Detection and characterization of territorial elements exposed to flood is a key component for flood risk analysis. Land-use description works well for small scales of representation but it becomes too coarse while increasing the scale. "Single-element" characterization is usually achieved through surveys, which become prohibitive as the amount of elements to be characterized increases. Mapping schemes represent a compromise between level of description and efforts for data collection. The basic idea is to determine the statistical distribution of building characteristics inside a homogeneous class starting from a sample area and to apply this distribution to the whole area, realizing a statistical extrapolation. An innovative approach was developed, merging the mapping scheme methodologies developed by the Global Earthquake Model [1] and Blanco-Vogt and Schanze [2], in which homogeneous classes are not development areas but building clusters. The approach was applied to the buildings in the Bisagno River floodplain, Genoa (Italy). Buildings were classified according to a building taxonomy. Once the percentage of basement presence was assigned to each class by surveying a limited subset of the exposed assets, a series of possible basement distributions was simulated to calculate the corresponding damage distributions for a real flood event. The total average damage obtained is very close to the refund claims, with a percentage error lower than 2%. © 2016 The Authors, published by EDP Sciences.

Application of an Earth-Observation-based building exposure mapping tool for flood damage assessment

DE ANGELI, SILVIA;DELL'ACQUA, FABIO;
2016-01-01

Abstract

Detection and characterization of territorial elements exposed to flood is a key component for flood risk analysis. Land-use description works well for small scales of representation but it becomes too coarse while increasing the scale. "Single-element" characterization is usually achieved through surveys, which become prohibitive as the amount of elements to be characterized increases. Mapping schemes represent a compromise between level of description and efforts for data collection. The basic idea is to determine the statistical distribution of building characteristics inside a homogeneous class starting from a sample area and to apply this distribution to the whole area, realizing a statistical extrapolation. An innovative approach was developed, merging the mapping scheme methodologies developed by the Global Earthquake Model [1] and Blanco-Vogt and Schanze [2], in which homogeneous classes are not development areas but building clusters. The approach was applied to the buildings in the Bisagno River floodplain, Genoa (Italy). Buildings were classified according to a building taxonomy. Once the percentage of basement presence was assigned to each class by surveying a limited subset of the exposed assets, a series of possible basement distributions was simulated to calculate the corresponding damage distributions for a real flood event. The total average damage obtained is very close to the refund claims, with a percentage error lower than 2%. © 2016 The Authors, published by EDP Sciences.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1182968
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact