
1

Multiple Feature Learning for Hyperspectral

Image Classification

Jun Li, Member, IEEE, Xin Huang, Member, IEEE, Paolo Gamba, Fellow, IEEE,
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Abstract

Hyperspectral image classification has been an active topic of research in recent years. In the past, many different

types of features have been extracted (using both linear and nonlinear strategies) for classification problems. On the

one hand, some approaches have exploited the original spectral information or other features linearly derived from

such information in order to have classes which are linearly separable. On the other hand, other techniques have

exploited features obtained through nonlinear transformations intended to reduce data dimensionality, to better model

the inherent nonlinearity of the original data (e.g., kernels), or to adequately exploit the spatial information contained

in the scene (e.g., using morphological analysis). Special attention has been given to techniques able to exploit a single

kind of features, such composite kernel learning or multiple kernel learning, developed in order to deal with multiple

kernels. However, few approaches have been designed to integrate multiple types of features extracted from both linear

and nonlinear transformations. In this paper, we develop a new framework for classification of hyperspectral scenes

that pursues the combination of multiple features. The ultimate goal of the proposed framework is to be able to cope

with linear and nonlinear class boundaries present in the data, thus following the two main mixing models considered

for hyperspectral data interpretation. An important characteristic of the presented approach is that it does not require

any regularization parameters to control the weights of considered features, so that different types of features can be

efficiently exploited and integrated in a collaborative and flexible way. Our experimental results, conducted using a

variety of input features and hyperspectral scenes, indicate that the proposed framework for multiple feature learning

provides state-of-the-art classification results without significantly increasing computational complexity.
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I. INTRODUCTION

The recent availability of remotely sensed hyperspectral images has fostered the development of techniques able

to interpret such high-dimensional data in many different application contexts [1]. It is now commonly accepted that

using the spatial and the spectral information simultaneously provides significant advantages in terms of improving

the performance of classification techniques. A detailed overview of recent advances in spatial-spectral classification

of hyperspectral data is available in [2]. Resulting from the need to model both the spectral and the spatial information

contained in the original data, different types of features have been exploited for spectral-spatial classification. These

features can mainly classified into two categories:

• On the one hand, several methods exploit the original spectral information or other features linearly derived

from such information. These kind of features have been widely used to exploit the linear separability of

certain classes [3]. Techniques commonly used for this purpose include the maximum noise fraction (MNF)

[4], independent component analysis (ICA) [5], linear spectral unmixing [6], or projection pursuit (PP) [7],

among many others [8].

• On the other hand, in real analysis scenarios it is likely to find cases in which nonlinear features are more effec-

tive for class discrimination due to the existence of nonlinear class boundaries. As a result, several techniques

have focused on on exploiting features obtained through nonlinear transformations to better model the inherent

nonlinearity of the original data. Examples include kernel methods [9], [10] and manifold regularization [11],

[12]. Other nonlinear approaches are focused on adequately exploiting the spatial information contained in the

scene, e.g., using morphological analysis [13], [14].

Once relevant features have been extracted from the original data, the classification process itself can also be

either linear or nonlinear. For instance, in linear discriminant analysis (LDA) [15] a linear function is used in order

to maximize the discriminatory power and separate the available classes effectively. However, such a linear function

may not be the best choice and nonlinear strategies such as quadratic discriminant analysis (QDA) or logarithmic

discriminant analysis (LogDA) have also been used. The main problem of these supervised classifiers, however, is

their sensitivity to the Hughes effect [16].

In turn, kernel methods [9] have been widely used in order to deal effectively with the Hughes phenomenon

[17], [18]. The idea is to use a kernel trick that allows separation of the classes in a higher dimensional space by

means of a nonlinear transformation, particularly in those cases in which the problem is not linearly separable in the

original feature space. The combination of kernel methods and nonlinearly derived features (such as morphological

features) has also been widely explored in the context of hyperspectral image classification [19].

Recently, a new trend has been oriented towards the composition of different kernels for improved learning,

inspired by multiple kernel learning (MKL) approaches [20]–[23]. Some of these aspects were particularly discussed

in [24], in which a detailed overview of machine learning in remote sensing data processing is given. For instance,

a simple strategy to incorporate the spatial context into kernel-based classifiers is to define a pixel entity both in the

spectral domain (using its spectral content) and also in the spatial domain, e.g. by applying some feature extraction
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to its surrounding area which yields spatial (contextual) features, such as those derived using morphological analysis.

These separated entities lead to two different kernel matrices, which can be easily computed. At this point, one

can sum spectral and textural dedicated kernel matrices and introduce the cross-information between textural and

spectral features in the formulation. This methodology yields a full family of composite kernel-based methods for

hyperspectral data classification [25].

More recently, composite kernels have been generalized in [26] using the multinomial logistic regression (MLR)

classifier [27] and extended multi-attribute profiles (EMAPs) [28]. The MLR has been recently explored in hy-

perspectral imaging as a technique able to model the posterior class distributions in a Bayesian framework, thus

supplying (in addition to the boundaries between the classes) a degree of plausibility for such classes [29].

The resulting generalized composite kernel-based MLR can combine multiple kernels without any restriction of

convexity. This introduces a different approach with regards to traditional composite kernel and MKL methods, in

which composite kernels need to be convex combinations of kernels.

At this point, it is important to emphasize that both composite kernel learning and MKL focus on kernels, which

are obtained either from the original (linear) spectral features or from (nonlinear) features such as MPs. These

approaches exploit the information contained in the kernels using linear combinations, due to the fact that the

optimization problem is much easier to solve under a linear framework. With these assumptions in mind, very

good performance has been reported for MKL or other composite kernel learning approaches in different remote

sensing problems [21], [22], [26]. However, these approaches focus on kernels, while kernel transformations of

nonlinear features might bring redundance or lose the physical meaning of the features themselves. Instead, in

certain situations it may be desirable to exploit the information carried out by each feature under its specifical

physical or acquisition conditions. Inspired by these ideas, and based on the fact that it is common to have both

linear and nonlinear class boundaries in the same scene, this paper develops a new framework for classification of

hyperspectral images which integrates multiple features extracted from linear and nonlinear transformations.

