Bacterial adherence to host tissue involves specific microbial surface adhesins of which a subfamily termed microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) specifically recognize extracellular matrix components. We now report on the biophysical characterization of recombinant fibronectin binding MSCRAMMs originating from several different species of Gram-positive bacteria. The far-UV CD spectra (190-250 nm) of recombinant forms of the ligand binding domain of the MSCRAMMs, in a phosphate-buffered saline solution at neutral pH, were characteristic of a protein containing little or no regular secondary structure. The intrinsic viscosity of this domain was found to be the same in the presence or absence of 6 M guanidine hydrochloride, indicating that the native and denatured conformations are indistinguishable. On addition of fibronectin NH2 terminus as ligand to the recombinant adhesin there is a large change in the resulting far-UV CD difference spectra. At a 4.9 M excess of the NH2 terminus the difference spectra shifted to what was predominately a beta-sheet conformation, as judged by comparison with model far-UV CD spectra. The fibronectin NH2-terminal domain undergoes a minute but reproducible blue-shift of its intrinsic tryptophan fluorescence on addition of rFNBD-A, which contains no tryptophan residues. Since this result indicates that there is no large change in the environment of the tryptophan residues of the NH2 terminus on binding, the large shift in secondary structure observed by CD analysis is attributed to induction of a predominately beta-sheet secondary structure in the adhesin on binding to fibronectin NH2 terminus.

Conformational changes in the fibronectin-binding MSCRAMMs are induced by ligand binding

SPEZIALE, PIETRO;
1996-01-01

Abstract

Bacterial adherence to host tissue involves specific microbial surface adhesins of which a subfamily termed microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) specifically recognize extracellular matrix components. We now report on the biophysical characterization of recombinant fibronectin binding MSCRAMMs originating from several different species of Gram-positive bacteria. The far-UV CD spectra (190-250 nm) of recombinant forms of the ligand binding domain of the MSCRAMMs, in a phosphate-buffered saline solution at neutral pH, were characteristic of a protein containing little or no regular secondary structure. The intrinsic viscosity of this domain was found to be the same in the presence or absence of 6 M guanidine hydrochloride, indicating that the native and denatured conformations are indistinguishable. On addition of fibronectin NH2 terminus as ligand to the recombinant adhesin there is a large change in the resulting far-UV CD difference spectra. At a 4.9 M excess of the NH2 terminus the difference spectra shifted to what was predominately a beta-sheet conformation, as judged by comparison with model far-UV CD spectra. The fibronectin NH2-terminal domain undergoes a minute but reproducible blue-shift of its intrinsic tryptophan fluorescence on addition of rFNBD-A, which contains no tryptophan residues. Since this result indicates that there is no large change in the environment of the tryptophan residues of the NH2 terminus on binding, the large shift in secondary structure observed by CD analysis is attributed to induction of a predominately beta-sheet secondary structure in the adhesin on binding to fibronectin NH2 terminus.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/116896
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact