Ferritin is a ubiquitous protein that plays a critical role in regulating intracellular iron homoeostasis by storing iron inside its multimeric shell. It also plays an important role in detoxifying potentially harmful free ferrous iron to the less soluble ferric iron by virtue of the ferroxidase activity of the H subunit. Although excess iron is stored primarily in cytoplasm, most of the metabolically active iron in cells is processed in mitochondria. Little is yet known of how these organelles regulate iron homeostasis and toxicity. Here we report an unusual intronless gene on chromosome 5q23.1 that encodes a 242-amino acid precursor of a ferritin II-like protein. This 30-kDa protein is targeted to mitochondria and processed to a 22-kDa subunit that assembles into typical ferritin shells and has ferroxidase activity. Immunohistochemical analysis showed that it accumulates in high amounts in iron-loaded mitochondria of erythroblasts of subjects with impaired heme synthesis. This new ferritin may play an important role in the regulation of mitochondrial iron homeostasis and heme synthesis.

A human mitochondrial ferritin encoded by an intronless gene

INVERNIZZI, ROSANGELA;
2001-01-01

Abstract

Ferritin is a ubiquitous protein that plays a critical role in regulating intracellular iron homoeostasis by storing iron inside its multimeric shell. It also plays an important role in detoxifying potentially harmful free ferrous iron to the less soluble ferric iron by virtue of the ferroxidase activity of the H subunit. Although excess iron is stored primarily in cytoplasm, most of the metabolically active iron in cells is processed in mitochondria. Little is yet known of how these organelles regulate iron homeostasis and toxicity. Here we report an unusual intronless gene on chromosome 5q23.1 that encodes a 242-amino acid precursor of a ferritin II-like protein. This 30-kDa protein is targeted to mitochondria and processed to a 22-kDa subunit that assembles into typical ferritin shells and has ferroxidase activity. Immunohistochemical analysis showed that it accumulates in high amounts in iron-loaded mitochondria of erythroblasts of subjects with impaired heme synthesis. This new ferritin may play an important role in the regulation of mitochondrial iron homeostasis and heme synthesis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/113981
Citazioni
  • ???jsp.display-item.citation.pmc??? 109
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 309
social impact