The intracellular distribution of glutathione (GSH) in cultured hepatocytes has been investigated by using the compound monochlorobimane (BmCl), which interacts specifically with GSH to form a highly fluorescent adduct. Image analysis of BmCl-labeled hepatocytes predominantly localized the fluorescence in the nucleus; the nuclear/cytoplasmic concentration gradient was approximately three. This concentration gradient was collapsed by treatment of the cells with ATP-depleting agents. The uneven distribution of BmCl fluorescence was not attributable to (i) nonspecific interaction of BmCl with protein sulfhydryl groups, (ii) any selective nuclear localization of the GSH transferase(s) catalyzing formation of the GSH-BmCl conjugate, or (iii) any apparent alterations in cell morphology from culture conditions, suggesting that this distribution did, indeed, reflect a nuclear compartmentalization of GSH. That the nuclear pool of GSH was found more resistant to depletion by several agents than the cytoplasmic pool supports the assumption that GSH is essential in protecting DNA and other nuclear structures from chemical injury.

Demonstration of nuclear compartmentalization of glutathione in hepatocytes.

VAIRETTI, MARIAPIA;STIVALA, LUCIA ANNA;RICHELMI, PLINIO;
1992-01-01

Abstract

The intracellular distribution of glutathione (GSH) in cultured hepatocytes has been investigated by using the compound monochlorobimane (BmCl), which interacts specifically with GSH to form a highly fluorescent adduct. Image analysis of BmCl-labeled hepatocytes predominantly localized the fluorescence in the nucleus; the nuclear/cytoplasmic concentration gradient was approximately three. This concentration gradient was collapsed by treatment of the cells with ATP-depleting agents. The uneven distribution of BmCl fluorescence was not attributable to (i) nonspecific interaction of BmCl with protein sulfhydryl groups, (ii) any selective nuclear localization of the GSH transferase(s) catalyzing formation of the GSH-BmCl conjugate, or (iii) any apparent alterations in cell morphology from culture conditions, suggesting that this distribution did, indeed, reflect a nuclear compartmentalization of GSH. That the nuclear pool of GSH was found more resistant to depletion by several agents than the cytoplasmic pool supports the assumption that GSH is essential in protecting DNA and other nuclear structures from chemical injury.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/117121
Citazioni
  • ???jsp.display-item.citation.pmc??? 38
  • Scopus 223
  • ???jsp.display-item.citation.isi??? ND
social impact