This paper describes the concept, technical realisation and validation of a largely data-driven method to model events with Z -> tau tau decays. In Z -> mu mu events selected from proton-proton collision data recorded at root s = 8 TeV with the ATLAS experiment at the LHC in 2012, the Z decay muons are replaced by tau leptons from simulated Z -> tau tau decays at the level of reconstructed tracks and calorimeter cells. The tau lepton kinematics are derived from the kinematics of the original muons. Thus, only the well-understood decays of the Z boson and tau leptons as well as the detector response to the tau decay products are obtained from simulation. All other aspects of the event, such as the Z boson and jet kinematics as well as effects from multiple interactions, are given by the actual data. This so-called tau-embedding method is particularly relevant for Higgs boson searches and analyses in tau tau final states, where Z -> tau tau decays constitute a large irreducible background that cannot be obtained directly from data control samples. In this paper, the relevant concepts are discussed based on the implementation used in the ATLAS Standard Model H -> tau tau analysis of the full datataset recorded during 2011 and 2012.

Modelling Z -> ττ processes in ATLAS with τ-embedded Z -> μμ data

Dondero P.
Membro del Collaboration Group
;
Fraternali M.
Membro del Collaboration Group
;
Introzzi G.
Membro del Collaboration Group
;
Livan M.
Membro del Collaboration Group
;
Negri A.
Membro del Collaboration Group
;
Rebuzzi D. M.
Membro del Collaboration Group
;
Rimoldi A.
Membro del Collaboration Group
;
2015-01-01

Abstract

This paper describes the concept, technical realisation and validation of a largely data-driven method to model events with Z -> tau tau decays. In Z -> mu mu events selected from proton-proton collision data recorded at root s = 8 TeV with the ATLAS experiment at the LHC in 2012, the Z decay muons are replaced by tau leptons from simulated Z -> tau tau decays at the level of reconstructed tracks and calorimeter cells. The tau lepton kinematics are derived from the kinematics of the original muons. Thus, only the well-understood decays of the Z boson and tau leptons as well as the detector response to the tau decay products are obtained from simulation. All other aspects of the event, such as the Z boson and jet kinematics as well as effects from multiple interactions, are given by the actual data. This so-called tau-embedding method is particularly relevant for Higgs boson searches and analyses in tau tau final states, where Z -> tau tau decays constitute a large irreducible background that cannot be obtained directly from data control samples. In this paper, the relevant concepts are discussed based on the implementation used in the ATLAS Standard Model H -> tau tau analysis of the full datataset recorded during 2011 and 2012.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1211546
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 3
social impact