Autofluorescence spectroscopy is a promising and powerful approach for an in vivo, real time characterization of liver functional properties. In this work, preliminary results on the dependence of liver autofluorescence parameters on the nutritional status are reported, with particular attention to vitamin A and lipid accumulation in liver tissue. Normally fed and 24 h starving rats were used as animal models. Histochemical and autofluorescence analysis showed that lipids and vitamin A colocalize in the liver parenchyma. Fasting condition results in a parallel increase in both lipids and vitamin A. Autofluorescence imaging and microspectrofluorometric analysis carried out on unfixed, unstained tissue sections under 366 nm excitation, evidenced differences in both spectral shape and response to continuous irradiation between liver biopsies from fed and starving rats. As to photobleaching, in particular, fitting analysis evidenced a reduction of about 85% of the signal attributable solely to vitamin A during the first 10 s of irradiation. The tissue whole emission measured in fed and starving rat livers exhibited reductions of about 35% and 52%, respectively, that are closely related to vitamin A contents. The findings open interesting perspectives for the set up of an in situ, real time diagnostic procedure for the assessment of liver lipid accumulation, exploiting the photophysical properties of vitamin A.

Liver autofluorescence properties in animal model under altered nutritional conditions

VAIRETTI, MARIAPIA;DE SIMONE, ULIANA;FERRIGNO, ANDREA;BONCOMPAGNI, ELEONORA;BUCETA SANDE DE FREITAS, MARIA ISABEL;
2008-01-01

Abstract

Autofluorescence spectroscopy is a promising and powerful approach for an in vivo, real time characterization of liver functional properties. In this work, preliminary results on the dependence of liver autofluorescence parameters on the nutritional status are reported, with particular attention to vitamin A and lipid accumulation in liver tissue. Normally fed and 24 h starving rats were used as animal models. Histochemical and autofluorescence analysis showed that lipids and vitamin A colocalize in the liver parenchyma. Fasting condition results in a parallel increase in both lipids and vitamin A. Autofluorescence imaging and microspectrofluorometric analysis carried out on unfixed, unstained tissue sections under 366 nm excitation, evidenced differences in both spectral shape and response to continuous irradiation between liver biopsies from fed and starving rats. As to photobleaching, in particular, fitting analysis evidenced a reduction of about 85% of the signal attributable solely to vitamin A during the first 10 s of irradiation. The tissue whole emission measured in fed and starving rat livers exhibited reductions of about 35% and 52%, respectively, that are closely related to vitamin A contents. The findings open interesting perspectives for the set up of an in situ, real time diagnostic procedure for the assessment of liver lipid accumulation, exploiting the photophysical properties of vitamin A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/100193
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact