Neurophysiological modifications associated to phenotypic plasticity inresponse to predators are largely unexplored, and there is a gap of knowledge on how the information encoded in predator cues is processed by prey sensory systems. To explore these issues, we exposed Rana dalmatina embryos to dragonfly chemical cues (kairomones) up to hatching. At different times after hatching (up to 40 days), we recorded morphology and anti-predator behaviour of tadpoles from control and kairomone-treated embryo groups as well as their neural olfactory responses, by recording the activity of their mitral neurons before and after exposure to a kairomone solution. Treated embryos hatched later and hatchlings were smaller than control siblings. In addition, the tadpoles from the treated group showed a stronger anti-predator response than controls at 10 days (but not at 30 days) post-hatching, though the intensity of the contextual response to the kairomone stimulus did not differ between the two groups. Baseline neuronal activity at 30 days post-hatching, as assessed by the frequency of spontaneous excitatory postsynaptic events and by the firing rate of mitral cells, was higher among tadpoles from the treated versus the control embryo groups. At the same time, neuronal activity showed a stronger increase among tadpoles from the treated versus control groups after a local kairomone perfusion. Hence, a different contextual plasticity between treatments at the neuronal level was not mirrored by the anti-predator behavioural response. In conclusion, our experiments demonstrate ontogenetic plasticity in tadpole neuronal activity after embryonic exposure to predator cues, corroborating the evidence that early-life experience can contribute to shaping the phenotype at later life stages.

Fear is the mother of invention: anuran embryos exposed to predator cues alter life-history traits, post-hatching behaviour and neuronal activity patterns

GAZZOLA, ANDREA;ROSSI, PAOLA;GALEOTTI, PAOLO
2015-01-01

Abstract

Neurophysiological modifications associated to phenotypic plasticity inresponse to predators are largely unexplored, and there is a gap of knowledge on how the information encoded in predator cues is processed by prey sensory systems. To explore these issues, we exposed Rana dalmatina embryos to dragonfly chemical cues (kairomones) up to hatching. At different times after hatching (up to 40 days), we recorded morphology and anti-predator behaviour of tadpoles from control and kairomone-treated embryo groups as well as their neural olfactory responses, by recording the activity of their mitral neurons before and after exposure to a kairomone solution. Treated embryos hatched later and hatchlings were smaller than control siblings. In addition, the tadpoles from the treated group showed a stronger anti-predator response than controls at 10 days (but not at 30 days) post-hatching, though the intensity of the contextual response to the kairomone stimulus did not differ between the two groups. Baseline neuronal activity at 30 days post-hatching, as assessed by the frequency of spontaneous excitatory postsynaptic events and by the firing rate of mitral cells, was higher among tadpoles from the treated versus the control embryo groups. At the same time, neuronal activity showed a stronger increase among tadpoles from the treated versus control groups after a local kairomone perfusion. Hence, a different contextual plasticity between treatments at the neuronal level was not mirrored by the anti-predator behavioural response. In conclusion, our experiments demonstrate ontogenetic plasticity in tadpole neuronal activity after embryonic exposure to predator cues, corroborating the evidence that early-life experience can contribute to shaping the phenotype at later life stages.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1110766
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 21
social impact