural using 

Schneider, et al. (2010) urban/rural MODIS-derived classifications), but in this circumstance 

uses the new GEE-derived urban delineations to identify urban built pixels. The urban/non-urban 

delineation was integrated into the MDA landcover data as “built” areas (“_BLT”). The 

particular year of interest that was selected was 2007 for all datasets, to pick one year for counts 

to match and for a point of comparison for the accuracy assessment detailed in 2.3.3.  

The administrative units were used to delineate the areas where the landcover data in 

continuous raster format and converted vector format are interpolated by means of the Random 

Forest method to generate a weighting layer (Stevens et al 2014). Once this weighting layer is 

generated, population counts for each census unit are distributed over the weighting layer to 

provide a map of population counts at a 100 by 100 meter resolution (See Table 1 for detail on 

all covariate datasets used in the process).  

2.3.2 Data preparation and the Random Forest population disaggregation method 

The general process used for the data preparation, modeling and validation for the 

population mapping is outlined in Fig. 3. Full details on these steps are provided in Stevens et al., 

(2014). In brief, the steps in green represent the data preparation tasks. The aggregated 

population counts and the raster and vector layers shown in Table 1 are then used to create a 
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Random Forest model (Breiman, 2001) to predict log population density. Random Forest (RF) 

models are an ensemble, nonparametric modeling approach that grows a "forest" of individual 

classification or regression trees and improves upon bagging (Breiman, 1996) by using the best 

of a random selection of predictors at each node in each tree (Breiman, 2001; Liaw & Wiener, 

2002). 

As expected when combining multiple observations that are mostly independent, the best, 

most unbiased prediction was arrived at by taking the mean of all trees within the forest and 

back-transforming the log to arrive at an estimate of per-pixel population density. Medians and 

percentile ranges were also assessed as alternative approaches for prediction; however, the back-

transformed mean consistently out-performed the alternative summary methods during 

validation. The resulting country-wise population density map was then used as a weighting 

layer for a standard dasymetric mapping approach as described for the AfriPop and AsiaPop 

(now WorldPop) data sets by (Gaughan, et al., 2013; Linard, et al., 2012; Linard & Tatem, 2012; 

Tatem et al., 2007). 

2.3.3 Accuracy Assessment 

The four output population maps produced using administrative level 1 input census data 

(Fig. 1), were then compared to the level 2 census counts to provide one method of assessing 

mapping accuracies, following Gaughan et al. (2013). The individual cell values of the output 

population maps represent people per cell, and were then added together for each census unit. 

These “predicted” sums were then compared with the observed census counts within each unit. 

Summary statistics were then calculated, including root mean square error (RMSE), the RMSE 

divided by the mean census unit count (%RMSE) and the mean absolute error (MAE). Together 

these statistics were used to compare the predictive ability of each methodology. 
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3. Results 

3.1 Urban Extraction Results 

For the urban extraction results in the test areas, all of them referring to Landsat scenes 

recorded in 2007, the validation was performed as follows: human settlement extents were 

manually digitized from Very High Resolution (VHR) Quickbird images available in Google 

EarthTM, and recoded in 2007, if possible in the same month of the corresponding Landsat scene. 

The relatively small cities of Manado and Bandung, as well as the big urban agglomeration of 

Jakarta were considered. 

 The mapping results are shown in Fig. 4, while the quantitative validation results for 

Manado with and without spatial post-processing (see section 2.2.2) are reported in Table 2. 

Visually, the approach shows an accurate extraction of the human settlement extents at the pixel 

level, with a few misclassifications outside the actual urban area, and missing areas within the 

boundary of the larger blocks. The quantitative evaluation shows instead a large omission error 

percentage. After post-processing, however, the overall accuracy improves to 85% and the 

omission error decreases from 87% to below 19%. Satisfied with the relative accuracy of 

detecting urban areas using the NDSV classifier on the GEE system, the process was applied to 

three collections on the Google Earth Engine, and then integrated with the MDA Landcover 

dataset. This combined land cover dataset, using the GEE-derived built area delineations was 

then applied to the population mapping process and evaluated statistically for prediction 

accuracy. 

A small sample of the urban extents generated for tests 2, 3 and 4 are shown in Fig. 5 for 

the central part of Jakarta along with the urban extents for the same area in the MDA data set. 
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3.2 Random Forest Statistical Output 

The differences between results are determined by the ancillary datasets used in the 

population mapping detailed in Table 1.   

Referring to the covariate names in Table 1, there are two significant covariates in the 

Random Forest mapping process, “BLT” (Built) and “lig” (VIIRS Nightlights). Table 3 provides 

some insight into the importance of the variables in the mapping process by showing how much 

Mean Squared Error (MSE) increases when the specified covariate is randomly permuted and 

predictions re-calculated. The most important variables include the “BLT” covariates, indicating 

“Built” areas, which include urban and rural settlements. In addition, for all tests, except for Test 

4 (GEE 2008-2010), the “lig” (VIIRS Nightlights data) have higher importance than other 

covariates. 

Table 3 also displays the increase in node purity in each test, which documents reduction 

in residual sum of squared error for the predictions at the ends of the branches of each tree when 

the specified variable is used during the Random Forest mapping process. Again referring to the 

variables detailed in Table 1, we show that the “BLT” (built) classes with the GEE integrations 

in Tests 2, 3 and 4 are the most important in the Random Forest process. 

 Again referring to the variables detailed in Table 1, it can be observed that the “BLT” 

classes with the GEE integrations in Tests 2, 3 and 4 are making the built classes the most 

important in the Random Forest process.  

3.3 Random Forest Accuracy Assessment 

The accuracy assessment process detailed in Section 2.3.3 shows how much the urban 

extents improve the output when the census data were aggregated from district to province. The 
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tests in the previous sections detail how well the RF does in predicting population values at the 

census unit level, but more importantly is whether the population map produced using built land 

cover data from the three GEE-derived approaches is better at redistributing the population 

numbers from coarser census units. Two different error assessment methods are presented: root 

mean square error (RMSE), also expressed as a percentage of the mean population size of the 

administrative level (% RMSE); and the mean absolute error (MAE). 

For both RMSE and MAE, the results in Table 4 indicate that Test 4 increased population 

mapping accuracy the most, with Test 3 slightly better than Test 1. Notably, the urban extraction 

from Test 2, which used built extents derived from years 2006 to 2008 had the lowest 

redistribution accuracy. It is notable that the landcover changes allow for Test 3 and Test 4 to 

outperform the MDA dataset in reducing error, creating more concurrent built data to correlate 

better with our other datasets. 

4. Discussion and conclusions 

 The possibilities that the Google Earth Engine offers in analyzing remotely sensed data 

on a global scale with the power of Google’s cloud computing are substantial. The inclusion of 

continuously updated Landsat data along with classification tools and significant processing 

power will enable newer and more accurate ways to map human settlements across large areas at 

30 m spatial resolution, document past changes and continually update current estimates. The 

potential of this resource has been recently illustrated for multitemporal forest mapping (Hansen 

et al., 2013), and here we outline initial steps for similar efforts in human settlement and 

population mapping. 
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 The application of the NDSV within the GEE shows significant potential for settlement 

mapping within the tool. Characterizing human settlements can be considered as a binary 

problem, but where the “non-urban” class is very heterogeneous. It therefore requires a classifier 

which is non-parametric, i.e. that does not assume any peculiar statistical distributions of the 

input values. Moreover, since the NDSV is built through a composition of 15 bands, the 

classifier has to be able to manage high-dimensional spaces. Therefore, classifiers developed for 

hyperspectral data are preferable, using, for example, the spectral angle mapper classifier 

(Angiuli & Trianni, 2014), that captures the differences in multispectral vectors and is robust 

with respect to difference in illumination. Since this classifier is not available in the GEE 

environment, Support Vector Machines (SVM) and Classification and Regression Trees (CART) 

were considered instead ("Earthengine-api - Earth Engine Access Library - Google Project 

Hosting," 2014), with similarly strong results shown. 

 Both the SVM and CART are suitable to binary problems, but our tests suggested that 

CART produced more accurate urban extent maps. The statistical indices explored in the 

Random Forest population mapping process in Table 3 highlight to what degree the distance to 

“built” environments (lan_dstBLT) covariate plays a role in reducing error and increasing the 

quality of the output of the population mapping process. When the focus was on which variable, 

if removed, would increase the RMSE, the GEE experiments (Tests 2, 3, and 4) showed that the 

distance to “built” covariate was an important one. Table 3 also reflects the same results in 

increasing node purity in the process. It is important to note that in tests 2 and 4, urban extents 

extracted in 3 consecutive years are combined, while in test 3 a single year is considered. Test 2 

showed the greatest amount of error, utilizing urban extents that were obtained from the GEE for 

years 2006, 2007 and 2008. It is clear that the modification of the landcover from test 1 for the 
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same time period reflected in test 2, changes the areas within Jakarta significantly. The improved 

accuracy of test 1 over test 2 could just reflect a better correlation of values instead of informing 

what is making the data more spatially significant, and in that circumstance, it can be argued that 

the GEE urban extents can be a critical component in the creation of multitemporal datasets that 

can modify existing landcover datasets in order to examine trends, in an efficient manner, for 

different years. Table 4 shows how the integration of GEE extents correlates well in the 

population mapping process and decreases error, by adding more concurrent built data along 

with our other covariate datasets. 

 In using census data from 2010, land cover data closest to this year stands a better chance 

of being the best proxy for disaggregation if all other factors are equal. In this sense, there is an 

inherent bias in the tests, but it also highlights the benefits of the GEE approach, that is being 

able to produce an accurate urban extent map for any time period, with the ability to match up 

land cover data to particular census dates. 

 Overall, the NDSV is shown here to be a reliable method to detect urban extents, 

especially when using a powerful tool to analyze the data such as the GEE. Moreover, the GEE 

represents one of the most powerful tools offered today in remote sensing with its ability to 

analyze and classify remotely sensed data over different temporal scales. Finally, the use of 

NDSV derived extents produced in the GEE  and integrated in a flexible population mapping 

method enables testing of the validity of the classifications in improving population distribution 

mapping, providing an additional novel accuracy assessment approach.  As urbanization 

processes continue to accelerate in many countries around the world, accurate, powerful and 

efficient methods for rapid mapping of settlements and their changes, as well as populations 

within them are a prerequisite for strategic planning and impact assessments. The results here 
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point towards the integration of classification and population mapping methods within GEE as a 

way of meeting this need. 
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Tables 
Table 1: Test-specific data sources and variable names used for population density estimation 
used for dasymetric weights. 

Type Variable Name(s)* Description Indonesia Java Data  
Census  Country-specific census and scale 2010, Admin-level 2 

(GADM,2014), 
(Geohive, 2014) 

    
Land Cover lan_cls011, lan_dst011 Cultivated terrestrial lands Landcover Experiments 

detailed in Table 2 
 lan_cls040, lan_dst040 Woody / Trees  
 lan_cls130, lan_dst130 Shrubs  
 lan_cls140, lan_dst140 Herbaceous  
 lan_cls150, lan_dst150 Other terrestrial vegetation  
 lan_cls160, lan_dst160 Aquatic vegetation  
 lan_cls190, lan_dst190 Urban area  
 lan_cls200, lan_dst200 Bare areas  
 lan_cls210, lan_dst210 Water bodies  
 lan_cls230, lan_dst230 No data, cloud/shadow  
 lan_cls240, lan_dst240 Rural settlement  
 lan_cls250, lan_dst250 Industrial area  
 lan_clsBLT, 

lan_dstBLT 
Built, merged urban/rural class  

Continuous    
Raster-Format    
 lig Lights at night Suomi VIIRS-Derived 
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(NOAA, 2012) 
 tem Mean temperature, 1950-2000 WorldClim/BioClim 
 pre Mean precipitation, 1950-2000 WorldClim/BioClim 
 ele Elevation HydroSHEDS (Lehner 

et al., 2006)  
 ele_slope Slope HydroSHEDS-Derived 

(Lehner et al., 2006) 
Converted    
Vector-Format roa_dst Distance to roads OSM (2013) 
 riv_dst Distance to rivers/streams OSM (2013) 
 pop_cls, pop_dst Generic populated places VMAP0 merged† 
 wat_cls, wat_dst Water bodies World Food Programme 
 pro_cls, pro_dst Protected areas WDPA, IUCN (2012) 
 poi_cls, poi_dst Populated Points OSM (2013) 
 bui_cls, bui_dst Buildings OSM (2013) 
    
    
    
* The variable names are used in Random Forest model output and throughout the text as reference to the specific 
data they were derived from. The first three letters are derived from the data type (e.g. “lan” indicates land cover) 
and the last three letters, if present, indicates what type of data each variable represents (e.g. “_cls” is a binary 
classification and “_dst” is a calculated Euclidean distance-to variable. 

† The default data for populated places is merged from several VMAP0 data sources. There are three VMAP0 data 
sets used: The point data pop/builtupp and pop/mispopp are buffered to 100 m and merged with the pop/builtupa 
polygons creating a vector-based built layer. This layer is then converted to binary class and distance-to rasters for 
use in modeling. (NGA, 2005) 

Table 2. Confusion Matrices for Kota Manado without (top) and with (bottom) the Spatial Post-
Processing Step (Fig. 4): 

Overall Accuracy =(2242/4000) 56.05% 
 Ground Truth (Pixels) 
Class urban non urban Total 
urban 245 3 248 
non urban 1755 1997 3752 
Total 2000 2000 4000 
    

Overall Accuracy = (3398/4000) 84.95% 
 Ground Truth (Pixels) 
Class urban non urban Total 
urban 1625 227 1852 
non urban 375 1773 2148 
Total 2000 2000 4000 

 

Table 3: Top Five Statistical Outputs: Percent Increase of Mean Squared Error When Variable is 
Randomly Permuted and Total Decrease in Residual Sum of Squares When Variable is Selected 
For Decision Tree Node 

