BACKGROUND & AIMS: Dendritic cells (DCs) play a crucial role in immune responses by controlling the extent and type of T-cell response to antigen. Celiac disease is a condition in which T-cell immunity to gluten plays an important pathogenic role, yet information on DCs is scant. We examined mucosal DCs in celiac disease in terms of phenotype, activation/maturation state, cytokine production, and function. METHODS: Mucosal DCs from 48 celiacs and 30 controls were investigated by flow cytometry. In situ distribution of DCs was analyzed by confocal microscopy. Interferon (IFN)-alfa, interleukin (IL)-4, IL-5, IL-12p35, IL-12p40, IL-18, IL-23p19, IL-27, and transforming growth factor-beta transcripts were measured by real-time reverse-transcription polymerase chain reaction in sorted DCs. DC expression of IL-6, IL-12p40, and IL-10 was assessed by intracellular cytokine staining. The effect of IFN-alfa and IL-18 blockade on the gluten-induced IFN-gamma response in celiac biopsy specimens grown ex vivo also was investigated. RESULTS: Mucosal DCs were increased in untreated, but not treated, celiacs. The majority of them were plasmacytoid with higher levels of maturation (CD83) and activation (CD80/CD86) markers. Higher transcripts of Th1 relevant cytokines, such as IFN-alfa, IL-18, and IL-23p19, were produced by celiac DCs, but because IL-12p40 was undetectable, a role for IL-23 is unlikely. Intracellular cytokine staining of celiac DCs showed higher IL-6, but lower IL-10 expression, and confirmed the lack of IL-12p40. Blocking IFN-alfa inhibited IFN-gamma transcripts in ex vivo organ culture of celiac biopsy specimens challenged with gluten. CONCLUSIONS: These data suggest that IFN-alfa-producing DCs contribute to the Th1 response in celiac disease.

Evidence for the role of interferon-alfa production by dendritic cells in the Th1 response in celiac disease

DI SABATINO, ANTONIO;ROVEDATTI, LAURA;CORAZZA, GINO ROBERTO;
2007-01-01

Abstract

BACKGROUND & AIMS: Dendritic cells (DCs) play a crucial role in immune responses by controlling the extent and type of T-cell response to antigen. Celiac disease is a condition in which T-cell immunity to gluten plays an important pathogenic role, yet information on DCs is scant. We examined mucosal DCs in celiac disease in terms of phenotype, activation/maturation state, cytokine production, and function. METHODS: Mucosal DCs from 48 celiacs and 30 controls were investigated by flow cytometry. In situ distribution of DCs was analyzed by confocal microscopy. Interferon (IFN)-alfa, interleukin (IL)-4, IL-5, IL-12p35, IL-12p40, IL-18, IL-23p19, IL-27, and transforming growth factor-beta transcripts were measured by real-time reverse-transcription polymerase chain reaction in sorted DCs. DC expression of IL-6, IL-12p40, and IL-10 was assessed by intracellular cytokine staining. The effect of IFN-alfa and IL-18 blockade on the gluten-induced IFN-gamma response in celiac biopsy specimens grown ex vivo also was investigated. RESULTS: Mucosal DCs were increased in untreated, but not treated, celiacs. The majority of them were plasmacytoid with higher levels of maturation (CD83) and activation (CD80/CD86) markers. Higher transcripts of Th1 relevant cytokines, such as IFN-alfa, IL-18, and IL-23p19, were produced by celiac DCs, but because IL-12p40 was undetectable, a role for IL-23 is unlikely. Intracellular cytokine staining of celiac DCs showed higher IL-6, but lower IL-10 expression, and confirmed the lack of IL-12p40. Blocking IFN-alfa inhibited IFN-gamma transcripts in ex vivo organ culture of celiac biopsy specimens challenged with gluten. CONCLUSIONS: These data suggest that IFN-alfa-producing DCs contribute to the Th1 response in celiac disease.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/107773
Citazioni
  • ???jsp.display-item.citation.pmc??? 35
  • Scopus 112
  • ???jsp.display-item.citation.isi??? 102
social impact