A main characteristic of the presented approach is that it can adaptively exploit information from both linear

and nonlinearly derived features, thus being able to address practical scenarios in which different classes may need

different (linear or nonlinear) strategies. It should be noted that, as it is the case of MKL, the proposed approach

also follows a linear optimization framework due to model complexity. However, the proposed approach has been

designed in a way that it exhibits great flexibility to combine different types of features without any regularization

parameters to control the weight of each feature, thus taking advantage of the complementarity that the features

can provide without any a priori restrictions. In turn, MKL (which can be seen as a special instance of our

proposed framework) generally needs to learn the weight parameters which is difficult from the viewpoint of both

optimization and computational cost. Our presented approach is thus aimed at exploiting the different properties that

both linear and nonlinear features can provide, with the ultimate goal of being able to characterize both linear and

nonlinear boundaries independently of which type of features dominate the scene. In order to achieve the desired

spectral-spatial integration that is normally expected in advanced classification problems, we consider morphological

features as an important part of our framework, which also exploits kernel-based features and the original spectral
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information contained in the hyperspectral scene.

The remainder of the paper is organized as follows. Section II presents the proposed classification framework,

which uses the sparse MLR (SMLR) [30] as the baseline classifier. It will be shown that this classifier provides

a natural framework to achieve the desired integration of multiple features. Section III reports the classification

results obtained by the proposed multiple feature learning approach using different real hyperspectral data sets,

which comprise a scene collected by the airborne visible infra-red imaging spectrometer (AVIRIS) over the Indian

Pines region in Indiana, two scenes collected by the reflective optics spectrographic imaging system (ROSIS) over the

city of Pavia, Italy, and a scene collected by the hyperspectral digital imagery collection experiment (HYDICE) over

the city of Washington DC. These data sets have been widely used for evaluating the performance of hyperspectral

image classification algorithms, and the results reported in this work rank among the most accurate ones ever

reported for these scenes. Section IV concludes our study with some remarks and hints at plausible future research

lines.

II. PROPOSED FRAMEWORK FOR MULTIPLE FEATURE LEARNING

First of all, we define the notations that will be adopted throughout the paper. Let K≡{1, . . . ,K} denote a set

of K class labels; let S≡{1, . . . , n} denote a set of integers indexing the n pixels of a hyperspectral image; let

x≡(x1, . . . ,xn) ∈ R
d denote such hyperspectral image, which is made up of d-dimensional feature vectors; let

y≡(y1, . . . , yn) denote an image of labels; and let DL≡{(x1, y1), . . . , (xL, yL)} be the labeled training set with L

being the number of samples in DL. In this work, we model the posterior class probabilities using the MLR [27]

as follows:

p(yi = k|xi,ω) ≡
exp(ω(k)T h(xi))∑K

k=1 exp(ω
(k)Th(xi))

, (1)

where h(xi) is the input feature, ω denotes the regressors, and ω ≡ [ω(1)T , · · · ,ω(K−1)T ]T . Since the density (1)

does not depend on translations on the regressors ω(k), in this work we take ω
(K) = 0. It should be noted that the

input feature h can be linear or nonlinear. In the former case, we have:

h(xi) = [1, xi,1, · · · , xi,d]
T , (2)

where xi,j denotes the j-th component of xi. On the other hand, the input feature h can also be nonlinear, in which

case we have:

h(xi) = [1, ψ1(xi), · · · , ψl1(xi)]
T , (3)

which is a feature vector with l1 elements and which is built based on part of or the complete observation x, with

ψ(·) being a nonlinear function. Depending on the nonlinear function used, there are many possible ways to build

nonlinear features. For instance, a kernel is some symmetric function with the form:

h(xi) = [1,K(xi,x1), · · · ,K(xi,xl)]
T , (4)

where:

K(xi,xj) = 〈φ(xi), φ(xj)〉,
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and φ(·) is a nonlinear mapping function. Kernels have been largely used in this context since they tend to improve

data separability in the transformed space. However, other types of nonlinear functions for feature extraction may

also be considered:

h(xi) = [1, f1(xi), · · · , fl2(xi)]
T , (5)

where f(·) is a nonlinear feature extraction transformation on the original data (for instance, the EMAP in [28]),

and l2 is the number of elements in h(xi). It should be noted that both the linear function h(xi) = xi, and the

kernel function h(xi) = K(xi,x) can be simply regarded as two instances of the nonlinear case.

As mentioned before, there have been some efforts in the literature to combine different types of features, such

as MKL. Linear features have been generally less effective for hyperspectral image classification than nonlinear

features. In turn, kernel-based features (obtained from linear or nonlinear transformations) have been more widely

used. This trend has been exploited by MKL by focusing on kernel features, which are extracted from the original

spectral data or the nonlinear transformed data. However, few efforts have attempted to exploit both linear and

nonlinear features in simultaneous fashion, despite they can exhibit some complementary properties (e.g., some

classes may be properly separated using linear boundaries, while other classes may require nonlinear boundaries for

separability). In real analysis scenarios, it is likely to have both linear and nonlinear class boundaries in the same

hyperspectral image. At the same time, kernel transformations of nonlinear features may lead to data redundance

and loss of physical meaning for the features. It is therefore important for a methodology to be able to cope with

such linear and nonlinear boundaries simultaneously and adaptively. In this regard, the proposed framework provides

the possibility to interpret multiple boundaries together. Again, different features have different characteristics, and

the joint exploitation of different kind of features could lead to improved data separability. Inspired by this idea, we

develop a framework for the integration of multiple features, with the ultimate goal of exploiting the characteristics

of each type of feature in the classification process. For this purpose, we first define:

h(xi) = [1,h1(xi)
T ,h2(xi)

T , . . . ,hl(xi)
T ]T , (6)

a vector of l fixed functions of the input data xi, where hj(xi) ≡ [hj,1(xi), · · · , hj,lj (xi)] ∈ R
lj (for j = 1, . . . , l)

is a feature obtained by a linear/nonlinear transformation, and lj is the number of elements in hj(xi). Notice that,

if hj(xi) is a kernel function, then (6) is a combination of multiple kernels (this is the particular case addressed by

MKL). Instead, our proposed framework opens the structure to the exploitation of multiple features, not necessarily

kernels. In this scenario, learning the class densities amounts to estimating the logistic regressors ω given by

the input features h(x). Following previous work [27], [29]–[31], we compute ω by calculating the maximum a

posteriori estimate:

ω̂ = argmax
ω

ℓ(ω) + log p(ω), (7)
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where ℓ(ω) is the log-likelihood function given by:

ℓ(ω) ≡ log

L∏

i=1

p(yi|xi,ω)

≡

L∑

i=1

(
hT (xi)ω

(yi) − log

K∑

k=1

exp(hT (xi)ω
(k))

)
,

(8)

and log p(ω) is a prior over ω which is independent from the observation x. In order to control the machine

complexity and, thus, its generalization capacity, we model ω as a random vector with Laplacian density p(ω) ∝

exp(−λ‖ω‖1), where λ is the regularization parameter controlling the degree of sparsity [30], [31].

Let νj = [ωj,1, · · · , ωj,lj ]
T denote the regressors associated with feature hj(·). By introducing the input features

in (6), problem (7) can be solved as follows:

ω̂ = argmax
ω

L∑

i=1

(
hT (xi)ω

(yi) − log
K∑

k=1

exp(hT (xi)ω
(k))

)
+ log p(ω) (9)

= argmax
ω

L∑

i=1

ω
(yi)
1 + log p(ω) (10)

+

L∑

i=1

l∑

j=1

lj∑

t=1

(
hj,p(xi)ω

(yi)
j,p − log

K∑

k=1

exp
(
ω
(k)
1 + hj,p(xi)ω

(k)
j,p

))
, (11)

where the term in (10) is independent from the observation data it is also independent from the nonlinear functions

used. At this point, several important observations can be made:

• First and foremost, if h(xi) is a combination of multiple kernels, then (9) stands for a typical MKL problem.

However, as compared with the simple MKL [20] implemented on the SVM model, problem (9) require no

convexity constraint for the combination of multiple kernels. From this observation, we can also see MKL as

a specific instance of the proposed multiple learning framework.

• As shown in (11) we have a linear combination of multiple nonlinear features which is not restricted to kernels,

and the logistic weights νj are specific for each associated nonlinear feature hj(·) and independent from any

other νp, for p = 1, · · · , l and p 6= j. This is quite important as, on the one hand, the linear combination

provides great flexibility for the classifier to search for the most representative features, which could be linear

or nonlinear, thus balancing the information provided by different features while reducing the computational

complexity due to the possibility to use a conventional optimization approach.

• Furthermore, the linear combination in (11) provides sufficient flexibility to find the most representative feature

hj , and also provides the potential to find the most representative elements in each feature. As a result, the final

logistic weights could be derived from a combination of different features, which is a collaborative solution

involving multiple (linear or nonlinear) features.

• It is finally important to point out that, by introducing the Laplacian prior p(ω) which can lead to sparse

solutions, the proposed approach can deal with high-dimensional input features using limited training samples,

thus addressing ill-posed problems.
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To conclude this section, we emphasize that the optimization problem (9) can be solved by the SMLR in [30]

and by the fast SMLR (FSMLR) in [32]. However, most hyperspectral data sets are beyond the reach of these

algorithms, as their processing becomes unbearable when the dimensionality of the input features increases. This

is even more critical in our framework, in which we use multiple features. In order to address this issue, we take

advantage of the logistic regression via variable splitting and augmented Lagrangian (LORSAL) algorithm in [31],

[33], with overall complexity O(L× (l1 + · · ·+ ll)×K). At this point, we recall that L is the number of training

samples, K is the number of classes, and lj is the number of elements in the j-th linear/nonlinear feature. LORSAL

is able to deal with high-dimensional features and plays a central role in this work, as in previous contributions

[29], [31]. A full demo with our algorithm implementation is given.

III. EXPERIMENTAL RESULTS

In this section, we provide an experimental evaluation for the presented framework using four real hyperspectral

datasets. In our experiments, we consider four different linear/nonlinear features as reported in Table I. Specifically,

we use a linear feature hlinear (the original spectral information), a nonlinear feature hEMAP (which uses the concept of

EMAP in [28], [34]), and two kernel features constructed over the two previously mentioned sources of information

(spectral and spatial, respectively) using the Gaussian radial basis function (RBF) kernel: K(xi,xj)= exp(−‖xi −

xj‖
2/2σ2) which is widely used in hyperspectral image classification [18]. In this work, the spectral kernel Klinear

is built by using the original spectral data and the spatial kernel KEMAP is built by using the EMAP. At this point,

we emphasize that the linear and nonlinear features that have been selected for experiments in this work can be

considered highly representative of the spectral and spatial information contained in the scene. While hlinear is a

linear feature related to the original spectral information, hEMAP exploits the interpretation of the data in spatial

terms, and Klinear and KEMAP are nonlinear representations of the original data and EMAPs, respectively. For the

considered problems, we only use four different features as these features are able to provide very good performance.

However, we would like to emphasize again that any other kind of features can be included in our framework,

according to the considered application. At this point, we reiterate that the proposed framework has been designed

to cope with both linear and nonlinear boundaries in a general way, so that other additional features (linear and

nonlinear) could be included in accordance with the specific application domain. We believe, however, that the

selected features are sufficiently representative in order to demonstrate the advantages of our proposed framework.

We emphasize that, in all our experiments, the parameter values involved have been carefully optimized so that

the best performance is reported for each considered method. For the EMAP-based feature extraction we have used

a grid search approach to optimize parameter values, and for the LORSAL classification we have also carefully

optimized the parameter λ. Nevertheless, as shown in [31], we may have a large amount of suboptimal options

and the solution is insensitive to different suboptimal values. The reported figures of overall accuracy [%], average

accuracy (AA) [%], κ statistic [%], and individual classification accuracies [%] are obtained by averaging the results

obtained after conducting ten independent Monte Carlo runs with respect to the training set DL. At the same time,

we include the standard deviation in order to assess the statistical significance of the results. Finally, in order to
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TABLE I

TYPES OF FEATURES CONSIDERED IN THIS WORK

Feature Description

hlinear Original spectral information: hlinear(xi) = xi

hEMAP Extended multi-attribute profiles (EMAPs) in [35]

Klinear Gaussian RBF kernel applied to the original spectral information

KEMAP Gaussian RBF kernel applied to the EMAPs

hall All nonlinear features considered: [hlinear, hEMAP , Klinear, KEMAP]

show the efficiency of the proposed framework, the computational time in seconds for learning the features is also

reported in all cases (the time for deriving the features is not included for simplicity).

The remainder of the section is organized as follows. In subsection III-A we introduce the datasets used for

evaluation. Subsection III-B describes the experiments with the AVIRIS Indian Pines data set. Subsection III-C

conducts experiments using the ROSIS Pavia University dataset. Finally, subsection III-D presents the results

obtained by the two remaining hyperspectral data sets.

A. Hyperspectral Data Sets

Four hyperspectral data sets collected by two different instruments are used in our experiments:

• The first hyperspectral image used in experiments was collected by the AVIRIS sensor over the Indian

Pines region in Northwestern Indiana in 1992. This scene, with a size of 145 lines by 145 samples, was

acquired over a mixed agricultural/forest area, early in the growing season. The scene comprises 202 spectral

channels in the wavelength range from 0.4 to 2.5 µm, nominal spectral resolution of 10 nm, moderate spatial

resolution of 20 meters by pixel, and 16-bit radiometric resolution. After an initial screening, several spectral

bands were removed from the data set due to noise and water absorption phenomena, leaving a total of

164 radiance channels to be used in the experiments. For illustrative purposes, Fig. 1(a) shows a false

color composition of the AVIRIS Indian Pines scene, while Fig. 1(b) shows the reference map available

for the scene, displayed in the form of a class assignment for each labeled pixel, with 16 mutually exclusive

reference classes, in total, 10366 samples. These data, including reference information, are available online

from ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C.tif.zip, a fact which has made this scene a widely used

benchmark for testing the accuracy of hyperspectral data classification algorithms. This scene constitutes a

challenging classification problem due to the presence of mixed pixels in all available classes, and because of

the unbalanced number of available labeled pixels per class.

• The second hyperspectral data set was collected by the ROSIS optical sensor over the urban area of the

University of Pavia, Italy. The flight was operated by the Deutschen Zentrum for Luftund Raumfahrt (DLR,

the German Aerospace Agency) in the framework of the HySens project, managed and sponsored by the
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(a) (b)

Fig. 1. (a) False color composition of the AVIRIS Indian Pines scene. (b) Reference map containing 16 mutually exclusive land-cover classes

(right).

(a) (b) (c)

Fig. 2. (a) False color composition of the ROSIS University of Pavia scene. (b) Reference map containing 9 mutually exclusive land-cover

classes. (c) Training set used in experiments.

European Union. The image size in pixels is 610 × 340, with very high spatial resolution of 1.3 meters per

pixel. The number of data channels in the acquired image is 103 (with spectral range from 0.43 to 0.86 µm).

Fig. 2(a) shows a false color composite of the image, while Fig. 2(b) shows nine reference classes of interest,

which comprise urban features, as well as soil and vegetation features. Out of the available reference pixels,

3921 were used for training [see Fig. 2(c)] and 42776 samples were used for testing.

• The third data set was also collected by the ROSIS optical sensor over a different location in the city centre

of Pavia, Italy. The flight was also operated by DLR in the HySens framework. The number of data channels

in the acquired image is 102 (with spectral range from 0.43 to 0.86 µm) and the spatial resolution is again 1.3

meters per pixel. These data were used in the 2008 IEEE Geoscience and Remote Sensing (GRSS) Data Fusion
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Technical Committee contest. Additional details about the data and the training/test samples are available in

[36].

• The fourth data set was also collected by HYDICE over the Mall area in Washington DC. The data set comprises

210 spectral bands from 0.4 to 2.4 µm. Bands in the 0.9 and 1.4 µm region where the atmosphere is opaque have

been omitted from the data set, leaving 191 bands. The data set contains 1208×307 pixels, with a spatial resolu-

tion of about 2.8 meters. Seven thematic land cover classes are present in the scene: roofs, street, path (graveled

paths down the mall center), grass, trees, water, and shadow, with 19629 labeled samples in the ground truth

image. The scene is available online from: http://cobweb.ecn.purdue.edu/∼biehl/Hyperspectral Project.zip.

B. Experiments with the AVIRIS Indian Pines Data Set

For this data set, the EMAPs were built using threshold values in the range 2.5% to 10% with respect to the

mean of the individual features, with a step of 2.5% for the standard deviation attribute and thresholds of 200, 500

and 1000 for the area attribute.

1) Experiment 1: In our first set of experiments, we evaluated the classification accuracy of the proposed approach

using a balanced training set per class in which around 5% of the labeled samples per class were used for training

(a total of 515 samples) and the remaining labeled samples were used for testing. For very small classes we took a

minimum of 3 training samples per class. Table II shows the overall, average, and individual classification accuracies

(in percentage) and the κ statistic, along with the standard deviations, obtained after using the proposed framework

with different types of features when applied to the AVIRIS Indian Pines scene.

From Table II, we can conclude that the proposed framework achieved the best results in terms of classification

accuracies when all the considered features were used. This is expected, since in this case the proposed scheme

seeks for the best solution among all the available (linear and nonlinear) features. On the other hand, the results

obtained using the nonlinear feature hEMAP are better than those obtained using the original spectral information.

This is consistent with previous studies indicating that the EMAP provides a powerful tool for feature extraction,

where the features extracted in the spatial domain can improve class separability [28], [35]. Another interesting

observation is that the results obtained using only the nonlinear feature hEMAP are better than those obtained from

its kernel transformation KEMAP. This suggests that the kernel transformation of this particular nonlinear feature

may not be able to improve the class separability.

2) Experiment 2: In our second experiment, we compare the proposed framework with composite kernel (CK)

learning [25] and generalized composite kernel (GCK) learning [26]. Notice that all the experiments share exactly

the same training and test sets. Table III shows that the proposed framework with hall (i.e., using all the considered

features) leads to the best classification results. However, the proposed framework exhibits the highest computational

cost. Another important observation is that the results obtained by the EMAPs hEMAP were better than those obtained

by the kernel transformation KEMAP. As discussed, this is an indication that a kernel transformation of nonlinear

features may not be able to improve the class separability.
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TABLE II

OVERALL, AVERAGE AND INDIVIDUAL CLASSIFICATION ACCURACIES [%] OBTAINED BY THE PROPOSED FRAMEWORK (WITH DIFFERENT

TYPES OF FEATURES) WHEN APPLIED TO THE AVIRIS INDIAN PINES HYPERSPECTRAL DATA SET WITH A BALANCED TRAINING SET IN

WHICH 5% OF THE LABELED SAMPLES PER CLASS ARE USED FOR TRAINING (A TOTAL OF 515 SAMPLES) AND THE REMAINING LABELED

SAMPLES ARE USED FOR TESTING.

Class
# Samples Features

Training/Testing hlinear hEMAP Klinear KEMAP hall

Alfalfa 3/51 2.75±3.83 87.06±2.95 57.06±15.48 74.51±9.06 87.45±1.89

Corn-no till 71/1363 64.50±2.94 90.26±2.26 79.57±2.99 86.78±2.26 91.56±1.35

Corn-min till 41/793 35.17±6.32 91.44±2.85 62.81±2.53 88.81±2.27 92.35±2.07

Corn 11/223 13.14±3.98 90.18±3.39 48.43±11.08 67.00±11.79 90.67±2.83

Grass/pasture 24/473 75.12±3.66 93.15±3.95 89.37±2.08 91.16±2.92 94.61±2.39

Grass/tree 37/710 88.82±2.09 96.86±2.86 95.51±1.15 97.56±0.95 98.68±1.13

Grass/pasture-mowed 3/23 6.96±5.10 93.91±4.67 64.35±12.43 83.91±8.21 94.78±1.83

Hay-windrowed 24/465 95.94±1.55 98.92±1.42 98.69±0.51 98.92±0.29 99.66±0.11

Oats 3/17 7.06±7.23 99.41±1.86 78.82±16.68 83.53±17.71 97.06±5.00

Soybeans-no till 48/920 42.59±3.91 89.14±4.14 69.08±4.43 85.79±4.60 89.71±4.46

Soybeans-min till 123/2245 63.84±2.69 94.14±0.86 82.29±1.30 93.84±1.02 97.21±1.21

Soybeans-clean till 30/584 48.61±5.92 85.60±5.48 73.73±4.15 81.92±5.40 90.79±4.89

Wheat 10/202 89.51±4.13 99.01±0.57 99.31±0.26 99.51±0.40 99.60±0.31

Woods 64/1230 93.66±2.03 96.46±1.45 96.01±1.36 96.23±2.65 98.14±1.59

Bldg-grass-tree-drives 19/361 50.64±5.99 80.19±5.66 57.04±4.61 80.58±5.51 91.39±1.47

Stone-steel towers 4/91 56.37±9.19 61.76±7.36 53.52±11.26 78.46±6.86 74.29±7.29

Overall accuracy 64.60±1.01 92.25±0.33 80.59±0.60 90.42±0.63 94.59±0.58

Average accuracy 52.17±1.42 90.47±0.74 75.35±2.06 86.78±1.33 93.00±0.85

κ statistic 59.27±1.19 91.15±0.38 77.75±0.69 89.09±0.72 93.82±0.67

Time (seconds) 1.17 1.83 3.37 3.61 23.64

TABLE III

COMPARISON BETWEEN THE PROPOSED FRAMEWORK AND COMPOSITE KERNEL (CK) [25] AND GENERALIZED COMPOSITE KERNEL

(GCK) [26] USING THE AVIRIS INDIAN PINES SCENE. THE PROCESSING TIME (IN SECONDS) IS ALSO REPORTED IN EACH CASE.

Accuracies
Proposed framework GCK SVM

hEMAP Klinear KEMAP hall GCK[Klinear,KEMAP] hEMAP Klinear KEMAP CK[Klinear,KEMAP]

Overall accuracy 92.25 80.59 90.42 94.59 93.87 91.46 76.95 90.52 90.85

Average accuracy 90.47 75.35 86.78 93.00 91.09 85.79 73.18 86.44 87.37

κ statistic 91.15 77.75 89.09 93.82 93.01 90.25 73.65 89.18 89.56

Time (seconds) 1.83 3.37 3.61 23.64 9.19 0.69 9.12 8.66 13.18
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TABLE IV

NUMBER OF PIXELS DOMINATED BY EACH CONSIDERED TYPE OF FEATURE AND CLASSIFICATION ACCURACIES OBTAINED WHEN

APPLYING THE PROPOSED FRAMEWORK TO THE AVIRIS INDIAN PINES DATA SET. IN THIS EXPERIMENT, WE USED APPROXIMATELY 30

TRAINING SAMPLES PER CLASS.

Class
# Samples Number of pixels dominated by each feature

Total Class Accuracy Overall Accuracy

Train/Test (νT
h)linear (νT

h)EMAP (νT
K)linear (νT

K)EMAP

Alfalfa 15/39 0 38 0 0 38 96.15±3.25

92.28±1.11
Corn-no till 30/1404 205 582 629 0 1416 87.75±2.47

Corn-min till 30/804 95 726 0 0 821 88.54±4.40

Corn 30/204 142 119 0 0 261 97.06±1.63

Grass/pasture 30/467 77 387 0 0 464 94.90±2.30
Average Accuracy

Grass/tree 30/717 21 686 1 0 708 97.88±0.72

Grass/pasture-mowed 15/11 0 17 0 0 17 97.27±4.39

95.03±0.59
Hay-windrowed 30/459 0 467 0 0 467 99.83±0.17

Oats 15/20 0 10 1 0 12 100

Soybeans-no till 30/938 111 742 0 96 949 87.95±4.29

Soybeans-min till 30/2438 1145 966 160 0 2271 89.78±3.66
κ statistic

Soybeans-clean till 30/584 42 520 29 58 649 93.61±2.62

Wheat 30/182 2 182 0 0 184 99.62±0.27

91.19±1.25Woods 30/1264 0 1227 0 0 1227 96.98±1.95

Bldg-grass-tree-drives 30/350 36 247 42 41 365 95.31±1.46

Stone-steel towers 30/65 - - - - 91 97.69±1.95

3) Experiment 3: In our third experiment, we analyze the relevance of linear and nonlinear features in the final

classification results, with the ultimate goal of analyzing their capacity to characterize different complex classes in

the scene. That is, in the set of all nonlinear features hall, we would like to analyze which feature has the most

significant contribution. Here, we will use approximately 30 training samples per class, which is an unbalanced

scenario in comparison with the one considered in the former experiment. Let (νj)
Thj be the numerator of the

MLR in (1). For p = 1, · · · ,K and p 6= j, if (νj)
Thj ≥ (νp)

Thp, then we conclude that the classification is

dominated by hj . Table IV reports the total number of pixels in the scene which are dominated by each kind

feature.

Several conclusions can be observed from Table IV. First and foremost, it is remarkable that for most classes the

dominating feature according to Table IV is hEMAP. This is consistent with previous works revealing the power of

EMAP for separating most classes which are nonlinearly separable in the spatial domain [28], [35]. Furthermore,

it is remarkable that the original spectral information is highly relevant. This is due to the fact that some of the

classes, e.g., Soybeans-min till, are likely to be linearly separable. It is also observable that the kernel version of the

spectral information provides important contributions, especially for the Corn-no till. This is because no-till is an
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agricultural technique which increases the amount of water that infiltrates into the soil and increases organic matter

retention and cycling of nutrients in the soil. Along with the complexity of corn itself, this may lead to nonlinearities

that appear to be better explained by kernel-based features, as indicated in Table IV. However, the kernel version

of EMAP rarely dominates the classification. This confirms our introspection that a kernel transformation of the

nonlinear EMAP feature may not significantly improve the class separability, which is already fully exploited by

the original EMAP itself.

In order to further illustrate the relative weights of the logistic regressors in the MLR classification, Fig. 3 shows

the specific regressors calculated for classes Corn-no till, Soybeans-min till, and Woods, which are respectively

dominated by Klinear, hlinear and hEMAP. Fig. 3(d) shows the regressors calculated for class Soybeans-clean till,

which has combined contributions from all features. From Fig. 3, it is clear that the original spectral information

and the EMAP features are more relevant than the other tested features. A final observation resulting from this

experiment is that, given the high computational complexity associated to using all the features hall, we can obtain

a suitable subset of features including using only hlinear and hEMAP, i.e., hsubset = [hlinear,hEMAP], which leads to

a comparable solution with very competitive computational cost. In this case, the kernel transformations are not

relevant for improving classification accuracies and the combination of the original (spectral and EMAP-based)

features can lead to very similar performance.

For illustrative purposes, Fig. 4 shows some of the obtained classification maps after applying the proposed

framework to the AVIRIS Indian Pines scene using approximately 30 training samples per class. These maps

correspond to one of the 10 Monte Carlo runs conducted for each considered type of feature. As we can observe in

Fig. 4, the best classification accuracies are obtained using hall, but the accuracies obtained using hEMAP and KEMAP

are also significant. Finally, the accuracies obtained using the original spectral information only (hlinear) are low in

comparison with the other approaches, while the introduction of the kernel version Klinear improves the obtained

results but not to the levels achieved when EMAP features are also used for the proposed framework. In turn,

EMAP-based features alone can lead to significant accuracies without the need for a kernel-based transformation.

C. Experiments with ROSIS University of Pavia Data Set

1) Experiment 1: In our first experiment with the ROSIS Pavia University scene, we evaluate the classification

accuracies achieved by the proposed framework. In this experiment we consider, in addition to the features used

in the previous experiment, a subset given by hsubset = [hlinear,hEMAP] for comparison. Table V shows the overall,

average, individual classification accuracies (in percentage) and the κ statistic obtained by the proposed framework

using different types of input features. In all cases, we used the fixed training set in Fig. 2(c) to train the classifier.

The EMAPs in this particular experiment were built using threshold values in the range 2.5% to 10% with respect

to the mean of the individual features, and with a step of 2.5% for the definition of the criteria based on the

standard deviation attribute. Values of 100, 200, 500 and 1000 were selected as references for the area attribute.

The threshold values considered for the area attribute were chosen according to the resolution of the data and, thus,

the size of the objects present in the scene.



14

435 870 1070 1395
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Features

ω
(:

,2
)

Class Corn−no till, λ=1e−5

K
linear

K
EMAP

h
linear

h
EMAP

435 870 1070 1395
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Features

ω
(:

,1
1)

Class Soybeans−min till, λ=1e−5

K
linear

K
EMAP

h
linear

h
EMAP

(a) (b)

435 870 1070 1395
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Features

ω
(:

,1
4)

Class Woods, λ=1e−5

K
linear

K
EMAP

h
linear

h
EMAP

435 870 1070 1395
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Features

ω
(:

,1
2)

Class Soybeans−clean till, λ=1e−5

K
linear

K
EMAP

h
linear

h
EMAP

(c) (d)

Fig. 3. Logistic regressors of the MLR classifier obtained from the AVIRIS Indian Pines dataset corresponding to the experiment reported in

Table IV. (a) Class Corn-no till is dominated by the spectral kernel Klinear. (b) Class Soybeans-min till is dominated by the original spectral

information hlinear. (c) Class Woods is dominated by the EMAP features hEMAP. (d) Class Soybean-clean till has contributions from all the

considered features.

As shown by Table V, the classification accuracies obtained by the proposed framework are very high. Fur-

thermore, as it was already the case in the previous experiment, the results using hsubset are comparable to those

obtained using the full set of features, hall. However, in the case of hsubset the results can be obtained with much less

computational complexity when compared to hall. This confirms our introspection that, even though our multiple

learning framework can adequately exploit all available features, a selection of the most relevant features for

classification (in this case, the original spectral information and the spatial characterization provided by EMAPs)

can lead to similar results but with less computational complexity. In this experiment, as it was already the case

in our experiment with the AVIRIS Indian Pines scene, kernel transformations cannot bring relevant additional

information for classification.

