The Gray Platelet Syndrome (GPS) is a rare inherited bleeding disorder characterized by deficiency of platelet α-granules, macrothrombocytopenia and marrow fibrosis. The autosomal recessive form of GPS is linked to loss of function mutations in NBEAL2, which is predicted to regulate granule trafficking in megakaryocytes, the platelet progenitors. We report the first analysis of cultured megakaryocytes from GPS patients with NBEAL2 mutations. Megakaryocytes cultured from peripheral blood or bone marrow hematopoietic progenitor cells from four patients were used to investigate megakaryopoiesis, megakaryocyte morphology and platelet formation. In vitro differentiation of megakaryocytes was normal, whereas we observed deficiency of megakaryocyte α-granule proteins and emperipolesis. Importantly, we first demonstrated that platelet formation by GPS megakaryocytes was severely affected, a defect which might be the major cause of thrombocytopenia in patients. These results demonstrate that cultured megakaryocytes from GPS patients provide a valuable model to understand the pathogenesis of GPS in humans.

Abnormal proplatelet formation and emperipolesis in cultured human megakaryocytes from gray platelet syndrome patients

DI BUDUO, CHRISTIAN ANDREA;BALDUINI, ALESSANDRA;
2016-01-01

Abstract

The Gray Platelet Syndrome (GPS) is a rare inherited bleeding disorder characterized by deficiency of platelet α-granules, macrothrombocytopenia and marrow fibrosis. The autosomal recessive form of GPS is linked to loss of function mutations in NBEAL2, which is predicted to regulate granule trafficking in megakaryocytes, the platelet progenitors. We report the first analysis of cultured megakaryocytes from GPS patients with NBEAL2 mutations. Megakaryocytes cultured from peripheral blood or bone marrow hematopoietic progenitor cells from four patients were used to investigate megakaryopoiesis, megakaryocyte morphology and platelet formation. In vitro differentiation of megakaryocytes was normal, whereas we observed deficiency of megakaryocyte α-granule proteins and emperipolesis. Importantly, we first demonstrated that platelet formation by GPS megakaryocytes was severely affected, a defect which might be the major cause of thrombocytopenia in patients. These results demonstrate that cultured megakaryocytes from GPS patients provide a valuable model to understand the pathogenesis of GPS in humans.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1166570
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 18
social impact