Precast wall-slab-wall buildings can be found in many different earthquake-prone areas of the world. This type of building structure features no beams or columns but rather precast walls and slabs alone that are joined together by means of steel connectors and mortar, both of which will not necessarily prevent the formation of relative sliding between structural members when the structure is subjected to certain levels of horizontal excitation, rendering them particularly vulnerable to seismic loading. Given the scarce amount of information/data on the seismic behavior of these structures, a dynamic shake-table test was undertaken to investigate the response/performance of a full-scale two-story reinforced precast concrete wall-slab-wall structure, up to incipient/near collapse. The building mock-up was subjected to five test runs of progressively increased intensity and collapsed because of failure of the steel connectors used to join the longitudinal and transverse walls. Test data are openly available and archived at the Natural Hazards Engineering Research Infrastructure DesignSafe Data Depot.

Shake-table testing of a full-scale two-story precast wall-slab-wall structure

Pinho R.;
2019-01-01

Abstract

Precast wall-slab-wall buildings can be found in many different earthquake-prone areas of the world. This type of building structure features no beams or columns but rather precast walls and slabs alone that are joined together by means of steel connectors and mortar, both of which will not necessarily prevent the formation of relative sliding between structural members when the structure is subjected to certain levels of horizontal excitation, rendering them particularly vulnerable to seismic loading. Given the scarce amount of information/data on the seismic behavior of these structures, a dynamic shake-table test was undertaken to investigate the response/performance of a full-scale two-story reinforced precast concrete wall-slab-wall structure, up to incipient/near collapse. The building mock-up was subjected to five test runs of progressively increased intensity and collapsed because of failure of the steel connectors used to join the longitudinal and transverse walls. Test data are openly available and archived at the Natural Hazards Engineering Research Infrastructure DesignSafe Data Depot.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1327708
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 41
social impact