The Italian National Center for Hadrontherapy (CNAO, Centro Nazionale di Adroterapia Oncologica), a synchrotron-based hospital facility, started the treat- ment of patients within selected clinical trials in late 2011 and 2012 with actively scanned proton and carbon ion beams, respectively. The activation of a new clinical protocol for the irradiation of uveal melanoma using the existing general-purpose proton beamline is foreseen for late 2014. Beam characteristics and patient treatment setup need to be tuned to meet the specific requirements for such a type of treatment technique. The aim of this study is to optimize the CNAO transport beamline by adding passive components and minimizing air gap to achieve the optimal conditions for ocular tumor irradiation. The CNAO setup with the active and passive compo- nents along the transport beamline, as well as a human eye-modeled detector also including a realistic target volume, were simulated using the Monte Carlo Geant4 toolkit. The strong reduction of the air gap between the nozzle and patient skin, as well as the insertion of a range shifter plus a patient-specific brass collimator at a short distance from the eye, were found to be effective tools to be implemented. In perspective, this simulation toolkit could also be used as a benchmark for future developments and testing purposes on commercial treatment planning systems.

Optimization of a general-purpose, actively scanned proton beamline for ocular treatments: Geant4 simulations

RIMOLDI, ADELE;RICCARDI, CRISTINA
2015-01-01

Abstract

The Italian National Center for Hadrontherapy (CNAO, Centro Nazionale di Adroterapia Oncologica), a synchrotron-based hospital facility, started the treat- ment of patients within selected clinical trials in late 2011 and 2012 with actively scanned proton and carbon ion beams, respectively. The activation of a new clinical protocol for the irradiation of uveal melanoma using the existing general-purpose proton beamline is foreseen for late 2014. Beam characteristics and patient treatment setup need to be tuned to meet the specific requirements for such a type of treatment technique. The aim of this study is to optimize the CNAO transport beamline by adding passive components and minimizing air gap to achieve the optimal conditions for ocular tumor irradiation. The CNAO setup with the active and passive compo- nents along the transport beamline, as well as a human eye-modeled detector also including a realistic target volume, were simulated using the Monte Carlo Geant4 toolkit. The strong reduction of the air gap between the nozzle and patient skin, as well as the insertion of a range shifter plus a patient-specific brass collimator at a short distance from the eye, were found to be effective tools to be implemented. In perspective, this simulation toolkit could also be used as a benchmark for future developments and testing purposes on commercial treatment planning systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1102523
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact