Finite-set model-predictive control (FS-MPC) has many advantages, such as a fast dynamic response and an intuitive implementation. For these reasons, it has been thoroughly researched during the last decade. However, the waveform produced by FS-MPC has a switching component whose spread spectrum remains a major disadvantage of the strategy. This paper discusses a modulated model-predictive control that guarantees a spectrum switching frequency in the linear modulation range and extends its optimized response to the overmodulation region. Due to the equivalent high gain of the predictive control and to the limit on the voltage actuation of the power converter, it is expected that the actuation voltage will enter the overmodulation region during the large reference changes or in response to load impacts. An optimized overmodulation strategy that converges toward the FS-MPC 's response for large tracking errors is proposed for this situation. This technique seamlessly combines PWM's good steady-state switching performance with FS-MPC 's high dynamic response during large transients. The constant switching frequency is achieved by incorporating modulation of the predicted current vectors in the model-predictive control of the currents in a similar fashion as the conventional space-vector pulsewidth modulation is used to synthesize an arbitrary voltage reference. Experimental results showing the proposed strategy's good steady-state switching performance, its FS-MPC -like transient response, and the seamless transition between modes of operation are presented for a permanent magnet synchronous machine drive. © 2013 IEEE.

Modulated Model-Predictive Control with Optimized Overmodulation

Zanchetta P.
;
2019-01-01

Abstract

Finite-set model-predictive control (FS-MPC) has many advantages, such as a fast dynamic response and an intuitive implementation. For these reasons, it has been thoroughly researched during the last decade. However, the waveform produced by FS-MPC has a switching component whose spread spectrum remains a major disadvantage of the strategy. This paper discusses a modulated model-predictive control that guarantees a spectrum switching frequency in the linear modulation range and extends its optimized response to the overmodulation region. Due to the equivalent high gain of the predictive control and to the limit on the voltage actuation of the power converter, it is expected that the actuation voltage will enter the overmodulation region during the large reference changes or in response to load impacts. An optimized overmodulation strategy that converges toward the FS-MPC 's response for large tracking errors is proposed for this situation. This technique seamlessly combines PWM's good steady-state switching performance with FS-MPC 's high dynamic response during large transients. The constant switching frequency is achieved by incorporating modulation of the predicted current vectors in the model-predictive control of the currents in a similar fashion as the conventional space-vector pulsewidth modulation is used to synthesize an arbitrary voltage reference. Experimental results showing the proposed strategy's good steady-state switching performance, its FS-MPC -like transient response, and the seamless transition between modes of operation are presented for a permanent magnet synchronous machine drive. © 2013 IEEE.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1349129
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 61
social impact