2) Experiment 2: In our second experiment, we provide a comparison between the proposed framework with

CK [25] and GCK [26]. Table VI shows the obtained results, in which all the experiments share exactly the same
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hlinear(51.68%) hEMAP (89.95%) Klinear (74.85%)

KEMAP (88.99%) hall (93.10%)

Fig. 4. Classification maps (along with the overall accuracies) obtained by the proposed framework for the AVIRIS Indian Pines dataset, using

approximately 30 training samples per class.

training and test sets. Similar observations can be reported for the ROSIS Pavia University scene as the case alredy

shown in the previous section with the AVIRIS Indian Pines data, i.e., the proposed framework with hall (which

learns all the available linear and nonlinear features) obtained very competitive results with minimum computational

cost.

3) Experiment 3: Since the accuracy values obtained by hEMAP, KEMAP, hall and hsubset are apparently similar,

in our third experiment with the ROSIS Pavia University scene we analyze the statistical differences among all

the considered features using the McNemar’s test [37]. In this test, a value of |Z| > 1.96 indicates that there is a

significant difference in accuracy between two classification methods. The sign of Z is also a criterion to indicate

whether a first classifier is more accurate than a second one (Z > 0) or vice-versa (Z < 0). Table VII provides

the results obtained for all the considered types of features with the ROSIS Pavia University data set. As it can be

seen from Table VII, the performance of EMAP features (hEMAP) and their kernel transformation (KEMAP) is very

similar in statistical sense. Therefore, instead of using KEMAP, we can simply resort to hEMAP, which provides similar

accuracies with lower computational cost. Furthermore, it is noticeable that the performance of the original spectral

information (hlinear) is significantly different from that achieved by the nonlinear transformations. As a result, this

experiment reveals that it is very important to combine both linear and nonlinear features for classification. This is

successfully achieved by the presented method using all the features (hall) and a carefully selected subset (hsubset),
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TABLE V

OVERALL, AVERAGE AND INDIVIDUAL CLASS ACCURACIES [%] OBTAINED BY THE PROPOSED FRAMEWORK (WITH DIFFERENT TYPES OF

FEATURES) WHEN APPLIED TO THE ROSIS PAVIA UNIVERSITY HYPERSPECTRAL DATA SET USING THE FIXED TRAINING SET IN FIG. 2(C).

THE PROCESSING TIME (IN SECONDS) IS ALSO REPORTED IN EACH CASE.

Class
# Samples Features

Train Test hlinear hEMAP Klinear KEMAP hall hsubset

Asphalt 548 6631 70.92 97.56 82.55 98.16 98.82 97.63

Bare soil 540 18649 53.23 99.12 67.44 98.76 98.43 98.91

Bitumen 392 2099 70.89 93.79 74.37 91.47 89.47 92.14

Bricks 524 3064 72.91 98.92 94.45 98.99 98.40 98.73

Gravel 265 1345 97.77 99.85 99.18 99.93 99.93 99.85

Meadows 532 5029 86.56 89.32 93.32 90.59 94.69 91.39

Metal sheets 375 1330 74.29 99.92 90.53 100.00 99.85 10.00

Shadows 514 3682 75.29 99.40 90.52 99.16 99.62 99.48

Trees 231 947 95.67 92.19 96.83 96.73 98.20 95.99

Overall accuracy 67.06 97.37 79.50 97.43 97.80 97.53

Average accuracy 77.50 96.67 87.72 97.09 97.49 97.12

κ 59.74 96.50 74.40 96.58 97.08 96.72

Time (seconds) 0.92 3.56 156.08 166.50 2082.3 5.00

TABLE VI

COMPARISON BETWEEN THE PROPOSED FRAMEWORK AND COMPOSITE KERNEL (CK) [25] AND GENERALIZED COMPOSITE KERNEL

(GCK) [26] USING THE ROSIS PAVIA UNIVERSITY SCENE. THE PROCESSING TIME (IN SECONDS) IS ALSO REPORTED IN EACH CASE.

Accuracies
Proposed framework GCK SVM

hEMAP Klinear KEMAP hall hsubset [Klinear,KEMAP] hEMAP Klinear KEMAP CK[Klinear,KEMAP]

Overall accuracy 97.37 79.50 97.43 97.80 97.53 98.05 93.03 80.89 90.80 92.97

Average accuracy 96.67 87.72 97.09 97.49 97.12 97.73 94.04 89.09 94.08 94.92

κ statistic 96.50 74.40 96.58 97.08 96.72 97.42 90.91 76.12 88.13 90.86

Time (seconds) 3.56 156.08 166.50 2082.3 5.00 944.75 7.77 121.89 148.80 307.85

providing very competitive results in the considered analysis scenario.

For illustrative purposes, Fig. 5 shows some of the classification maps obtained after applying the proposed

framework to the ROSIS Pavia University scene using the fixed training set depicted in Fig. 2(c). As we can

observe in Fig. 5, a very good delineation of complex urban structures can be observed in the results obtained using

any of the features including EMAPs, such as hEMAP. Quite opposite, the accuracies obtained using the original

spectral information only (hlinear) are low in comparison with the other approaches. In this particular case, as it was

already observed in the experiments with the AVIRIS Indian Pines scene, the introduction of the kernel version
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TABLE VII

STATISTICAL SIGNIFICANCE OF THE DIFFERENCES IN CLASSIFICATION ACCURACIES (MEASURED USING THE MCNEMAR’S TEST IN [37])

FOR THE PROPOSED FRAMEWORK, USING DIFFERENT TYPES OF FEATURES EXTRACTED FROM THE ROSIS PAVIA UNIVERSITY SCENE.

