We propose a model to explore the competition between two mechanisms possibly at work in a nematic liquid crystal confined within a flat cell with strong uniaxial planar conditions on the bounding plates and subject to an external field. To obtain an electric field perpendicular to the plates, a voltage is imposed across the cell; no further assumption is made on the electric potential within the cell, which is therefore calculated together with the nematic texture. The Landau-de Gennes theory of liquid crystals is used to derive the equilibrium nematic order tensor Q. When the voltage applied is low enough, the equilibrium texture is nearly homogeneous. Above a critical voltage, there exist two different possibilities for adjusting the order tensor to the applied field within the cell: plain director reorientation, i.e., the classical Freedericksz transition, and order reconstruction. The former mechanism entails the rotation of the eigenvectors of Q and can be described essentially by the orientation of the ordinary uniaxial nematic director, whilst the latter mechanism implies a significant variation of the eigenvalues of Q within the cell, virtually without any rotation of its eigenvectors, but with the intervention of a wealth of biaxial states. Either mechanism can actually occur, which yields different nematic textures, depending on material parameters, temperature, cell thickness and the applied potential. The equilibrium phase diagram illustrating the prevailing mechanism is constructed for a significant set of parameters.

Director reorientation and order reconstruction: competing mechanisms in a nematic cell

BISI, FULVIO;VIRGA, EPIFANIO GUIDO GIOVANNI
2008-01-01

Abstract

We propose a model to explore the competition between two mechanisms possibly at work in a nematic liquid crystal confined within a flat cell with strong uniaxial planar conditions on the bounding plates and subject to an external field. To obtain an electric field perpendicular to the plates, a voltage is imposed across the cell; no further assumption is made on the electric potential within the cell, which is therefore calculated together with the nematic texture. The Landau-de Gennes theory of liquid crystals is used to derive the equilibrium nematic order tensor Q. When the voltage applied is low enough, the equilibrium texture is nearly homogeneous. Above a critical voltage, there exist two different possibilities for adjusting the order tensor to the applied field within the cell: plain director reorientation, i.e., the classical Freedericksz transition, and order reconstruction. The former mechanism entails the rotation of the eigenvectors of Q and can be described essentially by the orientation of the ordinary uniaxial nematic director, whilst the latter mechanism implies a significant variation of the eigenvalues of Q within the cell, virtually without any rotation of its eigenvectors, but with the intervention of a wealth of biaxial states. Either mechanism can actually occur, which yields different nematic textures, depending on material parameters, temperature, cell thickness and the applied potential. The equilibrium phase diagram illustrating the prevailing mechanism is constructed for a significant set of parameters.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/103777
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact