Several studies are increasingly underlying the biological role of vitamin E metabolites as bioactive compounds with anti-inflammatory, anti-proliferative and anti-atherogenic activity. A quantitative method for the simultaneous determination in human plasma and serum of vitamin E (α-tocopherol, α-T and γ-tocopherol, γ-T) and its cytochrome P-450 metabolites: 13′-hydroxychromanol (α-13'-OH), 13′-carboxychromanol (α-13'-COOH) and carboxyethyl hydroxychromanols (α-CEHC and γ-CEHC), was developed and validated. After enzymatic hydrolysis and deproteinization, the metabolites were extracted with a mixture of hexane/ methyl tertiary butyl ether (2/1, v/v). The separation was achieved by reversed phase chromatography and the analytes detected by a triple quadrupole mass analyser using electrospray ionization in positive mode (LC-MS/MS). α-T and γ-T were extracted separately without enzymatic hydrolysis. The analytes were quantified with the isotopic dilution method. After an extensive validation study (three levels in three different occasions for a total of 54 experiments), the procedure was successfully applied to the analysis of sera of healthy volunteers (before and after supplementation with α-T) and plasma of patients affected by chronic kidney disease. Finally, the structures of three unknown compounds found in blood and related to the long chain metabolites (α-13'-OH and α-13'-COOH) were further investigated using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS).

Determination of tocopherols and their metabolites by liquid-chromatography coupled with tandem mass spectrometry in human plasma and serum

Libetta C.;
2017-01-01

Abstract

Several studies are increasingly underlying the biological role of vitamin E metabolites as bioactive compounds with anti-inflammatory, anti-proliferative and anti-atherogenic activity. A quantitative method for the simultaneous determination in human plasma and serum of vitamin E (α-tocopherol, α-T and γ-tocopherol, γ-T) and its cytochrome P-450 metabolites: 13′-hydroxychromanol (α-13'-OH), 13′-carboxychromanol (α-13'-COOH) and carboxyethyl hydroxychromanols (α-CEHC and γ-CEHC), was developed and validated. After enzymatic hydrolysis and deproteinization, the metabolites were extracted with a mixture of hexane/ methyl tertiary butyl ether (2/1, v/v). The separation was achieved by reversed phase chromatography and the analytes detected by a triple quadrupole mass analyser using electrospray ionization in positive mode (LC-MS/MS). α-T and γ-T were extracted separately without enzymatic hydrolysis. The analytes were quantified with the isotopic dilution method. After an extensive validation study (three levels in three different occasions for a total of 54 experiments), the procedure was successfully applied to the analysis of sera of healthy volunteers (before and after supplementation with α-T) and plasma of patients affected by chronic kidney disease. Finally, the structures of three unknown compounds found in blood and related to the long chain metabolites (α-13'-OH and α-13'-COOH) were further investigated using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1340927
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 39
social impact