Value of Z calculated by the McNemar’s test

hlinear hEMAP Klinear KEMAP hall hsubset

hlinear - -108.5776 -56.1976 -109.4933 -111.6610 -109.9032

hEMAP 108.5776 - 79.7141 -0.8906 -5.5907 -3.8908

Klinear 56.1976 -79.7141 - -80.8939 -83.7806 -81.2676

KEMAP 109.4933 0.8906 80.7806 - -5.7926 -1.4969

hall 111.6610 5.5907 83.7806 5.7926 - 3.6986

hsubset 109.9032 3.8908 81.2676 1.4969 -3.6986 -

Klinear improves the obtained results, but not to the levels observed when EMAP features are used in the proposed

framework.

D. Other Experiments

In this section, we conduct an evaluation of the proposed approach using the ROSIS Pavia Centre and HYDICE

Washington DC data sets. In the previously conducted experiments, we observed that the proposed framework with

hsubset (which integrates both linear and nonlinear features) could obtain very good performance with minimum

computational cost. Therefore, in this section we only evaluate the proposed framework by using hsubset. Table

VIII shows the obtained classification accuracies (as a function of the number of training samples) for these two

data sets in this particular case. From Table VIII, it can be concluded that the proposed approach achieved very

good performance, even with very limited training sets. Also, since the proposed approach does not require kernel

transformations, it exhibits low computational cost. The low standard deviation values reported on Table VIII also

indicate that the proposed framework is quite robust.

IV. CONCLUSIONS AND FUTURE RESEARCH LINES

In this paper, we have developed a new framework for multiple feature learning which is based on the integration

of different types of (linear and nonlinear) features. A main contribution of the presented approach is the joint

consideration of both linear and nonlinear features without any regularization parameters to control the weight of

each feature, so that different types of available features can be jointly exploited (in a collaborative and flexible way)

for hyperspectral image classification. Our main goal is to address a common situation in practice, in which some

classes may be separated using linearly derived features while others may require nonlinearly derived features.

Until now, a main trend when using multiple feature learning relies on the use of kernels, i.e., multiple kernel

learning (MKL). However, very few techniques have been explored in order to adaptively select the most useful

type of feature for different classes in the scene. In this work, we give a first step in this direction and contribute a
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hlinear (67.06%) hEMAP (97.37%) Klinear (79.50%)

KEMAP (97.43%) hall (97.80%) hsubset (97.53%)

Fig. 5. Classification maps (along with the overall accuracies) obtained by the proposed framework for the ROSIS Pavia University dataset,

using the fixed training set in Fig. 2(c).

framework which is flexible and able to deal with both linear and nonlinear class boundaries. A main innovation of

our proposed approach is that it is more flexible than MKL, in the sense that it can consider linear and nonlinear

features and not only kernel features. As a result, MKL can be considered as a special case of the proposed

framework. Although the presented framework is general and suitable to incorporate any kind of input features,

in this work we have considered a set of highly representative features such as the original (spectral) information



19

TABLE VIII

OVERALL (OA), AVERAGE (AA) ACCURACY AND κ STATISTIC –PLUS/MINUS THE STANDARD DEVIATION– AS A FUNCTION OF THE

NUMBER OF LABELED SAMPLES PER CLASS (WITH THE TOTAL NUMBER OF LABELED SAMPLES IN THE PARENTHESES) OBTAINED BY THE

PROPOSED METHOD FOR THE ROSIS PAVIA CENTRE AND HYDICE WASHINGTON DC DATA SETS.

ROSIS Pavia Centre data

Accuracies
Number of labeled samples per class (total labeled samples)

10 (50) 20 (100) 30 (150) 40 (200) 50 (250)

Overall accuracy 92.25±2.17 93.05±1.83 94.26±0.95 94.70±0.76 95.39±0.77

Average accuracy 94.02±1.97 95.49±0.89 96.03±0.92 96.52±0.35 96.72±0.29

κ statistic 89.43±2.85 90.54±2.40 92.13±1.27 92.74±1.01 93.66±1.03

Time (seconds) 0.1473 0.1549 0.1585 0.1665 0.1765

HYDICE Washington DC data

Accuracies
Number of labeled samples per class (total labeled samples)

10 (70) 20 (140) 30 (210) 40 (280) 50 (350)

Overall accuracy 91.01±2.93 92.29±1.73 95.54±1.33 96.01±0.60 97.57±0.47

Average accuracy 94.16±1.85 94.74± 1.32 96.84±0.64 97.03±0.33 98.00±0.26

κ statistic 89.19±3.43 90.66±2.06 94.56±1.59 95.13±0.73 97.02±0.57

Time (seconds) 0.2722 0.2930 0.3093 0.3556 0.4267

contained in the scene, a set of (spatial) morphological features extracted using different attributes, as well as

kernel-based transformations of the aforementioned features. The framework therefore permits great flexibility in

the exploitation of the advantages of each type of feature, as well as the incorporation of additional features in

future developments.

Our experimental results, conducted with four widely used hyperspectral scenes, indicate that spatial-based

features are very important for classification, while there is no significant difference between the original (spectral

and spatial-based) features and their kernel-based transformations. However, the joint consideration of a pool of

linear and nonlinear features allowed us to approach the classification problem in a way that is more general and

flexible. In addition, our proposed strategy allowed us to reduce the computational complexity of the framework

by selecting the most relevant features a priori, although the proposed framework can naturally select the most

useful out of a large pool of input features for classification, without any requirement in terms of setting of

regularization parameters or a priori information to control the weight of each feature. It should also be noted that

the classification accuracies reported for the four considered hyperspectral scenes rank among the most accurate ones

ever reported for these scenes. An important observation from our experiments is that, under the proposed multiple

feature learning framework, kernel transformations may not be able to improve class separability (in particular, for

nonlinear features). Since in this context kernel transformations increase computational complexity, our proposed

framework allows excluding such kernel features and using the original features instead for specific applications.
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As future work, we will conduct a more detailed investigation of other possible (linear and nonlinear) features

that can be integrated in the proposed framework. Based on the observation that kernel-based features may not be

as important as other features in our presented framework, the computational complexity can be further reduced

by adaptively selecting the most relevant features for classification. We are also developing parallel versions of

the proposed framework in a variety of architectures, such as commodity graphics processing units (GPUs) or

multi-GPU platforms.
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