Percent Increase of Mean Squared Error When Variable Randomly Permuted 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

26 
 

Test 1 (MDA) (total of 23 covariates used), 
(81% Variance Explained) 

Test 2 (GEE 2006-2008) (total of 22 
covariates used), (83% Variance 
Explained) 

20.2 (Lights) 18.4 (Lights) 
12.7 (Landcover Distance to Built Areas) 17.4 (Landcover Distance to Built Areas) 
10.8 (Distance to Populated Points) 10.6 (Distance to Populated Points) 
9.24 (Distance to Buildings) 7.91 (Distance to Generic Population 

Places, VMAP0) 
9.08 (Landcover Distance to Cultivated Terrestrial 
Areas)  

7.79 (Landcover Distance to Cultivated 
Terrestrial Areas)  

Test 3 (GEE 2009) (total of 22 covariates used), 
(83% Variance Explained)  

Test 4 (GEE 2008-2010) (total of 23 
covariates used), (84% Variance 
Explained) 

19.3 (Lights) 19.8 (Landcover Distance to Built Areas) 
16.5 (Landcover Distance to Built Areas) 18.8 (Lights) 
9.13 (Distance to Populated Points) 8.00 (Distance to Populated Points)  
7.13 (Distance to Roads) 7.77 (Landcover Distance to Cultivated 

Terrestrial Areas)  
6.90 (Landcover Distance to Cultivated Terrestrial 
Areas)  

7.23 (Distance to Roads) 

Total Decrease in Residual Sum of Squares When Covariate Used 
Test 1 (MDA) (total of 23 covariates used) , 
(81% Variance Explained) 

Test 2 (GEE 2006-2008) (total of 22 
covariates used), (83% Variance 
Explained) 

53.8 (Lights) 49.3 (Landcover Distance to Built Areas) 
31.7 (Landcover Distance to Built Areas) 43.7 (Lights) 
19.1 (Distance to Roads)  17.7 (Distance to Populated Points) 
17.2 (Distance to Populated Points)  16.9 (Distance to Roads) 
16.9 (Distance to Buildings) 13.7(Distance to Buildings) 
Test 3 (GEE 2009) (total of 22 covariates used), 
(83% Variance Explained) 

Test 4 (GEE 2008-2010) (total of 23 
covariates used), (84% Variance 
Explained) 

56.5 (Landcover Distance to Built Areas) 58.4 (Landcover Distance to Built Areas) 
46.6 (Lights) 45.3 (Lights) 
15.3 (Distance to Roads) 15.3 (Distance to Roads) 
13.5(Distance to Populated Points)    12.0 (Distance to Populated Points) 
9.76 (Distance to Generic Populated Places, 
VMAP0) 

11.2 (Distance to Buildings) 

 

 

Table 4: Accuracy Assessment Results for Four Urban Land Cover Treatments 
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 RMSE %RMSE MAE 
Test 1 (MDA) 1450.286 0.129064 787.8362 
Test 2 (GEE 2006-2008) 2277.501 0.20268 1352.685 
Test 3 (GEE 2009) 1377.889 0.122621 773.6329 
Test 4 (GEE 2008-2010) 1346.32 0.119812 759.3168 

 

 

 

 

 

 

 

 

 

 

Figures 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

28 
 

 
Fig. 1: Map of study area and Java administrative boundaries levels 1 and 2 
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Fig. 2. Normalized Difference Spectral Vector (NDSV) profiles for urban areas, vegetation, 
water and bare soil. 
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Fig. 3: General structure of the data processing and map production procedure used to compare 

the methodology outlined in Stevens et al (2014). The orange boxes represent items that are 
specific to the research presented here and not part of end-user map data product generation. The 
green boxes represent data pre-processing stages. Items in blue represent Random Forest model 
estimation, per-pixel prediction and dasymetric redistribution of census counts. 

 

 

 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

31 
 

 

 
Fig. 4: Human settlement extraction results for Manado, Bandung and Jakarta, in Indonesia. 
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Fig. 5: A small sample of the area around central Jakarta used in the tests. Test 1 displays 
the EarthSat GeoCover Land Cover Thematic Mapper from MDA Federal (reflecting extents 
from 2007). Tests 2, 3 and 4 represent the Google Earth Engine derived extents that are merged 
into Test 1. Test 2 integrates urban areas from 3 collections from 2006, 2007 and 2008 (a 
collection for each year), Test 3 integrates urban areas from 3 collections in 2009, and Test 4 
integrates urban areas from 2008, 2009, and 2010 (a collection for each year). Classifications 
reflected in the Legend are all from the MDA Federal dataset other than the “Urban Area” class, 
which was obtained from the Google Earth Engine derived NDSV extents. 
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